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ABSTRACT

Performing sound and fair fuzzer evaluations can be challenging,
not only because of the randomness involved in fuzzing, but also
due to the large number of fuzz tests generated. Existing evaluations
use code coverage as a proxy measure for fuzzing effectiveness. Yet,
instead of considering coverage of all generated fuzz inputs, they
only consider the inputs stored in the fuzzer queue. However, as we
show in this paper, this approach can lead to biased assessments
due to path collisions. Therefore, we developed FuzzTastic, a fuzzer-
agnostic coverage analyzer that allows practitioners and researchers
to perform uniform fuzzer evaluations that are not affected by
such collisions. In addition, its time-stamped coverage-probing
approach enables frequency-based coverage analysis to identify
barely tested source code and to visualize fuzzing progress over
time and across code. To foster further studies in this field, we make
FuzzTastic, together with a benchmark dataset worth ~12 CPU-
years of fuzzing, publicly available; the demo video can be found at
https://youtu.be/Lm-eBx@aePA.
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1 INTRODUCTION

Context. Detecting bugs, especially in programs written in error-
prone languages such as C/C++, is an essential part of software
testing. One dynamic testing approach that has enjoyed great pop-
ularity in recent years is known as fuzzing [16, 17]. The idea of
fuzzing is simple: generate a large number of random inputs (mech-
anized by so-called fuzzers), feed them into a target program, and
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then see if it crashes, or not. Certain program crashes thereby en-
able attackers to execute malicious source code, leak sensitive data,
or provoke a denial-of-service (DoS), and are therefore considered
security vulnerabilities.

Problem and State-of-Practice. As highlighted by Klees et al. [11],
conducting sound and fair fuzzer evaluations is difficult as they
require long timeouts and numerous repetitions to account for the
inherent randomness of fuzzing. Yet many of the existing eval-
uations do not meet these requirements, leading to incorrect or
misleading assessments [11]. FuzzBENcH [15], a benchmarking ser-
vice launched by Google, addresses these issues by conducting
uniform and reproducible fuzzer evaluations using code coverage
as proxy metric for fuzzing effectiveness. To measure code coverage,
FuzzBENCH captures the inputs from the fuzzer queue! [11, 14] and
then replays them on a second instance of the target program that
is compiled with Clang’s code coverage feature [2] enabled.

However, this approach has two limitations. Firstly, it inhibits
measuring the exact number of executions of a code region (e.g.,
basic block) by the fuzz inputs, which would allow to reveal less
thoroughly tested code. Secondly, it assumes that the inputs stored
in the fuzzer queue correctly reflect the code coverage achieved
by all generated fuzz inputs. However, due to path collisions in
coverage-based fuzzers that hash the tracked coverage informa-
tion [8, 9, 20] (discussed in Section 4), not all coverage-increasing
inputs are added to the queue. Consequently, when measuring
coverage from the inputs in the queue, code that was actually cov-
ered by the generated fuzz inputs may then be missed, resulting in
distorted evaluations.

Solution and Contributions. In this paper, we present our LLVM-
based coverage analyzer, called FuzzTastic, which works indepen-
dently of the chosen fuzzer (black-, grey-, or whitebox). Besides
addressing the limitations described above, our tool also enables
visualizing the progress of covered code throughout the fuzzing
campaign. Furthermore, we demonstrate FuzzTasTIC’s applicabil-
ity by creating a large-scale benchmark dataset, containing detailed
coverage data from 9 fuzzers executed on 12 different C/C++ open-
source programs, which can be used in further studies. Accordingly,
this work presents the following contributions:

(1) We develop the coverage analysis tool FuzzTasTic, which we
make publicly available as open-source software on GitHub?
(see Section 2).

! A fuzzer queue holds fuzz inputs, which increased coverage, for future usage [11].
2 https://github.com/tum-i4/fuzztastic
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(2) We generate and release a comprehensive fuzzer benchmark
dataset with detailed coverage data worth ~12 CPU-years?
of fuzzing (see Section 3).

(3) We show that path collisions in AFL-based fuzzers can cause
an error of up to 9% missed basic blocks when measuring
code coverage, introducing a non-negligible bias to fuzzer
evaluations (see Section 4).

2 THE FUZZTASTIC COVERAGE ANALYZER

This section describes FuzzTastic, which addresses the problem of
reliably collecting fine-grained coverage data. Thereby, we first de-
scribe the steps and software artifacts required to set up FuzzTAsTIC,
followed by a detailed overview of how our tool works.

2.1 Program Analysis and Instrumentation

Source Code » — Basic Block
(Target) (R R Data
Analysis

Instrumentation

LLVM IR » LLVM IR » Binary
(FuzzTastic Instr.) (Fuzzer Instr.) (FT+Fuzzer Instr.)

Figure 1: Analysis and instrumentation artifacts.

Figure 1 shows the analysis and instrumentation artifacts involved
when using FuzzTasTic. First, the source code of the program to
be fuzzed is translated into LLVM’s intermediate representation
(IR). The respective IR file is then used to analyze and instrument
each basic block as described below.

"basic_blocks": [ "timestamp": {

{ "start" : "2021-04-22 14:25:19",
"id": 0, "report": "2021-04-22 16:25:21"
"file": "gif2png.c", 1,

"function": "interlace_line", "block_coverage": [
"lines": [45, 48, 50] 79704586 , ..., 3497484
¥}, 1

Figure 2: Example data of FuzzTasrTIc.

Static Analysis. Using the generated IR file, we run a custom
LLVM compiler pass to extract metadata from the individual basic
blocks that comprise the following information:
e Identifier: Unique numerical identifier (ID) of the basic
block within the program.
o File: Path to the C/C++ source file in which the basic block
is located.
e Function: Name of the function whose control-flow graph
(CFG) contains the basic block.
e Lines: List of source code line numbers (comments excluded)
enclosed by the basic block.

The left part of Fig. 2 provides an example of such metadata
(JSON format) of the program Gif2png. Therein, the basic block with
ID 0 covers the lines 45-50 in function interlace_line, which in
turn is defined in the source file gif2png.c.

3 On Google Cloud instances, generating such a dataset would cost over $2,000 [15].
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static int32_t ft_shm_data[<N_BASIC_BLOCKS>];

void __ft_inc_cov(int32_t bb_id) {
ft_shm_datalbb_id] += 1;

}

Figure 3: FuzzTAsTIC instrumentation.

Instrumentation. First, we use the IR file, initially generated for
the static program analysis, to apply FuzzTAsTIC’s instrumentation
in which each basic block is extended with a call to the function
__ft_inc_cov (see Fig. 3) stored in a dynamic runtime library. Ac-
cordingly, whenever a basic block is executed, this function is called
and increments the hit-count of the respective block in the array
ft_shm_data. Since we measure the coverage of all executed inputs
generated during the fuzzing campaign, and not only those stored
in the queue of the fuzzer (as FuzzBENCH does), our approach is not
affected by path collisions existent in most coverage-based fuzzers.
Note that ft_shm_data is stored in a shared memory segment such
that the coverage information can be queried by FuzzTasTic paral-
lel to the fuzzing campaign, which is less time and resource consum-
ing than replaying the inputs in the queue. After that, we run the
instrumentation required by grey- and whitebox fuzzers, followed
by compiling the instrumented IR file into a fuzzable binary.

2.2 Coverage Analysis

Fuzzing
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Figure 4: Big picture of FuzzTasTIc.

Figure 4 shows the interactions, i.e., the control- and data-flow,
between FuzzTasTic, the chosen fuzzer (black-, grey-, or whitebox),
and the instrumented target program.

Configuration. As input, FuzzTasTic takes the extracted basic
block metadata of the target program and a user-defined configura-
tion (bash scripts) of the fuzzing campaign. These scripts specify
the path to the target program plus the command-line interface
(CLI) options with which to execute it. They also contain the path to
the fuzzer and its CLI options resp. environment variables. Further-
more, the configuration specifies the fuzzer’s working directory,
the directory with the initial seeds, and the fuzzing timeout. Lastly,
it sets the directory where the coverage reports should be written
along with the interval (default: 15 minutes) at which the reports
should be persisted. Accordingly, to customize FuzzTAsTIc to other
programs or fuzzers, only those scripts need to be modified.
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Table 1: Benchmark programs

Subject Version  Driver LoC  #Blocks # Funcs.

nm 68,667 44,114 2,126

objdump 89,961 60,448 2,701
Binutils 2.29 readelf 22,347 18,578 477

size 68,115 43,711 2,101

strings 68,048 43,714 2,093
FFmpeg n3.3.2 ffmpeg 522,813 432,244 21,147
FreeType2 2.7 ftfuzzer 44,686 27,521 1,635
Gif2png 253 gif2png 988 700 27
JasPer 1.900.0 jasper 17,385 14,417 720
JsonCpp 1.8.4 jsoncpp_fuzz ! 7,251 5,938 1,328
Libpcap 1.9.0 fuzz_pcap 12,076 6,442 497
Zlib 1.2.9 zlib_fuzzer 1.2 4,223 3,289 148
Total 926,560 701,116 35,000

1 Fuzz driver provided by 0SS-Fuzz
2 Original name: z1ib_uncompress_fuzzer

Coverage Measurement. After setting up the shared memory
segment and starting the fuzzing campaign, FuzzTAsTIC repeatedly
reads in real-time the coverage information and stores them into
separate coverage reports until the timeout has expired. These
reports contain the following data:

e Timestamp: Time when the campaign was started (start)
and when the coverage data was recorded (report).

e Block Coverage: List containing the exact hit-counts of
each basic block, with the list indices being aligned to the
block IDs.

An example of such a coverage report, generated after 2 hours of
fuzzing Gif2png with the AFL fuzzer, can be seen on the right side
of Fig. 2. Within this period, the coverage data indicates that the
basic block with ID 0 has been executed 79,704,586 times, while the
least frequently executed block counts only 2,353 executions. Note
that besides basic block coverage, the generated reports also allow
measuring function coverage and statement coverage (subsumed
by block coverage [21]). In future versions of FuzzTasTic, we plan
to output CFG information about the subject’s functions to also
support edge a.k.a. branch coverage.

Limitations. This in-depth, path-collision-free coverage measure-
ment comes with the limitation that programs exceeding a certain
size cannot be analyzed with FuzzTasTIC, as the array ft_shm_data
(see Fig. 3) would require too much random-access memory (RAM).
However, as shown in the next section, even large-scale programs
like FFmpeg, which contains a total of 432,244 basic blocks, can be
easily analyzed with only 4GB RAM. Also, similar to other coverage
analyzers, the code instrumentation incurs an extra overhead in
terms of binary size and performance. By instrumenting at the gran-
ularity of basic blocks (instead of instructions) and using efficient
shared memory based inter-process communication, we tried to
keep the overhead as low as possible.

3 GENERATING A BENCHMARK DATASET

This section describes the experimental setup used to create a bench-
mark dataset with FuzzTasTtic. In total, this dataset contains in-
depth coverage data from ~12 CPU-years of fuzzing, i.e., 12 subject
programs X 9 fuzzers X 2 different initial seeds (empty/non-empty)
X 20 repetitions X 24 hours.
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Subject Programs. For our benchmark dataset we selected a di-
verse set of 12 different free and open-source (FOS) C/C++ applica-
tions and libraries (see Table 1). We based our program selection on
two criteria. First, to create a setup close to real-world fuzzing, we
chose open-source programs that are widely and actively used in
practice. For libraries, we made sure that a fuzz driver is provided
either by the developers themselves or by OSS-Fuzz [19]. Second,
we focused on selecting programs from different domains to enable
more generalizable evaluations. Here, the selection ranges from
programs for binary manipulations (Binutils), over data proces-
sors and converters for different file formats (FFmpeg, FreeType2,
Gif2png, JasPer, and JsonCpp), to network utilities (Libpcap) and
data compression tools (Zlib).

Fuzzers. As fuzzing tools, we selected 9 different FOS coverage-
based greybox fuzzers that have been published at top-tier research
venues and/or are popular and widely used among practitioners,
using GitHub stars as an indicator [6] for this.

One of the most widespread fuzzers is AFL [1] (version: 2.56b).
It implements an evolutionary fuzzing technique that assigns en-
ergy to seeds based on their branch coverage, execution time, and
discovery time of coverage-increasing inputs. AFLFAsT [5] (2.51b)
extends AFL with an enhanced power schedule algorithm that as-
signs‘energy to seeds based on high-/low-frequency program paths
executed using a Markov chain model of basic block transition
probability. Another employed AFL variant is AFL++ [8] (2.64c), a
community-driven tool that incorporates proven fuzzing techniques
proposed in research papers such as AFLFAsT’s seed power sched-
ules and MOPT’s fuzz mutators (discussed below). AFLSMART [18]
(2.52b) is also built on top of AFL, introducing structural fuzzing by
modifying the higher-level representation of a seed instead of its
raw bytes. We also use EcLIPSER [7], which implements a concolic
testing engine that uses an approximation of path constraints re-
solvable by generational search, as opposed to costly SMT solving.
Furthermore, we include FAIrRFuzz [12] (2.52b) which is also based
on AFL. It implements novel mutators that focus on generating
fuzz inputs that exercise branches which guard empirically hard
to cover source code. Another employed fuzzer is HONGGFUZzZ [3]
(2.2), which supports low-level process tracing, making it possible
to intercept hijacked signals from crashes that otherwise are often
concealed by the fuzzed program. Lastly, we include the fuzzers
MOPT-AFL (2.52b) and MOPT-AFL++ (2.64c), which utilize an op-
timized mutation scheme based on a customized particle swarm
optimization algorithm, called MOPT [13], to find the optimal strat-
egy for selecting fuzz mutators.

Seeds, Timeout, and Repetitions. We execute each {subject x
fuzzer }-pair with the empty and a non-empty initial seed inputs to
be able to study their effects on the fuzzing performance. Regarding
the empty seed, we use the smallest amount of data so that it is not
rejected by the subject’s input parser, e.g., {} for JsonCpp. For the
non-empty seeds, we take the provided seeds from AFL’s GitHub
repository. To include performance peaks of fuzzing techniques
that increase their effectiveness later in the campaign, e.g., when
more seed inputs are added to the queue, we chose a time limit of
24 hours for all experiments. Moreover, we repeat each experiment
20 times so that future evaluations can account for the randomness
involved in fuzzing through statistical tests.
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Infrastructure. We run all experiments on a high-performance
computing (HPC) cluster with Intel® Xeon® E5-2690v3 CPU-based
nodes and SLES 15 Linux as operating system. Each node counts
28 physical cores, running at a frequency of 2.6GHz, and provides
64GB RAM. Within this HPC cluster, we distribute the fuzzing
campaigns across 96 nodes (= 2688 physical cores, 6144GB RAM),
where each campaign is assigned one dedicated core and 4GB RAM.
Also, to avoid I/O bottlenecks on the file system, we run each fuzzer
on a RAM drive.

4 CASE STUDY: PATH COLLISION SEVERITY

In this section, we use the generated dataset to investigate the
severity of the path collision problem existent in the widespread
AFL fuzzer and its 84* affected variants.

Path Collision Problem. This problem [8, 9, 20] is introduced by
AFL’s code instrumentation for tracking edge coverage. Therein,
each basic block B € B in the target program is assigned a numeri-
calrandomID n € N, i.e. B.id := n. The function hash : BX8 — N,
defined as hash(B;, Bj) = Bj.id @ (B;.id > 1), is then used to com-
pute a hash value for any given edge e € B X B between two basic
blocks. At runtime, the hash of a covered edge e, serves as key in a
shared bitmap cov to increment its hit-count, i.e. cov[hash(ec)]++.
However, due to the many basic blocks in real-world programs (see
Table 1) and the random numbers of the block IDs, the hashes of
two edges ey and e; with k # [ can collide, i.e. hash(eg) = hash(e;).
These collisions prevent the fuzzer from adding coverage-increasing
inputs to its queue, which are then also not considered when mea-
suring coverage the FuzzBENCH-way.

Empirical Evaluation. To show the severity of the path collision
problem and to demonstrate FuzzTAsTIC’s coverage accuracy (not
affected by this problem), we replay all inputs stored in the fuzzer
queues of the 3360 fuzzing campaigns (24 hour timeout) run with
the 7 AFL-based fuzzers and measure the achieved code coverage.
For each fuzzing campaign ¢, we then compute the missed basic
block ratio (MBBR) using the formula:

|BlguzzTastic 4 Blgeplayl

B¢ |

FuzzTastic

The set Bf 1. € B contains the basic blocks covered by
all fuzz inputs generated during ¢ measured by FuzzTasTic and

c c 3 :
BRep]ay C B{ , Tastic the blocks covered by the inputs stored in

the fuzzer queue within the same campaign. Thereby, to ensure a
uniform comparison between both approaches, we use the same
code instrumentation for measuring basic block coverage of the
replayed queue inputs as for the FuzzTasTIc analysis tool.

Figure 5 shows the distribution of missed basic block ratios,
including the harmonic mean scores (¢), of the 3360 campaigns
on the different subject programs. The red dots thereby indicate
the maximal inaccuracy for each subject. In all subjects except
for strings (Binutils), basic blocks were missed when replaying
the inputs from the queue. Moreover, due to the randomness of
fuzzing, the percentage of missing blocks within the same subject
can vary significantly among different campaigns and thus can also
not be pre-estimated. For example, up to 9% of the basic blocks

MBBR(c) =

1)

4 https://fuzzing-survey.org/ (Accessed: 2021-09-30)
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Figure 5: Path Collision Severity

(i.e., 340 out of 3777) were missed in the subject program JasPer.
This can lead to biased evaluations, where e.g. affected AFL-based
fuzzers are rated as less effective in terms of code covered than other,
path-collision-free fuzzers. Also note that even a small number of
missing basic blocks can lead to misleading results, as some blocks
are empirically harder to cover than others. Therefore, fuzzers that
manage to trespass these blocks often have to generate exponen-
tially more fuzz inputs [4]. This again underlines the importance
of accurately measuring code coverage in order to ensure correct
fuzzer evaluations.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented FuzzTAsTIC, a fine-grained, LLVM-based
coverage analyzer that can be attached to any black-, grey-, and
whitebox fuzzer. Unlike existing approaches, it captures the ex-
act number of executions per basic block during the fuzzing cam-
paign, which enables frequency-based coverage analysis to evaluate
fuzzers from another perspective. Moreover, the coverage data out-
put by FuzzTasTIC can be used to visualize fuzzing progress, e.g.,
the functions covered over time and across multiple trials. Further-
more, we created a large-scale benchmark dataset using FuzzTasTIcC
that enables fuzzer evaluations that are not biased by the largely
ignored path collision problem of most coverage-based fuzzers such
as AFL. Also, this dataset can be used to detect “roadblocks”, i.e.,
conditions in the code that are not or only rarely passed by the fuzz
inputs, in order to improve the heuristic of fuzz mutators. In the
future, we plan to incorporate the MAGMA benchmark [10] to also
support bug-based benchmarking.
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