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Abstract

Over the past decade, deep neural network (DNN) algorithms have become increasingly popular in
the field of machine learning (ML). Year-on-year improvements in off-the-shelf parallel computing
hardware and the accessibility of big data have democratized the training, optimization, and
development of DNNs. After rapidly surpassing classical algorithms in many domains, such as
autonomous driving and robotics, DNNs solidified their state-of-the-art status for a wide range
of classification and forecasting problems. Along with their popularity, new use-cases emerged
to incorporate them in more deployment scenarios, ranging from constrained edge deployment
to safety-critical settings. These presented several challenges in hardware and software design,
where tight latency, energy, and resource budgets are typically set. This work reinterprets
concepts from the mature discipline of hardware-software (HW-SW) co-design, which provides
processes for finding synergies when deploying complex algorithms on hardware with precise
execution targets and deployment costs. Handcrafted, semi-automated, and fully-automated
methodologies are proposed to introduce co-design at different stages of development with
varying design challenges. Hardware models in the form of analytical schedulers and mappers,
look-up tables, hardware-in-the-loop setups, and differentiable regression models are developed to
inject hardware-awareness into co-design problems for general-purpose or customized platforms,
and spatial or dataflow architectures. Abstraction levels are exploited to enable divide-and-
conquer approaches that tackle design challenges throughout the HW-SW development life cycle.
The contributions shed light on the benefits of bringing together algorithm and hardware design
to achieve the targets set in both worlds, while reducing the independent development effort on
both sides and avoiding incoherent design compromises. Over the course of this work, hardware
components were handcrafted to suit different types of neural network computations. Genetic
and gradient descent algorithms, autoencoders, and reinforcement learning agents were used to
compress neural networks. Fast analytical hardware models were developed for evaluation and
automated hardware design. Neural networks were made safer by analyzing threats of adversarial
attacks and hardware errors on their function, and training them for joint efficiency, robustness,
and accuracy preservation. The resulting co-designed algorithms tackled autonomous driving
problems with high efficiency, enabled power-forecasting on multiprocessor chips, provided mask
detection and correction during the COVID-19 pandemic, and empowered semi-autonomous
prostheses for amputees. The contributions of this work in HW-SW co-design of DNNs brought
applications with societal impact to edge devices.
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Zusammenfassung

Im Verlauf der letzten zehn Jahre sind tiefe kiinstliche neuronale Netze (engl. deep neural
networks (DNNs)), eine Kategorie selbstlernender Algorithmen, im Bereich des maschinellen
Lernens (ML) immer beliebter geworden. Jahrliche Verbesserungen bei handelsiiblicher par-
alleler Computerhardware und die Zuginglichkeit von “Big Data” haben das Training, die
Optimierung und die Entwicklung von neuronalen Netzen demokratisiert. Nachdem sie die
klassischen Algorithmen in vielen Bereichen wie dem autonomen Fahren und der Robotik schnell
iiberholt hatten, festigten DNNs zunehmend ihren Status als Stand der Technik fiir ein breites
Spektrum von Klassifizierungs- und Antizipationsaufgaben. Durch ihrer Popularitét entstehen
neuartige Anwendungsfille und eine Vielzahl an Einsatzszenarien, welche von Anwendungen
in stark eingeschrinkten eingebetteten Systemen bis hin zu sicherheitskritischen Anwendungen
reichen. Dies stellte eine Reihe von Herausforderungen fiir das Hardware- und Softwaredesign
dar, bei denen in der Regel enge Latenz-, Energie- und Ressourcenbudgets vorgegeben sind. In
dieser Arbeit werden Konzepte aus der ausgereiften Disziplin des Hardware-Software (HW-SW)
Co-designs neu interpretiert, die Prozesse zur Erzielung von Synergien bei der Bereitstellung
komplexer Algorithmen auf Hardware mit prizisen Ausfiihrungszielen und Bereitstellungskosten
bieten. Es werden im Rahmen dieser Arbeit handgefertigte, halbautomatische und vollau-
tomatische Methoden vorgeschlagen, um das Co-design in verschiedenen Entwicklungsstadien
mit unterschiedlichen Designherausforderungen einzufiihren. Hardware-Modelle in Form von
analytischen Schedulern, Umsetzungstabellen, “Hardware-in-the-Loop” Simulationen und dif-
ferenzierbaren Regressionsmodellen werden entwickelt, um ein Hardwareverstindnis in die
Co-design Aufgabe fiir Allzweck- oder kundenspezifische Platformen sowie in rdumliche oder
Datenfluss-Architekturen einzubringen. Abstraktionsebenen wurden ausgenutzt, um Teile-und-
herrsche (engl. divide-and-conquer) Verfahren zur Bewiltigung von Designherausforderungen
wihrend des gesamten HW-SW-Entwicklungszyklus zu ermoglichen. Die Beitriage beleuchten
die Vorteile der Zusammenfiihrung des Algorithmen- und Hardwaredesigns, um die in beiden
Welten gesetzten Ziele zu erreichen und gleichzeitig den unabhéingigen Entwicklungsaufwand
zu reduzieren und inkohérente Designkompromisse zu vermeiden. Im Rahmen dieser Arbeit
werden Hardwarekomponenten zur Berechnung von verschiedenen Arten von neuronalen Net-
zen entwickelt. Genetische Algorithmen und Gradientenabstiegsalgorithmen, Autocodierer und
Agenten fiir bestirkendes Lernen (engl. reinforcement learning) werden zur Komprimierung
neuronaler Netze eingesetzt. Es werden schnelle analytische Hardwaremodelle fiir die Bewertung
und den automatischen Entwurf von Hardware entwickelt. Zudem werden neuronale Netze
sicherer gemacht, indem die Bedrohungen durch gegnerische Angriffe und Hardwarefehler auf
ihre Funktion analysiert und sie fiir eine gemeinsame Effizienz, Robustheit und Erhaltung der
Genauigkeit trainiert werden. Die daraus resultierenden, gemeinsam entwickelten Algorith-
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Zusammenfassung

men bewaltigten Herausforderungen im Bereich des autonomen Fahrens mit hoher Effizienz,
ermdoglichten Leistungsvorhersagen auf Multiprozessor-Chips, bietet eine Maskenerkennung und
-korrektur wihrend der COVID-19-Pandemie und ermoglichten halbautonome Prothesen fiir Am-
putierte. Die Beitrdge dieser Arbeit zum HW-SW-Co-design von DNNs bringen Anwendungen
mit gesellschaftlicher Bedeutung fiir eingebettete Systeme und Edge-Devices.
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1 Introduction

LGORITHMS are compositions of functional and conditional operations carried out in a
defined sequence. Fundamentally, algorithms are omnipresent, both in natural and arti-
ficial forms, simple and complex, explainable and emergent. The seemingly miraculous

existence of animate, biological organisms is, at its core, a composition of looped algorithms
in the form of chemical reactions involving inanimate material. The elegance of algorithms
can be compelling enough to convince an observer of being greater than the sum of its parts.
Consciousness and intelligence are examples of such phenomena.

Algorithms can be thought of as blueprints, existing as abstract concepts. Without an imple-
mentation in the real world, they cannot interact with or affect real systems. In biological systems,
algorithms are implemented through matter and chemical processes. The existence of matter
in particular amounts under specific conditions results in sequences of chemical processes and
reactions, based on the fundamental physical properties of the matter. The algorithm is, therefore,
more of a description of what happens in such settings than a planned sequence of operations
to be executed in a particular manner. Scaling up in abstraction from fundamental chemical
processes, we can consider biological algorithms at the neuronal level in the nervous systems of
complex organisms. The placement, positioning, firing rate, and other properties of the neurons in
the context of an organism’s brain produce its reasoning and interaction with the physical world.
The algorithm resulting in how an individual behaves is not designed beforehand, but emerges
from the neural networks and the biological processes of the individual. The algorithm and the
biological matter are one and the same.

For artificial algorithms, a human-designed set of operations is planned. This abstract artificial
algorithm must then be executed in some form to be tested in the real world. Here, a second stage
of design takes place, where the execution medium must be decided. Hence, artificial algorithms
require two phases of development, one for the algorithm itself, and one for its execution medium.

The difference between algorithms emerging in nature and algorithms developed by humans
is that the former fundamentally leads to one holistic manifestation of algorithm and medium,
whereas the latter is a two-step process, which decouples the planned artificial algorithm and
the design of the medium, through which it interacts with the real world. The argument for
co-designing artificial algorithms and the execution medium is not only logical, but also the most
natural approach to achieve efficient, performant, and seemingly miraculous algorithms, as those
we observe in nature.

The work presented in this dissertation focuses on co-designing hardware and artificial deep
neural network algorithms. Hardware components were handcrafted to suit different types of
neural network computations [8]. Genetic and gradient descent algorithms, autoencoders, and
reinforcement learning agents were used to compress neural networks, while fast analytical
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hardware models are developed for evaluation and automated hardware design [9, 10, 11, 12,
13, 14, 15]. Neural networks were made safer by analyzing threats of adversarial attacks and
hardware errors on their function, and training them for joint efficiency, robustness, and accuracy
preservation [16, 17, 18]. The resulting co-designed algorithms tackled autonomous driving
problems with high efficiency [19, 20], enabled power-forecasting on multiprocessor chips [21,
22, 23], provided mask detection and correction during the COVID-19 pandemic [24], and
empowered semi-autonomous prosthetics to help amputees [25].

In the following sections 1.1-1.4, the motivation of the work is elaborated further, the objectives
are listed out, and the scope of the dissertation is defined. In chapter 2, a coarse background
and literature review of relevant related topics is presented. Chapter 3 covers the pitfalls of
sub-optimal deployments, incoherent co-design, and other challenges faced by machine learning
(ML) and hardware (HW) engineers in this field. This chapter also introduces the paths proposed
to achieve hardware-software (HW-SW) co-design for deep neural network (DNN) deployments.
Chapters 4, 5, and 6 elaborate the proposed paths towards HW-DNN co-design by presenting
six design challenges tackled by handcrafted, semi-automated, and fully-automated co-design
techniques. Finally, chapter 7 concludes the dissertation and presents the outlook and future work
in this field.

1.1 Motivation

Over the past decade, DNN algorithms have become increasingly popular in the field of ML.
Year-on-year improvements in off-the-shelf parallel computing hardware and the accessibility
of big data have democratized the training, optimization, and development of DNNs [26, 27].
After rapidly surpassing classical algorithms in many domains, such as autonomous driving
and robotics, DNNs solidified their state-of-the-art status for a wide range of classification and
forecasting problems [28, 29, 30].

Along with the popularity of DNNs, new use-cases emerged to incorporate them in more
deployment scenarios, ranging from constrained edge deployment to safety-critical settings.
These present several challenges in hardware and software design, where tight latency, energy,
and resource budgets are typically set. In essence, the challenge of developing efficient DNN
deployments necessitates searching multiple design spaces, from hardware designs to neural
network architectures and the compression space. Several high-impact works in this field have
investigated one design space at a time, with the assumption that solutions from other design
spaces are static and/or already provided [7, 31, 32, 33, 34, 35, 36, 37]. A large co-design
opportunity is often missed, where multiple search spaces are open for co-exploration.

HW-SW co-design is a matured discipline which provides processes for finding synergies
when deploying complex algorithms on hardware with precise execution targets and deployment
costs [38, 2]. These processes heavily rely on divide-and-conquer approaches to achieve near-
optimal solutions in prohibitively large design spaces. Techniques from this field can produce
solutions to new problems emerging in the field of edge DNN deployment. In this work, HW-SW
co-design methods are reinterpreted and applied to DNN deployment challenges.
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1.2 Objectives

This work sets out to identify the challenges of HW-DNN co-design at different stages of
development, for different use-cases, and different deployment goals. The objectives can be
summarized in the following:

* Identifying key characteristics to classify DNN design and optimization problems, which
help in planning and choosing the correct methods for search and metaheuristics, design
automation, and handcrafted design.

* Investigating the implications of incoherent HW-DNN co-design and identifying methods
to introduce awareness towards hardware and deployment goals, such as latency, energy,
and resource budgets, into DNN training and optimization methods.

* Analyzing the design challenges that occur throughout the development life cycle of DNN
deployments and breaking down the complex co-design paradigm into stages that can be
addressed independently with less effort.

1.3 Contributions

Inspired by the discipline of HW-SW co-design, this work studies the holistic formulation of
hardware design, DNN design and training, and optimization techniques, through a combination
of models, metaheuristics, and expert knowledge. Different paths towards co-design are proposed
based on the properties of the design problem at hand. Enabled by these paths, multiple design
challenges which necessitate handcrafted to fully-automated solutions are presented.

The contributions of this work can be summarized in the following:

* Proposing handcrafted, semi-automated, and fully-automated co-design methodologies
to apply HW-SW co-design for DNN deployment at different stages of development and
different classes of design challenges.

* Developing and comparing different hardware-awareness injection methods, such as high-
level analytical models, look-up tables, hardware-in-the-loop setups, and differentiable
models, each well-suited for different design and optimization problems.

* Employing very-large-scale integration (VLSI)-inspired abstraction levels to enable divide-
and-conquer approaches which tackle challenges throughout the HW-DNN development
life cycle. This lowers the design effort by reducing the complexity of problems at each
stage of development.

* Achieving tightly-coupled HW-DNN deployments for semi-autonomous prosthetics, face
detection, and autonomous driving, bringing DNN applications with high societal impact
to edge devices.
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2 Background

which implement functions that exhibit a general perception of intelligence. Although

defining intelligence itself is complex, artificial intelligence (Al) typically refers to
algorithms which perform classification, forecasting, decision-making, and generative tasks.
Machine learning (ML) algorithms are an approach to realize artificial intelligence. Particularly,
ML algorithms are able to learn the task at hand without being explicitly programmed for it.
Exposure to data allows such algorithms to improve their performance in executing the desired
task. Deep neural networks (DNNs) are one such class of algorithms, loosely inspired by
biological neural networks, and are the focus of this dissertation. In the following sections, the
fundamental components of DNNs are presented. Following that, a specialized form of DNNs
suited for computer vision tasks is presented, namely convolutional neural networks (CNNs).
The procedure through which such algorithms learn and perform their tasks is elaborated. The
challenges of deploying these algorithms in resource constrained settings are discussed, followed
by an overview of optimization and hardware acceleration techniques applied to DNNs.

S RTIFICIAL INTELLIGENCE is a broad term referring to human-engineered algorithms

2.1 Fundamentals of Artificial Neural Networks

In the pursuit of developing intelligent machines, researchers intuitively attempted to study and
take inspiration from the structure of biological brains [39]. A fundamental building block of
a biological brain’s structure is the neuron, which takes input stimuli through its dendrites and
produces activation signals through its axons. The relationship between the input stimuli and
the output activation defines the function of a single neuron. Dendrites and axons of neurons
are connected over synapses, which transfer the signals from one neuron to another, creating a
neural network. It is important to note, that the function of a biological brain is substantially more
complex than the description provided here, with many details yet to be discovered. Nonetheless,
based on this high-level specification, a loose representation of biological neural networks can be
captured in computation graphs, where interconnected nodes represent neurons, each executing a
simple function, but collectively achieving a more complex task.

Figure 2.1 shows the abstraction of a biological neuron to an artificial one, forming the
basic building block of an artificial neural networks. Correspondingly, equation 2.1 describes
the arithmetic operations necessary to compute the output of a neuron, a®*’. An artificial
neuron incorporates the output of the preceding neurons’ axons into its function by performing a
weighted sum on the incoming activations a’". The weights w mimic the synaptic connections
which amplify or attenuate the inputs to the neuron. The weights indicate the relevance of the
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Figure 2.1: Visualization of a single neuron in the context of a DNN.

information from each preceding neuron with respect to the current neuron’s sub-function. This
creates paths through the network which get activated when certain data patterns are observed.
The phenomenon is similar to strong and weak neural firing paths in biological brains. Following
the weighted sum of inputs, a bias term b is added to the resulting value. The composition of
linear operations till this point cannot represent a non-linear function, which would limit the
neural network’s representation capability. For this reason, the neuron’s output is finally activated
with a non-linear function «, typically referred to as the activation function.

ijam+b (2.1

Generally, artificial neural networks have their neurons organized in layers, as shown in
figure 2.1. In the simplest form, a feed-forward network has layers in a sequential order, one
feeding its output to the next. Other networks exist where recurrent reuse of activations among
the layers takes place, or bypass and parallel paths are incorporated in the network [28]. When
referring to DNNs, the networks are composed of more than three layers. The depth of a neural
network is simply one parameter in deciding its architecture, among other important parameters
such as the number of neurons, their organization, the reuse and bypass of activations, etc. Deeper
neural networks tend to exhibit better performance on complex tasks, as they have more layers
to aggregate simple features into complex ones [28, 40]. In the following subsections, common
neural network layers and operations relevant to this dissertation are introduced.



2.1 Fundamentals of Artificial Neural Networks

2.1.1 Dense Layers

Dense layers, often referred to as fully-connected (FC) layers, appeared in the earliest artificial
neural networks, the multilayer perceptrons (MLPs). The dense layer is a composition of neurons,
each performing the function described in equation 2.1 and shown in figure 2.1. A dense layer
I’s weights are organized into a 2-D matrix W' € R*:*Yo_ where X; represents the input
activation dimension and Y, the number of neurons in the layer. Given the input activation vector
A'"! ¢ R¥: and output activation vector Al € RY°, the operation can be formulated as the
matrix-vector computation shown in equation 2.2. b € RY° represents the vector of bias terms b,
and «, as previously introduced, the activation function applied element-wise to the pre-activation
output vector.

Al = (AW 4+ b) (2.2)

Dense layers remain prevalent in modern neural network architectures, such as transformers
and convolutional neural networks [40, 28, 41]. They are typically memory-bound due to the
high number of unique weights that are needed for each fully-connected neuron. For this reason,
most modern neural network architectures employ dense layers only after the input activation
dimensions have been reduced by other preceding layers in the network. Their main function in
CNNss is to combine features extracted from preceding layers into classification logits [42].

2.1.2 Activation Functions

DNNs are predominantly composed of linear scale (multiplication) and shift (addition) operations.
Compositions of purely linear functions can only result in linear functions. To achieve complex,
non-trivial functions, non-linear representations must be captured by DNNs [43]. Non-linear
functions are introduced in DNNs at the output of every neuron, as shown in equation 2.1 and 2.2.
These are often referred to as activation functions. Historically, the sigmoid and tanh functions
were used to activate neurons. Apart from being complex to execute on hardware, these activation
functions were proven to not present any advantages over simpler alternatives such as the rectified
linear unit (ReLU) function. The ReLU function simply zeroes out all negative values and
allows the positive values to pass unchanged. This piecewise linear function is simple to execute
in hardware, introduces activation sparsity which can be exploited for efficient inference, and
simplifies the training procedure of DNNs. Although variations of the ReLLU, such as the leaky
ReLU, have been proposed to allow gradient flow over the negative range of the piecewise linear
function, the basic ReLU function remains one of the most popular activation functions in the
field. The aforementioned activation functions are shown in figure 2.2.

2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specialized neural networks which are well-suited
for data with spatial, localized correlation [42]. Unlike fully-connected DNNs, CNNs have an
inductive bias by way of their neurons considering small 2-D regions across a third channel
dimension, instead of the entire input volume. The discoveries of Hubel and Wiesel in the 1950s
and 60s showed that neurons in the visual cortex of small mammals focus on small localized
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Figure 2.2: Activation functions used to introduce non-linearities in DNNs. The simple ReLU function is
the most commonly used in modern DNNs due to its simplicity in terms of computation and
effective training results.

regions of the visual field [44]. Their discoveries also classified neurons of the visual cortex into
simple and complex ones, based on the features they react to. For example, simple neurons react
to lines and edges of specific orientation, whereas complex neurons identify sub-features and
patterns irrespective of orientation. This inspired Fukushima to develop the first neural networks
with such inductive biases [39], followed by the modernization of the concept by LeCun et al.
who created LeNet [42], laying the groundwork for today’s CNNs.

2.1.3.1 Convolutional Layers

The weights of a convolutional layer are organized as a 4-D tensor in R¥z*KyxCixCo = A get
of weights K, x K, form a kernel, which defines the 2-D receptive field of the convolution.
All kernels along the input channel dimension C; represent a single filter. All filters along the
output channel dimension C, compose the weights of the convolutional layer. Each neuron in a
convolutional layer reacts to a K, x K, x C; region of the input. The subsequent convolutional
layer would effectively have a larger receptive field, as it aggregates simpler features detected by
the preceding convolutional layer [40]. This inductive bias not only makes CNNs perform better
on localized visual data, but also lowers their weight count compared to a fully-connected DNN.
For a 32x32 pixel image with 3 color channels, a single fully-connected neuron would require
3072 weights. In contrast, a typical 3 x3 x3 convolution filter would have 27 weights, which are
then shared among multiple neurons reacting to different regions of the image as the filter moves

10



2.1 Fundamentals of Artificial Neural Networks

Xo

Ky
N (\
2-D Convolution K
y
C, @ i Y,
-1 * l
A w Al
Multiply

(Hadamard Product) Accumulate
)

L]
Output pixel

qout

Computation of an
output pixel:

Figure 2.3: Visualization of the convolution operation in CNNs. The computation of a single output pixel
is highlighted.

over the input by a stride of s. For completeness, equation 2.3 represents the computation of
a single neuron in a convolutional layer (i.e. a single output pixel), which is also visualized in
figure 2.3. The input activation tensor of layer [ is denoted by A!~1 € RXi*YixCi and the output
tensor is Al € R¥oxYoxCo X and Y} are the spatial width and height of the input activation,
whereas X, and Y, correspond to the width and height of the output activation. Activation tensors
in CNNs can also be referred to as feature maps. The two tensors A~ and W' represent the
input feature maps and the weights of the convolutional layer, respectively. The bias addition and
batch dimension are not shown for simplicity. Lastly, s represents the stride of the weight kernels
over the input feature map.

Alleollzollye] = DD Y AT eillwo - s + kallyo - 5+ ky] - Weo][cil[ka][ky]  (23)

i ky ky

2.1.3.2 Pooling Layers

Pooling layers downsample the spatial dimensions of the intermediate activation maps in the
network by applying a striding window operation which collapses the covered region into a single
output. This single output pixel is often the maximum value that is present in the pooling window
(max-pool), or the average of the overall values in the window (average-pool) [45]. Pooling layers
offer many advantages, from reducing the computational complexity and memory demands to
regularization effects which control overfitting.

11
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2.1.3.3 Batch Normalization

Batch normalization layers condition the activations to have zero mean and unit variance [46].
This speeds up the training process and generally improves the accuracy of DNNs. Although a
definitive explanation for these improvements has not been found, it is thought that the reason
lies in the network not needing to learn widely different input distributions for each batch of
inputs during training, mitigating the problem of internal covariate shift [46]. Equation 2.4 shows
the batch normalization operation applied to one activation pixel a. up, is the mean of the batch
activations and oy, is the standard deviation. €4 is an arbitrarily small value appended to
maintain numerical stability. 73, and S, are scale and shift parameters learned to improve the
representation capability of the normalized tensor.

a —
grorm = 22l B (2.4)

2
Opn, — Estab

Batch normalization also allows for high learning rates during training, reduces the emphasis
on weight initialization, and improves generalization. These advantages have made batch normal-
ization a fundamental layer in modern CNNs as well as other DNN architectures. Nevertheless,
it has some disadvantages, most prominent of which is the increase in computational overhead
at run-time, as well as introducing a discrepancy between the model’s performance on training
and test samples versus real-world data. These reasons have motivated researchers to investi-
gate normalization-free neural networks [47], however the approach still remains prevalent in
state-of-the-art DNNSs to date.

2.1.3.4 Dilated Convolution Layers

Early CNNs were used for classification tasks, which involve predicting the presence of objects in
a scene. With further development, researchers were able reuse the inductive biases of CNNs for
other vision tasks, such as object detection, localization, and semantic segmentation. In semantic
segmentation, each pixel of the input image is given a classification [48]. This requires far more
information about locality than simple classification tasks, since the network needs to precisely
segment the object in the scene by classifying each pixel belonging to it. In classification-based
CNN:ss, the input spatial dimension is reduced throughout the network as features get aggregated.
However, for semantic segmentation CNNs, the input’s spatial dimensions must be preserved
to produce the desired pixel-wise output. This was initially achieved by using de-convolution
layers, where zeroes were introduced into the feature maps for upsampling [48]. More recently,
dilated convolutions offered an alternative method of capturing contextual information, without
diminishing the input resolution [29]. For dilated convolution, zeroes are inserted into the
K, x K, kernel, which increases the receptive field of the convolution without increasing the
number of parameters. With dilated convolution, the input spatial dimension can remain large,
and the CNN can capture contextual information by spreading out its receptive field. As an added
benefit, adding zeroes into the kernel allows for optimization possibilities on hardware, where
these computations can be skipped.

12
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2.1.4 Learning and Classifying

Having defined the building blocks of DNNSs, the process of training and deploying them for
inference tasks is discussed in this section. As mentioned previously, DNNs are essentially
computation graphs with operations performed on the data flowing through them. Their learning
characteristic is achieved by updating their weights to improve their performance on the target
task. Stochastic gradient descent (SGD) is commonly used to learn the weights which suit a
particular task. Gradient descent is an optimization technique which nudges parameters in the
direction of the steepest slope in a multi-dimensional space with respect to a cost function. The
cost in the case of a supervised classification task can be the distance between the ground truth
and the classification produced by the DNN being trained. The weights are therefore nudged
through gradient descent such that the cost of the overall function is minimized. In DNN training,
the cost is typically referred to as the loss L. To control the size of the nudge in the direction of
the steepest slope, the learning rate I" is multiplied by the computed gradient, before subtracting
it from the current weight’s value.

oL

w;tpdated —w; —T (3wi) (2.5)
Since the weights of the network contribute to the loss at the output of the computation graph, the
chain-rule can be applied to find the gradients a%w, where ¢ refers to the index of a particular
weight in the neural network. Computing the gradients and nudging the weights to better values
is referred to as backpropagation, shown in equation 2.5 . In practice, training on complex, large
datasets cannot be performed with the standard gradient descent approach. This would imply that
the gradients computed for backpropagation result from the entire training dataset, which can
surpass millions of samples for many common datasets [26]. For this reason, an approximation
of the gradient descent approach is typically applied, namely the SGD approach. Here, only a
sub-set of the training dataset is considered in each training step, based on which the weights
are updated. Once enough training steps cover the entire training dataset, a training epoch is
complete.

After training, the DNN can be deployed to perform the intended task. When deployed
for an inference task, the network is typically only executed in a forward-pass, as a standard
computation graph. This process is less computationally intensive compared to training, as no
gradient computation or weight updates are necessary. Nevertheless, as the size and computational
diversity of modern DNNs grow, inference can still create challenges in real-time, embedded
deployment settings.

2.2 Compression and Optimization of Deep Neural Networks

This work is mainly focused on the efficient deployment of DNN algorithms in constrained, edge
settings. The building blocks of DNNs introduced in section 2.1 are typically used to compose
ever larger networks when targeting complex tasks. This trend is clear when observing the
year-over-year improvement in classification performance of DNNs during the ImageNet large
scale visual recognition challenge (ILSVRC) and their corresponding growth in computation
complexity and memory requirements, shown in figure 2.4. The same trend also appears in

13



2 Background

30 180
] O Error rate — Layers
— - 152
s 20 1120
£ 5
' F g
5 —
s 10 -1 60
0 | | T kd |_\| 0
& & & o &
hQ\e’ ”Q\\’ @0 & R

Figure 2.4: Reduction in error rate during the ILSVRC. Models needed more layers and parameters to
push the boundaries each year. In 2010 and 2011, classical computer-vision algorithms were
used.

other domains, such as large-scale natural language processing, where transformers have already
surpassed 530 billion parameters in model size [49]. Next to compute complexity and model
size, the variety of layer types and dimensions in modern DNNs introduces algorithmic diversity,
which requires flexible hardware components for optimal execution across the network. As a
consequence of these software requirements, hardware design becomes more difficult, given
the tight area, power, latency, throughput, and safety thresholds typically defined in modern
edge applications. In this section, methods for compressing and optimizing DNN algorithms for
efficient deployment are presented.

2.2.1 Data Quantization

Data in the context of DNNs can represent weights, activations, intermediate partial sums, or
backpropagation gradients. The representation of numerical data in computational hardware
heavily affects the computation complexity, memory requirements, precision, learning behavior,
and error resilience of the DNN [16]. The representation of a number is composed of the number
format and the number of binary bits available. Common number formats include floating-point
and fixed-point representations. The single-precision floating-point (FP32) format refers to
32-bits split into 1 sign-bit, 8 exponent bits, and 23 mantissa bits. The expressiveness of the
floating-point format enables the representation of very large and very small numbers with a
floating decimal point [56]. This comes at the cost of more expensive computation logic in
terms of complexity, area, power, and latency. The fixed-point format can represent a predefined
static range of numbers with fixed decimal point precision. For most applications, using the
high-precision floating-point format for inference brings no advantages to the accuracy of the
DNN [57]. This has made fixed-point and integer formats the standard nowadays on commercial
edge inference hardware.

DNN training is typically performed with the FP32 numerical representation in modern
training frameworks. The benefit of FP32 is the flexibility to represent large and small values
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of weights and activations accurately, as well as the fine gradients computed and applied during
backpropagation. The FP32 neural network can then be quantized to a simpler representation,
such as the fixed-point or integer representations, before deploying it on constrained, edge
hardware. The process of converting a fully-trained FP32 DNN to a quantized, lower precision
representation is referred to as post-training quantization [57, 58]. Equation 2.6 shows the
basic principle of linear quantization for an arbitrary FP32 operand x  into a more constrained
numerical representation x4.

xq = clip(round(xy/v),c) (2.6)

The scaling factor v translates the quantized range of values which x4 can take into the larger,
more precise x y range. The round operation pushes the smooth values of zf into the limited
values of x4’s quantized numerical representation. The clip operator cuts-off values of the larger
numerical representation of z; beyond [—c, c], where c is the clipping limit. This maintains
symmetric linear quantization.

Different to post-training quantization, the DNN may also be quantized during the training
procedure in quantization-aware training schemes [57, 35, 36]. This is particularly necessary
when the final deployment targets below 8-bits of precision [35]. Here, the training remains
in FP32, however, clipping and rounding functions are introduced directly into the DNN’s
computation graph. During backpropagation, a straight-through estimator (STE) is employed
to skip over non-differentiable or zero-gradient operations [59]. This approximates the weight
updates and allows the gradients to flow through the layers of the quantized network. The FP32
weights which are updated are referred to as latent weights, as they are not the actual weights
taking effect in the forward pass or at deployment time. This form of quantization is particularly
useful when training 1-bit neural networks, often referred to as binary neural networks (BNNs).
For the most basic form of BNNS, a sign function is employed to convert activations and latent
weights into the binary format, as shown in equation 2.7, where the float value x ¢ is converted to
the binary representation x;,. BNNs are therefore extremely compute and memory efficient. In
the hardware implementation, all weight parameters require 1-bit of memory for storage and data
movement, and the -1 values are represented as binary 0’s to perform multiplications using simple
XNOR logic operations [60]. The trade-off in such low-bit DNNs is the reduced information
capacity, which often leads to lower task-related accuracy. Different BNN training schemes have
been proposed to deal with these challenges, particularly when both weights and activations are
binarized [60, 61, 62, 34].

1 ifay >0,

—1 otherwise 2.7)

xp = sign(zy) = {

With any digital numerical representation, 2° unique values can be represented, where b
is the number of bits allotted to the representation. As weight and activation data in DNNs
typically follow non-uniform distributions, the unique 2° values may be used to perform non-
linear quantization and better represent the values which appear in the computations of the
network. In this case, number ranges which appear frequently in the DNN’s computations may be
represented with less rounding error than numbers which appear rarely. This can be a logarithmic
distribution of the 2° unique values across a portion of the number line, as shown in figure 2.5.
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Another form of non-linear quantization can be a simple look-up table of 2° values that should be
represented [56]. The bits b are then used only as indices to read the true value of the operand
from the look-up table, which can be stored at a higher bitwidth than b. The true values stored in
the look-up table can be distributed across the number line arbitrarily and learned by the network
during training.

L : = = = Quantization levels
7y o~ oy
=] 1 1 1 1 1 =]
g I ] 1 ] 1 1 1 ] 1 g
g /0 0 0N\ g
Y 1 1 1 1 1 — —
(e ] [] ] [] ] [] ] o

[ ] 1 [ ] 1 [ ]
1 1 1 1 1 1 1
Values Values
(a) Linear quantization. (b) Log quantization.

Figure 2.5: Linear quantization represents the numerical distribution with uniformly spaced quantization
levels. Log-based quantization represents the more frequently occurring values more finely,
while less frequent values are more sparsely represented, with higher rounding error.

Recent works have also investigated mixed-precision DNNs, where substructures, e.g. layers,
filters, and/or datatypes, can have different quantization levels [7, 15, 10, 63, 35]. The numerical
distribution in substructures can vary largely from one part of the DNN to another. This makes a
single quantization scheme sub-optimal for many parts of the network. For example, in CNNs, the
fully-connected layers at the end of the network can be represented with much less precision than
the feature-extracting convolutional layers [64]. Nevertheless, developing mixed-precision DNNs
can be challenging. First, finding the optimal mixed-precision configuration can be formulated as
a search problem. The search space for such problems is typically very large; for datatype-wise,
layer-wise mixed quantization of an L layer CNN, Q2% solutions exist, where @ is the set of
possible quantization levels, i.e. supported bitwidths [9]. Some works propose searching this
space using a reinforcement learning (RL) agent [7] or a genetic algorithm (GA) [10], while
other works try to find the optimal bitwidth for each layer at training time, without adding any
overhead of metaheuristic search agents [15]. Second, the hardware deployment platform must
support and gain a speed-up from the proposed () levels, which typically requires more complex,
non-standard arithmetic units and dynamic memory alignment [65, 66, 67, 68, 69].

2.2.2 Parameter Pruning

Parameter pruning is a technique used to slim down DNNs by removing unimportant weights or
weight substructures [70, 71, 72]. These can be low-magnitude synaptic weights which have little
to no influence on the performance of the DNN, or the weights whose removal leads to a minimal
change in task-loss. Reducing the model’s size and complexity by removing substructures can
have a direct impact on the inference efficiency of the final deployment [31, 73]. Additionally,
pruning can introduce a regularization effect which mitigates the network’s overfitting on the
training data [71].
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Figure 2.6: Different example pruning regularities showing structured to unstructured parameter removal.
Structured pruning can bring benefits to hardware acceleration without any specialized zero-
detectors or complex memory management.

Many heuristics emerged to decide which DNN substructures can be pruned [70, 71, 72, 73,
31, 74,75,76, 77]. L1-norm pruning is a common technique where the norm guides the pruning
algorithm to remove substructures of low magnitude parameters, and thereby, low influence on
the function of the DNN [74]. Other works identified different heuristics, such as geometric
median [75] and lasso regression [76], similarly determining the saliency of neurons based on
the guiding metrics. The pruning problem can also be formulated as a search problem, where an
algorithm must search for the optimal set of substructures to be removed. Works involving RL.
agents [31], GAs [12, 11], and other metaheuristics have shown the effectiveness of combining
guiding metrics with search algorithms.

Other works perform pruning without the use of heuristics, but instead try to learn the saliency
of neurons [37, 13, 17]. For example, an autoencoder attached to the target layer can produce
a pruning mask during training to decide which neurons can have an effect on the DNN’s
output [13]. At the end of the training, the produced mask translates to the pruning configuration
which can be applied before deployment. Differently, the in-train pruning approach proposed
in [17] updates pruning masks through SGD during the training process. An in-train approach
has the advantage of allowing the network to learn the task, the optimal pruning masks, as well as
other targets such as robustness against adversarial examples, within the training process at no
extra GPU-hour costs.

Another important aspect to consider during parameter pruning is the regularity of the sub-
structures being removed. For a given sparsity ratio, this has a direct impact on the accuracy
degradation to be expected from the pruning procedure, as well as the hardware benefits that can
be exploited at deployment time [31]. Generally, fine-grain, irregular weight pruning results in
high compression and maintains high task-related accuracy [73]. However, the irregularity breaks
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the structured parallelism in the DNN’s computational workloads. Identifying which weights to
skip and which ones to execute prohibits general-purpose computation platforms and standard
accelerators from achieving a speed-up with this pruning regularity and its irregular memory
access patterns [78, 79]. More coarsely, the pruning algorithm may remove larger structures
such as entire neurons of dense layers, kernels and channels of convolutional layers, or attention
heads in transformers. Pruning large structures generally translates to a change in the tensor’s
dimension. For example, a 4-D weight tensor of a convolutional layer in R¥=*KyxCixCo woyld
maintain the same dimensions if individual weights were pruned. However, removing an input
channel would shrink the C; dimension. The same applies for pruning an output channel and the
C, dimension. Most DNN accelerators are essentially tensor processing units, resulting in a direct
improvement in hardware performance when tensors are shrunk in this manner. The downside to
coarse, structured pruning is that the task-related accuracy can quickly degrade at high pruning
rates [31]. Structured and unstructured pruning examples are visualized in figure 2.6. It is worth
mentioning that extracting benefits from irregular parallelism is nevertheless an important field
of research in DNN hardware design [78, 79]. Recently, the Ampere general-purpose graphics
processing unit (GPU) architecture by NVIDIA provided the means for semi-structured pruning,
where specialized hardware units can detect up to 2 pruned values out of each 4 elements, offering
a trade-off between irregular and structured pruning [80].

2.2.3 Neural Architecture Search

Taking a step back, the neural architecture as a whole can be designed in an optimized, resource-
aware manner. Many state-of-the-art models in literature have been handcrafted by machine
learning experts, based on heuristics, experience, and existing work [81, 82, 83, 28]. The number
of decisions to be made in designing a DNN is very large, making it highly unlikely to ever find
the optimal parameters for any given task and hardware platform. Researchers in the field of
neural architecture search (NAS) have already employed metaheuristics to solve such problems,
however, the challenge of training time remains at the core of this discipline [84, 85, 86, 87, 88].

Over the past decade, specialized layers have been developed to maintain the functionality
of classical DNNs while reducing the computational complexity and parameter count [82, 29].
For example, depthwise-separable convolutions involve two stages to replace the classical con-
volutional layer [82]. The depthwise convolution involves C; 2-D filters in R¥=*KvxCi each
convolved with only one 2-D channel from the input. This convolution keeps the output tensor
dimensions equal to the input activation tensor. This is followed by pointwise convolution which
is a standard convolution with a weight tensor of unit kernel dimensions in RM*1*CixCo A
standard convolution would involve K, x K, x C; x C, X X, X Y, multiplications, which is
higher than the multiplications of depthwise-separable convolutions C; x X, x Y, (K, x Ky+C).
Similarly, other works have developed modules, such as the fire and inception modules, which
transform the input to reduce the overall parameter and operation count, while maintaining the
function of the standard convolution [89, 54].

Other architectural innovations involve residual connections, which are bypass paths that allow
gradients to flow more effectively through the network during backpropagation [28]. These
connections unlocked the potential of deeper DNNs for more complex problems and are still
found in the most cutting-edge models to date [90]. However, such connections can introduce
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Figure 2.7: Example handcrafted DNN architectural blocks developed to improve training and reduce
total computations and parameters.

inference challenges, as activations from past layers need to be stored in memory and reused at
deeper stages of the DNN before being discarded. Figure 2.7 shows some popular DNN blocks
that were designed through handcrafted NAS.

Depending on how granular the search space is defined, NAS can inherently perform compres-
sion using quantization and pruning [84, 88]. For example, if two layers with equal dimensions
but different quantization degrees are considered unique solutions in the NAS space, then the
search is jointly finding the architecture and its quantization in the same process. Consequently,
the efficiency of the architectures being considered can be measured with respect to a target
hardware platform. This can be done using hardware-in-the-loop (HIL) setups, differentiable
and analytical hardware models or look-up table (LUT) approaches, where measurements are
collected on the hardware ahead of the search experiment.

2.2.4 Adversarial Training

An increasingly important metric for DNN deployment in safety-critical scenarios is robustness
against adversarial attacks in the form of input perturbations [18]. Adversarial attacks against a
neural network can be formulated as an optimization problem of finding the minimal perturbation §
for an input image I that changes the prediction of the neural network V. Attacks can be classified
as white-box or black-box attacks, ranging from the attacker having full knowledge of the network
parameters and the gradients during backpropagation to no information at all about the neural
network. During adversarial training, perturbed examples are introduced to maximize the loss £
with respect to the label Y, within a reasonable perturbation budget €4, as shown in equation 2.8.

min E max L (N(I+§,W),Y) (2.8)
W (I,Y)~D ||6|<€pug

A set of randomly sampled images from the dataset D is chosen, where the expected loss
E on the random samples is minimized through an adversarial training scheme. A commonly
used attack to introduce imperceptible adversarial perturbations is the fast gradient sign method
(FGSM) [91], which was is one of the first white-box attacks to be developed. The advantage of
FGSM is that generating an adversarial example is faster than with other attack methods, such
as projected gradient descent (PGD) [92]. FGSM in combination with random initialization is
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particularly effective to incorporate into the training loop to obtain adversarial training with a
small overhead of GPU-hours, as presented in fast adversarial training (FastAT) [93]. For the
final evaluation of adversarial robustness, the neural network is typically exposed to an unseen
adversarial attack method.

2.3 Hardware Acceleration of Deep Neural Networks

DNNs are simple computation graphs largely composed of the multiply-accumulate (MAC)
operation presented in equation 2.1. Given that these simple arithmetic operations are performed
on large tensors, the parallelism potential of DNN workloads is very high. In a simple execution
schedule, the computation of each output activation within one layer can be parallelized, whereas
the layers are executed in sequence. More advanced scheduling schemes introduce inter-layer
parallelism, by starting the subsequent layer’s computations as soon as sufficient activations
are available [94]. DNNs with identity connections, parallel layers, early terminating branches,
and diverse workload dimensions result in further scheduling and data movement possibilities,
making the scope for hardware optimization as large and complex as the scope for neural network
optimization.

2.3.1 Deep Neural Networks on General-Purpose Hardware

A natural candidate for accelerating DNNs is the standard, off-the-shelf graphics processing unit
(GPU). GPUs are general-purpose computation platforms typically used for video and image
processing tasks. They are equipped with a large number of simple arithmetic logic units (ALUs)
for highly parallel computation workloads [80]. The ALUs of a GPU are typically simple, with
very minimal control logic. This makes GPUs well-suited for large, uniform, parallel workloads,
where many simple cores are tasked with the same job in a single instruction multiple data
(SIMD) processing scheme. Most DNN computations can be represented as general matrix
multiplications (GEMMes). This transformation of DNN workloads to more general GPU-friendly
workloads can sometimes result in replication, redundant memory accesses, and other sub-optimal
execution characteristics [56]. GPUs compensate for these redundancies by having large and
fast memories, high clock rates, and many ALUs that require minimal programming and control
to perform their uniform, parallel task [95]. However, even in the case where the latency is
compensated by more capable hardware, the power consumption of such a platform will generally
be higher than a custom DNN accelerator solution [96]. Modern GPU architectures have clearly
been influenced by the popularity of DNNs in research and industry [95, 97, 80]. NVIDIA’s
Volta architecture incorporated design changes to exploit the advantages of DNN quantization
as a compression technique [95]. The introduction of tensor cores supported the execution
of lower bitwidth workloads at higher throughput in a vectorized manner. The more recent
Ampere architecture incorporated the 2:4 sparsity scheme to support semi-structured pruning, as
mentioned in section 2.2.2 [80].

Another general-purpose execution platform for DNNs is the traditional central processing
unit (CPU). CPUs are not the optimal platform for large-scale SIMD processing, which is highly
applicable to DNN workloads. However, being the most common and ubiquitous computation
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Figure 2.8: Abstract visualization of spatial and dataflow architectures. Spatial accelerators use an array
of PEs to perform the parallel operations of a DNN. Dataflow architectures reflect the neural
network architecture in hardware and process the layers as a classical dataflow graph.

platform, the execution of DNNs on CPUs is inevitable in some cases. CPUs can be a practical
option for smaller DNNSs, latency-relaxed applications, or in constrained embedded systems where
a dedicated DNN accelerator is not feasible. ML software libraries have also been optimized to
exploit the capabilities of modern CPUs, such as hyper-threading and vectorized instructions [98].
For example, CPUs with support for advanced vector extensions (AVX) use the wider SIMD
registers to pack more operations when DNNs are quantized to lower bitwidths [99].

2.3.2 Deep Neural Network Accelerators

The highly parallelizable workloads in modern DNNs call for highly parallel compute platforms
for low-latency and high-throughput inference. Most specialized DNN accelerators in literature
are composed of an array of processing elements (PEs). These are referred to as spatial accel-
erators [56]. PEs of spatial accelerators are typically more capable compared to a GPU’s cores
or ALUs, having more control logic and, in some cases, direct communication with other PEs
over an interconnect, such as a network on chip (NoC). The advantage of having more complex
PEs is their programmability, which allows them to effectively handle DNN workloads without
replication or transformation into more standard arithmetic workloads such as GEMMs. The
communication between PEs also means that data can be reused across the PE array, without
having to access the on-chip buffers or a higher-memory hierarchy each time [3]. Additionally,
PEs can share intermediate results or partial sums (PSUMs), allowing them to collectively share
the effort of the workload more effectively. Finding the optimal dataflow over a PE array for DNN
inference is an active field of research and is critical in achieving effective HW-SW co-design,
as every workload could have a different movement pattern to achieve its execution targets in
terms of energy, latency or both [4, 100, 101, 102]. This will be discussed in more detail in the
upcoming subsections. Figure 2.8 shows an example of a generic spatial DNN accelerator.
Other DNN accelerator architectures are based on dataflow graph processing [103]. This type
of architecture involves synthesizing the DNN graph directly onto hardware as a traditional
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dataflow graph, i.e. a pipeline of nodes communicating over first in, first out (FIFO) buffers, as
shown in figure 2.8. Such architectures are well-suited for reconfigurable fabric such as field
programmable gate arrays (FPGAs), where a new computation graph can be flashed onto the
fabric whenever the DNN needs to be changed. Another advantage here is that no communication
is necessary with off-chip memory during computation as the entire graph is on-chip and the
intermediate results are passed from one computation node to the next directly. The architecture
also unrolls the layers of the DNN, allowing multiple inputs to be processed in different parts
of the graph to improve throughput [103]. For example, while input ¢ is being processed by the
graph node for layer [, the next input i+1 can already be processed by the preceding graph node
for layer [-1. With a well-dimensioned pipeline, this architecture can achieve a high-throughput,
low-latency execution. However, there are some disadvantages to an in-hardware graph-based
implementation. For large DNNs, it might not be feasible to fully unroll the graph and all its
synaptic weights onto the fabric of an FPGA [104]. Additionally, for DNNs with residual paths,
a large amount of memory might be required to store the intermediate results of previous nodes
of the graph until it can be used by the deeper layers of the graph. This can ultimately stall the
pipeline and deplete the memory resources of the programmable logic.

More exotic accelerators have also appeared in research, particularly in the field of neuro-
morphic computing [105, 106]. However, in this work, the focus remains on more classical
graph-based and parallel computing architectures.

In the following subsections, a more detailed discussion on spatial accelerators is presented, as
well as an elaboration of the challenge of finding the optimal schedule for these accelerators with
respect to different DNN workloads.

2.3.2.1 Spatial Accelerators

Spatial accelerators with contributions covering novel interconnect [ 107], efficient data access and
movement patterns [3], support for run-time sparsity detection [79, 78], and variable precision
arithmetic [69, 68, 66] have been proposed in literature. Apart from the individual contributions,
these accelerators share some general characteristics which help in identifying the properties of
a generic spatial accelerator. Generally, these accelerators have a 3+1 level memory hierarchy,
composed of an off-chip memory typically implemented as a dynamic random-access memory
(DRAM), an on-chip memory typically implemented as a static random-access memory (SRAM),
registers inside each PE, and the combined registers of all the PEs can be considered as yet
another memory hierarchy, accessible over the interconnect (hence, 3+1). Referring back to
figure 2.8, these memory levels can be seen on the generic spatial accelerator architecture. The
requirement for such memory hierarchies stems from the fundamental challenge of unrolling the
entire computation load onto the PE array in a single processing pass. To elaborate this point,
algorithm 2.1 shows the nested-loop representation of the convolution operation presented earlier
in equation 2.3.

Ideally, the data required by the entire loop is accessed only once from an off-chip memory
resource and then reused exhaustively by the PEs, without any redundant off-chip accesses. This
implies that during all the iterations where a particular data element is involved, all the other
data that it is reused against (computed with) also fits in the lowest-level memory. In practice,
this approach is not feasible for large algorithms, as fast and efficient near-compute memories,
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Algorithm 2.1 Nested loop representation of the convolutional layer execution from equation 2.3

Input: A'=C][X][Vi]
Weights: W'[C,][Ci][K,][K,], Stride: s

Output: A'[C,][X,][Y,)] > Required tensors for the convolution operation
forc,=0;c,<Cy;co+ +do > Output channel iterator
forc;, =0;¢; < Cj;c;++do > Input channel iterator
forz, =0;2,< X,;z,+ +do > Output horizontal spatial iterator

fory, =0y, <Y, ;y, + + do > Output vertical spatial iterator

fork, =0k, < K, ;k;,++do > Kernel horizontal iterator

fork, =0;ky < Ky; ky+ +do > Kernel vertical iterator

w = Wco][ei][kz][ky] > Iterators as tensor indices

a=t = Al e [wo - s+ kel [Yo - 5 + Ky
Alleo][zo][yo)+ = w - a!~! > Core MAC, Write to output tensor A’

such as PE registers, are usually a limited, precious resource due to manufacturing costs and
on-chip area constraints. Nevertheless, data reuse is still possible to some extent through clever
scheduling techniques [108, 109, 3]. The main computation is at the core of the inner-most loop,
where many elements are accessed in multiple iterations of the higher loops. Specifically, reuse
occurs when the indices of the parameters involved in the inner-most computation remain fixed
for some loops before iterating in others. In hardware, this translates to a single element being
stored at a lower-level memory for multiple iterations before being purged to make space for
new data. For optimal reuse to occur, no single element should be read more than once from a
higher-level memory.

Loop-tiling is an approach to efficiently exploit the entire memory hierarchy by dividing the
nested-loop into shallower loops, which can fit on multiple memory levels. The loop-tiling
strategy effectively decides which tiles of the CNN computation will take place in one round
of communication with a lower-level memory (on-chip buffer). An example of the C, loop in
algorithm 2.1 being tiled is given in algorithm 2.2. Tiles of size T'C,, are sent by the outer loop
(off-chip memory) to the inner loop (on-chip memory). Another visual example of loop-tiling is
presented in figure 2.9.

The order of the loops can also be manipulated without affecting the algorithm through
loop-reordering. For example, in algorithm 2.1, the execution iterates over the y, index before
incrementing the z, index, allowing a set of elements with index z, to reside longer on the
lower-level memory while iterating over all possible elements y, € Y,. Swapping these two loops
would result in y, elements residing longer on the lower-level memories. This essentially helps
in extracting improved reuse opportunities, since the upper-level loops remain on the lower-level
memories of the hardware architecture, thus closer to the compute units.

Finally, loop-unrolling is the third loop optimization technique, which can be applied once a
memory level is distributed spatially. The degree of unrolling is limited by the parallelism offered
by the hardware architecture and the on-chip interconnect. For example, in algorithm 2.1, the
kernel’s elements K, can be assigned to p, spatially distributed PEs, effectively executing several
py loop iterations in parallel as shown in algorithm 2.2. Another visual example of loop-unrolling
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Figure 2.9: Tiling and unrolling example on a spatial accelerator.

is presented in figure 2.9, where six output pixels from two different channels are computed in
parallel by six PEs, after the required filters and input pixels are unrolled over them.

Algorithm 2.2 Output channel tiling and weight kernel unrolling example based on algorithm 2.1

Input: A'=C][X][Yi]
Weights: W'[C,][C;][K][K,], Stride: s

Output: A'[C,][X,][Y,)] > Required tensors for the convolution operation
forc,=0;c, <Cy;cot=TC,do > Off-chip tile iterator with tile size T'C,,
> Other nested loops

for tc, =0 ;tc, <TC, ;tc, + + do > On-chip output channel tile iterator
fork, =0k, < K, ; ky+ = p, do > Unrolling p, operations in parallel

w = W[te,|[ei][ks][ky : ky +py] > w and a vectors for p, parallel operations
al™t = Al eil[zo - 5 + ka[yo - 5 + ky Yo« s+ ky + py)
Allte,)[zo][yo)+ = w - al ™! > Core MAC, Write to output tensor A

2.3.2.2 Schedules and Dataflow Mapping

The loop optimization techniques briefly discussed in the previous subsection can be used to
define schedules and computation mapping schemes [4, 100]. Tiling and reordering affect which
data is available to the PE array, thereby directly influencing the effectiveness of the unrolling
scheme. Since these optimization techniques are all codependent, they compose a large search
space of schedules, where every possible tile, order, and unrolling degree represents a solution.
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The schedule and mapping search space naturally depends on the workload being scheduled as
well as the hardware dimensions (memory and PE array size) being considered. Constraints are
introduced by disallowing certain communication patterns among PEs, or limiting the memory
hierarchy size, which shrinks the search space of valid schedules and simplifies the hardware
design.

In terms of loop reordering, three ordering schemes were identified in [110], which influence
the reuse of one datatype, before being accessed again from the off-chip memory. These can
be categorized into output reuse oriented (ORO), input reuse oriented (IRO), and weight reuse
oriented (WRO). For tiling, every possible combination of weights, input activation, and output
tiles which fits on the available on-chip memory, results in a legal tiling scheme. Finally, for
unrolling, the computations are mapped onto parallel PEs to exploit the parallelism in DNN
computations. When unrolling computations onto the PE array, some on-chip data movement
considerations can help squeeze more efficiency out of the compute array by sharing the data
which is already on the array [109, 3]. For example, PEs operating on the same input feature
map pixels, but different weights may share the input pixels among themselves over the on-chip
interconnect, rather than individually accessing the more expensive and larger on-chip SRAM
memory.

The common taxonomy for on-chip computation mapping and data movements defines which
datatype remains stationary in the PEs, and which datatypes traverse the array or are called from
the on-chip SRAM buffer. For example, the weight-stationary (WS) dataflow allows each PE to
have a unique set of weights in its registers, while input feature map pixels are provided over the
NoC and flow through the PEs which require them. In an output-stationary (OS) dataflow, the
weights and input feature maps can flow through the array while each PE maintains the PSUM of
the output pixels it is responsible for, until they are fully accumulated. For input-stationary (IS)
dataflows, the input activations remain on the PE while weights flow through the array and output
pixels are computed in a distributed manner. For each of the WS, OS, and IS dataflows, there
can be a variety of implementations possible, defining which parts of the data are stationary. For
example, a variant of OS may allow each PE to work on a subset of output pixels of the same
output feature map. Alternatively, each PE may handle an entire output channel on its own [56].
In both cases, the dataflow falls under the OS classification, but is implemented differently.

More complex dataflows also exist in literature, most prominent of which is the row-stationary
(RS) dataflow, proposed for the Eyeriss accelerator [3]. Each PE is responsible for a 1-D
convolution of one row of input activations against one row of the weight kernel. Vertically,
the PEs can share their PSUMs to accumulate the results of their 1-D convolutions, essentially
achieving the accumulation across the 2-D kernel’s window. Weights, output activations and input
activations are shared across the on-chip interconnect horizontally, vertically, and diagonally,
respectively. Within each PE, the registers may contain the weights and activations of different
channels, allowing for more efficient use of the lowest level memory, and performing more
accumulations within the same PE with less data movement.
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3 HW-SW Co-Design of Deep Neural
Networks

integrating both domains in a holistic implementation is often considered or identified

late in the design process. Flexibility in low-level, core design choices becomes limited
over the course of hardware or software development. Ideally, HW-SW co-design should main-
tain a coherent view of both domains throughout the time of development. The challenges of
co-design also change as further development progress is made. Initially, ideas and fundamental
HW-SW design decisions might be exchanged by human experts through specifications and
targets that should be achieved in the final deployment. In the next stages, the implementation
details of hardware and software might become too complex to discuss in depth through linguistic
specifications. Here, functional models and simulations can guide the development and help in
evaluating and making design choices in both domains. Towards the last stages of development,
large systems composed of many sub-components make up the design. The inter-dependencies
among sub-components and sub-systems can become hard to interpret by human experts. Here a
combination of functional models and metaheuristics provide the human designer with near opti-
mal choices, without the designer having to be aware of all the low-level details and interactions
of the overall system.

In this chapter, the challenges in the hardware and software domains are discussed in the
context of DNN deployments. The targets of ML and HW engineers are presented to understand
the contrasting perspectives that might emerge in a co-design problem. The techniques and
methods which help ML and HW engineers achieve synergies are briefly introduced. Finally, the
problem statement of this dissertation is constructed, along with the proposed paths to achieve
effective HW-DNN co-design based on different design problem definitions.

CO—DESIGNING hardware and software might seem intuitive, yet the challenge of truly

3.1 Contradicting Challenges of DNN and HW Design

Identifying the challenges of HW-DNN co-design requires a clear understanding of the goals and
constraints in both domains. As an extreme case, we consider the perspectives of a HW-engineer
with minimal information about the target DNN and an ML-engineer with minimal information
about the target HW.

An ML-engineer is concerned with developing the most performant algorithms in terms of
task-related prediction accuracy. This correlates with more model parameters, layer diversity,
higher input resolution, and generally a more computationally complex DNN. Predictability
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and certainty are also critical to such algorithms in safety critical settings, contributing to more
complex algorithms which have redundancy through batch-processing from multiple sensors
and/or having an ensemble of classifiers with a voting mechanism to give the final prediction.
Naturally, these also increase the computational overhead required for the application. With equal
importance, the robustness of the algorithms against adversarial attacks is yet another concern
for the ML-engineer, which motivates the introduction of preprocessing stages to the algorithm,
adversarial training, redundancy, and multiple input processing, similar to the measures taken for
predictability. Counterintuitively, adversarial training and input filtering for improved robustness
against adversarial attacks harms the natural task-related accuracy of the DNN.

In contrast, a HW-engineer seeks other targets. The fabrication cost of an application specific
integrated circuit (ASIC) is correlated with the complexity and area utilization of the hardware
design. Typically, the larger share of an integrated chip’s area is consumed by memory cells,
where 6 transistors are required per 1-bit of SRAM. This incentivizes designs with smaller on-chip
buffers. Smaller and simpler compute logic with fewer registers also helps in lowering the area
cost. Hardware design on FPGA has similar challenges, as the utilization of the design may
not exceed the LUT, digital signal processing (DSP) blocks, and block random-access memory
(BRAM) resources available on the programmable logic. Along with shrinking the on-chip
memory to save area, a contradicting objective is to reduce power consumption. Smaller on-chip
buffers would require more frequent communication with off-chip DRAM, which is costly in
terms of energy consumption and potentially latency, when off-chip communication results in
stalls. Lastly, the HW-engineer also has their concerns with respect to safety and security. For
example, the HW-engineer may employ dynamic voltage and frequency scaling (DVES) to save
power, but low-voltage operation could result in bit-flips in logic and memory. This could lead
to critical errors at the task level. Bit-flips may also be caused by ionization or aging, neither
of which can be guaranteed by the designer. Therefore, precautions must be taken through
redundancy approaches, which again stress the challenge of minimizing hardware area and power
consumption.

From this brief look at the targets of HW and ML engineers, it is clear that each domain
is complicated in its own right, with design decisions affecting contradicting targets within
the domain itself. A deeper look further reveals cross-domain impacts of the design decisions.
Employing an ensemble of classifiers for algorithmic redundancy could lead to increased latency,
area, and power consumption on hardware. In cases where DVFS, aging, or ionization cause
bit-flips, the accuracy and predictability of the algorithm cannot be guaranteed. Finally, large
complex DNNs executing on hardware with small on-chip buffers increases the amount of
computation tiling and off-chip communication required, thereby increasing the energy cost per
classification. There is a clear motivation for the two domains to consider their own challenges
alongside the targets of the other domain, in order to reach solutions that ease the design effort in
both hardware and software.

3.2 Compromises and Extending the Hand of Truce

Achieving the difficult targets in the hardware and software design domains can be made easier
through optimization techniques presented in chapter 2. Quantization, pruning, NAS, loop-tiling,
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Figure 3.1: Inter-dependencies of hardware and software DNN optimization techniques.

reordering, and unrolling are some techniques that achieve improved deployments of DNNs.
However, optimization techniques may be performed without fully extracting the expected
benefits.

ML and HW engineers can potentially compromise their own targets to help each other.
Yet without properly integrating their optimization techniques, the solution would end up in
compromises in both domains with little to no benefits. To elaborate this point three basic
examples can be considered.

Pruning and Execution Schedules. Removing parameters from a DNN can be performed at
different regularities and with different sparsity targets for each layer. For a CNN, convolutional
layers may be pruned in element-wise, channel-wise, or filter-wise regularities. Pruning at a fine
regularity which is not supported by the memory access patterns on hardware would result in
task-related accuracy degradation without improving the hardware execution metrics. Deciding
which parameters to prune can be done based on a heuristic, while a search algorithm can decide
how much to prune each layer, i.e. find the sparsity ratios of each layer. In the hardware domain,
the dataflow supported by a generic spatial accelerator may be optimized for weight-dominated
or activation-dominated layers, i.e. output-stationary or weight-stationary. A typical image
classification CNN has more activations in the initial layers and fewer in the deeper layers. The
opposite is true for weights, where initial layers have fewer filters, and deeper layers tend to have
more filters and input channels. Overall, the decision on whether to prune initial layers or deeper
layers should not only be done to maintain task-related prediction accuracy, but also to benefit
the dataflow which the hardware supports. If the dataflow efficiently unrolls the computations
of the initial layers, and cannot effectively map the computations of the deeper layers, then
the pruning algorithm must take such subtleties into consideration and prune the deeper layers.
Pruning layers which are already efficiently executed on the hardware might lead to task-related
accuracy degradation without any improvements in execution latency. Pruning a layer can also
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change the scheduling and mapping search space. Compute workloads which previously did not
fit on the on-chip memory may become possible after pruning, allowing further mapping options
on hardware. Therefore, the execution reward returned from the scheduler and mapper of the
hardware is also important for the pruning algorithm to decide how much to prune a particular
layer. For example, pruning 10 channels or 15 channels may result in the same schedule on a
particular hardware design, which does not change the latency of the execution. However, pruning
one more channel, e.g. 16 channels, may result in a new tiling scheme becoming possible, which
drastically reduces the latency of the execution.

Quantization, Memory and Compute Logic. Similar to pruning, quantization can be decided
independently for each layer to provide more numerical precision for some critical layers of the
DNN, and low-precision, fast execution for other layers. The numerical precision used to represent
weight and activation data can also be different within the same layer. A search algorithm can be
applied to this problem as well, tasked with finding the optimal bit allocation for each datatype in
each layer. Assuming the search algorithm is given the freedom to choose between 1 to 16 bits
for each datatype in each layer, the hardware must equivalently be able to extract the benefits
at each of those quantization levels. This might involve designing bit-serial PEs, and flexible
data-packing in the memory’s word-length. The interconnect must also flexibly transport the
necessary data at all supported bitwidths, without under-reads or over-reads. If data-packing
and memory alignment allocates 32 bits for 8-bit parameters, the benefits of quantization for
memory movement are not achieved. Similarly, if the arithmetic unit performs the same operation
with the same latency and throughput for all bitwidths, no computation speed-up is achieved.
Finally, similar to pruning, quantization might unlock new legal schedules which fit on the on-chip
memory, thereby directly influencing the latency and power due data movement, as well as the
expected benefits at the compute level. In terms of a vectorized PE, which might support a subset
of quantization levels, the search algorithm must be constrained to make decisions which are
supported by the hardware. The effects of each decision on the dataflow, mapping, and schedule
must be fed back as signals to the search algorithm, guiding it to choose strategies which truly
benefit the target hardware’s capabilities as well as maintain a high task-related accuracy.

Adversarial Robustness and Bit-Flip Resilience. Considering a safety-critical deployment
of DNNss, different threat models must be anticipated by ML and HW engineers. Adversarial
attacks can be seen as algorithmic threats which exploit internal paths of a DNN to produce
high-confidence, incorrect predictions. To improve the robustness of a DNN against adversarial
input perturbations, the ML engineer can introduce adversarial examples during the training,
allowing the DNN to learn such input-based threats. Differently, the HW-engineer must consider
the consequences of hardware-based errors, which may occur due to low-voltage operation, aging,
or exposure to radiation. Protection against such hardware errors or bit-flips can be achieved by
introducing redundant hardware modules and/or redundant computations, both of which are very
costly in terms of latency, power, and potentially area. In essence, both sides are attempting to
achieve the same goal, which is the correct operation of the DNN in the presence of errors or
perturbations. However, by improving the robustness of the DNN against adversarial examples,
its behavior under hardware-based bit-flip errors is affected. The HW-engineer’s target is not
necessarily to eliminate all errors, but to provide sufficient redundancy such that a reasonable
amount of computation errors can be overcome by the DNN’s internal algorithmic redundancy.
If the ML-engineer considers the effect of bit-flips during the adversarial training scheme, a
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solution which reduces the effort in hardware redundancy might be achieved. In contrast, a
DNN which is adversarially trained without any consideration to hardware errors might be too
sensitive to internal computation bit-flips, making the targets of the HW-engineer significantly
more challenging to achieve.

The three examples represent cases where working on two domains separately can lead to
sub-optimal compromises, but working jointly on solutions makes the overall deployment meet
its targets while reducing the individual efforts of HW and ML engineers. Figure 3.1 shows more
dependencies that exist between hardware and software DNN optimization techniques.

3.3 Problem Statement and Paths to Effective Co-Design

The challenges, arguments, and examples presented in the previous sections can be boiled down
to the following problem statement:

Al on edge necessitates tightly-coupled HW-SW co-design. Isolated efforts of HW and SW
optimization cannot fully capture the potential of efficient inference. This leads to sub-optimal
compromises in HW or SW design, without reaping the expected benefits. To achieve true
co-design, multiple paths towards HW-awareness and optimization must be laid out parallel to
SW design and development. The different co-design paths should be applicable to different
stages of development and the current design challenge.

In this dissertation, three core concepts inspired by the field of very-large-scale integration
(VLSI]) design are presented and adapted to different HW-DNN co-design problems:

* Co-Design Methodologies. Defining multiple paths towards HW-DNN co-design for a
plurality of optimization methods and design challenges.

* Executable Models. Developing effective HW-awareness injection techniques through
models, to facilitate the task of DNN optimization and provide tangible benefits in the final
deployment.

» Abstraction Levels. Defining multiple abstraction levels to facilitate co-design at different
stages of development and provide a divide-and-conquer approach to tackle large HW and
DNN design spaces.

The three concepts are essential to the works presented in the next chapters. A summary of all
works under the scope of this thesis and their use of the three VLSI-inspired concepts is shown in
figure 3.2.

3.3.1 Co-Design Methodologies

The need for different paths to achieve co-design can be justified by understanding how co-design
challenges look like at different stages of development. Design problems range from being
abstract to well-defined in different development phases. Accordingly, this work classifies three
methods to co-design: handcrafted, semi-automated, and fully-automated co-design.
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Methodology Models Abstraction
8, 9, 10, 11, [9, 10, 11, 12, 13, 14, 15, 17, 8, 9, 10, 11,
16, 24, 25] 18, 19, 20, 21, 22, 23, 24, 25] 12, 15, 24, 25]

Figure 3.2: Works published under the scope of this thesis categorized with respect to concepts used from
the VLSI design domain.

Handcrafted co-design involves human-experts reaching an agreement on design decisions
based on an understanding of complex theoretical concepts and analytical thinking. These
are design decisions that may be difficult to formulate into a search problem or define for
an agent to solve. An example would be designing low-level hardware description language
(HDL) components tailored for a specific DNN operation [8], or understanding the effect of
adversarial training and bit-flip robustness to develop improved DNN training schemes [16]. The
ML and HW human-experts must exchange ideas succinctly to reach a solution through this
methodology. Naturally, handcrafted co-design is not feasible for large-scale, search oriented
problems. Chapter 4 presents two works using this methodology [8, 16].

In semi-automated co-design, components developed through handcrafted methods may be
integrated into larger systems in a semi-automated manner [25, 24]. A system might be largely
represented with well-defined models that can be automatically optimized, while other deci-
sions must be made by a human-expert. For example, the DNN’s computation graph can be
implemented as a pipeline of computation blocks. These can be represented as a synchronous
data flow (SDF) model, where the computation blocks are actors communicating their results
over FIFO channels. This system may be developed and automatically optimized by high-level
synthesis (HLS) pipeline functions, however, the human designer might still need to decide what
throughput should be targeted with the pipeline and what resource utilization must be maintained.
The human designer may also allocate more compute resources to bottleneck actors. Based
on this, the allocation of memory in the communication channels can be automatically chosen.
Chapter 5 covers Binary-LoRAX [25] and BinaryCoP [24], which incorporate semi-automated
co-design.

Finally, a fully-automated design methodology requires little to no intervention from a human
designer. This is only feasible when the system can be represented by well-defined, predictable,
executable, high-fidelity, parameterizable models. It is also important to assert that there are no
errors or corner cases in the executable models, which might allow the automated design agent to
make decisions which cannot be realized in practice. The automated design agent can be a GA, an
RL agent, or any similar metaheuristic or search agent. As the automated design agent traverses
the design space with the help of the parameterizable, executable models, it finds the parameter
settings which achieve the hardware and software design goals. This methodology is particularly
effective towards the late stages of development, when reliable, well-defined, executable models
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are available. In chapter 6, HW-FlowQ [10] and AnaCoNGA [9] are discussed as examples of
fully-automated design frameworks in the scope of this work.

3.3.2 Executable Models

As HW and ML engineers try to meet their co-dependent goals, continuous integration of
their work needs to be evaluated. In this context, models can form a bridge between the two
domains, where sufficient hardware and software details can be exchanged without hindering
the independent, complex development cycles in either domain. Apart from integration and
testing, effectively arriving at a solution that meets an application’s constraints typically requires
exploration of a large and complex HW-DNN solution space. This motivates the design of
lightweight, easily reconfigurable models, which can be used to evaluate design choices in these
complex design spaces. Such models allow the continued development of the hardware parallel
to the DNN design phases, without having to finalize and/or synthesize the hardware in the early
stages of development.

Executable models of DNN hardware accelerators can be constructed based on the determin-
istic execution of their graph structures. Considering a spatial accelerator, a particular tiling
and unrolling strategy can be translated into a precise schedule which provides high-fidelity
latency and energy estimations to guide the design decisions of human experts and automated
design agents or metaheuristics. These models do not necessarily have to be cycle-accurate
representations of the hardware, but rather analytical models which can provide the total number
of memory accesses and computations required to complete a workload with respect to a given
scheduling strategy. Once the execution schedule is known, the cost (latency and/or energy)
of every action (memory read, write or computation) can be multiplied by the total number of
times that action will take place, producing the estimates. Such models were developed and
used in publications within the scope of this dissertation [9, 10, 11, 12, 13]. A graph-based,
dataflow accelerator can be represented with a more traditional SDF model, which can also return
execution metrics to the design methodology. Several works within the scope of this dissertation
used such models [22, 25, 24, 23].

For black-box or general-purpose, non-deterministic hardware, a LUT-based approach may be
considered. A large number of relevant computation workloads can be executed on the hardware,
and the resulting execution metrics, e.g. latency, throughput, or power, can be collected in
a LUT. This can then be used in optimization loops of the DNN, where neural architecture,
pruning or quantization decisions can be evaluated based on the pre-collected performance
measurements. Therefore, the LUT can guide the optimization and design of the DNN [19, 20].
The measurements of a LUT can also be used to train a regression model, which eventually can
predict the execution metrics of unseen workloads or hardware configurations. The regression
model can also be formulated in a differentiable manner, e.g. a Gaussian process regressor,
which can then be integrated directly into the training scheme of the DNN and help the SGD
algorithm directly optimize the weights for the task-related accuracy, as well as, pruning masks or
quantization levels for hardware performance [15]. LUT and regression-based hardware models
were used in published works [19, 20, 15] contributing to this dissertation.

When using models for design space exploration, it is critical to assert their estimation fidelity.
A high-fidelity model may even be preferred to an accurate model in cases where choosing the
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best solution is more important than measuring the performance of a single solution. Particularly
for automated design agents and metaheuristic search techniques, a model with low-fidelity might
heavily misguide the direction of search space traversal, ending up in optimal solutions with
respect to the model, but sub-optimal implementations on real hardware. The speed of the model
execution is also important. Design space exploration loops for DNNs already suffer from long
GPU-hours for training and accuracy evaluation of neural network configurations. Adding further
delays to consider the hardware design exacerbates this issue and would severely extend the
search time. However, a fast executable model might be used to eliminate hardware-inefficient
DNN configurations early, before GPU training and evaluation, thereby shortening the overall
search time and injecting hardware-awareness to the design exploration loop [9].

3.3.3 Abstraction Levels

Viewing complex systems at different levels of abstraction is fundamental to design methodologies
in the field of VLSI. The divide-and-conquer approach to manage design complexity can be
achieved by viewing only a limited set of design details at a time, allowing the design process to
systematically consider simpler problems at each level of abstraction before moving on to the next.
In the VLSI domain, the Gajski-Kuhn diagram defined different views to a system and multiple
abstraction levels with respect to each view [111]. Based on this diagram, design transitions
are defined, such as synthesis, implementation, abstraction, refinement, optimization and others,
which allow the design phase to move through abstraction levels and design views in different
ways. Figure 3.3 shows the Gajski-Kuhn diagram as well as the transitions mentioned to traverse
the views and abstraction levels. With these transitions, the design flow might take a top-down,
bottom-up, or meet-in-the-middle approach. A top-down design flow implies that the design
starts at a high abstraction level and slowly gets refined as more components are developed. The
opposite is true for a bottom-up design flow, where engineers can work on low-level components
first, and then integrate them into larger, more complex systems. Finally, a meet-in-the-middle
approach allows two (groups of) designers to work in tandem at the system level and the logic
or register-transfer level (RTL). The system designers can specify the high-level architectural
targets, while the component designers implement the modules required for the target architecture,
eventually meeting each other midway in the levels of abstraction.

In this work, these concepts from the VLSI domain are reintroduced in the context of HW-DNN
co-design [10, 11]. The divide-and-conquer approach can be useful in maintaining reasonable
complexity in the large search spaces of hardware design, NAS, and DNN compression. The
design of DNN accelerators can also benefit from the levels of abstraction, where a processing
element can be designed and optimized to support some necessary DNN operations and then
replicated and integrated into larger designs, such as dataflow accelerators. This transition in
abstraction levels was performed during the course of this work, from designing OrthrusPE [8] to
then injecting it into larger hardware designs in Binary-LoRAX and BinaryCoP [24, 25]. Combin-
ing abstraction levels and executable models is also possible, as demonstrated in section 6.1 based
on the work in [10] and [11]. For example, a high abstraction level execution model of a spatial
accelerator may first consider ideal conditions, large on-chip buffers and 100% PE utilization
(optimal loop-tiling and unrolling). Such a model can help in determining the theoretical ideal
case of execution at an early design stage. Then, constraints on the interconnect and the on-chip
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Figure 3.3: The Gajski-Kuhn diagram (left) and the possible transitions to traverse the views and abstrac-
tion levels (right).

buffer size may be introduced after refinement, helping the designer understand the loop-tiling
characteristics of the DNN workloads with respect to said constraints. Finally, a more refined
abstraction level can further consider the PEs’ arithmetic capabilities, register sizes, and communi-
cation patterns, and implement the entire execution schedule, returning more accurate estimates of
latency and energy consumption. The next chapters showcase six examples where these concepts
are used in handcrafted, semi-automated, and fully-automated design methodologies.
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solutions for complex co-design problems. This is particularly useful in cases where

a design challenge is conceptual and hard to concretely define mathematically or
formulate into a search space for algorithms or metaheuristics to solve. The designers’ conceptual
understanding of the challenge is itself the problem formulation, which can be solved by applying
their knowledge, expertise, and creativity. In this chapter, two examples of handcrafted co-
design are presented. In OrthrusPE [8], a complex form of BNNs is considered, which replaces
expensive multiplication and addition operations with hardware-friendly XNOR and popcount
operations. However, to maintain high task-accuracy, the BNNs still require some fixed-point
arithmetic operations. This motivates the conception of a PE which supports both fixed-point
and binary operations, with minimal hardware overhead. In Mind the Scaling Factors [16],
hardware and software threat models are investigated in the form of on-chip bit-flips and input-
based adversarial attacks. By understanding the theoretical worst-case effect of a bit-flip in the
numerical representation on hardware, the neural network training hyperparameters are tuned
to improve adversarial robustness and bit-flip error resilience. In both works, understanding
the conceptual design challenge or the theoretical aspects of the execution led to the human-
engineered, handcrafted co-design solutions.

DEEP understanding of hardware and software enables human-experts to craft tailored

4.1 OrthrusPE: Runtime Reconfigurable Processing Elements for
Binary Neural Networks

Recent advancements in BNN training methods and architecture search have pushed the prediction
accuracy of single-bit neural networks closer to their full-precision counterparts [62, 34]. These
advancements were brought about by introducing additional computations, in the form of scale
and shift operations in the fixed-point numerical domain and convolutions with multiple weight
and activation bases in the binary domain [62]. OrthrusPE! is a runtime reconfigurable PE
which is capable of executing all the operations required by modern BNNs without introducing
large resource utilization overheads or sacrificing power efficiency. More precisely, the DSP48
blocks on off-the-shelf FPGAs are used to compute binary Hadamard products (for binary
convolutions) and fixed-point arithmetic (for scaling, shifting, batch-norm, and non-binary layers),
thereby utilizing the same hardware resource for two distinct, critical modes of operation. The
experimental results show that common PE implementations have 67% higher dynamic power
consumption, while requiring 39% more LUTs, when compared to an OrthrusPE implementation.

'Tn Greek mythology, Orthrus is a two-headed dog.
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4.1.1 BNN Training Challenges and Motivation for Reconfigurable PEs

The memory and compute advantages of data quantization have made it an essential compression
technique in edge DNN deployment scenarios [35, 36]. Floating-point weights and activations
are superfluous for most inference tasks, making low-bitwidth fixed-point representations an
attractive alternative [57]. However, as the number of bits for a fixed-point representation
decreases, accuracy degradation ramps up and more of the critical, learned information is lost.
Nonetheless, research into fully binarizing DNNs has flourished in recent years, producing
training schemes and BNN architectures which achieve accuracy target that rival high-precision
implementations [60, 112, 61, 62, 34].

Different implementations of BNNs exist, with binary weights or binary activations, as well
as binary weights and activations. Intuitively, having both weights and activations in the binary
format leads to the highest loss of information, but provides the most memory, energy, and
compute efficient solution. The billions of multiplications typically required for forward passes
are reduced to simple XNOR logic operations, while the accumulations are implemented as
popcounts [34]. The main issue with such a low information representation is that the cumulative
effect of the finely-tuned, learned weights of the network is lost. Early attempts at realizing fully
binarized DNNs resulted in accuracies far below those achieved by state-of-the-art DNNs on
complex problems such as ImageNet [60]. To tackle this problem, Lin et al. [62] approximated
activations and weights using binary bases to create accurate binary convolutional networks
(ABC-Nets). Using this method, BNNs have achieved accuracies only 4-5 p.p. below their
full-precision counterparts for Top-1 and Top-5 results on ImageNet. This method elaborated in
section 4.1.3.

Although binary bases present a solution to the information loss problem, they also introduce
new operations to be executed on hardware. Furthermore, the first layer of the neural network
is critical and it maintains fixed-point values for weights and activations to avoid severe loss of
information at the input of the network. Lastly, the effect of batch normalization on improving
the accuracy and training time of BNNs makes it an essential layer that must be supported by the
hardware [112].

OrthrusPE provides a hardware solution applicable to virtually all*> Xilinx FPGAs for acceler-
ating accurate binary neural networks, without employing additional hardware for the non-binary
operations that need to be performed at intermediate stages. Off-the-shelf FPGAs with DSP48 or
DSP58 blocks can be reconfigured at runtime to compute the highly parallel binary Hadamard
products required for binary convolution operations, as well as the fixed-point operations that
occur intermediately. The synthesis and implementation results of OrthrusPE are compared
against other configurations with equivalent throughput. The method is orthogonal to dataflow
optimizations and the overall accelerator architecture, and can be implemented as an extension to
any existing, compliant FPGA accelerator.

The contributions of this work are summarized as follows:

* Developing a flexible computation unit to accelerate a wide range of BNNs (e.g. table 4.1)
and executing SIMD-based binary Hadamard product operations on FPGA hard blocks.

2All 7-series, Ultrascale and Ultrascale+ FPGAs, Zynq SoCs (DSP48E1 and DSP48E2), and the recent Versal
platform (DSP58). The entry level Spartan-6 presents the only exception (DSP48A1).
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* Reusing FPGA hard blocks to create novel, runtime reconfigurable processing elements,
which dynamically support binary and fixed-point computations.

* Formalizing the relationship between computation mode switching and partial result
memory for BNN layers with multiple binary bases.

4.1.2 Related Work

Several accelerators have been developed with processing elements designed to exploit per-
formance boosts due to variable quantization levels [69, 67, 68, 66]. Other accelerators were
designed to solely execute BNNs [113, 114, 103].

Bit Fusion [69], UNPU [67], Stripes [68], and Loom [66] are all based on ASIC designs.
UNPU, Stripes and Loom offer single-bit operations while the Bitbricks structure used in Bit
Fusion allow for the execution of operations at fixed quantization levels, making the smallest
possible precision bounded by the size of a single Bitbrick. UNPU, Stripes and Loom are capable
of performing both binary and fixed-point operations, however, with a non-negligible overhead
due to the support of variable quantization levels. Further ASIC-based works, BRein [114] and
YodaNN [113], were developed precisely to accelerate BNNs. However, they do not implement
the binary bases required for accurate binary nets.

FINN [103] is a popular framework for accelerating BNNs on FPGAs. The framework is
geared towards BNNs in [60]. FINN compiles HLS code from a BNN description to generate
a hardware implementation. FINN is not compatible with multiple binary bases, but rather
simpler BNNs suited for problems such as MNIST, CIFAR-10 or SVHN. Other FPGA-based
BNN accelerators [115, 116, 117] also execute binary operations purely on LUTs and utilize
DSPs for fixed-point operations, where they are supported.

The authors of Double MAC [118] extract more functionality from FPGA hard blocks. The
signals are preconditioned before entering the DSP blocks such that two multiplications can be
obtained with some post-processing. This leverages quantization, since the two results obtained
at the output are calculated from operands that are smaller than the maximum possible precision
supported by the DSP. The work virtually turns DSPs into SIMD multipliers. Similarly, OrthrusPE
utilizes DSPs as SIMD binary Hadamard product processing units. Double MAC is orthogonal to
OrthrusPE, making it possible to include Double MAC as a third operating mode.

Efficient exploitation of hard blocks on FPGAs can play a key role in lowering the efficiency
gap between ASIC and FPGA implementations [119]. This is evident in the recent trend of
FPGA manufacturers adding more hard blocks to their chips aimed at accelerating DNN applica-
tions [120].

4.1.3 Accurate Binary Convolutional Neural Networks

To identify the operations that must be supported by PEs, the basic building blocks of accurate
BNNs are presented in this section. Different operations of BNNs proposed in literature are
summarized in table 4.1. The weights and activations of a BNN are constrained to {-1,1}.
In the hardware implementation, the ‘-1’ values are mapped to ‘0’, allowing the execution of
multiplication and accumulation as hardware-friendly XNOR and popcount operations during
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Figure 4.1: Binary bases can differentiate the values of the full-precision kernel more accurately by
preserving more information through linear transformations.

inference. Throughout this section, this affine transformation is considered and the binary
numerical space is denoted with B = {0,1}.

Accurate BNNs use multiple weight and activation bases to approximate a full-precision layer,
which reduces the gap in prediction accuracy between the two implementations. Different to
simpler BNNs where values are binarized using the sign() function (recall equation 2.7), Lin
et al. [62] presented a solution where each base is produced by scaling and shifting the original
values to different degrees before binarization. This produces multiple unique binary bases
which preserve more information collectively due to the additional operations performed before
obtaining them. Figure 4.1 shows a simple example of a 3x3 kernel binarized into 3 bases.
Within one base, it is possible to differentiate whether a value is positive after a shift or not.
Shifting 0.1 and 10 by -5, leads to 0 and 1 binarization respectively, indicating 0.1 is smaller than
5 and 10 is larger. Combining two bases captures information on how certain values fall between
other values, for example, 3 and 4 must lie between 0.1 and 10, since the 0.1 and 10 remained O
and 1 respectively after shifting by -5 and -3, while 3 and 4 were binarized to O after shifting by
-5 and turned to 1 in the binary base where they were shifted by -3. Finally, combining all three
bases, we can extract that the difference between kernel elements 4 and 3 is 1 to 2, as both were
binarized to O when the shift was -5 or both to 1 when the shift was -3, but they had different
binarization when the shift was by -4.

To discuss the complexity of a convolution operation with binary bases, we recall the notation
presented in section 2.1. Al=1 € RXixYixCi is an activation tensor of a convolutional layer
[ €[1,L]in an L-layer CNN, where X; and Y; indicate the input spatial dimensions, and C; is
the number of input channels. The weights W! € RF=*KyxCixCo are the trainable weights of
the layer. The sign, scale, and shift functions are used to find an appropriate binarization for
A'~! and approximate it into H'~! € BXi*YixCixN ‘haying N binary bases. Similarly, W' is
approximated as B! € BE*XKxCixCoxM 'yhere M is the number of weight bases. Equation 4.1
represents the multi-base binary convolution.
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Table 4.1: Requirements of most common binary neural networks and the respective hardware operations
for execution.

Method Binary Weights Weight Activation Batch- Multiple Multiple
\Activations Scale o, Scale 3, Norm Weight Bases M/  Activation Bases NV
BNN [60] v X X 4 X X
XNOR-Net [34] v v v 4 X X
CompactBNN [121] v X v v X v
ABC-Net [62] v v v v v v
Hardware Operation ‘ XNOR-Popcount  Multiplication Multiplication ~Multiplication-Shift MAC MAC
l l -1
A’ =Conv(B",H' ) (4.1)

Equation 4.2 demonstrates the binary convolution using sub-tensors B!, € Bz xKyxCixCo

and H-! € BXi*YixC where m and n indicate a single base in M or N respectively. The
scaling factors «,,, and [3,, are trainable parameters to extract more information from each binary
base representation, however, they introduce fixed-point operations to the binary convolution.

M N
Al = Z Z mBnBinConv (B! HL ) 4.2)

m=1n=1
Consider a binary weight tensor slice ' C B, where b! € BX=*Xy_ The activation slice
A=l Hln_l, where h!=1 € BXi*Yi is defined accordingly. Equation 4.3 shows the XNOR
operation performed on b and h!~!, which is the core binary operation. The XNOR operations
are grouped as binary Hadamard products of the sliding kernel windows. Next, the partial sum

Dm,n,c; 15 the accumulation of the intermediate XNOR operations over the kernel dimensions
K, x K.

Pmn,c; = POpCHt(XNOR(b[k@] [ky}v h[‘r’t + ki][yb + ky]))
——

integer

K, K, 4.3)
= > D XNOR (blky][ky], hlwi + ka]lys + ky))
ko =1ky=1 binary

Finally, to compute a single output pixel a,, , relative to bases m and n, the popcount values
Dm,n,c; need to be accumulated across the input channels C; , as shown in equation 4.4.

C;

Ummn = Z(pm,n,ci) 4.4)

c;i=1

4.1.4 OrthrusPE

OrthrusPE is a processing element which operates in two modes, a binary and a fixed-precision
mode. In the binary mode, OrthrusPE executes SIMD binary Hadamard products and the
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Figure 4.2: Preconditioning signals A, B and C to compute five 3x 3 Hadamard products. Pixels repre-
sented with an X are not relevant for this cycle of operation.

subsequent popcount-accumulation operations in equation 4.3. The fixed-precision mode is
activated for the scaling and accumulation operations shown in equation 4.2 and equation 4.4 as
well as shifting, batch normalization, and non-binary layers. OrthrusPE leverages a single DSP
which is reconfigured at runtime to achieve efficient execution in both modes of operation.

For efficient pipelining and in cases where power and resource utilization are less critical, we
propose a static variant of OrthrusPE. Here, two DSP blocks are instantiated in each PE. The first
DSP is fixed in the binary mode while the second operates as a typical DSP for executing the
fixed-point operations. This implementation is referred to as OrthrusPE-DS (Dual-Static).

4.1.4.1 SIMD Binary Hadamard Product in Binary Mode

In the example dataflow shown in figure 4.2, OrthrusPE receives two tensor slices, A!~! and b'.
When the kernel b' is slid over the partial input feature map h'~!, a new tensor slice from Hf;l
can be read from the memory.

The DSP48 (DSP48E1) slice is presented in figure 4.3. The concatenation of signals A and B
is used to fit part of the tensor slice A'~! and select it through the X multiplexer, forming a 48-bit
wide signal. The DSP’s multiplier needs to be set to its dynamic mode to allow the use of the
concatenated A:B signal, as well as the individual A and B signals during regular multiplication.
The multiplier in the DSP is asymmetric, as signals A and B are 30 bits and 18 bits, respectively.
These signals are preconditioned before entering the DSP, such that their concatenated value
represents multiple sliding windows of h!~1. The tensor slice ¥/, in the form of signal C, is
available at multiplexers Y and Z (as well as W on DSP48E2). Signal C is preconditioned to hold
the b’ kernel, which is to be operated with the h!~! pixels. By setting the ALUMODE signal
and activating the correct multiplexers through OPMODE, the DSP is essentially transformed
into a SIMD binary Hadamard product module. Note that there exist multiple combinations of
ALUMODE and OPMODE states that provide the same result.

Considering that the most frequently occurring kernel size in modern CNNSs is 3 x 3 pixels [28],
each cycle generates five individual Hadamard products at the output of the DSP. In this case,
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Figure 4.3: The DSP48E1 Slice [1]. Appended bold paths illustrate the relevant signals for our operating
modes.

each Hadamard product requires 9 bits out of the 48 bits in signal C and signal A:B, leaving 3
unused bits after the calculation of the 5 results. However, this still presents a high utilization of
94%. This is due to the fact that we can fully fit | KfnyJ Hadamard products in a single DSP
cycle’s output, where K, x K, is the number of bits per Hadamard product. The solution to
always retain a utilization of 100% is to allow partial operations to take place in each cycle, while
small additional logic rearranges the successive results before being processed by the popcount
logic. In this manner, any arbitrary window size can also be implemented with 100% utilization
of the DSP’s processing bitwidth. Intuitively, for FC layers, the utilization is always 100%.
Figure 4.4 shows the DSP utilization for two possible configurations of OrthrusPE.

Preconditioning the signals, concatenating them, and performing the wide XNOR operation
does not infer a DSP slice in the synthesis tool, but rather generates a regular LUT solution.
Therefore, the DSP slice was instantiated manually and the signals were explicitly passed to the
module.

4.1.4.2 Arithmetic Operations in Fixed-Precision Mode

The analysis of accurate BNNSs in section 4.1.3 revealed the need for regular fixed-point arithmetic
operations. As shown in equation 4.3, after a binary Hadamard product is calculated, its popcount
reduces the result to a single integer value. All subsequent calculations required for an output
pixel which involve this popcount are carried out in fixed-point and/or integer arithmetic. This
makes full-reliance on binary operations infeasible. Even in naive, inaccurate BNNs, some critical
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Figure 4.4: SIMD register utilization of the DSP48 in OrthrusPE, with and without partial operations.

layers, such as the input layer and batch normalization layers, require fixed-point arithmetic. The
additional scaling operations in accurate BNNs also introduce fixed-point multiplications, which
are most efficiently executed on DSPs. This is the motivation for reconfiguring the DSP back to
its regular operation mode, by resetting the ALUMODE and OPMODE signals at runtime. With
this solution, we exploit the same hardware resource for two distinct modes of operation.

The work in Double MAC [118] can be appended to OrthrusPE, giving it a further mode to
operate in. This is particularly useful for accumulating popcounts, which have a smaller bitwidth
compared to the fixed-point values used for the non-binarized inputs of the network and the batch
normalization layers.

Figure 4.5 shows a schematic of OrthrusPE’s internal components. The Bin_mode register holds
a flag indicating the mode of operation. The value of Bin_mode influences the DSP_Reconfig
signals ALUMODE and OPMODE, which are fed into the DSP to reprogram it as shown
in figure 4.3. Bin_mode also functions as a selector for 3 multiplexers (A_MUX, B_.MUX
and C_.MUX), allowing the input feature map pixels, weight pixels and partial sums to be
passed directly to the DSP (fixed-point mode) or taken after preconditioning them for the binary
Hadamard product operation as shown in figure 4.2 (binary mode). The result produced from the
DSP is passed to another multiplexer, where it can be written directly to the partial sum register
or postprocessed with a popcount operation, then written to the register.

4.1.4.3 Mode Switching and Partial Sum Accumulation

While in binary Hadamard SIMD mode, OrthrusPE can generate five 3 x 3 Hadamard products
per cycle. These products are passed to popcount logic, generating five integer values. Referring
back to section 4.1.3, each of the M binary weight bases needs to be convolved with each of the
N binary activation bases. A single input activation channel and a single weight filter channel
produce M x N partial sum maps. Those M x N maps need to be scaled by «,,, and 5,,, then
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Figure 4.5: Block diagram showing the main components of the OrthrusPE

collapsed into a single partial sum map. The M x N maps represent parasitic partial sums which
will require a considerable amount of memory if not accumulated for an extended time during
execution. To minimize this, OrthrusPE can perform P x M x N Hadamard products, where
P is a set of py, ¢, pixels (recall equation 4.4), then switch to its MAC mode for scaling and
accumulation, before moving on to another spatial region of the map. Decreasing P reduces the
required memory for parasitic partial sums as shown in equation 4.5. In the last term, the kernel
dimensions dictate the popcount’s bitwidth along with an added sign-bit.

Memypsym = N X M x P x ([loga(K, - Ky)] + 1) 4.5)

The trade-off is that accumulating the P x M x N popcounts requires switching the mode
of OrthrusPE more often. The number of mode switches per input channel map is expressed in
equation 4.6. X,, and Y, are the dimensions of a single output channel. Since it is possible to
switch the ALUMODE after 1 cycle of operation for non-pipelined DSPs, this trade-off does not
represent a large overhead and can be exploited to reduce partial result memory requirements in
an accelerator.

SwitchCount = 2 x [ (4.6)

X, - Yo" .

P

P can be chosen with some analysis using equation 4.5 and equation 4.6. Figure 4.6 shows
the effect of P on partial result memory and switch count for a single input channel of binary
ResNet18 [28] in each of its convolutional layers, with M = N = 3. The layers are grouped
based on their output spatial dimensions.

Layer 1 is not considered as it is not binarized. The actual scratchpad size depends on other
factors such as dataflow, loop unrolling and loop interleaving. The analysis shown is only with
respect to the minimum requirement necessary for a basic dataflow which maintains the partial
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results within a PE until a single input channel is completely processed against a single filter
kernel. Layers 2 — 5 should dictate the memory requirements as they generate the highest volume
of parasitic partial results. This is due to their output dimensions requiring 56 x 56 pixels per
channel.

\ \ \
—EI—L2,5I 96 X 56 ||
—O—Lﬁ_gl 28 x 28
——Lq9_13: 14 x 14 |
—X—L14_17Z Tx7

Switch Count

0 2 4 6 8 10
Partial Result Memory (KB)

Figure 4.6: Switch count and partial result memory analysis for a single input channel from different
convolutional layers of binary ResNetl8, with M = 3, N = 3. Each point represents a
different configuration of P.

4.1.5 Evaluation
4.1.5.1 Experimental Setup

The proposed implementations in section 4.1.4 (OrthrusPE and OrthrusPE-DS) are compared to
two implementations with equivalent functionality. Typically, BNN processing elements employ
two or more distinct types of resources for the operations described in table 4.1. On FPGA:s,
the straightforward approach is to map all binary operations to LUTs and execute the supported
fixed-point operations on DSPs. This translates to a single PE execution spanning two different
types of hardware resources. We refer to this implementation as the “Hybrid” implementation.
For completeness, we compare a fourth implementation that restricts execution of the operations
to the FPGA’s LUT resources.

All four implementations were synthesized and implemented using the Xilinx Vivado 2018.1
synthesis tool targeting the Zynq UltraScale+ MPSoC ZCU102. Correct functionality of Or-
thrusPE was confirmed by the Xilinx Vivado Simulator. Power estimates are obtained using the
Xilinx Power Estimator and the Vivado Power Analysis tool, built into the Vivado Design Suite.

In order to fairly compare the four implementations, we fix the throughput to 1 MAC per
cycle or 48 XNORs per cycle, i.e. a single OrthrusPE’s throughput. Higher performance
of all implementations is possible by replicating the structures. The processing elements were
synthesized across multiple target frequencies to show compatibility with any potential accelerator
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Table 4.2: Resource Utilization results of the tested implementations.

I . | F=770MHz F=160MHz
mplementation

| LUTs FF DSP | LUTs FF DSP
AI-LUT 559 160 0 | 516 160 O
Hybrid (Common) | 230 253 1 | 166 253 1
OrthrusPE 165 210 1 | 111 210 I
OrthrusPE-DS 120 229 2 | 8 229 2

which might utilize them. A BNN accelerator would typically require hundreds of PEs, therefore,
the presented results scale gracefully based on the underlying accelerator.

4.1.5.2 Resource Utilization Analysis

Implementation of the individual PEs yielded the utilization results presented in table 4.2.

600 [ I I I I I ]

400 |- FINN[103]: 128b HP - No MACs i

3% OrthrusPE: 144b HP + 3 MACs

200 1 A—A—A—Af i

LUT Utilization

>
<>
<
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|
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Design Target Frequency (MHz)
—&— All-LUT ——Hybrid —« OrthrusPE —¢— OrthrusPE-DS

Figure 4.7: Synthesis results for LUT utilization across different design target frequencies. Each plot
point represents a different synthesis run.

The results show that OrthrusPE can operate at the maximum frequency of the DSP48 block, i.e.
the added functionality comes without any cost of latency. Practically BNN accelerators operate
at lower frequencies, therefore OrthrusPE can be implemented on any BNN FPGA accelerator.

The LUT utilization differences within each implementation are minimal when synthesizing at
frequencies above 500 MHz, as shown in figure 4.7. However, from 500 MHz down to 400 MHz,
three of the implementations enjoy some relaxation in the parallelism required to meet the timing
constraints. Another such relaxation occurs when the target frequency is lowered from 400 MHz
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Figure 4.8: Dynamic power estimation at different design target frequencies. Each plot point represents a
different synthesis run.

down to 333 MHz. Overall, our OrthrusPE and OrthrusPE-DS implementations, both executing
SIMD binary Hadamard product on DSPs, result in the lowest LUT utilization cost.

A further plot point is added showing the resource utilization quoted in FINN [103] for
popcount-accumulation of 128-bits at a target frequency of 200 MHz. The closest matching
OrthrusPE implementation, in terms of bitwidth, provides 16 more bit accumulations and 3
parallel MAC operations (through runtime reconfigurability), while requiring 32% fewer LUTs.

4.1.5.3 Dynamic Power Analysis

Figure 4.8 shows the power estimates for the implementations at different design target frequen-
cies. The results demonstrate that using a single OrthrusPE for MAC operations and binary
Hadamard products presents the most efficient solution among the evaluated implementations.
The OrthrusPE-DS solution also offers the second best power efficiency among the 4 configura-
tions. In practice, OrthrusPE-DS can execute both types of operations concurrently which makes
it well-suited for a pipelined accelerator.

The results show that DSPs present a good choice for accelerating binary operations in
OrthrusPE and OrthrusPE-DS. Default implementations relying purely on LUTs or hybrids of
LUTs and DSPs were less efficient in all of our experiments. Exploiting DSPs as in OrthrusPE
improves the utilization of hard blocks already employed by accurate BNN accelerators. This
does not prevent the design from employing further LUTs for further binary operations, yet it
allows hard blocks to contribute to more types of computations.
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4.1.6 Discussion

The development of OrthrusPE was aimed at achieving an efficient execution of accurate BNNs
at the compute level. Analyzing the computational complexity of accurate BNNs allowed the
hardware designer to use their conceptual understanding of the capabilities of the DSP block on
FPGA to find a creative solution for the problem of supporting two types of numerical operations
in the binary and fixed-point domains. To implement the solution, a handcrafted reprogramming of
the DSP block was required to enable the desired functionality. This led to the HDL description of
OrthrusPE, which wraps around the DSP block and allows the user to switch between the functions,
and access the scratchpads accordingly. The runtime reconfigurable PE satisfies all the functions
required by accurate BNNs, while capitalizing on resource reuse. Accurate BNNs cannot be
achieved without fixed-point operations and reliance on DSP blocks. Instead of separating
binary and fixed-point computations to two types of hardware resources, OrthrusPE improves
the efficiency of the computation by executing both on FPGA hard blocks. Two configurations
were evaluated, OrthrusPE and OrthrusPE-DS, across multiple target accelerator frequencies.
Both solutions achieved improved resource utilization and power efficiency compared to typical
BNN accelerator processing elements. Accurate BNNs solve many of the computation and
memory challenges for deep neural network workloads on edge devices. Efficiently executing
their mixed-precision computations can further exploit the advantages they offer at the hardware
level.
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4.2 Mind the Scaling Factors: Resilience Analysis of Quantized
Adversarially Robust CNNs

The state-of-the-art status of DNNs in prediction, classification, and generative problems has led
to their use in an increasing number of application domains, including those which are safety-
critical. Using such algorithms in autonomous driving settings or space and defense applications
emphasizes the importance of understanding their resilience against all forms of targeted and
non-targeted errors. Most commonly, such errors can occur due to random hardware faults or
adversarially-generated attacks. Understanding the outcome of an error in the execution of a DNN
is a complicated process which depends on the underlying hardware, the DNN architecture and
training, the input data, the location of the error in the DNN, the datatype it affects (i.e. weights
or activations), the frequency of its occurrence, the numerical precision of the data, the location of
the error within the numerical representation, among other factors. The inter-dependencies which
lie among these factors can be extracted by performing large-scale experiments and ablation
studies. However, explaining and interpreting the inter-dependencies requires the knowledge
of a human-expert who analyses the data and connects the observations to the theoretical and
conceptual understanding of the hardware and software implementation at hand. Equipped with
this knowledge, the hardware and software designers can make conscious decisions which result
in a more adversarially robust and hardware-error resilient deployment of the DNN.

In this handcrafted co-design example, adversarially trained DNNs are shown to be more
susceptible to failure due to hardware errors when compared to vanilla-trained models. Large
differences are identified in the quantization scaling factors of fault-resilient and fault-susceptible
DNNSs. Adversarially trained DNNs learn robustness against input attack perturbations, which
widens their internal weight and activation numerical distributions. A larger numerical distribution
results in a larger change in magnitude for a bit-flip in the respective numerical representation
covering that distribution. Based on this understanding of quantization, arithmetic hardware, and
DNN training, a simple weight decay solution is proposed for adversarially trained models to
maintain adversarial robustness and hardware resilience in the same DNN. This improves the
fault resilience of an adversarially trained ResNet56 by 25% for large-scale bit-flip benchmarks
on activation data while gaining slightly improved accuracy and adversarial robustness.

4.2.1 Hardware Fault Resilience and Adversarial Robustness

Next to adversarial robustness and interpretability, resilience against hardware errors must be
guaranteed before placing CNNs safety-critical settings. Understanding the failure cases for logic
transient errors on datatype, frequency, bit-position, and number of affected computation units
is important in carefully introducing hardware redundancy in a reasonable and cost-effective
manner. Moreover, the method by which the CNN was trained affects its behavior in the presence
of hardware errors [122, 123]. Consequently, it is also important to study the influence of
compression [31] or adversarial training techniques [93] on fault resilience. Existing works in
this domain have several limitations. Some only focus on robustness against input adversarial
attacks without considering fault resilience [93, 124], others focus on random errors in different
parts of the hardware with little attention to CNN training [125]. Works using aged CNNs
without frequent, intermediate batch normalization layers have an exaggerated error-amplification
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effect for bit-flips [126], while others using targeted bit-flip attacks (BFAs) construct network-
specific attacks which are extremely unlikely to happen at random [127, 128, 123]. This work
holistically investigates hardware fault resilience and adversarial robustness with large-scale
resilience analysis on differently trained CNNs and identifies clear relationships between training-
time CNN statistics and their deployment-time effect on scaling factors and clipping limits. The
results of this work show that the common denominator for all resilient CNNSs is small inter-layer
data distributions, which result in smaller scaling factors at deployment. This allows small scaling
factors to naturally introduce resilience by attenuating the largest possible perturbation.
The contributions of this work can be summarized as follows:

* Across ~10M bit-flip experiments, regularly trained, adversarially trained, batch-norm free,
weight decayed and pruned CNNs are considered. The hardware bit-flip module allows for
testing a wide range of bit-flip patterns to analyze the effect of training/compression on
hardware fault resilience.

* An in-depth analysis on the layer-wise data distributions of the considered CNNs is
performed, by observing the differences in the scaling factors required for their quantization.
Key insights are provided by studying the effect of batch normalization and weight decay,
to harness scaling factors for improved fault resilience.

* Weaknesses in adversarially trained CNNs are identified, which open a backdoor for
injecting faults of large magnitude. A simple weight decay remedy is proposed to shrink
the quantization scaling factors, which improves resilience against faults in activation
pixels by 25% on FastAT ResNet56, while preserving natural accuracy and adversarial
robustness.

4.2.2 Related Work
4.2.2.1 Hardware Fault Resilience Analysis

He et al. [125] analyze the effect of logic transient errors using abstracted, high-level hardware
models. The authors emphasized the importance of investigating faults on control and compute
components compared to the limited analysis on memory-based bit-flips in existing works. No
conclusions were drawn on the training scheme, compression, and adversarial robustness of the
neural networks. Rakin et al. [127] introduced a progressive search technique to find optimal
BFAs that break CNNs. In a CNN with 93M-bits of weights, the authors found 13 precise bit-flips
which completely break the network. However, the probability of such an event happening at
random is infinitesimal. Such non-random, specific cases can be referred to as targeted bit-flips.
He et al. [123] performed resilience investigations on differently trained CNNs while employing
such targeted BFAs. Several conclusions were drawn based on empirical results without further
analysis to explain the underlying cause of the observations. Moreover, hardware designers
cannot benefit from BFA analysis, as these are tightly optimized attacks for one considered CNN.
To add hardware redundancy in an effective manner, large-scale resilience analysis can cover
more general error cases and aid in making design decisions that benefit all CNN workloads.
Lastly, BFA-based investigations only apply to bit-flips on a CNN’s weights. In practice, logic
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transient errors may happen in any part of the logic, including input pixels, partial sums, or output
activations [125].

4.2.2.2 Fault Resilient Training and Adversarial Robustness

Hoang et al. [126] proposed to improve error resilience of CNNs by clipping activations. The
investigations were limited to memory-based bit-flips on weights and only aged CNN archi-
tectures were tested, which have no batch normalization after each convolutional layer. Errors
in such CNNs are typically exaggerated compared to modern CNNs, as batch normalization
naturally reduces the activation distribution and scaling factors (as shown in figure 4.10). In an
adversarial attack scenario, input noise is propagated and amplified through the layers causing
a misclassification. Liao et al. [129] proposed to mitigate the amplification error by using a
denoiser to reduce input perturbations. Lin et al. [124] applied Lipschitz regularization to limit
the error amplification in quantized CNNs. Both works focused on mitigating attacks injected
at the input, but did not consider inter and intra-layer faults (depicted in figure 4.11). Zahid
et al. [122] introduced a fault-injection layer at training time. The work focused on a class of
permanent errors and did not consider adversarial attacks. A defense method against targeted
DRAM bit-flip attacks was proposed by Li et al. [128], where weights were preprocessed to limit
their change of value. The method was limited to weight-based, memory-only, targeted BFA and
did not consider input-based adversarial attacks.

4.2.3 Methodology
4.2.3.1 Problem Formulation: Quantization and Bit-Flips

Recalling equation 2.3, a single weight value w multiplied by an activation pixel a produces a
partial result in the convolution operation of the weight tensor W' and input activation tensor
A’ Vinlayer [ of an L-layer CNN. At training time, A'~! and W! VI € L are represented by high-
precision FP32 values to maintain smooth training and fine adjustments through backpropagation.
During inference, the values are quantized to reduce their memory footprint and arithmetic
computation complexity on embedded HW. The 8-bit signed integer (INT8) representation is
one of the most common numerical representation formats for lean deployment on resource
constrained devices. Equation (2.6) showed the basic principle of linear quantization of x ¢ (either
w or a) into a more constrained numerical representation x4.

The scaling factor v projects the quantized range of INT8 [—128,127] onto the real range of
values which xy € X can take with respect to the clip operator. Note that Xy is either W' or
A'~L. The round operation pushes the smooth values of X ¢ into the limited 256 integer values
of INT8. As mentioned previously, the clip operator cuts-off values of the X range beyond
[—c, c], maintaining symmetric linear quantization, even in cases where layers such as ReLU
leave only positive activations, and weights use only a small portion of the negative number
scale. By observing the statistics of weight and activation distributions of a layer, the calibration
process sets ¢ and v, such that the range of values that appear in a certain layer can be covered by
the INTS static range [58]. Therefore, ¢ and v are directly influenced by the dataset, the weight
values of the CNN (e.g., learned through vanilla or adversarial training, regularized or not) and
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Figure 4.9: Batch-norm limits activation range at training time, effectively lowering v and c of the
subsequent convolutional layer at deployment time (on hardware). Errors in the convolutional
layer can at most grow in magnitude to the defined clip c of the next layer.

its structure (e.g., existence of batch-norm layers). The described quantization of X to INT8 is
visualized in figure 4.9.

A runtime reconfigurable bit-flip module is implemented to change the value of any position
in the 8-bit representation, for weights and activations, and for any subset of multipliers in a
standard spatial DNN accelerator [96]. Flipping the n-th bit of an operand at the input of any
affected multiplier translates to a 2" absolute change in magnitude within the static INT8 range
[—128,127]. However, it is more important to analyze the precise severity of a 2" flip with
respect to the values of the projected real range of Xy, i.e. after applying scaling factors v.

With this conceptual understanding of quantization and bit-flips, some general insights can be
made:

* Quantization naturally improves bit-flip resilience. Quantization clips the largest possi-
ble perturbation when projecting a larger, dynamic representation, such as FP32 into a more
constrained range of INT8. As the clip limits ¢ and scaling factors v are decided based
on statistics before deployment on hardware, a single or multiple bit-flips on hardware
cannot perturb the network beyond c of the next layer (figure 4.9). This is an inherent
improvement in bit-flip resilience over float/dynamic numerical representations.

* Batch normalization improves quantized CNN bit-flip resilience. Resilience analysis
on aged CNNs (LeNet, VGG and AlexNet), which do not employ batch normalization
after every convolutional layer, cannot be extended to modern CNNs. The lack of batch
normalization layers in aged CNNs aggravates the effect of bit-flips, as their activation and
weight distributions are much larger than modern CNNs. Consequently, INT8 variants of
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Figure 4.10: Layer-wise scaling factors v of ResNet20 CNNs trained on CIFAR-10, with and without
batch-norm. Works investigating bit-flips on aged CNNs (without batch-norm after every
layer) cannot be extended to modern CNNs.
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Figure 4.11: Adversarial attacks apply input perturbations to cause incorrect classifications. Training
for such attacks implies training for pixel value distributions outside of the natural dataset.
Differently, hardware faults can occur at any point within the CNN, and are not limited to
the input of the network.

aged CNNs will have large scaling factors v to accommodate the activations that appear in
the convolutional layers, resulting in a much larger true magnitude error for any bit-flip.
The scaling factors v of ResNet20 with and without batch-norm are shown in figure 4.10 to
visualize this problem. Errors in aged CNNs can also propagate and get amplified, as the
scaling factors grow in deeper layers.

* Adversarial training can affect a quantized CNN’s bit-flip resilience. As elaborated in
section 2.2.4, adversarially trained CNNs need to be robust against input perturbations
which may not follow the statistical distribution of the original training dataset. This affects
the statistical distribution of the learned weights in adversarially robust CNNs compared to
vanilla trained ones, thereby influencing the scaling factors v during hardware deployment,
even when calibrating on non-adversarial, natural data.
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4.2.3.2 Error Model and Benchmark Phases

Bit-flips at the compute level fall under logic transient errors [125], and capture a broader range
of error patterns compared to memory-based faults. A memory-based fault on a weight parameter
w implies all computations using w are affected. With logic transient errors, memory-based faults
can be replicated, as well as every other case where a subset of w’s computations are affected.
This provides finer granularity in error injection control for the large-scale bit-flip benchmarks
planned in this work. The large-scale bit-flip benchmarks are made possible by exploiting
the flexibility of a run-time reconfigurable bit-flip injection hardware module implemented on
the accelerator as part of this work. Large-scale statistical fault injection is an established
approach to analyzing errors in logic [125]. However, it is often infeasible due to slow RTL
simulations. RTL simulations are circumvented in this work by directly implementing the bit-flip
module on NVDLA [96] and injecting the desired bit-flip patterns on the running hardware. The
benchmarks are developed with well-defined bit-flip patterns, to better understand the effect of
bit-flip characteristics such as position in numerical representation, frequency of occurrence,
affected datatype, and affected percentage of multipliers.

The benchmark is defined in steps, where each successive step changes one aspect of the bit-flip
pattern. The bit-flip pattern is maintained and the accelerator performs inference of an entire
test set of input images. Once the test set is exhausted, the next step begins with a new bit-flip
pattern and the test set is passed once more. The benchmark steps are shown as a nested-loop in
algorithm 4.1.

First, the frequency f of bit-flip occurrence is set. The frequency indicates the rate of bit-flip
injection per computation, i.e., if f is set to 0.1, a bit-flip is introduced at every 10-th computation
of the affected hardware component. Next, the affected datatype ¢ is set, as in activations A or
weights W. Third, the loop goes over the bit-flip position b, indicating the severity in magnitude
change for the value of the input operand of the affected computation. Finally, the inner-most
loop chooses the number of affected multipliers m, as a percentage of the accelerator’s total
MAC units. Figure 4.12 visualizes these bit-flip characteristic parameters. At the core of the
nested-loop in algorithm 4.1, the characteristics are programmed into the bit-flip module, then
the accelerator is allowed to perform inference over the entire test set. Here, system failures are
defined as those cases when the prediction with hardware errors disagrees with that of the same
CNN without any bit-flips. Therefore, failures are not counted based on the accuracy of the model
or the true label of the input image. This definition aligns with existing work [125], and is fair
when comparing different networks, as their underlying baseline accuracy is orthogonal to their
resilience against hardware errors.

4.2.4 Evaluation

The experiments are performed on the CIFAR-10 dataset, using 50K images for training and 10K
test images for evaluation. The test set also serves as the hardware fault test set in algorithm 4.1.
ResNet20 and ResNet56 represent shallow and deep baseline models for the CIFAR-10 dataset. If
not otherwise mentioned, all hyper-parameters specifying the task-related training were adopted
from ResNet’s base implementation [28]. Pruned variants are obtained by re-implementing the
reinforcement-learning-based pruning agent proposed in AMC [31]. The fault resilience of pruned
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Algorithm 4.1 Large-scale Resilience Analysis Benchmark
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Figure 4.12: Parameters to determine bit-flip characteristics of the benchmark.

CNNss is investigated with 50%-60% fewer operations remaining compared to their unpruned
variants. For defensive training against adversarial attacks, we use the popular FastAT [93]
approach and the training hyper-parameters described in the paper. To evaluate adversarial
robustness, we apply a strong unseen PGD [92] adversarial attack on all considered CNNs with
20 iterations and a perturbation budget €,,,=2. The entropy-based calibrator of TensorRT is used
to find the optimal v and ¢ for each layer of the full-precision CNNs, before INT8 execution.
This persistently gave better accuracy over the naive min-max calibrator. As an added benefit
for the bit-flip experiments, the entropy-based calibrator provides smaller clip ranges than the
naive min-max method, which benefits the fault resilience of all considered CNNs. All CNNs are
calibrated on the same dataset, i.e., the same images are passed to compute v, ¢ of each layer of
each CNN, before deployment on hardware.

We synthesize a 64 MAC unit variant of the NVDLA accelerator on the Xilinx ZCU102 board.
The bit-flip module is written in Verilog and wraps around the MAC units without adding any
delays to any critical paths of the accelerator design. The sets in algorithm 4.1 are F = {0.1,
0.02, 0.01, 0.005, 0.002}, T = {A, W}, B = {5,6,7}, and M = {25%, 50%, 100%}, where
the benchmark loops over the elements in the order they are presented here. Bit-position b =
7 € B indicates a flip in the sign-bit of INT8. The sets F, 7, B, and M were chosen after an
ablation study on the considered networks. The ranges for each bit-flip characteristic adequately
represent weak-to-strong influence on CNN fault rate for the purpose of our analysis.
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4.2.4.1 Large Scale Resilience Analysis

The results of the benchmark detailed in algorithm 4.1 are shown in figure 4.13. The following
observations can be made:

* Activation sensitivity. Flipping bits of input activations A is more likely to cause failures
compared to flipping weight bits in W at any bit-flip position, on any number of multipliers
and any frequency of bit-flip injection. Many memory-based and targeted bit-flip works
only flip the weights of the CNN, without investigating input activations [126, 128], which
are persistently more vulnerable in all our tested CNNs, and all bit-flip patterns of the
benchmark.

 Sign-bit sensitivity. An expected and common observation is the high impact of the
sign-bit in deciding the probability of failure. However, it is interesting to note the degree
of its importance; in almost all cases, flipping the sign-bit in 25% of the multipliers is more
potent than flipping the 6-th bit on 100% of the multipliers, at any given frequency, for
both weights W and activations A. Flips on the 5-th bit (or lower, based on observations
not shown for brevity) are almost negligible at low injection rates, even on 100% of the
MAC units.

* Adversarially robust CNNs are vulnerable to hardware errors. There is a clear degra-
dation in fault resilience for adversarially robust CNNs, particularly for activation-based
bit-flips. We address this observation more closely in the next section. Pruned CNNs
exhibit resilience properties close to their unpruned counterparts. This is justified as their
scaling factors v are similar to the original (vanilla) unpruned network. However, spikes of
high failure rates (marked in figure 4.13) occur when m = 100%, indicating that injecting
many perturbations in a CNN with fewer computations (due to pruning), leads to slightly
weaker fault resilience.

* Deep CNNs with batch normalization are resilient. Deeper CNNs (56-layers) have
improved fault resilience over their shallow (20-layers) counterparts for vanilla, pruned,
and adversarially robust variants. The errors introduced in the early layers of the network
do not grow with the depth of CNN. This can be credited in part to the batch normalization
layers which take place after every convolutional layer, regulating the maximum possible
perturbation that can pass to the next layer, (1) due to calibration-time statistics (helps in
lowering scaling factors v of the layers) and (2) run-time normalization. He et al. [123]
show benefits of batch normalization against targeted (search-based) bit-flip attacks. We
further show the benefits of batch normalization more generally against any hardware-based
faults (non-targeted). The two ResNet20 variants presented in figure 4.10 (Vanilla and No
Batch-Norm) are evaluated in table 4.3. The overall mean failure rate is doubled in the
variant without normalization, due to its high scaling factors which amplify errors in the
CNN.

The results in figure 4.13 can shed light on parsimonious hardware-error resilience options.
For example, the designer may apply a redundancy method on the computations against the
sign-bit or allocate resilient memory holding activation bits (e.g. 8T-SRAM). More conservatively,

57



4 Handcrafted Co-Design

Failure Rate

Failure Rate

Failure Rate

~ f=0.1 f=0.02 £=0.01 f=0.005 f=0.002 -~
ARSI, NV | W N B w], ™\ N] Nz
o
ﬁ/ / _ / ,_ / / / B\ JAlg4l|o Z
S ) \ ] loop < g
M .\WA ranges = ,m
: | | :
o o
- Cualll | Il .7
TSR GERT RSN RECTERTRRYES
<> : Alg.4.1 loop ranges Benchmark Step I i=A I t=W = Accuracy
(a) ResNet20 Benchmark
. f=0.1 f=0.02 f=0.01 f=0.005 f=0.002 ~
" m
o (=]
© o Z
- B =
= < &
2 [ V]
o o
o o
Benchmark Ste;
r () : Spikes when M=100%
(¢) ResNet20 AMC-Pruned Benchmark
. f=0.1 f=0.02 f=0.01 f=0.005 f=0.002 ~
© , ; . . IR~
| — TN\ [ = (=]
b /. N \ i\ \ |z 2
o | [ [ (=3 m
< w2
S &
] S
__; -

Benchmark Step

(e) ResNet20 FastAT Benchmark

Failure Rate

Failure Rate

Failure Rate

f=0.1 £=0.02 f=0.01 f=0.005 f=0. OON -
“ IS o N TN B A ?,r _11 7/ my
= 1% T M T :
© | o %
(=} [=} m
= B2
o [SI]
2 [~}
o o
(=} [=}
TYC2222RGESIRFISSI R ARCTRRRRERE
> : Alg.4.1 loop ranges Benchmark Step Ini=A 0 t=W — Accuracy
(b) ResNet56 Benchmark
f=0.1 £=0.02 .\.Ho 01 f=0.005 f=0.002 -~
G NN AN, VYS! _7/ ™ i o ;> AT\
=AY || YA 3_ 22
o o m
- . a g
S E
2 | ) _ | _ 0 0 0 g
el 111111 o
TN 2GRS AN ARSI RSB
Benchmark Step
O : Spikes when M=100%
(d) ResNet56 AMC-Pruned Benchmark
f=0.1 £=0.02 f=0.01 f=0.005 f=0.002 -~
% o e et -

g e N TN ERNE
: s NS s T E
~ , , | N m
N \ \ N

o
M— _____ __ | __ __ ___ 1 _. -
TYCCSC2 2GRS ARSI R ARSI RN RRSR®

Benchmark Step

(f) ResNet56 FastAT Benchmark

Figure 4.13: Bit-flip experiments following algorithm 4.1 on vanilla, pruned and adversarially trained ResNet20 and ResNet56. Each bar represents the
failure rate of a particular bit-flip setting { f, ¢, b, m} tested over 10K test images. Each sub-figure comprises 900K bit-flip experiments.
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the designer may apply that redundancy to only a subset of multipliers, e.g. 50% of the MAC
array, further saving resources and area-on-chip. Such design decisions can be made based
on large-scale resilience experiments, and would not be possible based on targeted bit-flip
attacks [127, 123, 128].

4.2.4.2 In-depth Analysis of Adversarially Trained CNNs

The conceptual understanding of the problem definition in section 4.2.3.1 helps in interpreting
the observation of reduced fault resilience of adversarially trained CNNs. Quantization to a
constrained numerical representation (INT8 or similar), implies that few discrete values must
represent a wider range of dynamic real-values. The true range covered by the INTS representation
depends on the scaling factor v and clipping limit c. Since adversarially trained and vanilla CNNs
are structurally identical, the first point of investigation is the data distributions of these CNNs.
In figure 4.14, the scaling factors v for each convolutional layer of the CNN are shown, obtained
through the entropy-based calibrator on the same calibration dataset. A clear difference can be
observed, where adversarially trained (FastAT) layers can have up to ~7x higher scaling factors
compared to the respective vanilla-trained CNN.

Regularization loss L, is an auxiliary loss typically added to the cross-entropy loss L. to
penalize weights with high magnitude during neural network training. As shown in equation 4.7,
this loss is scaled with the weight decay (a4) hyper-parameter, to strengthen/weaken its effect on
the overall loss formulation Lo, during backpropagation and weight update.

Liotal = Lee + O‘dﬁreg 4.7)

Weight decay a4 was set equivalently for both vanilla and FastAT training (g = 0.0005 and
ag = 0.0004, respectively, based on original papers [28, 93]). For the same L,., and « settings,
the FastAT CNN incorporated large inter-layer data distributions to achieve its high robustness
against adversarial attacks. Following the third insight made in section 4.2.3.1, adversarial
training introduces pixel values which do not fall under the distribution of the standard training
dataset. This forces the CNN to learn them to achieve higher adversarial robustness, stretching its
trainable parameter distributions (weights and batch normalization parameters). When performing
calibration on natural, unattacked data, the scaling factors v grow accordingly (figure 4.14). This
opens a backdoor to inter- and intra-layer hardware perturbations (bit-flips) during execution,
which end up having high true magnitude as a consequence of the larger scaling factors (v) in
adversarially robust CNNs.

Strengthening the effect of £,., during training pushes the weights to a more constrained
distribution, and correspondingly, the activations resulted by those weights. As an initial remedy,
we propose increasing the weight decay during training, which naturally shrinks the weight
distributions. In figure 4.14, we show the scaling factors of FastAT-trained ResNet20 and
ResNet56 CNNs with high weight decay a4 = 0.05, bringing them back to vanilla training levels.

4.2.4.3 Results and Conclusions

In table 4.3, the results of figure 4.13 are summarized, as well as the weight decayed variants of
FastAT (ag = 0.05). As a coarse indicator of hardware fault resilience, the mean failure rate (MFR)
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Figure 4.14: Convolutional layer scaling factors for vanilla trained and adversarially robust variants of
ResNet20 and ResNet56. High weight decay (ag = 0.05) brings the high scaling factors v of
FastAT back to vanilla levels.

is provided for each CNN over the entire benchmark in algorithm 4.1 (Overall). Additionally,
to help in understanding the effect of individual characteristics of the bit-flip patterns, one bit-
flip characteristic is fixed (f, b, m, or t) and the MFR over all steps varying the other bit-flip
parameters is measured.

The observations made in section 4.2.4.1 are supported by the MFR presented in table 4.3.
For FastAT CNNs, a 62% and 95% degradation in overall MFR can be observed for ResNet20
and ResNet56, respectively, compared to their vanilla-trained variants. When increasing oy,
the FastAT CNNs improve by up to 16% in overall MFR. More specifically, the fault resilience
against activation bit-flips ¢ = A is improved by 27% and 25% for the high weight decay FastAT
ResNet20 and ResNet56, compared to the regular FastAT implementation. Although baseline
accuracy is considered orthogonal to fault resilience analysis (explained in section 4.2.3.2), it is
interesting to discuss the trade-offs that can be achieved in fault resilience, adversarial robustness,
and natural accuracy. In general, adversarial training techniques in literature incur a degradation
in natural accuracy when trying to learn adversarial attacks as well as their target classification
task [93]. An observation can be made for the smaller FastAT ResNet20 suffering a further drop
of 3.8 p.p. in accuracy after applying high ;. However, the larger ResNet56 has a slightly
improved accuracy after weight decay compared to the regular FastAT implementation. Weight
decay can be harsh, particularly on smaller CNNs, as more weights approach zero and lose
their feature representation capability. ResNet56 has sufficient redundancy to compensate for
this (and even benefits through regularization); however, the smaller ResNet20 loses some of
its natural accuracy. Although weight decay is proposed as an initial, simple remedy for the
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Table 4.3: Summary of results on shallow (ResNet20) and deep (ResNet56) CNNs as vanilla, pruned,
and adversarially trained variants. Percentage improvement shown for FastAT a4 = 0.05 over

regular FastAT.
. Baseline (INT8) | PGD-20 Atk. Mean Failure Rate (MFR) - Lower is better
Model | Train/Config Acc. [%] Acc.[%] Overall | f=0.005 | f=01 | b=5 | b=7 | m=2% |m=100%| t=W t=A
Vanilla 92.03 1.04 0.29 021 0.53 0.09 0.55 0.19 0.37 0.19 0.39
g2 | NoBaichNorm 79.12 5.01 0.60 0.57 0.69 0.48 0.712 0.53 0.70 0.40 0.81
2% | 60%Pruned 89.59 121 0.27 0.17 0.56 0.11 0.47 0.15 041 0.19 0.35
25 | FastAT[93] 81.58* 72.85 047 0.40 0.67 027 0.70 0.39 0.57 0.30 0.64
FastAT =005 77.72 70.36 0.40 (15%) | 031 (23%) | 0.65 (3%) | 0.20 (26%) | 0.62 (11%) | 0.24 (38%) | 0.55(4%) | 0.33 (-10%) | 0.47 27%)
e Vanilla 92.94 4.53 0.22 0.13 0.49 0.06 0.46 0.13 0.32 0.17 0.28
22 | 50%Pruncd 92.04 2.66 0.28 0.19 0.54 0.10 047 0.15 0.44 0.19 0.37
22 | FasAT[93) 82.71% 72.72 0.43 0.35 0.66 021 0.69 031 0.54 0.30 0.56
FastAT ;=005 83.37 74.72 0.36 (16%) | 0.25 (29%) | 0.65 (2%) | 0.17 (19%) | 0.63 (9%) | 0.25 (19%) | 048 (11%) | 031(-3%) | 0.42 (25%)

*: Accuracy degradation from vanilla-training is common in state-of-the-art adversarial training to achieve high adv. robustness (see accuracy after PGD attack)

adversarial training and fault resilience problem, the analysis provided in this work identifies
a larger challenge in bringing robustness of both domains (adversarial attacks and hardware
faults) in the same CNN. It is also important to note that adversarially trained CNNs, even with
the proposed high ay4, are still less fault resilient than vanilla CNNs. The reason being that
weight decay indeed shrunk the convolutional layers’ scaling factors, but the batch normalization
trainable parameters (s, Opn) are not directly affected by weight decay, leaving their scaling
factors large due to adversarial training.

4.2.5 Discussion

This work highlighted the importance of scaling factors for maintaining hardware-fault resilience
of efficient, quantized CNNs. The importance of scaling factors was verified by performing
large-scale bit-flip experiments on regularly trained, adversarially trained, batch-norm free, weight
decayed, pruned, deep and shallow CNNs. Extracting key insights from the results generated by
the large-scale experiments required human expert-knowledge in ML and hardware concepts,
such as adversarial training, quantization, calibration, and neural network data distributions.
Only by conceptually understanding both sides, the execution on hardware and the network’s
training properties, the results were made interpretable and used to develop an intermediate
solution based on this understanding. If an automated agent were provided access to all training
parameters (learning rate policy, scheduler and value, momentum, batch-size, epochs, loss
formulation, optimizer type, regularization type, weight decay, etc.) as well as the large-scale
resilience benchmark, it would take a prohibitively long time for it to find out how each training
hyper-parameter affects bit-flip resilience. Keeping in mind that each time the automated agent
reconfigures the training setup to test out a different training hyper-parameter configuration, an
entire, costly, GPU-based training run is required before deployment, followed by large-scale
bit-flip experiments, to collect the reward/result for that particular training configuration. On
the other hand, the human expert required only two experiments (ResNet20 with and without
batch normalization) to prove their hypothesis which connects scaling factors to bit-flip resilience.
After confirming the hypothesis, the same idea extended itself to adversarially-trained CNNs,
proving that their large scaling factors open a backdoor for bit-flips with large true magnitude
perturbations. The human designer then used their theoretical understanding of how each training
hyper-parameter affects data distributions in a CNN, which indirectly affects the scaling factors
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at deployment time on a quantized accelerator. The relevant hyper-parameter, weight decay, was
tweaked to improve the resilience of an adversarially trained ResNet56 by 25% on activation
faults. This succinctly captures the process of handcrafted HW-CNN co-design.
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parts of the solution is challenging, and formulating the whole problem into a feasi-

ble, traversable, and well-defined search space is not possible. In such cases, certain
computation models may be used to aid the human designer in optimizing some components.
Additionally, low-level, handcrafted components may be integrated in an automated manner into
a larger system, which is then optimized by an agent or a model of computation (MoC). In this
chapter, two examples are introduced, where neural network accelerators reuse the handcrafted
components from chapter 4 in a larger hardware design, which can be represented as a data flow
graph (DFG). When implementing the neural network as a computation graph on a dataflow
hardware architecture (recall figure 2.8), the architecture of the neural network defines the com-
plexity of the graph and the computation effort in each node (layer). To a large extent, the neural
network is itself the hardware design. This context forms the HW-CNN co-design problem for
this chapter. Based on the layer-wise computation effort, the designer must accordingly specify
the resources to be allocated in different parts of the graph. Here, the allocation not only has
to respect the resources available on the target embedded FPGA platform, but also consider
the throughput and efficiency of the computation pipeline resulting from the synthesized graph.
Dataflow architectures can be optimized in a semi-automated manner when compiling the graph
in HLS; the human designer must specify the resources for nodes in the graph, but the allocation
of FIFO communication buffers and the computation pipeline is automatically generated. This
form of co-design was used to fit highly efficient BNNs on a semi-autonomous prosthetic hand in
Binary-LoRAX [25], and enabled accurate, privacy-preserving, edge-based face-mask wear and
positioning detectors during the COVID-19 pandemic in BinaryCoP [24].

CO—DESIGN problems can involve a multitude of components, where handcrafting all

5.1 Binary-LoRAX: Low-power and Runtime Adaptable XNOR
Classifier for Semi-Autonomous Grasping with Prosthetic
Hands

Intelligent, semi-autonomous prostheses take advantage of combining autonomous functions
and traditional myoelectric control. With the help of visual and environment sensors, intelligent
prostheses achieve a level of autonomy which relieves the user from generating elaborate elec-
tromyographic (EMG) signals for grasp type and trajectory. To achieve the desired functionality,
the semi-autonomous prosthesis must efficiently process the incoming environmental data at a
high rate, with low power and high accuracy. This work proposed Binary-LoRAX, a low-latency
runtime adaptable classifier for the semi-autonomous grasping task of prosthetic hands. The
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classification task is offloaded to an efficient BNN accelerator which performs high-throughput
XNOR operations on DSP blocks. To tailor the classifier’s performance to the current application
scenario, a frequency scaling approach is proposed, which dynamically switches between two
modes of operation, high-performance and power-saving. At high-performance, classifications
are performed with a low latency of 0.45 ms, high-throughput of 4999 frames per second (FPS)
and power consumption of ~2.15 W. This enables functions such as object localization and batch
classification. Switching to power-saving mode, a latency of 80 ms is maintained, with up to 19%
improved classifier battery-life. Our prototypes achieve a high accuracy of up to 99.82% on a
25-class problem from the YCB graspable object dataset [130].

5.1.1 HW-DNN Co-design for Intelligent Prosthetics

The design of low-power, performant, intelligent systems emphasizes the importance of an
efficient deployment of deep learning algorithms on embedded hardware. Specifically for
autonomous applications, including robotic or prosthetic devices, real-time interpretation of sensor
data is essential for responsiveness. When visual sensors such as cameras are used, the processing
of the high-bandwidth input data is challenging, especially for battery-powered systems. In
prosthetic hands, the implementation of semi-autonomous functions is enabled through in-hand
visual perception, which requires efficient embedded processing to avoid insecure, high-latency
external compute services. The complete control algorithms, including image recognition, must
be executed on in-hand embedded processing hardware.

Such contradictory objectives of maximizing performance while minimizing power and re-
source utilization, assign a decisive role to HW-DNN co-design. Binary-LoRAX is an efficient,
runtime adaptable BNN classifier for the semi-autonomous grasping task of prosthetic hands.
The challenges arising from the prosthetic hand’s application constraints are tackled through the
following contributions:

* Training BNNs for the graspable object classification task, enabling the efficient deploy-
ment of neural networks on intelligent prostheses with a task-related accuracy of 99.82%
on a 25-class problem from the YCB object dataset [130], adding 12 classes compared to
existing work [131].

* Achieving low-latency classifications of 0.45 ms, consuming < 1% of the optimal controller
delay [132] and achieving a 99.7% reduction in latency compared to existing work [131].

* Efficiently executing XNOR operations on an FPGA’s DSP blocks in a vectorized manner,
freeing more LUT resources and allowing larger BNNs to fit onto embedded FPGAs.

* Dynamically adapting the frequency of the accelerator, offering high-performance and
low-power modes to target different application scenarios (dangerous/delicate objects,
batch processing, object localization, low battery, prosthetic movement), improving the
classifier’s battery-life by up to 19% compared to [103].
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5.1.2 Related Work
5.1.2.1 Efficient Intelligent Prosthetics

Computer vision-based, semi-autonomous control of prosthetic hands has been proposed in
several recent works [133, 134, 135, 136, 137, 138, 139, 140]. The implementation of semi-
autonomous hand functions reduces the complexity of required user-control commands typically
generated by EMG signals. The constrained set of commands can be invoked with lower cognitive
effort by the user [136, 141]. The simplified commands also require less complex electrode
setups, as high accuracy and long-term stable EMG-pattern recognition is not required.

The KIT Prosthetic Hand proposed in [137] employs an in-hand camera to achieve its semi-
autonomous functions. Parts of the grasp action are automated with the help of visual, environ-
mental information. To execute a semi-autonomous grasp, visual information about the object is
obtained through the camera, such as the object class and/or dimensions. This information is then
used to select a suitable grasp from a database, where parameters can include finger trajectories
and grasp force. In [131], a two-step classification system for the KIT Prosthetic Hand was
proposed, where an object classification algorithm and an acknowledgment from the user triggers
a second semantic segmentation neural network.

In the first version of the KIT Prosthetic Hand, an ARM Cortex M7-based microprocessor was
used. The newer design shown in figure 5.1 houses a custom, Zynq Z7010-based printed circuit
board (PCB).

Figure 5.1: KIT Prosthetic Hand (50" percentile female) with Zynq Z7010-based processing system

5.1.2.2 Binary Neural Networks for Intelligent Prosthetics

Works such as [34, 62, 142, 143] have focused on adding algorithmic or structural complexity to
BNNSs to achieve classification performance close to full-precision CNNs on complex tasks [144].
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However, simpler tasks with lower scene complexity can be handled with more efficient BNNs [60,
24].

In the context of semi-autonomous prosthetic hands, the camera input at the instance before
the grasp operation takes place is expected to have one central object in the field-of-view. In
that regard, the task’s complexity resembles that of popular datasets, such as the German Traffic
Sign Recognition Benchmark (GTSRB) [145], Street View House Numbers (SVHN) [146]
or CIFAR-10 [27], all of which have the object of interest in the forefront of the scene, with
minimal random background complexity when compared to autonomous driving scenes such
as Cityscapes [147]. It is important to note that BNNs have shown high accuracy and good
generalization on the mentioned datasets [60, 103]. Considering the power, memory, accuracy,
and latency requirements of the target application, along with the limited battery-life and compute
capabilities of the small, edge compute device on the prosthesis, BNNs represent good candidates
for the graspable object classification problem.

5.1.2.3 The XILINX FINN Framework

FINN [103] is a popular framework for accelerating BNNs on FPGAs. Although the framework
is designed for BNNs presented in [60], it also supports 2-bit weights and/or activations. FINN
compiles HLS code from a BNN description to create a hardware design for the network.
The generated streaming, dataflow architecture consists of a pipeline of individual hardware
components instantiated for each layer of the BNN. OrthrusPE [8], as presented in section 4.1,
investigates the effectiveness of deploying binary operations onto DSPs as SIMD binary Hadamard
product processing units. For Binary-LoRAX prototypes the FINN architecture is infused with
handcrafted, reprogrammed DSPs, which are switched statically to the binary operation mode
presented in section 4.1. For LUT constrained devices such as the 27010, this allows larger
and/or faster accelerator designs, by spreading out computations to DSPs. This is further extended
with runtime frequency scaling to achieve different modes of operation, for different latency
requirements and power consumption rates, based on the current application scenario of the
prosthetic hand.

5.1.3 Methodology
5.1.3.1 Training and Inference of Simple BNNs

For efficient approximation of weights and activations to single-bit precision, the BNN method by
Courbariaux et al.[60] is used. A brief recap of these simple BNNSs is provided in this section. At
training time, the network parameters are represented by full-precision latent weights W allowing
for a smoother convergence of the model [59]. It is important to note that the input and output
layers in this implementation are not binarized, to avoid a drop in classification accuracy.

During the forward-pass for loss calculation or deployment, the weights w € W are transformed
into the binary domain b C B € BKe*KuyxCixCo where B = {—1, 1}. Note that this simple form
of binarization does not involve multiple binary bases (M, V) as those discussed in section 4.1.3.
In the hardware implementation, the —1 is represented as 0 to perform multiplications as XNOR
logic operations. The weight and input feature maps are binarized by the sign() function (recall
equation 2.7).
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The sign() function blocks the flow of gradients during training due to its derivative, which
is zero almost everywhere. To overcome the gradient flow problem, the sign() function is
approximated during back-propagation by a STE [59].

In the simplest case, the estimated gradient g, could be obtained by replacing the derivative of
sign() with the hard tanh, which is equivalent to the condition g,, = g, when |w| < 1 [60], as
shown in equation 5.1.

Gw = gbljw|<1 (5.1)

As mentioned previously, batch normalization of the input elements a'~ C A!~!, before the
approximation into the binary representation A~ c H/=1 € BXixYixCi i crucial to achieve
effective training. An advantage of BNNSs is that the result of the batch normalization operation
will always be followed by a sign() operation (as shown in figure 5.2). The result after applying
both functions is always constrained to two values, {—1, 1}, irrespective of the input. This
makes the precise calculation of batch normalization wasteful on embedded hardware. Based
on the batch normalization statistics collected at training time, a threshold point Typ;q can be
defined, where an activation value a'~! > 7,14 results in 1, otherwise -1 [103]. This allows the
implementation of the typically costly normalization operation as a simple magnitude comparison
operation on hardware.
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5.1.3.2 Hardware Architecture

The baseline hardware architecture is provided by the Xilinx FINN framework [103]. The
hardware design space has many degrees of freedom for compute resources, pipeline structure,
number of PEs and SIMD-lanes, among other parameters. The streaming architecture is composed
of a series of matrix-vector-threshold units (MVTUs) to perform the XNOR, popcount and
threshold operations mentioned in section 5.1.3.1. In figure 5.2, a single MVTU is shown in
detail, containing two PEs with 32 SIMD-lanes each. A detailed view of a single PE is also
provided in the same figure. For convolutional layers, a sliding-window unit (SWU) reshapes
the binarized activation maps H'~! € BXi*YixCi into interleaved channels of A~ ¢ H'™, to
create a single wide input feature map memory, that can efficiently be accessed by the subsequent
MVTU and operated upon in a parallel manner. Max-pool layers are implemented as Boolean
OR operations, since a single binary “1” value suffices to make the entire pool window output
equal to 1.

A single MVTU is solely responsible for a single layer in the BNN, and is composed of single
or multiple PEs, each having their own SIMD-lanes. The SIMD-lanes determine the throughput
of each PE for the XNOR operation.

The choice of PEs and SIMD-lanes determines the latency and hardware resource utilization
of each layer (i.e. MVTU) on the hardware architecture. Instantiating too many PEs can result in
many underutilized FPGA BRAMs, while too few PEs result in a slower processing rate with
better BRAM utilization. Increasing the number of PEs beyond a certain number causes the
synthesis tool to map the memories to LUTs instead of BRAMs, since each PE gets a smaller
slice of the total weights B. This adds another dimension of design complexity, as the target
FPGA’s LUT and BRAM count can be balanced against throughput and utilization efficiency. A
layer’s poorly dimensioned MVTU can result in an inefficient pipeline, leading to poor overall
throughput. Throughput in a streaming architecture is heavily influenced by the slowest MVTU
of the accelerator, as it throttles the rate at which results are produced when the pipeline is full.
On the other hand, latency is dependent on the time taken by all the MVTUs of the architecture
as well as the intermediate components between them (e.g. SWU, pooling unit, etc.).

Choosing the correct number of PEs and SIMD-lanes for each layer becomes a design problem
of balancing the FPGA’s resources, the pipeline’s efficiency (throughput and latency), and
potentially the choice of layers in the BNN (i.e. task-related accuracy). The number of resources
on the FPGA is limited, especially in the context of low-power prosthetics, making these aspects
important in planning the deployment with a HW-DNN co-design approach.

5.1.3.3 Runtime Dynamic Frequency Scaling

In the previous section, the importance of defining the number of layers (BNN design) and
PE/SIMD-lanes per MVTU (HW design) was outlined. To enable efficient performance of the
semi-autonomous prosthesis, a further aspect must be considered next to resource utilization
and latency, namely the power consumption of the classifier. Prosthetic devices are meant to
be used on a day-to-day basis, making high power consumption a prohibitive aspect to their
practicality. For this reason, the classifier is adapted with the ability to change its operating
frequency dynamically at runtime. The purpose is to avoid running the classifier continually at its
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full capacity, but rather scale down its performance (in terms of latency) for more efficient use
of the available energy supply. Dynamic power in complementary metal-oxide-semiconductor
(CMOS) scales roughly with frequency following Py, ~ o f - C’VdZd, where g, is the
switching activity, f is the frequency, C' the effective capacitance and Vg4 the supply voltage.

In case of our target Xilinx Zynq system-on-chip (SoC) boards, the programmable logic (PL),
on which the hardware acceleration is implemented, is clocked through phase-locked loops
(PLLs) controlled by a CPU-based processing system (PS). The PS can manipulate the PL’s
clock by writing into special registers, whose values act as frequency dividers to the PLLs. As an
example, the motion of the prosthetic hand can be captured through simple sensors which are
monitored by the PS. Based on this motion, the PS can drive up the frequency of the classifier
and prepare for a low-latency, high accuracy classification (based on a mean classification of a
batch of frames). In case of a fragile or perilous object, the lower risk of a false classification
can reduce the chances of an improper grasp. The PS can also trigger the object localization
task by splitting the view into multiple small images and classifying them with high throughput.
This is elaborated in section 5.1.4.3. These high-performance features may extend the use of
Binary-LoRAX to other semi-autonomous prostheses and/or applications. Conversely, the PS
may monitor the remaining battery power or system temperature and switch the classifier to
low-power mode.

5.1.3.4 SIMD Binary Products on DSP Blocks

In resource constrained platforms, the available hardware must be used effectively. Smaller
FPGAs that have a few thousands of LUTs can easily run into synthesis issues, even with small
network architectures. Since DSP blocks are not heavily utilized when synthesizing FINN-based
accelerator designs, they presented a good alternative to LUT resources for executing the parallel
XNOR operations of the accelerator.

A script was developed to parse through the HDL files generated by HLS, to find all the signals
involved in XNORs on the accelerator. The connections between the operand signals and the
output registers are removed, then primitive DSP modules are instantiated with the correct wiring
to operate in the binary mode in a handcrafted manner, as described section 4.1. The operand
signals of h/~! and ' are arranged into the aforementioned A:B and C signals and connected into
the DSPs. The wide output P signal is then split and passed back into the next stages of the PE.

5.1.4 Evaluation
5.1.4.1 Experimental Setup

Binary-LoRAX is evaluated on 25 objects from the YCB dataset [130], improving upon previous
work by 12 objects [131]. The dataset is augmented through scale, crop, flip, rotate and contrast
operations. The masks provided with the dataset are used to augment the background with random
Gaussian noise. The dataset is expanded to 105K images for the 25 classes. The images are
resized to 32 x 32 pixels similar to the CIFAR-10 [27] dataset. The BNNSs are trained up to 300
epochs, unless learning saturates earlier. Evaluation is performed on a 17.5K test set. The BNN
architectures v-CNV, m-CNYV, and p-CNYV, detailed in table A.1, are trained according to the
method in [60]. Each convolutional and fully-connected layer is followed by batch normalization
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and activation layers except for the final layer. Convolution groups “1” and “2” are followed
by a max-pool layer. The target SoC platforms for the experiments are the XC7Z020 (Z7020)
for v-CNV and m-CNV prototypes, and XC7Z010 (Z7010) for 4-CNV. All prototypes are
finally deployed on the Z7020 SoC. Power, latency and throughput measurements are taken
directly on a running system. The power is measured at the power supply of the board (includes
both PS and PL). Latency measurements are performed end-to-end on the accelerator covering
the classifier’s total time for an inference, while throughput is the classification rate when the
accelerator’s pipeline is full. Note that throughput is higher than the latency rate due to the
streaming architecture working on multiple images concurrently in different parts of its pipeline
when it is full.

5.1.4.2 Design Space Exploration

Considering two embedded SoC platforms, the Z7020 and the more constrained Z7010, three
Binary-LoRAX prototypes were investigated: v-CNV, m-CNV and p~-CNV. The CNV network is
based on the architecture in [103] inspired by VGG-16 [40] and BinaryNet [60]. m-CNV and
p-CNV have a similar architecture, with fewer channels, for faster inference and to fit the Z7010
respectively. For the prosthetic hand, latency is more critical than throughput. On the Z7010, the
number of PEs and SIMD lanes were chosen to minimize end-to-end latency accordingly.

In table 5.1, we report the details of the CNV network with (1,2) and (2,2) bits for weights and
activations respectively. The fully-binarized CNV (1,1) network achieved a comparable accuracy
of 99.82% on the YCB graspable object dataset, showing the effectiveness of BNNs for this task,
and the potential to add more classes in future work.

In the bottom half of table 5.1, the hardware utilization for the Binary-LoRAX prototypes
is provided. For the v-CNV network, a reduction of 2386 (9%) LUTs can be observed from
the regular CNV [103]. For the constrained Z7010, such reductions can make a previously
non-synthesizable design realizable after moving XNOR operations to DSPs. The increase in
DSP usage can be justified as they are not the bottleneck for synthesizable designs in our case. It
is important to note that -CNV was synthesizable on the Z7010 only after moving the XNOR
operations to the DSPs, as proposed in section 4.1.

5.1.4.3 Runtime Dynamic Frequency Scaling

Prosthetic devices used on a daily basis must offer high performance for safety and convenience,
while minimizing power dissipation to increase the continuous usage time before charging.
Referring back to table 5.1, two values are reported (J) for power, latency and throughput per
Binary-LoRAX prototype, for high-performance and power-saving modes. At 2 MHz, Binary-
LoRAX’s v-CNV achieves a reduction of up to 16% in power consumption with runtime frequency
scaling compared to standard CNV [103]. This translates to an improvement in battery-life of
up to 19%. In high-performance mode, a latency of only 0.45 ms is consumed by the m-CNV
network at 125 MHz. This reduces latency by 99.7% compared to the work in [131]. Considering
the performance/Watt efficiency metric, Binary-LoRAX’s m-CNV achieves 2318 frames/Watt
compared to 20 frames/Watt in [131]. With an optimal controller delay for myoelectric prostheses
of 125 ms [132], all Binary-LoRAX prototypes consume < 1% of the total time, leaving more
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Table 5.1: Hardware results of design space exploration. Power is averaged over a period of 100 seconds

of operation.
Configuration Freq. Power Latency Throughput | Acc.
(W,A)-bits BNN MHz LUT BRAM DSP [W] [ms] [FPS] [%]
(8,8) - [131]* \ 400 \ - - - \ 0.446 115 9 \ 96.51*
(2,2) - CNV** 100 | 35718 140 32 2217 4.87 860 99.91
(1,2) - CNV 100 | 40328 131.5 26 2.241 1.63 3049 99.89
(1,1)-CNV [103] | 100 | 26060 124 24 2212 1.58 3049 99.82
Binary-LoRAX: DSP XNOR + Frequency Scaling:
2 1.857 7893 61
(1,1) - v-CNV ) 111 23675 124 72 12'172 142 3388 99.82
0.7 1.879  80.22 28
(1,1) - m-CNV ) 125 21972 445 66 | ¢ 5157 0.45 4999 98.99
1 1.824  80.64 16
(1,1) - u-CNV 0 100 11738 14 27 | ¢ 2028 0.81 1646 90.58

*: Running on ARM Cortex M7 (CPU frequency reported), accuracy for 13 classes, 7272 input
**: Less PEs and SIMD lanes to fit the SoC

slack for post-processing, actuators and other parts of the system. In power-saving mode, the
Binary-LoRAX prototypes run at 0.7-2 MHz and achieve an ~80 ms latency, still leaving more
than 36% of the allocated delay for the controller. It is important to note that in all the reported
power measurements, roughly 1.65 W of power is consumed by the Z7020’s ARM-Cortex A9
processor (PS) and the board. This leaves the isolated accelerator’s power at roughly 0.2 W in
power-saving mode for all configurations, making it very energy efficient. However, we report
the overall power since the accelerator is still dependent on processor calls and preprocessing
operations on the CPU. In future work, the PS power consumption can also be optimized to
further reduce the classifier’s overall power requirement.

In addition to the low latency of the high-performance mode, the high throughput of up to
4999 FPS can be used to improve the quality of the application. Instead of providing a single
classification, the accelerator can pipeline the inference of many images (potentially from different
sensors) and perform batch classification. The batch classification result will represent the highest
class over all classifications, which in practice compose of slightly different angles, lighting and
distance to the object, improving the chances of a correct classification. Multi-camera prosthetics
proposed in [148] can benefit from the high throughput, as more data is gathered through the
multiple camera setup.

Another use of the high-performance mode is object localization in multi-object scenes. A
large input image can be sliced into several smaller images and reclassified [103]. The image
can be reconstructed with bounded high confidence classifications. Figure 5.3 demonstrates the
described function on Binary-LoRAX. This can help the prosthesis predetermine the location
of different objects in a far scene, when the hand is not yet close to the graspable object. The
approach also fits the training scheme, as the BNNs are trained on up-close images of the object
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Figure 5.3: The large input image is sliced into smaller images and reclassified. High confidence classifi-
cations are bounded.
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Figure 5.4: Runtime frequency scaling ranging from 2MHz to 111MHz for the v-CNV prototype.

(soon before the grasp), while far scenes with no central object would be unrecognizable to the
BNN. The individual slices of a far scene are similar to the up-close train images.

In figure 5.4, we perform a frequency sweep on the v-CNV prototype, identifying different
points of operation for different application requirements. The low-power region is considered to
be below 1.90 W, while localization would require classification rates of above 2250 FPS for an
input resolution of 320x240. Batch classification can be triggered in critical scenarios where a
latency of <10 ms is needed.

We demonstrate the application of runtime frequency scaling in figure 5.5. The total power
of the chip is measured for a duration of 80 seconds. At time = 15 s, we introduce a stimulus
representing a dangerous object or similarly a signal from a motion sensor on the hand. The event
triggers the classifier to high-performance mode for an observation period of 35 seconds. If no
further event occurs, the classifier winds down to low-power mode at time = 50 s. Naturally, the
intermediate frequencies shown in figure 5.4 can all be triggered for other scenarios or operating
modes.
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Figure 5.5: Runtime change in operation mode based on application scenario, e.g. motion, delicate object
or low battery.

5.1.5 Discussion

A daily-used device, such as a prosthetic hand, must operate in different modes to suit daily
application scenarios. This work presented a low-latency runtime adaptable XNOR classifier
for semi-autonomous prosthetic hands. The high-performance and power-saving modes were
enabled through runtime adaptable frequency scaling. Binary-LoRAX prototypes achieved over
~99% accuracy on a 25-class problem from the YCB dataset, a maximum of 4999 FPS, and
a latency of 0.45 ms. The low-power mode can potentially improve the battery-life of the
classifier by 19% compared to an equivalent accelerator running continuously at full-power.
This work demonstrated the use of expert knowledge and automation in a semi-automated HW-
DNN co-design formulation. Particularly for the u-CNV prototype, which can be synthesized
on the heavily constrained Z7010’s FPGA, the neural network had to be dimensioned such
that the total number of MVTUs resulting from the layers did not consume LUT resources
beyond those available on the PL, but still maintained high-accuracy for the graspable object
classification task. Then, the PEs and SIMD-lanes of those MVTUs had to be chosen carefully
to maintain the performance of the pipeline, but fit on the constrained FPGA. HLS performs
the automated optimizations, based on the generated pipeline, to create the HDL components.
Handcrafted, reconfigured DSPs were injected into each MVTU, to execute the highly parallel
XNOR operations of the BNN and further reduce the total LUTs required by the accelerator. The
injection of handcrafted DSPs into MVTUs was performed by an automated HDL parser script.
This combination of handcrafted design of the BNN and the DSP, along with the automated
pipeline optimizations of HL.S and HDL parsers, led to a highly effective, co-designed solution
which brought high-performance, intelligent classifiers to the semi-autonomous prosthetic hand.
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5.2 BinaryCoP: Binary Neural Network-based COVID-19
Face-Mask Wear and Positioning Predictor on Edge Devices

Face masks have long been used in many areas of everyday life to protect against the inhalation
of hazardous fumes and particles. They also offer an effective solution in healthcare for bi-
directional protection against air-borne diseases. Wearing and positioning the mask correctly is
essential for its function. CNNs can be an excellent solution for face recognition and classification
of correct mask wearing and positioning. In the context of the ongoing! COVID-19 pandemic,
such algorithms can be used at entrances to corporate buildings, airports, shopping areas, and
other indoor locations, to mitigate the spread of the virus. These application scenarios impose
major challenges to the underlying compute platform. The inference hardware must be cheap,
small, and energy efficient, while providing sufficient memory and compute power to execute
accurate CNNSs at a reasonably low latency. To maintain data privacy of the public, all processing
must remain on the edge-device, without any communication with cloud servers. To address
these challenges, BinaryCoP, a low-power BNN classifier for correct facial-mask wear and
positioning was proposed. The classification task was implemented on an embedded FPGA
accelerator, performing high-throughput binary operations. Classification can take place at up to
~6400 FPS and 2 W power consumption, easily enabling multi-camera and speed-gate settings.
When deployed on a single entrance or gate, the idle power consumption is reduced to 1.65 W,
improving the battery-life of the device. An accuracy of up to 98% for four wearing positions of
the MaskedFace-Net dataset is achieved. To maintain equivalent classification accuracy for all
face structures, skin-tones, hair types, and mask types, the algorithms were tested for their ability
to generalize the relevant features over a diverse set of examples using the gradient-weighted
class activation mapping (Grad-CAM) approach.

5.2.1 Efficient Deployment of CNNs for Mask Detection

The ongoing COVID-19 pandemic presents new challenges, which can be solved with the help of
state-of-the-art computer vision algorithms [149, 150]. One of the simplest ways of mitigating
the spread of the COVID-19 disease is wearing a face-mask, which can protect the wearer from
direct exposure to the virus through the mouth and nasal passages. A correctly worn mask
can also protect other people, in case the wearer is already infected with the disease. This
bi-directional protection makes masks highly effective in crowded and/or indoor areas. Although
face-masks have become a mandatory requirement in many public areas, it is difficult to ensure
the compliance of the general public. More specifically, it is difficult to assert that the masks are
worn correctly as intended, i.e. completely covering the nose, mouth and chin [151].

CNNs can provide better accuracy on problems with diverse features without having to
manually extract said features [152]. This holds true only when the training dataset has a fair
distribution of samples. Correctly identifying a mask on a person’s face is a relatively simple task
for these powerful algorithms. However, a more precise classification of the exact positioning
of the mask and identifying the exposed region of the face is more challenging. To maintain

'at the time of writing
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equivalent classification accuracy for all face structures, skin-tones, hair types, and mask types,
the algorithms must be able to generalize the relevant features over all individuals.

The deployment scenarios for the CNN should also be taken into consideration. A face-mask
detector can be set at the entrance of corporate buildings, shopping areas, airport checkpoints,
and speed gates. These distributed settings require cheap, battery-powered, edge devices which
are limited in memory and compute power. To maintain security and data privacy of the public,
all processing must remain on the edge-device without any communication with cloud servers.

Minimizing power and resource utilization while maintaining a high classification accuracy
is yet another HW-DNN co-design challenge which is tackled in this work. In this context,
BinaryCoP (Binary COVID-mask Predictor) is an efficient BNN-based real-time classifier of
correct face-mask wear and positioning. The challenges of the described application are tackled
through the following contributions:

* Training BNNs on synthetically generated data to cover a wide demographic and generalize
relevant task-related features. A high accuracy of ~98% is achieved for a 4-class problem
of mask wear and positioning on the MaskedFace-Net dataset [153].

* Deploying BNNs on a low-power, real-time embedded FPGA accelerator. The accelerator
can idle at a low-power of 1.65 W on single entrances and gates or operate at high-
performance (~6400 FPS) in crowded multi-gate settings, requiring ~2 W of power.

* The BNNs are analyzed through Grad-CAM to improve interpretability and study the
features being learned.

5.2.2 COVID-19 Face-Mask Wear and Positioning

Correctly worn masks play a pivotal role in mitigating the spread of the COVID-19 disease
during the ongoing pandemic [154]. Members of the general public often underestimate the
importance of this simple yet effective method of disease prevention and control. Researchers and
data scientists in the field of computer vision have collected data to train and deploy algorithms
which help in automatically regulating masks in public spaces and indoor locations [155, 156].
Although large-scale natural face datasets exist, the number of real-world masked images is
limited [155]. Wang et al. [156] extended their masked-face dataset with a Simulated Masked
Face Recognition Dataset (SMFRD), which is synthetically generated by applying virtual masks
to existing natural face datasets. Cabani et al. [153] improved the generation of synthetically
masked-faces by applying a deformable mask-model onto natural face images with the help of
automatically detected facial key-points. The key-points of the deformable mask-model can be
matched to the key-points of the face, allowing the application of the mask in a variety of ways.
This allows the dataset generation process to further generate examples of incorrectly worn masks,
such as chin exposed, nose exposed, or nose and mouth exposed.

5.2.3 BNN Interpretability with Grad-CAM

The output of the convolutional layers in a CNN contains localized information of the input
image, without any prior bias on the location of objects and features during training. This
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Figure 5.6: Main components of BinaryCoP. The BNN requires low memory and provides good general-
ization. The FINN-based accelerator allows for privacy-preserving edge deployment of the
algorithms without sacrificing performance. The synthetic data helps in maintaining a diverse
set of subjects and Grad-CAM can be used to assert the features being learned.

information can be captured using class activation mapping (CAM) [157] and Grad-CAM [158]
techniques. To apply CAM, the model must end with a global average pooling layer followed by
a fully-connected layer, providing the logits of a particular input. The BNN models investigated
in this work operate on a small input resolution of 32x32, and achieve a high reduction of spatial
information without incorporating a global average pooling layer. For this reason, the Grad-CAM
approach is better-suited to obtain visual interpretations of BinaryCoP’s attention and determine
the important regions for its predictions of different inputs and classes.

To obtain the class-discriminative localization map, we consider the activations and gradients
for the output of the Conv_2_2 layer (shown in table A.1), which has spatial dimensions of 5x35.
We use average pooling for the corresponding gradients and reduce the channels by performing
Einstein summation as specified in [158]. With this approach the base networks do not need
any modifications or retraining. Due to the synthetically generated dataset used for training, we
expect BinaryCoP models to generalize well against domain shifts.
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Figure 5.7: The Grad-CAM approach used to assert that correct and reasonable features are being learned
from the synthetic data.

5.2.4 Evaluation
5.2.4.1 Experimental Setup

BinaryCoP is able to detect the presence of a mask, as well as its position and correctness. This
level of classification detail is possible through the more detailed split of the MaskedFace-Net
dataset [153] from 2 classes, namely correctly masked face dataset (CMFD) and incorrectly
masked face dataset (IMFD), to 4 classes of CMFD, IMFD Nose, IMFD Chin, and IMFD Nose
and Mouth. The dataset suffers from high imbalance in the number of samples per class. From
the total 133,783 samples, roughly 5% of the samples are IMFD Chin, and another 5% samples
are IMFD Nose and Mouth. CMFD samples make up 51% of the total dataset while IMFD Nose
makes up 39%. The dataset in its raw distribution would heavily bias the training towards the
two dominant classes. To counter this, we randomly sample the larger classes CMFD and IMFD
Nose to collect a comparable number of examples to the two remaining classes, IMFD Chin and
IMFD Nose and Mouth. The evenly balanced dataset is then randomly augmented with a varying
combination of contrast, brightness, gaussian noise, flip and rotate operations. The final size of
the balanced dataset is 110K train and validation examples and 28K test samples. The images are
resized to 32x32 pixels, similar to the CIFAR-10 [27] dataset. The BNNs are trained up to 300
epochs, unless learning saturates earlier. The FP32 variant used for the Grad-CAM comparison is
trained for 175 epochs due to early learning saturation (98.6% final test accuracy). We trained the
BNN architectures shown in table A.1 according to the method described in section 5.1.3.1. The
target SoC platform for the experiments is the Xilinx XC7Z2020 (Z7020) chip on the PYNQ-Z1
board. The pu-CNV design can also be synthesized for the more constrained XC7Z010 (Z7010)
chip, when XNOR operations are offloaded to the DSP blocks as described in section 4.1.4.
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Table 5.2: Hardware results of design space exploration. Power is averaged over 100s of operation.

Prototype | LUT BRAM DSP Power [W] | Thr.put

Latency | Acc.

Inf. | [FPS] | [ms] | [%]
n-CNV | 20425 105 14 | 1.65% | 2.122 | 6460 | 031 |93.94

CNV | 26060 124 24 | \2212\ 3049 | 1.58 | 98.10
| |
|

p-CNV | 11738 14 27 2028 | 1646 | 081 |93.78
*Required by the board and ARM-Cortex A9 processor. Accelerator is idle.

Power and throughput measurements are taken directly on a running system, in the same manner
described in section 5.1.4.1.

5.2.4.2 Design Space Exploration

Three BinaryCoP prototypes are evaluated, namely CNV, n-CNV and p-CNV. Architectural
details of the networks can be found in table A.1. The CNV network is based on the architecture
in [103] inspired by VGG-16 [40] and BinaryNet [60]. n-CNV is a downsized version for a
smaller memory footprint, and y-CNV has fewer layers to reduce the size of the synthesized
design. All designs are synthesized with a target clock frequency of 100MHz.

Referring back to table A.1, the PE counts and SIMD-lanes for each layer (i.e. MVTU) are
shown in sequence. For BinaryCoP-n-CNYV, the most complex layer is Conv_1_2 with 3.6M
XNOR and popcount operations. In figure 5.8, this layer is marked as the throughput setter, due
to its heavy influence on the final throughput of the accelerator. Allocating more PEs for this
layer’s MVTU increases the overall throughput of the pipeline, so long as no other layer becomes
the bottleneck. Enough resources are allocated for Conv_1_1 to roughly match Conv_1_2’s
latency. The FINN architecture employs a weight-stationary dataflow, since each PE has its own
pre-loaded weight memory. When the total number of parameters of a given layer increases,
it becomes important to map these parameters to BRAM units instead of logic. The deeper
layers have several orders of magnitude fewer operations (OPs), but more parameters. For these
layers, increasing the number of PEs fragments the total weight memory, leading to worse BRAM
utilization and no benefit in terms of throughput. Here, choosing fewer PEs, with larger unified
weight memories, leads to improved memory allocation, while maintaining rate-matching with the
shallow layers (as seen figure 5.8), leaving the throughput gains from the initial PEs unhindered.
The CNV architecture in [103] follows the same reasoning for PE and SIMD allocation. For
u-CNYV, fewer PEs are allocated for the throughput-setters, as this prototype is meant to fit on
embedded FPGAs with less emphasis on high frame rates.

In table 5.2, the hardware utilization for the BinaryCoP prototypes is provided. With pu-
CNYV, a significant reduction in LUTs is achieved, which makes the design synthesizable on the
heavily constrained Z7010 SoC. The trade-off is a slight increase in the memory footprint of
the BNN, as the shallower network has a larger spatial dimension before the fully-connected
layers, increasing the total number of parameters after the last convolutional layer. The choice of
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Figure 5.8: Binary operations and layer-wise latency estimates based on PE/SIMD choices for BinaryCoP-
n-CNV.

PE count and SIMD lanes for the n-CNV prototype allow it to reach a maximum throughput of
~6400 classifications per second when its pipeline is full. This high-performance can be used
to classify images from multiple cameras in multi-gate settings. The inference power values
reported in table 5.2 show a total power requirement of around 2 W for all prototypes. For single
entrance/gate classifications, all prototypes have an idle power of around 1.65 W. In this setting, a
classification needs to be triggered only when a subject is attempting to pass through the entrance
where BinaryCoP is deployed. The idle power is required mostly by the processor (ARM-Cortex
A9) on the SoC and the board (PYNQ-Z1). This can potentially be reduced further by choosing a
smaller processor to pair with the proposed hardware accelerator. Although the PYNQ-Z1 board
has no power measurement bus (PMBus) to isolate the power measurements of the FPGA from
the rest of the components, we can infer that the hardware accelerator requires roughly 0.4 W for
the inference task from the two measured power values in table 5.2. The current design is still
dependent on the processor for pre- and post-processing, therefore the joint power is reported for
fairness.

5.2.4.3 Grad-CAM and Confusion Matrix Analysis

The confusion matrix in figure 5.9 shows the generalization of BinaryCoP-CNV on all classes
after balancing the dataset. As expected, it is extremely rare to mistake nose+mouth exposed
with a correctly worn mask. Less critically, nose and nose+mouth have a slight misclassification
overlap, still at only 2% of the total samples given for each class. Finally, the chin exposed and
the correct class have some sample misclassifications (<1%), which could be attributed to the
chin area being small in some images and hard to detect at low-resolution.

The output heat maps generated by Grad-CAM are analyzed to interpret the predictions of our
BNNs with respect to the diverse attributes of the MaskedFace-Net dataset. In figure 5.10 till
figure 5.13, columns 1 and 2 indicate the label and input image respectively. Columns 3, 4 and 5
highlight the heat maps obtained from the Grad-CAM output of BinaryCoP-CNV, BinaryCoP-n-
CNV and a full-precision version of CNV with FP32 parameters. The heat maps are overlaid
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Figure 5.9: Confusion matrix of BinaryCoP-CNYV on the test set.

on the raw input images for better visualization. All raw images chosen have been classified
correctly by all the networks, for fair interpretation of feature-to-prediction correlation.

In figure 5.10-a, the region of interest (Rol) for the correctly masked class is shown. Bina-
ryCoP’s learning capacity allows it to focus on key facial lineaments of the human wearing the
mask, rather than the mask itself. This potentially helps in generalizing on other mask types. For
the child example shown in the first row, the focus of BinaryCoP lies on the nose area, asserting
that it is fully covered to result in a correctly masked prediction. Similarly, for the adult in row 2,
BinaryCoP-CNYV focuses on the upper edge of the mask to predict its coverage of the face. This
also holds for our small version of BinaryCoP, with significantly reduced learning capacity. The
Rol curves finely above the mask, tracing the exposed region of the face. In the third-row example,
BinaryCoP-CNV falls back to focusing on the mask, whereas BinaryCoP-n-CNV continues to
focus on the exposed features. Both models achieve the same prediction by focusing on different
parts of the raw image. In contrast to the BinaryCoP variants, the FP32 model seems to focus on
a combination of several different features on all three examples. This can be attributed to its
larger learning capacity and possible overfitting.

In figure 5.10-b, we analyze the Grad-CAM output of the uncovered nose class. BinaryCoP-
CNV and BinaryCoP-n-CNV focus specifically on two regions, namely the nose and the straight
upper edge of the mask. These clear characteristics cannot be observed with the oversized FP32
CNN. In figure 5.10-c, the results show the Rol for predicting the exposed mouth and nose
class. All models seem to distribute their attention onto several exposed features of the face.
figure 5.10-d shows Grad-CAM results for chin exposed predictions. Although the top region of
the mask points upwards, similar to the correctly worn mask, the BNNs pay less attention to this
region and instead focus on the neck and chin. With the full-precision FP32 model, it is difficult
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Figure 5.10: Grad-CAM output of two BinaryCoP variants and a FP32 CNN. Results are collected for
all four wearing positions on a diverse set of individuals. Binarized models show distinct
regions of interest which are focused on the exposed part of the face rather than the mask.
The FP32 model is difficult to interpret in some cases. It is recommended to view this
figure in color.

to interpret the reason for the correct classification, as little to no focus is given to the chin region,
again hinting at possible overfitting.

Beyond studying the BNNs’ behavior on different class predictions, the attention heat maps can
be used to understand the generalization behavior of the classifier. In figure 5.11 to figure 5.13,
BinaryCoP’s generalization over ages, hair colors and head gear is tested, as well as complete
face manipulation with double-masks, face paint and sunglasses. In figure 5.11, the smaller
eyes of infants and elderly do not hinder BinaryCoP’s ability to focus on the top region of the
correctly worn masks. In figure 5.12, BinaryCoP-CNYV shows resilience to differently colored
hair and head-gear, even when having a similar light-blue color as the face-masks (row 2 and
3). In contrast, the FP32 model’s attention seems to shift towards the hair and head-gear for
these cases. Finally, in figure 5.13, both BinaryCoP variants focus on relevant features of the
corresponding label, irrespective of the obscured or manipulated faces. This qualitatively shows
that the complex training of BNN, along with their lower information capacity, constrains them
to focus on a smaller set of relevant features, thereby generalizing well for unprecedented cases.
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Figure 5.11: Grad-CAM results for age generalization. It is recommended to view this figure in color.
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Figure 5.12: Grad-CAM results for hair/headgear generalization. It is recommended to view this figure
in color.

5.2.4.4 Comparison with Other Works

As mentioned in Sec 5.2.2, detection of masks has piqued the interest of many researchers in the
computer vision domain due to its relevance in the context of the ongoing COVID-19 pandemic.
NVIDIA proposed mask recognition using object detection models [159]. These models require
INTS or Float-16 numerical precision, with ResNet18 as a backbone for input images of 960 x544
pixel resolution. The complexity is orders of magnitude higher than the models proposed in
this work. A head-to-head comparison is difficult to make due to differences in the training
approach, the CNN model, the datasets used, and the application requirements. The networks
are trained to predict only two classes (mask, no mask), which is a simpler problem compared to
the exact positioning supported by BinaryCoP. However, the localization and higher resolution
makes it a more computationally complex task overall. With the NVIDIA Jetson Nano hardware,
which typically requires ~10 W of power on intensive workloads, a frame rate of 21 FPS is
achieved. The more powerful 25 W Jetson AGX Xavier can achieve up to 508 FPS. Compared
to the NVIDIA approach [159], BinaryCoP is targeted at low-power, embedded applications
with peak inference power of ~2 W and high classification rates of up to ~6400 FPS on smaller
resolution input images. It is worth noting that BinaryCoP can also classify high resolution
images containing multiple individuals, by slicing the input into many 32 x32 frames and batch

82



5.2 BinaryCoP: BNN COVID-19 Face-Mask Wear and Positioning Predictor

BCoP BCoP
Label Raw CNV  n-CNV FP32
Correctly | ~{E f A
Masked i I [ g |
Correctly Lx ¥ 3 -
Masked o e A
Chin
Exposed =2 h
Nose Mouth ; : -
Nose Mouth | 5 5:, : 4 . Y,
Exposed .

Figure 5.13: Grad-CAM results for face manipulation with double-masks, face paint and sunglasses. It is
recommended to view this figure in color.

processing them. This application makes use of the high-throughput results presented in table 5.2.
Another approach proposed by Agarwal et al. [160] achieves the task of detecting a range of
personal protective equipment (PPE). Processing takes place on cloud servers, which could raise
privacy and data safety concerns in public settings. Wang et al. [161] propose an in-browser
serverless edge computing method, with object detection models. The browser-enabled device
must support the WebAssembly instruction format. The authors benchmarked their approach on
an iPad Pro (A9X), an iPhone 11 (A13) and a MacBook pro (Intel i7-9750H), achieving 5, 10
and 20 FPS respectively. Needless to say, these devices (or similar) are expensive and cannot
be placed in abundance in public areas. Similarly, [162] offers an Android application solution,
which is suitable for users self-checking their masks. In this case, low-power, edge-hardware,
and continuous surveillance are not emphasized.

BinaryCoP offers a unique, low-power, high-throughput solution, which is applicable to cheap,
embedded FPGAs. Moreover, the BinaryCoP solution is not constrained to FPGA platforms.
Software-based inference of BinaryCoP is also possible on other low-power microcontrollers,
with binary instructions. Training on synthetic data enables generating more samples with
different mask colors, shapes, and sizes [163], further improving the generalizability of the BNNs,
while keeping real-world data available for fine-tuning stages.

5.2.5 Discussion

Applying BNNs to face-mask wear and positioning prediction solves several challenges such
as maintaining data privacy of the public by processing data on the edge-device, deploying
the classifier on an efficient XNOR-based accelerator to achieve low-power computation, and
minimizing the neural network’s memory footprint by representing all parameters in the binary
domain, enabling deployment on low-cost, embedded hardware. The accelerator requires only
~1.65 W of power when idling on single gates/entrances. Alternatively, high-performance

83



5 Semi-Automated Co-Design

is possible, providing fast batch classification on multiple gates and entrances with multiple
cameras, at ~6400 FPS and 2 W of power. An accuracy of up to 98% for four wearing positions
of the MaskedFace-Net dataset was achieved. The Grad-CAM approach was used to study the
features learned by the classifier. The results showed the classifier’s high generalization ability,
allowing it to perform well on different face structures, skin-tones, hair types, and age groups.
BinaryCoP reused many of the semi-automated HW-DNN co-design concepts first introduced
in Binary-LoRAX. Additionally, semi-automated design was incorporated in the training loop,
where synthetic data was generated in an automated manner, and interpretability tools, such
as Grad-CAM, allowed the human to verify the features being learned. Optimizations from
compilers coupled with human-engineered DNN architectures resulted in high FPS performance
and task-accuracy, while maintaining low power in a privacy-preserving, edge setting. Both
BinaryCoP and Binary-LoRAX have shown how semi-automated HW-DNN co-design can
combine human-expertise and compiler optimizations to achieve highly efficient Al that can
impact human lives in a positive way.
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ule of computations can be modeled accurately, and the execution metrics (power/latency)

can be estimated with high fidelity. Now, all what is left to do is find the right configura-
tion in a search space with over ~103* solutions [9]. Calling this solution a “needle in a haystack”
is an understatement, unless the haystack in question is as big as the observable universe and has
as much hay as we have stars. Fortunately, problems of this size emerge often in engineering and
mathematical optimization, giving purpose to the well-established field of metaheuristics. In fully-
automated co-design, search agents involving methods like genetic algorithms (GAs), Bayesian
optimizers, and reinforcement learning (RL) are exploited to traverse such multi-dimensional,
noisy search spaces and return sufficiently good solutions for the target application, in a reasonable
amount of time. For these search agents to function properly, the prerequisites of a well-defined
search space must be fulfilled, namely a finite set of design hyper-parameters and optimization
criteria, as well as an evaluation function, model, or implementation. The evaluation function
is necessary to assess the fitness of the design decisions in each step of the search algorithm.
An evaluation model plays a crucial role here, as it must be accurate, high in fidelity, and fast
enough to quickly provide the reward/fitness value of the design decisions, such that the search
agent can quickly and correctly traverse to the next step. In this chapter, two works are discussed
where this type of HW-DNN co-design is used. In HW-FlowQ [10], a multi-abstraction level
HW-DNN co-design methodology is presented, where a tripartite search space is traversed and
three levels of abstraction are proposed to converge to the final solution in a controlled manner. In
AnaCoNGA [9], two nested GAs jointly search the hardware and neural network design spaces,
while reducing the overall search time compared to a single GA searching the neural network
design space. This novel, fully-automated co-design methodology was nominated for the best
paper award at the Design, Automation and Test in Europe (DATE) conference in 2022.

THE HARDWARE component libraries are fixed, the supported layers are known, the sched-

6.1 HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-Design
Quantization Methodology

Model compression through quantization is commonly applied to CNNs deployed on compute
and memory-constrained embedded platforms. As discussed in section 2.2.1, different layers
of a CNN can have varying degrees of numerical precision for both weights and activations,
resulting in a large search space. Together with the hardware design space, the challenge of
finding the globally optimal HW-CNN combination for a given application becomes daunting.
HW-FlowQ is a systematic approach that enables the co-design of the target hardware platform
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and the compressed CNN model through quantization. The search space is viewed at three
levels of abstraction, allowing for an iterative approach for narrowing down the solution space
before reaching a high-fidelity CNN hardware modeling tool, capable of capturing the effects
of mixed-precision quantization strategies on different hardware architectures (processing unit
counts, memory levels, cost models, dataflows) and two types of computation engines (bit-parallel
vectorized, bit-serial). To combine both worlds, a multi-objective non-dominated sorting genetic
algorithm (NSGA-II) is leveraged to establish a Pareto-optimal set of quantization strategies
for the target HW-metrics at each abstraction level. HW-FlowQ detects optima in a discrete
search space and maximizes the task-related accuracy of the underlying CNN while minimizing
hardware-related costs. The Pareto-front approach keeps the design space open to a range of
non-dominated solutions before refining the design to a more detailed level of abstraction. With
equivalent prediction accuracy, energy and latency are improved by 20% and 45% respectively
for ResNet56, compared to existing mixed-precision search methods.

6.1.1 The Tripartite Search Space

Quantization simplifies the hardware components required to execute the multitude of arithmetic
operations in modern CNNSs, bringing benefits in terms of area, power and/or latency. Another ad-
vantage comes from lower bitwidth operands efficiently exploiting the data movement bandwidth
available on the hardware. However, reduced bitwidth representations have a lower information
capacity, losing the fine details captured by gradient propagation at training time. Finding a
suitable quantization scheme that achieves the target benefits without degrading task-related
accuracy becomes more challenging at extremely low bitwidths, e.g. < 4-bits. Moreover, not all
layers require equal numerical precision [7], rendering the search space even larger.

Evaluating a quantization strategy based on metrics that are loosely correlated to hardware
benefits can lead to sub-optimal deployment setups. This has influenced recent works to optimize
neural networks with HIL approaches [31, 7]. HIL-based optimization techniques necessitate the
fully-functional and fabricated hardware to be readily available when optimizing the CNN, leaving
little to no room for adjusting the target execution platform. Look-up table approaches have the
same impediment, as filling up the table would require synthesized hardware measurements [84].

HW-FlowQ bridges the gap between hardware design and CNN quantization. To comprehen-
sively address the design challenge, three large search spaces for the hardware design, the CNN
structure, and the layer-wise quantization strategy need to be considered. Traversing all three
in an unstructured manner would likely lead to sub-optimal solutions. In a top-down approach,
HW-FlowQ narrows down the tripartite design space iteratively, with the help of an extensive
HW-modeling tool and a GA. HW-FlowQ provides the flexibility of studying the impact of
mixed-precision quantization and hardware-specific design parameters, without having to finalize
the hardware platform in the early phases of development.

The contributions of this work can be summarized as follows:

* Developing a hardware model-in-the-loop quantization methodology which allows design

space exploration of CNN quantization strategies and hardware platforms at different
design phases.
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* Exploring single and multi-objective genetic algorithms (SOGA, MOGA) for finding
Pareto-optimal quantization strategies with respect to the underlying hardware platform.

* Modeling vectorized and bit-serial accelerators, with varying resources and dataflows for
mixed-precision quantization, enabling HW-design exploration during CNN optimization.

6.1.2 Related Work
6.1.2.1 Quantization Methods

Many works have focused on improving the training scheme for quantized neural networks [59, 35,
164, 36]. DoReFa-Net [35] adapts the STE [59] and bounds the magnitude of latent weights and
activations between 0 and 1. These latent datatypes are deterministically quantized. QNN [164]
additionally quantizes the weights in the first and last layers of the CNN. The work in PACT [36]
improves the training procedure of quantized neural networks by learning the optimal clipping
level for the activations of each layer at training time. The dynamic clipping function allows for a
larger representational capability than DoReFa-Net, thereby increasing the prediction accuracy.
The aforementioned works explore the effect of quantization on the accuracy of the model and
the achieved compression rate. Claims on the degree of improvement in energy efficiency or
latency are difficult to make, as these complex metrics highly depend on the underlying hardware
details (memory hierarchy, interconnect, technology, etc.).

6.1.2.2 Quantization & Search Schemes

Dong et al. [165] determine the bitwidths of activations and weights based on the Hessian
spectrum obtained for individual layers. The quantization criterion is based on model size, which
loosely correlates to final energy or latency for an inference execution. Wu et al. [166] propose a
framework that learns quantization levels for each layer during the training period. To encourage
lower-precision weights and activations, a loss term is associated with the quantization objective,
capturing the benefits in OPs and model size, but not necessarily the effectiveness on hardware
metrics, such as energy and latency. The authors of HAQ [7] propose an RL-based exploration
scheme to determine HW-aware layer-wise quantization levels for weights and activations in
a CNN model. The reward function is evaluated after executing the inference of the quantized
CNN on an FPGA design. In APQ [84] a joint model architecture-pruning-quantization search
is proposed. Pre-trained and pruned sub-networks are extracted from a once-for-all network.
Then, mixed-precision quantization is applied and a predictor estimates the final accuracy. An
energy/latency look-up table is used to provide the hardware feedback for a target accelerator
during the search. Therefore, a set of pre-sampled data points is required from a readily available
target hardware.

6.1.2.3 Hardware Modeling

Timeloop [4] is a HW-modeling tool that exploits CNN execution determinism to offer accurate
estimates for a given hardware description. The tool provides the flexibility of changing the cost
of hardware operations (e.g. read, write, MAC, etc.) and the memory hierarchy, among other
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design parameters, as described in section 2.3.2.1 and 3.3.2. Interstellar [100] proposes formal
dataflow definitions. Different to Timeloop, Interstellar uses the Halide programming language to
represent the memory hierarchy and data movement constraints. Tetris [108] and Tangram [109]
make use of a dataflow scheduler for DNN workloads on spatial accelerators to test the potential
of other manipulations possible for their memory hierarchies. The mentioned works have proven
the effectiveness of HW-modeling of DNN workloads. Nevertheless, other aspects have not been
explored as thoroughly, such as adding the effects of layer-wise mixed-precision quantization
on the resulting dataflow or supporting mixed-precision computation units. There is a need to
extensively integrate hardware models with CNN optimization algorithms to aid the exploration
of mixed-precision CNNs with respect to the hardware model under consideration, particularly
when multiple hardware architectures are being considered as potential fabrication candidates.

6.1.2.4 Hardware-Software Co-Design

Jiang et al. [167] propose a HW-SW co-exploration framework, which includes the hardware’s
performance in the reward function of an RL agent and iteratively tunes both the CNN and
hardware architectures. Fine HW-level details, such as scheduling schemes and quantized
execution, are not explored, as the optimization loop targets optimally partitioning the CNN
workload over a pool of FPGAs. The authors of [168] propose a HW-CNN co-design framework
based on NAS. Fine-level details such as dataflow mapping are not studied, nor the effect of layer-
wise quantization on bit-serial or vectorized hardware. The authors of ALOHA [169] propose
a multi-phase GA-based framework for HW-aware CNN design, which takes into account the
trade-off between model compression and adversarial robustness. Compression with mixed-
precision or layer-wise quantization is not explored, nor the direct interactions between layer-wise
quantization and different hardware designs and processing units. Although ALOHA considers
the target hardware in the early phases of the CNN’s design, the hardware itself is not actively
co-designed in the flow. FINN-R [104] is an accelerator generator for quantized CNN inference
on Xilinx FPGAs. Two types of architectures are supported: a pipelined dataflow architecture
with appropriately sized MAC units for each layer to exploit layer-wise quantization, and a single
multi-layer array that is reused across all layers. Candidate architectures are evaluated using
an analytical model for resource usage and throughput. The framework is hardware focused,
and does not explore the quantization and training search space of the CNN. NHAS [88] aims
to find an optimal quantized CNN using an evolutionary algorithm. An efficient hardware
architecture dimensioning for the compute array and on-chip memory is searched to accelerate a
given set of benchmark workloads. The hardware evaluation follows a look-up table approach.
Although NHAS promotes the idea of joint HW-CNN co-design, the approach can be enhanced
by understanding the influence of each search decision against various aspects, such as the
quantization method, mixed-precision accelerator choice, and scheduling schemes, with the help
of hardware models during the optimization.

6.1.3 HW-FlowQ

HW-FlowQ is a HW-CNN co-design methodology which facilitates a top-down design approach,
iteratively going through different levels of abstraction and performing some iterations of ex-
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Figure 6.1: Overview of the HW-FlowQ methodology. Population P is evaluated on task-related accu-
racy v and hardware metrics ¢. The three proposed HW-modeling abstraction levels: Coarse,
Mid and Fine, enable the genetic algorithm G to consider the hardware metrics of the CNN
relative to the current design phase.

ploration, before fixing some parameters and refining the design to one abstraction level lower.
Moving away from hardware-in-the-loop and look-up table approaches in existing works, here, a
model-in-the-loop design flow is implemented.

HW-FlowQ is based on an interaction between the individuals p of population P, with the
hardware model ;. in the context of a genetic search algorithm G (figure 6.1). In detail, the
genotype of an individual p encodes the layer-wise quantization levels for weights and activations
(bw, ba) of the CNN. The individual’s fitness F' is measured through the HW-model estimations
o and CNN accuracy term 1/, computed w.r.t. the images and labels of a validation set. When G
is a SOGA, the objectives ¢ and 1) are combined into a single cost function for fitness evaluation
(section 6.1.3.2). G can also take the form of a MOGA, such as NSGA-II.

6.1.3.1 HW-Model Abstraction Levels

To enable the design steps of HW-SW co-design, different representations of the target HW
platform need to be accessible based on the design phase. Starting from an abstracted, high-level
representation makes it possible to coarsely search for HW-CNN combinations that may suit
the application at hand. After some high-level parameters are fixed, a step of refinement can
take place. This brings the exploration to a finer level of detail, but within the scope of the fixed
parameters of the previous abstraction level (figure 6.2). More implementation-specific aspects
can be considered after each refinement iteration. At any stage, if the exploration fails to find any
suitable solutions, an abstraction step can take the design back to a coarser level and re-evaluate
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the higher-level parameters which were set. This type of design flow is commonly used in VLSI
design, where complex, large design spaces must be explored at different levels of abstraction,
from system-level down to transistor logic [38, 2].

Three levels of abstraction are offered in HW-FlowQ, namely Coarse, Mid and Fine. Starting
with Coarse-level optimization, the framework can be used to test the effect of quantization
on differently shaped/sized CNNs, given as an input. The total computations required and the
task-related accuracy can be evaluated. The CNN parameters at this level heavily influence the
start of the co-design process, as they set the upper-bound of task-related accuracies possible, as
well as the range of fractional operations and on-chip memory the hardware must accommodate.
After quantization, if the target compression and/or task-related accuracy cannot be met, support
for lower quantization levels needs to be considered and/or new CNN architectures need to be
provided. The quantization training scheme can also be decided at this stage (e.g. DoReFa, PACT,
QNN). It is important to note that HW-FlowQ does not constitute a NAS methodology, but is
rather complementary to such techniques. As an example, a NAS framework can provide HW-
FlowQ with high-accuracy CNN architectures as inputs at the Coarse-level. Then, HW-FlowQ can
quantize them optimally for target hardware designs, as well as facilitate designing customized
hardware for the proposed CNNs. Once the CNN(s) meets the high-level requirements, the
Mid-level evaluates the feasibility of different memory hierarchies to buffer and move data
before reaching the on-chip computation units. Parameters such as data transfer volumes,
computation-to-communication (CTC) ratio and off-chip memory accesses can be searched.
This information can help in deciding which off-chip to on-chip communication infrastructure
and bandwidth is suitable to meet the application constraints. The CNN can further be quantized
with this HW-model-in-the-loop setup, in order to close the gap between the hardware constraints
and the computation/communication requirements, while maintaining the task-accuracy goals.
Performing one more iteration of refinement takes the design to the Fine-level. At this stage,
the hardware computation architecture can be defined. Precise information on the supported
quantization levels, number of computation units available, register file sizes, supported data
movements, and more, can be provided. HW-FlowQ provides high-fidelity estimates of the
benefits that can be achieved on the prospective hardware design, for a particular quantization
strategy (figure 6.5). Details on the Fine-level modeling are provided in the next sections.

Considering all design parameters holistically would imply searching all possible quantization
strategies for all candidate CNNs (Coarse), on all possible on-chip/off-chip communication
and on-chip memory sizes (Mid) for all possible dataflows, compute array sizes, multiplier
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Figure 6.2: Iterative refinement increases the likelihood of finding the global optimum. Flow inspired
by [2].
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Figure 6.3: Input, output and optimization details of the HW-model p abstraction levels used at each
phase. After refinement, the inputs of the preceding phase are inherited to the next.

types and register dimensions (Fine). This would ultimately waste an immense amount of GPU
hours, searching for solutions which could have been eliminated at the Coarse-level already.
Additionally, with so many search parameters, the convergence of the search algorithm becomes
more difficult to guarantee, potentially leading to sub-optimal results. To address this challenge,
the step-wise optimization in HW-FlowQ’s Coarse, Mid and Fine levels along with the Pareto-
front-based quantization approach (NSGA-II) promotes a design-flow which leads to improved
synergies in the final HW-CNN implementation and a more practical approach to searching the
three large search spaces of CNN architecture, quantization strategy, and hardware design.

Figure 6.3 summarizes the inputs required at each level, the optimization that the HW-model
w can perform internally at each phase and the output estimates which can be used to evaluate
the hardware-related fitness F), of different individuals in population P. Traversal between the
levels is indicated by refinement and abstraction arrows. The decision on whether the search
takes a step of refinement can be inferred from a list of application constraints. For example, a
maximum number of fractional operations needs to be met, before a transition between Coarse to
Mid can take place. Similarly, a desired off-chip communication constraint can be set, before the
design transitions between Mid to Fine. If a certain constraint cannot be met, the framework must
reconsider the inputs of the current level (e.g. at Coarse reconsider baseline CNN architecture, at
Mid reconsider memory hierarchy, etc.). If changing the inputs of the level does not meet the
targets, the inputs of the level above are reconsidered (abstraction). Through this progressive
filtering of design decisions at each level, the output of the overall framework meets the desired
application targets at the end of the flow.

6.1.3.2 Genetic Algorithm

Finding the correct layer-wise quantization strategy for both weights and activations with respect
to a target HW-model is a complex problem which would benefit from gradient-free optimization
due to the discrete nature of the solution space. The search space for the quantization strategy
alone consists of Q2 solutions, where Q is the set of possible quantization levels and L is
the number of layers. Quantizing some layers leads to larger drops in accuracy than others,
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Figure 6.4: Layer-wise genome encoding allows for intuitive use of genetic operators (crossover, mutation)
to capture and maintain good localities of bitwidth-to-layer encodings from two fit parents
into their offspring.

and different accuracy drops can take place at different quantization levels for the same layer.
Moreover, quantization strategies change the mapping and scheduling space of the CNN on the
hardware, as explained in section 3.2. For example, a quantization strategy might make new
schedules possible, which lead to sudden drops in latency and energy, as soon as a particular
computation tile fits the on-chip memory after quantization. In this work, GAs are leveraged to
tackle the quantization strategy search problem, as they are known to be resilient to noisy search
spaces, quick to prototype, and do not need smooth, continuous search spaces to perform well.

Explicit, bijective encoding is used to create the genomes of potential solutions as shown in
figure 6.4. A single genome represents a potential CNN quantization strategy and has as many
genetic loci as there are layers in the CNN. Each genetic locus encapsulates a tuple of integer
bitwidth values for weights and activations (by , ba) at the corresponding layer. The set of
possible alleles at each genetic locus is defined by the bitwidths supported by the HW-model,
i.e. (). Bitwidth-to-layer encoding can be captured intuitively in sequential genomes, which
leads to a sensible use of GA operators, such as single-point crossover (example in figure 6.4).
Neighboring CNN layers have higher feature correlation than distant layers. Therefore, quantized
layer relationships encoded in neighboring genetic loci can survive in a population and be reused
through single-point crossover to create more efficient offspring. The more fit the parents become
throughout the generations, the better genetic localities they will have to create better individuals.
Mutation further allows offspring to escape local minima of their parents.

Referring back to figure 6.1, on the top-left an initial population Py is randomly generated at
the start of the genetic algorithm G, with each individual encoding the quantization levels of each
layer of the CNN in its genes. The individuals of Py are briefly fine-tuned and evaluated based
on their task-accuracy ¢ on a validation set (figure 6.1 top-right), as well as hardware estimates
o of the HW-model through inference simulation (figure 6.1 bottom-right). Based on the GA
configuration, v and ¢ define the fitness of each individual p° € Py. As depicted in figure 6.1, 1)
and ¢ are fed back to a selection phase in G, to constrain the cardinality of the population |P].
Individuals survive this phase based on their fitness. Survivors are allowed to mate and produce
offspring in P;, which inherit alleles from two survivor parents through crossover. A round of
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mutation takes place, altering alleles of the offspring in ;. The population goes through the
same phases of fitness evaluation, selection and crossover for the subsequent generations.

6.1.3.3 Fitness Evaluation

Single and multi-objective genetic algorithms are explored in this work. Both GAs share the same
evolutionary flow described earlier, but are different in their observation of fitness. By definition,
SOGA maximizes a single reward. Since our problem inherently involves multiple objectives (¢
and (), a balanced reward function must be defined to combine them into a single fitness value F'
to apply SOGA.

_ Y g2,
Fp:{ (1 ) log(%), if SOGA 6.1

Y, p otherwise NSGA-II

The fitness definition of SOGA in equation 6.1 is inspired by the cost function proposed
in [37]. ¥* and " are the task-related accuracy and the hardware estimates of the uncompressed
CNN, respectively. The function balances the improvements in hardware efficiency log(¢*/¢)
while trying to maintain task-related accuracy through the term (1 — (¢* — 1) /t). t sets a
threshold on accuracy degradation, where a difference between ¢* and 1 equal to or greater than
t turns the accuracy term negative and renders the fitness F), of individual p unacceptable.

In the case of NSGA-II optimization, the algorithm evaluates the Pareto optimality of each
individual with respect to the population P. This relieves the burden of crafting a single fitness
function, which may not always guarantee a fair balance between multiple objectives. Addition-
ally, having an array of potential solutions in a Pareto-front is a better approach for design space
exploration, compared to having a single solution suggested by the search algorithm. Design
space exploration is a fundamental part of HW-SW co-design making NSGA-II an attractive
alternative to SOGA.

Considering the accuracy-related fitness term 1, the quantization strategies of a population P
need to be evaluated in a reasonable amount of time to avoid a bottleneck in the search process.
To address this problem, quantized networks in P are not fully trained during the search. Instead,
the CNN model is instantiated and loaded with pre-trained floating-point weights, then quantized
according to the genome of p and briefly fine-tuned to recover from the accuracy loss introduced
by the direct quantization process. This process can also be parallelized, as the individuals within
a population can be fine-tuned at the same time, on a single or multiple GPUs. The learning
behavior of 2-bit, 4-bit and 6-bit networks was analyzed, to see how early the training curves can
be differentiated. This gives an indication of how well the accuracy will be at the end of a full-
training cycle. The accuracy fitness evaluation epochs in section 6.1.6 were chosen accordingly.
The GA essentially evaluates the learning capacity of the individual, not its final fully-trained
accuracy. At the end of the search, when a solution is chosen, it is trained from scratch, without
loading any pre-trained weights. It is worth mentioning that fast accuracy predictors, such as the
ones proposed in [84, 170], could also be used for the purpose of fast accuracy-related fitness
evaluation in HW-FlowQ’s GA.
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6.1.3.4 Genetic Operators

The mutation, crossover and selection operations are pivotal to the GA’s efficacy. Single-point
crossover is applied, which intuitively has a high probability of capturing attractive bitwidth-to-
layer encodings of two fit individuals and maintains inter-layer dependencies across segments of
the CNN, as shown in figure 6.4. With mutation probability p,,,: a single allele at a randomly
selected genetic locus is replaced by another from the set of possible alleles, (). All individuals
conform with the CNN and the quantization levels supported on the hardware. Tournament
selection is used for SOGA, where tournaments take place to decide all the survivors. NSGA-II
selection is based on the crowded-comparison-operator [171].

6.1.3.5 Modeling Mixed-Precision Inference

This work focuses on modeling spatial architectures similar to [172, 4, 100, 3], with an on-chip
buffer and a compute core with an array of PEs, as depicted in figure 6.1. The energy cost
of data accesses depends on the technology and the size of the memory. HW-FlowQ supports
independent read-write costs for off-chip communication, memory blocks, as well as the register
files (RFs) of the PEs on the compute blocks. The cost models are inspired by the approach
proposed in [3, 173, 4, 100]. A normalized energy cost is set for each operation that can take
place on the architecture. The HW-model attempts to map the computations of a particular CNN
workload efficiently onto the HW-model. For each schedule, the HW-model is able to extract the
number of actions (reads, writes, MACs) required at each level of the accelerator as explained
in section 3.3.2. The number of actions is multiplied by the cost of each action on each type of
memory/compute unit. The exact normalized energy costs chosen in this work align with the
Timeloop [4] framework and the Eyeriss model in [3], as shown in table 6.1. HW-FlowQ also
supports manually setting costs for each action, based on different fabrication technologies.

Scheduler and Mapper. Modern compute architectures allocate a considerable amount of
their power budget for memory accesses and data movement [173]. Moreover, redundant data
movement can have a significant impact on latency. This has made efficient scheduling of CNN's
on spatial hardware an active field of research [3, 109, 108, 172, 100, 4].

The three main techniques commonly used to optimize a nested loop’s execution on hardware
were introduced in section 2.3.2, namely loop tiling, reordering and unrolling. HW-FlowQ’s
scheduler and mapper components handle loop optimization techniques largely in a similar
manner to the popular frameworks Interstellar [100] and Timeloop [4]. Here, the additional
considerations to capture the effect of mixed-precision quantization are discussed.

Quantization shrinks the bitwidth of datatypes allowing larger computation tiles to fit in a given
lower-level memory. This increases the number of possible loop tiling and reordering schedules.
Loop optimization through unrolling is handled by HW-FlowQ’s mapper component and is
dependent on both the dataflow supported by the accelerator and the mixed-precision computation
technique. It is important to note that when unrolling fractionalized (quantized) computations on
a vectorized or multi-lane bit-serial PE-array, a single PE may handle more spatially distributed
computations, as long as its register files fit the operands/partial sums needed/generated by said
computations. This can be exploited by HW-FlowQ’s mapper to find more efficient schedules
which fit on a smaller physical computation array and require less PE-to-PE data movement.
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Depending on the defined HW-model, the scalar or SIMD vector-engines in the PE can be word-
aligned, making some quantization degrees less attractive than others. An example of sub-optimal
SIMD-register usage is marked with a red-cross in figure 6.1 (middle-right). HW-FlowQ can also
model bit-serial compute units such as the ones in [66], in which case, a relative improvement for
any quantization level for weights and/or activations can be achieved on the compute block. The
word alignment on the compute block can be set differently to that of the outer memory blocks
and the off-chip memory interconnect.

In the convolution operation, PSUMs can grow after each accumulation to a maximum of
2byy 4+C;, where by 4 is the bitwidth of the operands. The HW-model considers instances of the
largest possible PSUM, according to the maximum bitwidth b,,,,,. supported by the accelerator.
The increase in vector throughput due to quantization of W' and A!~! is constrained to the
maximum amount of PSUM RF memory available on the PE. After complete accumulation, a
speed-up can be achieved in writing back the output pixels at the quantization level of the input
of the following layer b!, of A'.

Vectorized and Bit-Serial Computation. To estimate the benefits in the computation of
low-bitwidth and mixed-precision CNNs, vectorized and bit-serial compute units are modeled [8,
174, 66]. The choice of the computation unit has a direct influence on the schedule, as it affects
how many computation cycles are required for a particular operation and how many unique
computations can be assigned to the same hardware at different bitwidths.

For vectorized accelerators, an aligned SIMD-MAC unit is modeled, which has a maximum
bitwidth of b,,,, for both weights and activations. A speed-up through data-level parallelism at
the PE-level can happen at Vipeequp integer steps, as shown in equation 6.2.

brnaz
Viveodup = | —— 292 6.2
speedup {max(bw, bA)J ( )

Vispeedup 18 the vectorization degree aligned with the wider operand between by and b 4. This
not only allows for more parallel computations in the same cycle, but also reduces the memory
access cost at the register file level, which would now access Vipeequp data that fit into the SIMD-
register with bitwidth b4, in a single read operation. The limitation of vectorized computation
units is that they can only perform complete operations, and therefore cannot always fully
exploit any arbitrary bitwidth. For example, a 16-bit vector unit can perform 2 complete 8-bit
computations, however, if the operands were 6-bits each, a non-integer speed-up of ~2.67 would
not be possible. Another limitation is that variable bitwidths of by # b4 cannot be exploited for
higher parallelism even if both are aligned, due to the max (b4, byy) term in equation 6.2. The
wider of the two operands dictates the number of parallel computations which fit in the vector
engine.

Bit-serial computation units can fully exploit any level of quantization for both operands. Their
performance is enhanced with respect to a b;,4, computation according to

B S _ bgnaw
speedup — m (63)
It is important to note that B Sgpeequp cannot be directly compared to Vipeedup due to the inherent
differences between how both architectures perform a single b,,,,, computation. Bit-serial units
require by X b4 cycles to complete a single computation, whereas bit-parallel (irrespective of the
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vectorization degree) produce a complete result(s) in every computation cycle. To compensate
for this, most bit-serial accelerators employ more computation lanes to make up for their slower
method of computation, and try to match the throughput of bit-parallel architectures, while
benefiting from the flexibility of supporting and getting a speedup at any reduced bitwidth for
either operand by, or b4. We model each PE to have a fixed number of independent lanes to
perform parallel computations. The bits trickle in from the register files over by x b4 cycles.

6.1.4 Mixed-Precision Model Validation

To validate HW-FlowQ’s Fine-level modeling and mapping components, its estimates are com-
pared to the Eyeriss architecture [3] for AlexNet [52] inference. AlexNet is not used for quan-
tization experiments (section 6.1.6), as it is severely outdated. Its diverse CNN layer shapes
(large/small kernels, strides, group convolutions) are used here to prove the fidelity/precision
of HW-FlowQ’s hardware modeling framework on varying computation workloads. Similarly,
Eyeriss provides sufficiently complex on-chip data movement, which is also challenging to
model (e.g. vertical, horizontal, and diagonal data movement on spatial array). This diversity
in workloads and data movement helps validate the HW-modeling framework. The model is
further validated with Timeloop [4] across workloads from the DeepBench benchmark suite [5],
on Eyeriss-256-DB (configuration in table 6.1).

Figure 6.5 (top-left) shows the breakdown of normalized energy contributions at each memory
level for the AlexNet convolutional layers. HW-FlowQ’s 16-bit HW-model demonstrates high
fidelity and accuracy with respect to [3] and [4]. The effects of quantization on latency and
energy, for vectorized and bit-serial HW-models is shown as well. Extending the comparison
with Timeloop, the DeepBench workloads demonstrate the consistency between the modeling
techniques (figure 6.5 (top-right)). Deviating points occur when both frameworks resolve to
different mapping solutions (i.e. not related to the correctness of the model, but rather the
schedule search). For both bit-serial and vectorized accelerators, a non-trivial variation can
be observed for the energy benefits of different quantization schemes. Quantization allows for
larger computation tiles to fit on the on-chip memory, making more loop-tilings legal for a given
workload. This changes the schedule search space and introduces new solutions for the model’s
mapper to consider. A slightly more direct relationship can be observed for latency, particularly
for bit-serial accelerators, which have a high parallelism potential (due to computation lanes)
that is not easily saturated. It is important to note that the y-axis follows a logarithmic scale
for bit-serial latency, due to the quadratic speed-up gains (equation 6.3). Timeloop [4] does not
support bit-serial PEs and as such is not compared to HW-FlowQ in the corresponding plots.

6.1.5 Cross-Abstraction Level Interactions

HW-FlowQ groups hardware-related design parameters into abstraction levels to facilitate the
interpretation of HW-CNN interactions (recall figure 6.3). The neighboring abstraction levels
must be cohesive to create a sensible flow between them, which can guide the designer and the
genetic algorithm towards a more efficient co-design strategy. For example, CNN workloads
(Coarse) directly affect the on-chip memory (Mid). However, the effect of a CNN workload
(Coarse) on the dataflow (Fine) is hard to understand without knowing the on-chip/off-chip
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interconnect (Mid) or the on-chip memory size (Mid) in between. The criteria are separated to
divide the complexity of CNN structure search (Coarse), interconnect/memory hierarchy search
(Mid), and compute architecture search (Fine).

= == Coarse
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Figure 6.6: Analysis of DRAM access and throughput on on-chip buffer size at different levels of hardware
abstraction and quantization.

In figure 6.6, the effect of changing the numerical precision of ResNetl18 for ImageNet on
off-chip (DRAM) accesses and computational throughput is investigated. These metrics can
be evaluated at all three abstraction levels, which makes them useful in highlighting the flow
between the levels. At the Coarse-level, the DRAM accesses are estimated as the CNN’s total
necessary reads and writes for all datatypes (inputs, weights and outputs). Since the Coarse-level
abstraction is agnostic to the on-chip memory details, all its corresponding dashed curves are
constant. However, among the Coarse-level curves, the difference in read/write volumes at each
quantization level (left plot), as well as the speed-up possible through vectorization (right plot) is
still captured.

Moving on to the Mid-level, the model can capture more details of the hardware. In this
case, the limitations of an under-dimensioned on-chip memory or an insufficient off-chip to
on-chip communication bandwidth can be detected. The Mid-level estimates are sensitive to
on-chip memory and communication, but semi-agnostic to the compute architecture. For this
example, the bandwidth of off-chip to on-chip communication is set to 8 bytes/cycle. On the
DRAM accesses plot, the solid lines approach the dashed (ideal) curves, as the on-chip memory
grows. More importantly, at lower numerical precisions, the Mid-level estimates meet the
corresponding Coarse-level estimates at smaller on-chip memory sizes. Moreover, the Mid-
level’s limited information on the computation architecture can still be used to detect bottlenecks
in communication and/or on-chip memory size. The Mid-level abstracts the details of the
compute architecture through the assumption that all PEs are fully utilized and can always
perform computations, if sufficient data is available. In the throughput plot, communication
bottlenecks for small on-chip memory sizes can be observed, which are not able to provide
the ideal computation architecture with enough data to fully utilize it. These communication
bottlenecks are more evident for CNN models consisting of multiple fully-connected layers
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(AlexNet and VGG-16). This behavior does not change with numerical precision, since smaller
bitwidths also increase the ideal computation throughput of vectorized PEs (i.e. Coarse-level
estimates get better).

At the Fine abstraction level, the model considers the CNN, the memory hierarchy, and the
compute architecture details (register files, dataflow, mapping, etc.). For this example, the
validated Eyeriss-256-DB from table 6.1 is used, with varying SRAM sizes. The Fine-level dotted
curves approach the Mid and Coarse curves at a slower rate, as the on-chip memory increases.
This is due to the other limitations of the computation architecture, which the Fine-level takes into
account (e.g. sub-optimal unrolling, limited register file sizes, etc.). The Fine-level provides much
more information (as shown in figure 6.2), but for the purpose of highlighting the cross-abstraction
level interactions, these are not discussed in this section.

The different bitwidth ResNet18s have different Coarse lines (dashed), which limit the the-
oretical optimum DRAM accesses and throughput. The Mid and Fine lines (solid and dotted),
which capture more hardware details, never surpass their respective dashed lines which are
defined at the Coarse stage. The search at the Coarse level provides these theoretical optimal
performance levels for a range of mixed-precision CNN quantization strategies, while subsequent
levels try to reach that optimum, by parameterizing the hardware. For example, if the target was
to achieve the theoretical best performance with respect to 4-bit Coarse, either the hardware can
be over-dimensioned, (dotted-diamond line at 512KB of on-chip memory) or the CNN can be
quantized down to 2-bit with an on-chip memory of 32KB (Mid and Fine triangle lines of 2-bit
touch/surpass the 4-bit Coarse line). Both options allow us to reach the theoretical optimum
set by Coarse for 4-bit, but each option would have a different effect on accuracy, where the
over-dimensioned hardware would achieve higher accuracy due to larger bitwidths, while the
2-bit CNN would have lower accuracy but a smaller on-chip memory design.

From figure 6.6, a multi-abstraction flow can be deduced, which can help the designer eliminate
hardware and CNN candidates at early stages of the co-design, without having to spend costly
GPU hours on training or synthesis and HIL-based testing.

6.1.6 Evaluation

HW-FlowQ is evaluated based on CIFAR-10 [27] and ImageNet [26] datasets for the classification
task and Cityscapes [147] for the semantic segmentation task. The SOK train images of CIFAR-10
are used for training and accuracy fitness i evaluation, while the 10K test images are used for
final accuracy evaluation at the end of the search. The images have a resolution of 32x32 pixels.
ImageNet consists of ~1.28M train and 50K validation images with a resolution of 256 x256
pixels. The Cityscapes dataset consists of 2975 training images and 500 test images. The images
of size 2048 x 1024 show German street scenes along with their pixel-level semantic labels of 19
classes.

Section 6.1.6.1 and section 6.1.6.3 highlight the flexibility of the HW-modeling tool and
search approach. To isolate and identify the effects of changing the HW-model on the resultant
quantization strategy, all other variables of the experiment are fixed, including the CNN workload
(ResNet20). In section 6.1.6.2, the hyper-parameters of NSGA-II and its convergence are studied.
Here, the task is made more complex by enlarging the quantization search space, and employing a
deeper 56-layer CNN. In section 6.1.6.4, HW-FlowQ is applied to a different task domain, namely
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semantic segmentation. The DeepLabv3 [175] model is used to study the effects of layer-wise
quantization on the encoder, bottleneck layers (including the atrous spatial pyramid pooling
(ASPP) block), and the decoder layers of the segmentation network. Finally, in section 6.1.6.5,
HW-FlowQ is compared with state-of-the-art methods of uniform and variable quantization,
further testing on wide and high resolution CNNs (ResNet18 for ImageNet). If not otherwise
mentioned, all hyper-parameters specifying the task-related training were adopted from the
CNN’s base model and its corresponding quantization method. The first and last layers are
kept at 16-bits, following the heuristic of other quantization works [35, 34, 36]. The hardware
metrics are generated based on the hardware configurations described in table 6.1. The vectorized
Spatial-256 HW-model with row-stationary dataflow is used in section 6.1.6.5 with additional
support for 1-bit (XNOR-Net). As a Coarse-level metric, fractional operations (Frac. OPs) is
used as a measure of CNN computation compression, with respect to the hardware it is executed
on. For example, Frac. OPs of a vectorized accelerator are computed as the layer-wise sum of
operations over the speed-up due to the respective layer’s quantization:

L
Frac.OPs = Z V(l7P81 (6.4)

=0 ~ speedup

Table 6.1: Hardware configurations and normalized access energy costs used for experiments and valida-

tion.
Specs | PE | DRAM | SRAM | Array | Registers
HW-Model ‘ Array ‘ Cost ‘ Size Cost ‘ Cost ‘ Size€ (itter, ifmap, psums) ~ COSt
Spatial-168* 12x14 200 128KB 6 2 224, 12, 16 Words 1

Spatial-256* 16x16 200 256KB  13.84 2 224,12, 16 Words 1
Spatial-1024* 32x32 200 3072KB  155.35 2 224,12, 16 Words 1

Eyeriss-1024 ‘ 32x32 200 3072KB  155.35 2 224,37, 16 Words 1

Eyeriss-256 - DB ‘ 16x16 200 128KB 741 0 192, 12, 16 Words  0.99
*: Same dimensioning for bit-serial (BS) and other dataflows (RS, OS, WS)

For experiments on CIFAR-10, the population size |P| is set to 25 and 50 for exploration
and comparison with state-of-the-art experiments respectively. The number of generations is
fixed to 50 for all CIFAR-10 experiments. Probabilities for mutation and crossover are set to
0.4 and 1.0 respectively. For ImageNet experiments, |P| and the number of generations are
scaled down to 10, while Cityscapes experiments have |P|=25 and for 10 generations. The CNNs
trained on CIFAR-10 are fine-tuned for 2 epochs and their accuracy fitness is evaluated on 10K
random samples from the train-set during the search. For ImageNet, 0.4 epochs of fine-tuning
are performed before evaluating on the valid-set. For Cityscapes, 10 epochs are necessary to
evaluate the candidate population. As explained in section 6.1.3.2, the accuracy fitness () is the
GA’s measure of the learning capacity of an individual. To avoid artificially biasing the search
algorithm towards individuals that perform well on the test set, the accuracy fitness is restricted
to train or validation set. This way, the framework does not indirectly “see” the test set during the
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search. After the search concludes, we fully train the chosen individual from scratch and report
its test set accuracy as “Accuracy Top-1" in the result tables.

6.1.6.1 A HW-CNN Co-Design Example

This experiment serves as a simple example of how the design levels can be used to iteratively
narrow down the range of solutions that could suit a potential application. Additionally, SOGA and
MOGA (NSGA-II) variants of the search algorithm, presented in section 6.1.3.2, are compared.
In a real use-case, a set of different CNNs can be considered at the start of the exploration, for
example, proposed by a NAS algorithm. For simplicity, ResNet20 is chosen as the baseline,
with task-accuracy of 92.47% on the CIFAR-10 dataset. At the Coarse-level, compression starts
with Frac. OPs being the target optimization criterion. Considering a vectorized accelerator,
the GA is allowed to maintain individuals that have bitwidths which are supported by the target
HW-accelerator. In this example, the bitwidths are restricted to by = by € {16,8,6,4,2}. In
table 6.2, the reduction in Frac. OPs with respect to the bitwidth restrictions given is around 75%,
at a task-related accuracy of around 89-90%. Assuming a higher accuracy/fractionalization or
lower CNN memory footprint was necessary, the condition b4 = by can be relaxed, allowing
the GA to find solutions with varying b4 and by, values. Additionally, more quantization levels
can be supported and expand the range {16,8,6,4,2} with intermediate quantization levels and/or
binary OPs. This would result in a more fine-grained search that results in new solutions that
achieve our desired task-accuracy and CNN memory footprint, at the cost of potentially more
complex hardware (supporting more by and b4 options for example). It is important to note
that NSGA-II offers a range of Pareto-optimal Frac. OPs vs. accuracy solutions (Accuracy
Pareto-leader: Top-1 accuracy of 90.70% at 63% o ps reduction; Compression Pareto-leader:
Top-1 accuracy of 89.34% at 77.09% ¢ ps reduction).

Table 6.2: ResNet20 for CIFAR-10 quantized at different abstraction levels of the Spatial-256 hardware
with SOGA and NSGA-IL

Configuration Accuracy | Accuracy HW-¢ N. Energy  Latency
(< ¢ >;< level >;< G >) Top-1[%] | Fitness [%] Fitness [%]*  [x107]  [x103cyc.]
Baseline (16 bit) | 9247 | - - 32.84 191
Frac. OPs; Coarse; SOGA 89.28 88.44 79.64

Frac. OPs; Coarse; NSGA-II 90.09 92.80 73.09

DRAM acc.; Mid; SOGA 89.18 91.93 67.79

DRAM acc.; Mid; NSGA-II 90.00 95.33 65.56

N. Energy; Fine; SOGA 89.45 91.18 51.05 16.07 52
N. Energy; Fine; NSGA-II 90.09 94.75 48.12 17.04 61
Latency; Fine; SOGA 88.44 86.21 78.71 14.94 41
Latency; Fine; NSGA-II 89.99 94.78 68.77 17.05 59

*: Measured as (1-(Compressed Metric/Baseline Metric))*100

Once satisfied with the CNN’s compression potential, the search can be refined to take the
off-chip to on-chip memory movement into consideration. The number of processing passes
(rounds of communication between off-chip to on-chip) necessary to complete all the compu-
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tations of a CNN can be estimated. The layer tiling and loop ordering can be searched for
different quantization strategies. For this example, the Mid-level estimates are based on DRAM
accesses when the on-chip buffer is dimensioned to 256KB. The CNN’s DRAM accesses can be
reduced by around 65% with respect to the 16-bit baseline CNN, while maintaining the same
accuracy that was targeted at the Coarse-level. Based on the bandwidth of the off-chip to on-chip
communication infrastructure considered, this can confirm that our dimensioning of the on-chip
buffer is in a good range to achieve a significant reduction of DRAM accesses, without having to
over-quantize our CNN and lose the task-related accuracy goal. Finally, the Fine-level estimates
give us a better understanding of how our CNN can be scheduled on a particular HW-model.
For this example, we proceed with the Spatial-256 configuration presented in table 6.1, with
row-stationary dataflow. Normalized energy can be reduced by around 50%, while maintaining
the target Top-1 accuracy from the higher abstraction levels. When considering latency, we
observe the drawback of the SOGA approach, not being able to decently balance accuracy and
the hardware-reward. Although the emerging solution maximizes the latency reward signifi-
cantly (78.71%), it leads to a considerable accuracy degradation (88.44%). The reward function
(equation 6.1) was designed to balance both accuracy and hardware-rewards, however, due to
the high potential of improving latency through quantization, we find that the SOGA algorithm
was willing to sacrifice the train reward 1) (down to 86.21%) to get a much larger overall reward
through latency ¢r,. This highlights the weakness of handcrafting reward functions to achieve
multi-criteria optimization. On the other hand, NSGA-II offers a range of solutions, from which
a well-balanced solution is shown in table 6.2, reducing latency by (68.77%) and maintaining
the task-related accuracy since the Coarse-level. The Pareto-optimal solutions for latency vs.
accuracy range from Top-1: 90.63% at 60.00% ¢, reduction, to Top-1: 89.37% at 72.74% ¢,
reduction. The set of all Pareto-front solutions is not shown in the table.

6.1.6.2 Multi-Objective Genetic Optimization using NSGA-II

To relieve the burden of designing a fair cost function, facilitate design space exploration, and
maintain a diverse set of Pareto-optimal solutions, NSGA-II is leveraged as the search technique
for the next experiments. The multi-objective capabilities are exploited to simultaneously con-
struct a Pareto-front which optimizes for task-related accuracy, energy, and latency, concurrently
in a single search experiment. To collect more information on the hyper-parameters of the
GA, the characteristics of the search space, and the relationship between quantization and the
optimization targets, the following experiments are performed on the Spatial-256 HW-model
with row-stationary dataflow and the deeper ResNet56 CNN, trained on the CIFAR-10 dataset.
As mentioned in section 6.1.3, the quantization search space has a size of Q?, where Q) is the set
of possible quantization levels and L the number of layers. The larger search space of ResNet56
(5°* solutions for ba = by € {16,8,6,4,2}) helps in verifying the scalability of the GA search
approach.

Figure 6.7 shows 2-D projections of the 3-D Pareto-fronts produced by three experiments, each
with a different population size |P| and/or number of generations. An increase in generation count
(left vs. middle) allows the Pareto-front to take a more convex form. On the other hand, increasing
the population size |P| results in an extended Pareto-front, finely covering a wider surface and a
larger hypervolume, however with similar form as the middle configuration. The solutions which
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Figure 6.7: 2-D projections of three 3-D Pareto-fronts for ResNet56 quantization: left to right (|P|,
generations) = (25, 25), (25, 50), (50, 50). Grey to black shades represent Pareto-fronts of
older to newer generations, red points belong to the final Pareto-front. It is recommended to
view this figure in color.

are most attractive, are those which offer a trade-off among the optimization criteria. For (|P|,
generations) = (25, 50) and (50, 50), the points which contribute the most to the total Pareto-front
hypervolume (lie at the apex of the convex Pareto-front) are comparable in hardware metrics
and accuracy fitness. The (|P|, generations) = (25, 25) configuration has solutions of equivalent
accuracy fitness, however, their hardware metrics are worse. With these insights, the number of
generations is fixed to 50 for all CIFAR-10 experiments to get better convergence. |P| is set to 25
for exploration experiments and 50 for comparison with state-of-the-art experiments.

The hypervolume occupied by the 3-D frontier can be measured at each generation to derive the
search convergence. As a decision-making technique, a reference point is extrapolated from the
polar solutions (worst in each dimension) of the final Pareto-front, and the farthest solution from
it in the frontier is found, based on Euclidean distance. In this work, this solution is referred to as
the hypervolume-leader (HV-leader), which offers a balanced trade-off among the Pareto-points
of the frontier.
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6.1.6.3 HW Modeling and Exploration

Quantization on Different HW Dimensions. In this experiment, three candidate hardware
accelerators are modeled to observe the effect of hardware dimensioning (computing units, buffer
sizes and memory access costs) on quantizing ResNet20 for CIFAR-10. Figure 6.8-a shows three
2-D projections of four 3-D Pareto-fronts optimizing task-related train reward 1, normalized
energy ¢ g and processing cycle latency ¢r. ¢ g and (r, are measured for processing 4 frames,
to compare with a batch-processing HW-model.

The three differently dimensioned spatial compute arrays (details in table 6.1) show similar
characteristics in the shape and form of their Pareto-fronts. A slight difference can be observed
for Spatial-1024, where its Pareto-front has a narrower latency range with respect to different
quantization strategies. This indicates that the loop unrolling capacity is already exploited at a
high degree due to the large PE-array, and cannot be improved much further through quantization.
This hints to Spatial-1024 being slightly over-dimensioned for the task. On the other hand,
Spatial-168 and 256 HW-models show a wider range of solutions for ¢ and ¢y, leaving more
room for exploiting quantization to meet a given constraint for the CNN under consideration
(ResNet20). In all three plots, a gap can be noticed between the 1024 model and the others,
indicating a good potential for testing a model dimensioned in between (e.g. 512 PE array).

Increasing the batch size to 4 on the Spatial-256 configuration shows an improvement in terms
of energy, bringing the Spatial-256 configuration closer to the energy efficiency of Spatial-168,
while maintaining the latency of the single-batch Spatial-256 configuration. This can be seen in
figure 6.8-a.

In table 6.3, the results of the baseline 16-bit ResNet20 executing on the 3 hardware config-
urations are shown, as well as a larger batch-size. Maintaining the desired accuracy threshold
of 90%, solutions are chosen from the Pareto-front of each hardware configuration. With this
accuracy requirement, the Spatial-1024 configuration can achieve a very low latency with respect
to other configurations, without over-quantizing the CNN. This comes at the cost of more energy
required by the execution, due to larger memories and more expensive access costs (recall costs
in table 6.1). For the small Spatial-168 hardware configuration, the latency is the highest, as it
needs to maintain an accuracy of 90% (i.e. cannot over-quantize), while processing on fewer PEs.
Nevertheless, the smaller design reduces the energy requirements of the execution. Finally, taking
a look at Spatial-256 with batch-size 4, an improvement in latency and energy can be observed
due to better reuse of the weights with respect to the batched inputs, bringing the energy of the
execution close to the small Spatial-168 accelerator.

Quantization on Bit-Serial Mixed-Precision Accelerators. So far, vectorized accelerators
have been considered, which support b4 = by € {16,8,6,4,2}. In this experiment, the underlying
computation unit is modified to observe the benefits that can be achieved for a bit-serial accelerator,
which supports any b4, by < 16 for any layer. All PEs have 16 computation lanes to allow for
higher throughput and partially compensate for the slower, serialized operations. The results of
this experiment are shown in figure 6.8-b.

An interesting difference can be observed when changing the dimensioning of the accelerator.
A larger bit-serial accelerator produces an even more compact Pareto-front, due to its ability to
maximize loop unrolling over the large PE-array, extended further with the computation lanes.
For the energy/latency graph (middle) more solutions appear for a particular energy and/or latency,
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Figure 6.8: 2-D projections of 3-D Pareto-fronts of 3 exploration experiments on ResNet20 for CIFAR-10
for hardware dimensioning, bit-serial processing and dataflow variants. It is recommended
to view this figure in color.

breaking the almost linear relationship between optimal energy and latency mapping observed
for vectorized accelerators (figure 6.8-a). This can be attributed to both the change in compute
architecture and the variations possible for both b4 and byy. In table 6.4, similar latency and
energy trends can be observed for bit-serial computation, as with vectorized computation for
batch-size 1. A Pareto-optimal solution is chosen for each hardware and trained to achieve an
accuracy above 90%. The smallest BS-168 is the slowest, yet the most energy efficient, while
BS-1024 significantly reduces the latency at the cost of more energy for data movement. The
improved effect of batch processing is more prominent for bit-serial accelerators. The 256-PE
bit-serial accelerator with batch processing offers a significant improvement in terms of energy,
bringing the 256-PE configuration to better energy efficiency than the smaller 168-PE counterpart
executing batch-size 1 inputs. Additionally, latency also gets a decent improvement of 13.5%.

This shows the advantages of relaxing the b4 = by constraint on the hardware and the GA
search.
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Table 6.3: Quantization of ResNet20 for CIFAR-10 on different hardware dimensions.

Configuration Accuracy | Accuracy v N. Energy ¢r / Latency ¢, /

(< choice >;< u >;< batch >) Top-1[%] | Fitness [%] 4 Frames [x107] 4 Frames [x103cyc.]
Baseline (16-bit); Spatial-168; 1 92.47 - 130.28 1128
Baseline (16-bit); Spatial-256; 1 92.47 - 131.36 764
Baseline (16-bit); Spatial-1024; 1 92.47 - 190.40 204
Baseline (16-bit); Spatial-256; 4 92.47 - 119.94 764
Pareto-Choice; Spatial-168; 1 90.31 94.22 64.80 343
Pareto-Choice; Spatial-256; 1 90.26 96.31 72.68 282
Pareto-Choice; Spatial-1024; 1 90.25 95.08 105.41 68
Pareto-Choice; Spatial-256; 4 90.03 95.19 66.09 259

Table 6.4: Quantization of ResNet20 for CIFAR-10 on bit-serial accelerators.

Configuration Accuracy | Accuracy v N. Energy ¢r / Latency ¢y, /

(< choice >;< 1 >;< batch >) | Top-1{%)] | Fitness [%] 4 Frames [x 107] 4 Frames [x 103cyc.]
Baseline (16-bit); BS-168; 1 92.47 - 141.07 20365
Baseline (16-bit); BS-256; 1 92.47 - 147.65 12296
Baseline (16-bit); BS-1024; 1 92.47 - 208.26 3326
Baseline (16-bit); BS-256; 4 92.47 - 137.57 12296
Pareto-Choice; BS-168; 1 90.17 94.90 68.36 2468
Pareto-Choice; BS-256; 1 90.37 92.91 75.58 1406
Pareto-Choice; BS-1024; 1 90.19 96.95 116.63 563
Pareto-Choice; BS-256; 4 90.33 92.10 62.01 1216

To further analyze this aspect, the layer-wise quantization strategy chosen by the GA for batch
sizes 1 and 4 on bit-serial accelerators are presented in figure 6.9. Layers with large activation
volumes can have lower bitwidth activations (low b4), while the weights can be kept at a slightly
higher bitwidth (higher by;/). The opposite can be done for layers with large filter volumes. This
extends the improvements to be gained on mixed-precision accelerators and larger batch sizes
(i.e. larger activation volumes). In figure 6.9, the quantization strategy chosen for batch size of 4
reflects the GA’s attempt to compress the large activations more aggressively than for batch size
of 1, particularly for the first half of the CNN. To compensate for the potential accuracy loss, the
GA maintains larger weight bitwidths by, for batch = 4. The resulting quantized CNNs of both
batch 1 and batch 4 have an equivalent accuracy (~90.3%), but with a noticeable improvement in
hardware metrics for batch size of 4, due to the GA taking the capabilities of the hardware into
account.

Quantization on Different Dataflows. To demonstrate the effect of quantization on dataflows,
a WS dataflow and an OS dataflow are presented. WS unrolls computations in dimensions C, and
C; over the processing element array, while OS unrolls X, and Y,, and replicates the unrolling
over C,. Both WS and OS support channel interleaving in order to maximize their register
utilization, similar to the RS dataflow.
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Figure 6.9: Layer-wise bitwidth strategy for BS-256 hardware. Batch size 1 (left) and 4 (right). NSGA-
IT compensates for larger activations (batch=4) by lowering b4 and maintains accuracy by
increasing by, when compared to batch=1 inference.

Table 6.5: Quantization of ResNet20 for CIFAR-10 on different dataflows.

Configuration Accuracy | Accuracy i» N.Energy por Latency pr,
(< choice >;< u >;< batch >) Top-1[%] | Fitness [%] [x107] [x103cyc.]
Baseline (16-bit); Fine; 0S-256;1 92.47 - 46.33 159
Baseline (16-bit); Fine; WS-256;1 92.47 - 69.40 166
Baseline (16-bit); Fine; RS-256;1 92.47 - 32.84 191
HV-Leader; Fine; OS-256;1 89.99 93.98 16.36 48
HV-Leader; Fine; WS-256;1 89.11 90.87 20.54 97
HV-Leader; Fine; RS-256;1 89.65 95.19 17.20 64

The baselines in table 6.5 show RS is the most energy-efficient, while OS offers the best
latency. WS is placed in the middle in terms of latency but has worse energy efficiency when
compared to the other considered dataflows. The Pareto-fronts of quantization strategies in
figure 6.8-c demonstrate the effect of dataflows on three accelerators, which are otherwise
identical in dimensioning. WS proves to be highly sensitive to quantization, having many unique
non-dominated combinations of ¢ g, ¢, and 1. Generally, WS is the least efficient in terms of
latency and energy, for a particular train accuracy . OS dataflow enjoys its lead in latency, due
to a higher potential of unrolling as a result of quantization over vectorized PEs (each vectorized
PE acts as Vipeequp Virtual PEs). Consequently, its energy rivals that of RS. The higher parallelism
degree on a single SIMD-vector engine reduces the total cost of MAC operations. Furthermore,
since the loop unrolling is taking place across the array as well as within the vectorized PEs,
fewer PE-to-PE hops are required to achieve the unrolling of the mapper, resulting in less array
data movement energy.

6.1.6.4 Mixed-Precision Quantization for Semantic Segmentation

The semantic segmentation task is critical to applications in robotics and autonomous driving.
High-quality segmentation can be more computationally complex by several orders of magnitude,
when compared to classification tasks (e.g. table 6.6). This is related to both, the typically larger
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Figure 6.10: Layer-wise bitwidths (by=b4) of a DeepLabv3 Pareto-choice strategy with 67.3% mloU on
Cityscapes. Short and parallel layers have b 4 equal to their respective bottom layer.

input image resolution and the additional layers needed for semantic segmentation (bottleneck,
ASPP block and decoder layers).

For the DeepLabv3 network executing on Eyeriss-1024 (details in table 6.1), HW-FlowQ must
adapt to the task’s training challenges, particularly on low-bitwidth (<4-bit) configurations for
PACT quantization, which often lead to exploding gradients. Despite this difficultly of PACT,
HW-FlowQ produced the Pareto-choice candidate shown in figure 6.10, which achieved 67.3%
mean intersection over union (mloU) with a 21.6% reduction in fractional operations over uniform
8-bit PACT quantization of DeepLabv3 (shown in table 6.6). In figure 6.11, qualitative semantic
segmentation results are shown for uniform 8-bit PACT and the HW-FlowQ Pareto-choice, for
three example scenes in the Cityscapes dataset. These results show an impressive potential of
mixed-precision low-bitwidth quantization on complex semantic segmentation tasks, potentially
with more advanced quantization techniques under HW-FlowQ in future work.

6.1.6.5 Comparison with State-of-the-Art

In this section, HW-FlowQ is compared against state-of-the-art quantization approaches on
shallow, deep, and wide CNNs for classification and semantic segmentation tasks. DoReFa-
Net [35] and PACT [36] indicate uniform quantization with the respective method. The PACT
method for weights and activations propagates the gradients better during training for deeper
and wider networks; therefore, ResNet56, ResNet18, and DeepLabv3 were compared against
it. The work in HAQ [7] was reimplemented and the reward in equation 6.1 was adapted to
the RL-agent. The RL-agent was integrated with the HW-model p and thoroughly tested with
different agent hyper-parameters to achieve the convergence behavior depicted in [7]. The agent
achieved better results when optimizing for latency, as such, the respective results are quoted. In
all cases, HW-FlowQ and HAQ use the same quantization method as the works they are compared
against in the table. Finally, XNOR-Net is presented as a BNN variant to compare with a highly
efficient implementation.

For ResNet20, the HV-leader provides energy and latency reductions of 48% and 69% while
maintaining a Top-1 accuracy of 90.15%. In contrast, HAQ achieved a reduction of 42% and 57%
for energy and latency. For ResNet56, our HV-leader achieved equivalent energy and latency to
PACT (4-bit), while maintaining better accuracy. The HV-Leader achieved an improvement of
20% and 45% over HAQ for energy and latency, at an equivalent Top-1 accuracy of 92%. The
improvements over HAQ go beyond these results. The RL-based approach in HAQ has the same
limitations as SOGA, namely the aggregation of multiple criteria into one cost function. Our
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Labels PACT-8 [36] Pareto-choice

Figure 6.11: Qualitative results of DeepLabv3 quantization on Cityscapes scenarios. Black regions have
no ground-truth labels. Pareto-choice has 21.6% Frac. OPs compression compared to
uniform 8-bit PACT. It is recommended to view this figure in color.
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Table 6.6: Comparison of HW-FlowQ with state-of-the-art quantization methods on Eyeriss-256 Vector-

ized.
Model/ Method Accuracy | F.Ops N.Energy Latency
Dataset Top-1[%] | [x10%]  [x107]  [x103cycles]
Baseline (16-bit) 92.47 41 33 191
g < DoReFa-Net (4-bit) [35] 89.75 10 16 51
:ag % DoReFa-Net (2-bit) [35] 87.16 5 14 43
el XNOR-Net (1-bit) [34] 83.98 3 15 17
®O HAQ [7] 89.75 17 19 83
HV-Leader [This Work] 90.15 12 17 60
Baseline (16-bit) 93.89 125 101 588
g S PACT (4-bit) [36] 90.96 32 48 155
% Eé PACT (2-bit) [36] 90.43 16 42 80
o) XNOR-Net (1-bit) [34] 85.61 8 47 48
O | HAQIT] 92.07 56 61 279
HV-Leader [This Work] 92.00 30 49 154
o = Baseline (16-bit) 69.01 1814 1489 9498
2z > PACT (4-bit) [36] 66.59 542 822 3070
4 gn PACT (2-bit) [36] 63.59 330 703 1897
& E XNOR-Net (1-bit) [34] 52.51 224 676 1230
HV-Leader [This Work] 67.02 551 821 3191
. Baseline (16-bit)* 69.68 147367 140057 273588
é § PACT (8-bit) [36]* 69.95 76028 92035 134395
= :é XNOR-Net (1-bit) [34]* 58.51 13606 39148 71559
g 5 Pareto-Choice [This Work]* 67.30 59616 87475 121422

*: Executed on Eyeriss-1024

MOGA approach through NSGA-II inherently supports multi-criteria optimization. The designer
does not need to handcraft a reward function which fairly captures all the optimization targets
in one reward value. For the ImageNet experiment, a HV-leader with an accuracy of 67.02%

and hardware estimates comparable to PACT (4-bit) was achieved in only 10 generations and
|P|=10.

6.1.7 Discussion

HW-FlowQ optimizes CNNs by finding quantization strategies based on high-fidelity HW-model-
in-the-loop setups. Abstraction levels and design phases inspired by VLSI design flows help
in systematically narrowing down hyper-parameters for both the CNN and hardware design,
exposing HW-CNN co-design synergies. Exploring vectorized and bit-serial compute engines,
the performance trade-offs for different mixed-precision workloads can be exploited by the GA.
The effectiveness of NSGA-II was demonstrated, offering a Pareto-optimal set of quantization
strategies for different HW-models during the optimization process. The HW-models introduced
in this work provide the metaheuristic method, i.e. the genetic algorithm, with all the necessary
details to autonomously make decisions on CNN design and compression. Transitions between
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the design abstraction levels can also take place in an automated manner, whenever target
application constrains are met. The effectiveness of models, abstraction levels, and metaheuristics
is demonstrated in this work, providing a comprehensive example of fully-automated HW-CNN
co-design.
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6.2 AnaCoNGA: Analytical HW-CNN Co-Design using Nested
Genetic Algorithms

After demonstrating the effectiveness of analytical models for automated HW-DNN co-design
in HW-FlowQ, a subsequent framework was proposed to push the limits of automation further.
AnaCoNGA is an analytical co-design methodology which enables two genetic algorithms to
evaluate the fitness of design decisions on layer-wise quantization of a neural network and
hardware resource allocation. Quantization strategy search (QSS) quantizes weights and activa-
tions of each layer to maximize deployment efficiency, while maintaining task-related accuracy.
Hardware architecture search (HAS) finds optimal hardware designs which minimize resource
utilization and maximize performance metrics of the deployment. AnaCoNGA embeds the HAS
algorithm into the QSS algorithm to evaluate the hardware design Pareto-front of each considered
quantization strategy. The co-design framework harnesses the speed and flexibility of analytical
HW-modeling to enable automated, parallel HW-CNN co-design. With this approach, QSS is
focused on seeking high-accuracy quantization strategies which are guaranteed to have efficient
hardware designs at the end of the search. AnaCoNGA improved task-accuracy by 2.88 p.p. with
respect to a uniform 2-bit ResNet20 on CIFAR-10, and achieved a 35% and 37% improvement
in latency and DRAM accesses, while reducing LUT and BRAM resources by 9% and 59%
respectively, when compared to a standard edge variant of the accelerator.

6.2.1 Introduction

An example of a HW-DNN co-design scenario is the numerical quantization of CNN and the
hardware design of a bit-serial accelerator. As mentioned in previous chapters, CNNs benefit from
layer-wise and datatype variable numerical precision [7]. To extract the mentioned benefits of
variable numerical precision, a hardware accelerator can employ bit-serial computation units [6].
Such an accelerator can have an array of spatially distributed computation units and a distributed
on-chip buffer to efficiently provide the computation array with data.

For an automated co-design framework to effectively arrive at a solution that meets an appli-
cation’s constraints, a large and complex solution space must be explored. This motivates the
development of a lightweight, easily reconfigurable HW-models, which can be used to evaluate
design choices in this complex space [101, 4]. Harnessing the speed and flexibility of such
HW-models can enable the parallel co-design of HW and CNN, without prohibitive synthesis or
cycle-accurate simulation bottlenecks.

AnaCoNGA embeds HAS into QSS, in a nested GA formulation. The main contributions of
this work can be summarized as follows:

* Formulating an analytical HW-model for the execution of CNN workloads on a state-
of-the-art bit-serial accelerator [6], allowing fast exploration and evaluation of hardware
performance and resource utilization, without the need for costly synthesis or cycle-accurate
simulation.

* Automating the design of a bit-serial accelerator through MOGA-based HAS, circumvent-
ing the need for handcrafted reward functions.
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* We insert the HAS loop into the QSS loop. For each potential QSS, the HAS loop efficiently
evaluates a 4-D HW design Pareto-front. After synthesis, the HW-CNN co-designed pair
achieve a 35% and 37% reduction in latency and DRAM accesses, while achieving 2.88
p-p- higher accuracy compared to a 2-bit ResNet20-CIFAR-10 executing on a standard
edge variant of the accelerator.

6.2.2 Related Work
6.2.2.1 CNN-Aware Hardware Design

AutoDNNCchip [33] proposes a framework for automated ASIC/FPGA design of a hardware
accelerator for a given performance target and a specific CNN model. The design space is
explored with a performance model to select candidate hardware architectures, followed by a
run-time simulation to optimize their pipelines. MAGNet [32] is an accelerator generator for
CNNs based on a reconfigurable, tile-based spatial array. A baseline accelerator is iteratively
mapped and evaluated for a target CNN and then tuned using Bayesian search. Both [33] and [32]
support mixed-precision computation, but do not explore the layer-wise quantization search space.
The works which fall under this category resemble the HAS loop presented in section 6.2.3.3.

6.2.2.2 Joint HW-CNN Co-Design

NHAS [88] aims to find an optimal quantized CNN architecture using an evolutionary algorithm.
An efficient hardware dimensioning for the compute array and on-chip memory is searched to
accelerate a pool of CNN workloads used as a benchmark. After the hardware is configured,
the CNN search space is explored. The hardware evaluation follows a look-up table approach
due to the smaller quantization search space considered. This sequential approach of co-design
can be enhanced by including the hardware design search within the CNN search loop. Other
works which target joint HW-CNN co-design are [167] and [176], both of which include the
hardware’s performance in the reward function of an RL-agent and iteratively tune both the CNN
and hardware architectures. Fine HW-level details, such as scheduling schemes and quantized
execution, are not explored in [167], as the optimization loop targets optimally partitioning the
CNN workload over a pool of FPGAs. In [176], layer-wise quantization is not supported.

AnaCoNGA is a nested co-design approach to perform hardware design parallel to the quan-
tization search, leading to a tight coupling between the HW and CNN, without iteratively or
sequentially switching between the two domains. The classification of the mentioned works is
shown in Tab. 6.7.

6.2.3 Methodology
In this section, the three main components of AnaCoNGA are presented, namely the analytical

accelerator model, the QSS algorithm, and the HAS algorithm, followed by integration of the
components into the framework.
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Table 6.7: Classification of HW-CNN optimization methods.

Classification HW Metrics Com(;:(l:ision HW Design szzlsliegln
QSS [7, 84] | v v X X
HAS (33, 32] | v X v X
QSS+HAS [176, 167, 88, 10] | v v v X
AnaCoNGA (Ne‘s/ted) v (Ne‘s/ted) v

6.2.3.1 Bit-Serial Accelerator Modeling for BISMO

Convolutional and fully-connected layers can be lowered into a GEMM by representing the weight
tensor W' and activation tensor A'~! of layer [ as 2-D matrices Maty, and Mat,4 (equation 6.5).
The dimensions m and n represent the rows and columns of each matrix.

Matyy € R™WX"W  Maty € R™AX"A
Al = Conv(W', AI=1) = Maty, x Mat,

Note that transposing both matrices and switching their order would also produce the con-
volution result. Therefore, we will refer to the matrix positions instead of the datatype for the
remainder of the text. LHS is the left-hand side matrix, while RHS is the right-hand side. For
readability, m rows and n columns will appear as subscripts of the corresponding matrix when
referring to its dimensions, e.g., LHS,, is the number of columns of the left-hand side matrix.

The BISMO accelerator [6], abstracted in figure 6.12, is composed of a D,,, x D,, array of
PEs. Each PE is responsible for the dot-product of one row of the LHS against one column of the
RHS. Due to the bit-serial decomposition of the GEMM operation, the same row and column
must be computed as many times as the bitwidths of its operands necessitate. This decomposition
is elaborated in [6]. Typically, D,,, x D,, is much smaller than the layer’s LHS,,, x RHS,,. The
computation must be broken down into smaller D,,, x D,, sized tiles. Furthermore, each PE can
perform Dy, binary dot-products in parallel, whereby the row-column dot-product is computed
in tiles of Dy, if the inner-product of LHS and RHS is greater than Dj. To maintain structured
parallelism across the computation array, the LHS and RHS matrices are padded to obtain
matrices that are divisible by the dimensions of the array. Equation 6.6 shows the computation to
obtain the padded dimensions of both matrices.

(6.5)

Padded LHS,, = LHS,,, + D,, — (LHS,, mod D,,)
Padded_LHS,, = LHS,, + D;, — (LHS,, mod Dy,)
Padded_RHS,,, = Padded_LHS,,

Padded RHS,, = RHS,, + D,, — (RHS,, mod D,,)

(6.6)

With the padded matrices, the number of tiles necessary to complete the computation can be
expressed in equation 6.7.
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T,, = Padded LHS,,,/D,,,, T,, = Padded RHS,,/D,,,

6.7)
Tk = PaddedLHSn/Dk

Knowing the size of the padded matrices and the number of tiles necessary to complete the
GEMM operation, the size of each tile can be computed in bytes according to figure 6.8, where
LHSyjts is the numerical precision of the LHS elements.

LHS Tyies = Padded_LHS,, - Ir’raddzd,LHSn - LHSpjs ©6.8)
-

The total number of binary operations of the workload can be computed simply by observing
the dimensions of the GEMM matrices and the bitwidths of each matrix’s elements (equation 6.9).
However, through the padding action in equation 6.6, superfluous computations were introduced
in order to maintain structured parallelism on the PE array. The degree of operation efficiency
nops can be computed as the ratio of workload-related operations to padded operations, as shown
in equation 6.9.

Bin_OPs = LHS,,, - LHS,, - RHS,, - LHSp;s - RHSpjs - 2
Bin_OPs (6.9)
Padded_Bin_OPs

DRAM requests relating to the LHS depend on both T,,, and T,,, whereas RHS elements are
only requested T, times (see equation 6.10). This is a function of BISMO’s standard scheduler
maintaining reuse of the RHS matrix. Since each T,,, of the LHS must be computed against
all tiles T;, of the RHS, the scheduler keeps the RHS tiles on chip until they have been used
exhaustively. When a new tile of RHS is loaded, all T,,, tiles of the LHS must be called again to
be computed with it. This has direct implications on execution, which our modeling approach can
exploit. Recall in equation 6.5, transposing Maty, and Mat4 and reversing their order results in
the convolution as well. Therefore, depending on the convolutional layer being computed (weights
dominated or activation dominated, deep layer vs. shallow layer), choosing the right matrix
position (RHS vs. LHS) for weights and activations could improve the inference performance.

Tlops =

DRAM; s = Ty, - Ty, - LHS Tpyes, DRAMRgps = T, - RHS Tyes
DRAMResuit = LHS,,, - RHS,, - 4, 32-bit write-back (6.10)
DRAMrya1 = DRAMy s + DRAMRgus + DRAMRequle
Finally, looking at the cycles spent for computation, each bit of each tile of each matrix must
be computed against the bits from the other matrix. Additional cycles are spent as part of the
pipeline for each bit combination on each T,, computed against T,,. The BISMO accelerator

overlaps data transfers with computation, resulting in equation 6.11 being sufficiently accurate
for design space exploration.

Compute_Cycles = (T, - Tp, - T - LHSpjs - RHSpis )+
Tin - Tr - (8 - (LHSpiss - RHSpigs + 1) +3) +2- T, (6.11)
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LHS RHS

RHSbits

Figure 6.12: High-level abstraction of a bit-serial accelerator [6]: The dimensions D,,,, D,,, Dy determine
the tiling degree of matrices RHS and LHS.

With this analysis, workload execution metrics can be evaluated with respect to hardware pa-
rameters such as compute array dimensions D,,,, D,,, D, as well as on-chip buffer sizes for LHS
and RHS without having to synthesize the HW each time. The analytical model introduced
in this section is used to perform fast exploration and design of the hardware as an example.
It is important to note that AnaCoNGA is not limited to this hardware analytical model; the
optimization loops introduced in the next sections can potentially be used to harness the speed and
flexibility of more advanced fast analytical hardware models in literature, such as CoSA [101],
GAMMA [102] or ZigZag [177].

6.2.3.2 Genetic Quantization Strategy Search (QSS)

The quantization strategy search (QSS) is essentially the search space introduced in HW-FlowQ
(section 6.1.3.2). To recap, for an L-layer CNN, there are Q” solutions, where Q is the set of
possible quantization levels for weights and activations. It is important to note that QSS can be
applied to any quantization technique (DoReFa [35], PACT [36], or others), as it only tries to
find the best bitwidths for each layer and datatype. A MOGA is used to tackle the multi-criteria
optimization problem of maximizing accuracy and minimizing hardware execution complexity.
No hardware design takes place in this search.

An initial population Py is randomly generated, with each genome encoding a quantization
strategy, i.e. a quantization tuple (WL, , Aéisl) for each layer of the CNN (explicit, bijective
encoding). The genomes of P are briefly fine-tuned and evaluated based on their task-accuracy
on a validation set. When using standalone QSS, the GA must additionally consider the fitness of
the quantized CNNs on hardware estimates (DRAM accesses and computation cycles). Based on
the three fitness metrics, the Pareto optimality of each individual is identified with respect to the
population P. The population goes through phases of selection, crossover and mutation for the

subsequent generations, producing Pareto-optimal CNN quantization strategies.
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Table 6.8: Hardware configurations used for model validation.

Config | D,,, xD,, D, LHS Buffer RHS Buffer

HW1 4 x4 128 128KB 128KB
HW2 4 %8 256 128KB 256KB
HW3 8 x 8 256 256KB 256KB

6.2.3.3 Genetic Hardware Architecture Search (HAS)

A second GA is formulated to allocate and optimally dimension the hardware. Each individual’s
genome captures hardware design decisions, namely D,,, D,,, Dy, LHS Buffer, and RHS_Buffer
at each genetic locus. Here, uniform crossover is used instead of single-point, as maintaining
neighboring genetic loci does not necessarily lead to better solutions, since each hardware
dimension affects a different dimension of the GEMM operation. The fitness criteria of this GA
are the hardware design’s execution performance (compute cycles and DRAM accesses) of a
predetermined quantized CNN, as well as the amount of FPGA resources (BRAMs and LUTs)
it requires for its allocation. To estimate the FPGA resource utilization of a genome, we use
the model proposed by Umuroglu et al. [65]. For performance criteria, the model presented in
section 6.2.3.1 is used. NSGA-II is applied to this 4-dimensional solution space as it can return a
multitude of Pareto-optimal solutions for the designer to choose from.

6.2.3.4 Model Validation and Real Hardware Measurements

To validate the proposed analytical hardware model, we synthesize three differently dimensioned
BISMO accelerators, detailed in table 6.8. HW1 and HW3 represent small and large accelerators,
while HW2 has an asymmetric processing element array. Small and large GEMM operations
are tested on all three accelerators by executing all the convolutional and fully-connected layers
of ResNet20 for CIFAR-10 (small) and ResNet18 for ImageNet (large), with 4-bits for weights
and activations. The hardware measurements are collected from profiling registers built into the
accelerator and read out at the end of the execution. In figure 6.13, the results of the HW-model’s
accuracy and fidelity are presented, compared to the synthesized hardware. Compute cycles and
DRAM accesses are the considered execution metrics. The high accuracy and correlation of the
measured and estimated values make the model well-suited for design space exploration. This
HW-model is used for exploration, however all the results reported in the final table 6.10 are on
real, synthesized hardware. The HW-model circumvents the need for repeated synthesis, HIL
setups, cycle-accurate models, or construction of a look-up table. This drastically speeds up
experiments, allowing us to run the GA for more generations and larger populations, resulting in
better search outcomes.

6.2.3.5 AnaCoNGA: Nested HW-CNN Co-Design

The QSS and HAS loops present a causality dilemma: what comes first, the optimized hardware
or the CNN quantization strategy? In section 6.2.2, we mention existing methods which tackle
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Figure 6.13: Validation of the HW-model vs. real HW measurements for compute cycles and DRAM
accesses on three BISMO configurations (HW1-3). Small and large workloads are verified
from ResNet20-CIFAR-10 (left) and ResNet18-ImageNet (right).

this challenge sequentially or iteratively. To perform true co-design, both hardware and CNN
need to be jointly and concurrently considered.

One approach is to combine HAS genomes with QSS genomes into one GA. However, this
would result in a prohibitively complex, large search space (4.77 x 1037 for ResNet20 on
the considered bit-serial accelerator), with many direct and indirect relationships between the
hardware and quantization parameters. The complex, joint search space would also necessitate
larger populations and generations for the GA, leading to excessive GPU hours. Another approach
could be to iterate between the search spaces [88, 167, 176]. An iterative approach brings us to
the same dilemma, since the hardware was initially biased for a different quantization strategy,
and a newly found HW-CNN combination is sub-optimal with respect to another combination,
which had a different quantization strategy prior.

To tackle this challenge, the two genetic algorithms are nested in AnaCoNGA, as shown in
figure 6.14. On the one hand, the HAS GA requires roughly ~1.5 minutes to execute for 200
generations and 200 hardware genomes and can be parallelized. This is due to the fast analytical
HW-model in section 6.2.3.1, and the LUT/BRAM utilization models proposed in [65]. On
the other hand, the QSS genetic algorithm requires some epochs of fine-tuning to evaluate the
accuracy of a potential quantization genome. This can be a costly fitness evaluation process
for larger networks and datasets. When nesting the HAS GA into the QSS GA, we can exploit
the speed of the HAS loop to evaluate the hardware design Pareto-front for each considered
quantization genome (parallel HAS blocks in figure 6.14). In each HAS experiment, a 4-D
Pareto-front of hardware designs is generated for the respective quantization genome. The 4-D
hardware Pareto-front is checked for solutions that meet our target hardware constraints. If no
solution in the HAS Pareto-front satisfies our hardware requirements, then the QSS receives a
signal to remove the genome’s fine-tuning step and assign it a null accuracy, without wasting any
GPU training time (feedback line from HAS to QSS in figure 6.14). With this approach, the QSS
is relieved from optimizing hardware metrics and can now be reformulated into a single-objective
genetic algorithm (SOGA), which is solely focused on improving the accuracy of the quantized
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Figure 6.14: AnaCoNGA: Each individual from QSS executes its own HAS MOGA. Any QSS individual
can prove itself efficient on its own hardware design to get a chance for its accuracy to be
evaluated. QSS is relieved from optimizing hardware and is transformed to a SOGA (i.e.
accuracy focused).

CNNs. QSS essentially allows each quantization genome to evaluate its own hardware design
space before accepting them into the population. Therefore, two radically different QSS genomes
could meet the target hardware constraints (DRAM, computation cycles, BRAM and LUTs) by
finding themselves specialized hardware designs in their respective HAS explorations. This way,
the hardware design remains flexible (undefined) on the scale of the overall experiment, but is
guaranteed to exist for any genome which is eventually chosen by the QSS at the end of the search.
AnaCoNGA'’s design loops enable the use of analytical HW-models such as [101, 102, 177],
harnessing their speed and flexibility to achieve parallel, fully-automated, HW-CNN co-design.

The described nested search algorithm is elaborated explicitly in algorithm 6.1.
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Algorithm 6.1 Nested Genetic Algorithm: AnaCoNGA Co-Design

P < GeneratelnitPopulation(PopSize)
HW <« SetTargets(LUT, BRAM, Cyc, DRAM)

P <+ EvaluateFitness(P, HWWV) > Init Population Eval.
while P.Generation < FinalGeneration do
O «+ Crossover(P) > Produce Offspring
O « Mutate(O, p,,) > Mutate with probability p,,
P < EvaluateFitness(O, HW) > Evaluate O and append to P
P < SOGASelection(P) > Select only w.r.t. Accuracy
return P.HallOfFame > Return best solutions
function EVALUATEFITNESS(P, HW)
for pin P do > Each individual p in population P
p.HWParetoFront <— HAS_NSGA2(p) > MOGA
if any HW in .. HWParetoFront satisfies {1}V then
p.Acc < Finetune(p) > GPU time for individual
else > No guarantee from HAS on efficient H)W
p.Acc < null > Discarded at SOGA selection

6.2.4 Evaluation
6.2.4.1 Experimental Setup

AnaCoNGA is evaluated on CIFAR-10, CIFAR-100, and ImageNet datasets. The 50K train and
10K test images of CIFAR-10 and CIFAR-100 are used to train and evaluate the quantization
strategies. ImageNet consists of ~1.28M train and 50K validation images. After an ablation
study, we set the population size and number of generations to 50 for QSS GAs on ResNet20.
Probabilities for mutation and crossover are set to 0.5 and 1.0, respectively. For ResNet56, we
reduce the running population size |P| to 25. For ResNet18-ImageNet experiments, | P| is set to 25
and the number of generations is reduced to 25. The CNNs trained on CIFAR-10 are fine-tuned for
3 epochs and evaluated on 10K random samples during the search. For ImageNet, we fine-tune for
1.5 epochs before evaluating on the valid-set. The quantization method for ResNet20 experiments
is DoReFa [35], while deeper (ResNet56) and higher resolution (ResNet18) experiments use the
PACT method [36]. Results denoted with (2, 4-bit) indicate 2-bit weights and 4-bit activations.
For comparison, binarized variants are trained using the XNOR-Net method [34].

The Xilinx Z7020 SoC on the PYNQ-Z1 board is used as the target platform for all hardware
experiments in table 6.10 and figure 6.16, with all designs synthesized at a 200MHz target
clock frequency. For HAS experiments, both the population size and generations are set to 200,
since no significant improvement was observed for larger experiments. Mutation and crossover
probabilities are set to 0.4 and 1, respectively. In table 6.10, AnaCoNGA’s nested HAS GA uses
the respective (2, 4-bit) configuration’s hardware performance as its hardware constraint/target.

Table 6.9 shows the valid alleles which can be used in genomes. The # symbol indicates the
parameters that can take different values within a genome. Valid alleles are chosen within ranges
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of dimensions synthesizable on the Z7020. Larger designs (larger search space) are feasible on
larger FPGAs [65].

Table 6.9: Hardware and quantization search space.

Parameter ‘ Valid Alleles

D,,,D, ‘ 2,4,6,8,10, 12, 14, 16, 32, 48, 64 D,;, # D,
Dy, ‘ 64, ..., 512, steps of 32
LHS _Depth 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096
RHS Depth | Bits per Dy, per D,,, or D,,, LHS Depth  RHS _Depth
1,2,3,..,8
1 . Al—l ’ ’ > ’
Waits: Abits Wi, # AL independent for each € L

6.2.4.2 Quantization Strategy Search (QSS) Loop Evaluation

To evaluate the standalone QSS space, the accelerator dimensions are fixed to measure the
hardware fitness metrics of each potential solution considered by the GA. The HW3 configuration
is chosen from table 6.8, as it is one of the BISMO configurations proposed in [6] and used as the
standard CNN edge accelerator in [7]. Figure A.1 shows 2-D projections of the 3-D search space
of the QSS loop compressing ResNet20 for the CIFAR-10 dataset. To visualize the progress of
the algorithm, old-generation Pareto-fronts are plotted in grayscale (darker points indicate newer
generation Pareto-fronts), while red crosses belong to the final Pareto-front. The projections reveal
a loose correlation between DRAM accesses and compute cycles, as well as a convex Pareto-front
between prediction accuracy and hardware efficiency. From this Pareto-front of quantization
strategies, a solution can be chosen to fit the needs of the application. After fine-tuning uniformly
sampled individuals from the Pareto-front, solutions ranging from 89.44% down to 86.45% in
Top-1 prediction accuracy are found, with increasing degrees of hardware efficiency. Picking
the solution which gives us an accuracy of 89.44% provides a reduction of 55.4% in DRAM
accesses and 74% in computation latency with respect to a uniform 8-bit execution. In table 6.10,
the results of standalone QSS solutions chosen for ResNet20 are detailed, as well as the more
difficult search problem of ResNet56 quantization, which has a larger quantization search space
(recall QSS space = Q>L), for both CIFAR-10 and CIFAR-100. The results show standalone QSS
producing non-dominated strategies with respect to uniform quantization, on the HW3 BISMO
design.

6.2.4.3 Hardware Architecture Search (HAS) Loop Evaluation

To evaluate the standalone HAS loop, the hardware search is executed for uniform 8-bit and 4-bit
variants of ResNet20 for CIFAR-10 and the larger ResNet18 for ImageNet. Figure 6.15 shows
2-D projections of the final 4-D Pareto-fronts achieved by HAS, optimizing for computation
latency, DRAM accesses, and BRAM and LUT utilization. A clear shift can be noticed in the
hardware design space when the quantization strategy changes, even for the tested uniform
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strategies. Another observation is that the shift is not only due to the more efficient execution
metrics of 4-bit vs. 8-bit, but also due to new legal scheduling options on differently dimensioned
accelerators. This can be seen in the non-overlapping circle and cross markers of the BRAM vs.
LUTs 2-D projection plot, indicating different hardware dimensions being optimal for the 4-bit
and 8-bit CNNs, while respecting the resource limitations of the Z7020 FPGA. The 2-D projection
of computation cycles against LUTs for ResNet18 shows the effect of legality checks in the
analytical model on the shape of the Pareto-front. The cross marks (8-bit) do not extend beyond
28K LUTs of logic, indicating that larger computation arrays cannot allocate the associated
BRAM requirements to fit a single minimum-sized tile of computation for one or more of the
ResNet18 layers (i.e., design not synthesizable, or computation not possible). Therefore, the size
of synthesizable computation arrays with sufficient BRAM to feed the array with minimum tile
sizes is restricted with the 8-bit CNN. On the other hand, the circle markers (4-bit) of the same
plot extend to larger LUT utilization, indicating the existence of large synthesizable compute
arrays, with sufficient BRAM to load smaller tiles of the smaller 4-bit ResNet18.

Further HAS results are presented in table 6.10, applied to the strategies found in the QSS
experiments of the previous section (labeled QSS+HAS). From the resulting Pareto-fronts,
candidates with the lowest execution and DRAM access cycles are chosen for synthesis, without
exceeding the resource utilization of the HW3 BISMO choice from table 6.8. The GA finds
non-trivial asymmetric hardware configurations (D,,, # D,,), which exploit the position of the
tensors W’ and A'~! into either LHS or RHS matrices. The asymmetric hardware allows the
scheduler to swap the position of weights and activations in the middle of the CNN execution, to
maintain high computation efficiency and low DRAM accesses, by reusing the datatype placed in
the RHS matrix of the computation. This naturally reduces the LUT and BRAM requirements
of the design. Figure A.2 shows the layer-wise execution details of a 4-bit ResNet18-ImageNet
on an asymmetric D,,, X D,, X Dy = 8 x14x96 hardware configuration found through HAS. For
comparison, the same workload is executed on the symmetric HW3, which has higher theoretical
peak binary trillion operations per second (TOPS) (6.55 binary TOPS vs. 4.30 binary TOPS). The
HAS solution heavily reduces the amount of DRAM accesses for all the layers. This indicates
better tiling dimensions and compute efficiency nops with respect to workloads, which naturally
brings down the computation cycles and reduces the chances of stalls. For the HAS asymmetric
solution, layers 1-5 and 12-17 are executed with weights on the LHS, while other portions of the
CNN are executed with weights on the RHS. The layers are not schedulable otherwise, indicating
that the HAS solution is tightly-coupled with the schedule and the legality checks of the analytical
model, allocating sufficient resources to guarantee at least a single efficient and legal scheduling
for each workload of the CNN exists, thereby reducing the FPGA’s resource utilization. In
table 6.10, the real hardware measurements of sequential co-design (QSS+HAS) show a clear
advantage to all standalone QSS CNNs, dramatically lowering their DRAM accesses and latency
below or equivalent to a 1-bit strategy executing on standard BISMO dimensions from [7], with
less LUT and BRAM required for the design.

6.2.4.4 Analysis of AnaCoNGA Co-Designed Solutions

In table 6.10, the results of all the considered networks, datasets, and search combinations are
shown executed on synthesized hardware. The uniform bitwidth CNNs are paired with the
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edge BISMO variant used in [7]. An improvement is observed in task-related accuracy for
all AnaCoNGA solutions over sequential co-design (QSS+HAS). This can be attributed to the
accuracy-focused SOGA implemented in the QSS of AnaCoNGA, which leaves the HAS to be
handled by the nested MOGA (recall figure 6.14). Furthermore, the nested HAS allows more
diverse, high-accuracy quantization individuals to survive through QSS, as each QSS individual
can find their own hardware design to meet the application constraints.

0 Compute Cycles B Stall Cycles B DRAM Transfers [ Accuracy

92 - 1 6
High
@ ’_‘08 B ] Compute I 4.8 EU
;: %0.6 - Overlap 3.6 E
g6l g z
E 504 [ 24 ¢
2 © <
02| 12 =
80 L
1-bit 2-bit 2-4-bit 4-bit AnaCoNGA
(a) ResNet20-CIFAR-10
4 -3 18
25 | M [ mo|150
~ _ =
S & 2t 2z
Y >
g - Lle.S = 9 g
s ¢
E L>f L 6 E
o]
0L o 0
1-bit 2-bit 2-4-bit 4-bit AnaCoNGA
(b) ResNet56-CIFAR-100
68 - 30 180
25 | M 150 o
~ _ z
S <20 | 120 E
2 59 = >
g = E 15 F 90 g
3 ¢
2’ S0 60 =
o]
5 30 =
0L o 0

1-bit 2-bit 2-4-bit 4-bit AnaCoNGA
(c) ResNet18-ImageNet

Figure 6.16: Breakdown of execution on synthesized hardware. Higher DRAM accesses are correlated
with lower compute efficiency and stalls. AnaCoNGA reduces latency and DRAM accesses
while maintaining high accuracy.

The latency and DRAM accesses of AnaCoNGA and QSS+HAS variants are comparable to
or better than a single-bit network executing on the handcrafted accelerator. As mentioned in
section 6.2.4.3, the HAS MOGA finds asymmetric hardware designs and relies on the scheduler
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Table 6.10: Quantization and hardware design experiments. Uniform and standalone QSS are executed on
a standard edge variant (HW3) used in [7]. Latency and DRAM are measured on hardware.

Model Work Acc | LUT | BRAM | Latency | DRAM HW Config. Peak Bin.
(%] Util | Blocks | K. Cycles | Acc. MB | D, x D,, x Di, LHS, RHS Buf TOPS
XNOR (1-bit) [34] | 83.98 501 2.26
o o | DoReFa(2-bit) [35] | 87.16 659 3.29
S 2 | DoReFa (24-bit) [35] | 88.98 | 32639 | 135 817 443 8x8x256, 256KB, 256KB 6.55
Z < | DoReFa(4-bit) [35] | 89.75 944 5.35
(_5'2 O QSS (standalone) 89.44 798 4.17
QSS+HAS 89.44 | 29687 | 55 422 1.9 8x16x64, 32KB, 32KB 308
AnaCoNGA 90.04 | 29671 | 55 428 2.08 8x16x64, 16KB, 32KB '
XNOR (1-bit) [34] | 85.61 1212 573
o o | PACT(2bin[36] | 9028 1710 8.93
& 7 | PACT(24-bi) [36] | 9297 | 32639 | 135 2172 1241 | 8x8x256,256KB, 256KB 6.55
Z < | PACT (4-bin[36] | 93.27 2585 15.37
£ 3 | QSS(standalone) 91.89 2120 11.98
QSS+HAS 91.89 | 29643 | 79 1242 5.44 4x32x64, 16KB, 64KB 308
AnaCoNGA 92.31 | 29638 | 79 1315 5.83 4x32x64, 8KB, 64KB ‘
XNOR (1-bit) [34] | 57.70 1212 573
oo | PACT(2bin[36] | 64.66 1710 8.93
5 = | PACT (24-bit) [36] | 70.91 | 32639 | 135 2172 1241 | 8x8x256,256KB, 256KB 6.55
Zz % | PACT(4-bit)[36] | 71.65 2585 15.37
2 % QSS (standalone) 69.52 2054 11.60
QSS+HAS 69.52 | 29638 | 79 1240 5.45 4x32x64, 8KB, 32KB 308
AnaCoNGA 70.68 | 29643 | 79 1420 6.23 4x32x64, 16KB, 64KB '
w = | XNOR(l-bit)[34] | 5251 14090 64.93
T2 | PACT2bi[36] | 6036 | 00| s 17932 95.23
Z & | PACT (24-bi) [36] | 61.94 18596 | 102.07 | 8x8x256,256KB,256KB 6.55
& E | PACT (4-bit)[36] | 65.40 25609 | 155.85
|  AnaCoNGA | 63.94 | 28035 | 123 14250 83.07 | 8x14x96, 192KB, 168KB 4.30

to switch the order of weights and activations in LHS or RHS, depending on the layer being
executed. This leads to lower LUT and BRAM requirements for all the HAS-based designs, while
executing more efficiently than the oversized HW3. All AnaCoNGA-based hardware designs
are smaller (fewer peak binary TOPS) than HW3, but achieve better performance due to their
tightly-coupled dimensioning, which improves their compute efficiency. To better understand
AnaCoNGA'’s hardware performance, the total execution time is split and the cycles are measured
with respect to compute, as well as the non-overlapping cycles spent on other parts of the pipeline
(stall cycles). This data is presented in figure 6.16. Although the HAS genetic algorithm is not
aware of pipeline stalls, it optimizes for minimal compute cycles and lower DRAM accesses,
where, particularly the latter, is correlated with lower pipeline stalls. Hardware designs with these
traits naturally bring down stall cycles, leading to higher compute and memory access overlap.
For figure 6.16-a, the AnaCoNGA solution indeed has higher compute cycles than 1-bit due to
its higher bitwidths, which results in a higher accuracy CNN. However, the DRAM accesses are
well-optimized, due to HAS designing an accelerator which achieves efficient compute tiles and
high compute efficiency nops, resulting in fewer stall cycles, ultimately bringing the total latency
of the execution below 1-bit on the HW3 edge BISMO design, while maintaining task-related
accuracy higher than a uniform 4-bit solution. Similar trends can be observed in figure 6.16
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for ResNet56 and ResNet18 as well, achieving lower execution metrics than 2-bit CNNs and
maintaining high task-related accuracies.

AnaCoNGA also brings benefits in terms of reduced GPU hours. For ResNet20 and ResNet56
on CIFAR-10, QSS and AnaCoNGA were run on a single NVIDIA Titan RTX GPU. The
search took 14 hours for ResNet20 with AnaCoNGA, which is a 51% reduction with respect
to standalone QSS. For ResNet56, a 24% reduction in GPU hours was achieved, leading to 34
hours of search time. Overall, the nested HAS constraint analyzing the 4-D Pareto-fronts of all
QSS genomes, allowed the SOGA to skip the evaluation of accuracy for genomes which had no
promising hardware designs.

6.2.5 Discussion

AnaCoNGA is a HW-CNN co-design framework using two GAs, QSS and HAS, combined in
a novel nested scheme to eliminate handcrafted reward functions, iterative switching between
the two domains, and fine-tuning CNN genomes with sub-optimal HW-design spaces. The
speed and flexibility of analytical HW-models were harnessed to achieve true parallel co-design,
while reducing the overall search time when compared to iterative or sequential approaches.
This fully-automated co-design approach requires no intervention of human experts during the
optimization process and achieves non-trivial synergies which would be very difficult for an
expert to predict. Counterintuitively, by searching both the hardware and neural network design
spaces, the optimization was faster than only searching one design space. This lowers the effort
on both the ML and HW engineer and achieves better results in both domains. The accuracy
of ResNet20-CIFAR-10 was improved by 2.88 p.p. compared to a uniform 2-bit CNN, and
achieved a 35% and 37% improvement in latency and DRAM accesses, while reducing LUT
and BRAM resources by 9% and 59% respectively, when compared to an edge variant of the
accelerator. AnaCoNGA is a prime example of how metaheuristic techniques and well-defined,
parameterizable analytical models can provide fully-automated co-design in the final development
stages of a DNN deployment.
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plementation in the real world is needed. This is exacerbated when the algorithm and

the execution medium are designed in a segregated manner. Co-design brings algorithm
and medium under the same scope, manifesting a real-world implementation with synergies that
bring them closer to algorithms observed in nature.

C OMPLEXITIES of abstract artificial algorithms are only truly understood when their im-

This dissertation presented several challenges in implementing DNNs on hardware. These
challenges were hard to resolve without compromises in DNN and/or hardware design targets.
The pitfalls of incoherent co-design were highlighted with examples of how compromises in DNN
targets do not result in benefits on the target hardware and vice versa. This problem statement was
addressed by applying classical concepts from the field of VLSI design and HW-SW co-design.
These included different methodologies, executable models, and design abstraction levels.

Handcrafted methodologies were presented, where the designer’s conceptual understanding of
the design challenge is itself the problem formulation [8, 16]. Semi-automated methods were used
when parts of the design challenge were solvable with computation models, but guided by human
designers [24, 25]. Fully-automated methods tackled challenges with prohibitively large search
spaces, but well-defined models and evaluation criteria [9, 10, 11]. The designer essentially takes
their hands off the wheel and allows metaheuristic methods to search for the optimal parameters for
both hardware and DNN design. Executable models were introduced in several forms, facilitating
the injection of hardware-awareness into DNN optimization loops. Look-up tables and regression-
based models were developed for off-the-shelf hardware platforms [12, 15, 17, 19, 20], classical
SDF-style models were used to parameterize dataflow hardware architectures [21, 22, 23, 24, 25],
and analytical models were used to explore mapping and scheduling schemes on differently
dimensioned spatial accelerators [9, 10, 11, 12, 13]. Going a step further, differentiable hardware
models were developed, proving that hardware optimization does not need to break the smooth,
gradient-based training operation of DNNs, but can even be directly injected as part of the
learning and backpropagation algorithm of the DNN [15]. This allows the DNN to learn the task
at hand as well as learn how to run efficiently on hardware. Finally, the large search spaces and
costly evaluation and training times motivated the use of divide-and-conquer approaches to tackle
complex design challenges. The introduction of abstraction levels into the design flow allowed
the human and/or the metaheuristic agent to focus on solving sub-parts of the problem instead of
tackling it once as a whole and landing in incoherent co-design neighborhoods [8, 24, 25, 10, 11].
Focusing on a limited set of design details reduces the development effort, similar to how VLSI
engineers’ work is integrated at different levels of abstraction, allowing them to consider less
complex problems at each stage. The works published under the scope of this dissertation
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repeatedly showed the effectiveness of applying these concepts to HW-DNN development
processes and brought applications with societal impact to edge devices.

Moving forward, as more Al algorithms are introduced to new applications, a single SoC might
need to be optimized for a multitude of DNN architectures. Such an SoC, containing several
accelerators and many DNNss, faces new design challenges that are still to be tackled. For example,
in the context of an autonomous vehicle, some Al-based tasks can be safety-critical, while others
can be executed with best effort. Tasks may have hard deadlines, soft deadlines, or no deadlines
at all. They may appear stochastically or deterministically, in bursts or individual events. Some
tasks may control the vehicle, while others can run as “shadow-mode” features. Considering
the limited area and power on a battery-powered vehicle, this large set of Al-based tasks must
be executed on the system with limited, shared resources. The edge SoC must also run other
general tasks which are not necessarily Al-based. These tasks add to the communication traffic
on the SoC’s interconnect, resulting in further complexity in deterministically estimating the
execution time of DNNs by the on-chip hardware accelerators. Considering these challenges, new
opportunities for co-design emerge at the system level, such as mixed-critical scheduling schemes,
DNN sub-graph execution and preemption concepts, sensor data reuse, shared backbones among
different DNN tasks, and more.

In addition to being used in more applications, the tasks performed by Al algorithms are
becoming harder to quantitatively evaluate. For example, the performance of creative Al art,
text, or music generators cannot always be captured by a single metric such as “accuracy”
for classification or mloU for semantic segmentation. The evaluation of the output becomes
more subjective. When the AI’s task-related performance metrics become harder to define,
DNN compression schemes lose their guiding fitness criteria, which makes it more difficult to
definitively judge which architecture is better than the other. This can lead to rethinking the
methods by which execution efficiency on hardware and task-related performance are weighed
against each other.

The field of Al is continuously evolving. The same goes for the field of hardware design.
As new algorithms are developed, engineers must have the foresight to evaluate how existing
and new hardware architectures handle the associated computational effort. As an example,
spiking neural networks (SNNs) are a class of machine learning algorithms, where the neurons
are not only sensitive to the magnitude of the incoming input activations, but also their time of
arrival [178]. This allows the network to learn temporal relationships among activations, which
are referred to as spikes in this context. This aspect challenges many of the notions that are
taken for granted when designing hardware for state-of-the-art DNNs. However, the concepts
presented in this dissertation could be reapplied to ease the development effort of hardware for
more exotic forms of neural networks, while concurrently optimizing their algorithmic complexity
in software. As artificial neural networks become more accurate models of biological brains,
the hardware will undoubtedly also morph into biologically-inspired architectures, moving away
from the biases that emerged after decades of classical computing. Engineers in the field of
neuromorphic computing work on non-classical compute paradigms, which are designed to
capture neuron characteristics more accurately than standard arithmetic digital hardware blocks,
instruction-based data processing, or classical memory hierarchies [179]. While reimagining how
future neuromorphic computers should be designed, the algorithms which are meant to run on
them must always be considered at each stage of research and development. Here, handcrafted
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and automated methodologies will be followed, accurate executable models will be critical, and
abstraction levels will be introduced to understand the design problem with reasonable detail at
each stage of development.

Human-engineered algorithms will behave like biological ones at some point. They will very
likely surpass the intelligence observed in biological beings in nature. To take the first steps
towards that goal, the fundamental way in which algorithms in nature and their execution medium
interact with the real world must be understood. The hardware and the algorithm must become
one and the same.
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A Appendix

Table A.1: Network architectures and hardware dimensioning used in Binary-LoRAX and BinaryCoP.
Pool, ReLU and batch normalization layers not shown. FC_3 | [25/4] indicates YCB (25
classes) or MaskedFace-Net (4 classes).

Network ‘ (v)-CNV m-CNV u-CNV n-CNV

Arch. Conv_1_1 | [3, 64] Conv_1_1| [3, 32] Conv_1_1 | [3,16] Conv_1_1| [3, 16]

L|[Ci, Cy] Conv_12 | [64, 64] Conv_12|[32, 32] Conv_1.2[16, 16] Conv_1_2|[16, 16]

K = 3V Conv Conv 2_1|[64,128] | Conv2_1|[32,64] Conv 2_1|[16, 32] Conv 2_1|[16,32]
Conv_2.2|[128, 128] | Conv_2_2 | [64, 64] Conv_2.2 |[32,32] Conv_2.2 | [32,32]
Conv_3_1|[128,256] | Conv 3_1 | [64, 128] Conv 3_1|[32, 64] Conv 3.1 | [32, 64]
Conv_3_2 | [256, 256] | Conv_3_2|[128,128] | FC_1|[128] Conv_3_2 | [64, 64]
FC_1|[512] FC_1 | [256] FC_2 | [25/4] FC_1 | [128]

FC_2 | [512] FC_2 | [256] FC_2 | [128]
FC_3 | [25/4] FC_3 | [25/4] FC_3 | [4]
PE Count 16,32, 16,16,4,1,1,1,4 4,4,4,4,1,1,1 16, 16, 16, 16,4,1,1, 1, 1
SIMD lanes 3,32,32,32,32,32,4,8, 1 3,16,16,32,32,16,1 | 3,16, 16,32,32,32,4,8, 1
mug, banana, toy_airplane, chips_can,
tomato_soup_can, windex_bottle, apple, scissors,
. sugar_box, master_chef_can, mustard_bottle, orange,
YCB-Objects pudding box, lemon, plate, pitcher_base, potted meat_can,
mini_soccer_ball, gelatin_ box, large_clamp, power_drill,
tennis_ball, cracker_box, adjustable wrench, knife

MaskedFace-Net

Correctly Masked, Nose Exposed, Nose + Mouth Exposed, Chin Exposed
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Figure A.1: QSS: 2-D projections of a 3-D Pareto-front for optimal quantization with respect to accuracy,
compute cycles, and DRAM accesses on HW3. Compute cycles and DRAM accesses are
normalized to an 8-bit execution on HW3. “Reward Accuracy” is with minimal fine-tuning
(not fully trained). It is recommended to view this figure in color.
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Figure A.2: Comparison of a HAS solution (D,,,, D,,, D = 8, 14, 96) found for ResNet18-ImageNet
4-bit against the larger standard symmetric hardware configuration HW3. The CONV1 layer
follows the same trend but is not shown to maintain plot scale.
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