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Abstract

At the scene of an emergency, such as an accident or a natural disaster, first responders
require an actual and rapid analysis of the environment with all its possible dangers.
Gaining insight into the operating environment will help first responders effectively prevent
radical damages and save potential victims.

With outdoor Unmanned Aerial Vehicles (UAVs), first responders receive scanned in-
formation of disaster zones fast and accurately. That obtains a precise representation of
the situation for emergency response work. An essential requirement for the usability of
the drone scans is the preliminary calculation of an optimal path. A drone path aims to
generate good scans for a better overview of the scene considering parameters such as a
reasonable distance and overlap. A distance between the drone and the examined build
environment ensures scans accuracy and collisions avoidance. The overlap helps the 3D
reconstruction of the object to be scanned.

This bachelor thesis focuses on developing a module that generates a route allowing the
scanning of buildings. Software for automated path planning is developed by collecting
parameters describing what conditions an optimal path must fulfill and inspecting existing
path planning strategies for outdoor UAVs. The generated tool produces a path, repre-
sented as several waypoints, that allows an optimal point cloud acquisition depending on
the given camera and the criteria defined with the objectives of the thesis. The thesis is
part of the EU-funded INTREPID project for helping the first responders.



Zusammenfassung

Während eines Notstandes, beispielsweise eines Unfalls oder einer Naturkatastrophe,
müssen Ersthelfer eine aktuelle und schnelle Umgebungsanalyse mit all ihren möglichen
Gefahren erhalten. Ein Überblick in die Betriebsumgebung führt zur einer schnelleren
Reaktion der Ersthelfer bei der Rettung von potenziellen Opfern und zur Vermeidung
radikaler Schäden.

Mit einem „Outdoor Unmanned Aerial Vehicle“ (UAV) erhalten die Ersthelfer eine schnelle,
präzise und gescannte Information über die Katastrophengebiete. Dadurch erhält man
eine genaue Darstellung der Situation für die Notfalleinsätze. Eine wesentliche Vorausset-
zung für die Verwendung der UAV Fotogrammetrie ist die vorläufige Berechnung eines
optimalen Pfades. Ein Drohnenpfad zielt darauf hin, verwertbare Scans, für einen besseren
Überblick über die Szene zu verschaffen, wobei die Parameter, wie beispielsweise ein
vernünftiger Abstand oder eine Überlappung etc. berücksichtigt werden. Ein Abstand
zwischen der Drohne und der untersuchten Umgebung gewährleistet die Genauigkeit der
Scans und die Vermeidung von Kollisionen. Die Überlappung hilft der 3D-Rekonstruktion
des zu scannenden Objekts.

Das Ziel der vorliegenden Bachelorarbeit ist die Entwicklung eines Moduls, das einen Pfad
generiert, die das Scannen von Gebäuden ermöglicht. Im Rahmen dieser Abhandlung
wird daher eine Software für die automatisierte Pfadplanung entwickelt. In dieser Hinsicht
werden Parameter gesammelt, welche beschreiben, inwiefern diverse Bedingungen ein
Pfad optimal erfüllt werden müssen. Außerdem werden bestehende Pfadplanungsstrate-
gien für Outdoor-UAVs untersucht. Das generierte Modul erzeugt einen Pfad, der eine
optimale Punktwolkenaufnahme in Abhängigkeit von der gegebenen Kamera und den
definierten Parametern ermöglicht. Die Bachelorarbeit ist ein Teil des EU-finanzierten
INTREPID-Projekts für die Unterstützung der Ersthelfer.
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Chapter 1

Introduction

1.1 Motivation

At the scene of an emergency, such as an accident or a natural disaster, first responders
operate in a dangerous and chaotic environment to prevent radical damages and rescue
potential victims. The lack of insight into the unsafe environment presents an obstacle
to quick and effective intervention. The goal of the INTREPID (Intelligent Toolkit for
Reconnaissance and assessment in Perilous Incidents) research project is to create a
unique platform to provide three-dimensional (3D) exploration and analysis of the scene of
an emergency. The project contributes an accurate analysis of the dangerous areas by
integrating intelligence amplification and extended reality concepts with Smart Cybernetic
Assistants and innovative deep indoor networking and positioning capabilities (INTREPID,
2020). Thus, first responders are rapidly notified of the hazardous conditions in the
operating environment, which results in an immediate and targeted response.

The utilization of outdoor Unmanned Aerial Vehicle (UAV) for scanning a site presents
one part of the project. The utilization of drones has been widely adopted in a variety
of fields requiring remote sensing, and drones are a fundamental tool for surveying and
mapping an area with hard-to-reach locations. Some advantages of using a drone are
data acquisition at high spatial resolution for a target area and reduced operational costs
(DOMINGO et al., 2019; TANG & SHAO, 2015). The drone-captured images serve for
reconstructing a point cloud, from which a high-quality 3D model of the mapped area
can be generated. Accordingly, scanning disaster scenes with UAVs will obtain a precise
representation of the situation for emergency response work. Outdoor UAV scans of the
disaster scene are a beneficial information source for first responders. Thus, neutralizing
threats operations can start immediately as the area is preliminarily examined.

Retrieving a successful overview of the built environment from drone remote sensing in an
efficient way is a significant research problem. Several works have overcome this problem
by using path planning preparation. Planning a path before execution is advantageous
because it helps achieve a given goal while preventing unnecessarily long flight duration
and high costs. The calculation of a drone path, allowing optimal scan acquisition of
the building site, is in the framework of this bachelor thesis. This study concentrates on
inspecting optimally set parameters and existing path planning strategies for outdoor UAVs
with the objective of developing a module that generates paths that allow for an optimal
point cloud acquisition.
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1.2 Thesis objectives

This bachelor thesis focuses on implementing a path planning module for a given outdoor
drone and a Building Information Modeling (BIM) input. The project goal is the drone’s
ability to scan the outside of the building from above and side. The scans serve the create
a quality 3D reconstruction. The generated path, represented by a number of waypoints
and their position defined by x, y, and z coordinates, is required to fulfill some objectives
defined based on comprehensive literature analysis. The selection of parameters is one of
the major topics to be investigated in this thesis. That is due to ensuring a good scanning
with a high-quality 3D reconstruction. One requirement for safe flight execution is distance
parametrization. The background is that selecting a reasonable distance helps collisions
avoidance or drone damages during the flight while considering scans efficiency. A certain
percentage of overlap, for instance, supports a detailed and accurate 3D reconstruction of
the object to be scanned. Further requirements are generated based on state-of-the-art,
conducted as the first step of this thesis. The method is implemented in python and tested
with the BIM model on different build environments.

1.3 Layout of the thesis

The bachelor thesis has the following structure:

- Chapter 2 introduces the theoretical background for the optimal selection of flight and
sensor parameters. The chapter also presents a comprehensive literature analysis
of the existing path planning strategies for drone image-capturing missions.

- Chapter 3 describes the concept of the developed method in detail. The chapter
provides the workflow of the different stages of the method to be implemented.

- Chapter 4 discusses the implementation of the method.

- Chapter 5 focuses on the results and validations of the implemented method.

- Chapter 6 summarizes the results and proposes future investigations.

2



Chapter 2

State of the Art

The following chapter presents the theoretical basis of this thesis regarding outdoor UAV
path planning. The first section provides an overview of the benefits and the use of
UAV remote sensing, followed by literature research about the possible flight and sensor
parameters, which aims to define the objectives that the developed method for the thesis
should fulfill. The last section is dedicated to drone path planning by presenting the
algorithms used in the literature for defining the UAV route. Gaining insight into the
different possibilities is the basis for deciding on a suitable algorithm for the goal of the
thesis: developing a path planning tool, which optimizes the point cloud acquisition.

2.1 Overview

With the recent technical advances in UAV technologies, drones are becoming a powerful
remote sensing tool. The usage of UAVs for remote sensing provides a low-cost alternative
to the manned aircraft for data acquisition at high spatial resolution for both indoor and
outdoor target areas. With drones, hard-to-reach and dangerous locations became
accessible for analysis. Drones have the advantage of being more flexible, cost-effective,
and enabling controlled flight repeatability due to improving autopilots (TANG & SHAO,
2015; WATTS et al., 2012). Flying forward and backward at a constant velocity is beneficial
for more complex missions such as target location or obstacle avoidance (HERNANDEZ-
LOPEZ et al., 2013). The possibility of low-altitude flight and the provided lower Ground
Sampling Distance (GSD) allows observations from closer positions, thus finer spatial
resolution data collection (ANDERSON & GASTON, 2013). The flight time depends only
on the fuel or battery life, and drones are useful for missions beyond human limitations
(GUPTE et al., 2012).

Formerly used mainly for military purposes, nowadays drone remote sensing finds appli-
cations in many civilian fields. UAVs are widely utilized in meteorology, agriculture, land
surveying, traffic monitoring, scientific research, and natural disaster management (TANG

& SHAO, 2015). The capability of a high spatial resolution benefits urban applications
and planning. UAV remote sensing supports infrastructure inspections and rescue opera-
tions in complex buildings. The construction sector applies UAVs remote sensing to the
automated creation of images and point cloud data of particular construction objects for
enabling construction management. The visual data acquisition became uncomplicated
through flight missions in a known structure of the construction site. (FREIMUTH & KÖNIG,
2019). In this line of thought, the utilization of BIM provides an opportunity to predefine a
path by extracting positions of objects to be inspected.
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The utilization of BIM, either generated during the planning phase of the building con-
struction or created based on collected point cloud data, provides an extensive overview
of the state of the construction process. According to the National Building Information
Modeling Standard (NBIMS), BIM model is a digital representation of the physical and
functional characteristics of a facility. It serves as a shared information source about a
facility establishing a reliable decision-making basis for different involved parties such as
stakeholders and contractors (SMITH, 2009). Large projects require construction manage-
ment to maintain schedules of all construction processes. The construction process is also
associated with constant changes and modifications, leading to delays and inconsistencies.
Visualizing the project with BIM improves the coordination and estimate of costs and risks
(FREIMUTH & KÖNIG, 2019). Commonly used for BIM is the Industry Foundation Classes
(IFC) format. IFC is the standardized, digital description of building and construction
data, which allows the exchange of the BIM model without loss of data (BUILDINGSMART,
2021). The format saves the whole geometric representation and allows editing. Figure 2.1
represent a visualization of Technical University main campus using IFC. The visualization
is realized with Python Ifcopenshell - an open-source software library that helps users
working with IFC file format.

Figure 2.1: Technical University main campus, Munich.

In drone missions utilizing the BIM model can be used as a simulation environment for
drone path planning. The model geometry of the examined building is used to create a
collision-free flight plan. In addition, the use of BIM for path planning helps to evaluate
the visual coverage and safety of execution before flight deployment. Determining drone
paths is essential for creating efficient scans while preventing missing the collection of
informative visual data and longer flight duration (IBRAHIM & GOLPARVAR-FARD, 2019).
The drone-captured images are used to reconstruct a point cloud, from which a high-quality
3D model of the mapped area can be generated. One primary problem is the optimal
selection of flight and sensor parameters of the drone. Parameters such as altitude,
image overlap, and sensor resolution should be considered. Finding an optimal path
in a 3D model can be challenging as this problem has been widely addressed in the
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literature. Many authors found solving the mission planning in several ways. The solution
can be defined by the number of waypoints, their coordinates, and the camera orientation
(IBRAHIM & GOLPARVAR-FARD, 2019).

2.2 Parametrization

Optimally set parameters before drone flight planning allow high-quality scans of the
target object or area while considering the execution efficiency. However, prioritizing scan
quality can result in longer flight duration and longer data processing time to achieve
reconstruction precision. A critical open question is how to define the parametrization
best in order to achieve the optimization goal. The optimal parameter selection can be
challenging, and multiple adjustments may be needed to obtain an accurate reconstruction
efficiently. Some of the parameters to be considered in path planning for drone remote
sensing are the selection of flight altitude, flying speed, image overlap, and digital camera
parameters, particularly spatial resolution, and focal length (EISENBEISS, 2009). As
identified by MANCONI et al. (2019), all those factors influence the GSD and the accuracy
of the result. Therefore, the parametrization needs to be adjusted precisely.

Much recent literature has investigated the parameter selection for drone-based remote
sensing in forest and agriculture research. For example, the paper of DANDOIS et al.
(2015) explores the connection between the photographic overlap and the optimal data
collection. The study shows that maximizing forward overlap increases the accuracy.
On the other hand, it results in more photos and increased processing time, highlighting
significant trade-offs between data quality and efficiency. Nevertheless, the optimization of
the acquisition in this research is limited, because the author does not take the effect of
parameters adjustment into consideration. A systematic study of optimal parametrization
was performed by SEIFERT et al. (2019). The author discusses the selection of flight
and sensor parameters and their impact on the generation of good-quality point clouds
efficiently. The study concentrates on the influence of drone variables on flight time,
reconstruction details and precision, and data processing time. The flight and sensor
parameters are optimized to ensure image reconstruction accuracy in a suitable flight
and image processing time. The main trade-off occurs between quality and efficiency.
Therefore, the path planner can directly select the parameters such as altitude, image
overlap, and sensor resolution to reach an optimal compromise. The study shows that
flight time is linearly related to flight height. The lower the altitude, the higher the spatial
resolution, but the longer the flight time. In their study about the influence of flight
parameters of UAV orthomosaics, MESAS-CARRASCOSA et al. (2016) evaluate altitude
above ground level as one of the most significant parameters for accuracy, flight duration,
and area coverage. Confirming the conclusion of SEIFERT et al. (2019), the author points
out that a very low selected altitude guarantees a high spatial resolution but covers a limited
area and therefore increases flight duration. According to SEIFERT et al. (2019), lower
flight altitude also leads to more images processed per unit area, which increases data
processing time. The drone camera and altitude define GSD that determines the distance
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between two pixels on the ground. Flying too close to the surface results in many images
needing processing. Conversely, flying too far worsens the reconstruction details (ZOU et
al., 2019). A higher altitude affects the precision of the image reconstruction in a negative
linear pattern. Therefore, a low altitude scan results in higher spatial resolution, which
yields a more detailed and precise reconstruction in exchange for a longer processing time.
Image processing time also depends on the forward overlap. Increasing the forward overlap
affects the processing time exponentially. Another disadvantage of high forward overlap
is the negative impact on flight duration. In order to achieve accuracy, more images in
each lap are captured, and thus the number of total laps increases (MESAS-CARRASCOSA

et al., 2016). SEIFERT et al. (2019) summarize that low flight height, combined with
high forward overlap, leads to the best reconstruction precision and detail. Figure 2.2
illustrates the results of his study about the impact of different parameters on reconstruction
precision. The author proves that the Standardised Root Mean Squared Re-projection
Error (SRMSRE) slightly increases with the altitude. Oppositely, the high overlap and
higher sensor resolutions lead to significantly smaller errors. Studies by DANDOIS et al.
(2015) and TORRES-SÁNCHEZ et al. (2015) also suggest that the higher forward overlap
increases the accuracy. Similarly, DOMINGO et al. (2019) does not recommend a reduction
of the forward overlap due to the fact that the lower number of images acquired during
drone remote sensing produces a larger accuracy error rate. Commonly, the side overlap
is suggested to be reduced in a range between 50 – 70 % while keeping the forward
overlap high in order to achieve the best-quality scans (DANDOIS et al., 2015; DOMINGO

et al., 2019; SEIFERT et al., 2019). Regarding the sensor resolution, SEIFERT et al.
(2019) conclude that higher sensor resolution drastically increases the precision. Sensor
resolution influences the processing time in a linear pattern, especially in combination with
a low altitude.

Figure 2.2: Observations for Standardised Root Mean Squared Re-projection Error versus
flight/sensor parameters (Seifert, 2019).

Although there are many recent studies, the research in parametrization for urban studies
remains limited. The land surveying research gives a good overview of setting the optimal
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parameters problem, but most studies only aim to gain data acquisition above the target
area. Surveying forest height with remote sensing, for instance, demands a nadir viewing
to capture it from above. Compared with that, investigating a building requires scanning
performed for both the façades and the roof of the building. Some of the requirements
overlap the ones expected in forestry research, such as altitude, image overlap, and flight
speed. A reasonable horizontal distance between the drone and the examined building
is also a factor in the collision-free capture of a façade. In addition to the drone safety,
information about the vertical walls is provided, and not only about the horizontal planes
(ROCA et al., 2014). ZOU et al. (2019) summarizes the parameters needed to develop
automated path planning algorithms: setting the distance and altitude between the drone
and the target object and camera angle of view. Equally significant is also the definition of
the UAV speed and an adequate overlap of images.

2.2.1 Altitude and Distance

The literature review shows that altitude is an important requirement in order to generate
accurate and detailed scans in high spatial resolution while considering the flight time
and data processing time. In addition, setting a distance between the drone and building
ensures a better overview of the scene for creating precise 3D reconstruction. The drone
should fly at a maximum distance from a building to avoid collisions or drone damages
during the flight. At the same time, a minimum distance needs to be determined, at which
the scans still provide high visual coverage and accuracy for detailed 3D reconstruction.

Several researchers performed their studies using different altitudes to evaluate which
one yields the best precision. For instance, DANDOIS et al. (2015) suggests four levels of
flight altitude above the canopy in a range between 20-80 m with predefined automated
drone waypoint paths based on the designated flight altitude. The study also shows that
coarsening the GSD by increasing the drone acquisition height reduces the point cloud
position accuracy. According to SEIFERT et al. (2019), a relatively low flight height in
a range between 15-30 m above the desired object to be scanned in combination with
the highest overlap possible improves the reconstruction precision and detail. DOMINGO

et al. (2019) suggest that instead of choosing the flight altitude, it should be determined
according to the camera spectral sensitivity to generate constant 10 and 15 m GSD pixel
resolution images. As a result, the drone flight is executed with a 325 m flight height above
the ground. GSD can be calculated using the following equation:

GSD = p
f ∗H

where GSD is the ground sample distance (cm), p is pixel size (mm) on the sensor, f is the
focal length (mm), and H is the distance from the camera projection center to the ground
in cm (SEIFERT et al., 2019). To simplify the calculation of altitude and distance between
the drone and building, ROCA et al. (2014) propose a 10 m distance from both the ground
and the façade. The same contributions have been made by THEMISTOCLEOUS et al.
(2016) capturing the Foinikaria Church in Cyprus. PERAZZO et al. (2016) point out that a
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predefined altitude might differentiate from the actual one during execution because factors
such as weather conditions are not considered in the stage of path planning. Due to this, a
source of altitude precision control is needed. In this paper about path planning algorithms,
a bounded precision error is suggested as a solution for the problem of measuring the
difference between the planned and actual altitude. In summary, the results of the literature
review set the first objective of the thesis. The tool should generate paths ensuring a 10 m
distance between drone and building. This fixed requirement keeps the solutions robust
and safe.

2.2.2 Image Overlap

Several studies have been focused on the overlap ratio effect on accuracy. According to
HÖHLE (2013), the standard forward and side overlap is about 60%. In recent years, the
majority of authors disproved this statement with their studies: a fixed forward overlap
above 90% leads to the best reconstruction detail and precision. Unlike the forward overlap,
the side overlap is maintained in the range between 50 – 70 %. DOMINGO et al. (2019)
state that reducing the side overlap from 80% to 70% while keeping the forward overlap
high might be a solution to reduced flight duration. In addition, the paper of SEIFERT

et al. (2019) shows that the middle levels of side overlap yield an optimum reconstruction
accuracy. Therefore, the second objective for the thesis based on the literature is keeping
forward overlap above 90%.

2.2.3 Camera angle of view

Regarding the camera angle, few researchers have addressed a precise parametrization.
SEIFERT et al. (2019) state that the effect of a short focal length while flying close to
the canopy increases the number of viewing angles. The angle of view describes the
capture of multiple objects from the camera sensor and the determination of their distance
(Hell, 2019). To receive a precise reconstruction, each point of the area to be captured
needs to be scanned from multiple angles while also considering the Field of View (FOV).
Defining the maximum area imaged by the camera, FOV is directly related to the distance
to the surface. Drone performed at a higher altitude from the ground capture a more
extended field of view in exchange for image quality and longer flight time (SEIFERT

et al., 2019; TAURO et al., 2015). The forward overlap also depends on FOV along with
altitude. As identified by DANDOIS et al. (2015), a camera with a higher resolution but
narrower FOV increases in GSD and at the same time decreases in overlap for a constant
altitude. HAMMOND et al. (2020) suggest using an oblique angle because a higher amount
of information about the face is collected within the view. SEIFERT et al. (2019) add
that although the oblique angle is not recommended for forest canopy scanning due to
the need for nadir view, it provides complexity to identifying matching points. DANDOIS

et al. (2015) highlight that point cloud position stability decreases rapidly after view-angle
exceeds 20 degrees, which results in an increased error in canopy height estimation. This
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factor contributes to determining an angular range for the thesis method between 15 – 20
degrees.

2.2.4 Flight speed

Flying speed is a requirement highly influenced by the model of the drone itself. In the
case of the thesis, the drone speed is up to 20 m/s. Flight speed is related to altitude
and flight efficiency. Lower flight height, which yields the reconstruction accuracy and
precision, requires a reduced flight speed to avoid motion blur. At the same time, low speed
increases the flight duration, and the covered area possible with one battery load is limited
(SEIFERT et al., 2019). For capturing wheat fields located in Spain, MESAS-CARRASCOSA

et al. (2016) focus on adjusting the speed in order to keep stable forward and side overlap
while considering the altitude. With a flight height above the ground of 60 m, the flight
speed was set to 2 m/s, for higher altitude – 3 m/s, while the highest speed limit of the
drone reaches 12 m/s. The selected by MESAS-CARRASCOSA et al. (2016) flight speed is
equal to one-sixth of the maximum speed, or one-quarter for higher altitude. All these flight
speed assumptions contribute in the case of capturing the scans in motion. Therefore, this
adjustment aims to provide good quality scans without motion blur. For this thesis, the
scan capturing occurs in the resting state, so the motion blur is not a factor for good scans.
However, considering the literature review, in addition to the suggestion of SEIFERT et al.
(2019), a speed range between 3 – 6 m/s can be provided.

2.2.5 Conclusion for the objectives

In summary, the literature review about flight and sensor parameters sets the starting point
for the implementation. The following objectives are contributed:

- A 10-meter distance between the drone and the building for safety and efficiency.

- A forward overlap above 90% for achieving good reconstruction accuracy.

- An angular in a range between 15 – 20 degrees.

- Flight speed in a range between 3 – 6 m/s.
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2.3 Path Planning

An essential requirement for the usability of UAV remote sensing is the preliminary calcu-
lation of a path. Path planning is the process of finding a path between points in a certain
environment. Drone missions without predefined paths can increase operational costs
and flight time. The path is a sequence of waypoints with an initial take-off position and
a final landing position. The drone path may be closed, which means that the start and
landing points can be equal (PERAZZO et al., 2016). The goal of drone path planning is to
find the shortest route from an initial point to a final one through an area with or without
obstacles which maximizes the data acquisition in a suitable time.

A key problem is how to define a convenient path for the drone. Finding drone path
planning algorithms is part of the NP-hard optimization problems, which is due to the
fact that deterministic algorithms cannot find a solution in a reasonable time (TUBA et al.,
2017). Some literature sources interpret the drone path planning problem as a Travelling
Salesman Problem (TSP), which also belongs to the NP-hard problems. The main task is
the creation of a sequence for visiting a given list of places. Each place except the primary
one must be visited once, and the entire travel distance of the traveling salesman is the
shortest possible (OBERLIN et al., 2010). For UAV path planning, the objective of TSP is
to plan a path that allows the UAV to visit all waypoints needed for scanning the object
successfully.

Several different methods to plan the UAV path are used to fulfill goals as minimizing
the route or flight duration while collecting accurate scans for 3D reconstruction. The
literature review offers a palette of examples for solving UAV path planning. From artificial
potential field explored by ZHU et al. (2006), which combines the attraction to the target
and repulsion from obstacles to the commonly used graph search methods such as
Dijkstra and A* algorithm. According to HUSSEIN et al. (2012), the classical graph-based
algorithms are efficient for path planning problems by providing feasible solutions. The
drawback of those approaches is that they consume much time to find a solution, especially
in complex environments. Those algorithms are also prone to be getting trapped in local
optimum and never reach the global one when dealing with a large environment with
several possible solutions. Therefore, probabilistic methods are introduced as a less
expensive alternative. Some algorithms are Simulated Annealing (SA), genetic algorithms,
and ant colony optimization. The following subsections present some of the most utilized
ones in the literature.

2.3.1 A* Algorithm

The A* algorithm is an extension of the Dijkstra algorithm, which finds the shortest path in
a graph starting from an initial node. The distance to each neighboring node is calculated
and compared, and the one with the lowest distance is selected. The disadvantage of
Dijkstra is that the algorithm consumes a large amount of time to find the global optimum
solution. A* algorithm aims to find an optimal path in a shorter computational time (XIONG
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et al., 2015). The algorithm uses best-first search to find the lowest cost from the marked
node to the target one while introducing a heuristic function to approximate the costs
(RODENBERG et al., 2016; ZAREMBO & KODORS, 2013). With the evaluation of the distance
between the current node and the neighbors, A* also considers the distance between the
neighbors and the target node. At each iteration, the algorithm determines the following
node according to the F-value, which is the sum of two functions:

F = H +G

The G-function represents the exact movement cost to reach the target, and the H is the
non-overestimated cost from the current node. ZAREMBO and KODORS (2013) point out
that the estimated heuristic cost must be admissible. That means that function H should
not overestimate the cost to achieve the goal. A* always finds the optimal way if the cost
estimation value of the H-function is underestimated.

Several studies have been published on path planning using the A* algorithm for opti-
mization. In much relevant literature addressing path planning, the algorithm operates
on two-dimensional (2D) space. XIONG et al. (2015) provide a literature example of
pathfinding optimization based on the A* algorithm implemented in 3D space. In the study,
the author presents a path planning approach in an indoor environment with the help of a
voxel model. A voxel is a unit that represents a point in 3D space. The method introduced
in the paper transforms the geometric input data into voxelized data to inherit the semantic
information and uses the A* algorithm to find the most suitable path. RODENBERG et al.
(2016) demonstrate an indoor pathfinding optimization based on the A* algorithm using
an octree representation to segment and structure a point cloud. An octree is a data
structure used to divide the 3D space by recursively subdividing it into eight equal cubes,
called octants. The subdivision proceeds until blocks of uniform color are obtained, or a
predetermined level of decomposition is reached (SAMET, 1982). The author indicates
with the term uniform color if a block is empty or occupied. The octree structures the space
efficiently and largely empty space can be represented by an empty node higher in the
octree, which is advantageous for path planning, as it reduces the number of nodes in the
octree. In addition, the octree contains neighbor connectivity which aims to speed up the
pathfinding (RODENBERG et al., 2016). The method of RODENBERG et al., 2016 produces
an octree to segment the point cloud, which is geometrically pre-processed to fit in the
octree. The occupied and empty nodes are generated, and the empty ones are filtered.
Until all empty nodes are computed, calculating the distance to the closest occupied node
proceeds, so the A* algorithm can find the optimal path.

2.3.2 Genetic Algorithm

The Genetic Algorithm belongs to the class of evolutionary algorithms. Inspired by Charles
Darwin’s theory of natural selection, it presents a simulation of the biological process of
human genetic improvement. The basic idea is to generate a set of optimal solutions for
a predefined goal while iterating over a population, also called generation. It starts with
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randomly selected feasible solutions and filters the best individuals from the generation
for each iteration. Basic operations as crossover and mutation are performed with a
certain probability to evolve in the next generation. When the goal is reached, the process
terminates (STRUBEL et al., 2017).

The Genetic Algorithm is mainly applied as a single-objective optimization solution. How-
ever, much UAV pathfinding research papers are investigating multi-objective problems.
For instance, IBRAHIM and GOLPARVAR-FARD (2019) presents a method for automated
flight planning and visual data collection, that generates a 3D fight plan template around the
scanned structure to evaluate flight execution safety and camera visibility. The generated
flight path is optimized using a Multi-Objective Genetic Algorithm (MOGA) to maximize
visual quality and minimize UAV flight duration. MOGA selects individuals for crossover
and mutation operation based on a constant weight of each multiple objective function to
find an optimum solution in reduced computational time (MURATA, ISHIBUCHI, et al., 1995).
For the case in the study of IBRAHIM and GOLPARVAR-FARD (2019), new solutions are
simulated for each iteration. The quality metrics of the solutions are calculated along with
the flight duration in order to construct a 3D surface with non-dominated solutions, also
referred to in the literature as Pareto optimal solutions. These solutions provide a suitable
compromise between all the objectives. Eliminating all dominated solutions and keeping
only the ones on the Pareto surface yields the best optimization results.

2.3.3 Simulated Annealing

Another probabilistic approach used in the literature for path planning optimization is
Simulated Annealing (SA). The algorithm achieves a global optimization among many
local optima for large-scaled problems. The idea of the algorithm comes from the physical
annealing process for metal cooling. Annealing in metallurgy is a technique involving the
temperature-controlled cooling of the materials to alter their physical properties. The SA
algorithm imitates the material heating and cooling to reach a globally optimum solution
(HAMMOND et al., 2020). It is an iterative model considering a predefine cooling schedule,
which consists of an initial and final temperature, annealing schedule, and a number of
iterations (HUSSEIN et al., 2015). HUSSEIN et al. (2015) explains that the initial temperature
represents the starting temperature of the algorithm, while the final one is the temperature
at which the algorithm becomes greedy and accepts only optimal solutions. The annealing
schedule decides the temperature decrease related to the initial one iteratively.

HUSSEIN et al. (2012) evaluate the ease of the implementation and the ability to solve
complex problems with avoidance of the local optima trap as the main advantages of using
the SA algorithm. Additionally, several comparative studies conclude that SA consumes
less time for path planning optimization as opposed to other algorithms (DARYANAVARD &
HARIFI, 2019; HUSSEIN et al., 2012). The SA algorithm is also established as a possible
solution to TSP problem with multiple UAVs as described by BEHNCK et al. (2015). In the
case of the study, SA is employed to find the optimized solution for two drones. First, the
two initial paths are initialized by putting the points of interest into the corresponding UAV
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path. During the optimization, SA is applied to each path with the aim to improve the route
while reducing the distance.

2.4 Conclusion

A large number of studies in the literature have examined the optimal drone path planning
and the accompanying parameters helping to achieve the initial goal. To summarize, the
literature review shows that parametrization is a significant part of mission planning. The
precise set of parameters improves the remote sensing efficiency and accuracy of 3D
reconstruction while considering the safety of the drone and time duration. The flight
and sensor parameters established from the literature review serve as a background for
implementing the thesis path planning method, particularly for candidate scanning points
creation. The dedicated path planning algorithm part of the literature review provides
different approaches to achieve high-quality scans efficiently. The majority of prior research
has employed either a graph-based algorithm or probabilistic approach. The literature
review raises the question of which algorithm to select for achieving a given goal. For the
case of this thesis, the developed method must output a path that generates high-quality
scans. A possible solution to path planning is utilizing the Traveling Salesman Problem
because a given list of waypoints needs to be visited for scanning the building. The A*
algorithm helps find the path between two given points, from which the TSP decides on the
lowest cost. The next chapter about the methodology provides a more detailed structure
of the method to be developed.
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Chapter 3

Methodology

3.1 Overview

The following chapter presents the concept of the method implemented for the thesis. The
method generates a path planning for outdoor drones that scan built environments. Figure
3.1 illustrates the workflow of the presented tool.

The first step of the method considers the building model preprocessing into a format that
makes path planning more convenient. The input for the implemented method is a BIM
model in IFC format. The 3D building model is converted into a binary voxel-grid using
the external software Binvox, and the voxels are structured in an octree. A one-meter
voxel grid size is defined considering the size of the building to create a realistic voxelized
model.

The next step is the simplification of the voxelized model. Since the thesis presents an
outside mission planning, the voxels representing the building inside are not visited and
can be ignored. Filling the inside empty voxels using a flood fill algorithm aims to define
the space occupied by the building model. Thus, inaccessible voxels are not considered in
the path planning. A space extension on a flood-filled grid creates a boundary box for the
route preparation around the building. A building dilatation gives a protected area with the
aim that the drone is never too close to the building at any moment.

The second major part of the thesis method is the definition of waypoints that describes
the locations from which the drone should be able to scan the built environment effectively.
The calculation of the waypoints takes into account the flight and sensor parameters set in
Section 2.2.5. A waypoint is created at a given distance away from the building to avoid
collisions and ensure high visual coverage and away from all neighborly points to ensure
a certain percentage of overlap. The coordinates of the nodes from which the building is
scanned are defined by computing a rotation to optimally align a node with its neighborly
occupied voxel, indicating a building surface and the fixed distance. The point candidates
capturing the edges of the building are determined by rotation over a corresponding axis.

The next step is performing a path planning algorithm. For the method of thesis, a Traveling
Salesman Problem is implemented using A* path planning algorithm in 3D space to find
the next nearest neighbor. There are three approaches in consideration with TSP. The
first approach uses TSP with the nearest neighbor dividing the waypoints into clusters.
The second one takes an initial point and sorts the rest of the waypoints by distance away
from it in ascending order. The closest n-points to the initial point are selected, and the
TSP is performed on them to find the nearest neighbor. The last TSP uses the cheapest
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insertion implementation. Each point is inserted on the path position, where it produces
the lowest cost. In the last step, the gained coverage with a particular set of points in their
predefined sequence is analyzed.

Figure 3.1: Workflow overview.

3.2 Preprocessing

The first part of the method is dedicated to the transformation of the given BIM model
in IFC format to a voxel-based representation of the building. The transformation aims
to create a more convenient structure for path planning. Voxelization is a process of
converting data with geometric information into a 3D voxel grid (FANG & CHEN, 2000).

The method takes BIM model in IFC format as input and represents it as voxel-based
data. In order to ensure a precise voxelized representation of a building, the building
measurements in meters are taken into consideration. Calculating the bounding box
directly from the IFC file allows obtaining an overview of the width, height, and length of
the building model to be voxelized. Thus, voxels of size 1x1 can be produced, securing
realistic voxelization of one-meter-sized cubes. Finding the nearest power of two to the
longest dimension of the bounding box defines the voxel grid size. However, obtaining the
correct building representation requires a bounding box adjustment which is realized by
extending the longest building dimension using the formula:
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2n

l
× (b− a) + a

where n is the nearest next power of 2 to the longest building dimension l, b is the maximum
value in the bounding box for this dimension, while the a is the minimum. The following
example provides a clearer understanding of the formula. The Technical University main
campus model, presented in Figure 2.1, has 89m length, 67m width, and 20m height as
measurements. The resulting bounding box from the IFC file has the coordinates [203.5,
83.6, -2.6, 292.9, 150.9, 17.5]. The longest dimension is x, meaning the next power of 2
will be 128. Using the formula 27

128 × (292.9− 203.5) + 203.5, the bounding box is adjusted
to the new proportions of the longest dimension. This returns the new coordinates of the
bounding box [203.5, 83.6, -2.6, 332, 150.9, 17.5] considered for the voxelization.

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

(e) Level 5 (f) Level 6

Figure 3.2: The voxel precision for the different depths in the octree.

The measurement and the voxel grid size, in addition to the BIM model in IFC format,
are used as an input to the voxelization process. First, the IFC is converted to an object
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file. The voxel transformation occurs with the help of the external software binvox mesh
voxelizer, created by MIN (2004 - 2019a). Octree segments and structures the created
voxel-based data. The octree structure recursively subdivides the voxel grid space into
eight equal cubes until reaching the minimum voxel size. An advantage of the octree
is effective structuring the space and largely empty space can be represented by an
empty node higher in the octree. The octree architecture in this thesis is mainly used
to generate a grid from a level of an octree. Each level represents provides different
precision. A deeper level yields a more precise vision of the building, which is needed
to detect details in more complex models. The following example is a simple house with
four walls and a tiled roof provided by IFCOPENSHELL.ORG (2021b). Figure 3.2 illustrates
the possible different levels and their impact on the result. With the highest level of the
octree, meaning just the root of the octree is taken, the shape of the house has the form of
a simple cube. With each lever deeper, the voxels are more precise, which results in a
more detailed illustration. The lowest level chosen in the thesis presents the voxelization
of one-meter-sized cubes. The limit of this size is due to the initial choice of voxels size in
the previous step.

3.3 Simplification of the model

The resulting array from the octree representation gives a starting point for producing way-
points. The waypoints creation is executed considering guaranteeing a certain overlap for
the 3D reconstruction of the object to be scanned. The occupied voxels are defined in the
input model and marked with one in the octree array representation. Model simplification
is applied to prevent creating waypoints in unreachable positions. Waypoints should not be
created inside or close to the building or outside the voxel grid. Furthermore, eliminating
inapplicable voxel positions yields a faster computational time since fewer nodes need to
be visited. The following workflow presents the simplification steps.

Figure 3.3: Simplification of the model - workflow.

The empty voxels inside the building, which are not relevant for scanning the surface of
the building, must not be considered as possible coordinates candidates for a waypoint
creation. Therefore, a flood fill algorithm is proposed to mark those voxels as unavailable.
Flood fill algorithm, also known as seed fill algorithm, takes a given node in a multi-

17



dimensional array and determines the connected area around the node. In computer
graphics, the algorithm captures pixels of one color in a digital image and replaces them
with a new color (VANDEVENNE, 2018). The algorithm displays the connected area to the
starting node with the same color. In the case of the thesis, the flood fill algorithm marks
the accessible voxels on which path planning can succeed. Since the flood filling occurs
for the outside empty voxels, all inside voxels remain with the same value. Reversing
the results will switch the values inside and outside, meaning all inside voxels become
flood-filled, which considers situations where the building model contains more than the
building, shown in Figure 3.4.

(a) Starting point (b) Flood-filling outside (c) Reversing the result

Figure 3.4: Flood fill algorithm, implemented for the thesis applied in computer graphics.

An extension of each axis of the flood-filled grid with a fixed amount prevents waypoints
from being created outside the grid space. The thesis suggests each axis to be extended
with the chosen distance away from the building. The last simplification step is dilating
the resulting array from the flood fill algorithm. The main idea of the dilatation is to ensure
a minimum distance around the building in all directions. This area will remain free of
waypoints.

3.4 Waypoints creation

Waypoints represent the coordinates visited from the drone for scanning the building and
the direction it faces the building. Therefore, this selection is essential to secure the
efficiency of the scanning process. Creating of points is performed on the resulting array
from the flood fill algorithm in view of the fact that the inside occupied voxels are not
reachable.

The new coordinates result from a rotation to align a vector between a voxel and its
occupied neighbor. The waypoints denoting the edges of the building in the voxel-based
model are created by calculating a rotation matrix and the Euler angle for the corresponding
axis. A point is located at a fixed distance from the building. The selected distance must
provide good scans and avoid collisions. Furthermore, a distance between two neighborly
waypoints is calculated in a way to ensure a certain amount of overlap between the two
images.
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The last step of the waypoint creation is filtering irrelevant points. The function filters points
located in coordinates occupied or outside the voxel grid. The building dilatation created in
the simplification step prevents waypoints from being close to the surface to catch possible
outliers at the edge of the building.

3.4.1 Structure of the algorithm

A point is created at a given distance from the building to avoid collisions while ensuring
scanning quality. Furthermore, two neighborly waypoints must be located at a certain
distance from each other to secure a percentage of overlap between two images. This is
due to the fact that the lowest level of octree precision set in the thesis yields the most
accurate representation of the building model, as explained in Section 3.2. Each voxel in
created preprocessing part represents one cubic meter from the building. Each occupied
outside voxel receives a waypoint, from which the drone will be able to scan this piece
of the building. To control the percentage of overlap between two images, a particular
distance between two points guarantees the overlap.

First, the distance results from a calculation between the overlap, the desired distance
from waypoint to object, and the camera field of view. The camera field of view and the
distance are set by default. Finding the visibility length with given camera parameters
means breaking the problem into two right triangles. Knowing the angle α from FOV and
the adjacent side, the opposite side corresponding to length and shown in Figure 3.5, can
be calculated by using the formula:

(tan(
α

2
) ∗ distance) ∗ 2

Figure 3.5: Camera Field of View with given distance and searched length in red.
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Distance is received by multiplying the resulting length to the complementary of chosen
overlap:

distance = length ∗ (1− overlap

100
)

The waypoint algorithm starts at a given position by collecting the coordinates of the
neighborly voxels surrounding the particular node (3.6a). It then iterates over the list of
neighboring points until finding any neighbor on the building surface, defined by whether
the voxel at the neighbor position is occupied (3.6b). In this case, the function calculates
the optimal rotation matrix to align a vector between the current point and the neighbor.
In the example from Figure 3.6c, the current node has the coordinates (4,2,1), and the
position of its neighborly voxel is (5,2,1), meaning a movement along the x-axis occurs.
Multiplying the optimal rotation matrix calculated with the Kabsch algorithm by the selected
distance from the building represented as a vector and summing the result with the
coordinates of the neighbor evaluates the coordinates of the newly created point. The
resulting rotation matrix for the example in Figure 3.6d is multiplied with the distance vector
and added to the coordinates of the neighbor voxel, resulting in the coordinates of the
waypoint: −1 0 0

0 −1 0

0 0 1

×

50
0

 =

−5

0

0

+

52
1

 =

02
1


In addition to the position, calculating the normalized vector determines the direction
facing the building. Before appending the parameters of the new point to the list with
waypoints, the distance calculated with the overlap determines the point creation. If there
is a waypoint already created in the surrounding, the particular one remains uncreated, to
keep the selected overlap.

(a) Neighbouring points of the red
voxel

(b) An occupied neighbourly voxel
found

(c) The coordinates of the voxels

(d) Creating a new point considering the coordinates and
distance

Figure 3.6: Creating a waypoint.
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The collection of neighborly positions is limited to six neighbors at each axis as shown in
Figure 3.7, meaning the neighbors at the diagonals remain unvisited. This implementation
leads to the problem of finding the waypoints denoting the edges of the building model.

Figure 3.7: Visited neighborly position of the red node.

One way to overcome this problem is presented in the following steps. Each neighbor of
the current point positioned on the surface is inspected to indicate placement on a building
edge. If at least one other neighbor of this neighbor is an empty voxel, besides the current
one, the Euler angle for the corresponding axis is calculated. The dot product of the Euler
angle matrix and scalar product of the estimated rotation and distance as a vector is added
to the current point to create a new waypoint. The rotation angle increases by 15 degrees
after each iteration, which results in a circle around the neighbor point, illustrated in Figure
3.8. Among the position of each point in the rotation, the normalized vector is calculated.
The normalized vector determines the direction of the node to the building. The resulting
tuple of both parameters is appended to the list with waypoints if adding this point does
not violate the fixed percentage of overlap.

Figure 3.8: Rotation circle over z axis.

After iterating over the whole grid, the list with tuples needs some adjustment in order
to filter the irrelevant points. All created points on the surface or inside the building are
filtered out, as well as the point outside the bounding box. The waypoints left after the
refinement are the position visited with the TSP.
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3.4.2 Mathematical background

Waypoints creation uses three main mathematical paradigms - obtaining an optimal rotation
to relate two sets of vectors, Euler angle, and calculating the normalized vector. First, to
find the optimal rotation for aligning two sets of vectors, the following equation is used:

E =
1

2
∗

n∑
i=1

wn(Uxn − yn)
2

where xn and yn (n = 1, . . . , N) are two given vectors sets and wn is the weights corre-
sponding to each vector. The equation finds an orthogonal matrix U which minimizes the
function E. The usage of the Kabsch algorithm aims to estimate the optimal rotation matrix
for aligning two sets of vectors (KABSCH, 1978). A Rotation matrix is a transformation
matrix that rotates the coordinate system through a counterclockwise angle θ around
respective axes. In 3D space, the basic rotation matrix is rotation over one of the axis and
has the following form:

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 1 0



Kabsch algorithm takes two sets of vectors. Both vector sets are translated in order for
their centroid to correspond with the origin of the coordinate system by subtracting from the
point coordinates of the respective centroid. The second step is to compute the covariance
matrix, which leads to the optimal rotation matrix (ISBUDEEN et al., 2011).

The Euler angles can describe any 3D rotation as a sequence of three rotations with
respect to a fixed axis. Written in terms of rotation matrices D, C, and A, a general rotation
A has the form A = BCD. The three angles giving the rotations are the Euler angles.
The most common definition for a rotation given by Euler angles (ϕ, θ, and ψ ) is shown
in Figure 3.9. It starts with rotation by an angle ϕ over the z-axis using D. It follows with

Figure 3.9: Euler angles (Wolfram MathWorld, 2021).

rotation by an angle θ over the former x-axis (now x′) using C, and the third rotation by an
angle ψ is over the former z-axis (now z′) using B (WOLFRAMMATHWORLD, 2021a). For
the thesis, multiple elementary rotations along a given axis are calculated with a sequence
of angles with the help of the SciPy library (SCIPY.ORG, 2021).
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In the process of waypoints creation, a point is given a position in coordinates and
direction facing the building, represented as the normalized vector between two points
(WOLFRAMMATHWORLD, 2021b). In mathematics, a vector is a geometrical object with
direction and magnitude, also known as the norm of the vector. A vector from initial point
A to point B, also denoted by

−−→
AB, where B is called the "tail" of the vector, and A is the

"head". The norm of any vector −→x describes the length of the object and is calculated by
the formula:

∥−→x ∥ =
√
x21 + x22 + · · ·+ x2n

Normalization of a vector is the process of determining the unit vector X̂. A unit vector,
which is a vector with norm equal to 1 and the same direction with the given vector x,
is defined by: X̂ =

−→x
∥−→x ∥ . In this thesis, the normalized vector calculation provides the

direction towards the building from a given point.

3.5 Path planning

This thesis proposes path planning using the Traveling Salesman Problem for calculating
the path based on the waypoints determined in the last section.

The Traveling Salesman Problem is a problem in combinational optimization. It describes
the search for the most efficient route that connects all cities from given a set for a salesman
considering the cost of travel or the distance in-between. The salesman travels to all
locations once and returns to the starting location. The idea is to minimize the distance
traveled by selecting the following city for the route demanding the least distance or cost.
This problem is an NP-hard problem, meaning there is no polynomial-time algorithm that
is known to efficiently solve every TSP (MA, 2020). TSP can be represented as a graph,
where cities are the vertices and the connectivity between the vertices, can be called
edges, as shown in Figure 3.10. A path consists of a list of vertices connected via edges.

(a) Points to be visited (b) Performing Traveling Salesman
Problem

Figure 3.10: Traveling Salesman Problem (Ma, 2020).

In the case of this thesis, three main approaches regarding TSP are compared. The A*
algorithm is used to find an existing path between every two nodes for all three strategies.
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The first two approaches use the nearest neighbor method, where a waypoint is connected
to the next closest unvisited point. A TSP with n points to be visited has the complexity
O(n2) in the worse case. The function takes the positions of waypoints and a defined
start point as input. The paths between the starting point and each other waypoint are
calculated using the A* algorithm. The A* algorithm in 3D implemented for the thesis takes
a starting node and calculates the shortest path to goal one if that path exists. The path
is defined by the exact movement cost to reach the target G and the non-overestimated
cost required to extend the path to the goal. The selected path minimizes the formula
F = G +H. The TSP with nearest neighbor method compares the length of all routes
calculated with the A* and returns the shortest path. The goal node of the shortest path
becomes the next point. The difference between the two approaches is that the first
one divides the waypoints into clusters and performs the TSP between all elements in
two neighborly clusters. The second one takes a starting point and sorts the rest of the
waypoints by distance from the closest to farthest. Then it sets the closest n-points to the
initial point and performs the TSP on them. The last strategy uses TSP with the cheapest
insertion. Instead of connecting to the next nearest node, the algorithm places the next
one in the position resulting in the cheapest possible costs. The TSP approach using the
cheapest insertion algorithm has the complexity to O(n2log2(n)) in the worse case.

3.5.1 Traveling Salesman Problem with clusters

The waypoints created are separated into n groups of equal variance using the K-means
clustering method. The K-means algorithm used to produce clusters divides a set of N
samples X into K disjoint clusters C, each described by the mean µj of the samples in the
cluster (SCIKIT-LEARN.ORG, 2020). The algorithm requires a defined amount of clusters
as input besides the data to be divided. Figure 3.11 illustrates division into 10 clusters
using K-means method.

Figure 3.11: Division into 10 clusters.
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Once divided into different clusters (Figure 3.12a), extracting an element from each cluster
and performing the TSP with a given starting point will return the rough cluster order
concerning the starting point (Figure 3.12b). After defining the order, the path between
all points within every two clusters is calculated (Figure 3.12c). The algorithm calculates
the next nearest neighbor beginning with the start point and the costs needed to reach it
with the A* algorithm. Each element has a cluster-id, the path to the initial point, and the
path length. Deciding on the next node depends on the shortest length. The TSP with the
nearest neighbor is calculated for each element in the two clusters related to the current
node. After each iteration, only the elements of the first cluster are to be appended to
the final path and the last first cluster element becomes the starting position for the next
iteration as shown in Figure 3.12d. The algorithm terminates the iterations when TSP is
performed on the last two clusters, whose elements are added to the final path (Figure
3.12e).

(a) Dividing into clusters (b) Calculating the order

(c) Performing TSP on two clusters (d) Next iteration

(e) Final path

Figure 3.12: Traveling Salesman Problem with clusters.
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3.5.2 Traveling Salesman Problem on closest points

The TSP with closer points also uses the nearest neighbor method to find the shortest
path, similarly to the TSP with clusters. However, the second approach differentiates from
the first one in how the waypoints are incorporated. This method takes an initial point and
calculates the Euclidean distance between the initial and every other waypoint. Thus from
the very beginning, there is a rough overview of how far each point is from the initial. The
method sorts the waypoints list by distance from the initial one in ascending order. The
closest n-points to the start point are selected, and the TSP is performed on them to find
the nearest neighbor.

The second main difference between the TSP with clusters and the TSP on closest points
is the decision on the following node. The second approach selects the point successor
by comparing the resulting costs from each path rather than the path length. The path
cost is calculated from the sum between each movement in the voxel grid. Since moving
in a voxel grid, every movement costs one unit, except the diagonal one, which costs

√
2.

A priority to one of the axes is implemented to allow a possible influence on the moving
direction. In the case of the thesis, the z-axis can be prioritized. The decision on the
z-axis is a consequence of the idea to influence the drone to move vertically to the building
surface. The priority suggests that the moving cost in this direction will be cheaper than
the other axis. So, by equal distanced points, the algorithm will always prioritize the one
moving along the z-axis. That can result in path difference, but not necessarily. If non of
the axes is prioritized, it takes the first cheapest point as a successor. This approach helps
to create a more consistent path. A drawback of the discrete grid is the possible production
of a more random route because each movement to the next point is equally expensive.
According to the path costs, the following point becomes the one with the cheapest path
costs. Figure 3.13 visualize the difference in route with and without z-priority. The red
node is the starting position with (10, 10, 5) coordinates. In the first example, the priority
along the z-axis forces the successor point to be the one with (10, 10, 6) coordinates. In
the second example, the choice of the waypoint along the x-axis is arbitrary.

(a) Using z-priority (b) Without z-priority

Figure 3.13: Path difference with versus without z-priority.
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3.5.3 Traveling Salesman Problem with cheapest insertion

The last approach is a Traveling salesman problem with the cheapest insertion. The
cheapest insertion begins with two points, and it finds an unvisited waypoint and connects
it between two points, where it produces the lowest cost and repeats until there are no
more insertions left.

The algorithm starts with an initialization of a list and a dictionary. The created list stores
the final version of the path. After calculating the costs between any two points using the
A* algorithm, the dictionary saves the two points and the costs for faster access in the
following calculations. In each iteration, except for the first one, the points and the path
costs are stored bidirectionally. In the first iteration, the algorithm calculates the costs to
each point from the initial one. It saves the result in the dictionary one-sided because the
beginning element is always the starting position. The resulting cheapest costs are added
to the total path costs.

In each other iteration, the TSP approach calculates the costs from the point, located at
all possible positions in the final path except for the first one, to each other point in the
waypoints list. A waypoint is connected to the visited points if the insertion of this particular
point at a fixed location produces minimum path costs. Depending on the inserting position,
two different formulas define the path cost. A point is placed between two points or at the
end of the final route. In order to compute the costs of inserting a waypoint between two
points, the path costs between any two points are subtracted from the total costs. The
result is added to the costs between the new point and the first one and between the new
one and the second point, shown as a formula:

costs = total − costs(pointi−1, pointi) + costs(pointi−1, new) + costs(new, pointi)

where i is the inserting position of the new point, and the costs are the path cost function
between the two elements. As every movement costs one unit, a prioritization of the z-axis
as described in Section 3.5.2 is possible. In graph representation, the idea is that the
formula adds the new vertex between the two vertices connected with two new edges and
removes the one connecting the previous two nodes, visualized in Figure 3.14.

(a) Inserting the red node in the
graph

(b) Finding the position with the
cheapest costs

(c) Adding the new edges

(d) Remove the previous edge (e) Point inserted

Figure 3.14: TSP with the cheapest insertion represented as a graph.
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Inserting an element in the final path at the last position is even more convenient. The
costs to insert the new point are added to the total costs needed for the created route:

costs = total + costs(pointi−1, new)

where i is the inserting position of the new point and pointi−1 is the last point coordinates
in the path. As a directed graph, the new vertex is placed at the end of the list connected
with one new edge for which the costs are calculated. Figure 3.15 represents the point
insertion at the end of the route.

(a) Inserting the red node at the
last position

(b) Adding the path costs to the
total costs

(c) Point inserted

Figure 3.15: Inserting a point at the end of the path, TSP with cheapest insertion.

According to the calculated paths using the two formulas, the algorithm inserts the point
at the position where it provides the lowest costs and removes it from the list of unvisited
waypoints. The iterations terminate when there are no more points left to be connected.

3.6 Analysis

Evaluating the performance of the path planning method presented in this thesis occurs in
two steps. First, the measurement for efficiency of the created waypoints is coverage and
overlap. Important questions associated with evaluation are:

- how much a set of points covers from the building surface.

- how much two nodes overlap.

Second, the three presented methods regarding the Traveling Salesman Problem are
analyzed by comparing the length, computational time, and path tendencies. However, the
last approach is optimized with parallel processing, which will make the computation time
comparison not comparable.

The given overlap is integrated into the voxel size, demonstrated in Section 3.3. The
coverage analysis of the set of existing waypoints is performed by marking all points on
the surface of the building seen from all waypoints created. The marking is proceeded
by adding a camera pixel frame to consider the visibility of the initial point toward the
surface in voxel space. A visible from an initial point node is transformed from 3D to 2D.
The transformation from a 3D world to a 2D image is a projection process that implies a
dimension loss. The coordinates of a 3D point are mapped to a 2D image coordinates of
the node’s projection onto the image plane.
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The pinhole camera model describes the mathematical relationship of the projection of
points in the 3D world onto the image plane. Assuming the center of projection is the
origin of a Euclidean coordinate system and the plane Z = f , also called the image plane,
as illustrated in Figure 3.16 (HARTLEY & ZISSERMAN, 2003). A 3D point with coordinates
(X,Y,Z)⊺ is mapped to the point on the plane ( fXZ ,

fY
Z , f)

⊺ using the triangles shown
in Figure 3.16. The central projection transforming from the 3D world to the 2D image
coordinates is

(X,Y,Z)⊺ → (
fX

Z
,
fY

Z
)
⊺

Figure 3.16: Pinhole camera model (Hartley, 2003).

The transformation from the 3D world to the 2D image is computed by using the formula
x = PX, where P is the camera matrix, the X is a 3D world point, and x is the 2D image
point (SIMEK, 2013). For homogeneous coordinates, meaning the camera coordinates
coincide with the 3D world coordinates, the camera matrix is a 3x4 matrix, where f
represents the focal length:

xy
1

 =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1


The resulting equation assumes that the camera and the world share the same coordinate
system. In general, this is not the case, and aligning the camera coordinates with the 3D
world coordinates is executed by using an extrinsic camera matrix. The matrix has two
components, a rotation matrix R and a translation vector t.

[
R t

]
=

 r1,1 r2,1 r3,1 t1

r1,2 r2,2 r3,2 t2

r1,3 r2,3 r3,3 t3


The extrinsic camera matrix describes the transformation of the point from world coordi-
nates to the camera coordinate system. The vector t can be interpreted as the position
of the world origin in camera coordinates, and the columns of R represent the directions
of the world-axes in camera coordinates. The extrinsic camera matrix can be presented
as Xc = R(Xw − C), where R is the rotation matrix, Xw a point in the world coordinate

29



system, and C is the camera center coordinate in the world coordinate frame. The resulting
point Xc represents a point in homogeneous coordinates (SIMEK, 2012).The extrinsic
camera matrix combined with the intrinsic camera matrix transforms homogeneous 3D
world coordinates to homogeneous 2D image coordinates, using the general equation:
P = K[R−RC] = KR[I| − C], where K represents the intrinsic camera matrix, R the 3D
rotation, I is the identity matrix and C - the 3D translation.

The path planning analysis compares the three approaches considering the Traveling
Salesman Problem. Investigation of the strategies statistically includes examinating the
computational time needed for the path plan. The procedures of estimating the efficiency
of the method follow the suggestions of comparing the planned flight trajectories in the 3D
model. The analysis also addresses the length of the produced paths by evaluating the
path cost. A simple cost function proposed by DEBUS and RODEHORST (2021) is the sum
of the Euclidean distance between two successive waypoints and the number of required
images in the path L = ||ci − ci−1||+m. Since all three approaches provide information
about the total costs of the generated path, evaluating the strategies adopting suggested
function is possible with the modification: L = costs+ len(waypoints), as each waypoint
indicates drone scanning coordinates.
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Chapter 4

Implementation

4.1 Data and Software

4.1.1 Data

The implemented method presents a path planning for IFC model input. The tool should
calculate the waypoints and compute a path for any BIM model in IFC format. Two main
models are used to test and complete the thesis task – one simple and one more complex.
The simple one, provided by IFCOPENSHELL.ORG (2021b) represents a house with four
walls and a tiled roof. The more complex model is a BIM representation of the TUM Mensa,
mainly used to test the method. Figure 4.1 illustrates the transformation stages of the
mensa building model in the IFC format to octree representation. The model described in
IFC file format is visualized using IFCOPENSHELL.ORG (2021a) library and combined with
PythonOCC, convenient library for 3D visualizations (JANSOHN, 2010). The second figure
displayed using Blender software represents the model consistency after the conversion
to the object file required for voxelization. The voxelized model resulting from utilizing the
external software binvox (MIN, 2004 - 2019a) is captured in the third figure, opened with
viewvox. Viewvox is software that visualizes a 3D voxel file produced by binvox and shows
it in a window and gives a picture of the whole model (MIN, 2004 - 2019b). The last figure
is the octree representation, exploited for path planning purposes.

(a) BIM model with IFCOPENSHELL.ORG (2021a) (b) Object model with Blender

(c) Model voxelized with binvox adn visuallized with
viewvox

(d) Octree representation

Figure 4.1: Mensa stages.
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The thesis presents a method for path planning for drone capturing of existing buildings.
An example drone for which the method should be applicable is a drone with an average
speed of 20 m/s. Since the distance between two waypoints considering a fixed overlap
is determined depending on the camera Field of View, the parameter for calculating the
visibility length presented in Section 3.4.1 would have to be set to 87° × 58° for this
exemplary drone.

4.1.2 Software

The external software binvox is applied to convert the input data to a voxelized model.
Binvox is software for an automated way to create a voxel-based representation, developed
by Patrick Min. The software reads a 3D model file, converts it into a binary 3D voxel grid,
and writes the resulting voxel file (MIN, 2004 - 2019a). Binvox allows selecting the grid
size, extracting only the geometry voxels, and forcing an input model bounding box.

Besides the voxelization process, all other steps of the method are implemented using
the programming language Python. Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics that offers a good structure with simple
syntax and support for developing large applications. It incorporates complex data types
such as flexible arrays and dictionaries. Python allows splitting a program into modules,
which are reusable in other programs. Programs written in Python are powerful and
readable (PYTHON.ORG, 2021). The programming language has interfaces to many
libraries, providing an efficient tool for faster implementation of many different problems.

4.2 Preprocessing

The method takes BIM model in IFC format as an input, which is transformed to voxel-
based data. Before voxelization using binvox, two steps need to be completed. First, the
bounding box is calculated to create a realistic voxelized representation. IfcOpenShell
allows parsing the IFC files and receiving an actual geometric description of each element.
Using Bnd from PythonOCC library calculates each dimension’s minima and maxima of a
bounding box (JANSOHN, 2010). Rounding up to the next power of two and adjusting the
bounding box contribute to the voxelization. The second step before using binvox is the
transformation of the input from IFC format to an object format as the software does not
support IFC files. IfcConvert is an application, which allows to transform an IFC geometry
into several file formats such as OBJ, XML, and SVG (IFCOPENSHELL.ORG, 2021a).

Once created, the binvox data can be loaded to a python data structure using the open
code source binvox-rw-py, developed by Daniel Maturana (GITHUB, 2021). This code
allows reading the binary binvox format as a 3D array. An octree is created from the
resulting array by recursively slicing it into eight equal cubes. The Boolean value from the
3D array visualizes the status of the cubes - empty or occupied. If all values in a sliced
cube are False, the particular one reminds undivided in the next iteration.
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The octree is a base to generate a grid with a different voxel precision. The function
creates an array of zeros using the library NUMPY.ORG (2021). It starts from coordinates
(0,0,0) and a given depth level and recursively finds the lowest level in the octree. Once
found, it sets the corresponding value 1, standing for an occupied voxel, and 0 - an empty
one, resulting in a binary array.

4.3 Simplification of the model

The simplification of the model aims to filter out the irrelevant points. The filtering is
achieved by filling the inside unaccessible voxels, extending the grid space, and dilating
the building.

The flood fill algorithm filters the empty inside voxels, which are unessential for the thesis.
The algorithm can be recursive or iterative with a stack. The recursive function can cause
an overflow of the recursion stack and termination of the program when filling larger areas.
Therefore, the algorithm implemented for the thesis uses a while loop that terminates
when the stack is empty. Instead of starting another recursion, it pushes new positions to
the stack (VANDEVENNE, 2018).

Algorithm 4.1: Flood fill algorithm: Pseudocode (Vandevenne, 2018).
Flood F i l l ( s t a r t node , ar ray ) :

se t an empty stack
set f l ood_a r ray to ar ray o f ones
set an empty v i s i t e d
add s t a r t node to stack .
while the stack i s not empty :

se t temp equal to the f i r s t element o f the stack
remove the f i r s t element from the stack
create a l i s t w i th temp_neighbours
i f ar ray a t p o s i t i o n temp i s 1 :

set f l ood_a r ray to 0
add temp to v i s i t e d

i f ar ray a t p o s i t i o n temp_neighbour i s 1 :
set f l ood_a r ray to 0

i f temp_neighbour not i n v i s i t e d :
add the neighbour to stack

return the reversed values o f f l ood_a r ray

The first step is creating a grid of ones with the same shape as the one generated from the
octree representation. The flood fill algorithm starts in an empty voxel grid and keeps the
area connected to it with the initial value. The aim is to differentiate the empty available
voxels outside the building from the empty irrelevant voxels inside the building. Therefore,
each voxel representing a building surface takes the value of zero and works as a barrier
between both types of empty voxels. Since the inner empty voxels are not connected
to the starting position outside, they are also assigned a value of zero. The flood fill
algorithm returns the reversed values, meaning that the accessible voxels outside have
the value zero, and everything inside is one. As a consequence of the reversed filling, the
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algorithm also considers a situation with a built environment consisting of more than one
building. Algorithm 4.1 represents the pseudocode of the flood fill algorithm implemented
for the thesis, inspired by the computer graphics approach of VANDEVENNE (2018). One
difference is the binary filling instead of the color one. Furthermore, the empty area around
the building is flood-filled, not inside.

The next simplification step, the grid extension is proceeded by padding the resulting
flood-filled array. Using np.pad from library NUMPY.ORG, 2021, a constant amount of
zeros are added to both edges of each axis, except for the z-axis. All zeros added to
the z-axis are located on the positive orientation of the axis to prevent inaccurate path
planning calculation. Figure 4.2 presents the difference in the grid before and after the
extension with ten units on both edges of each axis. The extended version avoids nodes
creation outside of the boundary box.

(a) Before extension (b) After extension

Figure 4.2: Before versus after grid extension with 10 units in each edge of the axis.

The building dilatation prevents the waypoint creation close to the building, which is
significant for collision avoidance. The function sets nearby voxels of an occupied one to
1, meaning that for any voxel located on the surface of the building, the neighborly empty
voxels will also be filled.

4.4 Waypoints creation

The thesis presents an automatic waypoint creation at a certain distance from the build-
ing. The function collects the neighbors’ positions of a particular point to locate occu-
pied voxels. Once discovered, a rotation matrix is determined, which optimally aligns
the vectors between the current point and the occupied neighbor. Utilizing the class
scipy.spatial.transform.Rotation from library SCIPY.ORG (2021) in this function provides
an interface to represent rotations with rotation matrices or Euler angles. The class also
supports many rotation operations for quick results. The align-vectors-function computes
the optimal calculation of the rotation matrix that transforms the current point to the occu-
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pied neighbor. The scalar product of the rotation matrix and the distance vector added to
the neighbor coordinates define the location of the newly created point. The calculated
distance between the nodes relative to the chosen overlap determines whether the point
should be created.

In order to create a waypoint from a neighbor located on the edge of the building, the
algorithm performs a complete rotation over a corresponding axis. Similar to the rotation
matrix calculation, the same class is incorporated to initialize a rotation from Euler angles.
The function from-euler returns an object containing the rotation matrix represented by
the sequence of rotations around given axes with given angles. In the case of the thesis,
the function performs multiple elementary rotations in one object. The rotation angle
increases by 15 degrees after each iteration and completes a circle around the edge node
(SCIPY.ORG, 2021).

A significant part of the waypoint creation is filtering out the irrelevant or redundant points.
As a consequence of the complete rotations over an axis with Euler angles, some nodes
can be created in the direct vicinity to each other or in an inaccessible location. The
defined distance between the nodes keeping the percentage of overlap reduces those in
immediate surroundings. If a point exists in the defined surroundings, a new one is directly
not created. The waypoints created on occupied positions also need to be filtered out.
The last step of the function is to reduce the waypoint positions, which are assigned to
1 in the voxel grid, indicating the flood-filled built environment located on those voxels.
Furthermore, the algorithm filters the waypoints created outside the grid by creating a
boundary as big as the grid shape.

4.5 Path planning

The waypoints created in the previous step present the coordinates for the route planning.
Each waypoint is transformed into an element of a class Node, which attributes and
functions are demonstrated in the UML diagram in Figure 4.3. The x, y, and z values
represent the position coordinates of the object. The parent attribute is essential for
the path reconstruction produced by the A* algorithm because each element from the
shortest path is assigned to the parent attribute of the next node. The H, G, F values are
used in the formula F = G + H to select the shortest path. The class allows comparing
two Node objects by their values and calling the object position in the voxel grid. The
h-score function returns the non-overestimated cost from the current node to the goal
node required for the A* algorithm. Since operating in a discrete voxel grid, the heuristic
costs are equivalent to the Euclidean distance between the current and the end node. The
last function investigates the surrounding of the Node object and outputs a list with each
empty neighborly voxel in each direction of the grid, including the diagonals. The class
Node is used in each different TSP approach, modified to meet the requirements of the
strategy.
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Figure 4.3: Node class: UML.

4.5.1 Traveling Salesman Problem with clusters

The Traveling Salesman Problem with clusters divides the waypoints created into n clusters
using KMeans from sklearn.cluster library. The number of clusters must be given by
initialization. The library computes the cluster centers and predicts the index for each
sample (SCIKIT-LEARN.ORG, 2020). A random element of divided clusters is sorted
accordingly to a starting position using TSP to get a rough insight of how far each cluster
is from the start node. Subsequently, the algorithm calculates the path between all points
within every two clusters and the additional costs with the A* algorithm. In the beginning,
assigning a binary cluster-id to each element shows affiliation to the corresponding cluster.
Each node is represented by the cluster-id, the path to the initial point, and the path length
needed to reach the initial point. Following the next nearest neighbor principle, the next
element in the route is determined by the shortest length to the initial node. The path costs
between nodes in one cluster are much cheaper to prevent jumping between clusters. In
each iteration, only the elements of the first cluster are to be appended to the final path.
The last element from the first cluster becomes the starting point in the next iteration until
all clusters are appended. The closing iteration inserts the nodes from the two last clusters
to the final path.

4.5.2 Traveling Salesman Problem on closest points

As mentioned in the Chapter 3, the Traveling Salesman Problem on closest points differ-
entiates in the waypoints incorporation in the pathfinding. TSP with the nearest neighbor
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approach is performed on the closest n points to the initial node. The sorting of points
occurs by calculating the Euclidean distance between the initial and all other waypoints.
The sorting criteria result from the h-score function from the Node class. In each iteration
of the TSP, the next point is the one with the least expensive costs according to the cost
function. The cost function takes a path and calculates how much it will cost. It sums up
each movement by adding 1 or

√
2. Depending on the z-priority parameter, the costs for

moving along the z-axis can be prioritized or equal to 1. The costs with z-priority are equal
to 1√

2
. All paths and produced costs are stored in a variable and sorted to retrieve the

node for the next iteration.

4.5.3 Traveling Salesman Problem with the cheapest insertion

The Traveling Salesman Problem with the cheapest insertion modifies the Node class by
initializing two new attributes: the voxel grid and z-priority become attributes to be accessed
faster. The algorithm begins by creating a list and a dictionary. The list will store the path,
and the dictionary will store the cost calculations between two nodes. The dictionaries
in Python store the data values in ordered key-value pairs. The stored data is also
changeable and not duplicated, which indicates that the keys are unique. The dictionary
saves two nodes as a key and the costs as a value. Since element insertion is possible on
each position i except for position 0, the nodes in the key are stored bidirectionally, besides
for the first iteration as the first element is always the starting position. The insertion can
succeed between or at the end of the list using the presented in the methodology formulas.
The different cost function separates the path cost calculation. A challenging problem that
arises in this domain is algorithm computational time. Calculating the costs between two
nodes in each direction causes a longer time since it computes the results using the A*
algorithm. The function dedicated to this calculation is carried out simultaneously to speed
up the whole algorithm. Pathos library provides methods for process parallelization. The
purpose of pathos is to extend the user’s code to parallel and distributed calculations with
minimal refactoring (MCKERNS, 2022). The library consists of parallel versions of the map
function, which applies a given function to each item of the given iterable. The pool.map
allows function operating in parallel as a distributed service, using standard python and
without writing a line of server or parallel batch code (MCKERNS, 2022).

4.5.4 A* Algorithm

Since the A* algorithm represents a significant part of the TSP implementation, the
pseudocode of the A* executed for the thesis is presented in Algorithm 4.2. The algorithm
is inspired by STANTON (2020) but modified for the method functionality. The algorithm
uses two lists to find the path - a list of open nodes and closed nodes. The list of open
nodes stores all points to be processed, prioritizing the one with the lowest F next. The list
of closed nodes saves all points already considered from the algorithm. In order to start
the algorithm, a start node and a goal node, as well as the grid used are defined. In the
beginning, the initial node is added to the list of open nodes. In every next iteration, the
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list is sorted according to the lowest F-value. The associated node becomes the current
node. The neighbors of the current node are appended to a list, using the function from
class Node. The G, H, and F values are determined for each neighbor in the list. The
current node is assigned to the parent attribute of the neighbor node. The information
helps reconstruct the path between the start and the goal node. If the neighbor is not
already considered as a current node, it is added to the list of open nodes. The algorithm
terminates by reaching the goal node or if the path between the two nodes is not reachable.

Algorithm 4.2: A* algorithm: Pseudocode (Stanton, 2020).
A* a lgo r i t hm ( gr id , s t a r t node , goal node ) :

se t an empty open l i s t
se t an empty closed l i s t
add s t a r t node to open l i s t .
while the stack i s not empty :

se t cu r ren t node equal to the f i r s t element o f the stack
set cu r ren t index equal to 0
i t e r a t e over the open l i s t :

i f another i tem has a lower F−value :
se t cu r ren t node equal to the i tem
set cu r ren t index equal to i tem index

remove cu r ren t from the open l i s t
add cu r ren t to the closed l i s t
i f the cu r ren t node i s equal to the goal node :

f i n d a l l elements between the cu r ren t node and goal node by
using the parent

return rou te
create a l i s t w i th neighbors
i f neighbor not i n closed l i s t :

Find G−value , H−value , and F−value o f neighbor
Set cu r ren t node as a parent o f neighbor

i f neighbor not i n the open l i s t and not i n c lose l i s t :
append neighbor to open l i s t

return rou te

4.6 Coverage Analysis

One part of evaluating the implemented method consists of an analysis of the coverage
gained with a set of waypoints. The investigation happens by marking all the points visible
for each waypoint. The implementation is divided into five functions, as shown in Figure
4.4. The function collects all occupied voxels on the surface of the building and sets
the coordinates in a list. The visibility of each waypoints’ element to each point on the
surface is validated. An apparent limitation of the process occurs in the visibility of points.
An occupied voxel is considered visible if one of the faces is visible from the waypoint.
That results in an artificial increase in coverage. If an occupied node is visible from a
waypoint, the function saves the 3D point coordinates and 2D image coordinates. The
transformation onto 2D image coordinates relies on the pinhole camera model, stated in
the Section 3.6. The camera coordinates are aligned with the 3D world coordinates to
create a homogeneous world point, using the extrinsic camera matrix. The transformation
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from 3D to 2D utilizes the formula discussed in the Section 3.6. Adding a pixel frame and
focal length aims to filter all 2D image coordinates outside the frame. The coordinates
remaining are added to a list.

Figure 4.4: Coverage analysis - implementation workflow.

A maximum depth distance is proposed to filter the visible occupied nodes which are
yet too far from the camera. In this logic, calculating the Euclidean distance from each
waypoint to the coordinates of surface points and comparing it to the maximum depth
distance create a visible area from the camera for a more accurate coverage analysis.
Figure 4.5 presents the camera view with a maximum depth distance of 20. In the next

(a) Above (b) Side

Figure 4.5: The camera view with maximum depth distance.

step, the filtered points on the surface are marked as seen and removed from the occupied
points list. Lastly, the marked points are divided by all surface points to receive the
coverage percentage.
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Chapter 5

Discussion

In the following section, the results and evaluation of the proposed path planning method
are presented and analyzed. The analysis occurs in two main steps: the waypoint analysis
and results from the different path planning approaches. For result accuracy, the method
is tested with the BIM model of the TU Mensa, and the octree representation has the
lowest level of precision to obtain one-meter-sized voxels. The distance between points is
determined with the information known for the given camera.

5.1 Waypoints analysis

5.1.1 Results

The waypoints coordinates are created on a fixed distance away from the building and
on a calculated distance in-between, ensuring a percentage of overlap. That indicates
that the setting of those two parameters, distance and overlap, influences the creation
of points. The camera FOV, the given distance from the building, and overlap define
the distance between the points. The calculation happens with the help of the formula
presented in Section 3.3. An adjustment of the distance from building and overlap results
in a different distance between two waypoints knowing the field of view from the given
camera. Distinct distances between two points affect the number of created waypoints
and the computational time. The defined waypoints, combined with different amounts
of maximum depth distance, impact coverage analysis. The reason is that marking
the occupied building voxels covered and determining their visibility from each waypoint
define the coverage. The following plots describe the impact of the different overlaps and
distances away from the building on the waypoints creation, coverage, and processing
time. The maximum depth distance is set to accordingly 10 and 20, and the focal length
- to 50 mm. The maximum depth distance is not a relevant parameter for defining the
distance between waypoints. Therefore, a comparison between the two depth distances is
made exclusively for the coverage analysis. The analysis considers n overlap in a range of
10 to 90%. 100% overlap means that both points have the same building projection and
the distance between two waypoints is equivalent to zero. 0% overlap creates a distance
equal to the visibility length, which is also an irrelevant case, as a certain overlap is needed
to reconstruct the building. The distance is set to (6,8,10,12,14). The range also includes
the proposed State of the Art distance of 10 m.

Figure 5.1 highlights the impact of overlap and distance from the building on the distance
between the points. The distance between the waypoints is linearly related to the distance
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away from the building. The further the waypoint from the building, the longer the distance
between two points. The relation to the overlap is yet inverse. The higher the percentage
of overlap, the nearer the distance between two waypoints.

Figure 5.1: Impact of overlap and distance from the building on distance between points.

The waypoints creation and the needed computational time in Figure 5.2 have the same
pattern: exponential growth can be observed. The highest number of waypoints produced
occurs with a distance decrease from the building while keeping a high percentage of
overlap above 70 %. The observed relation is because the distance between two waypoints
reduces drastically with a closer distance from the building and a high percentage of
overlap.

(a) Created waypoints (b) Computational time

Figure 5.2: Overlap and distance from the building vs. waypoints and computational time.
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The following plots present how different distances from the building and overlaps influence
the building coverage and the computational time needed with particular parameters. Each
row represents a distinguished maximum depth distance.

(a) Gained coverage (b) Computational time

Figure 5.3: Impact of overlap and distance from the building on coverage and computa-
tional time with maximum depth distance set to 10.

(a) Gained coverage (b) Computational time

Figure 5.4: Impact of overlap and distance from the building on coverage and computa-
tional time with maximum depth distance set to 20.

Figure 5.3 determines gained coverage and processing time with a selected maximum
depth distance of 10. To compare the defined depth, Figure 5.4 presents the results with
chosen maximum depth distance of 20. Similarly, a high coverage above 95 % is achieved
with waypoints set close to the building and the highest overlap possible. Keeping the
distance short and decreasing the percentage of overlap result in a slight decrease in the
gained coverage. An unsatisfying coverage arises from a distance above 10m and a low-
selected overlap. Both plots are monotonically decreasing, meaning the further a waypoint
is located from the building and the least two waypoints overlap, the lower the coverage
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percentage. With a distance increase and overlap decrease, the difference between the
two selected maximum depth distances becomes more apparent. While the coverage
with a maximum depth distance of 20 falls gradually, a sharp fall can be recognized for
a depth of 10. The observed decline is an automatic result from the specified maximum
depth distance. The further the waypoints are located from the building and the lower the
maximum depth distance is selected, the least clear visibility is maintained.

The computational time for both maximum depth distances is monotonous increasing.
However, a set of waypoints far from the building with a high percentage of overlap
produces a dramatic leap in processing time, as illustrated in Figures 5.3b and 5.4b,
which describes the logarithmic processing time. In general, calculating the coverage with
maximum depth distance set to 10 prolong significantly longer than selecting 20. The
reason is that the coverage analysis marks fewer points on the surface as visible, meaning
it iterates over more possible points.

The coverage analysis leads to the following conclusion - the method implemented for
this thesis is robust against a selection overlap and distance away from the object to be
scanned. However, the tool significantly depends on determining camera parameters and
the maximum depth distance to ensure a satisfying coverage. In the presented cases, the
selected maximum depth distance of 20 achieves a minimum coverage of 79 %, while the
minimum value for setting the depth to 10 is 7%.

5.1.2 Discussion

In the following section, a short comparison between the resulting parameters from the
literature review and the results from the waypoint creation is conducted. To summarize,
the literature review shows that a 10-meter distance between the drone and the building en-
sures safety and efficiency, and forward overlap above 90% achieves good reconstruction
accuracy.

The results from the method considering the given parameters are listed in the Table 5.1.
It is apparent from this table that considered parameters result in 94.3 % coverage of the
building for maximum depth distance set to 10 and 99.7% for depth set to 20. The short
distance between the points produces a large number of waypoints, and the computational
time is high. According to the results presented in Figure 5.4, slightly lowering the overlap
percentage will return almost the same coverage for a maximum depth distance of 20.
Furthermore, the number of created waypoints reduced drastically, which yields reduced
processing time. Creating the waypoints closer to the building and keeping the overlap high
is inconvenient as the number of waypoints produced is high, but the coverage remains
stable. A possible alternative would be to slightly decrease both parameters to maintain
coverage above 90% but reduce the number of waypoints. Therefore, setting the distance
parameter to 8 m and the overlap to 50% is considered. The results of the examination
with these parameters are presented in Table 5.2. Noticing the reduction of coverage is
possible by setting the parameters in a way to result in an 85% of the building covered
with a maximum depth distance of 20, as proposed in Table 5.3. The contrast of the
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depth definition can be observed in this example. While a maximum depth distance of 20
maintains a satisfying coverage, setting this parameter to 10 results in a sharp decrease.
Therefore, further analysis will rely on those three cases for a maximum depth distance of
20.

Table 5.1: Results with 10 m distance and 90% overlap

Distance
between
waypoints

Number of
waypoints

waypoints
processing
time (s)

Maximim
depth dis-
tance

Coverage Coverage
processing
time(s)

1.11 11399 1178.5 10 0.943 1905,5
1.11 11399 1178.5 20 0.997 125.0

Table 5.2: Results with 8 m distance and 50% overlap

Distance
between
waypoints

Number of
waypoints

waypoints
processing
time (s)

Maximim
depth dis-
tance

Coverage Coverage
processing
time(s)

4.43 761 334.2 10 0.925 292.2
4.43 761 334.2 20 0.989 84.2

Table 5.3: Results with 12 m distance and 20% overlap

Distance
between
waypoints

Number of
waypoints

waypoints
processing
time (s)

Maximim
depth dis-
tance

Coverage Coverage
processing
time(s)

10.64 141 268.3 10 0.177 133.7
10.64 141 268.3 20 0.852 83.2

Figure 5.5 illustrates the result of the waypoint creation with the set parameters. The
distance between the points results in different points’ densities. The closer the waypoints
are from each other, the higher the number of points are produced, which can be observed
in the 5.5a, 5.5c and 5.5e. The second plot in each row shows visualizations of the results
in coverage analysis. The red point presents the surface one-meter-voxels not visible from
the set of waypoints. Figures 5.5b and 5.5d show that the entire structure of the building is
covered except for some points which seems inside, reflecting the around 99% coverage.
The non-visible points are representative of an entrance surrounded by columns of the
Mensa building. The distance of the building and the direction facing the building in the
method are fixed, and changing accordingly to capture this type of build details is limited.
The surrounding is open, meaning the flood fill algorithm would not consider the columns
part of the inside voxels. Figure 5.5f displays the effect of reduced overlap and lower
number of waypoints on the coverage, resulting in a score of 85%. The missing covered
surface points are located laterally of the building and in the middle of the rooftop. This is
mainly due to the fact that the distance between the points is above 10 m.
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(a) Waypoints with overlap 90% and
distance 10 m

(b) Coverage in black versus unseen
points in red

(c) Waypoints with overlap 50% and
distance 8 m

(d) Coverage in black versus unseen
points in red

(e) Waypoints with overlap 20% and
distance 12 m

(f) Coverage in black versus unseen
points in red

Figure 5.5: Defined waypoints and building coverage

5.2 Path planning comparison

The path planning analysis compares the three approaches considering the Traveling
Salesman Problem, performed on the waypoints set with parameters, a distance of 12m
and overlap of 20%. The analysis includes the processing time, the costs of the path, and
the L-function, described in Section 3.6. The three approaches are tested for an equal
amount of waypoints. The Table 5.4 summarizes the results for the selected case, and the
three plots in Figure 5.6 visualize the path tendencies.

The second approach calculates a path in a significantly shorter processing time despite
the fact that the TSP with the cheapest insertion is executed parallelly. It appears that the
parallel processing does not compensate for the higher time complexity of the algorithm.
However, the third approach provides the cheapest costs, followed by the TSP on closest
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points. The method with the clusters is twice more expensive in comparison to the other
algorithms. The first approach also features the most randomness in the path, while the
second and the third technique have a more strict pattern. The difference is due to the
incorporation of the priority to the one axis. Figure 5.6 displays the common tendencies
between the TSP with the cheapest insertion and TSP on closest points.

Table 5.4: Comparison of the three approaches

TSP Number of
waypoints

Processing
time (s)

Costs L

Clusters 141 106.68 2642.2 2783,5
Closest points 141 88.6 1320.9 1461.9

Cheapest
insertion

141 902.8 1178.1 1319.1

(a) TSP with clusters (b) TSP on closest points

(c) TSP with the cheapest insertion

Figure 5.6: Travelling Salesman Problem approaches
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Chapter 6

Concluding Remarks

6.1 Conclusion

In the digital era nowadays, one significant advantage of the evolution of technologies
is their utilization for helping the community. Using technologies improves the quality of
government services and citizen wellness. From managing transportation to rapid reaction
to the scene of an emergency, technologies can enhance operations across any urban
area. In this context, the INTREPID project makes a one step further to creating a smart
city. Creating a platform for analyzing a building environment assists the missions of first
responders in saving lives and neutralizing threats.

The main goal of this thesis was to implement a method for outdoor path planning for the
given BIM model in IFC format. The UAV should be capable of scanning the outside of the
building from above and side. First, a comprehensive literature analysis was conducted to
define the objectives of the thesis and investigate the existing path planning strategies.

The first step of the method converts the IFC format input to a convenient mission planning
format. A voxel-based model was proposed, structured in an octree, and simplified in
four steps. In the next step, the coordinates from scanning the building were defined, on
which a path planning algorithm was performed. The Traveling Salesman Problem with A*
algorithm suggested in the thesis was based on literature research. The thesis proposed
three different approaches: TSP with clusters, TSP on closest points, and TSP with the
cheapest insertion. The resulting path is represented by the coordinates of the waypoints
defined by x, y, and z coordinates in a JSON file. Finally, the method was tested and
evaluated on the basis of waypoints coverage, overlap, and path planning efficiency.

6.2 Recommendations for future work

Based on the literature research and the method created in this thesis with its limitation,
the following recommendations for future work are proposed:

- An optimization parallel processing can speed up the flood fill and waypoint creation.
To build a good voxel representation of the IFC model, the generated grid with the
proportions of the building produces a long computational time for both functions as
the functions iterate over the whole voxel grid space.

- The thesis presents a waypoint creation at a fixed distance away from the building.
A limitation occurs for building environments with indoor yards. In the future, one
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can implement a feature to the function, which considers an automatic increase or
decrease of distance.

- Similar to the flood fill algorithm and waypoints creation, optimization for path plan-
ning with parallel processing is possible. The thesis proposes the priority for moving
along an axis. In future work, one can implement a feature that prioritizes a direction
of movement, meaning forcing the planning of the path to continue in the same
direction.

- One can compare the Traveling Salesman Problem with the A* algorithm proposed
in this thesis with other possible approaches for solving drone mission planning
problems used in the literature.
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