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1 ABBREVIATIONS 

ACT Adoptive T cell therapy 

AES Advanced Ewing sarcoma 

ALL Acute lymphoblastic leukemia 

allo-SCT allogeneic stem cell transplantation 

BM Bone Marrow 

BSA Bovine serum albumin 

CAR Chimeric antigen receptor 

CCLE Cancer Cell Line Encyclopedia 

cDNA Complementary DNA 

CHM1 Chondromodulin-1 

CM Central memory 

CRISPR/Cas9 Clustered regularly interspaced palindromic repeats/Cas9 

DEPC Diethypyrocarbonat 

DMEM Dulbecco’s modified eagle’s medium 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

EwS Ewing sarcoma       

GEO Gene Expression Omnibus 

GvHD Graft versus host disease 

GVT Graft versus tumor effect 

HDR Homology-directed repair 

HLA Human leukocyte antigen 

IGV Integrative Genomics View   

mRNA Messenger ribonucleic acid 

NHEJ Non-homologous end joining 

NuRD Nucleosome remodeling and deacetylase 

PBMC Peripheral blood mononuclear cell 

PAPPA Pregnancy-associated plasma protein-A 

RT-PCR Real-time polymerase chain reaction 

STEAP1 Six-transmembrane epithelial antigen of the prostate 1 

TAA Tumor-associated antigen 

TCR T cell receptor 

TIL Tumor-infiltrating lymphocyte 

TreoMel-HDT treosulfan/melphalan high-dose chemotherapy 

TSA Tumor-specific antigen 

VAC Vincristine, actinomycin D and cyclophosphamide 

VAI Vincristine, actinomycin D and ifosfamide 

VCN Vector Copy Number 

VIDE Vincristine, ifosfamide, doxorubicin and etoposide 

β-Me 2-Mercaptoethanol  
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2 INTRODUCTION 

2.1 EWING SARCOMA 

2.1.1 BASICS 

Ewing sarcoma (EwS) is a highly malignant bone and soft-tissue cancer that 

arises predominantly in children and adolescents (Grunewald et al., 2018; Riggi 

et al., 2021). The incidence is one case per 1.5 million population, with a higher 

frequency among Caucasians and a slight tendency for males (case ratio of 

male to female is 1.6: 1.0) (Bernstein et al., 2006; Burchill, 2003; Grunewald et 

al., 2018). EwS is molecularly characterized by the expression of EWS-ETS 

chimeric protein (Delattre et al., 1992; Sorensen et al., 1994) with a quiet 

genomic background (Grobner et al., 2018). Diagnosis of EwS relies on the 

histologic and molecular analysis of the tumor biopsy. 

2.1.2 HISTOLOGY AND ORIGIN  

Histologically, EwS consists of small, round, blue cells with a prominent nucleus 

and scant cytoplasm (Riggi et al., 2021). Immunohistochemical staining of EwS 

presents with a high level of CD99 (also named MIC2) expression on the 

plasma membrane (Martinelli et al., 2016; Perlman et al., 1994), which serves 

as a relevant diagnostic marker for EwS (positive in 95% of EwS patients) 

(Ambros et al., 1991; Grunewald et al., 2018). CD56 and synaptophysin 

(positive in 66.7% of EwS patients) are also frequently expressed on the cell 

membrane of EwS (Dierick et al., 1993; Gardner et al., 1998).  

EwS was first described as “diffuse endothelioma of bone” in 1921 by James 

Ewing (Ewing, 1972) during the New York Pathology Society meeting. In the 

last four decades, our group contributed to the debate about the histogenetic 

origin of EwS in neural-crest-derived stem cells (Schmidt et al., 1985; Staege 

et al., 2004), endothelial cells (Schmidt et al., 1985; Staege et al., 2004) or bone 

marrow-derived mesenchymal stem cells (Castillero-Trejo et al., 2005; Richter 

et al., 2009; Riggi et al., 2005; von Levetzow et al., 2011).   
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EwS can occur in any part of the body, including orbit (Kaliki et al., 2018) and 

kidney (Cheng et al., 2020), but predominantly in the axial skeleton (45%) and 

distal skeleton (35%) (Riggi et al., 2021). Extraosseous tumors account for 

approximately 20% of patients, with a tendency to occur more frequently in 

adults (Jahanseir et al., 2020).   

2.1.3 GENETIC AND PATHOMECHANISMS  

Balanced chromosomal translocation t (11; 22) (q24; q12), which leads to EWS-

FLI1 chimeric protein (Delattre et al., 1992), was first discovered to participate 

in the malignancy of EwS in 1992, 70 years after the first description. Gradually, 

the defining genetic alterations were found to be the fusion between EwS 

breakpoint region 1 (EWSR1) and a gene coding a member of the E-twenty six 

(ETS) family of transcription factors (FLI1, ERG, ETV1, ETV5, FEV) (Riggi & 

Stamenkovic, 2007). EWS-FLI1 accounts for 85%-90% of the arrangements 

(Grunewald et al., 2018; Kovar et al., 1996), followed by EWS-ERG, which 

accounts for 10% (Sorensen et al., 1994), and a growing consensus that EWS-

ETS is the primary initiating factor in Ewing sarcoma. 

As an aberrant transcription factor, EWS-FLI1 participates in the genomic 

reprogram to deregulate the proliferation, cell-cycle regulation and metastasis 

by binding to DNA at GGAA motif or GGAA microsatellites (Gangwal et al., 

2010; Gangwal et al., 2008; Guillon et al., 2009) via the conserved ETS domain. 

EWSR1 drafts multiple proteins through the prion-like domains to tumor-

specific enhancers to recruit acetyltransferases and establish de novo 

enhancers by generating H3K27ac. Thereby it opens the chromosome 

architecture, which contributes to the activation of the target genes (Boulay et 

al., 2017; Gangwal et al., 2008; Guillon et al., 2009; Riggi et al., 2014). The 

protein complex mainly include RNA polymerase II (Ahmed et al., 2021; Yang 

et al., 2000), and core subunit hsRBP7 (Petermann et al., 1998; Zhou & Lee, 

2001), E2F3 (Bilke et al., 2013; Schwentner et al., 2015), EWSR1 (Mertens et 
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al., 2016), CBP/p300 (Ramakrishnan et al., 2004), WDR5, ASH2, MLL (Riggi 

et al., 2014), and BAF complex (mammalian SWI/SNF complex) (Boulay et al., 

2017; Harlow et al., 2019). Of interest, the threshold of the GGAA motifs 

arranges from 20 to 26 (Monument et al., 2014), which is different from wild-

type FLI1. Super-enhancer-associated MEIS1 and RING1B also contribute to 

the chromatin reprogram through co-localization with EWS-FLI1 at the active 

enhancers (Sanchez-Molina et al., 2020). As a result of this specific binding, 

quantities of genes are activated to drive the malignancy of EwS, such as 

NKX2.2 (Smith et al., 2006), NROB1 (Boro et al., 2012; Kinsey et al., 2006), 

IGF1R (Cironi et al., 2008), BCL11B (Wiles et al., 2013), EZH2 (Richter et al., 

2009), VRK1 (Riggi et al., 2014), GLI1 (Beauchamp et al., 2009), PTPL1 

(Abaan et al., 2005), PPPR1A (Luo et al., 2018), ERG2 (Grunewald et al., 2015), 

GSTM4 (Luo et al., 2009), PAX7 (Charville et al., 2017), CHM1 (von Heyking 

et al., 2017), REST (Zhou et al., 2014), PHF19 (Gollavilli et al., 2018), STEAP1 

(Grunewald et al., 2012), SLFN11 (Tang et al., 2015), HDAC3 (Ma et al., 2019), 

TNC (He et al., 2019), APCDD1 (Lin et al., 2019), IL1RAP (Grohar et al., 2011; 

Zhang et al., 2021), and PRC1 (Li et al., 2021) (Figure 1). 

EWS-FLI1 also participates in transcriptional repression of tumor suppressors 

to drive the oncogenic transformation (Sankar et al., 2013; Sankar et al., 2014), 

such as IGFBP3 (Prieur et al., 2004) and PHLDA1 (Boro et al., 2012). The 

nucleosome remodeling and deacetylase (NuRD) complex is a typical ATP-

dependent chromatin remodeling complex (Clapier & Cairns, 2009), which 

plays a critical role in transcription and determines the differentiation and 

development (Lai & Wade, 2011). EWS-FLI1 recruits the NuRD-LSD1 complex 

to repress LOX and TGFBR2 (Agra et al., 2013; Sankar et al., 2013). EWS-

FLI1 perturbs transcriptional activation of AP-1 (Tomazou et al., 2015) and 

MRTFB (Katschnig et al., 2017), thereby participating in transcription 

repression. EWS-FLI1 binds to the promotor of FOXO1 to repress its 

expression (Niedan et al., 2014). Meanwhile, EWS-FLI1 promotes the 



9 | P a g e  
 

phosphorylation of cyclin/dependent kinase2- and AKT to inhibit the activity of 

FOXO1, which further rewires the transcription repression (Niedan et al., 2014). 

EWS-FLI1 also participates in miRNA regulation (Dylla et al., 2013). EWS-FLI1 

downregulates miRNA145 to initiate mesenchymal stem cell reprogramming 

toward EwS stem cells (Riggi et al., 2010). EWS-FLI1 also represses miR-708, 

which further induces the overexpression of EYA3, and contributes to the 

chemoresistance of etoposide and doxorubicin (Robin et al., 2012). 

Protein partners of EWS-FLI1 are identified to participate in mRNA alternative 

splicing (Knoop & Baker, 2000; Neckles et al., 2019; Paronetto et al., 2011; 

Selvanathan et al., 2019), R-loops formation (Gorthi et al., 2018), DNA damage 

response (Gorthi & Bishop, 2018) and epigenetic regulations (Pishas et al., 

2018; Theisen et al., 2016). 

Expression of EWS-FLI1 also induces senescence or apoptosis in most cells 

(Deneen & Denny, 2001; Lessnick et al., 2002), indicating EWS-FLI1 driving 

the malignancy is dependent on the genomic background, although EwS 

suffers a low mutation burden (Grobner et al., 2018).  

2.1.4 CLINICAL PRESENTATION AND RISK FACTORS 

Initial symptoms and clinical features are largely nonspecific in EwS patients, 

including pain accompanied by fever, night sweats, and weight loss (Widhe & 

Widhe, 2000). Bone remodeling factors, such as alkaline phosphatase, might 

be elevated (Biswas et al., 2014), and pathological fracture is observed in 10-

15% of cases. The prognosis of patients only with local disease has a 5-year 

survival rate of more than 70%. In contrast, advanced-EwS (AES) patients with 

metastasis or recurrence remain dismal, especially those with metastasis to 

bone or bone marrow (Burdach, 2004; Burdach & Jurgens, 2002; Burdach et 

al., 2003; Ladenstein et al., 2010; Paulussen et al., 1993; Thiel et al., 2016). 

The overall survival of patients with metastasis at diagnosis is less than 30% 

(Burdach et al., 2010). Patients with lung metastasis have a better prognosis 
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than those with bone metastasis based on the analysis of 975 patients from the 

European Intergroup Cooperative Ewing’s Study Group (Cotterill et al., 2000). 

Elevated serum lactate dehydrogenase (LDH) and IL-6 also correlate with the 

tumor burden and poor prognosis (Bacci et al., 1999; Biswas et al., 2014; Lissat 

et al., 2015). Besides, tumor size is another independent risk factor, tumor 

volume>200 ml confers a poor prognosis (MÜNCHEN, 2017; Pappo & Dirksen, 

2018).  

2.1.5 THERAPY  

2.1.5.1 TREATMENT OF THE PRIMARY DISEASE 

Several international groups have developed excellent cooperation to establish 

curative therapy of EwS (Biswas et al., 2014; Cotterill et al., 2000; Paulussen 

et al., 1998; Worch et al., 2018), but international standard pharmacological 

treatments are still in discussion (Anderton et al., 2020). Primary EwS is treated 

mainly by a combination of chemotherapy and local control (surgery or 

irradiation) (Thacker et al., 2005). Marginal or wide resection is performed 

whenever possible because surgical resection appears superior to radical 

irradiation in local control (Bacci et al., 2004; Schuck et al., 2003; Schuck et al., 

2002). Evidence from the EURO-E.W.N.G 99 (European Ewing tumor working 

initiative of national groups) leads to the employment of induction combination 

chemotherapy, including six cycles of vincristine, ifosfamide, doxorubicin, and 

etoposide (VIDE) every three weeks prior to local therapy, with additional VAI 

(vincristine, actinomycin D and ifosfamide) or VAC (vincristine, actinomycin D 

and cyclophosphamide) (Juergens et al., 2006). The Children’s Oncology 

Group AEWS0031 trial applied alternating cycles of vincristine, doxorubicin-

cyclophosphamide, and ifosfamide-etoposide (VDC/IE) as induction 

chemotherapy with additional consolidation chemotherapy by alternating cycles 

of ifosfamide-etoposide and vincristine-cyclophosphamide (IE/VC) (Womer et 

al., 2012). Both strategies showed positive results. VIDE induction in localized 
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EwS with additional randomization between busulfan and melphalan (BuMel) 

also benefits the patients with predefined high-risk factors (Whelan et al., 2018). 

2.1.5.2 THERAPY FOR METASTATIC AND REFRACTORY DISEASE 

The majority of EwS recurrences (47-73%) occur within two years after the first 

diagnosis. Patients with metastatic and refractory disease were treated with 

high-dose chemotherapy and myeloablation (Burdach & Jurgens, 2002; 

Burdach et al., 1993; Burdach et al., 2010), with additional allogeneic stem cell 

transplantation (Burdach et al., 2010; Burdach et al., 2000; Koscielniak et al., 

2005). Chemotherapy regimens may utilize a combination of agents that were 

included in front-line therapy with additional novel agents (Ferrari et al., 2009). 

Additional high-dose chemotherapy also evidently reduces the risk of further 

events in EwS patients who respond to conventional second-line chemotherapy. 

2.1.5.3 GENETIC THERAPY 

As the master regulator and the driver of EwS (Erkizan et al., 2010), targeting 

EWS-ETS should be a promising strategy. However, the lack of enzymatic 

activity and disordered structure hindered the efforts for further drug prediction 

and design. The alternative solution relies on the genomic architecture driven 

by EWS-ETS or targeting EWS-ETS such as the molecules and signaling 

pathways, including the receptor tyrosine kinase insulin-like growth factor (IGF-

1R) (Juergens et al., 2011; Olmos et al., 2010). YK-4-279 in the dislocation of 

EWS/ETS and RNA helicase A (Erkizan et al., 2009) also offers another strategy, 

but the drug resistance hindered the clinical application (Hong et al., 2014; 

Lamhamedi-Cherradi et al., 2015). EwS was first found to be sensitive to 

radiation therapy and gradually found to the sensitivity of PARP inhibitor 

(Garnett et al., 2012) due to the advantage of EWS-FLI1 (Gorthi et al., 2018), 

although the clinical trial was disappointing (Choy et al., 2014). A clinical trial 

(NCT01858168) of combined Olaparib in adults with recurrent/metastatic 

Ewing's Sarcoma is ongoing. Chemical genomics screening performed by 
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Iniguez et al. (Iniguez et al., 2018) identified that CDK12/13 inhibitor THZ531 

impairs DNA damage repair in an EWS-FLI1 dependent manner and leads to 

Synthetic Lethality with PARP inhibitors. 

2.1.5.5 T CELL THERAPY 

Current therapies are associated with acute and chronic adverse effects that 

may compromise the quality of life in survivors (Grunewald et al., 2018), such 

as chemotherapy-associated myeloid dysplastic syndrome, leukemia, and 

radiation-associated sarcoma. Besides, only minor improvements in prognosis 

have been achieved during the past two decades by multiple treatments. The 

overall survival remains dismal, especially the patients suffering metastasis 

have a 5-year overall survival <30% (Gaspar et al., 2015), demonstrating that 

additional therapeutic approaches are in need. Immunotherapies developed by 

our group and others, targeting downstream targets of EWS-FLI1, such as 

adoptive transfer of T cells targeting the CHM1 derived peptide VIMPCSWWV 

(Blaeschke et al., 2016; Thiel, Pirson, et al., 2011), showed pre-clinical and 

clinical tumor regressions (Thiel et al., 2017). T cell targeting LIPI-derived 

peptides LDYTDAKFV and NLLKHGASL (Mahlendorf & Staege, 2013) , 

STEAP1 derived YLPGVIAAI (Schirmer et al., 2016; Schober et al., 2020) and 

MIAVFLPIV (Rodeberg et al., 2005), PAPPA derived IILPMNVTV (Kirschner et 

al., 2017), EZH2 derived YMCSFLFNL (Thiel, Pirson, et al., 2011) , PAX3 

derived QLMAFNHLI and modified version, QLMAFNHLV (Rodeberg et al., 

2006), showed effective cytotoxicity of HLA-A*02:01+ EwS cell lines.  

CAR-T targeting of GPR64, ROR1, IGF1R, and GD2, which are highly 

expressed in EwS (Huang et al., 2015; Kailayangiri et al., 2019; Richter et al., 

2013), also leads to selective cytotoxicity of EwS in vivo (Schirmer et al., 2018) . 

IL1RAP is a direct target of EWS-FLI1 and is highly expressed in EwS but 

minimally expressed in normal tissues, which serves as a new surface target of 

EwS (Zhang et al., 2021) and is worth advanced CAR-based T-cell therapy. 

Besides a TCR-based target, STEAP1 is also a potential CAR target (Challita-
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Eid et al., 2007). 

Patients suffering from EwS may thus benefit from adoptive T cell therapy 

(Kailayangiri et al., 2019; Thiel et al., 2017). Further research to optimize the 

method for T cell engineering is warranted.   

Figure 1. EWS-FLI1 protein complex and downstream targets are potential targets 
for chemotherapy and immunotherapy 

Graphical abstract of EWS-FLI1 protein complex in Ewing sarcoma. The downstream of 

EWS-FLI1 could be used for chemotherapy and immunotherapy. EWS-FLI1 knockdown 

also drives the metastasis of Ewing sarcoma. 

 

2.2 ADOPTIVE IMMUNOTHERAPY 

Adoptive T-cell therapy mainly comprises tumor-infiltrating lymphocyte therapy 

(TIL) (Rosenberg et al., 1986), engineered T cell receptor (TCR) therapy 

(Schreiber et al., 2011), chimeric antigen receptor (CAR) T cell (CAR-T) therapy 

(Hanssens et al., 2022; Jena et al., 2010), and natural killer (NK) (Liu et al., 

2021; Smyth et al., 2002) cell therapy. 

Allogeneic stem cell transplantation (allo-SCT) represents an effective adoptive 
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therapy targeting cancers based on graft versus tumor effect (GvT) (Horowitz 

et al., 1990; Nicholson et al., 2012). Such allogenic hematopoietic stem cell 

transplantations are curative immunotherapeutic treatments for high-risk 

hematological malignancies (Cieri et al., 2014; Kolb, 2008), but their efficacy in 

solid tumors is limited. Besides GvT, allo-SCT also leads to graft versus host 

disease (GvHD), which is observed in 60% of all cases (Ito et al., 2019) based 

on 2014 National Institutes of Health criteria and might be life-threatening 

(Marmont et al., 1991; McDonald et al., 2015). 

The application of TIL-derived T cells has been a promising strategy for cancer 

therapy in the past three decades (Jones et al., 2020) and showed clinical 

success, but the heterogeneous cell mixture and therapeutic outcome varies in 

patients and is hard to predict (Hinrichs & Rosenberg, 2014; Yee, 2018). 

Technical difficulties (Tran et al., 2008) and early cost-effectiveness (Retel et 

al., 2018) hindered the further clinical application of TIL. 

CAR-T cell therapy revolutionized therapeutic strategies (Chandran & Klebanoff, 

2019; Larson & Maus, 2021). Several adoptive T-cell transfer (ACT)-based 

therapies have already achieved regulatory clinical applicants for B-cell 

malignancies (Kochenderfer et al., 2010; Myers et al., 2022), melanoma (Dafni 

et al., 2019; Effern et al., 2020). Clinical results demonstrate that CAR-T cell 

products have great advantages in treating hematological malignancies (Baird 

et al., 2021) but are also accompanied by clinical toxicities, including cytokine 

release syndrome and neurotoxicity. CAR-T therapy is unpredictable in animal 

experiments (Larson & Maus, 2021).  

TCRs can recognize the peptide antigens presented on the cell membrane of 

the host cells via the histocompatibility complex (MHC)/human leukocyte 

antigen (HLA) system (Burdach & Kolb, 2013). TCR is a heterodimer comprised 

mostly commonly of an α and a β chain (Rudolph et al., 2006) alternatively of a 

γ and a δ chain (Davis & Bjorkman, 1988). TCR-based ACT allows the genetic 
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redirection of the T-cell specificity.   

Transduction with viral vectors is the conventional method of antigen-specific 

TCR insertion by either retro- or the lentivirus particles. However, following the 

viral transfer of exogenous TCR genes, the exogenous could mix with the 

endogenous TCR forming mispaired heterodimers (Figure 2). Thus, mispaired 

heterodimers may recognize auto-antigens and constitute neoantigens. This 

may lead to lethal graft versus host disease (GvHD) following adoptive transfer 

(Bendle et al., 2010). Random insertion of viruses into the genome also raises 

safety concerns, such as insertional mutations and tumorigenesis (Howe et al., 

2008). 

CRISPR/Cas9 engineered orthotopic TCR replacement leads to accurate α and 

β chain pairing, and the TCR regulation is similar to that of physiological T cells 

(Schober et al., 2019). 

 
Figure 2. Advancement of T-cell engineering with targeted TCR knock-in (KI) into 
endogenous TCR-α constant (TRAC) gene locus with concomitant knock-out (KO) of 
endogenous α and β chains. 

Retrovirus transduc�on of TCRs leads to the mispairing between the transgenic and endogenous 
TCRs, which can diminish the function of the T cells. CRISPR/Cas9 engineered T cells could avoid 
the poten�al mispairing and the T cell product is physiological to the wild type T cells. 

CD3

wild-type T cell                                       retroviral transduction                                     orthotopic TCR replacement
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3 RESEARCH OBJECTIVES 

 

The canonical methods of TCR gene delivery in pre-clinical and clinical 

applications are based on the viral transduction of full-coding sequences, 

including α- and the β-chain of the tumor-specific antigen (TSA) and tumor-

associated antigen (TAA) (Coulie et al., 2001; Sarukhan et al., 1998). As the 

transduced α- and β-chain may mispair with the endogenous α- and β-chain, 

the resultant new antigen specificities may cause auto-reactivity, potentially 

leading to graft-versus-host disease (GvHD). The mispaired TCR chains may 

also lose their function. Fortunately, there is no documented GvHD in patients 

up to now in our work, but the patient number is low (Thiel et al., 2017), and 

related mechanisms are not fully understood. 

Schober et al. (Schober et al., 2019) at our institution, established a non-viral 

TRBC knock-out/TRAC knock-in model, which showed a TCR regulation 

pattern very similar to that of a physiological T cell population.   

Incompletely differentiated, including naïve and central memorial phenotypes 

of T cells, are associated with prolonged peripheral persistence and lead to 

better survival of patients when treated with them ((Buchholz et al., 2013; Graef 

et al., 2014; Kaneko et al., 2009). Our study was initiated to compare T cells 

against a metastatic driver engineered with CRISPR/Cas9 vs. retroviral gene 

transfer for immunotherapy of Ewing sarcoma. 
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4 HYPOTHESIS 

 

CRISPR/Cas9 engineered T-cell receptor insertion to the TRAC locus of CD3+ 

T cells preserves physiological properties and yields a therapeutic product that 

is at least as efficacious in immunotherapy of Ewing sarcoma as the product 

generated by retroviral gene transfer. 
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5 MATERIALS 

5.1 TECHNICAL EQUIPMENT 

Manufacturers Locations 

Bacteria shaker Certomat BS-T Sartorius, Göttingen, Germany 

Cell counting chamber Neubauer Brand, Wertheim, Germany 

Electrophoresis chamber Easy cast Thermal Fisher Scientific, Ulm, Germany 

Electroporator Gene Pulser XcellTM BioRad, Richmond, CA，USA 

ELISpot reader AID iSpot Reader Unit AID GmbH, Straßberg, Germany 

Flow cytometer FACS CaliburTM Becton Dicknson and Compang, New Jersey, USA 

Fridge(+4°C) cool varia Siemens, Munich, Germany 

Freezer (-20°C) cool vario Siemens, Munich, Germany 

Freezer(-80°C) Hera freeze Heraeus Holding, Hanau, Germany 

Gel Logic 1500 imaging system Cole-Parmer,USA 

Heating block Thermomixer Comfort Eppendorf, Hamburg, Germany 

Ice machine AF100 Scotsman Ice System, Vernon Hills, IL,USA 

Incubator BBD 6220 Heraeus, Hanau, Germany 

Liquid nitrogen tank L-240K series Taylor-Wharton, Theodore, USA 

Micropipets Eppendorf, Hamburg, Germany 

Microwave oven Siemens, Munich, Germany 
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NanoPhotometer Implen, Munich, Germany 

Lonza 4D Nucleofector Lonza, Swiss 

Step One Plus Real-Time PCR Thermo Fisher Scientific, USA 

Sterile Bench Heraeus, Hanau, Germany 

Thermal cycler iCycler BioRad, Richmond, CA, USA 

Thermocycler Eppendorf, Hamburg, Germany 

UV transilluminator Gene Genius Syngene, Cambridge, UK 

Water bath GFL, Burgwedel, Germany 

 

5.2 CONSUMABLE SUPPLIES 

Materials Manufacturers and Locations 

Cell culture flasks TPP, Trasadingen, Switzerland 

Cell strainer Becton Dickinson and Company, New Jersey, USA  

Cyto tubes Greiner-bio One GnbH, Frickemhausen, Germany 

Falcons Greiner-bio One GnbH, Frickemhausen, Germany 

Fliters (sterile) Minisart Sartorius, Göttingen, Germany 

Gloves nitrile Sempermed, Vienna, Austria 

Paraflim Brans, Wertheim, Germany 

Plates for cell culture Becton Dicknson and Company, New Jersey, USA 
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Tubes(200ul, 1.5ml and 2ml) Eppendorf, Hamburg, Germany 

Real-time PCR plates Eppendorf, Hamburg, Germany 

 

5.3 CHEMICALS AND REAGENTS 

Materials Manufacturers and Locations 

100mM dNTP Set  Invitrogen, Life Technologies, Darmstadt, Germany  

1-Bromo-3-Chloro_Propan (BCP) Sigma-Aldrich, St. Louis, Missouri, USA 

1 Kb plus DNA ladder Invitrogen, Life Technologies, Darmstadt, Germany  

2-Propanol Roth, Karlsruhe, Germany 

5% trypsine Gibco, Life Technologies, Darmstadt, Germany 

6×DNA loading dye Fermentas, St. Leon-Rot, Germany 

SfiI NEB, United Kingdom 

NEB 5-alpha Competent E. coli NEB, United Kingdom 

DH10B Competent Cells Invitrogen, Life Technologies, Darmstadt, Germany 

MEM NEAA 100× Gibco, Life Technologies, Darmstadt, Germany 

ACK lysis buffer Gibco, Life Technologies, Darmstadt, Germany 

Agar Sigma-Aldrich, St. Louis, Missouri, USA 

Agarose Invitrogen, Life Technologies, Darmstadt, Germany 

AIM V medium Gibco, Life Technologies, Darmstadt, Germany 
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Albumin Standard Thermal Fisher Scientific, Ulm, Germany 

Ampicillin Merck, Darmstadt, Germany 

Anti-PE Microbeads Miltenyi Biotech, Bergisch-Gladbach, Germany 

AutoMACSTM  Ringsing Solution Miltenyi Biotech, Bergisch-Gladbach, Germany 

DEPC Water Ambion, Darmstadt, Germany 

DMSO Sigma-Aldrich, St. Louis, Missouri, USA 

Duplex Buffer Integrated DNA Technologies, Coralville, USA 

DPBS (10×) Gibco, Life Technologies, Darmstadt, Germany 

Enhancer (10nmol) Integrated DNA Technologies, Coralville, USA 

Erythrocyte Lysis Buffer Pharmacy of Klinikum Rechts der Isar 

Ethanol Roth, Karlsruhe, Germany 

Ethidium Bromide Sigma-Aldrich, St. Louis, Missouri, USA 

FACSTM Clean Becton Dicknson and Company, New Jersey, USA 

FACSTM Flow Becton Dicknson and Company, New Jersey, USA 

FACSTM Rinse Becton Dicknson and Company, New Jersey, USA 

Fetal bovine Serum (FBS) Biochrom, Berlin, Germany/ 

Life Technologies Limited, Paisley, UK 

Ficoll-Paque GE Heathcare, Uppsala, Sweden 

Glycerol Sigma-Aldrich, St. Louis, Missouri, USA 

HBSS (1×) Gibco, Life Technologies, Darmstadt, Germany 
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HEPES Sigma-Aldrich, St. Louis, Missouri, USA 

HEPES Buffer (1M) Biochrom, Berlin, Germany 

Human Serum Type AB Sigma-Aldrich, St. Louis, Missouri, USA 

Hydrogene peroxide solution Sigma-Aldrich, St. Louis, Missouri, USA 

IFNγ R&D Systems, Minneapolis, Minnesota, USA 

IL-2 R&D Systems, Minneapolis, Minnesota, USA 

IL-15 ImmunoTools, Friesoythe, Germany 

Isopropanol Sigma-Aldrich, St. Louis, Missouri, USA 

L-glutamine Miltenyi Biotech, Bergisch-Gladbach, Germany 

MACS®BSA Stock Solution Miltenyi Biotech, Bergisch-Gladbach, Germany 

N,N-Dimethylformamide Agilent Technologies, Böblingen, Germany 

Peptide CHM1319 Thermal Fisher Scientific, Ulm, Germany 

Penicillin-Streptomycin  

Gibco, Life Technologies, Darmstadt, Germany 

Life Technologies Limited, NY,USA 

PierceTM BCA Protein Assay Thermal Fisher Scientific, Ulm, Germany 

Propidium iodide staining solution Becton Dicknson and Company, New Jersey, USA 

RetroNectin TaKaRa, Saint-Germain-en-Laye, France 

PRMI 1640 medium 

Gibco, Life Technologies, Darmstadt, Germany/ 

Life Technologies Limited, Paisley,UK 

S.O.C medium Invitrogen, Life Technologies, Darmstadt, Germany 

Sodium Pyruvate 

Gibco, Life Technologies, Darmstadt, Germany / 

Life Technologies Limited, Paisley,UK 
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TransIT®293 Mirus, Madison, WI, USA 

Tri Reagent solution Ambion, Darmstadt, Germany 

Trypan blue Gibco, Life Technologies, Darmstadt, Germany 

Tween 20 Sigma-Aldrich, St. Louis, Missouri, USA 

RIPA lysis buffer Sigma-Aldrich, Germany 

Bromophenol blue Sigma-Aldrich, Germany 

SDS Sigma-Aldrich, Germany 

Glycerol Sigma-Aldrich, Germany 

TRIS Sigma-Aldrich, Germany 

Glycine Sigma-Aldrich, Germany 

Methanol Sigma-Aldrich, Germany 

2-Mercaptoethanol (100X) Sigma-Aldrich, Germany 

PageRuler™ Prestained Protein 

Ladder 

Thermal Fisher Scientific, Ulm, Germany 

Anti-FLI1 antibody Abcam, Cambridge, UK 

Anti-GAPDH antibody Santa Cruz Biotechnology,USA 

Anti-CHM1 R&D Systems, Minneapolis, Minnesota, USA 

Anti-PARP Cell Signaling Technology, Massachusetts, USA 

Anti-mouse Santa Cruz Biotechnology, USA 
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Anti-Rabbit Santa Cruz Biotechnology, USA 

5.4 KITS 

Materials Manufacturers and Locations 

EndoFree Plasmid Maxi Kit Qiagen, Hilden, Germany 

High Capacity Reverse Transcription Kit Applied Biosystems, Life Technologies, 

Darmstadt, Germany 

Pierce™ ECL Western Blotting Substrate Applied Biosystems, Life Technologies, 

Darmstadt, Germany 

RNeasy mini kit Qiagen, Hilden, Germany 

cDNA Reverse Transcription Kit Applied Biosystems, Life Technologies, USA 

GoTaq® Master Mix Promega, Madison, USA 

BCA  Thermal Fisher Scientific, Ulm, Germany 

 

5.5 ELISPOT REAGENTS 

Materials Working 

concentration 

Manufacturer 

Anti-h-IFNγ mAb 1-D1K,  purified 

(Capture  antibody) 10ug/ml mABTech, Nacka Strand, 

Sweden 

Anti-h- IFNγ mAb 7-B6-1, 

biotinylated (Detection antibody) 

2ug/ml mABTech, Nacka Strand, 

Sweden 

Streptavidin-Horse-Peroxidase  mABTech, Nacka Strand, 

Sweden 

3-Amino-9-ethyl-carbazole (AEC)  Sigma-Aldrich, St. Louis, 

Missouri, USA 

Acetate buffer: 37.5 ml H2O +3.75ml 0.2N acetic acid+8.8 ml 0.2N sodium 

acetate 

AEC solution: 1 piece of AEC tablet (20mg) + 2.5ml Dimethylformamide (DMF) 

+ 47.5 ml acetate buffer 



26 | P a g e  
 

Development solution: 10ml AEC solution+ 30ul 30% H2O2 per plate 

5.6 CRISPR/Cas9 REAGENTS 

PBS Thermo Fisher 14200067 

(10x), 

14190144 (1x) 

no calcium, no magnesium 

IL2 Proleucin   100000 Units 

IL7 Peprotech oder 

R&D  

#200-07-50UG 

oder 207-IL-

025/CF 

1x104 U/ml in 0,1% hAB 

Serum 

IL15 Peprotech oder 

R&D  

#200-15-50UG 

oder 247-IL-

025/CF 

5µg/ml in 0,15 hAB Serum 

Anti-human 

CD3/28 

dynabeads 

Thermo Fisher 11131D  

crRNA TRAC 

(10nmol) 

IDT  AGAGTCTCTCAGCTGGTACA 

crRNA TRBC 

(10nmol) 

IDT  GGAGAATGACGAGTGGACCC 

tracrRNA 

(20nmol) 

IDT 1072533 Alt-R CRISPR/Cas9 tracrRNA 

crRNA 

negative 

control #1 

(2nmol) 

IDT 1072544 

 

Alt-R® CRISPR/Cas9 Negative 

Control crRNA #1, 2 nmol 

crRNA 

positive 

control #1 

(2nmol) HPRT 

IDT 1072541 

 

Alt-R® CRISPR/Cas9 Positive 

Control crRNA, Human HPRT, 

2 nmol 

HiFi Cas9 IDT 1081060 

 

Alt-R® S.p. HiFi Cas9 

Nuclease V3, 100 µg 

Enhancer 

(10nmol) 

IDT 1075916 

 

Alt-R® Cas9 Electroporation 

Enhancer 

Duplex Buffer IDT 11-01-03-01 

 

Nuclease Free Duplex Buffer 

(10x2ml) 

Ampure XP 

bead 

Beckman Coulter A63881 AMPure XP PCR 

Aufreinigungssystem 

LoBind DNA 

1,5 ml Eppis 

Eppendorf 0030108051 

 

 

Herculase Agilent 600675 Herculase II Fusion DNA 

Polymerase 
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5.7 FLOW CYTOMETRY ANTIBODIES 
 

Specificity  Format Clone Manufacturer 

CD3 APC  Becton Dicknson and Company, New 

Jersey, USA 

CD3 FITC  Becton Dicknson and Company, New 

Jersey, USA 

CD3 PE-Vio770  Miltenyibiotec,Germany 

CD4 PE  Becton Dicknson and Company, New 

Jersey, USA 

CD8 APC  Becton Dicknson and Company, New 

Jersey, USA 

CD45RO PE  Becton Dicknson and Company, New 

Jersey, USA 

CD62L APC  Becton Dicknson and Company, New 

Jersey, USA 

mTCR PE H57-597 Biolegend, USA 

hTCR FITC IP26 Biolegend, USA 

Mouse 

IgG1 
FITC/APC/PE  Becton Dicknson and Company, New 

Jersey, USA 

 

 

5.8 VECTORS 

The vectors for pMP71-GFP, was kind gifts of Prof. Angela Krackhardt, 

Medizinische Klinick III, Klinikum Rechts der Isar, Technical University of 

Munich. pMP-RQ-CHM1-TCR-KI were generated with the help of GeneArt, Life 
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Technologies, Regensburg and the related structure is shown as Figure 3.   

  
 
Figure 3. Vector map of CHM1 TCR plasmid 
for Knockin. 

 

The vector map of the plasmid 

including TCR targeting CHM1 

peptide. 
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6 METHODS 

6.1 CELL CULTURE METHODS 

6.1.1 FREEZING AND THAWING OF CELLS 

For freezing, centrifuge the cells at 1500 rounds per minute (rpm) for 5 min. and 

re-suspend the cells in freezing medium according the corresponding medium, 

freeze in Mr. Frosty in -80°C at least for 24 hours. 

For thawing, cells were rapidly transferred into 5ml medium, centrifuged once 

at 1500rpm for 5 min and re-suspend in the appropriate culture medium. 

6.1.2 CULTURE OF CELL LINES 

Split the suspension and adherent cell lines every 2 to 3 days according to their 

individual growth rate. Split suspension cells at a ratio of 1: 4. For adherent cells, 

washed once with 5ml of PBS, then washed with 1ml of 0.05% trypsin quickly, 

and incubated for 1-3 minutes at 37°C according to their property. After 

detachment, add medium and suspend the cells for further split or experiment. 

6.1.3 CELL COUNTING 

For the determination of the cell number, cells were diluted 1:4 or 1:10 with 

trypan blue and counted in four squares of the Neubauer counting chamber. 

Cell concentrations were determined using the following formula: 

Concentration (cells/ml) = number of cells counted four square×10^4 (1:4) 

                   2.5× number of cells counted four square×10^4 (1:10) 

6.1.4 ISOLATION OF BLOOD CELLS 

Peripheral blood mononuclear cells (PBMCs) were isolated from concentrates 

(Buffy coats) provided by the DRK-Blutspendedienst Baden-Wuerttemberg/ 

Hessen in Ulm using Ficoll density gradient centrifugation. The blood cell was 

diluted in 1:2 with PBS, and centrifuged at 2200rpm for 30 minutes without 

brake. The buffy coat was aspirated and transferred to a fresh tube and added 
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with PBS to 50 ml, centrifuge at 700 rpm for 7 minutes to remove the platelets, 

ACK lysis buffer to lysis the red cells for 10 minutes and fill up to 50ml with PBS. 

Centrifuged at 1300 rpm for 5 minutes and wash twice, counted the cells for 

further culture or freeze. 

6.1.5 EXPANSION OF T LYMPHOCYTES WITH ENDOGENOUS TCR 

5×10^4 to 1×10^5 T-cell were expanded in 25 T-cell medium together with 

5×10^6 irradiated LCL (100 Gy) and 2.5×10^7 irradiated PBMC (30 Gy) pooled 

from three different healthy donors. 50ng/ml anti-CD3 was added. The next day, 

and every other day, 100 IU/ml IL-2 and 2ng/ml IL-15 were pipetted into the 

suspension. Replaced the medium whenever necessary. 

6.2 RETROVIRAL TRANSDUCTION OF TCR CONSTRUCTS  

On day 1, split and seed the packaging cell line, 293Vec-RD114TM cells, in 6-

well-plates (2 x 105 cells/well), for retrovirus production.  

On day 2, Mix 9μl TransIT solution and 200μl Opti-MEM and incubate at room 

temperature. After 20 minutes, 1ug of plasmids were added (pMP71-GFP or 

pMP71-CHM1-TCR) and the solution was incubated for another 30 minutes at 

room temperature before it was pipetted into one well of the 6-well-plate (Figure 

4). T cells were isolated the same day and stimulated with anti-CD3/CD28 

dynabeads (6ul/ml/1×106 T cells) and 100 U/ml IL-2. 

On day 4, coat 24-well plates with RetroNectin. (RetroNectin coating was 

performed by an over-night incubation with 5μg RetroNectin per well and a 

washing step with 2 ml HBSS per well containing 2.5% HEPES.) Collect virus-

containing supernatant of 293T cells, centrifuged at 1300rpm for 5 minutes, and 

filter through a 45μm filter to exclude cells. 1x106 T cells 1 ml T cell medium 

were plated into each well of the 24-well plate and co-cultured with 1 ml virus 

supernatant and 4μg protamine sulfate. PBMC and T cells additionally required 

1 % HEPES and the appropriate cytokines (100 U/ml IL-2 or 30 ng/ml IL-21 and 

2 ng/ml IL-15). Centrifuge plates at 2200rpm for 90 minutes at 32 °C and then 
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incubated at 37 °C for 24 hours.  

On day 5, split the transduced cells 1: 2 and repeat the procedure of day 4. 

On day 7, wash plates renew cytokines. 

On day 10, check the transduction rates by flow cytometry analysis. 

 
Figure 4. Principle of retroviral gene transfer. 

293Vec-RD114 is a HEK 293-based packaging cell line that produces retroviral vectors pseudotyped 
by the cat RD114 virus envelope protein 

 

6.3 CRISPR/CAS9 MEDIATED ORTHOTOPIC TCR REPLACEMENT 

On day 1, activate T cells: 6µl anti-CD3/28 dynabeads + 300 IU/ml IL-2, 5ng/ml 

IL-7 and 5ng/ml IL-15 per 1×106 T cells. 

On day 2 (or before), PCR for dsDNA PCR product  

For the PCR reaction, use the Maxi Prep product of the delivered DNA KI Insert.  

PCR: 100µl system 

DNA (prediluted to have roughly 15-60ng/µl) 1µl 

forward primer (10µM)  4µl 

  

pMP71
CHM1

Vector

293Vec-RD114TM

Packaging cell

retrovirus

retrovirus

retrovirus

retrovirus

transduction

Virus production

TCR

CD3+ T



32 | P a g e  
 

reverse primer (10µM)  4µl 

dNTPs (10mM) 20µl 

5x Herculase buffer 20µl 

Herculase  1µl 

PCR grade water  50µl 

Total  100µl 

Primer of KI fragment is as Supplementary Table 1 

PCR-Program 

•95°C for 3 min  

 95°C for 30 sec  

 62°C for 30 sec      34 cycles 

 72°C for 3min  

•72°C for 3min final elongation  

•Hold at 4°C  

DNA Purification:  

•Prepare Ampure XP bead at RT for at least 30 minutes. 

•Mix beads thoroughly. 

•Pool PCR samples (in this case 2x 5 samples with a total volume of 1000µl) in 

two LoBind DNA 1.5ml Eppendorf tubes and add Ampure XP beads in a 1:1 

ratio. 

•Mix by pipetting up and down and incubate 5min at RT. 

•Place the tube on a magnetic stand for 3min until the solution is clear. 

•Discard the supernatant carefully, without touching or disrupting the beads. 

•Remove the tubes from the magnetic stand and wash with 200µl of 70% EtOH. 
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•Resuspend the beads and place tubes again on the stand for 3min. 

•Discard the supernatant and repeat washing as before. 

•Discard the rest of EtOH with a 10µl pipette (letting the tubes on the stand). 

•Let samples dry for 5min, being careful not to over dry them. 

•Remove the tubes from the magnetic stand and suspend beads in 20µl of 

10mM Tris buffer pH 8.5. 

•Place again the tubes on the magnetic stand and wait for 1min. 

•Collect the supernatant containing the cleaned PCR product into a new tube. 

Concentration measurement with Nanodrop (best 1µg/µl in 20µl). 

On day 3, Electroporation 

Remove dynabeads:  

•Collect cells in 50ml falcon and centrifugate at 1300rpm 5-7min 

•Completely discard the medium, resuspend cell pellet in 1ml T cell medium 

and transfer into 1,5ml tube 

•Place the tube on a magnetic stand for 1min and collect the supernatant in a 

new 1,5ml tube (repeat this step) 

•Wash cells once with T cell medium 

•Count cells and resuspend cells at 1Mio cells/200µl T cell medium 

•For each approach, pipette 200µl/well (1 Mio cells) in a 96 well V bottom plate 

(always 8 wells in a line) 

•Incubate at 37°C 5% CO2 until the production of RNP  

RNP production 

•Thaw tracRNA and crRNA aliquots quickly 

•Generate gRNA for each target as necessary. Prepare gRNA (tracrRNA + 

crRNA in a ratio of 1: 1) on ice! Important: first tracrRNA, then crRNA and 

resuspend carefully 

•Heat at 95°C for 5min, then allow to cool to RT on bench top. (Store gRNA on 
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ice if you do not continue directly) 

•Take 61µM Cas9 stock from -20°C quickly, store Cas9 on ice if you do not 

continue directly, otherwise bring Cas9 to RT for RNP assembly.  

•Dilute 61µM Cas9 to 6µM with PBS. For 5µl of 6µM Cas9: add 4.51µl of 1x 

PBS + 0.49µl Hifi Cas9 

•Allow gRNA to come to RT 

•Add electroporation enhancer (carefully) to have at the end 20µM 

concentration in RNP mix (1:20 of 400uM stock of electroporation enhancer). 

•Mix very, very slowly equal volumes of 6µM Cas9 protein and 40µM 

gRNA/enhancer (= tracRNA + crRNA + enhancer), move pipette tip in cycles 

while adding Cas9, always add Cas9 protein to gRNA solution, not the other 

way around. Final RNP concentration: 20µM.  

•Check if RNP solution is clear and does not contain any precipitate; incubate 

RNPs for 15-20min at RT 

•Subsequently put the RNPs on ice until you can proceed 

•Nucleofection (Lonza 4D Nucleofector, P3 Primary Cell S-Kit) 

•Allow RNPs to come to RT  

•Prepare 96 well V bottom plate with RNPs and targeting construct. Pipette first 

targeting constructs (DNA 1µl/well (1µg)) and add then RNPs (3µl/well each 

RNP). Incubate at RT for at least 30 seconds. Plate in the same order as subset 

of cells will be ordered (always 8 wells in a line) 

•Spin down T cells in 96 well v bottom plate (1500rpm, 3-5min), remove medium 

completely 

•Prepare P3 buffer (for each sample 20µl: 16.4µl P3 solution + 3.6µl supplement) 
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and pipette 20µl in each well of a 96 well V bottom plate (same order as RNPs) 

•Resuspend cells in 20µl supplemented P3 buffer (multichannel pipettes) and 

immediately transfer cells to V bottom plate with RNP and targeting constructs 

(minimize time the cells are resuspended in electroporation buffer) 

•Mix carefully, transfer 20-24µl of cells to Nucleocuvette 16 well strip, tap the 

strips to remove air bubbles; put the strips in the nucleofector in the right 

direction (strips are marked at the side) 

•Start nucleofection: Program EH-100 (custom program “CRISPR hum stim T 

cells”) 

•Add 80µl pre-warmed T cell medium quickly to the cells after nucleofection and 

transfer to new 24 well flat bottom plate; add pre-warmed T cell medium without 

P/S and with IL-2 to have 1 Mio cells/ml and 180 IU/ml IL-2 (final concentration) 

•Incubate at 37°C 5% CO2 for 24h (48h) and change the medium supplemented 

with 100 IU/ml IL-2 

•Incubate at 37°C 5% CO2 for up to 72h 

•Change medium every 1 - 2 days  

On day 6, Analysis the transduction rate and phenotype by flow cytometry.  

The methods was kindly provided by Dr.Kilian Schober from the Institute for 

Medical Microbiology, Immunology and Hygiene (Professor Dirk H. Busch), 

Technische Universität München, Munich, Germany   

 

6.4 GENERATION OF POOL-PBMCs AS FEEDER CELLS  

PBMCs were isolated from at least three different Buffy coats including HLA-A: 

02 positive and HLA-A:02 negative. The amount of isolated PBMCs was 

determined after ACK lysis buffer and cell count from all Buffy coats was 
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adjusted equally. Pool-PBMCs were then frozen in 5 x 107 aliquots in 500 µl 

freezing medium (10% DMSO and 90% human AB serum) and stored in -80°C. 

For expansion of the T cells, the Pool-PBMC and LCL were irradiated (LCL: 

100Gy, Pool-PBMC: 30Gy) and washed with T cell culture medium and further 

served as feeder cells. 

6.5 ELISPOT ASSAY 

On day 1, transferred 50ul of capture antibody solution to each well of the 

ELISpot plates, incubated the plates at 4°C overnight. 

On day 2, Wash the ELISpot plates four times with cold PBS. Afterwards, 

replaced 150ul T cell medium in each well and incubate at 37°C for 1 hour to 

block the unspecific binding. During blocking, pulsed unspecific or CHM1319 

peptide to T2 cells for 2 hours in incubator, and mixed the every 15minutes. 

Afterwards, washed the T2 cells three times.  Incubated other cell lines with 

100IU/ml IFNγ for 48 hours before use. 

After blocking, pipetted 50ul T-cell medium containing 10,000 T cells in the 

plates and incubated at least for 30 minutes. Carefully pipetted 50ul T-cell 

medium including 20000 target cells to over the suspension in each well and 

placed the plates at 37°C for 20 hours. 

On day 3, Washed ELISpot plates six times with PBS containing 0.05% Tween 

and incubated with 100ul of detection antibody per well for 2 hours. Washed 

the plates another six times with PBS containing 0.05% Tween, pipetted 100ul 

Streptavidin-Horse Radish Peroxidase into each well and incubated at room 

temperature for 1 hour in dark room. Wash three times with PBS containing 

0.05% Tween and another three times with normal PBS. Allocated 100ul 

development solution for 5 to 10 minutes and stopped by washing the plates 

with ddH2O. After drying, analyzed ELISpot plates using the ELISpot reader. 
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6.6 RNA ISOLATION, cDNA SYNTHESIS, AND RT-PCR 

After co-culture of T cells and EwS cells, remove the T cells and wash the EwS 

with cold PBS, and use trypsin to digest the EwS for 1-3 minutes, cultured 

medium is used again to stop digestion. Wash twice with cold PBS and then 

isolated with Trizol according to the protocol. cDNA synthesis and RT-PCR are 

performed according to the protocol. 

6.7 SDS-PAGE AND WESTERN BLOT 

After co-culture of T cells and EwS cells, remove the T cells and wash the EwS 

with cold PBS, and use trypsin to digest the EwS for 1-3 minutes, cultured 

medium is used again to stop digestion. Wash twice with cold PBS and then 

lysis the cells with protein lysis buffer on ice for 30 minutes. After 30 minutes    

concentrations were measured using BCA protein assay. Concentrations were 

adjusted in order to load 20-50 μg per well, complemented with 5×SDS loading 

buffer plus β-Me (Prepared as supplementary table). Denaturation by heating 

at 95°C for 5 min and separated on 8% or 12% Gel. Proteins were transferred 

to PVDF membrane using a Trans-Blot® Turbo™ (BioRad) set to the mix 

molecular weight program. Transferred-membranes were blocked with 5% BSA 

diluted in TBS with 0.1% Tween20 (TBST) for one hour at RT and incubated 

with the desired primary antibodies overnight at 4°C. The following day, 

membranes were washed 3 times in TBST for 10 min at RT and incubated with 

the respective HRP-coupled secondary antibodies for one hour at RT with 

rotation. Washing step was repeated 3 times prior to protein detectionwith ECL 

clarity for HRP-induced chemiluminescence inside a Gel Logic 1500 imaging 

system. Densitometric analyses of the bands were performed with Image J 

software, and arbitrary units were normalized to appropriate control (GAPDH).  

6.8 IN VIVO EXPERIMENTS  

To analyze local tumor growth in vivo, 3 x 106 A673 cells were re-suspended in 
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a final volume of 0.2 ml PBS/0.2% FCS. 3 x 106 A673 tumor cells were 

inoculated subcutaneously at the lower back of immunodeficient Rag2-/-γc-/- 

mice. Mice received a full body irradiation on day 3 with 3.5 Gy to facilitate 

engraftment of human T cells (Figure 5). 5 x 106 T cells together with 1.5 x 107 

IL-15 secreting NSO cells were injected i.p. on day 3. 1.5 x 107 IL-15 secreting 

NSO cells (previously irradiated with 80 Gy) were injected i.p. twice per week 

after the first injection. Mice were sacrificed after 17 days of tumor bearing. 

Tumor size was determined. Also blood, bone marrow were collected to analyze 

the T cell homeostasis. 

 

Figure 5. Time scale for validation of transgenic TCR on HLA-A*02:01+/CHM1+ EwS in 

vivo. 

Mice were inoculated with 3 x 106 s.c. HLA-A*02:01+/CHM1+ A673 EwS cells at the lower back. On 

day 2, mice received a fully body irradiation with 3.5 Gy followed by the injection of T cells and 

NSO cells on day 3. NSO cells were injected twice per week until the sacrifice the mice. 

 

6.9 ANALYSIS OF PUBLISHED CHIP-SEQUENCE DATA AND MICROARRAY  

ChIP-sequence data (GSE61944: GSM1517546, GSM1517547, GSM1517555, 

GSM1517556, GSM1517569, GSM1517570, GSM15175472, GSM1517573, 

GSM1517577, GSM1517581) were downloaded from the GEO database, and 

processed and displayed in the IGV browser (Robinson et al., 2017).  

Expression of CHM1 in EwS and bone marrow mesenchymal stem cell was 

mined from GEO database (GSE17618 and GSE6691), CCLE and 

ProteomicsDB database. 
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6.10 STATISTICAL ANALYSIS  

All statistical analyses were performed using GraphPad Prism. Two-tailed T test 

was used for statistical analyses of ELISpot results. p≤ 0.05 was regarded as 

statistical significant (*), p≤ 0.01 was regarded as statistical very significant (**), 

p≤ 0.001 was regarded as statistical highly significant (***), p≤0.0001 was 

regarded as statistical highly significant (****). All data is presented as 

mean±standard error of the mean (SEM). 
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7 RESULTS 

 

7.1 FEASIBILITY OF ORTHOTOPIC REPLACEMENT OF THE 

ENDOGENOUS T CELL RECEPTOR WITH A T CELL RECEPTOR 

CONTAINING A CHONDROMODULIN-1 TARGETING SEQUENCE    

 

Based on our previous work (Thiel et al., 2017) on immunotherapy of EwS, we 

focus on targeting the Chondromodulin-1 peptide 319 (CHM1319) peptide, 

VIMPCSWWV. For non-viral CRISPR/Cas9 engineered orthotopic TCR 

replacement, we refer to the established protocol kindly provided by Dr. Kilian 

Schober, Institute for Medical Microbiology, Immunology and Hygiene 

(Professor Dirk H. Busch), Technische Universität München, as shown in 

Figure 6 (Moosmann et al., 2022; Schober et al., 2019). The T cell receptor 

(TCR) DNA template containing the sequence targeting the CHM1319 peptide 

(Blaeschke et al., 2016) was established for homology-directed repair (HDR) 

(Figure 6 and Supplementary Table 2).  

Figure 6. Schema of orthotopic TCR replacement by CRISPR/Cas9-engineered gene 

editing. 

DNA template design for αβ-TCR integration via homology-directed repair (HDR, upper 
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panel) in TRAC exon1. Transgenic VDJ β-transcription is initiated with endogenous 

promoters. Endogenous TRAC (TRAC exon 1) and TRBC (TRBC1/2 exon1. Lower panel) 

are knocked out followed by transgene knock-in into the TRAC locus. TRBC knock-out 

leads to non-homologous end-joining (NHEJ) in the TRBC locus.  

LHA, left homology arm; TRBC, TCR-β constant; TRAC, TCR-α constant; bGHpA, poly-A 

tail; stop, RHA, right homology arm; T2A and P2A, self-cleaving peptide inserts (The 

constant domain of the beta chain is murinized). 

 

We performed PCR to amplify the knock-in (KI) fragment from the right 

homology arm to the left homology arm (Figure 7) according to the Schober 

protocol. Sfil enzyme was used to cut the plasmid and check the size of the KI 

fragment. The upper band (2482bp) served as the positive control; the lower 

band is the backbone of the plasmid. Here we identify that PCR using 15ng of 

original plasmid, 10ul of 20uM dNTP, 2ul of 10uM Primer, in a total of 50ul of 

reaction volume with DEPC water, could generate the most abundant PCR 

product. 

 

Figure 7. Detection of the CHM1319-specific transgenic TCR fragments in the pMK-RQ-

CHM1-TCR-KI plasmid by PCR. This plasmid was used to amplify the TCR sequence 

later used for CRISPR/Cas9 mediated KI. 

After PCR of the knock-in fragment, products were loaded onto agarose gel. Restriction 

cleavage of the TCR was used as positive control. 

Expected bands are shown for the backbone of the plasmid and the knock-in fragment 

(2842 bp) with different conditions: ①. Plasmid 7.5ng, dNTP 20uM 10ul, Primer 1ul, 

Total 50ul; ②. Plasmid 7.5ng, dNTP 20uM 10ul, Primer 2ul, Total 50ul; ③. Plasmid 

15ng, dNTP 20uM 10ul, Primer 1ul, Total 50ul; ④. Plasmid 15ng, dNTP 20uM 10ul, 

Primer 2ul, Total 50ul; ⑤. Plasmid 25ng, dNTP 20uM 10ul, Primer 2ul, Total 50ul). The 

plasmid is 5120 bp. 
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7.1.1 CRISPR/CAS9 ENGINEERED TCR EXPRESSION  

 

We performed CRISPR/Cas9 engineered knock-out (KO) of the endogenous T 

cell receptor (hTCR) combined with or without CHM1319-TCR insertion into 

lymphocytes from peripheral blood mononuclear cells (PBMC). Single α- or β-

stranded as well as double-stranded KO result in the loss of endogenous TCR 

surface expression (Figure 8A). Endogenous TCR KO combined with CHM1319-

TCR insertion leads to a T cell population containing a murinized TCR (mTCR), 

which are hTCR negative, indicating successful CRISPR/Cas9 engineered 

gene editing. The KO efficacy was approximately 98.5%. In contrast, the KI 

efficacy in T cells from thawed T cells ranged between 10%-23% (21% in Figure 

8A), while the efficiency of KI in fresh T cells reached 45% (Figure 8B). 

The CD3 complex is a heterodimeric glycoprotein cooperating with the TCR to 

convey signal transduction upon interaction with the antigenic peptides (Acuto 

& Reinherz, 1985). Upon combined TCR KO and KI, we see CD3 surface 

expression only in the population, where KI was successful (CHM1Vβ23-PE, 

Figure 8C, right panel, Q2) while the KI negative population remains CD3 

negative (Figure 8C, right panel, Q4). This indicates that CD3 expression is 

linked to TCR expression. 
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Figure 8. Assessment of transgenic TCR expression after CRISPR/Cas9 mediated 

orthotopic TCR replacement by FACS analysis.  

(A) After knock-out of either α-chain (TRAC KO) or β-chain (TRBC KO) or of both chains, 

the endogenous TCR (hTCR) is undetectable by FACS analysis. After knock-out of both 

endogenous chains combined with Knock-in of the CHM1319-specific TCR, mTCR is 

detectable (the TRBC constant chain of the CHM1319 specific TCR is murinized). Thawed 

T cells, knock-in efficiency: 21.3% (thawed T cells). Mock: electroporation of 

CRISPR/Cas9 but without guide RNA. 

(B) knock-out of both chains combined with with transgenic TCR knock-in: mTCR 

positive T cells are hTCR negative. Fresh T cells, knock-in efficiency: 45.5%. 

(C) Pentamer staining confirms transgenic TCR expression before enrichment. 

T cells were double stained with either anti-mTCR (mTCR-PE) and anti-hTCR(hTCR-

FITC), or anti-pentamer (CHM1 Vβ23-PE) and anti-CD3 (CD3-FITC).   

  

 

7.1.2 TUMOR RECOGNITION AND CYTOTOXICITY BY CRISPR/CAS9 ENGINEERED T 

CELLS  

For functional analysis of CRISPR/Cas9 engineered T cells, we assessed T cell  

activation by IFNγ-Elispot, tumor cell apoptosis (cleaved-PARP) by western blot, 

and T cell cytotoxicity against tumor cell by xCelligence detachment assays. 
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Selection of engineered T cells from six donors was initiated utilizing anti-

murine TCR antibody coupled beads. Expression of the murinized TCR 

sequence (mTCR) was assessed by FACS analysis, yielding a 92.7 % 

homogenous transgenic products in a representative experiment. (Figure 9A, 

right panel, Q2). CHM1319 transgenic T cells specifically recognized T2 cells 

loaded with CHM1319 peptide, while T2 cells loaded with an HLA-A*02:01 

binding influenza control peptide(FLU) were not recognized (Figure 9B). 

CRISPR/Cas9 engineered T cells secreted IFNγ when co-cultured with the 

HLA-A*02:01+ A673 and TC-71 EwS cell lines. In contrast, when co-cultured 

with HLA-A*02:01- cell lines SB-KMS-KS or SK-N-MC, no IFNγ release was 

observed. These findings indicate that CRISPR/Cas9 engineered T cells 

caused specific HLA-restricted in vitro EwS cell line recognition.  

Figure 9. Assessment of functional activation of CRISPR/CAS9 engineered 

TRANSGENIC T CELLS after co-culture with tumor target cells by IFNγ-ELISpot.  

(A) CHM1319-TCR expression in the final product of CHM1319-TCR insertion after 

enrichment.  These cells were used for functional analysis. T cells were double 

stained with either anti-mTCR (mTCR-PE) or anti-pentamer (CHM1 Vβ23-PE) with anti-

CD3 (CD3-FITC)   

(B) IFNγ release with dose dependent manner of transgenic T cells after exposure to 

T2 cell loaded with either CHM1319-peptide or with control-peptide (FLU) for 20 hours 
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in donor 1.  

(C) IFNγ release to assess the specific reactivity against several tumor cell clines after 

co-culture with CHM1319-TCR transgenic T cells in donor 2(A673 and TC-71: HLA-

A*0201+ EwS, SK-N-MC and SB-KMS-KS: HLA-A*0201- EwS, K562: MHC- NK cell control). 

IFNγ release transgenic T cells after exposure to T2 cell loaded with either CHM1319-

peptide or with control-peptide (FLU) served as positive control. Error bars represent 

standard deviation of triplicates experiments. ** means P<0.01, *** means P<0.001. 

We next asked whether these T cells also cause cytotoxicity of EwS tumor 

target cells and their apoptosis. Real-time analysis of EwS cytotoxicity 

(detachment from tissue culture tray) was assessed by xCelligence assay. After 

the addition of HLA-A*02:01/CHM1+ restricted TCR transgenic T cells, not only 

HLA-A*02:01+ A673 and TC-71 lines (Figure 10A, B), but also HLA-A*02:01- 

SK-N-MC line (Figure 10C) detached. Of interest, TCR negative T cells (TCR 

KO) also caused a variable degree of detachment. These findings raised the 

possibility that the xCelligence assay may not represent solely HLA-TCR 

cognate specific cytotoxicity. To this end we asked, which T cells cause 

apoptosis, as a specific cell death modality induced by TCR-HLA recognition. 

Cl-PARP as a parameter of apoptosis was specifically induced by T cells with 

orthotopic TCR replacement in HLA-A*02:01+ A673 but not in HLA-A*02:01- SK-

N-MC lines (Figure 10D). Some marginal and variable cl-PARP was still seen 

after co-culture with TCR KO cells. 
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Figure 10. Assessment of apoptosis of CRISPR/CAS9 engineered TRANSGENIC T CELLS 

after co-culture with tumor target cells, by cleaved PARP (cl-PARP). 

(A) xCelligence assay were performed to assess killing/detachment effect on of 

A673, TC-71, and SK-N-MC with the T cells with endogenous TCR knockout (TCR 

KO), or with orthotopic TCR replacement (CHM1 specific TCR KI), EwS cells 

without T cells co-culture is negative control. 

(D) PARP cleavage (cl-PARP) analyzed by SDS-PAGE after co-culture of A673 (HLA-

A*0201+) or SK-N-MC (HLA-A*0201-) with either no T cells (Mock), unspecific T cells 

(unspecific), T cells with TCR knock-out (KO) or T cells with orthotopic TCR replacement 

with CHM1319 TCR (CHM1 Specific). 

 

7.2 COMPARISON OF TCR TRANSGENIC T CELLS ENGINEERED BY 

CRISPR/CAS9 VS. RETROVIRAL GENE TRANSDUCTION 

The experimental design to compare the phenotype and cytotoxic effects of our 

transgenic T cells is shown in Figure 11. After isolating PBMC from buffy coat, 

we stimulated the T cells with CD3/CD28 dynabeads for two days. Meanwhile, 

we amplified the KI-DNA fragment for CRISPR/Cas9 transduction and 

transfected 293Vec-RD114 packaging cells with the pMP71-CHM1-TCR 

plasmid for retrovirus production. Subsequently, we purified the KI-DNA 

fragment for CRISPR/Cas9 or harvested the retrovirus for transduction. Next, 
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we isolated the transgenic T cells with anti-mTCR antibody and expanded the 

transgenic T cells for further functional analysis and in vivo experiments.  

 

Figure 11. Procedures to compare transgenic T cells engineered by either 

CRISPR/Cas9 or retroviral gene transfer. 

CRISPR/Cas9 engineered orthotopic TCR replacement or retrovirus transduced 

random TCR insertion into the T cell genome was performed on T cells from the same 

donor. Phenotype and endogenous TCR expression were evaluated by flow cytometry 

(FACS). Tumor cell cytotoxicity by xCELLigence (detachment) and cl-PARP by SDS-PAGE 

(apoptosis) as well as in vivo tumor growth were assessed in both groups to analyze 

the function of transgenic cells.  
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7.2.1 HIGHER EFFICIENCY OF RETROVIRAL TRANSDUCTION COMPARED TO 

GENE EDITING BY CRISPR/CAS9 

We first assessed retroviral transduction efficacy. After transduction of T cells 

from two donors with GFP-containing control vector pMP71-GFP, we checked 

the GFP expression by fluorescence microscopy (Figure 12A) and by FACS 

analysis (Figure 12A). The cells from donor 1 were thawed, whereas cells from 

donor 2 were fresh. The transduction rate of thawed T cells was 78% (Figure 

12B, upper panel), while fresh T cells reached 90% (Figure 12B, lower panel).  

Figure 12. TRANSGENIC pMP71-GFP AND pMP71-CHM1-TCR EXPRESSION.  

(A) A GFP sequence containing pMP71 vector was used to assess efficiency of T cells 
in general. Transduc�on is performed twice at day 1 and day 2 of culture. 4 days a�er 
the first transduc�on, representa�ve fluorescence microscopy was performed to 
assess the transduc�on efficacy of GFP in T cells. Although the colony size is different 
between the two donors, transduc�on rates are comparable. Material from donor 1 
was thawed, material from donor 2 was fresh. 
(B) The CHM1-TCR sequence containing the pMP71-CHM1-TCR vector, was used to 
transfect T cells. 4 days a�er the first transduc�on, representa�ve FACS analysis was 
performed to access the transduc�on rates. T cells were stained with murine an�-TCR 
an�body (mTCR-PE) and an�-CD3-APC (an�-CD3-APC) or an�-CD3-Vio770 (the 
constant domain of the beta chain of the transgenic TCR being murinized). 
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When comparing CRISPR/Cas9 orthotopic single gene replacement and 

multiple random insertions by retroviral transduction, we found retroviral 

transduction to be consistently higher. Efficacy of endogenous TCR orthotopic 

replacement with CHM1319-TCR ranged from 11% to 45%, whereas efficacy of 

retroviral transduction ranged from 70-90%. Figure 13 depicts the results 

unspecific (non-engineered), CRISPR/Cas9 and retrovirus (Retrovirus) 

transduced T cells were derived from the same donor. Retrovirus transduction 

efficacy was 77% (Figure 13A, right panel Q2 plus Q3), whereas CRISPR/Cas9 

transduction efficacy was only 19% (Figure 13A, middle panel Q2 plus Q3). As 

expected, replacement of the endogenous TCR was more efficient in the 

CRISPR/Cas9 (Figure 13B, middle panel Q5 plus Q6) as compared to the 

Retrovirus (Figure 13B, right panel Q5 plus Q6) group. 

Figure 13. Efficacy of TCR replacement via CRISPR/Cas9 vs. retrovirus-mediated TCR 

insertion. 

(A) T cells were stained with anti-CD8-APC (CD8-APC) and anti-mTCR (mTCR-PE)  after 

culture to assess the efficacy of transduction.  

(B) T cells were stained with anti-endogenous TCR (hTCR-FITC) and anti-mTCR (mTCR-

PE) after culture to assess the efficacy of transduction, the constant domain of the 

transgenic TCR beta chain being murinized. 

CRISPR/Cas9 and retrovirus (Retrovirus) transduced T cells from the same donor. 
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7.2.2 PRESERVATION OF A PHYSIOLOGICAL T CELL PHENOTYPE BY 

CRISPR/CAS9 ENGINEERING  

We performed FACS analysis after isolating the transgenic T cells with an anti-

mTCR antibody to investigate the phenotype alteration by TCR engineering 

(Figure 14A, upper panel). There was no difference in the central memory 

phenotype (CD62L+/CD45RO+, Q2) between the non-engineered (unspecific) T 

cells and CRISPR/Cas9 engineered (CRISPR) T cells, whereas retroviral TCR 

transduction (Retrovirus) induced a central memory phenotype as compared to 

the other two groups (Figure 14A, lower panel).  

The higher percentage of central memory phenotype T cell population after 

retroviral transduction was also observed over a prolonged period, i.e. at weeks 

two, three, and four (Figure 14B).  

These results suggest that CRISPR/Cas9 engineered T cells resemble more 

the physiological phenotype of non-engineered T cells, while retroviral TCR 

transduction skews T cell differentiation towards a central memory phenotype. 
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Figure 14. Central memory (CM) phenotype of transgenic T cells after TCR 

replacement via CRISPR/Cas9 vs. retroviral transduction. 

(A) Donor 1: upper panel, the representative of T cells in each group after mTCR 

antibody isolation, ‘’Unspecific’’ designates non-engineered T cells, “CRISPR” 

designates T cells with TCR replacement by CRISPR/Cas9 and “Retrovirus” designates 

T cells with TCR transfer by retrovirus. 

Lower panel, CM T cells are characterized by co-expression of CD45RO and CD62L after 

two weeks.  

(B) Donor 2: CD62L expression in T cells at weeks two, three and four after T cells 

isolation. 

Double staining of T cells with anti-CD45RO (CD45RO-PE) and anti-CD62L (CD62L-APC). 
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7.2.3 REQUIREMENT OF HIGH RETROVIRAL GENE TRANSDUCTION EFFICACY 

AND HIGH CRISPR/CAS9 KO EFFICACY FOR PREVENTION OF ENDOGENOUS 

TCR EXPRESSION AND TCR CHAIN MISPAIRING  

 

One of the advantages of orthotopic TCR replacement by CRISPR/Cas9 is that 

it avoids mispairing of endogenous and exogenous TCR chains and thus averts 

the generation of promiscuous TCRs recognizing off-target antigens. To gauge 

this postulated advantage of CRISPR/Cas9 vs. retroviral engineering, we 

compared the expression of endogenous TCR after CRISPR/Cas9 gene edition 

vs. retroviral transduction. We found that the decrease of endogenous TCR 

surface expression in the retrovirus group (Retrovirus) was similar to the 

expression in the CRISPR group (CRISPR, Figure 15A). After CHM1319-TCR 

transduction via retrovirus, the transgene positive population (red curve, Figure 

15B) shows less endogenous TCR transgene as compared to the negative 

population (blue curve, Figure 15B).  

Figure 15. Assessment of endogenous TCR expression after TCR replacement by 

CRISPR/Cas9 vs. retroviral TCR transduction. 

(A) FACS analysis of expression of endogenous TCR expression (hTCR): “Mock” 

designates a control non-transduced T cells; “CRISPR Control” designates a control 

containing T cells transduced by electroporation of CRISPR/Cas9 but without guide 

RNA; “Retrovirus Control” designates a control containing T cells exposed to 

centrifugation only with no retrovirus added; “CRISPR” designates T cells with TCR 

replacement by CRISPR/Cas9 and “Retrovirus” designates T cells with TCR transfer by 
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retrovirus. The “CRISPR” and “Retrovirus” groups were analyzed after isolation with 

anti-mTCR antibody. 

(B) FACS analysis of expression of endogenous TCR expression (hTCR) after retrovirus-

mediated TCR transfer (T cells were analyzed before isolation with anti-mTCR 

antibody). 

T cells were stained with anti-mTCR (mTCR-PE) and anti-hTCR (hTCR-FITC). 

 

We also noted that repression of the endogenous receptor after retroviral 

transduction depends on transduction efficacy (Figure 16). In this experiment, 

the retroviral transduction efficacy was only 42%. In the setting of this low 

transduction efficacy, we can identify two distinct subpopulations (Figure 16, left 

panel): The upper cloud represents a subpopulation with high mTCR 

expression, i.e. the transduced subpopulation, whereas the lower cloud 

represents a population with a low mTCR expression. The high mTCR 

expressing subpopulation has a lower hTCR expression as compared to the 

subpopulation represented by the lower cloud, which is characterized by low 

mTCR and higher hTCR expression. This low mTCR/high hTCR subpopulation 

is comprised of non-transduced cells as indicated by low mTCR expression. 

Although there is some overlap between both subpopulations, the peaks of 

transduced and non-transduced subpopulations are distinct (Figure 16, right 

panel). This finding implicates that a low retroviral transduction efficacy will yield 

a heterogenous product containing a large subpopulation at risk for mispairing 

and causing autoimmune side effects. 
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Figure 16. Assessment of endogenous TCR expression on T cell membrane after low 

retroviral TCR efficiency.  

FACS determinates the expression of endogenous TCR expression (hTCR) on cell 

membrane after retrovirus-mediated TCR transfer with low efficiency ((T cells were 

analyzed before isolation with mTCR antibody). 

T cells were stained with anti-mTCR (mTCR-PE) and anti-hTCR (hTCR-FITC). 

 

For clinical application, we have to ensure the KO both endogenous TCR 

chains. Failure of β chain KO constitutes a risk of mispairing of the transduced 

α with the endogenous β chain. The ratio of α to β chain in a single 

CRISPR/Cas9 engineered cell would be 2:1, since both transgenic chains are 

expressed from the α locus. When comparing the transduction efficacy of both 

procedures, in retrovirally transduced T cells the amount of transduced TCRs 

per cell are by definition and by observation higher (n>1) than the single 

endogenous TCR (n=1). On the other hand, if CRISPR/Cas9 KO is suboptimal, 

the risk of mispairing between the exogenous α with the endogenous β chains 

in a single cell would be X: 1, with X being >1. This implicates, that the risk of 

mispairing may be higher in CRISPR/Cas9 as compared to retrovirally 
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transduced T cells (Figure 17).  

Figure 17. Endogenous β chain mispairing with the transgenic α chain after 

insufficient CRISPR/Cas9 engineered KI. 

CRISPR/Cas9 engineered transgenic T cells from thawed donor: left panel, non-engineered T cells 

(Unspecific); middle panel: CRISPR/Cas9 engineered transgenic T cells before mTCR selection with 

an anti-mTCR antibody (CRISPR/Cas9); right panel, CRISPR/Cas9 engineered transgenic T cells after 

mTCR selection with an anti-mTCR antibody. The red cloud in Q6 indicates the transgenic T cell 

products with a failure KO of endogenous β chain (CRISPR/Cas9).  

T cells were stained with anti-mTCR (mTCR-PE) and anti-CD3 (CD3-APC). 

Moreover, retrovirally transduced T cells express more TCR as documented by 

CD3 expression (Figure 18), due to multiple gene copies. 

Figure 18. Higher expression of CD3 after retroviral 

transduction of TCR.  

CD3 expression in non-engineered T cells (Unspecific) , 

CRISPR/Cas9 engineered T cells with orthotopic TCR 

replacement(CRISPR/Cas9) and retrovirally transduced T 

cells(Retrovirus). 

 

  

7.2.4 SPECIFIC TUMOR CELL RECOGNITION AND CYTOTOXICITY IN VITRO BY 

BOTH T CELL PRODUCTS WITH BETTER PROLONGED ACTIVITY OF 

CRISPR/CAS9 ENGINEERED T CELLS   

 



56 | P a g e  
 

We next assessed the cytotoxic effects on and specific recognition of EwS cell 

lines by transgenic T cells obtained with either orthotopic TCR replacement by 

CRISPR/Cas9 or retroviral transfer. After isolation of the transgenic T cell with 

mTCR antibody (mTCR-PE), we co-cultured the T cells with HLA-A*02:01+A673. 

Here we identified an increase in the cl-PARP in A673 after co-culture with both 

transgenic T cell products. Somewhat more cl-PARP1 was observed with 

retrovirally transduced T cells compared to CRISPR/Cas9 engineered T cells 

(Figure 19A). 

To assess specific recognition, we co-cultured T cells with T2 cells loaded with 

either CHM1319-peptide or with control-peptide (FLU) and performed an IFNγ-

Elispot on day 35 and day 54 after T cell culture. On day 35, we observed a 

higher IFNγ release with retrovirally transduced T cells as compared to T cells 

with orthotopic TCR replacement (Figure 19B). In contrast, a higher IFNγ 

release was induced by T cells with orthotopic TCR replacement on day 54 

(Figure 19C). Of note, we identified similar trends with the control peptide 

(Figure 19, B and C), albeit with significantly weaker IFNγ signals. 

 

Figure 19. Assessment of PARP cleavage (cl-PARP) by SDS-PAGE and IFNγ release by 

Elispot to compare the cytotoxic effects targeting A673 Ewing Sarcoma cells and T2 

cells loaded with the CHM1 peptide. 

(A) Determination of cl-PARP in A673 (HLA-A*02:01+/CHM1+) cells by SDS-PAGE after 

co-culture of A673 cells with either no T cells, non-engineered T cells (Unspecific), 

engineered T cells with orthotopic TCR replacement (CRISPR), or retroviral  

(Retrovirus). 

(B, C) Evaluation of activation of T cells by IFNγ-ELISpot assay after co-culture with T2 
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cells plus CHM1 peptide on 35 days (B) and 54 days (C) after T cell isolation from PBMC. 

T cells as in panel A. * means P<0.05, ** means P<0.01. 

 

We next performed xCELLigence assays to compare the cytotoxic effect on 

EwS cells with transgenic T cells on day 54. T cells with orthotopic TCR 

replacement targeting CHM1 clearly caused cytotoxicity of HLA-A*02:01+ A673 

(sharp decrease of Cell Index, Figure 20A). Of note, there was some marginal 

detachment on HLA-A*02:01- SB-KMS-KS again after co-culture with 

CRISPR/Cas9 engineered T cells (Figure 20B) as previously observed (cf. 

Figure 10). These findings underline that the xCelligence assay may not 

represent solely HLA-TCR cognate specific cytotoxicity, at least in our hands.   

 

Figure 20. Cytotoxicity of EwS cell lines by real-time xCELLigence assay. 

xCELLigence detachment assays were performed to compare the cytotoxic effect of T 

cells on HLA-A*02:01+/CHM1+ A673 cells (A) and HLA-A*02:01+/CHM1- SB-KMS-KS (B). 

Treatment groups include mock control, non-engineered T cells (unspecific), T cells 

with CRISPR/Cas9 engineered TCR replacement (CRISPR), and T cells with retroviral 

TCR transduction (Retrovirus). 

 

 

7.2.5 ADOPTIVE TRANSFER OF BOTH TRANSGENIC T CELL PRODUCTS 

DECREASES TUMOR GROWTH IN VIVO 

 

We expanded the transgenic T cells and non-engineered T (unspecific) cells 

after isolating the transgenic T cells with an anti-mTCR antibody to obtain 
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sufficient amounts for in vivo experiments. The same amount (5x106 T cells) of 

both products and the control was injected into tumor-bearing mice to compare 

the tumor-control efficiency of both transgenic products. Tumor weight was 

assessed seventeen days after injection of A673 EwS cells alone (control group, 

n=3), A673 EwS cells in combination with either unspecific T cells (unspecific 

group, n=6), CRISPR/Cas9 engineered T cells (CRISPR/Cas9 group, n=6), or 

retrovirally transduced T cells (retrovirus group, n=6). The mice were sacrificed 

and analyzed seventeen days after tumor injection. One mouse in the retrovirus 

group died on day 10. 

Before injection to the tumor-bearing mice, we assessed the homogeneity of 

the engineered T cell products by FACS analysis. The purity of the 

CRISPR/Cas9 engineered T cell products and retrovirally transduced T cell 

products were 97.8% and 97.0% respectively (Figure 21,middle and right panel). 

Engineered T cells products were all CD3 positive (Figure 21, middle and right 

panel). Non-engineered T cells contained CD3 positive and negative 

subpopulations (Figure 21 left panel). The higher CD3 purity of the engineered 

products is due to their enrichment by an anti-mTCR antibody.   
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Figure 21. Transgene expression after magnetic beads selection and subsequent 

expansion in vitro at day 27, the first day of in vivo experiment. 

Sorted and expanded of the non-engineered and transgenic T cells, by either 

CRISPR/Cas9 (CRISPR) or retroviral transduction after isolation by anti-mTCR antibody. 

The non-engineered T cells were regarded as Mock.  

Cells were stained anti-mTCR (mTCR-PE) and anti-CD3 (CD3-APC) at day 27 of culture, 

day 4 of the in vivo experiment (first day of T cell injection). 

T cells were stained with anti-mTCR (mTCR-PE) and anti-CD3 (CD3-FITC). 

 

 

Last day of the in vivo experiments (day 17), we repeated the FACS analysis 

for further evaluation of the transgenic T cell products as the day before T cell 

injection (Figrue 22).  

 

 
 

Figure 22.  Transgene expression after magnetic beads selection and subsequent 

expansion in vitro at day 54, the last day of in vivo experiment. 

T cells used as Figure 19 for FACS analysis, but are derived from day 54 of culture (day 

17 of in vivo experiments). 
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To assess tumor control by transgenic T cells, we measured the tumor weight 

and assessed timuor size after sacrificing the mice. There was a trend to 

reduction of tumor weight by both transgenic products compared to the non-

engineered product (CRISPR/Cas9 p=0.0602, Retrovirus p=0.0152). Of note, 

no significant difference was observed between the transgenic products and 

the non-engineered T cells. This lack of difference is probably due to non-

specific allo-response activity of the non-engineered cells containing their 

endogenous HLA TCR, recognizing the tumor HLA- disparate haplotype. Finally, 

no statistical difference in tumor weight was found between the retroviral and 

the CRISPR/Cas9 engineered T cells (Figure 23A). Tumor size seemed to be 

reduced by both engineered products, and somewhat less by non-engineered 

cells (Figure 23 B). As a note of caution, we would like to explicitly mention that 

the control group contains here only two mice, because tumor injection in the 

third mouse failed. However, the tumor size in the two remaining mice was in 

the range of multiple previous control experiments in our lab (Schirmer et al., 

2016; Schober et al., 2020). Transgenic T cells were undetectable in residual 

tumors (data not shown).  

Of note, there was increased cl-PARP generation by transgenic T used for the 

in vivo experiment cells as compared to non-engineered T cells when cultured 

in parallel in vitro. Retroviral T cells induced somewhat more cl-PARP than  

CRISPR/Cas9 engineered T cells (Figure 23C) 

 

Figure 23. In Vivo assessment of effects by transgenic t cells on Tumor volume: Tumor 

weight and size after T cell therapy in Rag2-/-γc-/- mice. 
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(A) After injection of 3x106 A673 EwS cells subcutaneously in Rag2-/-γc-/- mice (BALB/c 

background), four groups were treated with an injection of 5x106 T cells: Group 1 

received no T cells (Control); Group 2 received non-engineered T cells (Unspecific); 

Group 3 received transgenic T cells by orthotopic TCR replacement (CRISPR); Group 4 

received T cells by retroviral transduction (Retrovirus). 

(B) Representative tumor sizes of each group 17days after tumor injection. 

(C) In vitro co-culture of A673 with T cells as panel A for 5 hours. 

 

 

7.2.6 NO REDIRECTION TO OFF-TARGET SITES OF CRISPR/CAS9 ENGINEERED 

AND NON-ENGINEERED T CELLS IN CONTRAST TO RETROVIRALLY 

TRANSDUCED T CELLS 

Next, we asked whether the marginal significance in reduction of tumor weight 

was due to the redirection of engineered T cells to off-target sites, i.e. to bone 

marrow or spleen. To this end, we performed FACS analysis of bone marrow 

and spleen cells after sacrificing the mice at day 17 after tumor injection. 

Engineered T cells and non-engineered T cells were detectable at low 

frequency in both marrow and spleen. There was no significant difference 

between the transgenic T cell products; however, redirection of retrovirally 

transduced T cells to the spleen was somewhat more significant than to bone 

marrow when compared to the control with non-engineered T cells. In contrast, 

the redirection of CRISPR/Cas9 engineered T cells was not different from non-

engineered T cells (Figure 24). Phenotypes were not assessable due to low 

frequency. These findings may explain at least in part, the limited tumor control 

by retrovirally transduced T cells but not by CRISPR/Cas9 engineered T cells. 
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Figure 24. In Vivo assessment of T cell homing to bone marrow and spleen after T 

cell therapy. 

(A) T cell homing to bone marrow: Group 1 received non-engineered T cells 

(Unspecific); Group 2 received transgenic T cells by CRISPR/Cas9 (CRISPR); Group 3 

received transgenic T cells by retroviral transduction. 

(B) T cell homing to spleen: Group 1 received non-engineered T cells (Unspecific); 

Group 2 received transgenic T cells by CRISPR/Cas9 (CRISPR); Group 3 received 

transgenic T cells by retroviral transduction. 

 

 

7.3 CHM1 AS THE UNIQUE IMMUNOTHERAPY TARGET OF EWS 

7.3.1 CHM1 IS A DIRECT TARGET OF EWS-FLI1 SELECTIVELY EXPRESSED IN 

EWS AND REQUIRED FOR ITS METASTASIS. 

As we have previously shown, EWS-FLI1 binds to the (Figure 25) promotor and 

activates the transcription of CHM1 in EwS. Furthermore, CHM1 sustains the 

undifferentiated and invasive phenotype of EwS, which promotes lung 

metastasis of EwS (von Heyking et al., 2017). It is required for metastasis (von 

Heyking et al., 2017) and serves an EwS-specific antigen (Biele et al., 2021; 

Blaeschke et al., 2016; Thiel et al., 2017).  

We now first analyzed public CHIP-sequence data using the Integrative 

Genomics View (IGV) browser. CHIP-sequence data confirmed that EWS-FLI1 

binds to two promotor sites of CHM1 and induces acetylation of H3K27 

(H3K27ac) at both sites, which is associated with the activation of transcription 
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(Figure 25). Forced expression of EWS-FLI1 in mesenchymal stem cell also 

enhances H3K27ac at the same sites (Figure 25).  

Figure 25. CHIP-sequence analysis revealing CHM1 as a direct target of EWS-FLI1.  

Integrative genomics view (hg19) of the CHM1 locus from data of A673, SK-N-MC and 

mesenchymal stem cell (MSC) cells being transfected with shRNAs targeting either GFP 

(shGFP; negative control) or EWS-FLI1 (shEF1) or overexpression of EWS-FLI1 in MSC.  

We next mined the Cancer Cell Line Encyclopedia (CCLE (Ghandi et al., 2019)). 

We found CHM1 mRNA is highest expressed in EwS among all tumor cell lines 

(Figure 26A). Public Gene Expression Omnibus (GEO) database indicates that 

its expression in EwS tissues is significantly higher than in bone marrow 

mesenchymal stem cells (Figure 26B). These results are in correspondence to 

our previous publications (Staege et al., 2004; Thiel, Pirson, et al., 2011; von 

Heyking et al., 2017). In addition, CHM1 expression does not correlate 

significantly with recurrence or metastasis (Figure 26C). 
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Figure 26. High expression of CHM1 in EwS. 

(A) Overexpression of CHM1 in the CCLE database. 

(B) High expression of CHM1 in the GEO datasets including normal bone marrow 

mesenchymal stem cells (GSE 7637) and EwS tissues (GSE 17618). 

(C) The correlation of expression level of CHM1 with recurrence and metastasis. 

**** means P<0.0001. 

 

Finally, we analyzed the expression of CHM1 at the protein level in 

ProteomicsDB, which is developed by the Chair of Proteomics and Bioanalytics 

at the Technische Universität München and Cellzome GmbH (Samaras et al., 

2020; Schmidt et al., 2018) . We only found a very low expression in vitreous 

humor, lung, and heart and no expression in other tissues (Figure 27). 
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Figure 27. Very low expression of CHM1 protein in human tissue. 

ProteomicsDB shows a shallow expression of CHM1 in vitreous humor, lung, and heart.  

CHM1 is undetectable in other healthy tissues of females (left panel) nor males (right 

panel).  

 

7.3.2 CHM1 EXPRESSION IS INDUCED BY CHM1 RECOGNIZING TCR 

TRANSGENIC T CELLS WHILE EWS-FLI1 EXPRESSION FLUCTUATES. 

Antigen loss participates in the immune escape after long-term treatment with 

CAR-T therapy (Majzner & Mackall, 2018), such as CD19 CARs in pediatric B-

ALL (Gardner et al., 2016; Sotillo et al., 2015). Our group has a track to identify 

antigens that are indispensable for the tumor, in particular for its metastatic 

spread and sought to exclude potential resistance of EwS to CHM1 targeting 

immunotherapy by antigen loss. We thus analyzed the expression of CHM1 and 

EWS-FLI1 after co-culture of EwS cells (A673) with CRISPR/Cas9 engineered 

CHM1 targeting T cells. We found an increased expression of CHM1 (Figure 

28 A, B, D, E) in contrast to variable expression of EWS-FLI1 in A673 cells after 
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co-culture with transgenic T cells with orthotopic TCR replacement targeting 

CHM1 as compared to non-engineered T cells and other controls (Figure 28 A, 

C). These data may indicate that CHM1 could serve as a stable therapeutic 

target in the TCR-based immunotherapy of EwS. 

 

 
Figure 28. Upregulation of CHM1 after co-culture of A673 with CRISPR/Cas9 
engineered CHM1-319 recognizing TCR transgenic T cell. 

(A) EWS-FLI1 is downregulated a�er 23 hours of co-culture of A673 with different 
group of T cells. However, the expression of CHM1 is increased at the protein level. 
(B) Increase of mRNA level of CHM1 a�er 23 hours co-culture of A673 with CHM1 
specific T cells. 
(C) EWS-FLI1 is upregulated a�er 12 hours of co-culture of A673 with different group 
of T cells.  
(D, E) Increase of CHM1 both at the protein and mRNA level a�er 12 hours of co-
culture of A673 with different group of T cells. 
Treatment groups including no T cells (Mock), unspecific T cells (mock), T cells with 
CRISPR/Cas9 engineered TCR KO and replacement, and T cells with CRISPR/Cas9 
engineered orthotopic TCR replacement targe�ng CHM1.  
** means P<0.01, *** means P<0.001. 

 

A. B.

C. D. E.
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8 DISCUSSION 

8.1 TCR-BASED IMMUNOTHERAPY OF EWING SARCOMA 

There is a clear medical need for novel therapies in advanced Ewing sarcoma: 

High dose therapies with autologous hematopoietic stem-cell rescues has been 

beneficial only in selected subgroups (Burdach & Jurgens, 2002): AES patients 

younger than 14 may benefit from treosulfan/melphalan high-dose 

chemotherapy (TreoMel-HDT) followed by autologous hematopoietic stem-cell 

transplantation(Koch et al., 2022). Allogeneic hematopoietic stem-cell 

transplantation from healthy donors has delivered hints for the efficacy of 

immunotherapy not only in leukemias but also in solid tumors (Copelan, 2006), 

including advanced Ewing sarcomas (AES) patients (Burdach & Jurgens, 2002; 

Koch et al., 2022; Thiel et al., 2021). However, no difference in survival with 

reduced- versus high-intensity conditioning before allo-SCT (Thiel, Wawer, et 

al., 2011). There is also no difference in survival after HLA mismatched versus 

HLA matched allo-SCT (Thiel et al., 2021). These findings imply that allogeneic 

stem cell transplantation is not sufficient for immunotherapy of AES and novel 

therapeutic strategies are in urgent demand, such as TCR-based 

immunotherapy (Nicolini et al., 2022). With TCR-based immunotherapy 

targeting tumor-associated antigens of EwS, such as CHM1 (Blaeschke et al., 

2016; Thiel, Pirson, et al., 2011), STEAP1 (Schober et al., 2020) and PAPPA 

(Kirschner et al., 2017), our group previously achieved efficacious in vitro and 

in vivo cytotoxic targeting HLA-A*02:01+ EwS. TCR-based immunotherapy 

even led to partial regression without GvHD in refractory HLA-A2+ patients 

(Thiel et al., 2017). 

TCR-based adoptive therapy shows promising anti-sarcoma effects by 

targeting NY-ESO-1, leading to objective clinical responses (Robbins et al., 

2015). More than 600 clinical trials about TCR-based immunotherapy are in 

processing according to ClinicalTrials.gov (https://clinicaltrials.gov, data 

accessed on 28.04.2022).  
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Retrovirus- and lentivirus-based vectors are commonly used for TCR gene 

transfer in clinical trials (Manfredi et al., 2020). Both viruses enable stable 

integration and efficient expression of exogenous TCRs in lymphocytes. 

However, mispairing of endo- with exogenous TCRs limits the function of the 

transduced TCR and generates new antigens, which further cause 

autoreactivity or GvHD (van Loenen et al., 2010). Luckily, there was no the 

evidence of GvHD in the TCR-based adoptive therapy targeting CHM1 in our 

treatment trials of EwS, including allogeneic donor lymphocyte infusions 

(Schober et al., 2019) or allogeneic transgenic T cells (Schober et al., 2019; 

Thiel et al., 2017). Several strategies, such as murinization of TCR constant 

regions (Cohen et al., 2006; Sommermeyer & Uckert, 2010), codon 

optimization(Scholten et al., 2006) and additional cysteine residues (Cohen et 

al., 2007) have been proposed to prevent mispairing. We used codon 

optimization and murinization of TCR constant regions. However, these 

procedures cannot completely eliminate mispairing (Provasi et al., 2012). 

Random insertion of viruses into the genome also raises safety concerns, such 

as insertional mutations and tumorigenesis (Howe et al., 2008), albeit 

tumorigenesis has only been observed after retroviral transfection of 

hematopoietic stem cells, but not after retroviral transfection of T cells.  

8.2 ORTHOTOPIC REPLACEMENT OF TCR WITH CYTOTOXIC 

FUNCTIONALITY AND PRESERVATION OF A PHYSIOLOGICAL T-CELL 

PHENOTYPE – THE PROS AND CONS COMPARED TO RETROVIRAL 

TRANSFER 

 

To address the potential hazards of viral transduction, endogenous TCR KO 

with simultaneous non-viral orthotopic TCR replacement results in translation 

of the transduced TCR gene sequence. Activation via the endogenous TCR 

promoter provides functional results (Eyquem et al., 2017; Muller et al., 2021; 

Roth et al., 2018; Schober et al., 2019). Non-viral site-specific orthotopic TCR 

replacement may provide a more physiological T cell function than random 
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insertion if multiple copies by retroviral transfer. 

Our present work showing the feasibility of orthotopic replacement of the 

endogenous T cell receptor (TCR) with CHM1319-TCR targeting EwS by 

CRISPR/Cas9 confirms previous publications with different TCRs (Moosmann 

et al., 2022; Schober et al., 2019). Our CRISPR/Cas9 engineered T cell 

products demonstrated a strong specific cytotoxic effect towards HLA-A*02:01+ 

EwS cells and preserved a physiological phenotype. Compared to retrovirus 

transduced T cells, CRISPR/Cas9 prolonged the activity of engineered T cells 

in vitro. 

While both engineered products were active in vivo limiting tumor growth, we 

also observed activity of non-engineered T cells. Their activity may be due to 

allorecognition of the HLA disparate tumor. The interpretation of this finding is 

based on the fact that the non-engineered T cells are a heterogenous, i.e. non- 

specific population retain their endogenous TCRs, rendering them capable of 

allorecognition. Based on allorecognition these cells carry a great risk of GVHD 

and are limited value for clinical use. Of note, even TCR KO cells showed some 

activity in the xCelligence assay as well as marginal cl-PARP induction 

suggesting non-specific, i.e. TCR independent effects. 

Comparing CRISPR/Cas9 with retrovirus transduced T cells, our work indicates 

that high retroviral transduction efficacy can avoid endogenous TCR expression 

on the cell membrane, resembling CRISPR/Cas9 engineered T cells. This may 

indicate that a high efficiency of TCR transduction by the retrovirus is capable 

to compete with the endogenous TCR to form the heterocomplex with CD3 

required for stable TCR membrane expression. This competition may help 

avoid neo-antigen recognition due to TCR chain mispairing. However, high 

transduction rates may lead to abundant insertion of vector copy numbers (VCN) 

(Santeramo et al., 2020). According to the reflection paper on clinical risk 

management due to insertional mutations from the European Medicines 

Agency's Committee on Advanced Therapeutics (Aiuti et al., 2013), the risk of 
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gene-modified cell therapies via insertional oncogenesis should be reduced by 

restriction of VCN. Also, close-to-random transgene integration via viral 

transduction further limits the clinical application (Monjezi et al., 2017). In 

conclusion, there are limitations by both high and low viral transduction rates. 

On the other hand, gene editing by CRISPR/Cas9 generates structural defects 

of the nucleus, chromosomal truncations, micronuclei and chromosome bridges, 

which initiate a mutational process and cause human congenital disease, even 

cancer (Cullot et al., 2019; Leibowitz et al., 2021). Rare off-target effects were 

also identified when using TRAC guide RNA (gRNA) with wild-type Cas9, 

whereas no off-target effects were detected with the ‘enhanced specificity’ Cas9 

variant eSp.Cas9 (Muller et al., 2021; Slaymaker et al., 2016). We performed 

our experiments by taking advantage of eSp.Cas9, which potentially avoid off-

target, but we did not manage to evaluate the genome-wide editing specificity 

in the present work. In our work, CRISPR/Cas9 efficacy in thawed T cells is low 

as compared to fresh cells. For clinical application, we have to ensure the KO 

both endogenous TCRs. If the KO of β chain fails, there is a possibility of 

mispairing of the transduced α with the endogenous β chain. The ratio of α to β 

chain in a single cell would be 2:1, since both transgenic chains are expressed 

from the α locus.  

When we compared the transduction efficacy of both procedures, in retrovirally 

transduced T cells the amount of transduced TCRs was significantly higher than 

the endogenous TCR in a single cell, as expected. Thus, the risk of mispairing 

between exogenous α to endogenous β chains in a single cell would be X:1, 

with X being >1, depending on the number of transduced gene copies. This 

implicates, that the risk of inactivation of the therapeutic receptor by mispairing 

with the endogenous β chain may be higher in CRISPR/Cas9 as compared to 

retrovirally transduced T cells. In CRISPR/Cas9 transduced T cells, it would be 

50% based upon the ratio of α to β chain being 2:1 in a single cell. In retrovirally 

transduced T cells, the risk of inactivation of the therapeutic depends on the 
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transduction rate. Assumed that 1,000 gene copies are transduced and given 

the risk that both exogenous chains may mispair with both endogenous chains 

the risk would be close to 0.2%. As expected, retrovirally transduced T cells 

express more TCR on their surface.  

8.3 CHALLENGES IN THE IN VIVO RECOGNITION AND CYTOTOXICITY OF 

EWS 

Despite the cytotoxic effects targeting HLA-A*02:01+/CHM1+ EwS cells in vitro, 

both transgenic T cell products elicited only a partial tumor remission (reduction 

in tumor size and weight by ≥50%) in vivo. Transgenic T cells by retrovirus had 

slightly better control than T cells engineered by CRISPR/Cas9. This might be 

due to expression of the alloreactive endogenous TCR which might be essential 

for the longevity of the response (Stenger et al., 2020). Recent work (Stenger 

et al., 2020) showed that the endogenous TCR promotes in vivo persistence of 

CD19-CAR-T cells compared to a CRISPR/Cas9-engineered TCR knockout 

CAR.   

Limited in vivo tumor control may also be attributed to the induction of an 

immune suppressive microenvironment (“immune desert”) by EwS (Berghuis et 

al., 2009; Spurny et al., 2018). We found no T cell infiltration in the tumor. 

Several causes may contribute to this phenomenon:  

1) Regarding “cold tumor” or “immune desert” (Machado et al., 2018; van Erp 

et al., 2017), HLA class I molecules are essential for antigen presentation. A 

majority of EwS tissues are characterized by complete or partial absence of 

HLA class I (Berghuis et al., 2009). In this context, we have previously shown 

induction of HLA class I on EwS lines by manipulating the environment in vitro 

(Staege et al., 2003). 

2) T cell exhaustion may account for the failure the tumor control in vivo. In our 

hands, a large number of T cells dies after electroporation, especially 
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CRISPR/Cas9-engineered T cells with orthotopic TCR replacement, probably 

due to the toxicity of dsDNA. It also requires prolonged culture time to obtain 

enough T cells for in vivo experiments, which might reduce the cytotoxic 

functionality when targeting the EwS tumor in mice. Meanwhile, retrovirally 

engineered T cells completely lost the cytotoxic effects on HLA-

A*02:01+/CHM1+ A673 cells after 54 days, indicating long-time culture in vitro 

leads to the exhaustion of the T cells.    

3) A short period of exposure of EwS to the transgenic T cells might be another 

reason for limited tumor control. We sacrificed the mice two weeks after the 

injection of T cells for animal protection reasons, which might have limited an 

adequate response of the tumor to the transgenic T cells. We had to stop the 

experiment at that time due to excessive tumor volume in the control mice.   

Several other limitations were also identified in our work, such as comparatively 

low transduction efficiency of CRISPR/Cas9, ranging from 10%-45%, due to 

imponderabilities of cultures or fresh vs. thawed status of the cultured 

lymphocytes. We could minimize cell death after electroporation especially with 

TCR KI by directly culturing in Penicillin-Streptomycin (P/S) free T cell medium 

after electroporation. We think that higher transduction rates with 

CRISPR/Cas9 engineered TCR KI are possible. While cells with a high 

transduction rate after electroporation do not tolerate the antibiotics (P/S), an 

optimization of the protocol could be to culture the cells for 24-48 hours in T cell 

medium without P/S and change back to standard culture medium afterwards.   

Moreover, we excluded redirection to off-target sites of CRISPR/Cas9 

engineered and non-engineered T cells whereas retrovirally transduced T cell 

preferentially were redirected to the spleen and to a lesser degree to bone 

marrow. 

Last not least, we noticed the further induction of CHM1 after co-culture with 
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CRISPR/Cas9 engineered T cells in addition to its unique high expression in 

EwS. This counterintuitive finding suggests that the metastatic driver CHM1 is 

indispensable in EwS and may thus represent an ideal target. In the future, we 

might take advantage of this surprising finding in the treatment of metastatic 

disease. At least, the mechanism of CHM1 induction after co-culture with 

CHM1-TCR engineered T cells warrants further research. 

8.4 CONCLUSION AND PERSPECTIVE 

In conclusion, T cells engineered with CRISPR/Cas9 to address the metastatic 

driver CHM1, are feasible for immunotherapy of EwS and may have the 

advantage of a more physiological T cell phenotype and a more prolonged 

cytotoxic activity as compared to T cells engineered with retroviral gene transfer. 

These findings confirm, at least in part our hypothesis. In perspective, these 

therapeutic cells should be combined with additional approaches to increase 

the immunogenicity of tumor microenvironment, limit the T cell exhaustion and 

enhance the T cell contact with their target cells. 
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9 SUMMARY 

Ewing Sarcoma (EwS) is a highly malignant sarcoma of bone and/or soft tissue 

with early metastatic spread and an age peak in early puberty. The prognosis 

in advanced stages is still dismal, and the long-term effects of established 

therapies are severe. Efficacious targeted therapies are urgently needed. Our 

previous work has provided preliminary safety, and efficacy data of 

immunotherapy utilizing T cell receptor (TCR) transgenic T cells targeting HLA 

restricted peptides on the tumor cell membrane derived from metastatic drivers. 

For these studies, we used retroviral gene transfer. Critics raised concerns 

about T cells' safety and physiology with random and multiple gene insertions. 

Thus in this study, we compared T cells engineered with either CRISPR/Cas9 

or retroviral gene transfer for immunotherapy of Ewing sarcoma. Firstly, we 

confirmed the feasibility of orthotopic replacement of the endogenous TCR by 

CRISPR/Cas9 with a TCR targeting our canonical metastatic driver 

chondromodulin-1 (CHM1). CRISPR/Cas9 engineered T cell products 

specifically recognized and killed HLA-A*02:01+ EwS cell lines. Next, we 

observed a higher efficiency of retroviral transduction compared to 

CRISPR/Cas9 gene editing. Of note, prevention of endogenous TCR 

expression was not only achieved by CRISPR/Cas9 mediated knock out of the 

endogenous TCR chains but also by high retroviral gene transduction efficacy. 

Nevertheless, CRISPR/Cas9 engineering preserved a physiological T cell 

phenotype in contrast to retroviral transduction. Finally, both engineered T cell 

products specifically recognize tumor cells and elicit cytotoxicity in vitro, with 

CRISPR/Cas9 engineered T cells providing a more prolonged cytotoxic activity. 

Both T cell products limit in vivo tumor growth. Last not least, transgenic T cell 

products induce an increase in CHM1 expression on the background of high 

expression of CHM1 driven by EWS-FLI1. This counterintuitive finding suggests 

that the metastatic driver CHM1 is indispensable in EwS and may thus 

represent an ideal target. In conclusion, T cells engineered with CRISPR/Cas9 
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are feasible for immunotherapy of Ewing sarcoma and may have the advantage 

of a more physiological T cell phenotype and a more prolonged cytotoxic activity 

as compared to T cells engineered with retroviral gene transfer. 
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10 SUPPLEMENTARY 

 

 SUPPLEMENTARY TABLE 1: 5×SDS LOADING BUFFER 

Reagent  Quantity (for 50 mL)  Final concentration 

Tris-HCl (1 M, pH 6.8) 12.5 mL  250 mM 

SDS (electrophoresis grade) 4 g 8% 

Bromophenol blue 50 mg 0.1% 

Glycerol (100%, v/v) 15 mL 30% (v/v) 

 

SUPPLEMENTARY TABLE 2: DNA SEQUENCE OF KNOCK-IN CHM1319-TCR   

LHA CTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAAGATCCTATTAA

ATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT

GGCAGGCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCA

AGATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGGTT

TCTAAGATGCTATTTCCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCCACA

GAGCCCCGCCCTTGTCCATCACTGGCATCTGGACTCCAGCCTGGGTTGGGGCA

AAGAGGGAAATGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCC

AGAACCCTGACCCTGCCGTG 

P2A GGCAGCGGCGCCACCAACTTCAGCCTGCTGAAGCAGGCCGGCGACGTGG

AAGAGAACCCCGGGCCC 

VDJβ ATGCTGTCTCCAGATCTGCCTGACAGCGCCTGGAACACCCGGCTGCTGTGC

AGAGTGATGCTGTGCCTGCTGGGAGCCGGATCTGTGGCTGCTGGCGTGAT

CCAGAGCCCCAGACACCTGATCAAAGAGAAGAGAGAGACAGCCACCCTG

AAGTGCTACCCCATCCCCAGGCACGACACCGTGTACTGGTATCAGCAGGG

CCCAGGCCAGGACCCCCAGTTCCTGATCAGCTTCTACGAGAAGATGCAGA

GCGAC 

TRBC with additional 

cysteine bridges   

AAGGGCAGCATCCCCGACAGATTCAGCGCCCAGCAGTTCAGCGACTACCA

CAGCGAGCTGAACATGAGCAGCCTGGAACTGGGCGACAGCGCCCTGTAC

TTCTGCGCCTCTAGCTTCCTGGGCGAGAAAACCGAGGCATTCTTTGGGCA

GGGCACCAGACTGACCGTGGTGGAGGATCTGAGAAATGTGACTCCACCC

AAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACAAAA

GGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGC

TGAGCTGGTGGGTGAATGGCAAGGAGGTCCACAGTGGGGTCTGCACGGA

CCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCT

GAGGGTCTCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCA

AGTGCAGTTCCATGGGCTTTCAGAGGAGGACAAGTGGCCAGAGGGCTCA

CCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAG

ACTGTGGAATCACTTCAGCATCCTATCATCAGGGGGTTCTGTCTGCAACCAT

CCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATGCTGTGCTGGTCAG

TGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCC 
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T2A GGCAGCGGCGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAG

GAGAATCCTGGACCT 

VJα ATGACCAGCATCCGGGCCGTGTTCATCTTCCTGTGGCTGCAGCTGGACCTC

GTGAACGGCGAGAACGTGGAACAGCACCCCAGCACCCTGAGCGTGCAGG

AAGGCGATAGCGCCGTGATCAAGTGCACCTACAGCGACTCCGCCAGCAAC

TACTTCCCCTGGTACAAGCAGGAACTGGGAAAGCGGCCCCAGCTGATCAT

CGACATCCGGTCCAACGTGGGAGAGAAGAAGGACCAGCGGATCGCCGTG

ACCCTG 

TRAC with additional 

cysteine bridges   

AACAAGACCGCCAAGCACTTCTCCCTGCACATCACCGAGACACAGCCCGA

GGACTCCGCCGTGTACTTTTGTGCCGCTTCTGCCGGCGGATCCCAGGGCA

ATCTGATCTTCGGCAAGGGCACCAAGCTGAGCGTGAAGCCCAACATCCAG

AACCCAGAACCTGCTGTGTACCAGTTAAAAGATCCTCGGTCTCAGGACAG

CACCCTCTGCCTGTTCACCGACTTTGACTCCCAAATCAATGTGCCGAAAAC

CATGGAATCTGGAACGTTCATCACTGACAAATGCGTGCTGGACATGAAAGC

TATGGATTCCAAGAGCAATGGGGCCATTGCCTGGAGCAACCAGACAAGCT

TCACCTGCCAAGATATCTTCAAAGAGACCAACGCCACCTACCCCAGTTCAG

ACGTTCCCTGTGATGCCACGTTGACTGAGAAAAGCTTTGAAACAGATATGA

ACCTAAACTTTCAAAACCTGTCAGTTATGGGACTCCGAATCCTCCTGCTGA

AAGTAGCCGGATTTAACCTGCTCATGACGCTGAGGCTGTGGTCCAGT 

Stop TGA 

Poly A CTAGAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTG

TTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCA

CTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTG

TCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGAT

TGGGAAGAGAATAGCAGGCATGCTGGGGA 

RHA TACCAGCTGAGAGACTCTAAATCCAGTGACAAGTCTGTCTGCCTATTCACC

GATTTTGATTCTCAAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATA

TCACAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAAGAGCAAC

AGTGCTGTGGCCTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTTC

AACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGG

CAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCAGGTT

CTGCCCAGAGCTCTGGTCAATGATG 

 

SUPPLEMENTARY TABLE 3: PRIMER FOR PCR OF KI FRAGMENT 

Primer hTRAC forward CTGCCTTTACTCTGCCAGAG 

Primer hTRAC reverse CATCATTGACCAGAGCTCTG 
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