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Abstract. We present our recent analytic calculation of the next-to-leading order contribution
to the heavy quark-antiquark potentials, by utilizing the effective description of a long string.
Discussions on the effective field theory power counting and the method for reducing a number of
dimensionful parameters arising from the EST are followed. Furthermore, physical implications
on the comparison to the lattice data are briefly discussed.

1. Introduction
Perturbative Quantum Chromodynamics (pQCD) [1] provides an analytic description of the
interactions between quarks and gluons at high energy [2, 3, 4]. However, this approach is no
longer valid as the coupling αs becomes a large value at the scale around or below 200 MeV; this
feature is called color confinement in QCD [5]. A possible solution to this theoretical challenge
within a perturbative framework is still to be pursued to this day. Although a complete and
consistent theory for the dynamics concerning color-charged particles from the deconfining to
confining phase is absent, various kind of low-energy effective descriptions has been developed,
and they differ depending on the particle interactions of one’s interest.

Chiral perturbation theory (χPT) [6] provides a perturbative framework for the interactions
among light mesons (π, σ, ρ, etc), which is valid below the chiral breaking scale ∼1 GeV. As for
the heavy quarks (charm or bottom), heavy quark effective theory (HQET) [7] gives an effective
description of the dynamics of a heavy-light quark (or antiquark) pair, while non-relativistic
QCD (NRQCD) [8, 9] and potential NRQCD (pNRQCD) [10] are the effective field theories
(EFTs) for a heavy quark-antiquark pair and its bound state, respectively.

On the other hand, lattice gauge theory (or lattice QCD-LQCD) provides numerical values
of the mass spectra of quarks and hadrons. While LQCD is useful for extracting physical values
at the non-perturbative regime, an analytic method for understanding the bound state between
a quark-antiquark pair at long-distance has been developed. This method is called QCD flux
tube model [11]. In this paper, Nambu proposed that if a quark-antiquark pair is separated to
long distance, comparable to that of the confining scale, then the gluodynamics between the
pair can be substituted by the dynamics of a fluctuating string. This model is verified when it
is compared to the lattice simulation [12]. It shows that the energy density between the pair
increases when they are separated, and this increase of density appears in the shape of a flux
tube.

Lüscher et. al. developed this idea further [13, 14]. Based on the conjecture of the Wilson
loop-string partition function equivalence, the static potential between the pair at long distance
was calculated. Kogut and Parisi, shortly afterwards, derived the analytic expression of the
spin-spin interaction part of the heavy quark potential by using the string picture [15].
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During the last few decades, significant progress has been made in this line of research. Heavy
quark-antiquark potential was shown to be equivalent to the Wilson loop and the gauge field
insertions therein, at the large time limit [16, 17]. This was given by the matching calculation.
Recently, Brambilla et. al. have calculated all of the heavy quark potentials by using the effective
string theory (EST) up to leading order (LO) [18]. As was pointed out here, however, this LO
calculation is not fully inclusive, because some of the next-to-leading order (NLO) contribution
would contain terms which are of the same order of the expansion parameter. In other words,
NLO terms can alter the leading order coefficients of the potentials. Thus, it is necessary for
us to understand the proper EFT systematics of the string picture, so that not only the higher
order suppression terms are derived, but all of the missing LO terms are also acquired.

This proceeding is organized as the following: In Sec. 2, we briefly introduce NRQCD and
pNRQCD for a heavy quark-antiquark pair and its bound state. The equivalence between
the Wilson loop expectation value (and gauge field insertions therein) from NRQCD and the
potential terms from pNRQCD at the large time limit is shown. In Sec. 3, we introduce the
EST, and through the Wilson loop-string partition function equivalence conjecture, the heavy
quark potentials are analytically calculated up to NLO. We discuss the implication of this result
in Sec. 4. Comparison of our result to the LQCD data as well as the extension of our method
to other cases are given at the end.

2. Non-relativistic EFTs of QCD
NRQCD is a non-relativistic EFT for a heavy quark-antiquark pair [8, 9]. As the hierarchy of
scales is realized,M �Mv (M : heavy quark mass, v: relative velocity), the NRQCD Lagrangian
is derived by integrating outM : it is organized by 1/M expansion. Then its dynamical degrees of
freedom are Pauli spinor fields for the heavy quark and antiquark, SU(3) field strength terms for
the soft gluons, and Dirac spinor fields for the light quarks. A series of operators concerning the
heavy quark and antiquark fields carry Wilson coefficients. The coefficients contain information
at the high-energy regime. They are determined by matching to the underlying theory, pQCD.

An even lower-energy counterpart to NRQCD is pNRQCD [10], which is an effective
framework of heavy quark-antiquark bound state. The hierarchy of scales for this system is
realized as M � Mv � Mv2, where Mv2 is the relative kinetic energy between the quark-
antiquark pair. By integrating out the relative momentum Mv, which scales like ∼ 1/r (r:
relative distance), the pNRQCD Lagrangian is then organized by the multipole expansion in r,
in addition to 1/M expansion from NRQCD. Then the dynamical degrees of freedom are SU(3)
singlet and octet fields for the heavy quarkonium, SU(3) field strength term for ultra-soft gluons,
Dirac spinor fields for the light quarks. Note that both the singlet and octet fields depend on time
t, relative coordinate r, and center-of-mass coordinate R, S(t, r,R), Oa(t, r,R). A schematic
form of the pNRQCD Lagrangian is given by (only the bilinear terms of singlet and octet are
shown below)

LpNRQCD �
∫

d3r
{
Tr

[
S† (i∂0 − VS(r) + . . . )S +O† (iD0 − VO(r) + . . . )O

]

gVA(r)Tr
[
O†r ·E + S†r ·EO

]
+ g

VB(r)

2
Tr

[
O†r ·EO +O†Or ·E

]}
,

(1)

in which V (r)’s are the heavy quark potentials. They are the Wilson coefficients of pNRQCD,
which are to be determined by matching to NRQCD. In this report, we focus on the analytic
expression of the singlet potential VS(r). The potential expanded up to 1/M2 is given by (from
now on we omit the subscript S for the singlet sector) [10]

V (r) =V (0)(r) +
2

M
V (1,0)(r) +

1

M2

[
V (2,0) + V (1,1)

]
(2)



3

1234567890 ‘’“”

FAIRNESS 2017: FAIR NExt generation ScientistS 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1024 (2018) 012022  doi :10.1088/1742-6596/1024/1/012022

where the superscript (a, b) denotes the order of 1/M1,2 expansion. Note that the mass of

the heavy quark and the antiquark is identical, M1 = M2 = M . V (2,0) includes terms like

V
(2,0)
L2 , V

(2,0)
p2

, V
(2,0)
LS , and V

(2,0)
r , and V (1,1) includes V

(1,1)
L2 , V

(1,1)
L2S1

, V
(1,1)
S2 , V

(1,1)
S12

, V
(1,1)
p2

, and V
(1,1)
r .

By comparing the heavy quark-antiquark correlator of NRQCD to the singlet propagator of
pNRQCD, the following relation holds at the zeroth order in 1/M expansion [16]

V (0)(r) = lim
T→∞

i

T
ln〈W�〉, for W� = P exp

{
−ig

∮
r×T

dzμAμ(z)

}
. (3)

The angular bracket around the rectangular Wilson loop W� denotes the expectation value over
the Yang-Mills action, and P stands for the path-ordering operator in color space. In the similar
fashion, we obtain the following relation for the first order relativistic correction [17]:

V (1,0)(r) = −1

2
lim
T→∞

∫ T

0
dt t〈〈gE1(t) · gE1(0)〉〉c , (4)

where the double angular bracket denotes gauge fields insertions to the normalized Wilson
loop expectation value, and the subscript c stands for the connected part, which is defined by
〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉, for t1 ≥ t2. Also E1,2(t) = E(t,±r/2)
as the quark and antiquark are located at (0, 0,±r/2), respectively. The second order corrections
are divided into spin-independent and spin-dependent parts. The spin-independent part is given
by,

V
(2,0)
p2

(r) =
i

2
r̂ir̂j lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gE
j
1(0)〉〉c ,

V
(1,1)
p2

(r) = ir̂ir̂j lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gE
j
2(0)〉〉c ,

. . .

(5)

where the ellipsis includes terms like VL2 ’s and Vr’s. The spin-independent part is given by,

V
(2,0)
LS = −c

(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t〈〈gB1(t)× gE1(0)〉〉+ c

(1)
s

2r2
r ·

(
∇rV

(0)
)
,

V
(1,1)
L2S1

(r) =
c
(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t〈〈gB1(t)× gE2(0)〉〉c ,

. . .

(6)

where the ellipsis includes the spin-spin interaction part of the potentials. Explicit form of
these potentials are then derived by calculating the gauge field insertions to the Wilson loop
expectation value. In the non-perturbative regime, LQCD provides numerical result [19, 20],
which observes Poincaré invariance [21] with high accuracy, but it is limited only to the
calculations of two-gauge field insertions. Vr contains three- and four-gauge field insertions,
so it is necessary to look for some other ways to address this issue.

3. Effective string theory and heavy quark potentials
Analytic behavior of the potentials at long distance can be investigated by utilizing the effective
string theory (EST) [11]. The EST is constructed based on the Wilson loop-string partition
function equivalence conjecture [13]:

lim
T→∞

〈W�〉 = Z

∫
Dξ1Dξ2 eiSString[ξ

1,ξ2] , (7)
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where Z is the normalization constant and ξ1,2 are the transversal vibrations of the string. With
respect to the following hierarchy of scales: rΛQCD � 1, and the power counting: ∂a ∼ 1/r

and ξl ∼ Λ−1QCD (i.e., ∂aξ
l ∼ (rΛQCD)

−1 	 1), as well as the Dirichlet boundary condition:

ξl(t,±r/2) = 0, the action of the EST in four-dimensional spacetime is derived from the Nambu-
Goto action,

SString = −σ
∫

dtdz
√

det (ηab + ∂aξl∂bξl) = −σ
∫

dtdz

(
1− 1

2
∂aξ

l∂bξ
l + . . .

)
. (8)

The ellipsis on the last equality contains higher order terms of the derivative expansion, and σ
is the string tension (∼ Λ2

QCD), which is a fundamental parameter of the theory. Truncation
has been made up to quadratic order. From this expression, it is clear that the LO potential is
of linear order, V (0) ≈ σr [13]. Also, the Green’s function is exactly computed by solving the
equations of motion [22]:

Glm(t, t′; z, z′) =
δlm

4πσ
ln

(
cosh [(t− t′)π/r] + cosh [(z + z′)π/r]
cosh [(t− t′)π/r]− cosh [(z − z′)π/r]

)
. (9)

Relativistic corrections to the potential at long distance can analytically be computed when a
mapping between QCD and the effective string description is established [18]. In this report, we
want to extend this idea, such that the subleading contribution to the potentials are acquired.

As for the NLO calculation of the potential, it turns out that subleading part of the EST
action contributes as the next-next-to-leading order. So we only consider the mapping at NLO:

〈〈. . .El
1,2(t) . . . 〉〉 = 〈. . .Λ2∂zξ

l(t,±r/2) + Λ
2
∂zξ

l (∂ξ)2 (t,±r/2) . . . 〉 ,
〈〈. . .E3

1,2(t) . . . 〉〉 = 〈. . .Λ′′2 + Λ′′2(∂ξ)2(t,±r/2) . . . 〉 ,
〈〈. . .Bl

1,2(t) . . . 〉〉 = 〈· · · ± Λ′εlm∂t∂zξ
m(t,±r/2)± Λ′εlm∂t∂zξ

m(∂ξ)2(t,±r/2) . . . 〉 ,
〈〈. . .B3

1,2(t) . . . 〉〉 = 〈· · · ± Λ′′′εlm∂t∂zξ
l∂zξ

m(t,±r/2)± Λ′′′εlm∂t∂zξ
l∂zξ

m(∂ξ)2(t,±r/2) . . . 〉 .
(10)

Note that the mapping for magnetic field insertion is derived by taking the duality transformation
of the electric field. There are two types of dimensionful parameters, Λ’s and Λ’s, which are
∼ ΛQCD, and they satisfy Λ ≥ Λ. Then we perform the similar calculation as in [18], but its
difficulty lies on the divergence behavior of the string correlator, such as ∂z∂z′G, ∂t∂z∂z′G, and
∂t∂t′G, defined at the same spacetime point. It turns out that this divergence stems from the
derivation of the string correlator, which contains an infinite sum over the vibrational modes
of the string and integral over the entire Fourier space. The infinite sum and integral are
not physically compatible with the effective framework we started with, because the validity
of theory does not encompass the entire energy scale. Thus, it is necessary to regulate this
divergence and renormalize accordingly. We use zeta-function regularization for the infinite
sum over the modes:

∑∞
n=0 n = −1/12 and

∑∞
n=0 n

2 = 0, and for the Fourier integral, we
use dimensional regularization:

∫
dy[y2/(y1 + 1)] = −2π. In fact, these two regularization

schemes are identical to each other: the zeta-function regularization is the discrete version of
the dimensional regularization. By applying these schemes, we obtain the analytic result.

However, there are a number of free (dimensionful) parameters remaining in the potential.
They are either from Eq. (10) or originate from the time integral for the potential. We exploit
Poincaré invariance in QCD, which gives non-trivial relations between the potential terms.
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Applying these constraints gives a significant result on the momentum-dependent potentials:

V
(2,0)
p2

=

(
1

12π
+

π

36

)
1

r
, V

(1,1)
p2

=

(
1

6π
− π

36

)
1

r
,

V
(2,0)
L2 = −σr

6
+

(
11

36π
+

2π

27

)
1

r
, V

(1,1)
L2 =

σr

6
+

(
1

9π
+

5π

216

)
1

r
.

(11)

Vp2 ’s were absent at LO in the EST [18], and here we observe non-trivial contributions arise at
NLO. As for VL2 ’s, the linear part is from the LO calculation, which is now added by suppression
terms. Note also that these NLO terms do not carry any free parameters due to constraint
equations between the potentials (Poincaré invariance in QCD). The rest of the potentials are
calculated in a similar fashion, and the full result will appear in our upcoming paper.

4. Outlook
Comparing the EST prediction to the LQCD data gives an interesting result. In [23], the
comparison has been made, where the analytic result of Vb, Vc, Vd, and Ve (linear combinations
of the momentum-dependent potentials) are given up to LO of the EST. It shows a significant
discrepancy between lattice data and the analytic prediction, which implies that higher order
terms are required for the improvement. Inclusion of NLO terms as in Sec. 3 shows decrease in
the discrepancy, and this will be shown in our upcoming paper.

Method of the EST can be applied to the case of heavy hybrids and baryonic spectrum at
long-distance regime. Eq. (7) might be different in this case due to the symmetry reason, but
the procedure for deriving the analytic expression is similar. Currently, we are investigating
these applications.
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