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Abstract

Affine Deligne-Lusztig varieties capture the delicate interplay between the Iwahori-
Bruhat decomposition of an algebraic group and its decomposition into o-conjugacy
classes. Our four main results express geometric properties of these decompositions in
terms of combinatorial properties of the quantum Bruhat graph.
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1. Introduction

To keep the introduction concise, we refer to Section 2.1 for a detailed description of our
technical setup and notation. For now, let us summarize that G denotes an algebraic
group over a local field F', whose maximal unramified extension we denote by L = F.
We are interested in two important decompositions of the topological space G(L).

The first is the Iwahori-Bruhat decomposition of the topological space G(L). For an
Iwahori subgroup I <€ G(L) and the extended affine Weyl group W, we have

GIL) = | | 121

zeW

The closure of an Iwahori double coset Ix[ is naturally a union of Iwahori double cosets,
with closure relations given by the Bruhat order < on W.

Iol = | | Iyl

Yy

The Bruhat order has an alternative, purely Coxeter-theoretic description. However,
both these approaches can be tricky to work with. In Section 4, we present a new
description of the Bruhat order on W that is amenable to both theoretical reasoning
and practical computation.

Theorem 1.1. Let xq,x9 € W, and write them as x1 = w1eM, ko = woe!2. Then
x1 < x2 in the Bruhat order if and only if for each vi € W, there exists some vg € W
satisfying

o7 4 wt(ve = v1) + wt(wiv) = wave) < vy g,

Here, wt denotes the weight function of the quantum Bruhat graph. This function
will be studied in detail in Section 3.

For more refined descriptions of the Bruhat order, we refer to Theorems 4.2 and 4.36
as well as Remark 5.23.

As an application, we give a new description of the admissible sets in W as introduced
by Kottwitz and Rapoport [KR00; Rap02] (Propositions 4.12 and 4.38).

The product of two Iwahori double cosets is in general not an Iwahori double coset.
After passing to closures however, we do find for each x,y € W a uniquely determined
z=x*yeW/suchthat

Izl - Tyl = Iz1.
The Demazure product also has a purely Coxeter-theoretic description, namely
vy =max{z'y |2 <z,y <y}

Using our previously established result on the Bruhat order, we give a new description
of the Demazure product * on W in Section 5.



Theorem 1.2 (Cf. Theorem 5.11). Let x1,29 € W, and write them as x1 = wie" and
xo = woeet2. Then for explicitly described vi,v9 € W, we have
T1* Tg = w1v1vg_1€v2vf1“1+“2_v2 wh(vi=wzvz)
This description of Demazure products will then shed some light both on our previous
result on the Bruhat order and the next result on generic o-conjugacy classes.
There is a second important stratification on G(L), namely the decomposition into

o-conjugacy classes. Denoting by o the Frobenius of L/F, it acts on G(L) and we define
for g1,92 € G(L):

g1 ~0 g2 = JheG(L): g1 =h 'go(h).

The set of o-conjugacy classes in G(L) is denoted B(G). The o-conjugacy class of an
element g € G(L) is determined by two invariants, as proved by Kottwitz in [Kot85;
Kot97]. These invariants are called the Newton point v(g) and the Kottwitz point k(g).

The closure of a o-conjugacy class [b], is again a union of o-conjugacy classes, so we
can write

.= | W

(V'] <[b]~

The order < on o-conjugacy classes is easily described as k(b') = £(b) and (V') < v(b) in
the dominance order. This result is proved by Rapoport-Richartz [RR96] and Viehmann
[Viel3] for split groups and by He [Hel6] for general groups.

We are interested in the intersections IzI n [b] for z € W and [b] € B(G), called
Newton strata. It is an important open question which Newton strata are non-empty,
i.e. to describe the set

B(G)y = {[b] € B(G) | IzI ~ [b] # &}.

Related to these intersections are the affine Deligne-Lusztig varieties (cf. [Rap02]), de-
fined by

X, (D)(F,) = {g € G(F)/1 | g~"bo(g) € LI}

The dimension and the question of equi-dimensionality of X,(b) have been intensively
studied in the past, yet both problems remain largely open [GHKR06; GHKR10; GH10;
Hel4; MST19]. Affine Deligne-Lusztig varieties for certain groups of small rank have
been studied explicitly [Reu02; Bea09; Yan14].

Affine Deligne-Lusztig varieties have been introduced by Rapoport [Rap02] to define
Rapoport-Zink moduli spaces, which play an important role for the study of Shimura
varieties.

The construction of affine Deligne-Lusztig varieties resembles a classical construction
of certain varieties due to Deligne-Lusztig [DL76]. They used the cohomology of these



Deligne-Lusztig varieties to describe all complex representations of finite groups of Lie
type.

If one replaces the Iwahori subgroup by a hyperspecial subgroup, the resulting affine
Deligne-Lusztig varieties have been well-understood after concentrated effort by many
researchers, e.g. [Kot06; GHKRO06; Vie06; Ham15].

For the affine Deligne-Lusztig varieties considered in this paper, there are a number
of important partial results describing their geometry.

It is proved by Gortz-He-Nie [GHN15] and Viehmann [Vie21] that B(G), always
contains a uniquely determined smallest element, which is explicitly described. More-
over, B(G), always contains a uniquely determined largest element. This follows from
the specialization theorem of Rapoport-Richartz [RR96, Theorem 3.6], as explained by
Viehmann [Viel4, Proof of Corollary 5.6]. Rapoport-Richartz also prove a version of
Mazur’s inequality, which states that for [b] € B(G), with x = we*, we must have an
identity of Kottwitz points x(b) = x(x) and the inequality v(b) < p4°™ € X, (T)r, ® Q.

While the dimension dim X, (b) is difficult to compute, the virtual dimension d(b)
introduced by He [Hel4] is easy to evaluate and always an upper bound for dim X, (b).
Moreover, we have dim X, (b) = d;(b) for a number of cases, but not always. Cf. [Hel4;
MV20; He21b], affirming conjectures of Reuman and others [Reu02; GHKRO06]. The
virtual dimension is defined as

dq(b) = % (U(x) + L(no(x)) — (w(b), 2p) — def (b)) .
Here, ¢(x) denotes the length of x in W, as explained in Section 2.1. By 71, (x), we denote
a certain element in the finite Weyl group associated with x, as explained in Section 2.2.
These two terms only depend on the element z € w.

The defect of a o-conjugacy class is a non-negative integer that is bounded by the
rank of the root system. We will focus on this invariant in Section 6.2.

The uniquely determined largest element of B(G), is called generic o-conjugacy class
[bz]s. It is the unique o-conjugacy class such that [b;]s N [z is dense in [zI. The Kot-
twitz point of b, coincides with the Kottwitz point of x, which is easy to compute. The
calculation of its Newton point, i.e. the generic Newton point of x, is less straightforward.
We are able to prove the following:

Theorem 1.3 (Cf. Theorem 7.2). Let v = wet € W. We can give an explicit closed
formula for the generic Newton point vy = v(by) in terms of p and the weight function
of the quantum Bruhat graph.

This theorem may be seen as a refinement of the aforementioned Mazur inequality, as
it gives a sharp upper bound for {v(b) | [b] € B(G).}. We also give a concise formula
for the A-invariant Ag([bz]) as introduced by Hamacher-Viehmann [HV18]. This result
is useful for proving our second main result.

If the dimension coincides with the virtual dimension for the generic o-conjugacy class,
ie. dim X, (by) = dz(bs), the element x is called cordial following Mili¢evié-Viehmann
[MV20]. They prove in [MV20, Corollary 3.17, Theorem 1.1] that cordial elements
satisfy the most desirable properties. In particular, the set B(G), is explicitly described



as a closed interval in B(G), and for each b € B(G),, the affine Deligne-Lusztig varieties
Xz(b) is equi-dimensional of dimension d,(b). Using our result on generic Newton points,
we are able to fully classify the cordial elements in W.

Theorem 1.4 (Cf. Corollary 7.9). Let = € W. Then z is cordial if and only if two
conditions are satisfied, that we can summarize as a genericness condition on x and an
extremality condition on certain vertices in the quantum Bruhat graph.

The theory of cordial elements has been used by He [He21b] to compute the dimensions
of many affine Deligne-Lusztig varieties, even for non-cordial elements x € W.

Our main results were known previously only for elements = € % satisfying certain
regularity conditions: Our result on the Bruhat order was previously only known for
superregular elements, as a result of Lam-Shimozono [LS10], as well as groups of type
A, and C,, (cf. Chapter 8 of the textbook of Brenti-Bjorner on Coxeter groups [BB05]).
Our result on Demazure products generalizes the ones from He-Nie [HN21].

A description of generic Newton points for superregular elements is originally due to
Mili¢evi¢ [Mil21]. Sadhukhan [Sad21] proved a version with a weaker superregularity
constraint. More generally, for shrunken elements in the extended affine Weyl group,
a description of generic Newton points is due to He-Nie [HN21]. Each of these results
also gives a criterion to check which of the respective regular elements are cordial, as the
proof of [MV20, Proposition 4.2] can be easily adapted.

While it is true that most elements in W lie in a shrunken Weyl chamber, the most
interesting ones typically do not. e.g. when one is interested in applications to Shimura
varieties, one would be interested in minuscule elements in WN/, of which only very few
are also shrunken.

The backbone on our results on the affine flag variety are new combinatorial methods
developed in Sections 2 and 3. To each element x € V[N/, we associate the length functional
{(x,-) and the set of length positive elements LP(x) € W. The set LP(x) consists of only
one element if and only if = lies in a shrunken Weyl chamber. This is one reason why
previous approaches, that did not have this language available, failed for non-shrunken
elements z € W. A number of crucial results on the quantum Bruhat graph, as intro-
duced and proved in Section 4, complement our machinery to prove our main theorems.
A newly introduced semi-affine weight function in Section 3.4 yields a generalization of
our description of the Bruhat order, which also generalizes the previously known criteria
for types A, and C,. Moreover, this semi-affine weight function precisely describes the
admissible sets from [Rap02], cf. Proposition 4.38.

As a preparation for the more geometric aspects of our proofs, we review and refine a
number of known results on the set of o-conjugacy classes in Section 6. Our main results
hold true whenever G is connected and reductive. Following Gortz-He-Nie [GHN15], we
can prove this via a reduction to the case where G is quasi-split. However, many impor-
tant foundational results have been proved only under the somewhat stricter assumption
that G should be unramified. We show how to generalize these classical results to the
quasi-split case, allowing us to prove our main results in this setting (Corollaries 7.4
and 7.9). This enables us to conclude them for arbitrary connected reductive groups
(Theorem 7.18 and Proposition 7.19).



The main results of this dissertation have been made accessible to the academic com-
munity in the form of preprints and have been submitted for publication in peer-reviewed
journals. Summarizing broadly, Sections 2, 6 and 7 constitute the paper [Sch22b], and
Sections 3, 4 and 5 constitute the paper [Sch22a].



2. The affine root system

2.1. Group-theoretic setup

We fix a non-archimedian local field F' whose completion of the maximal unramified
extension will be denoted L = F. We write Op and O, for the respective rings of
integers. Let € € F' be a uniformizer. The Galois group I' = Gal(L/F') is generated by
the Frobenius o.

Concretely, this means we have one of the following situations:

o Mixed characteristic case: F'/Q, is a finite extension for some prime p. Then Op
is the set of integral elements of F'.

o Equal characteristic case: Op is a ring of formal power series Fy[[e]], F' = Fy((¢))
is its fraction field, O, = Fy[[e] and L = F,((¢)). The Frobenius ¢ acts on L via

o (Z anes”) = Z ale”.

We consider a connected and reductive group G over F. We construct its associated
affine root system and affine Weyl group following Haines-Rapoport [HR08] and Tits
[Tit79].

Fix a maximal L-split torus S © G and write T for its centralizer in G, so T is
a maximal torus of G. Write A = A(Gp,S) for the apartment of the Bruhat-Tits
building of G, associated with S. We pick a o-invariant alcove a in A. This yields a
o-stable Iwahori subgroup I < G(L).

Denote the normalizer of T in G by N(T'). Then the quotient

~

W = Ne(T)(L)/(T(L) n1)

is called extended affine Weyl group, and W = Ng(T)(L)/T (L) is the (finite) Weyl group.
The Weyl group W is naturally a quotient of W.

The affine roots as constructed in [Tit79, Section 1.6] are denoted ®,¢. Each of these
roots a € ®,¢ defines an affine function a : A — R. The vector part of this function is
denoted cl(a) € V*, where V = X,(S) ® R = X, (T)r, ® R. Here, 'y = Gal(L/L) is the
absolute Galois group of L, i.e. the inertia group of I' = Gal(F'/F). The set of (finite)
roots ist @ := cl(®yr).

The affine roots in ®,¢f whose associated hyperplane is adjacent to our fixed alcove a
are called simple affine roots and denoted A,r S Pyt

Writing Wy for the extended affine Weyl group of the simply connected quotient of
G, we get a natural o-equivariant short exact sequence (cf. [HR08, Lemma 14])

1— Wy — W — m1(G)r, — L.

Here, m1(G) := X«(T)/Z®" denotes the Borovoi fundamental group.

'This is different from the root system that [Tit79] and [HRO8] denote by ®; it coincides with the root
system called ¥ in [HROS8].
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For each z € W, we denote by ¢(x) € Z>( the length of a shortest alcove path from a
to xza. The elements of length zero are denoted 2. The above short exact sequence yields
an isomorphism of € with 7 (G)r,, realizing W as semidirect product W=0Qx Wat.

Each affine root a € ®,¢ defines an affine reflection r, on A. The group generated by
these reflections is naturally isomorphic to Wy (cf. [HRO8]), so by abuse of notation,
we also write r, € Wy for the corresponding element. We define Syf := {rq | a € Aut},
called the set of simple affine reflections. The pair (Wat, Sar) is a Coxeter group with
length function ¢ as defined above.

We pick a special vertex ¢ € A that is adjacent to a. We identify A with V via ¢ — 0.
This allows us to decompose ®,; = ¢ x Z, where a = (a, k) corresponds to the function

V—>R,v— av) +k.

From [HRO8, Proposition 13, we moreover get decompositions W = W x X, (T)r, and
War = W x Z®Y. Using this decomposition, we write elements x € W as 2 = we” with
we W and p € Xy(T)r,. For a = (a,k) € ®ur, we have r, = Saef®” € Wy, where
Sa € W is the reflection associated with «. The natural action of W on ®,¢ can be
expressed as

(wg“)(og, k) = (wav k— <ﬂ7 a>>

We define the dominant chamber C < V to be the Weyl chamber containing our
fixed alcove a. This gives a Borel subgroup B < G, and corresponding sets of posi-
tive/negative/simple roots @7, &7, A < P.

By abuse of notation, we denote by ®* also the indicator function of the set of positive
roots, i.e.

1, aed™,

T :d - {0,1}, a~—
0, aed .

The following easy facts will be used often, usually without further reference:
Lemma 2.1. Let o € .

(a) &t (a) + P (—a) = 1.

(b) If B ® and k, ¢ =1 are such that ka + £ € ®, we have

0<®F(a)+0%(B) — 2" (ka +£8) < 1. O

The sets of positive and negative affine roots can be defined as

B = (DT x Zsg) U (B x Zs) = {(a k) € Dug | | = D* (—a)},
D= — D = B \BF = {(o, k) € Bug | b < DT (—a)}.

One checks that <I>;’f are precisely the affine roots that are sums of simple affine roots.

11



Decompose ® as a direct sum of irreducible root systems, & = &; 1 --- 1 ®,.. Each
irreducible factor contains a uniquely determined longest root §; € ®;. Now the set of
simple affine roots is

Apr = {(,0) | a e A} b {(—6;,1) |z':1,...,r}c<1>;rf.

The Bruhat order on Wyt is the usual Coxeter-theoretic notion. The Bruhat order on
W can be defined as wz < 'z’ iff w = ' and = < 2’ for w,w’ € Q and 7,2’ € Wiy,

We call an element p € X, (T)r,®Q dominant if {u, ) = 0 for all « € . For elements
py i/ in X (T)p, ®Q (resp. X« (T)p, or X«(T)r), we write p < g if the difference p/ —
is a Q>¢-linear combination of positive coroots.

The induced action of 'y on A, ®,¢, W, Was and W is trivial by construction. The
Frobenius action on A, X« (T')r,, Par and ® will be denoted by o. Note that o preserves
the set of simple affine roots. The Frobenius action on W, W and W, will be denoted
by x — “x. Then the action of “z on X,(T)r, is the same as the composed action
cozoo ! (zeW or W).

For the most part, we consider the case where G is quasi-split over F. This is a
convenient assumption that lightens the notational burden significantly. In Section 7.2,
we return to the more general setting of connected reductive G and generalize our main
results via a reduction to the quasi-split case.

If G is quasi-split, we may and do choose the vertex ¢ to be o-invariant. With this
choice, the decompositions @, = ® xZ and W=WnxX «(T)r, are Frobenius equivariant.
This means

V(a, k) € Oup i o(a, k) = (o(a), k),

Vwet € W : “(wer) = (Tw)e” W,

In particular, o preserves the set of simple roots A.

The case where GG is unramified has often been studied in the literature. In this
case, S is a maximal torus of G, so S = T and & is the usual root system of (G,T).
Each root system ® together with a Frobenius action comes from such an unramified
group. However, care has to be taken when using results proved for unramified groups
in the quasi-split setting, as X« (7T")r, may have a torsion part if G is not unramified. In
particular, the map X, (T)r, = X«(T)r, ® R = V = A might fail to be injective.

2.2. Root functionals

For every coweight p, there exists a uniquely determined dominant coweight in the W-
orbit of p. In other words, there exists some w € W such that p(wa) = 0 for all a € ®+.

In this section, we introduce and study certain functions ¢ : & — Z which are more
general than coweights, but still enjoy this property.

Definition 2.2. (a) A root functional is a function ¢ : & — Z satisfying the following
two conditions for all «, 8 € ®:

(1) le(a) + (=) < 1.

12



(2) If a + g € @, then

lp(a+ B) — p(a) —p(B)] < 1.

(b) If ¢ is a root functional, the dual root functional is defined by ¢V (o) = —p(—a).
(c) Let ve W. The set of inversions of v with respect to ¢ is
invy,(v) = {a € " | p(va) < 0} U {a e @™ | p(va) > 0}.

We call v positive for ¢ if inv,(v) = . If a € inv,(v), we call vs, € W an adjustment
of v for .

Lemma 2.3. Let ¢ : ® — Z be a root functional and v € W be not positive for ¢. If v’
is an adjustment of v for ¢, then

#inv,(v') < #invy,(v).

Proof. Let a € inv,(v) with v/ = vse. Up to replacing (o, ) by (—a,¢"), we may
assume « € ®1 0 p(va) < 0. Define

I:={Be®"\{a}]|sa(B) e @}
We write
#invy(v') =#{B e @I | p(v'B) <0} + #{B e I | p(v'B) < 0}
+#{Be@\(—I) | p(v'B) > 0} + #{Be —I | p(v'B) > 0}

N}(ite that p(v'a) = p(—va) = —1 — p(va) = 0 and s4(PT\(I U {a})) = 2T\(I U {a}).
Thus

#{Be @\ | p(v'B) < 0} =#{B € "\(I U {a}) | p(vsaB) < 0}
=#{f € @"\(I u{a}) | p(vB) < 0}
=#{f € @\ | p(vB) <0} — 1.

Similarly, we have

#{Be@\(=1) | p(v'B) > 0} =#{B € 2\(-I U {-a}) | p(v'B) > 0}
=#{f e @\(-I v {-a}) | p(vf) > 0}
<#{B € @TN\(=1) [ ¢(vf) > 0}.

Therefore, it suffices to prove the following estimates:

#{Bel|p(v'B) <0} <#{Bel]p(vB) <0}, (1)
#{Be—I[p('B)>0}<#{Be—I]p(B) >0} (2)

We only prove (1), as the proof of (2) is similar.

13



In order to prove (1), we consider the involution § +— —s,(3), which acts freely on I.
Let 0 = {8, —sa(B)} < I be an orbit for this involution. It suffices to show

#{Beolp('B) <0} <#{Beo|pwp) <0} ()

In order to prove this, we calculate

#{B ol p('B) <0} =#{B € —sa(0) | p(v'B) < 0}
=#{f €o|p(-vp) <0}
<#{B eo|p(vh) = 0}
=2—#{Beolp(p) <0}

If #{B € o | ¢(vB) <0} = 1, we immediately get ().
Now suppose that ¢(vf3) = 0 for all § € 0. Fix an element § € o and write

B, = _504(/3) = <av,ﬁ>a - B.
Note that kaw — f € ® for k =0,...,{a", ). Thus
{aV,B)
le(wB) = (a¥, Byp(va) — p(—vB)| < >} lp(v(ka — B)) — p(va) — p(v(k — 1)a — B)|

k=1

<(aY,B).
In particular, we get
p(vB") — p(—vB) < {a”, B)(1 + p(va)) < 0.

Thus ¢(—v8) = p(v') > 0.
Since 3 € o was arbitrary, we get ©(v'8) = @(—v(—s4)8) = 0 for all 8 € o. This proves
(%), which finishes the proof of the lemma. Ul

Corollary 2.4. If o : & — Z is a root functional and v € W is any element, there is a
sequence

U=’U1,...,Uk€W
such that vi41 s an adjustment for v; for ¢ (wherei=1,...,k—1), and vy is positive
for p. In particular, positive elements exist for each root functional. O

The most important root functional for us will be the length functional associated to
an element x € W, which we introduce now.

Definition 2.5. Let £ = wet € W and o € ®. We define

Uz, a) = {(u,a) + D1 (a) — &1 (wa).

14



The absolute value |[¢(x, «)| can be understood as counting affine root hyperplanes be-
tween the base alcove and za, while the sign accounts for the orientations (cf. Lemma 2.9).

Lemma 2.6. Let © = wel € W. Then l(z,-) is a root functional. For each a € ®, we
have

Uz, q) + Uz, —a) = 0.
Proof. Let a, 3 € ®.
(1) We have
Uz, o) + Lz, —a) =(p, @) + @7 (@) — T (war) + {pt, —a) + @7 (—a) — T (—wa)
=0t (a) + dT(—a) — (@F (wa) + &F(~wa)) =1 -1 =0.
(2) Suppose a + 3 € ®. We know that
0<®(a)+ 0 (B) —dT(a+ ) < 1.
Thus, we obtain

[€(z, o0+ B) — £(w, ) — £z, B)]
=@ (a+B) = 2T (a) = () =@  (w(a + §)) + " (wa) + T (wh)| < L.

AN v

e(-10) 0.1}
This finishes the proof. O

Definition 2.7. Let z € W and v e W. We say that v is length positive for x and write
v € LP(x) if v is positive for the length functional ¢(z,-). Explicitly, v is length positive
for z if (z,va) = 0 for all € O+,

Ezample 2.8. Let x = wet € W. The W-orbit of 1 contains a unique dominant element
of X4«(T)r,, and there is a unique v € W of minimal length such that v=!y is dominant.
The element v is uniquely determined by the following condition for each positive root
o

0y > B (~va).
It follows that
Uz, va) = o, a) — @ (—va) + & (—wva) = 0.

We see that this particular v is length positive. This gives an alternative proof that
length positive elements always exist. N
Recall the definition of the virtual dimension for z € W and b € B(QG).

dy(b) = 5 (€(x) + £(no (x)) — {v(b), 2p) — def (D).

NN
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Here, 2p € X, (T)" denotes the sum of positive roots. With v € W constructed as above,
we have

Ne(x) = Uﬁl(v)_lwv eW.

Because of the importance of the virtual dimension, the specific v constructed in this
example is of particular interest.

However, the construction of this v € W is not quite natural in terms of x € W, e.g. in
view of certain automorphisms of W that preserve dimensions of affine Deligne-Lusztig
varieties.

Studying the group GLj3 for example, there are three simple affine reflections sg, s1, s2 €
W . Each of these satisfies £(s;) = dim X, (1) = 1. The two simple affine reflections that
come from W also satisfy £(n,(s1)) = £(n,(s2)) = 1, so that

dsi([l]g)z%(1+1—0—0)=1=dimX8i(1), 1=1,2.
For the remaining affine simple reflection sp, we do however have ¢(n,(sg)) = 3. Thus
dsy (1) =2 > dim X, (1).

We see that si, sy satisfy dim X, (1) = ds,(1) (so both are cordial), whereas so does
not have this property. This is problematic insofar as there exists an automorphism
of the affine Dynkin diagram sending s; to so, hence naturally X, (1) = X;, (1). This
natural isomorphism is not reflected in the corresponding virtual dimensions, which
comes precisely from the term (7, (z)).

Searching for a replacement of this specific v that is invariant under such automor-
phisms, we found the notion of length positive elements. The set of length positive
elements is well-behaved under such automorphisms, as it allows the following root-
theoretic interpretation.

Lemma 2.9 (cf. [Len+15, Lemma 3.12]). Let 2 = we' € W and o€ ®. Then
#{kelZ| (ak)e @) and z(a, k) € @} = max(0,(z, @)).
Proof. We have

{(auk) € 0 | w(ak) € 0}
={(a, k) € @us | k = ®" (—) and (wa, k — (p, ) € D;}
={(a,k) € Pps | k = ®T(—a) and k — (u, ) < —dT (wa)}.
>{keZ|®"(—a) <k < {u,a)— 0" (wa)}.

The cardinality of this set is given by
max(0,(u, @) + 1 — F (wa) — T (—a)) = max(0, {(z, a)). O
Corollary 2.10 ([IM65, Proposition 1.23]). Let x = we* € W. Then
U(x) = ] max(0, {(z, ).

acd

16



Proof. Use that
U(z) = #{(a, k) € D} | ma € D}
and decompose the latter set depending on the o € . O
Corollary 2.11. Let x = wet € W and ve W. Then
0(x) = v, 2p) — 0(v) + L(ww).
Equality holds if and only if v is length positive for x.

Proof. We calculate

lz) = Z Uz, va)

aedt
= Z ((,va)y — @F (—va) + @F (—wva))
aedt
=, 2p) — £(v) + £(wv). O

Lemma 2.12. Let z = wel, 2’ = w'e" € W and a € ®.
(a) (zx' o) = l(x,w'a) + (2, a).
(b) L(xz7! a) = —f(z,w 'a) and LP(z™!) = wLP(x)wy.
Proof. (a) Note that za/ = ww/e®)”'#+1 such that
Uz, w'a) + (2, @)
— G w'ay + (o) — B (wwla) + B (w'a) — B (wa) + B (a)
=W+ ) — BT (ww'a) + ¢ (a) = L(za!, ).
(b) By (a), we have
0=10(1,a)=(zz a) =z, w o) + Lz}, a).
Now observe that for v e W,

velLP(x!) <= VBed": ((z ' vB)=0
— Ve d: Lz v(—weB)) =0

—VBed: lz,w lvwyB) =0 «— v e wLP(z)wp. O

Lemma 2.13. Let x = wet, 2’ = w'e? € W. The following are equivalent:

(i) l(zz') = l(x) + £(2).
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(ii) For each oot v € @, the values l(x,w'a) and £(z', ) € Z never have opposite signs,
i.€e.

Uz, w'a) - (2, a) = 0.

(iii) ((w')"'LP(z)) nLP(z') # &.
In this case, LP(z2') = ((w')"'LP(z)) n LP(2/).

Proof. (i) <= (ii): By Corollary 2.10 and the equation {(z,a) = —{(x, —a), we get

l(za') = Z [t(z2!, )|

aedt

= : Z [(z, w'a) + (2, B)|

L2.12
(@ aedt

< Z [0(z, w'a)| + [£(2, @)

(*) aedt

=l(z) + ¢(z).
Equality holds at (x) iff the values ¢(z,w'«) and £(2’, o) never have opposite signs. We
see that (i) < (ii).

(iii) = (ii): Pick v € ((w')"'LP(2)) n LP(a’). If @ € ®*, then both ¢(z,w've) and
£(2',va) must be non-negative by length positivity. If & € @, then both ¢(z, w'va) and
¢(2',va) must be non-positive. We see that (ii) must hold true.

Finally, let us assume that (ii) holds. It suffices to show that

LP(xz') = ((w/)_1 LP(z)) n LP(z),
as (iii) follows from this identity. Now for v € W, we have

velLP(za) == Vae®": l(xz',va) =0

— Yae®": {(z,w'va) +4(z,va) =0
12.12(a)

ﬁ Vae @' : ((z,w'va) = 0 and £(z',va) =0
<= ve ((w)'LP(z)) nLP(z). O

Given one element v € LP(z), one can use it to iteratively enumerate all length positive
elements for x.

Lemma 2.14. Let x = we' € W and v € LP(z).

(a) For every simple root a € A, we have

lx,va) =0 < vs, € LP(z).

(b) If the root o € ®F satisfies £(z,va) = 0, then there also exists a simple root with
this property.
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(c)

Consider the undirected graph Gyp(y) whose vertices are given by LP(x) and whose
edges are of the form (v,vsa) for a € A and v,vs, € LP(x). Then Gip(y) is
connected.

Proof. (a) If vs, € LP(x), then (x,va) and £(z,vsqa) = —€(x,va) must both be non-

negative. This is only possible if ¢(z,va) = 0.

If /(xz,va) = 0, confirm that ¢(z,v8) = 0 for all 3 € &t U {—a}. The latter set is
preserved by sg.

Suppose « € ®T\A satisfies £(x,va) = 0. We can write o = 8 +  for positive roots
B,y € ®*. By length positivity, £(z,vf),l(x,vy) = 0. If both of these values are
> 1, we get {(z,va) = 1 by the root functional property. Hence ¢(z,v/3) = 0 or
{(xz,vy) = 0. We can iterate this argument.

Let C' < LP(z) denote the connected component that contains v. Among all v’ € C,
pick one such that ¢(wv’) is minimal.

We claim that
VaeA: (pv'a)+ 0 (v'a) > 1. (%)

o Ifl(z,v'a)) =0, thenv's, € C. The minimality of £(wv’) ensures that £(wv's,) =
L(wd'), ie. wv'a € ®T. The definition of (zv'a) = 0 implies {u,v'a) +
Ot (va) = 1.

o If l(z,v'cx) = 1, we get

(u,v'a)y + T (V') = l(x,v'a) = 1.

Let us re-read condition (#): not only is (v)~'x dominant, we have v'a € ®* for
all @ € A with {(v/)"!u,a) = 0. This describes exactly the length positive element
constructed in Example 2.8.

To summarize: No matter which connected component of Gy,p(,) we consider, it will
always contain the one length positive element from Example 2.8. Hence Gyp(y) is
connected.

We obtain the following description of the shrunken Weyl chambers:

Proposition 2.15. For xz € W, the following are equivalent:

(i) x lies in the lowest two-sided Kazhdan-Lusztig cell of W.

(ii) For all a € @, ¢(x,a) # 0.

(iii) The set LP(x) contains only one element.

In this case, we say that x lies in a shrunken Weyl chamber.
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Proof. The equivalence (i) <= (ii) is well known, cf. [HN21, Section 3.1].
The equivalence (ii) <= (iii) follows directly from Lemma 2.14. O

Remark 2.16. The length functional presented here is related to the k-function from
[Shi8T7a]. For we W, ue X*(T) and a € ®, Shi proves

k(wt!, a) = (p,a”) + @7 ((a)(w™)) — &7 (a).

This result is a translation of [Shi87a, Lemma 3.1] and [Shi87a, Theorem 3.3| into our
“@*(-)"-notation. Up to a few changes of conventions, this recovers exactly our length
functional. We will make these changes to express a few of Shi’s ideas in terms of the
length functional.

Shi classifies the functions ® — Z that are of the form ¢(z,-) in [Shi87a, Proposi-
tion 5.1].

Associated to each element z € W and root a € ®, he defines the value X(z,a) €

{+7 O? _} as

The sign type of x is defined as ((x) = (X (z, @))aead. The admissible sign types, i.e. the
image of ¢ : W — {+,0, —}?®, is explicitly described in [Shi87b, Theorem 2.1]. Shi also
computes the number of sign types and canonical representatives in W, for each.

For root systems of type A,, the preimages (~1(S) for the different admissible sign
types S form exactly the set of left Kazhdan-Lusztig cells for W, [Shi86]. An explicitly
described equivalence relation of sign types then classifies the two-sided Kazhdan-Lusztig
cells.

The question to fully describe the Kazhdan-Lusztig cells for all affine Weyl groups
seems to be open.

The sign type ((x) determines the set of length positive elements for x. The converse
is not true, i.e. it is possible to find groups G and elements z,y € W with LP(x) = LP(y)
but {(x) # ((y). Computer searches have revealed such counterexamples for root systems
of types G5 and Bs, thus for every non simply-laced root system. For simply-laced root
systems, we can prove that the set LP(x) determines the sign type ((x).

Proposition 2.17. Assume that ® is simply laced, x € W and a € ®. Then the following
are equivalent:

(i) l(x,a) > 0.
(ii) For all v e LP(z), we have v-la e ®+.

Proof. The implication (i) = (ii) follows from the definition of length positivity.
Now assume (ii). The condition vt € ®* for one v € LP(x) already implies £(z, o) =
0. Aiming for a contradiction, we thus assume that ¢(z, o) = 0.

20



Recall from Example 2.8 that there exists an element v € LP(z) such that
VBe @ (u,vB)+ ®F(vB3) = 1.
Considering the case B = v"'a e ®* (by (ii)), we see
Uz, ) = (u,vB)y + &1 (v8) — T (wa) = 1 — T (wa).

So if wa € 7, we conclude (i).
Considering the same situation for 2! by Lemma 2.12, we find an element v € LP(z)
such that

VBe @t : (u,vB) — dt(wvf) = 0.

1

Considering the case f = v la € ®T, we see

Uz,0) = (u,vB) + B (a) — B (woB) = ¥ (a).

So if « € @1, we are done again.

Let us thus assume from now on that o € ®~ and wa € ®*. In light of the assumption
l(x,a) = 0, we can restate this as (u, ) = —1.

For roots 5,7 € ®, we write 8 < « if the difference v — 8 is a sum of positive roots,
and we write 5 < y is moreover 3 # 7.

We define a root sequence associated to an element v € LP(x) to be a sequence

via=6> > pedt

such that Bi41 — ;€ @ fori=1,....¢ —1 and {u,vB;)=—1fori=1,... ¢
Certainly, we can find a root sequence for each v € LP(x) of length 1 by setting
B =vla.
We order the set of root sequences lexicographically. Explicitly, let (81,...,08¢) be a
root sequence associated with v € LP(z) and (3],...,3,) associated with v € LP(z).
We write (51,...,8¢) < (8],...,By) if one of the following conditions is satisfied:

o Thereisie {1,...,min{l,¢'}} with gy = ), fori’ =1,...,i—1 and 3; < 3.
o Wehave ¢ > ¢ and 8; = g fori =1,...,0.

Among all possible v € LP(z) and root sequences (f1, ..., 3¢) associated with them,
we choose a pair such that the root sequence becomes minimal with respect to the above
order.

We first claim that 5, is simple: Indeed, if we had §; = ~1 + 2 for positive roots
Y1, Y2, then £(x,vy1),£(v,v2) = 0 by length positivity. Thus

<M,’U"}/1> = —1, <M7v72> = —1, </,L, vyl + ’U’)/2> =—-L

Hence {u,vvy;y = —1 for one of the roots ~1,72. We see that we can extend the root
sequence (f1, ..., ), which contradicts minimality by definition.
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Note that (u,vf¢) = —1 and £(z,v8¢) = 0 implies ¢(z,vF;) = 0. By Lemma 2.14, this
means v’ = vsg, € LP(x).

If ¢ = 1, then (v')"'a = —v~la, so we get the desired contradiction to (ii). Therefore,
¢>1.

We claim that (8;,8;) = 0 for i = 1,...,¢: Indeed, if we had {8, 3;) < 0, then
Bi + Br e PT. So we get

E(CC, ’U(ﬁl + 5€)) > 0 and <Mvvﬁi + vﬁf> = —2.

This is impossible.

Note that (8), Br—1) = 1, as B¢—1 is the sum of 5y with another root, and ® is simply
laced.

We thus may pick ¢’ € {1,...,¢ — 1} minimally such that (8, B¢) > 0. Consider the
root sequence

/Bz{zsﬂz(ﬁi)y 7;:1,...,2/.

This is a root sequence associated with v’ = vsg, € LP(z). Since 8] = f; for i =
1,...,¢' =1 (by choice of ), and S, < B, it is a smaller root sequence.
This is finally a contradiction to minimality. O

The above proof encodes an algorithm, which finds for each root a € ® with ¢(z, ) =0
and each v € LP(z) a sequence of elements in LP(x) as in Lemma 2.14. The sequence
starts at v and ending in an element v’ € LP(x) satisfying (v')"'a € ®~. As noted
before, this Proposition is false for every non simply laced root system.
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3. Quantum Bruhat graph

In this section, we recall the definition of quantum Bruhat graphs and study its weight
functions. Before turning to the abstract theory of these graphs, we will discuss the
situation of root systems of type A, as a motivational example.

For each simple affine root a = (a, k) € A,f, we define a coweight w, € Q®" as follows:
For g e A, we define

17 a:/87

<Wa7ﬂ>: {0, a+B.

In particular, w, = 0 if o ¢ A. N
Let now x; = wief, x9 = weeh2 € W. By [BB05, Theorem 8.3.7], we have

71 <1y = Va,a € Agr: (p1 + we — wl_lwa/)dOm < (po + wg — w;lwar)dom.

Here, we write v9°™ e X, for the unique dominant element in the W-orbit of v € X,.

Suppose that p; and pg are sufficiently regular, such that we find vy, ve € W with

1 )dom _

! — —1 -1
Va,a" € App 0 (pi + W — W, " wy v (i + we — w; Wer).

Then we conclude

r1 < Ty — Va,d : vl_l(,ul + wg — fwl_lwa/) < vz_l(,ug + wg — wglwa/)
= vt + sup (v twe — vy twe) + sup ((wave) twe — (wiv1) we) < vyt po.
CLEAaf a,EAaf
So if we define
wt(v) = v2) 1= sup (vy 'wa — V] 'Wa), (3.1)
aEAaf

we can conclude a version of our result on the Bruhat order (Theorem 1.1).

Indeed, formula (3.1) holds true for root systems of type A,, but not for any other
root system. Many properties of the weight function are easier to prove for type A,
where an explicit formula exists, so it is helpful to keep this example in mind.

We refer to a paper of Ishii [Ish21] for explicit formulas for the weight functions of
all classical root systems (while he discusses explicit criteria for the semi-infinite order,
these can be translated to explicit formulas for the weight function as outlined above in
the A, case).

3.1. (Parabolic) quantum Bruhat graph
We start with a discussion of the quantum roots in ®*.

Lemma 3.2. Let a€ ®*. Then
(sq) <{aV¥,2p) —1.
Equality holds if and only if for all a # € ®T with s4(8) € @, we have {a“, ) = 1.
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Roots satisfying the equivalent properties of Lemma 3.2 are called quantum roots.
We see that all long roots are quantum (so in a simply laced root system, all roots are
quantum). Moreover, all simple roots are quantum.

The first inequality of Lemma 3.2 is due to [BFP98, Lemma 4.3]. By [BMO11,
Lemma 7.2], we have the following more explicit (but somehow less useful for us) result:
A short root « is quantum if and only if « is a sum of short simple roots.

Proof of Lemma 3.2. We calculate

(@, 2p) = 3 (@, 29) + (a0, 5a(20))) = 30,20~ s5a(20))
Let
I:={Bedt|s,(8)ed}.

Then s4(I) = —1I and s,(®T\I) = ®H\I. It follows that

20— 5a(20) =D (B—35a(B)) + Y. (B—sa(B))

Bel BedH\I

=238

pel

Therefore, we obtain

(@,2p) = ) (a”. B).

Bel

Certainly, o € I. Hence

(a¥,2p)y =2+ Z (aY, B).
a#Bedt
sa(B)edP™

Now if a, B € @1 and s,(8) = 5 — (aV,B)a € &, we get {a¥, ) = 1. We conclude

@V 20y =2+ > (a¥,B)=2+#{Be P \{o} | sa(B) e B} =1+ (sq).
a#Bedt
sa(B)ed™

All claims of the lemma follow immediately from this. O

The parabolic quantum Bruhat graph as introduced by Lenart-Naito-Sagaki-Schilling-
Schimozono [Len+15] is a generalization of the classical construction of the quantum
Bruhat graph by Brenti-Fomin-Postnikov [BFP98]. To avoid redundancy, we directly
state the definition of the parabolic quantum Bruhat graph, even though we will be
mostly concerned with the (ordinary) quantum Bruhat graph.
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Fix a subset J < A. We denote by W; the Coxeter subgroup of W generated by the
reflections s, for o € J. We let

W ={weW |w(J)c o).

For each w e W, let w’/ € WY and w; € W be the uniquely determined elements with
w = w’ - wy [BB05, Proposition 2.4.4].

We write &5 = W;(J) for the root system generated by J. The sum of positive
roots in ®; is denoted 2p;. The quotient lattice Z®V/Z®Y is ordered by declaring
1+ @y < po 4 @Y if the difference pup — p1 + @3 is equal to a sum of positive coroots
modulo @Y.

Definition 3.3. (a) The parabolic quantum Bruhat graph associated with W is a di-
rected and (Z®V/Z®Y)-weighted graph, denoted QB(W). The set of vertices is
given by W”/. For wi,ws € WY, we have an edge w; — ws if there is a root
o € ®H\®; such that we = (w15,)” and one of the following conditions is satisfied:

(B) l(wg) = l(wy) + 1 or
(Q) l(wa) = l(wy) +1—{a¥,2p—2py).

Edges of type (B) are Bruhat edges and have weight 0 € Z®"Y /Z®Y. Edges of type
(Q) are quantum edges and have weight a¥ € Z®Y /Z®} .

(b) A path in QB(W) is a sequence of adjacent edges
pPrw=w w2 — > Wet =’LU/.

The length of p is the number of edges, denoted ¢(p) € Z=o. The weight of p is the
sum of its edges’ weights, denoted wt(p) € Z®" /Z®Y. We say that p is a path from
w to w'.

(c) If w,w' € W7, we define the distance function by
dopwry(w = w') = inf{{(p) | p is a path in QB(W7) from w to w'} € Z=o U {o0}.
A path p from w to w’ of length dqp w7y (w = w') is called shortest.

(d) The quantum Bruhat graph of W is the parabolic quantum Bruhat graph associated
with J = ¢, denoted QB(W) := QB(W¥). We also shorten our notation to

d(w = w') := dopuw)(w = w').

Remark 3.4. Let us consider the case J = ¢, i.e. the quantum Bruhat graph. If we W
and a € A, then w — ws, is always an edge of weight V@' (—wa).

The quantum edges are precisely the edges of the form w — ws, where « is a quantum
root and £(ws,) = L(w) — ¥(Sq)-

Proposition 3.5 ([Len+15, Proposition 8.1] and [Len+17, Lemma 7.2]). Consider
w,w' e W/,
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(a) The graph QB(WY) is strongly connected, i.e. there erists a path from w to w' in
QB(WY).

(b) Any two shortest paths from w to w' have the same weight, denoted
wtopuw) (w = w') € ZO /70 .
(c) Any path p from w to w' has weight wt(p) = wtqpu ) (w = w') € Z®V /7Oy
(d) The image of
wi(w = w') 1= wtopw) (v = w') € ZO"

under the canonical projection Z®V — Z®V/Z®Y is given by wtqpmys)(w = w').
O

One interpretation of the weight function is that it measures the failure of the in-
equality w1 Wy < weW; in the Bruhat order on W /W (cf. [BB05, Section 2.5]): Indeed,
w1 Wy < woWj if and only if thB(WJ)(w1 = wy) = 0.

We have the following converse to part (c) of Proposition 3.5:

Lemma 3.6 (Cf. [MV20, Formula 4.3]). Let wi,ws € W7. For any path p from wy to
wa in QB(WY), we have
wt(p),2p = 2py) = Up) + L(w1) — £(w2).
In particular,
Wty (w1 = w2),2p — 2py) = dopwy(w1 = w2) + L(wr) — £(ws),
and p is shortest if and only if wt(p) = wtqpw ) (w1 = wa).
Proof. Note that if p : w1 — wy = (w1s,)” is an edge in QB(W), then by definition,
U(wz) = (wy) + 1 —<wt(p),2p — 2py).
In general, iterate this observation for all edges of p. O

The weights of non-shortest paths do not add more information:

Lemma 3.7. Let p€ Z®Y /2@y and wi,ws € W. Then p = wtqpy sy (w1 = wa) if and
only if there is a path p from wy to wa in QB(W) of weight pu.

Proof. By part (d) of Proposition 3.5, it suffices to consider the case J = J, i.e. the
quantum Bruhat graph.

The if condition is part (c) of Proposition 3.5. It remains to show the only if condition.
Note that for each w € W and o € A, we get a “silly path” of the form

W — WSy — W

in QB(W). Precisely one of the edges is quantum with weight «¥, and the other one is
Bruhat with weight 0.

If p = wt(w; = wy), we may compose a shortest path from w; to wy with suitably
chosen silly paths as above to obtain a path from w; to ws of weight pu. O
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Lemma 3.8 ([Len+15, Lemma 7.7]). Let J € A, wi,ws € W7 and a = (o, k) € Ay
such that wy'a e ®.

(a) We have an edge (sqw2)? — wa in QB(W) of weight —kwy oY € ZOV JZDY .
(b) If wl_la € ®, then the above edge is part of a shortest path from wi to ws, i.e.

dQB(WJ)(’wl = U)Q) = dQB(WJ) (w1 = (Sawg)J) + 1.
(c) If wita e &, we have

dQB(WJ)(wl = ws) :dQB(WJ)((Sawl)J = (Saw2)‘])7

wtopw /) (w1 = w2) =WtQB(WJ)((saw1)J = (sqw2)’) + k(witaY —wyta¥).0

We can use this lemma to reduce the calculation of weights wt(w; = ws) to weights
of the form wt(w = 1): If wy # 1, we find a simple root o € A with wy'a € ®~. Then

wt(wy = sqwa), wl_la e ot

1

wt(sqwi = sqwa), wj a€ P,

wt(wy = we) = {

= wt(min(w1, Sqw1), SaW2).

For an alternative proof of this reduction, cf. [Sad21, Corollary 3.3].
The quantum Bruhat graph has a number of useful automorphisms.

Lemma 3.9. Let wi,ws € W, and let wg € W be the longest element.
(a) wt(wowy = wows) = wt(we = w1).

(b) wt(wowiwy = wowawy) = —wo wt(wy = ws).

(c) wt(w; = 1) = wt(w; ! = 1).

Proof. Part (a) follows from [Len+15, Proposition 4.3].

For part (b), observe that we have an automorphism of ® given by a — —wga. The
induced automorphism of W is given by w — wowwy. Since the function wt(- = -) is
compatible with automorphisms of ®, we get the claim.

Now for (c), consider a reduced expression

wowy = S1 - - - Sq.
Then, iterating Lemma 3.8, we get
wt(w; = 1) " wt(wg = wowr) = wt(wo = S1 -+ 5¢)
=wt(sqwo = S2-+-8¢) = -+ = Wt(sq- - s1wp = 1)

=wt((wowr) twp = 1) = wt(w; ! = 1). O
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Given elements w,ws € W, there are generally several shortest paths from w; to ws
in QB(W). However, one can make a somewhat canonical choice:

Proposition 3.10 ([BFP98, Theorem 6.4]). Let u,v € W and < a reflection order on
&, There is a uniquely determined path

. _ _ _ +
PiuU=w > Wiyl =, Witl = W;iSa;, @ € P

in QB(W) such that a1 < -+ < ay with respect to the fixed reflection order. Moreover,
p is shortest. O

Corollary 3.11. Let J € A and wi,wy € Wjy. Then

wtQB(W) (w1 = wa) = WtQB(WJ)(m = wy) € ZP.

Proof. Pick a reflection order < on ®; and extend it to a reflection order on ®. Now if
p is the unique path from w; to we in QB(W)) that is increasing with respect to this
order, p is shortest both in QB(W) and QB(W) by the proposition. O

Remark 3.12. As an application and illustration of the introduced methods, we show
how to compute the weight wt(wp = 1) where wg € W is the longest element.
Denote by # € ®* the longest root of some irreducible component of ®. Then (—6,1) €
A¢. By Lemma 3.8,
wt(wg = 1) = —weh” + wt(spwg = 1)
=0 + wt(spwp = 1).
Define J = {a € A |{#Y,a) = 0}. Then

{ae®" | (spwp)(a) € D"} =wp{a e & | sp(a) € ®~}
=wof{ae @~ | (0Y,a) = 0}
=we(®;Nn® ) =d;n DT,

We see that sgwg € Wy is the longest element, so
wt(wo = 1) = 0¥ + wtgpmw,)(wo(J) = 1).

We can iterate this process for the smaller root system ®; to compute wt(wy = 1). For
explicit results, we refer to [Sad21, Section 5].

3.2. Lifting the parabolic quantum Bruhat graph

For sufficiently regular elements of the extended affine Weyl group, the Bruhat covers in
W are in a one-to-one correspondence with edges in the quantum Bruhat graph [LS10,
Proposition 4.4]. This result is very useful for deriving properties about the quantum
Bruhat graph. Moreover, our strategy to prove our results on the Bruhat order will be
to reduce to this superregular case.

The result of Lam and Shimozono has been generalized by Lenart et. al. [Len+15, The-
orem 5.2|, and the extra generality of the latter result will be useful for us. Throughout
this section, let J < A be any subset.
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Definition 3.13 ([Len+15]). (a) Define

(W )ag :={x € Wyt | Ya e @y : l(z,0) = 0},
m :={weW!Vae¢)J: l(x,a) = 0}.

(b) Let C > 0 be any real number. We define Q}C to be the set of all elements

—_——

x = wet € (W) such that
Vae ®N\®;: (u,a) < —C.

Similarly, we say x € Q(f if
Vae @M\®;: (u,a) = C.

(c) For elements z,2’ € W, we write 2 < 2’ and call 2’ a Bruhat cover of x if {(z') =
{(z) +1 and 7'z’ is an affine reflection in W.

Theorem 3.14 ([Len+15, Theorem 5.2]). There is a constant C' > 0 depending only on
® such that the following holds:

(a) If v = we" < 2’ = w'e" is a Bruhat cover with x € Q; and 2’ € (W7), there exists
an edge (w')? — w’ in QB(W) of weight u — u' + Z®}.

(b) If © = wet € Qjc and W' — w’ is an edge in QB(W’) of weight w, then there
exists a unique element © < x' = w'e? e (W) with @ = (')’ and p = p' + w
(mod Z®Y). O

This theorem “lifts” QB(W) into the Bruhat covers of QEC for sufficiently large C.

The theorem is originally formulated only for (W7).¢, but the generalization to (W)
is straightforward.

With a bit of book-keeping, we can compare paths in QB(W ) (i.e. sequences of edges)
with the Bruhat order on Q}C (i.e. sequences of Bruhat covers).

Lemma 3.15. Let C; > 0 be any real number. Then there exists some Cy > 0 such that
for all x = wet € Q5 and ' = w'e* € (W) with £(z~'2') < C1, we have

r<2 = p—wtlw' =w)<y (mod ®Y).
The latter condition is shorthand for
p—wt(w' = w) -y +ZP®y <0+ ZPy € ZO" 7Y .

Proof. Let C > 0 be a constant sufficiently large for the conclusion of Theorem 3.14 to
hold. We see that if 1 < x5 is any cover in Q}C, then there are only finitely many
possibilities for 27 22, so the length £(x7'x2) is bounded. We fix a bound C’ > 0 for
this length.
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We can pick Cy > 0 such that for all 1 = we# € Q}CQ and x5 € WY with Z(arl_lxg) <
C1C’, we must at least have x5 € Qjc.

We now consider elements = = wet € Q% and 2’ = w'e# € W with £(z~12') < C}.

First suppose that z < /. We find elements x = 11 < 29 < --- < 2 = 2/. Note that
k= {(2') —4(z) < l(x712') < Cy. By choice of C’, we conclude that ¢(z~'z;) < C'i <
C'Cy fori=1,...,k. Thus z; € Q;°

By Theorem 3.14, we get a path from (w')? to w’ of weight u — u/ + Z®Y. Thus

wt(w) = wy) < p— ' (mod ®Y),

which is the estimate we wanted to prove.

Now suppose conversely that we are given p — wt(w’ = w) > ¢/ (mod ®Y). By
Lemma 3.7, we find a path (w')’ = w; — wy — -+ — wp = w’ in QB(W’) of weight
p—p' +Z®Y. Since p—p' is bounded in terms of C, the length k of this path is bounded
in terms of C as well. By adding another lower bound for Cs, we can guarantee that
each such path w; — --- — wy can indeed be lifted to Qjc, proving that = < 2. ]

We find working with superdominant instead superantidominant coweights a bit easier,
so let us restate the lemma for Qg instead of Qjc

Corollary 3.16. Let C7 > 0 be any real number. Then there exists some Co > 0 such
that for all x = wet € Q52 and ' = w'e* € (W) with £(z~'2') < C1, we have

r<7 = p+wtlw=v")<y (mod ®Y).

Proof. Let wo(J) € W; be the longest element. Let Cy > 0 such that the conclusion of
the previous Lemma is satisfied.

Ifxe Q%, then xwq(J)wq € Q:Szu). Moreover, wo(J)wy is a length positive element
for x, so £(zwo(J)wo) = £(z) + l(wo(J)wp). Choosing Co appropriately, we similarly
may assume z’ € QF for some C' > 0 and obtain £(z'wo(J)wo) = (') + £(wo(J)wp).
Then, with the right choice of constants and using the automorphism « — —wga of P,
we get

r <2 = zwo(J)wy < 2'wo(J)wo

<= wowo(J ) — wt(w'wo(J

)
)

wo = wwo(J)wp) = wowo(J)p'  (mod (I)Zwo( ))

< wop(J

)
p + wt(wow'wo (J) = wowwo(J)) < wo(J)y’  (mod ®Y)
wo(J d

— +wt(w = w') < J mod &Y

[Len+15, Pr.4. 3] pw ( ) 0( )'u ( J)

Since wo(J)p = p (mod ®Y), we get the desired conclusion. O
As an immediate consequence, we obtain a crucial estimate on the weight function.

Corollary 3.17. Let we W and o€ ®*. Then

wt(wsq = w) < T (wa)a.
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Proof. The claim is clear if wa € 7, as then ws, < w in the Bruhat order, and we find
a path from ws, to w consisting solely of Bruhat edges.

Now suppose that wa € ®*. Let u € Q¥ be dominant and superregular. Put x := we*.
Then x (o, (i, ) — 1) € _, so that

wel = x> wets,ewo—Da” — g o’
With the superregularity constant for p sufficiently large, we get
p—a¥ +wt(wsy = w) < u,

showing the desired claim. O

3.3. Computing the weight function

We already saw in Lemma 3.8 how to find for all wi,ws € W an element w € W such
that wt(w; = wy) = wt(w = 1). It remains to find a method to compute these weights.
First, we note that we only need to consider quantum edges for this task.

Lemma 3.18 ([MV20, Proposition 4.11]). For each w € W, there is a shortest path
from w to 1 in QB(W) consisting only of quantum edges. O

So we only need to find for each w € W\{1} a quantum edge w — w’ in QB(W') with
d(w' = 1) = d(w = 1) — 1. In this section, we present a new method to obtain such
edges. If it happens that w10 € &~ for the longest root @ of an irreducible component
of ®, we can use the quantum edge w — spw by Lemma 3.8. We even might strengthen
this a bit using Corollary 3.11. If this method would always work, we could compute
the weight wt(w => 1) as in Remark 3.12. However, there are in general elements w € W
where this strategy is not applicable.

In this section, we show that the aforementioned strategy will still work whenever 6
is any maximal element in {a € ®+ | w™!a € ®~}. This yields a general algorithm
and useful theoretical method to describe some quantum edges w — w’ with the desired
property d(w’ = 1) = d(w = 1) — 1.

We remark that not every shortest path w = 1 will consist only of quantum edges, nor
will every shortest path that does be obtainable by our method of maximal inversions.

Definition 3.19. Let we W.

(a) The set of inversions of w is
inv(w) := {ae @ |wlae ®7}.
(b) An inversion v € inv(w) is a mazimal inversion if there is no a € inv(w) with

a # v < a. Here, v < a means that o — 7y is a sum of positive roots.

We write max inv(w) for the set of maximal inversions of w.
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Remark 3.20. If 0 € inv(w) is the longest root of an irreducible component of ®, then
certainly € € maxinv(w). In this case, everything we want to prove is already shown in
[Len+15, Section 5.5]. Our strategy is to follow their arguments as closely as possible
while keeping the generality of maximal inversions.

Lemma 3.21. Let we W and v € maxinv(w). Then w — syw is a quantum edge.

Proof. Note that syw = ws_,,-1,. We have to show that —w~ 1y is a quantum root and
that

Uws_yy-1,) = L(w) — L(5_y-1,).

Step 1. We show that —w ™'y is a quantum root using Lemma 3.2. So pick an element
—w 'y # B e @t with s_,,-1,(8) € 2. We want to show that (—w™'4",8) = 1.
Note that

S—wfl’y(/B) = ﬂ + <_w71,}/\/ ) ,B>’U)71’Y.
In particular, k := (—w~1y", 3) > 0. It follows from the theory of root systems that
Bi =B +iw lyed, 1=0,...,k.

Since fyp = f € T and B = s5_,-1,(f) € @7, we find some i € {0,...,k — 1} with
B; € ®* and B;41 € . We show that k < 1 as follows:

o Suppose wfB; € ®*. Then wphiy1 = wph; + v > ~. In particular, wB;i;1 € . We
see that wp;;1 € inv(w), contradicting maximality of .

e Suppose wfB;i+1 € 7. Then —wpB; = —wphB;ir1 + v > 7. In particular, —wp3; € ®+.
We see that —wp; € inv(w), contradicting maximality of .

e Suppose i = 1. Then v — wp; = —wphi—1 € ®. We already proved wg; € &7,
so —wf; € inv(w). Since also v € inv(w), we conclude v < —wpi_; € inv(w),
contradicting the maximality of ~.

e Suppose ¢ < k— 2. Then wf;jrs = whiy1 + v € ®. Since both v and w41 are
in inv(w), we conclude that v < wfi;2 € inv(w), which is a contradiction to the
maximality of .

In summary, we conclude 0 = i > k — 1, thus k < 1. This shows (—w™!yY,3) = 1.
Step 2. We show that

C(ws_yy-1,) = L(w) — L(5_4y-1).

Suppose this is not the case. Then we find some o € ®* such that wa € ®* and
S_y-1,(0) € 7. As we saw before, (—w™ Y, ) = 1,80 5_,-1, () = a+wty e O,
Now consider the element ws_,,-1,(a) = wa + v € ®. Since wa € ®* by assumption,
we have ws_,,-1.(a) > =, in particular ws_,,-1.(a) € ®*. We conclude ws_,,-1,(a) €
inv(w), yielding a final contradiction to the maximality of ~. O
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Lemma 3.22. Let w € W and o € & such that w — ws, is a quantum edge. Let
moreover —wa # v € maxinv(w). Then v € maxinv(ws,) and (—w™ 1y, a) = 0.

Proof. We first show 7 € inv(ws,), i.e. sqw ™1y € ®~.
Aiming for a contradiction, we thus suppose that

sa(—w™y) =¥, w o —wlye 7.

Then —w™'7 is a positive root whose image under s, is negative. Since « is quantum,
we conclude (a", —w~!y) = 1. Thus —a —w~'y € ®~. Consider the element

w(a+w ) =7 +wa e d.
We distinguish the following cases:
o If v+ wae ®, we get v < —wa € inv(w), contradicting maximality of .
o If v +wae ®, we compute
Wso(—w™y) = —(wsqw )y = —spa(y) = —(7 + wa) € ®.

In other words, the positive root —w ™!y € ®* gets mapped to negative roots both
by sq and by ws, € W. This is a contradiction to {(w) = ¢(wsqa) + (sq) (since
w — ws, was supposed to be a quantum edge).

In any case, we get a contradiction. Thus v € inv(ws,).

The quantum edge condition w — ws, implies £(w) = £(wsy) + (sq), so inv(wsy) <
inv(w). Because v is maximal in inv(w) and v € inv(wsy) € inv(w), it follows that ~y
must be maximal in inv(ws,) as well.

Finally, we have to show (—w~'yY,a) > 0. If this was not the case, then we would
get

v < sy (~wa) = —wa + (w Iy, a)y € inv(w),
again contradicting maximality of . O
Proposition 3.23. Let w e W and v € maxinv(w). Then
wt(w = 1) = wt(syw = 1) —w 1y,
Proof. Since the estimate

wt(w = 1) <wt(w = syw) + wt(syw = 1)
<—w gy + wt(syw = 1)
follows from Corollary 3.17, all we have to show is the inequality “=".
For this, we use induction on ¢(w). If 1 # w € W, we find by Lemma 3.18 some

quantum edge w — ws, with wt(w = 1) = wt(ws, = 1) + V. If a = —w ™1y, we are
done.
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Otherwise, v € maxinv(ws,) and {(—w~!yY a) = 0 by the previous lemma. By

induction, we have

wt(w = 1) =wt(ws, = 1) + oV

= wt(s,wsq = 1) +a¥ — (wse) 1y,

By Lemma 3.21, we get the following three quantum edges:

54WSq
This allows for the following computation:

U(wsg) + 1 —(—(wsy) 7Y, 2p)
Uw) +2 =¥, 2p) = (—w ™'y = (—w™ Y, a)a, 2p)
U(sqw) + 1+ ((—w™ Y, a) — 1){a”, 2p).

U(sywsq)

We now distinguish several cases depending on the value of (—w ™1y, a) € Z=q.

o Case (—w™ly¥,a) = 0. In this case, we get a quantum edge syw — s,w
(3.25). Evaluating this in (3.24), we get

wt(w = 1) =wt(s,wse = 1) + a¥ — (wse) 7Y

> wt(s,w = 1) — squw ™ty
=wt(syw = 1) —w 1y,
o Case (—w™!y¥, a) = 1. In this case, we get a Bruhat edge s,w — s,ws, by (
Evaluating this in (3.24), we get
wt(w = 1) = wt(sqwse = 1) + a¥ — (wsa) 17"
> wt(syw = 1) + ¥ — sqw tyY
=wt(s,w = 1) —w yV.
o Case (—w 1y, a) > 2. We get
U(sywsq) <U(syw) +L(sq) < l(syw)+{a¥,2p)—1
L3.2

<l(syw) + £(sa) < U(syw) + 1+ ((—w'yY, a) — 1) {a”,2p).

This is a contradiction to (3.25).
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In any case, we get a contradiction or the required conclusion, finishing the proof. [

Remark 3.26. (a) By Lemma 3.6, it follows that concatenating the quantum edge w —
syw with a shortest path syw = 1 yields indeed a shortest path from w to 1. Thus,
iterating Proposition 3.23, we get a shortest path from w to 1.

(b) If w € WY and v € maxinv(w), we do not in general have a quantum edge w —
(syw)” in QB(W7). However, we can concatenate a shortest path from w to (s,w)’
(which will have weight —w™!yY + Z®Y) with a shortest path from (s,w)” to 1 in
QB(W) to get a shortest path from w to 1.

3.4. Semi-affine quotients

We saw that for wi,ws € W and J € A, we can assign a weight to the cosets w;W; and
waWy in Z®Y /Z®Y . In this section, we consider left cosets Wyw instead. This is pretty
straightforward if J < A; however, it is more interesting if J is instead allowed to be a
subset of A,¢s. The quotient of the finite Weyl group by a set of simple affine roots will
be called semi-affine quotient.

In this section, we introduce the resulting semi-affine weight function. This new
function generalizes properties of the ordinary weight function. We have the following
two motivations to study it:

e For root systems of type A,, we can explicitly express the weight function using
formula (3.1):

1

wt(vg = v1) = sup (vy 'wa — V] 'wa).

aGAaf
Using the semi-affine weight function, we can prove a generalization of this formula,

expressing the weight wt(vy = v1) as a supremum of semi-affine weights (Lemmas
3.36 and 4.37)

e There is a close relationship between the quantum Bruhat graph and the Bruhat
order of the extended affine Weyl group W. Now Deodhar’s lemma [Deo77] is an
important result on the Bruhat order of general Coxeter groups. Translating the
statement of Deodhar’s lemma to the quantum Bruhat graph yields exactly the
semi-affine weight function.

Conversely, using the semi-affine weight function and Deodhar’s lemma, we can
generalize our result on the Bruhat order in Section 4.3.

In this thesis, the results of this section are only used in Section 4.3, whose results are
not used later. A reader who is not interested in the aforementioned applications is thus
invited to skip these two sections.

Definition 3.27. Let J < A, be any subset.
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(a) If a = (a, k) € Aut, we define w, : Z® — Z to be the Z-linear function with

Ve A : wa(ﬁ)z{é’ Z:g

(b) We denote by ®; the root system generated by the roots
cJ :={cl(a) |ae J} ={a]| (a, k) € J}.

(¢c) We denote by W; the Weyl group of the root system @, i.e. the subgroup of W
generated by {s, | @ € cl J}.

(d) Similarly, we denote by (®,¢); < ®; the (affine) root system generated by .J, and
by W; the Coxeter subgroup of W, generated by the reflections r, with a € J.

(e) We say that J is a regular subset of A,s if no connected component of the affine
Dynkin diagram of ®,¢ is contained in J, i.e. if W is finite.

Lemma 3.28. Let J € Ayr be a regular subset.

(a) clJ is a basis of ®y. The map (Pyur); — Dy, (o, k) — « is bijective.

(b) Writing @}r for the positive roots of ® ; with respect to the basis cl J, we get a bijection
OF = (Do) ], ar> (o, @7 (—a)).

Proof. (a) Consider the Cartan matrix

Ca,p :=<a”, B), a,Becld.

This must be the Cartan matrix associated to a certain Dynkin diagram, namely
the subdiagram of the affine Dynkin diagram of ®,¢ with set of nodes given by J.
We know that this must coincide with the Dynkin diagram of a finite root system
by regularity of J. Hence, C, . is the Cartan matrix of a finite root system. Both
claims follow immediately from this observation.

(b) Let ¢ denote the map
p: Ot - of a (a, @ (—a)).
By (a), the map is injective. For each root a € cl(.J), we certainly have () € ®7.

Now, for an inductive argument, suppose that o € ®¥,3 € cl(J) and a + 8 € ®
satisfy ¢(a) € ®F. We want to show that p(a + 3) € 7.

We have (a, @7 (—a)), (3,27 (—f)) € ®}, hence
(a+ B, 2" (~a) + 27 (-f)) € 0.
Hence it suffices to show that @ (—a) + &1 (—-3) = ®T(—a — ).

If g € A, this is clear. Hence we may assume that § = —6, where 6 is the longest
root of the irreducible component of ® containing «, 5. Then o — 0 € ® implies
a€e®t and a—60 € &~. We see that &*(—a)+ P+ (0) = & (—a +60) holds true. [
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The ,@rabolic subgroup WJ C Wy allows the convenient decomposition of Wy as
Wat = Wy - /Wa [BBO5, Proposition 2.4.4]. We get something similar for Wy < W.

Definition 3.29. Let J < A,s.

(a) By @7, we denote the set of positive roots in ®; with respect to the basis cl(.J). By
abuse of notation, we also use <I>} as the symbol for the indicator function of ®¥,
ie.

CICE I
(b) We define
TW :={weW |Vbe J:w cl(b) e dT}
={weW |VBedl 1w e d"}.
(c) For we W, we put
To(w) .= #{Be @} |w e d}.
Lemma 3.30. I[fwe W and B € @}r satisfy w1 B e ®~, then
Ti(spw) < Te(w).
Proof. Write
Ii={B#~ve®]|ss(y)¢ 2]}
Then
Te(sgw) = #{y € OF | w lsp(7) € 07
=#{ye @\ v {B)) [wlss(7) e @ h+#{vel|w ' sp(y) e @7}
Since sg permutes the set ®7\(1 U {3}), we get
o=#ye@\T U {B) [wTlye @} +H#{yel |w lss(y) e @
Note that if v € I, then (8¥,~) > 0 and thus
wlsg(y) = wly = (B, pwTiB > w Ty

We obtain

#re NI u{B)) |wlyed }+#{yel|w 'ss(y)ed}
<#ye® NI u{B)) |wved }+#{yel|wyed}
= T0(w) - 1. O
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Lemma 3.31. Let J € Ayt be a reqular subset. Then there exists a uniquely determined
map 7 W — JW x Z®Y with the following two properties:

(1) For all w e "W, we have 'n(w) = (w,0).
(2) For allwe W and B € ®F where we write 'm(w) = (w', 1), we have
Tr(spw) = (', p+ @ (=Fw™'BY)
and wp € Zcl(J).

Proof. We fix an element A € Z®" that is dominant and sufficiently regular (the required
regularity constant follows from the remaining proof).
For w € W, we consider the element we* € W. Then there exist uniquely determined
elements w'e\ € JWaf and y € W; such that
wet =y - w'eN
We define “7(w) := (w’, A — \) and check that it has the required properties.

(0) w' e JW: Since WJ is a finite group, we may assume that X\ is superregular and

dominant as well. For («, k) € J, we have
A — - -
(W'e™) " Hay k) = (W)l k + NV, (W) T Hey) € O,

because w'e?

"€ JWy. Since X is superregular and dominant, we have
(W) ray k+ N, (W) ta)) € ofy = (W) lae dT.
This proves w' € 'W.

(1) If w € YW, then “7(w) = (w,0): The proof of (0) shows that we* € 7Wy, so that

!
wet = w'eN.

(2) Let we W and B € ®F. We have to show

Tr(spgw) = (W', A= XN + T (=B)w ™' Y).

Put
b:= (3,27 (—B)) € .

By Lemma 3.28, we have b € (®,¢)+. The projection of

7“bw&7A o= s,gu1<€>‘+q>+(_5)“’715v € WJ e
onto W, must again be w’ eV, We obtain

Tr(spw) = (W, A+ & (=B)w ™' B — N)
as desired.

For the second claim, it suffices to observe that

.\ VA I\ _ sl
evOA=N) — were Nw 1:yw'6’\5 Nw 1=yu/w Lew,.
S——
EWJ
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The fact that /7 is uniquely determined (in particular, independent of the choice of \)
can be seen as follows: If w € /W, then /7 (w) is determined by (1). Otherwise, we find
b€ <I>j with w™'8 € ®~. We multiply w on the left with sg, and iterate this process,
until we obtain an element in “W. This process will terminate after at most 7¢(w)
steps with an element in “TW. Now for each of these steps, we can use property (2) to
determine the value of 7 (w). O

We call the set /W a semi-affine quotient of W, as it is a quotient of a finite Weyl
group by a set of affine roots. The map 7 is the semi-affine projection. We now
introduce the semi-affine weight function.

Lemma 3.32. Let wy,ws € W and J € A be a reqular subset. Write

J J

m(wy) = (wi, 1), m(wa) = (wh, ).

Then
wt(w] = wh) — p1 + p2 = wt(w] = wy) — 1 < wt(wy = wy).
Proof. We first show the equation
wt(w] = wh) + po = wt(w] = ws).

Induction by 7¢(ws). The statement is trivial if wy € W. Otherwise, we find some
a € cl(J) with wy 'a € ®~. Because (w}) 'a € ®*, we obtain from Lemma 3.8 that

wt(w] = wa) = wt(w] = sqwz) — T (—a)wy V.

By Lemma 3.31, we have
Jw(sawg) = (wh, pg + <I>+(—a)w2_1av).

Using the inductive hypothesis, we get
wt(w] = wy) = wt(w] = sqws) — BT (—a)wy '
= wt(w) = wh) + p2 + T (—a)w;y ¥ — T (—a)wy taY
=wt(w| = wh) + po.
This finishes the induction.
It remains to prove the inequality

wt(w] = wy) — p1 < wt(wy = wo).
The argument is entirely analogous, using Corollary 3.17 in place of Lemma 3.8. O

Definition 3.33. Let wi,ws € W and J € Ays be a regular subset. We write

Tr(wy) = (wh,m),  Tw(wa) = (wh, pa).
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(a) We define the semi-affine weight function by

Twt(wy = wo) 1= wt(w] = wh) — py + po = wt(w) = wy) — py € ZOY.

(b) If B € @5 and (B,k) € (Par)s is the image of § under the bijection of Lemma 3.35,
we define xj(B) := —k.

If B € ®\®;, we define x;(3) := +(5).

In other words, for 5 € ®, we have
x(B) =2 (8) — 2} (B).

Ezxample 3.34. Suppose that ® is irreducible of type As with basis ay,as. Let J =
{(=0,1)} = {(—a1 — ag,1)}, such that &7 = {—0} = {—a; — as}. We want to compute
Twt(1 = s152) (writing s; := sq,)-
Observe that “7(1) = (s9,0"). Hence
Twt(l = s1) = wt(sg = s159) — 0"
=wt(s18281 = $182) — ) — s = —ag .

Unlike the usual weight function, the value “wt(w; = ws) no longer needs to be a sum
of positive coroots.

Lemma 3.35. Let wy,wse, w3 € W and let J € A be a reqular subset.

(a) The semi-affine weight function satisfies the triangle inequality,

Twt(w; = w3) < Twt(w; = wa) + I wt(wy = ws).

(b) If a € @7, we have

Twt(sawr = wy) =7 wt(w; = w2) + xs(a)wi'a”,

Jwt(wl = SqWg) = JW‘E(UJ1 = w3) — XJ(OZ)UJ?O‘V'

(c) If B € ®T, we have

Jwt(wlsg = w3) Jwt(w1 = w2) + xs(w18)B",
J

<
<“wt(wy = wa) + xs(—weB)BY.

Tt (wy = wasp)

Proof. Part (a) follows readily from the definition. Let us prove part (b). We focus on
the first identity, as the proof of the second identity is analogous.
Up to replacing « by —a, which does not change the reflection s, nor the value of

XJ(a)wl_lav,
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we may assume « € <I>}’. Now write
J _ / J _ /
m(wi) = (wy, p), m(w2) = (wa, p2)-
Then 7r(sqw1) = (W}, p1 + @+ (—a)w; 'a¥). Thus

Twt(sqwi = wo) = wt(w) = wh) — p1 — P (—a)wy ta” + pa
1

=Twt(w; = wy) — T (—a)w; ta”

= Jwt(wl = wy) + xj(a)wflozv

as a € @}.
Now we prove part (c). Again, we only show the first inequality. If w15 € @, the
inequality follows from part (b). Otherwise, we use (a) and Corollary 3.17to compute

Jwt(wlsﬁ = wy) < Jwt(wlsa = wp) + Jwt(wl = w9)
< wt(wise = wi) + Jwt(wl = w9)

L3.32

w

< T (wa)a + Twt(wy = wo)
=X

Jwa)aY + Twt(wy = wy).
This finishes the proof. O

Lemma 3.36. Let wi,ws € W and J S Ayt be reqular. Suppose that for all o € %, at
least one of the following conditions is satisfied:

1

wy aedt orwglae@_.

Then Twt(w; = ws) = wt(wy = wo).

Proof. We show the claim via induction on 7¢(w;). If w; € /W, then the claim follows
from Lemma 3.32.

Otherwise, we find some « € cl(J) with wl_loz € ®~. By assumption, also wg_loz ed.
Using Lemma 3.8, we get

wt(w) = we) = wt(sqwi = sqwe) + XJ(Oz)wl_lozV - XJ(a)TUQ_lOéV.

Since 7¢(sqw1) < €(wy) by Lemma 3.30, we want to show that (s,w1, sqws) also satisfy
the condition stated in the lemma.

For this, let 3 € ®%. If 8 = a, then (sqwi) 'a = —wl_la € ®* by choice of a. Now
assume that 8 # «, so that s, € <1>j. By the assumption on w; and we, we must have
wi 'sa(B) € @ or wy 's,(B) € . In other words, we have

(sqw1) 1B e ®T or (sqwo) 'Be @ .

This shows that (sqwi, sqwe) satisfy the desired properties.
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By the inductive hypothesis and Lemma 3.35, we get

wt(sqwi = Sqws) + XJ(a)wl_laV — XJ(Q)'LUz_laV

= Jwt(sawl = SqWw2) + XJ(a)wl_lon — XJ(a)wz_laV

= Twt(w; = wo).
This completes the induction and the proof. O

Corollary 3.37. Let wi,we € W and let J S Ayue be regular. Denote by wg € W the
longest element. Then

Twt(wiwg = wowg) = —wo I wt(wy = wy).

Proof. Both sides of the equation behave identically when multiplying w; or we on the
left by a reflection in Wj;: For a € ®;, we use Lemma 3.35 to see

Jwt(sawlwo = wowy) — Twt(wywo = wowp) = —Xj(a)(wlwo)flav

(
(
(
(

=—wp (Jwt(wg = sqw1) — wt

1

Jwt(wlwo = SqWaly) — Twt(wywo = wowp) = xJ(a)(wawp) "V

=—wp (Jwt(sawg = wp) — wt
Therefore, it suffices to show the desired equality in case wq, wq € YW. By Lemma 3.36,
we get
Jwt(wlwo = wowy) = wt(wjwy = wawy),

Twt(wy = wy) = wt(wy = wy).

Now the claim follows from Lemma 3.9. O]

3.5. Maximal subsets

In this section, we specialize to the situation where ® is irreducible and J = Ay¢\{a} for
some a € A,r. As we saw before, the calculation of weight functions can be reduced to
this situation.

We define the fundamental coweight w, € Q@Y by declaring for each 8 € A that

17 a:(/B70)7

(wa, ) = {0, a + (5,0).

Denote the longest root of ® by 6. Then we define the normalized coweight &, € Q®Y
by
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Lemma 3.38. If w e W, there exists a uniquely determined element w' € Wyw n W,
and it satisfies

J 1 -1~ )

m(w) = (W, w '@y — (W) '@y

Proof. From the definition of /7(w) in Lemma 3.31, it follows that the intersection
Wyw n W contains exactly one element w’, and that /7 (w) has the form (w’, u) for
some .

Define a function ¢ : W — /W x Q®" via
p(w) = (W', w™ @ — (W) 7'@a) if m(w) = (W', ).

We show that ¢ = /7 by verifying the recursive definition of 7.

If w e W, then certainly w’ = w and ¢(w) = (w,0).

Now suppose that w € W is any element with p(w) = /7 (w) and pick 3 € ®5. We
have

Tr(spw) = (W', p + T (=B)w™'BY).
Now we calculate
p(sgw) =(w', (sgw) "' Ta — (w) " wa)
(w’,wila)a — <&a,6>wflﬁv — (w’)*lwa)

:(wl7 w—= <C~Ua7 /8>w_1/8v>'

In order to conclude p(sgw) = /7 (spw) (completing the induction and the proof), it
remains to show

_<(:)(l7 5> = (I)+(_B)'

If a = (—0,1), both sides are trivially zero (as f € &% = ®T). Thus let us assume that
a#(—0,1).
We use the condition 8 € ®7. By Lemma 3.28, we have (3, ®%(—p3)) € 7, so
Wa(B+ @1 (=P)0) =0 = (@Dy, B+ DT (—B)0) =0
= — (@, ) = (= B){(&a, ) = (- B).

The proof is finished. O

Lemma 3.39. For wi,ws € W, we have

Jwt(wl = wy) = w;l(ba - wflﬁa.
In case Wjywy = Wiws, we have equality.

Note that “wt(w; = ws) is an integral sum of coroots, whereas wy '@, — wi '@, will,

in general, be only a rational linear combination of coroots.

43



Proof of Lemma 3.39. We want to use the definition of the semi-affine weight function,
so let us write

Jﬂ(wl) = (wllnu'l)? Jﬂ.(w2) = (w/27/1/2)'
Then, by definition,

Twt(wy = wo) = wt(w) = wh) — p1 + po

L wt(w) = wh) — wy Ve + (W) T D + wy By — (wh) T Da.

If Wywy = Wyws, we get w] = w) and the claim follows. In general, we need to prove
Vw),wy € W1 wt(w) = wh) = (wh) L@, — (w)) Q. (3.40)

This is clear if a = (=0, 1), as then the right-hand side vanishes. Hence let us assume
that a # (—6,1). It suffices to show the inequality (3.40) for edges w} — w4 in QB(W),
as we then can use induction on d(wj = wj).

Now suppose that w) = w) s, for some root a € ®*. Then

(wh) '@ — (W) ' Ta =sa(w)) '@ — (wy) '@,
= —{(w1) ' Ba, 00"
= <a}a7 wlla>av
<Ot (—wia)aY = wt(w] = w)).
We conclude that inequality (3.40) holds true for edges w| — w} in QB(W), which
finishes the last gap in the proof. O

If « is special, the estimate in Lemma 3.39 is an equality:

Lemma 3.41. Suppose that a € A,s is a special node, i.e. such that a = (—0,1) or
wq(0) = 1. Then TW consists only of one element. For wi,wy € W, we have

Jwt(wl = wy) = w;lwa — wflwa.

Proof. If a = (—0,1), then J = A and ®F = &*. Now /W = {1}, w, = 0 and x; = 0.
It follows that wt(- = -) = 0 by Lemma 3.35.

Let us consider the case a = (,0). We first show that /W consists only of one
element: Let w e 7W and J' := cl(J) n A. We claim that

VBedT: wlfedt «— Bedy. (3.42)

By definition of YW, the claim is satisfied for 8 € J’, and hence for sums of those roots.
ie. if 8 € ®F, then wlpe dt.
Now suppose that 3 € <I>+\<I>j,. We write

ﬁ = Z CyYs

yeA

0= Z .

yeA
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As 0 is the longest root, ¢y < 0’7 for all v € A. By choice of a, we have ¢, < 1, and by
choice of 3, we have ¢, > 1. Thus ¢, =, = 1.
By definition of w € /W and (—#,1) € .J, we see that w™'0 € ®~. Now observe that

-1 -1 -1
w B =w 0+ Z (cy =) w™ iy

Thus w8 € ®~. The claim (3.42) is proved. It follows that YTV consists of only one
element.

By Lemma 3.38, we conclude W = W;. Thus Wjyw; = Wjws for all wi, we € W, such
that the final claim follows from Lemma 3.39. U

Remark 3.43. For irreducible root systems of type A,,, all nodes are special and Lemmas
3.36, 4.37 and 3.41 allow an easy way to compute the weight function. This recovers
formula (3.1). As mentioned before, this formula fails for all other root systems, precisely
because not all nodes are special: Indeed, if a = («,0) is a non-special node, we get

wa — Sp(wa) = (wa, 0)0Y = wa(0)0Y > 0V = wt(sg = 1).
In general, let us write
[wy ' — wy '] € ZDY
for the smallest element in Z®" that is > wy '@, — w] '@, € QY. We have

wt(wy; = ws) = sup[w{lcf)a — wl_lcfja]. (3.44)
a

and we may ask whether equality holds. In general, we cannot expect equality to hold
(the resulting criterion for the Bruhat order of finite Weyl groups would be “too sim-
ple”). It is interesting though that the lack of equality in (3.44) explains precisely the
difference between the so-called admissible and permissible subsets as defined in [KRO00],
cf. Corollary 4.15.

Remark 3.45. The computation of weight functions for non simply laced root systems
can be reduced to a calculation for a simply laced root system using the technique of
Dynkin diagram folding:

Suppose that ¢ : & — & is an automorphism of the root system with p(A) = A. We
obtain the folded root system ®/¢ with coroots

(®/p)Y = {Za loc @Y isa go—orbit} c ZDV.
QEo

Thus, the roots in ®/¢ are in bijection with ¢-orbits in ®. The Weyl group of ®/¢ is
given by W%, the ¢-invariant elements of W. Similarly, the affine Weyl group of ®/¢ is
given by (Wae)?.
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Both W% and (W,¢)? inherit the Bruhat order from the larger groups W resp. Wyt
(This is a simple Coxeter theoretic fact). Using Corollary 3.16, we see that

le,wg e W¥ . WtQB(W) (w1 = ’LUQ) = WtQB(W«p)(’UJl = ’wz).

We observe, using the classification of root systems, that the only irreducible root
systems with non-trivial automorphisms are those of type A,, D, and Eg. If ® is of
type A, and ¢(a) = —wp(a) is the non-trivial automorphism of order 2, then ®/¢ is
of type Cp,21- The quotient of Dy by one of the automorphisms of order 3 is Gg; the
quotient of any D,, by an automorphism of order 2 is given by B,,_;. Finally, the quotient
of Fg by the unique automorphism of order 2 is given by Fj.

For root systems of type C,,, the calculation of the weight function can thus be reduced
to this calculation for As,_1, for which an explicit formula is known. Alternatively, one
can compare Corollary 3.16 to the explicit criterion for the Bruhat order on the affine
Weyl group given by [BB05, Theorem 8.4.7].

The A, case gives hope that the semi-affine weight function Aaf\{a}‘wt(~ = ) would
be easier to compute than the “full” weight function wt(- = -). While this is true for
Cy, (due to the aforementioned reduction to A,,), such formulas seem to be unknown for
other root systems.

For types B,, and, more generally D,,, the recent paper of Ishii [Ish21] seems promising.
Ishii presents explicit criteria for the semi-infinite order, which should yield explicit
formulas for the weight function.

For the remaining exceptional root systems, the question of how to compute the weight
function can, in principle, be solved by giving a finite list of answers. It is doubtful how
feasible or useful such a task would be.

A “simple formula” to describe the weight function for all root systems would, in
particular, entail a “simple criterion” for the Bruhat order for all finite Weyl groups,
which seems already to be a difficult problem?.

2This leads to the somewhat paradoxical situation that we are able to prove new results for the Bruhat
order on the affine Weyl group, but nothing new for the Bruhat order on the finite Weyl group.
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4. Bruhat order

The Bruhat order on W is a fundamental Coxeter-theoretic notion that has been studied
with great interest, e.g. [BB95; KR00; Rap02; Len+15]. In this section, we present new
characterizations of the Bruhat order on W.

The structure of this section is as follows: In Section 4.1, we state our main criterion
for the Bruhat order as Theorem 4.2 and discuss some of its applications. We then
prove this criterion in Section 4.2. Finally, Section 4.3 will cover some consequences of
Deodhar’s lemma (cf. [Deo77]) and feature an even more general criterion.

4.1. A criterion

Definition 4.1. Let x = wel € W. A Bruhat-deciding datum for z is a tuple (v, J1, ..., Jn)
where v € W and J, is a finite collection of arbitrary subsets Ji, ..., Jn, € A with m > 1,
satisfying the following two properties:

(1) The element v is length positive for z, i.e. £(z,va) = 0 for all « € dT.
(2) Writing J := J1 0 -+ " Jpy, we have £(z,va) = 0 for all « € @ .
The name Bruhat-deciding is justified by the following result.

Theorem 4.2. Letz = wet, 2’ = w'e? € W. Fira Bruhat-deciding datum (v, J1, ..., Jm)
for x. Then the following are equivalent:

(1) z <2’

(2) Foralli=1,...,m, there exists an element v; € W such that

v 4 wt(v] = v) + wt(wv = w'v)) < ()7 (mod 7).

We again use the shorthand notation p1 < po (mod @) for pg —po +ZPy < 0+Z®Y
in Z&Y JZPY.

This theorem is the main result of this section. We give a proof in Section 4.2.

First, let us remark that the construction of a Bruhat-deciding datum is easy. It
suffices to choose any length positive element v for z, and then (v, &) is Bruhat-deciding.

The inequality of Theorem 4.2 is only interesting for v € LP(z) and v, € LP(2'), as
explained by the following lemma in conjunction with Lemma 2.3.

Lemma 4.3. Let x = wel, 2/ = w'e" € w. Suppose we are given elements v,v' € W, a
subset J = A and a positive root o € .

(a) Assume £(z,va) < 0. Then the inequality
(v80) T + wt(v = vsa) + Wt(wvse = w'v') < (V)7 (mod ®Y)
implies

v+ wt(v = v) 4+ wt(we = w'v') < ()7 (mod ®Y).
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(b) Assume l(x',var) < 0. Then the inequality
v 4 wt(v = v) + wt(wo = w'') < (V)7 (mod @)
implies

v+ wt(v'se = v) + wh(wy = w'v'se) < (Vse) 'y (mod ®Y).

Proof. (a) We have

(U/)ilﬂl 2(1)304)71/1 + wt(v' = vs4) + wt(wvs, = w'v')
>y — Tl adaY 4+ wt(v = v) — wt(vse = v)
+ wt(wv = w'v') — wt(wv = wvsy)

>v by — T, adaY + wt(v) = v) — T (va)aY
()

+ wt(wv = w'') — T (—wva)a
= 4 wt(v = v) + wt(wv = w'v') — (U(z,va) + 1)a

>v 7 4 wt(v) = v) + wt(wv = w'v')  (mod ®Y).
The inequality (=) is Corollary 3.17.

(b) The calculation is completely analogous:

('s0) " =(o) U — (@), D
>v 4 wt(v = ) + wt(wo = w'v') — (u,v'ada
>0+ wt(v'sq = v) — wt(v'sq = )
+ wt(wv = w'v'sy) — wt(w'v' = w'v'sy) — (u, v’ ada”
>0+ wt(v'sq = v) — T (v a)a”
+ wt(wv = w'v'sy) — T (—w'v'a)aY — {u, v a)a”
=0 4 wt(v'sq = v) + wt(wv = w'v'sy) — (U2, v'a) + 1)a”
> 4 wt(vse = v) + wt(wv = w'v's,). O
Proof of Theorem 1.1 using Theorem 4.2. We use the notation of Theorem 1.1. In view
of Lemma 4.3 and Lemma 2.3, the condition

Jug e W vy py + wt(vy = v1) + wt(wiv) = wave) < vg o (%)

is true for all v; € LP(z) iff it is true for all v; € W. We see that asking condition () for
all v1 € W is equivalent to asking condition (2) of Theorem 4.2 for each Bruhat-deciding
datum. In this sense, Theorem 4.2 implies Theorem 1.1. O

If 2/ is in a shrunken Weyl chamber, there is a canonical choice for v’.
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Corollary 4.4. Let x = wet and 2’ = w'et . Assume that @' is in a shrunken Weyl
chamber and that v’ is the length positive element for x'. Pick any length positive element
v for . Then x < 2’ if and only if

v+ wt (v = ) + wt(we = w'v') < ()7

Proof. (v, ) is a Bruhat-deciding datum for . By Lemma 4.3 and Corollary 2.4, the
inequality in Theorem 4.2 (2) is satisfied by some v’ € W iff it is satisfied by the unique
length positive element v’ for z’. O

We now show how Theorem 4.2 can be used to describe Bruhat covers in W. The
following proposition generalizes the previous results of Lam-Shimozono [LS10, Propo-
sition 4.1] and Mili¢evi¢ [Mil21, Proposition 4.2].

Proposition 4.5. Let z = wet, 2’ = w'e? € W and v € LP(z). Then the following are
equivalent:

(a) x <2’ ie. x <2’ and l(x) = £(2') — 1.

(b) There exists some v’ € LP(2') such that
(b.1) v+ wt(v' = v) + wt(wv = w'v') = (V') and
(b.2) d(v' = v) + d(wv = w'v') = 1.

(c) There is a root o € @ satisfying at least one of the following conditions:
(c.1) There exists a Bruhat edge v' := sqv — v in QB(W) with 2’ = xs, and
v e LP(2).
(c.2) There exists a quantum edge v' := sqv — v in QB(W) with vla e ®* 2’ =
Tr(_q,1) and v' € LP(z').
(c.3) There exists a Bruhat edge wv — sqwv in QB(W) such that ' = sqx and
veLP(z').

(c.4) There exists a quantum edge wv — sqwv in QB(W) with (wv)~
x' =r_q1)r and v e LP(a2').

la e @,

(d) There exists a root o € @1 satisfying at least one of the following conditions:

(d.1) We have w' = wsq, ' = so(1), (sqv) = £(v) — 1 and for all B € P :
Uz, vB) + T (s4vB8) — @1 (vB) = 0.

(d.2) We have w' = wsa, i’ = 8o(1t) — ", €(sqv) = £(v) — 1+ v~ taV,2p) and for
all B e O+ :

Uz, vB8) + {a¥,vB) + ®T (squB) — ®F (vB) = 0.

(d.3) We have w' = sqw, i’ = p, £(squwv) = L(wv) + 1 and for all B € O :

U(z,vB) + & (wvB) — T (squwvB) = 0.
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(d.4) We have w' = sqw, pi/ = p—wtaY, l(squwv) = £(wv) + 1+ {(wv)taY,2p) and
for all Be ®:

U(z,vB) + (¥, wvB) + T (wvh) — T (sqwvfB) = 0.

Proof. (a) <= (b): We start with a key calculation for v’ € LP(z/):

(W) — wt(v = v) — wt(wo = w'v') — v, 2p)
(W), 2p) = d(v' = v) = L(V) + L(v)
— d(wv = w'v') — L(wv) + L(w'V') — o™, 2p)

02:.11€(x/) —U(z) —d(v' = v) — d(wv = w'v').

L3.6

First assume that (a) holds, i.e. z < a’. By Theorem 4.2 and Lemma 4.3, we find
v € LP(a2') such that

(W) = wt(v' = v) — wt(wv = w'') —vip =0

By the above key calculation, we see that
02" = L(z) + d(v' = v) + d(wv = W),

where equality holds if and only if (b.1) is satisfied. Note that = < z/ implies that 2~ '2’
must be an affine reflection, thus w # w’. We see that v # v’ or wv # w'v’, thus in
particular

lx)+1=L") = l(z) +d(v = v) + dwv = W) = l(z) + 1.

Since equality must hold, we get (b.1) and (b.2).

Now assume conversely that (b) holds. By (b.1) and Theorem 4.2, we see that © < z/.
Now using the key calculation and (b.2), we get £(z') = £(x) + 1.

(b) <= (c): The condition (b.2) means that either v = v' and wv — w'v’ is an edge
in QB(W), or wv = w'v" and v" — v is an edge. If we now distinguish between Bruhat
and quantum edges, we get the explicit conditions of (c¢) (or (d)).

Let us first assume that (b) holds. We distinguish the following cases:

(1) wv = w'v" and v' — v is a Bruhat edge: Then we can write v’ = s,v for some o € &
with v"!a € ®~. Now the condition wv = w'v’ implies v’ = ws,. Condition (b.1)
implies v=1p = (V) 71, so pf = s4(1t). We get (c.1).

(2) wv = W' and v — v is a quantum edge: Then we can write v/ = s,v for some
a e &t with v~ ta e ®+. Now the condition wv = w'v’ implies w’ = ws,. Condition
(b.1) implies v~ tp + v~ taY = (V)71 so ' = sa () — a¥. We get (c.2).

(3) v = v and wv — w'v’ is a Bruhat edge: Then we can write w'v’ = sqwv for some
a € &t with (wv)"ta e ®~. Now the condition v = v’ implies w’ = s,w. Condition
(b.1) implies vty = (v/) "1y, so p/ = p. We get (c.3).
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(4) v =7" and wv — w'v’ is a quantum edge: Then we can write w'v’ = sqwv for some

a € & with (wv)~la € ®~. Now the condition v = v/ implies w’ = s,w. Condition

(b.1) implies vty — (wv)ta¥ = (V) Ty, so ' = p—wlaY. We get (c.4).

Reversing the calculations above shows that (¢) = (b).
For (¢) < (d), we just explicitly rewrite the conditions for length positivity of v/,
and the definition of edges in the quantum Bruhat graph. O

Remark 4.6. If the translation part p of x = we* is sufficiently regular, the estimates
for the length function of x in part (d) of Proposition 4.5 are trivially satisfied. Writing
LP(z) = {v}, we get a one-to-one correspondence

{Bruhat covers of x} < {edges 7 — v} u {edges wv —7}.

If @ is simply laced and z to lies in a shrunken Weyl chamber, then still all the estimated
for the length function of z in part (d) are satisfied. L.e. each edge ? — v or wv —7?
yields a Bruhat cover, but different edges might yield the same element z’.

If @ is not simply laced, being in a shrunken Weyl chamber is not sufficient: Indeed,
consider the case where z = wy (so LP(z) = {1}) and « any short simple root. Then
Sa — 1 is an edge in QB(W), but 2 < xr(_, 1) is not a Bruhat cover.

We obtain the following useful technical observation from Proposition 4.5:

Corollary 4.7. Let x € W, v e LP(x) and (o, k) € Agp with £(z,a) = 0. If v lae &F,
then sqv € LP(z).

Proof. Since z(a, k) € @ by Lemma 2.9, we have x < xr,. Since a is a simple affine root,
we must have z < zr,. So one of the four possibilities (c.1) — (c.4) of Proposition 4.5
must be satisfied.

If (c.3) or (c.4) are satisfied, we get v € LP(2’). Since 2/ = zr, is a length additive
product, Lemma 2.13 shows s,v € LP(z), finishing the proof.

Now assume that (c.1) is satisfied. Then 2’ = xsg for some 3 € ®* means k = 0 and
a = B. Now v~ la € ®F means that £(s,v) > £(v), S0 s4v — v cannot be a Bruhat edge.

Finally assume that (c.2) is satisfied. Then 2’ = xr(_g ) for some 8 € ®* means that
k=1and a« = —f € ® . Then s,v — v cannot be a quantum edge, as £(s,v) < £(v).

We get the desired claim or a contradiction, finishing the proof. O

As a second application, we discuss the semi-infinite order on W as introduced by
Lusztig [Lus80]. It plays a role for certain constructions related to the affine Hecke
algebra, cf. [Lus80; NW17].

Definition 4.8. Let x = wet € W

(a) We define the semi-infinite length of = as

(2) 1= £(w) + (11, 20).

I8

4
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(b) We define the semi-infinite order on W to be the order <3 generated by the relations

«x
2

Ve e W,a€ ®pp: o <2 arg if £7 (z) < L7 (z1y).

We have the following link between the semi-infinite order and the Bruhat order:

Proposition 4.9 ([NW17, Proposition 2.2.2]). Let x1,z2 € W. There exists a number
C > 0 such that for all X € Z®" satisfying the regularity condition (\,ay > C' for every
positive Toot o, we have

@ A A

r1 <2 To = x1E" < X027

jee]
2

Corollary 4.10. Let ©1 = w1eM, 9 = woeh? € W. Then x1 <2 x9 if and only if
p1 + wt(wy = wa) < po.

Proof. Let A be as in Proposition 4.9. Choosing A sufficiently large, we may assume that

r1e® and xoe? are superregular with LP(z1e*) = LP(z2¢?) = {1}. Now z1e* < e’ if
and only if

p1 4+ wt(wy = wy) < pe,
by Corollary 4.4. O

We finish this section with another application of our Theorem 4.2, namely a discussion
of admissible and permissible sets in W, as introduced by Kottwitz and Rapoport [KR00].

Definition 4.11. Let z = wet € W and ) € X, (T)r, a dominant coweight.

(a) We say that x lies in the admissible set defined by A, denoted z € Adm()\), if there
exists u € W such that z < e¥ with respect to the Bruhat order on W.

(b) The fundamental coweight associated with a = (a, k) € A,f is the uniquely deter-
mined element w, € Q®Y such that for each S € A,

1, a= (570)7

wa B = {0, a # (8,0).

In particular, w, = 0 iff k& # 0.

(c) Let a = (a,k) € Aup, and denote by 6 € ®* the longest root of the irreducible
component of ® containing «. The normalized coweight associated with a is

~ 0, k#0,
Wy =
“ mwa, k=0.
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(d) We say that x lies in the permissible set defined by A, denoted z € Perm(A), if = A
(mod @) and for every simple affine root a € A,¢, we have

(1 + B — 0 ,) %™ < X in Xo(T)r, ® Q.

It is shown in [KROO] that the admissible set is always contained in the permissible
set and that equality holds for the groups GL,, and GSp,, if A is minuscule (i.e. a
fundamental coweight of some special node). It is a result of Haines and Ngoé [HNO02]
that Adm(A) # Perm(\) in general. We show how the latter result can be recovered
using our methods.

Proposition 4.12 (Cf. [HY21, Prop. 3.3])). Let x = wet € W and A € X«(T)r, a
dominant coweight. Then the following are equivalent:

(1) z € Adm(\).
(2) For all ve W, we have

v+ wh(we = v) < A

(8) For some v € LP(x), we have

v 4 wt(wo = v) < A

Proof. (1) = (2): Suppose that 2 € Adm(})), so = < £** for some u € W. Let also
ve W. By Lemma 4.17, we find & € W such that

v wt (@ = v) + wt(we = @) < a7 u.
Thus

v+ wt(we = v) <o+ wt(d = v) + wt(wo = a)

—1

<

< 'u
~
<(@ tua)dom = A

Since (2) = (3) is trivial, it remains to show (3) = (1). So let v € LP(z) satisfy
v+ wt(wv = v) < \. By Theorem 4.2, we immediately get z < ¥*, showing (1). O

Lemma 4.13. Let z = wet € W and \ € X«(T)r, a dominant coweight. Then the
following are equivalent:

(1) x € Perm(\).
(2) For all ve W, we have

v+ sup (0@, — (wv) TM@,) < A
(ZEAaf
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If moreover x lies in a shrunken Weyl chamber, the conditions are equivalent to

(8) For the uniquely determined v € LP(x), we have

v+ sup (v_lﬁﬁa - (wv)_lﬁa) < A
aEAaf

Proof. We have

(1) «=Vae Ay (p+Tg— w_lfba)dom <A
—VaeAy,veW: v} (u+@a—w_1c7)a) <A

= YoeW: sup v ! (u+@a—w71&a) <A
aGAaf

— (2).
Now assume that x is in a shrunken Weyl chamber, LP(x) = {v} and a € A,s. We claim

that

1~ )dom

(,u—FGJa—w Wq =7t (,u—FGJa—w_loNJa).

Once this claim is proved, the equivalence (1) <= (3) follows.
It remains to show that v—! (u + Wy — u)*lcf)a) is dominant. Hence let o € . We
obtain
o (B @ — 0B, @) =, va) + (Fa, va) — (B, wo)
>(u,va)y — &1 (—va) — 1 (wva)
={(z,va) — 1 = 0. O

Corollary 4.14 ([KRO0O, Sec. 11.2]). For all dominant \ € X, the admissible set is
contained in the permissible set, Adm(\) € Perm(\).

Proof. Let x = wet € W. Then

x € Adm(\) P4=1>2vv eW: v lu+ wtlwv = v) <A

— YoeW: v u+ sup v '@, — (wo) 1T, < A

(3.44) acly;

== x € Perm(\). O
L4.13

Corollary 4.15. For any fixed root system @, the following are equivalent:
(1) For all dominant A € X«(T)r,, we get the equality Adm(\) = Perm(\).

(2) For all wy,wy € W, the element

sup wy ‘W — wy ‘W, | ;= min{z € ZOV | 2z = sup wy '@y — wy 'y in QPY}

aEAaf aEAaf

agrees with wt(w; = w3).
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(8) Each irreducible component of ® is of type A, (n = 1), By, C3 or Gs.

Proof. (1) = (2): Comparing condition (3) of Proposition 4.12 with condition (3) of
Lemma 4.13 for superregular elements x € W yields the desired claim.

(2) = (1): We can directly compare condition (2) of Proposition 4.12 with condition
(2) of Lemma 4.13.

(2) <= (3): Call an irreducible root system ®' good if condition (2) is satisfied for
@', and bad otherwise. Certainly, ® is good iff each irreducible component of ® is good.
Moreover, root systems of type A,, are good, we saw this in formula (3.1) and again in
Remark 3.43.

If ®; < @ is bad for some J € A, then certainly ® is bad as well (cf. Corollary 3.11). It
remains to show that root systems of types C3 and G2 are good, and that root systems of
types Bs, Cy and Dy are bad. Each of these claims is easily verified using the Sagemath
computer algebra system [Sage; SaCo|. O

For irreducible root systems of rank > 4, the equivalence (1) <= (3) is due to
[HNO02], using a result of Deodhar:

Proposition 4.16 ([Deo78|). For any fixed root system ®, the following are equivalent:

(1) For all wy,we € W, we have

w) < wgp < sup w;lwa — wflwa <0
aeAaf

(2) Each irreducible component of ® has rank < 3 or is of type A, (n = 1). O

4.2. Proof of the criterion

The goal of this section is to prove Theorem 4.2. We start with the direction (1) —
(2), which is the easier one.

Lemma 4.17. Let © = wel, 2’ = w'e" € W and ve W. If z < 2/, then there exists an
element v' € W such that

v+ wt (v = v) + wt(we = w'v') < ().
Proof. First note that the relation

-1

"= Yodu v+ wt(v) = ) + wh(we = w'') < ()

r =T

is transitive. Thus, it suffices to show the implication z < ' = x < 2’ for generators
(x,2') of the Bruhat order.
In other words, we may assume that 2/ = a7, for an affine root a = (a, k) € @/, with

ra = (wa, k — {u,a)) € O
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This means that v’ = ws, and ¢/ = p + (k — {u, a))a, where k — (u, @) = 7 (—wa).
We now do a case distinction depending on whether the root v~ !« is positive or negative.
Case v 'a e ®~. Put v/ = s,v such that wv = w'v’. Then using Corollary 3.17,

v+ wt (v = v) 4+ wt(we = w'v')
v 4 wt(vs_y-1, = v) + 0
<oty — ot (—a)v e
<vip—kvtaY
= (500) " (sa(p) + ka) = (')
Case v~ 'a e ®*. Put v’ = v such that w'v’ = wvs,-1,. Then using Corollary 3.17,
v+ wt (v = v) + wt(we = w't')
= vt + wt(wo = wus,-1,)
<vip4 T (—wa)vtaY
<o bt (k= (pad)a” = () 1.
This finishes the proof. O

The direction (1) = (2) of Theorem 4.2 follows directly from this lemma. We now
start the journey to prove (2) = (1).

Lemma 4.18. Let x = wet, 2’ = w'e" € W, and suppose that (L, J1,...,Jm) is a
Bruhat-deciding datum for both x and x'. If the inequality

p+wt(w = w') <y’ (mod @)
holds fori=1,...,m, then x < x’.
Proof. Let J =Jy n--- N Jp. Then we get

p+wt(w =w') <y (mod ®Y).

Let Cy := {(z7'2’) and pick Cy > 0 such that the conclusion of Corollary 3.16 holds
true. We can find an element \ € Z®" such that (\,a) =0 for all « € J and

<)\, a> = CQ

for all @ € ®T\®;. Since 1 € W is length positive for both z and 2/, it follows from
Lemma 2.13 that

U(xe) = 0(z) + £(), ((a'eM) = (') + £(e?).
A<

So it suffices to show ze* < a/¢*. Note that ze?, 2/e € Q(jQ by choice of A\. Moreover,
we have

p+ A+ wtlw=w")<p +X (mod ®Y)

by assumption. Therefore, the inequality ze* < &’¢* follows from Corollary 3.16. O
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Lemma 4.19. Let © = wel, 2’ = w'e" € W, and suppose that (1, J1,...,Jm) is a

Bruhat-deciding datum for x. If the inequality
p+wt(w = w') <y’ (mod @)

holds fori=1,...,m, then x < 2.

Proof. Induction on £(z').

If (1,J,. .., Jp) is also Bruhat-deciding for 2/, we are done by Lemma 4.18. Otherwise,
we must have that 1 € W is not length positive for 2/, or that J := J; n--- N J,,, allows
some a € Dy with £(2/, ) # 0.

First consider the case that 1 € W is not length positive for /. Then we find a positive
root v € &+ with £(2/, ) < 0. Hence a := (—a, 1) € &/, with 2/a € &7, so that

" ’_ ’ v
2" = we? = g = wseet W)Y o)

We calculate

p+ wh(w = w”) <p + wt(w = w') + wt(w' = w's,)
<+ @ (—w'a)aY
= = (L+ @ a)a” + (o) + 1+ @7 (—w'a))a”
=1" + (2, a) + 1)a¥ < p”  (mod ®Y).
By induction, z < 2”. Since 2" < 2/, we conclude z < x’ and are done.
Next consider the case that 1 € W is indeed length positive for 2/, but we find some

a € ®; with £(2',a) # 0. We may assume a € ®T, and then ¢(2’,«) > 0 by length
positivity. Then a = (a,0) € ®f; with 2’a € ®~. We conclude that

n" n_pu / / ! v !
2" = W = 2y = w'saet ~Whewrt <4

We calculate
p+ wt(w = w") <p + wt(w = w') + wt(w' = w'sq)
<+ 0 (—w'a)aY
i+ (B (—w'a) + i ad)a
=u” (mod ®Y),

as a¥ € @Y. So as in the previous case, we get x < 2” < 2’ and are done.
This completes the induction and the proof. O

Before we can continue the series of incremental generalizations, we need a technical
lemma.

Lemma 4.20. Let x = wel, 2’ = w'e” € W. Let J € A and v' € W be given such that
p+wt(v' = 1) + wt(w = w'v') < (@)’ (mod ®Y).

Then there exists an element v € W satisfying the same inequality as v’ above, and
satisfying moreover the condition €(x',y) < 0 for all v € max inv(v"”).
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Proof. Among all v' € W satisfying the inequality
p+wt(v' = 1) + wt(w = w'v') < ()1 (mod ®Y),

pick one of minimal length in W. We prove that ¢(2’,~) < 0 for all v € maxinv(v’).
Suppose that this was not the case, so ¢(2’,y) = 0 for some v € maxinv(v'). The
condition v € inv(v') implies £(s4v") < £(v"). Moreover, wt(v' = 1) = wt(syv) =
1) — (v")~ 4" by Proposition 3.23. We calculate
w4 wi(syv' = 1) + wt(w = w'sy0")
=p+wt(v' = 1) + (V)Y + wt(w = w's, )
<p+wt(v = 1) + ()Y + wt(w = w'') + wt(w'v = w's,v)
<)+ ()Y + wt(w'v' = w's )
)T+ (V)T + w(w'sy's_ (W) -1(y) = W'syV")
)T+ ()Y = @t () (V) Y
=(s,0") 1 + ! ,v>(v') 17 + (V)T = @t (w'y) (v) 1Y
=(s,0") i+ (2! ) ()T (Sw) Y/ (mod @Y).

This is a contradiction to the choice of v/, so we get the desired claim. O

Lemma 4.21. Let © = wel, 2’ = w'e" € W, and suppose that (1, J1,...,Jm) is a

Bruhat-deciding datum for x. If for each i =1,...,m, there exists some v, € W with

/

g+ wt(vh = 1) + wt(w = w'v]) < (v) 71 (mod ),
then x < .

Proof. Induction on £(x).

By Lemma 4.20, we may assume that for each i € {1,...,m} and v € maxinv(v}), we
have ¢(2/,v) < 0.

If 1 € W is length positive for 2/, ie. ¢(2’,a) = 0 for all a« € ®*, then we get
maxinv(v]) = foralli =1,...,m,ie. v] = 1. Now the claim follows from Lemma 4.19.

Thus suppose that the set

{ae @t | (2, a) <0}

is non- empty We fix a root « that is maximal within this set. Now a = (—a,1) € &/,
satisfies 2’a € ®_, as £(2/, ) < 0. Consider

2" =t =2 ra = WSy gt~ ep)ay o

We want to show x < z” using the inductive assumption. So pick an index i € {1,...,m}.

We do a case distinction based on whether the root (v))~!a is positive or negative.
Case (v))"la € ® . Then « € inv(v}), so there exists some v € max 1nv( ") with

a < 7. By choice of v}, we get £(2/,7) < 0. By maximality of o and o < v, we get

a = 7. In other words, @ € max inv(v}).
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Define v/ := s,v]. Then by Proposition 3.23, wt(v) = 1) = wt(v/ = 1) — (v}) " LaV.
We compute

p+ wt(v! = 1) + wt(w = w"v))

=p+wt(v, = 1)+ @)t + wt(w = w'v))

< ()7 + () Tl

= (sa0)) "M — (14 (s ))a¥) = (o) "'’ (mod @3,).

N7la e @T. We define v/ := v} and use Corollary 3.17 to compute

Case (v]

p+ wt(of = 1) + wt(w = w"v))
<p+wt(v) = 1) + wt(w = w'v)) + wt(w'v] = w'vgs(vé)_la)
< () + @ (—w'a)(v]) e
= ()W — L+ Wa)a) + (@) + 1+ @7 (—w'a) (v) "la”

— ()7 + (U 0) + () Y < (@) (mod @),

)

In any case, we get the desired inequality

n.n nm—1 n

p+wt(vf = 1) + wt(w = w"v)) < (vf) "' p”  (mod Y ).

By induction, z < 2” < 2/, completing the induction and the proof. O]
Lemma 4.22. Let = wet, 2’ = w'e” € W, and suppose that (v, 1y oy dm) @S a
Bruhat-deciding datum for x. If for each i = 1,...,m, there exists some v, € W with

v+ wi(v) = v) + wi(wo = w'v)) < (v) 7' (mod @),

then x < 7'.

Proof. Induction on ¢(v). If v = 1, this follows from Lemma 4.21.

Let J:=Jyn---nJdy,. If aeJ, then vs, trivially satisfies the same condition as v.
So we may assume that v e W,

Since v # 1, we find a simple root o € A with v~!'a € ®~. In particular, /(z,a) < 0,
such that = < xs,.

We claim that (sqv, J1,. .., i) is a Bruhat-deciding datum for xs,. Indeed, for 5 € ®,
we use Lemma 2.12 to compute

Ux5q, $quB) =l(x,vB) + £(Sa, SaVP)

1, vB = —aq,
= E(xﬂjﬁ) + _1a ’UB =,
0, vB # ta.

If 3 € ®*, the condition v 1o € ®~ forces v3 # «, showing

U(xSq, SquB) = U(x,vp) = 0.
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Now consider the case § € @}r. Then ¢(x,v3) = 0 by assumption. Moreover, v3 € ®+
as v e WY, so that v8 # —a. We conclude (x84, 5,v8) = £(x,v3) = 0 in this case.

This shows that (sqv, J1,...,Jn) is Bruhat-deciding for xs,. Since {(sqv) < (v), we
may apply the inductive hypothesis to xs, to prove xs, < max(z’,2's,). We distinguish
two cases.

Case /(2',a) < 0. This means 2’ < 2’s,, so we wish to prove zs, < s, using the
inductive hypothesis. So let i € {1,...,m}. By Lemma 4.3, we may assume that v} is
length positive for z’.

First assume that (v})"'a € ®~. By Lemma 3.8, we get

/ /
wt(v; = v) = wt(sqv; = Sq0).
Define v/ := s4v}. Then

(5a0) L (sap) + Wt(v! = 540) + Wt(wsasqv = w'sv!)

v ,quwt(v = v) + wt(wv = w'v])
v) T = () (sap’)  (mod @)

Next, assume that (vg)_loz € ®*. By length positivity, we must have ¢(z', ) = 0. By
Lemma 3.8, we get

wt(v; = v) = wt(v] = s4v).
Define v/ := v]. Then using Corollary 3.17,

(sav) Ysap) + wt(v] = s40) + Wt(wsasav = w'sau))

v+ wt(v) = v) + wt(wo = w'sav))

<ot + wt(v) = v) + wt(we = w'v)) + wt(w'v = w/vés(vé)qa)
<) + T (—w'a)(v)

= () sat + (W a) + @F(—w'a)) (v]) a

— (!

vZ’) Sapt’ +0(2' ) (v])” Lo = (vg’)_lsa,u. (mod @)}1)

We see that the inequality

(5a0) " (sap) + Wt(v] = $qv) + Wh(wsasa¥ = w'sqv]) < (V) 'sqp  (mod @)
always holds, proving zs, < 2's,. Since s, is a simple reflection in V[N/, r < xSq and
2’ < a's,, we conclude that x < 2’ must hold as well.

Case ((2',a) > 0. We now wish to show zs, < 2/, as 2’ > 2’s,. We prove this using
the inductive assumption, so let i € {1,...,m}. As in the previous case, we assume that
v} is length positive for /. In particular, (v))~la € ®.

By Lemma 3.8, we get

wt(v; = v) = wt(v] = s4v).
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Define v/ := v]. Then
(5a0)  H(sam) + Wt(v] = s,40) + Wt(wsasqv = w'v))
~1
=v" 'y + wt(v, = v) + wt(wv = w'v))
—1 —1
<(v) " = (vi) T

By the inductive assumption, we get xs, < x’. Thus z < xs, < 7'.

This completes the induction and the proof. ]

Proof of Theorem 4.2. The implication (1) = (2) follows from Lemma 4.17.
The implication (2) = (1) follows from Lemma 4.22. O

4.3. Deodhar’s lemma

In this section, we apply Deodhar’s lemma [Deo77] to our Theorem 4.2. We need the
semi-affine weight functions and related notions as introduced in Section 3.4. We more-
over need a two-sided version of Deodhar’s lemma, which seems to be well-known for
experts, yet our standard reference [BB05, Theorem 2.6.1] only provides a one-sided
version. We thus introduce the two-sided theory briefly. For convenience, we state it for
the extended affine Weyl group W, even though it holds true in a more general Coxeter
theoretic context.

Definition 4.23. Let L, R € ®,¢ be any sets of affine roots (we will mostly be interested
in sets of simple affine roots).

(a) By VIN/L, we denote the subgroup of i% generated by the affine reflections r, for a € L.

(b) We define

Lk .= {xeﬂwf:x_ngfI);’fandegé;}.

Recall that we called a subset L < At regular if f/I\J/L is finite.
Proposition 4.24. Let x,y € W and L, R < Ayt be regular.

(a) The double coset I/IN/LJJWR contains a unique element of minimal length, denoted
LR and a unique element of mazimal length, denoted ~Yx=%. We have

FWR o (WhalVe) = {2,

LR A (WLJUWR) = {_LiL'_R} .

(b) We have

—-L_—R
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in the Bruhat order, and there exist (non-unique) elements xr,,x’; € T/TN/L and xR, 2’y €
Wgr such that

r=xzp- "2 g and 0(z) = U(z) + £ (P2) + l(zR),

“lam B =gl a2l and 0 (TPaTR) = 0(2h) + £(2) + L(2Tg).

(c) If x <y, then

LZL‘R < LyR and _L$_R < —Ly—R.

(d) Suppose Ly,...,Lg, Ry,..., R, © Ayt are reqular subsets such that L = Ly n---n Ly
and R=Rin---nR,.. Then

Ll < IyR e i, 5« Fighs < iyl

R R

Proof. (a) We only show the claim for “zf as the proof for ~*2~ is analogous.

Let z1 € WLQWR an element of minimal length. It is clear that each such element
must lie in LWE.
Let now zg € LR A (WLazﬁ//R) be any element. It suffices to show that x¢y = x1.
Since z7 € WL@“OI/IN/R, we find z, € I/IN/L,.TR € I/IN/R such that x1 = zpxgrr. We show
x1 = xg via induction on f(xp). If z = 1, the claim is evident.
Aszp € LWR and TR € WR, it follows that ¢(zozg) = ¢(xo) + £(zR), cf. Lemma 2.13
or [BB05, Proposition 2.4.4]. Now

€($0> = E(:cl) = g(l’onfL'R) = E(CC[).TR) — g(l’[/) = E(IL’()) + E(azR) — €($L)

We conclude that ¢(zy) > ¢(xr). By an analogous argument, we get {(z1) < {(zR),
such that ¢(xp) = £(zg). It follows that

g(.%'(]) = E(wl) = E(le'o.CER) = E(:B()ZCR) — g(.%'L)

Since we may assume x7, # 1, we find a simple affine root a € L with 1 (a) € ®_,

that (zozg)'(a) € ®,;. Since z¢ € LWER we have x5 (a) € @, s0 T'y=1(a)TR < ZR.
0

SO

We see that we can write

1 = xpx0TR = (TLTra) To (r%_1(a)a:3),

[

<xy, <TR

finishing the induction and thus the proof.
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(b) The claims on the Bruhat order are implied by the claimed existences of length
additive products, so it suffices to show the latter. We again focus on Lz,

Among all elements in
(FeW |3z, e W, ape Wr: o =ardzg and £(z) = ((zr) + £(F) + ((zR)},

choose an element z( of minimal length. As in (a), one shows easily that x( € LwR,
By (a), we get zg = Y2, so the claim follows.

(c) This is [BB05, Proposition 2.5.1].
(d) If La® < Ly and ie {1,...,0},5e{l,...,r}, we get L < L;, R < R; such that

Lip Ry _ Ly (LxR) R;  Li (L R) Rj _ Li R

Y Y
(c)

It remains to show the converse.

In case R = ¢ and r = 0, this is exactly [BB05, Theorem 2.6.1]. Similarly, the claim
follows if L = @& and ¢ = 0. Writing Laft = L (acR) etc. one reduces the claim to
applying [BB05, Theorem 2.6.1] twice. O

We first describe a replacement for the length functional ¢(z,-) that is well-behaved
with passing to “zf.

Definition 4.25. Let L, R < At be regular. Then we define for each x = wet € W the
coset length functional

LRz, ) : ® > Z, a— Y8 (z,0),
LoR(z, ) := (u, o) + xr(a) — x1(wa).
We refer to Definition 3.33 for the definition of xr, xr-
Lemma 4.26. Let K, L, R < Ay be reqular subsets and let x = wet € w.

(a) For a€ ®, we have

(@) + xx(—a) = {1, ae P\,

O, Q€ (I)K-
If a, B € ® satisfy a+ B € P, then
X (@) + xx (B) — xx (o + B) € {0, 1}.

(b) LeB(z,-) is a root functional, as studied in Section 2.2.
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Proof. (a) We have

1, aed (I)K,
Xk (@) + xx(—a) =1 =P (a) = Pi(—a) = '
O, o € Q)K

Now suppose a + 5 € . Observe that the set
R:=®_ ;v (Par) k S Das
is closed under addition, in the sense that for a,b € R with a + b € ®,r, we have
a+beR.
By definition, (a, —xx()), (8, —xx(5)) € R. Thus

c:=(a+ B, —xk(a) = xKx(B)) € R.

If c € (Paf) k, then xx(a + B) = xr(a) + xx(5) by definition of xx (o + ). Hence
let us assume that c € ®_;\(Par) k-

The condition ¢ € ®_; means that

—xx(a) = xk(f) < =" (a+ B) < —xx(a+f).
This shows yx(a) + xx(8) — xx (o + ) = 0. We want to show it lies in {0, 1}, so
suppose that
xk(a) + xk(B) — xx(a+B) = 2.
We observe that

(1 —xx(@) + (8,1 —xk () = (@ + 5,2 — xx (@) — xx(B)) -

v N

€P.r\R €D,r\R ER

Since also the set ®,¢\R is closed under addition, this is impossible. The contradic-
tion shows the claim.

This is immediate from (a):

Lt (2, a) + P (@, —a) =(u, @) + (u, —a) + xr(@) + xR(-a)

_

€{0,1}
~ (e (wa) + y1(—wa))
€01}

e{~1,0,1}.
Now if a + 5 € ¢, we get
LeB(z, o) + LeB(x, B) — LeB(z, a + B)
=, @) + s B) = (@ + B) + xr(@) + xr(B) — xr(a + f)

_/

€{0,1}
— (xz(wa) + xr(wp) — xr(wa +wp))
€(0,1)
e{~1,0,1}. O
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We are ready to state our main result for this subsection:

Proposition 4.27. Let x = wel, 2’ = w'e” € W, let LR € Ay be regular subsets
and v € W be positive for LER(x,-). Moreover, fix subsets Jy,...,Jm S A such that
J:=J1 -0 Jy satisfies

Vae®y: LBz va) = 0.

We have Lxft < E(2)E if and only if for each i = 1,...,m, there exists some v € W
with
v+ Bwt(v] = v) + Pwt(wo = w'vl) < ()7t (mod D).

1

We remark that this recovers Theorem 4.2 in case L = R = (.
We now start the work towards proving Proposition 4.27.

Lemma 4.28. Let K < Ayt be reqular, a € g and B € &. Then

Xk (5a(8)) = xx(B) —{a”, B)xk ().

Proof. Consider the affine roots a = (o, —xx () € (Paf) x and b = (B, —xx (5)) € Pas.
If 5 € kg, then b e (Pyur) g such that r,(b) € (Par) k. Explicitly,

ra(b) = (5a(B), =xk (B) +{a”, B)xx(a)),

such that the claim follows from the definition of x x (s(3)).

Next assume that 8 ¢ @, such that b € (Pur) ™ \(Par) k. Since r, stabilizes the set
(Par) " \(Par)k, we get 14(b) € (Pag) \(Paf) k- This proves (together with the above
calculation) that

Xk (B) + (@, Byxk (@) < =@ (sa(B)) = =Xk (54(B))-

If the inequality above was strict, we would get
b= (sa(8), XK (B) +<{a”, B)xx(a) + 1) € D \(Par)
with
ra(t) = (8,1 — xx(B)) € Py,
contradiction. O

Lemma 4.29. Let x € W, Ty € WL and xR € WR where L, R € Ayt are reqular subsets.
Denoting the image of xr in W by cl(zr), we have the following identity for every a € ®:

LeB(zpaxg, o) = LeB(x, cl(xzg) ().
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Proof. We start with two special cases:
In case zf, = rq and xr = 1 for some (3, k) := a € L, we obtain

LeR(zparg, o) = LR (35105“““”715v , a)

=(u + kwilﬁv,a> + xr(a) — x1(spwa)
=, ) = xp(B)BY, wa) + xr(a) — xL(spwa)

= {00+ XR(0) = xr(wa) = H0R (2, ).

In case x;, = 1 and xg = r, for some (8, k) := a € R, we obtain

LyR(zpaxp, a) = LoR (wsﬁ583(#)+kﬂv7a)

=(sp(p) + kBY,a) + xr(a) — xr(wssga)
=, sp(a)) — xr(B)BY, ) + xr(a) — xr(wspa)
(

= G 35(0)) + xa(s0) — Xz (ws50)

=L0R(z, 550).

Now in the general case, pick reduced decompositions for zy, € WL and xp € WR and
iterate the previous arguments. O

Definition 4.30. By a walid tuple, we mean a seven tuple
(z = wet, 2’ = w'e” v, v',L,R,J)

consisting of

e eclements v = wel, 2’ = w'eh € W,

o elements v,v' € W,

o regular subsets L, R € A,¢ and

e asubset J € A,
satisfying the condition

v+ Bwt(v) = v) + Fwt(we = w'v') < (V)7 (mod @Y).
The tuple is called strict if v is positive for “¢%(x,-) and v’ is positive for “¢%(a’,-).
We have the following analogue of Lemma 4.3:

Lemma 4.31. Let (x = wet, 2/ = w'e” ,v,v/,L,R,J) be a valid tuple. If v' is not
positive for 0% (x',-) and v" is an adjustment in the sense of Definition 2.2, then
(x,2',v,0" L, R, J) is also a valid tuple.
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Proof. This means that there is a root o« € ®* such that v” = v’s, and either
LeR(2' v'a) < 0 or Ze(2!, —v'a) > 0.
We calculate

v+ Bwt (v = 0) + Pwt(wo = w'v”)

=0+ Bwt(v'sq = v) + Fwt(wo = w'v's,)

< v+ Bwt (v = ) + xr(Wa)a¥ + Iwt(wv = w'v') + xp(—w'v'a)a”
L3:3

<)+ (xr(W'e) + xL(-w'v'a))a
=)+ (@) + xr(Va) + xp(—w'v'a)) a¥  (mod @)
In case “0f (2’ v'a) < 0, we use the fact x7(—w'v'a) < 1 — xp(w'v'a) (cf. Lemma 4.26)
to show

ot

Vv

(o) + xr(v'a) + xp(-w'v'a)
<,y + xpr(v'a) + 1 — xp(w'v'a@)
=Lz’ a)+1<0.
Similarly if ¢ (2/, —v'a) > 0, we get
(py ) + xr(V'@) + xp(—w'v'a)
<p,a) +1—xr(—v'a) + xr(—w'v'a)
=1 LR’ —a) <.
In any case, we see that
lu,ay + xr(v'a) + xr(—w'v'a) <0,
from where the desired claim is immediate. O
Lemma 4.32. LeL(x = wek, 2’ 23’5“/, v,v', L, R, J) be a (strict) valid tuple. Let
moreover xr,,x; € Wi, and xg,x € Wg be any elements. Then
(xpxaR, 22’ oy, cl(zr)v, cl(zh)v', L, R, J)
is a (strict) valid tuple as well.

Proof. Similar to the proof of Lemma 4.29, it suffices to show the claim in case three
of the four elements x, 2’ , xR, 2, are trivial and the remaining one is a simple affine
reflection.

We just explain the argument in case zy, = rq,2; = g = 23 = 1 for some a € L, as
the remaining arguments are very similar. Write a = («, k) so that xz(«) = —k. Then
TLx = sqwel TR aY We calculate

v (p+ kwtaY) + Fwt (v = v) + Pwt(sqwn = w't)

= v+ k(wv) raY + Pwt(v) = v) + xo(e)(wo) ey + Fwt(wo = w'v')

= v+ Bwt(v) = v) + Fwt(wv = w'v').
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It follows that (zpz,z’,v,v',L, R,J) is a valid tuple. The strictness assertion follows
from Lemma 4.29. O

Using Lemma 4.32, it will suffice to show Proposition 4.27 only in the case x € © WER
and 2’ € “FWE,

Lemma 4.33. Let (x = wet, 2’ = w'et v, v, L, R, J) be a strict valid tuple.
(a) If v € “WE and a € ® satisfies 08 (x, o) > 0, then £(z,a) > 0.
(b) If x € LWER and o € 7 satisfies (wv)lae &7, then
(2,2, 8-140,0", L, R, J)

s a strict valid tuple as well.

(c) If' € "LW—R and a € @, satisfies vla e ®7, then
(z,2' 0,800, L, R, J)
is a strict valid tuple as well.

Proof. We write

~—

LeB(z, o) =(u, 0 + xr(@) — x1(wa)
=(p, )y + @7 (a) — Dh(a) — 7 (wa) + @F (wa)
=l(z,a) — ®f(a) + O (wa).

~—

(a) If wa ¢ @7, then
Uz, a) =102, a) + Dh(a) = 0.
If wa € ®F, then the condition z € LR already implies £(z, ) = 0.
(b) The condition « € ® together with = € LWER yields l(x,w™ta) = 0. We have
LeR(z, —wla) = LRz, v(—(wv) a)) > 0

by the positivity assertion on v. By (a), we conclude £(x, —w~'a) = 0, so altogether
we get £(z,w 1) = 0.

By the above computation, we get
LeR(z,w™ta) = 0L (w™la) + @ (@) =1 — & (w ).
On the other hand, we have
LeB(z,wta) = LeB(z,v(wv) ta) <0

by the positivity assertion on v. Thus “¢%(z,w™'a) =0 and w™la e <I>1JSL.

68



Consider the elements a = (o, @7 (—a)) € (Pur)} and b = (wla,®T(—wla)) €
(Paf) ;- We have

2(b) =(o, @ (~w ™ ) = (p,w ™ a))
=(a, @* (=) + (2, ~w ') = (0, 9" (—)) = a.
We see that = = r,xr,. Now the claim follows from Lemma 4.32.

c¢) The proof is analogous to (b): We have £(2',a) > 0 as a € ®}, and 2/(a, ®T (—a)) €
R
& . Now

0< LR, —a) = €', —a) — B} (—a) + F (—w'a)
=l(z',—a) + &} (—wa) < —1 + ] (—w'a) < 0.

So equality must hold, hence ¢(z',a) = 1 and —w'a € ¢ .

Writing b = (o, @ (—a)) € (Par)};, and a = (—w'a, @7 (w'a)), we compute

2'(b) =(w'a, ®F (—a) — (i, @)
=(w'a,l(z',—a) + T (—w'a))
=(w'a, -1+ ®"(—w'a)) = (Wa,—0" (v'a)) = —a.
Hence r,z'ry = 2’ with r, € WL and 1, € WR. The conclusion follows from
Lemma 4.32. O

Proof of Proposition 4.27. Let us fix L, R, Jy, ..., Jn, J for the entire proof. To keep our
notation concise, we make the following convention: We call a triple (z,2’,v) valid if,
for each i = 1,...,m, there exists v, € W such that (x,2’,v,v}, L, R, J;) is a strict valid
tuple.

First assume that Zaft < Lz/f. We want to show that (z,2/,v) is valid. Write
x =z L2 xp with € WN/L,:UR € WR. It suffices to show that (LxR,x’,cl(xR)_lv)
is valid by Lemma 4.32.

In other words, we may assume that z € LIWE and x < 2/ for proving that (x,2',v) is
valid. By Lemma 4.17, we find v’ € W such that

v+ wt(v' = ) + wi(we = w'v') < ()T

Now recall from Lemma 3.32 that

/

Rwt(v' = v) < wt(v' = v),

Lywt(wv = w'v') < wt(wo = w'v').
We conclude that (x,2’,v,v', L, R, J;) is valid for all ¢ = 1,...,m. Up to iteratively
choosing adjustments for v/, we may assume that the tuple is strict valid, so (z,2’,v) is
indeed valid.
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For the converse direction, let us assume that (x,2’,v) is valid. We have to show
Lplt < E(2")E. Again, we can use Lemma 4.32 and Lemma 4.29 to reduce this to any
other elements in WLZUWR resp. MN/LJT/ WR. N N

Thus, we may and will assume that z € “WF and 2/ € ~“W 2. We then have to
show = < 2/ using the fact that (z,2’,v) is valid for some v e W.

Among all v € W such that (z,2’,v) is valid, choose one such that “¢(wv) is as small as
possible. If wv ¢ “W, then we find some o € @} with (wv) ™! € ®~. By Lemma 4.33, also
(z,2, 5,-1,v) is valid and by Lemma 3.30, L0(sqwv) < L4(wv). This is a contradiction
to the minimality of “¢(wv).

We see that we always find some v € W such that (x,2’,v) is valid and wv € LW.

We now prove that = < 2’ using Theorem 4.2.

By Lemma 4.33 (a), it follows that v € W is length positive for z and that ¢(z,va) = 0
for all & € ®;. Since &; = —P; and {(z, —va) = —f(x,va), this is only possible if
l(z,va) = 0 for all @ € ®;. We conclude that (v,Jq,...,Jy) is a Bruhat-deciding
datum for x.

Now for each ¢ = 1,...,m, by assumption, there exists some v; € W such that
(z,2',v,v}, L, R, J;) is a strict valid tuple. Minimizing %¢(v}) as before, we may assume
that v/ € "W by Lemma 4.33.

We see that (x,2,v,v}, L, R, J;) is a strict valid tuple with wv € LW and v} € BW.
By definition of the semi-affine weight function, we get

Bwt(v) = v) = wt(v) = v),

Lyt (wo = w'v]) = wt(wo = w'v)).
We conclude

v+ wt(vh = v) + wt(we = w'v))
= ot + Bwt(v] = ) + Lwt(wo = w'v))
< (V)7 (mod @Y).
valid ‘
This is exactly the inequality we had to check in order to apply Theorem 4.2. So we
conclude z < 2/, finishing the proof. O

We finish the section with three applications for this proposition. Our first application
re-proves the well-known criterion for type A,, and even a bit more.

Corollary 4.34. Suppose that ® is irreducible and that ap,ar € Aar are special nodes.
Let L = Ag\{ar}, R = Au\{ar} and write wy,,we, € Q@ for the corresponding
coweights.

Let z = wet, x' = w'e” € W, and assume that = ;! (mod ®). Then we have

1

L_.R < L(.T/)R — (,U, +WaR —w waL)dom < (Nl +WQR o (wl)flwaL

T )dom.

Proof. For all a € ®, we easily verify (w,,,a) = xr(a). Thus v € W is positive for
LeB(z,-) if and only if v™" (4 + way, — W w,, ) is dominant.
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Similarly, v’ € W is positive for “¢%(2’, ) if and only if (v/)™! (1 + way — (W) 'wa, )
is dominant.
Finally observe that for all v,v" € W, we can use Lemma 3.41 to compute
v+ Bwt(v) = ) + Lwt(we = w'') — ()7
1waR — (v/)_lwaR + (w’v’)_lwaL — (wv)_lw% — (W)

:U_l(:u + Wap — w_lwaL) - (U/)_l(:u + Wap — (w/)_lwaL)'

=v_1u + v

The conclusion follows in light of Proposition 4.27. O

For irreducible root systems of type A, this recovers the Bruhat order criterion pre-
sented at the beginning of Section 3.

As another application, we present our most general criterion for the Bruhat order on
affine Weyl groups.

Definition 4.35. Let z € W. A Deodhar datum for x consists of the following:

o Regular subsets Ly,...,Ly, R1,..., R, Aaf/_\YVith f,7 = 1 such that L := L1 n
nLpand R:=Ryn---N R, satisfyaceLWR.

o For eachie {1,...,4} and j € {1,...,r} an element v; ; € W that is positive for
LigRj(x, )
o Foreachie{l,...,¢} and je {1,...,r} a collection of subsets

J(ivj)la SR J(Z7j>m(l,j) cA
such that m(i, j) = 1 and J(i, j) := J(i,5)1 0 - 0 J (i, ) m(i5) satisfies

Vae @y ) : Lighi (2, v; ja) = 0.

Theorem 4.36. Let x = wet € W and fix a Deodhar datum
Li,....,Ly, Ri,....,R;, (Ves), (J(e,0)s).

Let o' = w'e? € W. Then z < 2’ if and only if for each i € {1,...,¢},je{1,...,r} and
ke{l,...,m(i,5)}, there exists some Uz/‘,j,k e W such that

g Wt (o] = i) + Pwt(wo g = w'v] ) < (vf ) e (mod @ ).
Proof. In view of Proposition 4.27, the existence of the vg’ ;i for fixed 7, j means precisely

Liij < L; (x,)Rj.

By Deodhar’s lemma, i.e. Proposition 4.24, this is equivalent to x = Lzt < a/. O
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Lemma 4.37. Let wi,ws € W. Let moreover Ry,..., Ry © Aus be reqular subsets with
k=1and R:= Ry n---n R. Then we have the following equality in Z® :

Bwt(wy = wy) = sup Tiwt(w; = wo).
i=1,...k

Proof. Consider Proposition 4.27 for p and p’ sufficiently regular, with L = ¢f and
(J1,...yJm) = (). Then by Proposition 4.24,

B < (@) — vie{l,... k}: 2f < ()
The claim follows from Proposition 4.27 with little effort. O

Together with Lemma 3.36, this result allows us to express the weight function of
the quantum Bruhat graph wt : W x W — Z®V as a supremum of semi-affine weight
functions.

As our final application of Proposition 4.27, we generalize Proposition 4.12 to the
admissible subsets considered in [Rap02].

Proposition 4.38. Let K C A,¢ be reqular, v = wet € W and \ € X, (T)r, dominant.
Then the following are equivalent:

(i) © € Wi Adm(\)Wk-.
(ii) For every v e W, we have

v+ Bwt(wo = v) < .

(iii) There exists some v e W that is positive for KX (x,-) and satisfies

v+ Bwt(wo = v) < .

Proof. By definition, (i) means that there exists u € W such that

KxK < K(EUA)K.

By Proposition 4.27, we get condition (ii) for every v € W that is positive for X¢5(z,-).
Now a simple adjustment argument, similar to Lemma 4.31, shows that (ii) holds for
every v € W.

(i) == (iii) is clear, as we always find a positive element for each root functional
Corollary 2.4.

(iii) = (i): It suffices to show that K2 < &"*. This follows immediately from
Proposition 4.27. O
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5. Demazure product

The Demazure product * is another operation on the extended affine Weyl group w.
In the context of the Iwahori-Bruhat decomposition of a reductive group, the Demazure
product describes the closure of the product of two Iwahori double cosets, cf. [HN21,
Section 2.2]. In a more Coxeter-theoretic style, we can define the Demazure product of
W as follows:

Proposition 5.1 ([He09, Lemma 1]). Let z1,22 € W. Then each of the following three
sets contains a unique mazimum (with respect to the Bruhat order), and the mazima
agree:

{wray [ah <o}, {zyzo |2y <an},  {afah [ 2] <, 2 <o)
The common maximum is denoted x1 * xo. If we write x1 * xo = x125 = x)x9, then
Uy * 22) = £(x1) + £(xh) = () + (z2). O

Demazure products have recently been studied in the context of affine Deligne-Lusztig
varieties [Sad21; He2la; HN21]. While the Demazure product is a somewhat simple
Coxeter-theoretic notion, it is connected to the question of generic Newton points of
elements in W. He [He21a| shows how to compute generic Newton points in terms of
iterated Demazure products, a method that we will review in Section 7.3. Conversely,
He and Nie [HN21] use the Mili¢evié¢’s formula for generic Newton points [Mil21] to show
new properties of the Demazure product. N

In this section, we prove a new description of Demazure products in W, generalizing
the aforementioned results of [HN21]. As applications, we obtain new results on the
quantum Bruhat graph that shed some light on our previous results on the Bruhat
order.

5.1. Computation of Demazure products

If one plays a bit with our Theorem 4.2 or [HN21, Proposition 3.3], one will soon get
an idea of how Demazure products should roughly look like. We capture the occurring
formulas as follows.

Situation 5.2. Let z1 = wiel, xy = woeh € W. Let v1,v2 € W and define

/ _ -1
xll ::wllgul - (wlvl)(wgvg) 1€w2v2v1 11 —wav2 WH(v1=wav2)

)

/ — J—
xh r=wheM2 1= vy 1ot —va wh(v1=w202)

)

716’02’[)171/141 +po—v2 wi(

Ty =Wyl 1= wivyv, vi=wavs) 1o = 117,

In this situation, we want to compute the Demazure product x; * x9, knowing that
T1 * To can be written as Tix9 = x1Z2 for some ¥ < z1 and To < 9. If 21 isin a
shrunken Weyl chamber with LP(x;) = v, and 23 is shrunken with LP(z2) = {v2}, then
x4 = o1 * x2 by [HN21, Proposition 3.3], so #; = 2} and &y = ).
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In the general case, our goal is to find conditions on vi,ve € W to ensure that z, =
Tl * T2.

Before examining this situation further, it will be very convenient for our proofs to
see that the property

(x1 * :1;2)71 = 51;2_1 * xl_l

is reflected by our construction in Situation 5.2.

Lemma 5.3. Suppose we are in Situation 5.2. Let us write y1 1= x;l and yo 1= xfl.
Define v} := wavawg resp. vh = wiviwp.
Construct yi, y5, yx associated with (yi,y2,v],v4) as in Situation 5.2. Then

yi= () =) pe=ah

Moreover,
e v € LP(21) iff vh € LP(y1).
e v9 € LP(x2) iff v] € LP(y2).

e dapu) (v1 = wave) = dgpun (v) = wi'vh) and
wt(v) = wavg) = —wo wt(v] = wi vg).

Proof. Write

15*102#2’ 15*1171#1

Y1 = wy Y2 = wy

and compute

! —1_—w —w1v1wo wh(wavewo=>(w1) ™ twiviw
A =(w2v2w0)(w1’01w0) T Wip—wivIwo (wavawo=>(w1) 1v1Wo)

:(w202)(wlvl)—lg—wlm-ﬂmm wt(vi=wava) _ (x/l)_l'

1 1

A similar computation, or a repetition of this argument for z; = (y2)™ ", 22 = (y1)™ ",

shows that y} = (25)~!. Then the conclusion y, = z; ! is immediate.
For the “Moreover” statements, recall that

LP(y;) = LP(z3 ") wg LP(x9)wo.

Lemma 2.12

The same holds for o = xl_l. The final statement is due to the fact that v] = wavewy

and wy 11}5 = v1wy using the duality anti-automorphism of the quantum Bruhat graph,
cf. Lemma 3.9. O

The first step towards proving x1 * zo = x, is the following estimate:

Lemma 5.4. Let x1,x9 € W and vg € LP(x1 * x9). There exists v1 € LP(x1) such that

U(xy % x2) < L(z1) + U(x2) — d(v1 = Wav2).
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Proof. Write x1 * xo = yxo for some element y = w'elt < x1. Observe that ((yz2) =
£(y) + £(x2), so that vy must be length positive for xs and wevy must be length positive
for y.

Since y < z1, using Lemma 4.17, we find a length positive element v; for x1 such that

(wgvg)_l,u’ + wt(v1 = wave) + wh(w'wavy = wivy) < (vl)_lm.
Pairing with 2p and using Lemma 3.6, we compute

2p, (wava2) ™ 'y + £(v1) — £(wavz)
+ d(vy = wava) + L(w'wavs) — L(wrv1) + d(w'wave = wivy)

< (2p, (v1) ).
Using the length positivity of wyve for y and vy for z1 (Corollary 2.11), we conclude
U(y) + d(v1 = wava) + d(w'wave = wivy) < £(z2).
Thus
Uy * 22) = L(y) + L(z2) < l(x1) + L(22) — d(v1 = Wave) — d(wW'wave = wiv1).
We obtain the desired conclusion. O
We now study the Situation 5.2 further.

Lemma 5.5. Consider Situation 5.2, and assume that v1 € LP(z1). Then we always
have the estimate

0(xh) = U(x1) — dopw)(v1 = wava).
The following are equivalent:

(i) Equality holds above:
0(xh) = L(z1) — dgpw)(v1 = wava).

(ii) wavy is length positive for x.
(iii) For any positive root o, we have

U(z1,v10) — (wt(vg = wavs), @) + T (wova) — T (v1a) = 0

In that case, 2} < x1, so that x4 < o1 * x9.
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Proof. Consider the calculation

(zh) 02211 <(w2v2)’1 (w202v1_1,u1 — wavy Wt(v1 = wan2)) ,2p) — L(wavz) + L(wyvr)

L?6<U1_1M’ 2p) — L(v1) + L(wave) — d(v1 = wavy) — L(wave) + £(wiv1)

C;ﬂ((:):l) —d(v1 = wavs).

This shows the estimate and (i) <= (ii). In order to show (ii) <= (iii), we compute

0(2), wavea) =(wovaa, wgvgvl_l,ul — wavy Wh(v1 = wave), ) + & T (wavea) — wt(wiviar)

={(z1,v10) — &1 (v1) — (Wt(v1 = wawe), ) + T (wav2a).

Finally, assume that (i) — (iii) are satisfied. We have to show z} < x1. For this, we
calculate

(wgvg)_l (wgvgvflul — wave wt(v] = wgvg)) + wt(v] = wave)
+ wt(wiv] = wivy)

-1
- 1)1 Ml.

Since we assumed wyve € LP(2)), we conclude zj < z1 by Theorem 4.2. Now by
definition of the Demazure product, we get x, = xjze < 21 * x2. ]

By the duality presented in Lemma 5.3, we obtain the following;:

Lemma 5.6. Consider Situation 5.2, and assume that vy € LP(z2). Then we always
have the estimate

U(xy) = U(x2) — dopw)(v1 = wava).
The following are equivalent:

(i) Equality holds above:
U(xh) = L(x2) — dgpw)(v1 = wava).

(ii) vo is length positive for x,.
(iii) For any positive root a, we have

U2, v20) — (wt(v1 = wave), @) + ®F (wovea) — T (v1a) = 0.

In that case, xh < 9, so that xy < 1 * x9.

Proof. Under Lemma 5.3, this is precisely Lemma 5.5. 0
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Lemma 5.7. Suppose we are given Situation 5.2, and that vy € LP(x1) and vy € LP(z2).
We have the estimate

U(xy) = 0(x1) + £(z2) — d(v1 = wav3).
Equality holds if and only if vo € LP(z4).

Proof. Using again Corollary 2.11and Lemma 3.6, we calculate

Uzy) = <v;1 (vgvflul + p2 — vawt(vg = wgvz)) ,2p> — l(vg) + L(wyvy)
=(vy pr, 2p) + (vy g, 2p) — d(vy = wava) — £(v1) + L(wava) + L(va) + L(wivy)
=l(x1) + l(x2) — d(v) = wava)

Both claims follow from this calculation. O

Lemma 5.8. Letz = wet € W andue W. Among allv € LP(x), there is a unique one
such that d(v = u) becomes minimal. For this particular v, we have

Vae ®t: ((x,va) — (wt(v = u),a) + &1 (ua) — ®*(va) = 0.

Proof. Let xo = t“* with A\ € X,(T)r, superregular and dominant. Let v = v; € LP(x)
such that d(v = u) becomes minimal. Set vy = u.

Consider Situation 5.2 for x; = x and z as above. Now the condition (iii) of
Lemma 5.6 is satisfied by superregularity of \. We conclude that zf, < 2, so that
Ty S T * T2.

Combining Lemma 5.4 with Lemma 5.7 shows

Uz) + l(xa) —d(v=u) = l(x] *x2) = l(xy) = l(x) + l(x2) —d(Vv = 1u).

In particular, we get z1 * x5 = x4.

The above argument works whenever v € LP(z) is chosen such that d(v = u) becomes
minimal. Since the value of x1 * xo does not depend on the choice of such an element v,
nor does T, = x1 * ro. In particular, the classical part cl(z4) = wvu~! does not depend
on v, hence v is uniquely determined.

The formula x, = x1 * x9 = 2zjzy implies that ¢(z.) = £(z}) + ¢(x2). Using the
previously computed length of ., we conclude £(z}) = ¢(z1) — d(v = u). Now the
estimate follows from Lemma 5.5. O

1

Considering Lemma 5.8 for the inverse ™, we obtain the following:

Lemma 5.9. Let x = wet € W and u e W. Among all v € LP(x), there is a unique one
such that d(u = wv) becomes minimal. For this particular v, we have

Vae ® : l(x,va) — (wt(u = wov), ) — &1 (ua) + &F (wva) = 0. O

Definition 5.10. Let z € W and u € W. The uniquely determined v € LP(x) such that
d(v = w) is minimal will be denoted by v = py(u). The uniquely determined v € LP(x)
such that d(u = wv) is minimal will be denoted by v = p,(u) = w™!pY_, (uwp)wo.
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The functions p, and p) will be studied in Section 5.2. For now, we state our an-
nounced description of Demazure products in W.

Theorem 5.11. Let 21 = wieh!, 290 = woeh? € w. Among all pairs (vy,vs) € LP(21) x
LP(z2), pick one such that the distance d(vy = wave) becomes minimal.
Construct x4 as in Situation 5.2. Then
L] % Ty = Ty = wlvlevl—lul+v2_1‘u,2fwt(v1:>w2v2),u2fl’
Uz % x2) = l(x1) + l(x2) — d(v1 = wave),
V9 € LP(JIl * .7:2).

Proof. We have z, < 1 * xo by Lemmas 5.8 and 5.5. By Lemma 5.4, we find (v}, v}) €
LP(z1) x LP(z2) such that

O(x1) + £(x2) — d(v] = wovh) = b(x1 % 12) = l(w4) = L(z1) + L(x2) — d(v1 = Wo2).
By choice of (v1,v2), the result follows. O

We note the following consequences of Theorem 5.11.
Proposition 5.12. Let x1 = w1e"!, 20 = woeH? € W. Write
M = M(x1,z2) := {(v1,v2) € LP(x1) x LP(z2) |
V(v],vh) € LP(x1) x LP(z2) : d(v1 = wovs) < d(v} = wavh)}
for the set of all pairs (vi,ve) such that the theorem’s condition is satisfied.

(a) The following two functions on M are both constant:

—1
o1: M — W, (v1,v2) = v1vy ",

21 M — Z®Y, (v1,v2) — v2 Wt(v1 = wavs).

(b) The following is a well-defined bijective map:

M — LP(:L'l * .%'2), (’1)1,’1)2) = V9.

Proof. (a) From the theorem, we get that the function

~ B
M — W, (Ula 02) levlvglngl w1+ pe—v2 wt(vi=wav2)

=wy 1 (v1, ,U2)6<P1(U11U2)71M1+M2—<P2(U11U2)
is constant with image {z1 * x2}. This proves that ¢; and ¢ are constant.

(b) Injectivity follows from (a). Well-definedness follows from the theorem. For surjec-
tivity, let vy € LP(x1 * x2). Then certainly ve € LP(z3). By Lemma 5.4, we find
vy € W such that f(z; * x2) < {(z1) + (z2) — d(vi = wave). By the theorem,
we find (v],v5) € M with £(x1 * x9) = l(z1) + €(x2) — d(v] = wav)), such that
d(v1 = wavy) < d(v] = wavh). It follows that (vq,v2) € M, finishing the proof of
surjectivity. O

Remark 5.13. In case {(x1x2) = l(x1) + ¢(x2), we get x129 = 1 * x2. In this case, we
recover Lemma 2.13.
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5.2. Generic action

Studying the Demazure product where one of the factors is superregular induces actions
of (W,=) on W, that we denoted by p, resp. p;/ in Definition 5.10. In this section, we
study these actions and the consequences for the quantum Bruhat graph.

Lemma 5.14. Let x1 = wie!t, x9 = woeM? € W. Then
Pzixxs = Pz © Pzy-

Proof. Note that if z € W is in a shrunken Weyl chamber with LP(z) = {u} and z € W,
then by Proposition 5.12,

LP(z * ) = {p.(w)}.

Hence we have

{p2s Py ()} = LP ((z # 21) % 22) = LP (2 % (21 % 22)) = {paysa ()}

This shows the desired claim. O

Remark 5.15. (a) There is a dual, albeit more complicated statement for the dual generic
action pV.

(b) If & = wry, -+ - 1g, is a reduced decomposition with simple affine roots ay,...,a, €

Ayr and w € Q of length zero, then

Pz = Pwsrg, #ra, = Pray, ©° 70 Pra; © Pw-

The map p,, is simply given by p,(v) = cl(w)v, as LP(w) = W. We now describe
the py, as follows:

For a simple affine root («, k) € A,¢, we have

1, B = q,
Urar),B) =1 —1, = —q,

0, B # ta.

Thus
LP(r(ar) ={ve W | v lae @Y.

Let ve W. If vl € &7, then sqv € LP(r( 1)) with d(v = sq(sqv)) = 0. Hence
Priar) (v) = squ.
If v=lar € ®F, then v € LP(r(4 ) with d(v = sqv) = 1 by Lemma 3.8. Since there

exists no u € LP(r(q,x)) with d(v = sau) = 0, a distance of 1 is already minimal.
We see that py, , (v) = v. Summarizing:

() v, vl e o,
Priain\V) = _ _
(@) sqUu, v tae ® .

This gives an alternative method to compute p,. One easily obtains a dual method
to compute p, in a similar fashion.
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Lemma 5.16. Let z € W and v,v" € LP(x) be two length positive elements. There exists
a shortest path p from v to v' in the quantum Bruhat graph such that each vertex in p
lies in LP(x).

Proof. Let us first study the case v/ = 1.

We do induction on ¢(v). If £(v) = 0, the statement is clear.

Otherwise, there exists a quantum edge v — vs,, for some quantum root a € ®* such
that d(v = V') = d(vsq = V') + 1 (Lemma 3.18). In this case, it suffices to show that
vSq € LP(2).

The quantum edge condition means that £(vsy) = £(v) — £(s4). In other words, every
positive root € T with s,(3) € @~ satisfies v(3) € D~

Let € ®T, we want to show that £(x,vs,(3)) = 0. This follows from length positivity
of v if s4(B) € ®*. So let us assume that s,(3) € . Then vs,(3) € @, applying the
above observation to —s, (). Hence ¢(x,vs4(8)) = 0, as 1 € LP(z). This finishes the
induction, so the claim is established whenever v’ = 1.

For the general case, we do induction on ¢(v'). If v/ = 1, we have proved the claim,
so let us assume that ¢(v') > 0. Then we find a simple root o € A with s,v" < v'. In
particular, (v')"'a € ®~ so that /(x,a) < 0. Consider the element z’ := xs, > . We
observe that for any v € W and 3 € @,

Uz, uf), uf # ta,
U2, squB) = Uz, uf) + £(sq, —upf) = { —l(z,a)+1>0, uf=—a,
lr,a) —1 <0, uf=aqa.

It follows that
LP(2') = {squ | u€ LP(z) and v ta € ®~}.

In particular, s,v’ € LP(2'). Now suppose that v"'a € ®~. Then also s,v € LP(x2/).
We may apply the inductive assumption to get a path p’ from s,v to sqv’ in LP(2').
Multiplying each vertex by s, on the left, we obtain the desired path p in LP(x).
Finally assume that v~ 'a € ®*. Then s,v € LP(x) by Corollary 4.7.
By Lemma 3.8, v — sqv is an edge in QB(W) and

dQB(W) (U = ’U/) = dQB(W) (’U = Soﬂjl) = dQB(W) (Sav = ’U/) + 1.

We get a path from s, v to v" in LP(x) by repeating the above argument, then concatenate
it with v — s,v.
This finishes the induction and the proof. O
Corollary 5.17. Let x = we' € W and v,v' € LP(2). Then
1

v — (V) — wt(v = v') + wt(wv = wo') = 0.

In particular, d(v = v") = d(wv = wv’).
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Proof. Let

aq a9 Qn—1 /
p:v:'vl—)’l)Q—)...—)'Un:'v

be a path in LP(x) of weight wt(v = v"). Now for ¢ = 1,...,n — 1, observe that both v;
and v;sq, are in LP(x). Thus ¢(z,v;a;) = 0. We conclude that

(v) T — (vi+1)_1,u — wt(v; = vit1) + wt(wv; = wvit1)
=i, ey — T (—vii) ) + wh(wv; = wu;s,,)
<via, ey — @ (—viey) ) + 1 (wvia) oy’
={(z,via;)e;y = 0.

Summing these estimates for ¢ = 1,...,n — 1, we conclude

v — (V) — wt(v = v') + wt(we = w'v') <0.

Considering the same argument for =1, wvwg, wv'wg, we get the other inequality.

The “in particular” part follows from inspecting the argument given. Alternatively,
pair the identity just proved with 2p, then apply Lemma 3.6 and Corollary 2.11. O

Remark 5.18. The corollary can be shown directly by evaluating the Demazure product
gV 4 5 V2P

in two different ways, using the associativity property of Demazure products.
Proposition 5.19. Let z = wel € W, v e LP(z) and ue W. Then

d(u = wv) = d(u = wpg(u)) + d(wpz(u) = wo).
Proof. Let X\ be superregular and y := £%*. Define the element

Zi=ysx = upx(u)*lgpz(u)/\w*pz(u) wi(u=wpz(u))
Then z is superregular with LP(z) = {pz(u)}. Consider the element

7 = u(wp)~leweA-wywi(u=w),
This is superregular with LP(7’) = {wv}. Note that Theorem 4.2 implies ¢’ < y, as
(wv) " (wud — wo wt(u = wo)) + wt(u = wo) + wt(u = u) = \.

Thus Z < z, where

Z=jx = uv—lgv/\-‘r,u—th(uéwv).
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Note that Z is superregular with LP(Z) = {v}. In light of Theorem 4.2, the inequality
Z < z means

v N 4 — v wt(u = wo))+ wt(pg(u) = v) + wt(u = u)
< pe(W) M (pe (WA + i — pr(w) wh(u = wp, ().
Rewriting this, we get
0 — wh(u = wo) + wh(pa (1) = v) < pa(u) " — wh(u = wp, (u)).
Corollary 5.17 yields the equation
v = pa(w) T wt(pp(u) = v) = wi(wpa(u) = wo).
We conclude
wt(u = wov) = wt(u = wpg(u)) + wt(wpy(u) = wo).
This implies the desired claim. ]

By the duality from Lemma 5.3, we obtain the following.

Corollary 5.20. Let x = wet e W, v e LP(z) and ue W. Then
d(o = u) = d(v = pY (u)) + d(pY (u) = u). m

Remark 5.21. In the language of [BFP98, Section 6], this means that the set w LP(z)
contains a unique minimal element with respect to the tilted Bruhat order <,. Since
wLP(x) = LP (2~ )wo, it follows that the set LP(z) contains a unique maximal element
with respect to <,. If z = e/ is a pure translation element, this recovers [Len+15,
Theorem 7.1].

The converse statements are generally false, i.e. LP(x) will in general not contain tilted
Bruhat minima, and w LP(z) will not contain maxima. For a concrete example, choose
x to be a simple affine reflection of type As.

The set LP(z) satisfies a number of interesting structural properties with respect to
the quantum Bruhat graph, namely containing shortest paths for any pair of elements
(Lemma 5.16) and the existence of tilted Bruhat maxima. One may ask the question
which subsets of W occur as the set LP(x) for some x € w.

Corollary 5.22. Let x = wet € W and uy,us € W. Then the function
©: W — Xu(Try, v vy —wt(ug = wv) — wt(v = ug)

has a global mazimum at py(u1), and another global mazimum at p) (uz).
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Proof. If v € W is not length positive for z, and wvs, is an adjustment, it is easy to see
that p(v) < p(vsa). So we may focus on @|ip(y).-
Let v € LP(z) and v = p,(u1), so that

o) = v — wt(ug = wo) — wt(v = ug)
= vl — wt(uy = wv') — wt(wv' = w) — wt(v = ug)
C5:17(U,)_1M —wt(v) = v) — wt(ug = wv') — wt(v = ug)
< (V)7 — wt(ug = wv') — wt(v' = ug) = p(v').

This shows the first maximality claim. The second one follows from the duality of
Lemma 5.3. O

Remark 5.23. Let 1 = wieM,x9 = woeh? € W and v; € LP(x1). Theorem 4.2 states
that x1 < z9 in the Bruhat order if and only if there is some vy, € W with

vl_l,ul + wt(vg = v1) + wt(wiv] = wavy) < 7)2_1#2.

By the above corollary, it is equivalent to require this inequality for vy = pg, (wiv1). One
can alternatively require it for vo = p;/, (v1).

Lemma 5.24. Let x1 = w1, z9 = woeh? € W and vy € LP(x1),v2 € LP(x2). The
following are equivalent:

(i) The distance d(vi = wava) is minimal for all pairs in LP(z1) x LP(z2), i.e.
(v1,v2) € M(x1,x2).
(ii) v1 = py, (wav2) and vy = pg,(v1).

Proof. (i) = (ii): Certainly, v; minimizes the function d(- = wyvz) on LP(x;), showing
the first claim. The second claim is analogous.

(ii) = (i): Consider Situation 5.2. By Lemmas 5.5 and 5.8, we conclude that wavo
must be length positive for . It follows that z, < x1 * z2 and

Uwy) = 0(x}) + U(z2) = £(z1) + £(x2) — d(v1 = Wwav2).

By Lemma 5.7, vo is length positive for z,. Write x1 * z9 as we”. Using Lemma 4.17
with Lemma 4.3, the condition z, < x * zo yields some v§ € LP(x * x9) with

o] g+ vy e — wt(v = wavg) + wt(vh = va) + wt(wivy = wvh) < (vh) .

By Proposition 5.12, we find v} such that (v{,v5) € M(x1,x2). By Theorem 5.11, we
can express 1 * xo in terms of (v],v5). Then the above inequality becomes

vl_l,ul + ’1)2_1,u2 — wt(v) = wave) + wt(vh = vo) + wt(wivy = wiv))

< (V)M + (v) Tz — wh(v) = wavh).
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Since v1,v] € LP(z1) and v, v} € LP(z2), we can apply Corollary 5.17 twice to obtain
wt(v] = v]) + wt(wavh = wave) — wt(vy = wavy) < — wt(v] = wavh).
Rewriting, we get
wt(v] = v]) + wt(v] = wavh) + wt(wavh = wovy) < wt(vy = wavs).

In other words, there is a shortest path from vy to wyve that passes through v} and wouvs.
By condition (ii), this is only possible if v = v] and vy = v4, showing (i). O]

Corollary 5.25. Consider Situation 5.2 with vi € LP(x1),v2 € LP(22). There exists
(v],vh) € M(x1,22) such that
d(v1 = wave) = d(vy = v}) + d(v] = wavy) + d(wavh = wovs).
Proof. For convenience, we define a set of admissible pairs by
A = {(v],v}) € LP(x1) x LP(x2) |
d(v1 = wave) = d(vy = v]) + d(v] = wavh) + d(wavh = wovs)}.

Then (v1,v2) € A, so that A is non-empty. Choose (v],v5) € A such that d(v] = wav})
becomes minimal among all pairs in A. We claim that (v],v5) € M(z1,z2). For this,
we use Lemma 5.24. It remains to show that vy = py (wavh) and vy = pg,(v1). By
Proposition 5.19 and Corollary 5.20, we obtain

d(v] = wavy) = d(v) = py, (wavy)) + d(py, (wavh) = wavs),
d(v] = wavh) = d(v] = waps, (V1)) + d(waps, (v1) = wavh).

It follows that (p, (wauvy),v5) € A and (v, pe,(v])) € A. By choice of (v],v5) and the
above computation, we get that v] = py (wovy) and vy = pg,(v]). This finishes the
proof. O

Corollary 5.26. For 1, x5 € W, we have LP (1 %23) = py, (LP(21)) = py, (w2 LP(x2)),
where wy € W is the classical part of xo.

Proof. We only show LP(x; * x2) = ps,(LP(x1)), the other claim is completely dual.
If vy € LP(z1#x2), we find v; € LP(x1) such that (v1,v2) € M(x1,x2). By Lemma 5.24,

Vg = Py (V1) € Py (LP (1))
Now let ve € pg, (LP(z1)) and write va = py,(v1) for some 07 € LP(z;). By Corol-
lary 5.25, we find (v}, v5) € M(x1,x2) such that

d(v1 = wave) =d(v1 = wavh) + d(wavh = wavy).
Since va = pg,(v1), we use Proposition 5.19 to obtain
d(v1 = wavh) =d(v1 = wavs) + d(wave = wavh).

This is only possible if vy = v4. Since v} € LP(x1 * x2) by Proposition 5.12, we obtain
the desired claim vy € LP(z1 * z32). ]
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6. o-conjugacy classes

In this section, we review various descriptions of the set B(G) of o-conjugacy classes
in G(L). This serves mostly as a preparation for the next section, which discusses the
generic o-conjugacy class of an element x € W. Throughout this section, we assume
that G is quasi-split.

We begin with the classical result of Kottwitz [Kot85; Kot97] that describes the o-
conjugacy class of an element g € G(L) by two invariants. These are called Kottwitz point
k(g) € m(G)r = (X«(T)/Z®" )r and (dominant) Newton point v(g) € X«(T)r, ® Q.

If g lies in the normalizer of the maximal torus, g € Ng(T')(L), then it corresponds to
an element in wet € W. In this case, k(g) is the image of p in m (G)r.

Viewing both w and ¢ as automorphisms of X (T')r,, we write o ow for their compo-
sition. Let N > 1 such that the (0 ow)" is the identity map. Then v(g) € X4(T)r, ®Q
is the unique dominant element in the W-orbit of

)
— Y (cow)kp.
N k=1

It is true, e.g. by [Held, Section 3.3|, that each o-conjugcacy class [b] € B(G) contains
an element of Ng(T')(L), so that the above descriptions of k(g) and v(g) actually cover
all o-conjugacy classes.

In this section, we review a few important results related to these invariants. Our main
concern is to bridge the gap between the unramified case, which is often studied in the
relevant literature, and the quasi-split case, which we need for our final generalization.

6.1. Parabolic averages and convex hull

We start by formally defining some averaging functions and proving their basic proper-
ties. Neither our results nor our proofs in this section should be too surprising for the
educated reader, especially if one keeps the example of GL,, and its Newton polygons in
mind.

Let N > 1 be an integer such that the action of ¢" on X, (T') becomes trivial. Then
we define the o-average of an element p € X (T)r, ® Q by

N
ave, (1) == — O o* () € (Xu(T)r, @ Q).
k=1

Since avg, vanishes on terms of the form u — o(u), it follows that we get a well-defined
map ave, : X (T)r — (Xa(T)r, ® Q).

A similar notion of average is the following: For J < A, denote by W; the Coxeter
subgroup of W generated by the reflections {s, | @ € J}. For pp € X4(T)r, ®Q, we define

1
Wy

S w(p) € Xo(Tr, ®Q.

wEWJ

avg y(p) == 7
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Finally, if J = o(J), we define the function 7 by
g = avg joavg, = avg,oavg; : X«(T)r, ® Q = (X«(T)r, ® Q)<g>~

This map was introduced by Chai [Cha00, Definition 3.2]. Again, we get an induced
map 77 : X«(T)r — (Xu(T)r, ® Q)$. If G is split, it can be identified with the slope
map as introduced by Schieder [Sch15, Section 2.1.3].

We start with a collection of easy facts on these averages.

Lemma 6.1. Let 5 € X, (T)r and pe Xy(T)r, ® Q. Let J < A be any subset.

a) For any preimage 8’ € X.(T)r, of B, we have
0

(B, 2p) = (ave,(8),20).
In particular, it makes sense to write {3,2p).
(b) If {u, ) =0 for all a € J, then avg;(u) = .
(¢) For all v € J, we have {avg (1), ay = 0.
(d) If u >0, then avg ;(u) = 0.
(e) If {uyay <0 for all a € J, then p < wp for allw € Wy. In particular, p < avg;(u).

Proof. (a) follows since o(2p) = 2p and avg,(b) = avg, (V).
For (b) and (c), note that the following are equivalent:

o {uyay=0forallaeJ,
o w(p) = p for all we Wjy.

Then both statements follow easily.
For (d), it suffices to only consider the case where p is a simple coroot p = a¥. If
a € J, then avg ;(11) = 0. Otherwise w(a) € @ for all w € Wy, such that avg ;(u) > 0.
We prove (e) via induction on ¢(w), the inductive start being clear. If now ¢(w) > 1
and wa € &~ for some «a € J, then

wp = (wsa) (1 — (g ada” ) = (wsa)p + r,awa” > (wsa)p > b

ind.

This finishes the induction and the proof. ]

Definition 6.2. Let p e Xy (T)r, ® Q and J < A be any subset.

(a) We say that J is p-improving if we can write J = {a1, ..., ax} such that
(@vg(ay,..as 1} (H), i) <O

fori=1,...,k.
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(b) We say that J is mazimally p-improving if it is p-improving, and any p-improving
superset J' 2 J satisfies avg;(u) = avg i (u).

E.g. any p-improving subset of maximal cardinality will be maximally p-improving.
Since the empty set is u-improving, it follows that maximally pu-improving subsets always
exist. We make the following immediate observations:

Lemma 6.3. Let € X, (T)r, ® Q and J < A.

(a) If J is p-improving, then p < avg;(u).

(b) If J is maximally p-improving, then avg;(u) is dominant.
(c) If ce Xy (T)r, ® Q is dominant and p < ¢, then

avg;(u) < avg;(c) < c. O

If follows that there is a uniquely determined maximum

/ .
conv'(u) := max ave (),

and that conv’(u) = avg ;(u) for every maximally py-improving J. We define

conv(pu) := conv’(avg, (1)), pe Xu(T)r, ®Q or pe Xy(T)r.

Ezxample 6.4. For the split group G = GL,, the operations conv and conv’ agree. Draw-
ing elements of X, (7T) ® Q as polygons, the function conv corresponds to taking the
upper convex hull (hence its name).

Lemma 6.5. Let 1€ X, (T)r, ® Q.

(a) The value conv’(u) is the uniquely determined element ¢ € X.(T)r, satisfying the
following three conditions:

e L<g
e ¢ is dominant and

e c=avgy(p) for some J < A.
(b) If 1 € Xu(T)p, ® Q satisfies u < ', then conv’(p) < conv’(1).
(c) Write
con'(1) — = 3 caar”,

Jy:={a e A|c, # 0},
Jo :={ae A | {conv'(u), ) = 0}.

For any subset J < A, we have

conv' () = avg;(p) <= J1 < Jc J.
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(d) There exists J < A with o(J) = J and conv(u) = w;(u). In particular,

conv(u) = max 7 (u).
o(J)=J

(e) Let J < A such that
Vae ®N\@h : {(u,a)>0.

Then there exists J' < J with conv'(u) = avgy(u). In other words, the set Jy from
(c) is a subset of J.

Proof. (a) and (b) are immediate.

(c) Let us first consider a subset J < A with conv’'(u) = avg;(u). Then conv’(u) —
p € Q@Y by definition of avg;(n). We see that J; < J must hold. Similarly,
{conv’(u),ay = 0 for all @ € J by Lemma 6.1. Thus we must have J; € J € Js.

We show that avg; (1) is dominant. Let o € A. If a € Jy, then {avg; (1),a) =0
by Lemma 6.1. So let us assume that o € A\J;. Because avg, (1) < conv’(x) and
avgy, (1) = p = conv'(u) (mod Q@Y ), we can write

conv' () — aves, (1) = 3 ¢hBY, s e Qso.
BeJy

Now we get

(avg g, (1), @) = (conv' (), ) + 3 dy(—BY,a) > 0.

=0 e

=

This shows that avg; (u) is dominant.

If J is chosen such that conv’(u) = avg;(u), then
conv'(p) > avgy, (u) = avgsaves(n) = avg(n) = conv'(n).

Thus avg, (1) = conv’(p).

So if for any intermediate set J; € J S Js, we obtain

ave (1) = ave (ave, (1)) = ave, (conv' (1)) = conv' ().

JSJo

(d) Replacing p by avg,(u), we may certainly assume p € (X, (T)r, ® Q)?. Since
w = o(u), we conclude conv’(u) = o(conv’(p)). Then we can choose J be either of
the sets J; or Jo from (c).

Now the “in particular” part is easy to see.
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(e) Let J' < J be a p-improving subset such that there is no p-improving subset J' &
J" < J. By Lemma 6.3, ;1 < avg ;/(u). It suffices to show that avg j (u) is dominant.
Seeing p as a coweight for the root system @ ;, the set J’ is maximally p-improving
from this perspective, so avgy p,a) = 0 for all a € ®7.

If a € \®7F, then wa € ®H\@7 for all w € Wy, such that

@B (1)) = g 3w >0

wEWJ/ >0
Here, we use the assumption made on p and J.
As avg j(p) is dominant, we get the desired result by (a). O

As an immediate application, let us describe Newton points of elements in W with
this language:

Definition 6.6. For w € W ,we write supp(w) € A for the set of all simple roots whose
corresponding simple reflections occur in some/every reduced expression for w. Define

Suppy (w) 1= Unez o™ (supp(w)).
Lemma 6.7. Let z = we' € W and N > 0 such that (0 ow)N =id. Pickve W such
that
1 N
v D (e ow)(p) € Xu(T)r, ®Q

N k=1

becomes dominant. Let J = supp,(v='7(wv)). Then
v(z) = my(v " p).

Proof. Straightforward calculation. For an alternative proof, cf. [Cha00, Proposition 4.1].
By definition, we have

]
—~
&

I

4

1
[S—y
M=

(o 0 w)*(u)

>
Il
_

(v oo owv) (v )

I
= =

2| =
e
l

(0™ 7 (wo) 0 o) (v~ p).

e
I
—

I
==
M=

Note that
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We see that o(v(z)) lies in the same W-orbit as v(x), so v(z) = o(v(z)) by dominance
(this is well-known). Thus v~ 7 (wv) stabilizes v(z). Write J' = {a € A | (v(x),a) = 0}.
Then v=1 7 (wv) € Wy, so J < J'. Hence

1 < k(,—1
v(z) =7 - N g [ wv) 0 0)"(v N)]
1 N
=N Z =m0 ). O

6.2. )-invariant and defect

For this section, we fix a o-conjugacy class [b] € B(G). Following Hamacher-Viehmann
[HV18, Lemma/Definition 2.1], we define its A-invariant by

Aa(b) := max{\ € X, (T)r | avg, (\) < v(b) and k(b) = A + Z®" in 71(G)r}.

While the article of Hamacher-Viehmann assumes the group to be unramified, the con-
struction of A\g(b) works without changes for quasi-split G.
Let us write

v(b) —avg,(Ag(b Z N

Jy:={a e A | ¢, # 0},
Jy :={a e A |{v(b),a)y =0}
We have the following simple observations:
Lemma 6.8. (a) Pick e Xy (T)r and J < A with J = o(J) such that v(b) = 7;(n)
and k(b) = p+ 29" € m(G)p. Then
v(b) = m7(Ag(b)) = conv(Ag(b)).
(b) We have Jy < Jy. For J < A with o(J) =J,
V(b) = F](Ag(b)) = JicJcCJ.
Proof. (a) Choose a lift fi € Xy (T)r,. Then
my(p) = 75(f1) = ave, Y, wi.
'LUGWJ

We can choose an element w € W; such that wjii becomes anti-dominant with respect
to the roots in J, i.e. (wii,a) < 0 for all & € J. Then 7;(f) = my(wi) = wi by
Lemma 6.1.

In particular, the image of wii in X, (T)r is < Ag(b) by construction of Ag(b). Thus
v(b) = my(wi) < m5(Aq(b)) < conv(Ag(D)).

Since avg,(Ag(b)) < v(b) and v(b) is dominant, we use Lemma 6.3 to see that
conv(Ag(b)) < v(b). Hence v(b) = conv(Ag(b)) = mr(Ag(D)).
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(b) By [Hel4, Section 3.3], b = [2] for some x € W. Applying Lemma 6.7 to z, we see
that p and J exist as in (a). In particular, v(b) = conv(Ag(b)).

Now all claims follow from Lemma 6.5. O
Related to the notion of the A-invariant is the notion of defect of an element [b] € B(G).

Following [Kot85, Proposition 6.2], we fix an element z = we* of length zero in the
extended affine Weyl group W 7, of the Levi subgroup of G associated with J, such that
[b] = [z] € B(G).

We denote by J, the o-twisted centralizer of b € G(L), i.e. the reductive group over F'
with F-valued points

Jy(F) = {g € G(L) | g~"bo(g) = b}
Then the defect of [b] has the following equivalent descriptions:

Proposition 6.9. The following non-negative integers all agree. The common value is
called the defect of [b], denoted def(b).

(1) dim(X«(T)r, ® Q)7 — dim(X+(T)r, ® Q)7,
(i) vkp(G) = rkp(Jy),
(iii) v (b),2p) = Aa(b), 2p),
(iv) #(J1/0), the number of o-orbits in Jy,

(v) minyew £(v=17 (wv)),

(vi) mingew,, (vt 7 (w)).

The notion of defect was originally defined in [Kot06, Equation 1.9.1] for split groups,
using the expression in (i). Kottwitz shows the equality with (ii) as [Kot06, Theo-
rem 1.10.1] and the equality with (iii) as [Kot06, Theorem 1.9.2].

If G is not split, the expression of (ii) is commonly used as definition. In the unramified
case, the equality of (ii) with (iii) is then known as [Haml5, Proposition 3.8], and
Hamacher’s proof shows the equality with (i) and (iv).

For the remainder of this section, we sketch how to prove Proposition 6.9 for quasi-split
groups G. The main idea is a reduction to the superbasic case.

Lemma 6.10. Assume that [b] is superbasic. Denote by n = #(A/o) the number of
o-orbits in A.

(a) We have

(Xu(T)re @ Q)7 = {p € Xu(T)r, ® Q[ () = p and {u, @) = {0}}.

In particular,

n = dim(X«(T)r, ® Q)7 = (Xu(T)r, ® Q)7
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(b) We have

— ms —1lo
n = 11}15{/16(1) (wv)).

More precisely, we findv e W and a subset A’ € A such that #A" = n and v 7 (wv)
is a Coxeter element for A’.

(¢) We have

n= <V(b) - anU()‘G(b))a 2p>

Proof. Superbasic elements only exist if each irreducible component of ® is a root system
of type A.

All claims may certainly be checked individually on each o-connected component, so
to lighten our notation, we will assume that A is o-connected.

(a)

If pe Xo(T)r, ® Q is o-stable and orthogonal to all roots, it is certainly fixed by
ow. Let conversely u € Xy (T)r, ® Q satisfy cw(u) = p. Then we find v € W such
that vy € X4 (T)r, ® Q is dominant. Observe that

(v (wov™)) ovp = vowv o = vp.

Since ovp is dominant and in the W-orbit of vu, we get cvy = vu. In particular,
the dominant coweight vy gets stabilized by v 7 (wv~!) e W.

Let J := Stab(vu) denote the stabilizer of the dominant coweight vy. Then J =
o(J), so J defines a o-stable Levi subgroup of G. Its extended affine Weyl group
1% 7 contains v~!?(2v), so b comes from a o-conjugacy class in this Levi subgroup.
This is only possible if J = A, i.e. (v, ®) = {0}. In particular, vy = v~ (vu) = p,
proving the claim.

Decompose the Dynkin diagram of A into connected components, written as A =
Cy u...u Gk, such that o(C;) = Ciqq fori = 1,...,k—1 and o(Cy) = C;. Let
We := We, denote the Weyl group of C := C}.

Note that each Cj is of type A, with n as given. Write C,¢ for the affine Dynkin
diagram associated with C' = (. Then the action of o¥ on Cyr must fix the special
node, and be either the identity or the unique involution on the complement, i.e. C.
The element z%x - - - ”k71$, being an element of length zero in the affine Weyl group
of C, acts on C,s by some cyclic permutation. The composition of these two maps,
(o o x)*, should act transitively on Cis.

One quickly checks that this is only possible if o* is the identity map on Cys.

k—1
Now write w = wy 7 (wg) - -7 (wy) with wy, ..., wi € We. Let v1 € We and define

V= vlg(vg)---ok(vk)eﬂ/, vig1 = wv; fori=1,...,k—1.
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Then

’l)il 0'(

wo) =v (o3 ) 7 (oY) - (wror) T(wivn) T (wg_yvgy)

:vflwkvk = ful_lwk --~wivg € We.

We know that W is a Coxeter group of type A,, so a symmetric group. It is a
classical result that each element in a symmetric group is conjugate to a Coxeter
element for a parabolic subgroup. In other words, we find v; and A’ € C such that
vflwk ---wivy is a Coxeter element of A'.

In particular, we get

n=#C = #A = (v 17 (wv)) = #supp(v T (wv)) = n.

superbasic
Thus #A’ = n.

(c¢) It remains to evaluate

(w(b) = avg, (A (b)), 2p) = Y 2.

aceA

This calculation is carried out by Hamacher [Ham15, Section 3], and we obtain the
value n as claimed. The equality only depends on the affine root system together
with the o-action, so the fact that Hamacher only considers unramified groups is
irrelevant. While his argument using characters of finite group representations is
very elegant, one can also obtain the same result in a more straightforward manner
with explicit calculations of Newton polygons (as we are in the A,, case). O

Proof of Proposition 6.9. The equality of (i) with (ii) is a standard Bruhat-Tits theoretic
argument, cf. [Kot06, Section 4.3] or [Ham15, Proof of Prop. 3.8].

Observe that the values of (i), (iii), (iv) and (vi) do not change if we pass to the
Levi subgroup of G defined by J;. If we do so, [b] becomes a superbasic o-conjugacy
class. Then the equalities of (i), (iii), (iv) and (vi) follow immediately from the preceding
lemma.

It remains to show that, in the general case, (v) agrees with (vi). Suppose this was
not the case. Then we would find some v € W such that

L™t (ww)) < #(1/0).
Consider the element y = v=!%(zv) € W and the subset J < A given by J :=

supp, (v~ 7(wv)). Then J defines a o-stable Levi subgroup M < G such that [b] has a
preimage in B(M). This is only possible if J; < J, so J = J;. But we must have

L™ (wv)) = #supp(v™ 7 (wo)) = #(J /o) = #(J1/0),

contradiction! O
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6.3. Fundamental elements

Recall the equivalent characterizations of fundamental elements:

Proposition 6.11. For z = wet € W, the following are equivalent:

(i) U(z) = {v(x),2p).

(i) For allm > 1, we have

(iii) There exist v € LP(x) and a o-stable J € A such that v='(wv) € W and for all
a€ @y, we have {(z,va) = 0.

(iv) For every orbit O < ® with respect to the action of (o o w) on ®, we have

VaeO: Lz,a) 20) or (VaeO: l(z,a) <0).

If G is defined over O, this is moreover equivalent to
(v) Every element y € Izl is of the form y =i ‘2% for someie I.
If these equivalent conditions are satisfied, we call x fundamental. O

Let us first discuss the unramified case. In this case, the equivalence of (i) and (ii)
is due to He [HelO, Lemma 8.1]. Elements satisfying these conditions are called good
in [HelO] and o-straight in more recent literature. Condition (iii) is a reformulation of
the notion of fundamental (J,w,?d)-alcoves from Goertz-He-Nie [GHN15, Section 3.3].
Condition (v) is the notion of fundamental elements from [GHKR10]. The equivalence
of (i), (iii) and (v) is a result of Nie [Niel5]. Condition (iv) is new, but we will not need
it in the sequel.

If G is quasi-split but not unramified, the cited proofs fail because the map X.(T")r, —
X«(T)r, ® Q might no longer be injective. It is conceivable that the proofs might be
generalized with a bit of work. Instead, we sketch how to prove the equivalences of
(i)—(iv) using our language of length functionals, where issues with the torsion part of
X«(T)r, are non-existent.

Proof of Proposition 6.11. Lemma 2.13 implies the equivalence of (ii) and (iv). More-
over, the implication (iii) == (iv) is immediate.
Let N > 0 such that the action of (¢ o w)" on X,(T)r, becomes trivial. For any
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v e W and a € @, we calculate

L < k
~Y l;l(aow) e

(. (o 0 w)*va)

b
Il
—_

I
=] =
M=

(i, (0 0 w)Fva) + @1 ((0 0o w)*va) — &1 ((0 0o w)*va)

B
Il
—

I
=] =
M=

{(z, (0 o w)*va).

o
I
—

I
==
M=

Pick now v € W such that v~! ZkN=1(O' ow)*u = v(z). Then

N
1
W) 2py= Y o D b (r o w)va) > tx).
aedt k=1

Equality holds if and only if (o o w)*v € LP(x) for all k € Z. If we define J :=
supp, (v~! 7(wv)), we see that (i) implies (iii).

It remains to show that (iv) implies (i). This follows directly from the above calcula-
tion. Ul

Fundamental elements play an important role for our description of generic o-conjugacy
classes. If x is fundamental, the generic o-conjugacy class [b;]| coincides with the o-
conjugacy class of z, whose Newton and Kottwitz points are easily computed. The
A-invariant and the defect of [z] however are less straightforward to see. For now, we
compute the defect.

Lemma 6.12. Let x be fundamental, and choose v € LP(x) and J < A as in Proposi-
tion 6.11 (iii).

(a) Every v' € vWj is length positive for x. Moreover, (x,v',J) also satisfies condition
(7ii) of Proposition 6.11.

(b) Ifve WY, then (° 'v)Lzv coincides with an element of length zero in the extended
affine Weyl group Wy = Wy x Xu(T)r, -

(¢) The defect of x is given by

def([a]) = min ()7 (we')) = min ()7 (w))

Proof. (a) This is a very straightforward calculation.

(b) By definition, (7 v)"lav € W;. The length calculation is straightforward using
Lemma 2.12. For an alternative proof concept, cf. [HN14, Proposition 3.2].
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(c) In view of (a), we may assume v € W”/. Then
def([z]) = def ([(U”m—%v])

By (b), the element (7 v)~lzv e W satisfies the conditions needed to compute its
defect using Proposition 6.9 (v) and (vi). The claim follows. O

In order to reduce claims about arbitrary elements in W to fundamental ones, we need
the following lemma. If G is unramified, this is a classical result of Viehmmann [Viel4,
Proposition 5.5].

Lemma 6.13. Let x € W and [b] € B(G)g, i.e. [b] € B(G) with X,(b) # &. Then there

exists a fundamental element y € W such that y < x in the Bruhat order and [y] = [b]

in B(G).

Proof. Induction by ¢(x). We distinguish a number of cases.

1. Suppose that = is of minimal length in its o-conjugacy class in W and that z = uy
for some fundamental y € W with ¢(z) = ¢(u) + ¢(y) and [z] = [y].
By [Hel4, Theorem 3.5, [b] = [z] so that y < x satisfies the desired conditions.

2. Suppose that there exists a simple affine reflection s € S,¢ such that £(sx7s) < £(x).
By the “Deligne-Lusztig reduction method” of Goertz-He [GH10, Corollary 2.5.3|, we

must have [b] € B(GQ),s for 2’ = sz%s or 2/ = sz. By induction, we get an element
y < 2/ with the desired properties. Since 2’ < x, the claim follows.

3. In general, we find by [HN14, Theorem 3.4] a sequence of elements
x:xl,...,xnew
such that
o X1 = 8;x; 78; for some simple reflection s; € S (1 =1,...,n—1),
o l(x;) =4(x) fori=1,...,n and
e 1, satisfies condition 1. or 2.

In particular, we find 3’ < z,, fundamental with [y'] = [b].

By [Niel5, Lemma 2.3], there exists y < = with ¢(y) < ¢(y') and y being o-conjugate
to 3/ in . While Nie’s proof only covers unramified groups, this statement is purely
about combinatorics of root systems and affine Weyl groups, so the generalization to
quasi-split groups is immediate.

Now observe that [y] = [¢/] = [b] € B(G). In particular,
w(b),2p) < (y) < Ly') = (w(b), 2p)-

We see that y must be fundamental as well.

In any case, the claim follows, finishing the induction and the proof. O
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7. Generic o-conjugacy class

For an element x € W, the generic o-conjugacy class [b] = [bz] € B(G) is the uniquely
determined o-conjugacy class such that IxI n [b] is dense in IxI. For each y € I/IN/, we
write [y] € B(G) for the o-conjugacy class of any representative of y in G(L). We have
the following description due to Viehmann:

Theorem 7.1 ([Viel4, Corollary 5.6]). Let z € W. Then [bz] is the largest o-conjugacy
class in B(G) of the form [y] where y < x in the Bruhat order on W. O

Viehmann’s original proof makes the assumption that the group under considera-
tion is unramified, but it is not hard to remove this assumption. Indeed, we saw in
Lemma 6.13 that [Viel4, Proposition 5.5] can be proved without this assumption, and
then Viehmann’s proof of [Viel4, Corollary 5.6] works without further changes.

We can now describe this generic o-conjugacy class more explicitly:

Theorem 7.2. Assume that G is quasi-split. Let x = wet € W and denote by [be] is
generic o-conjugacy class. Writing Ay := Ag(bs), we have

Az = max (v_l,u —wt(v = 7(wv))) € X(T)r.

We call A\, the generic A-invariant of x. We discuss previous works and some appli-
cations of this result now, before giving its proof in the next subsection.

We begin with a more explicit way to calculate generic A-invariants. The following
lemma does not depend on the theorem, while the corollary does.

Lemma 7.3. Let x = wet e W and ve W.

(a) If v is not length positive for x, and vs, is an adjustment, then

v — wt(v = T(wv)) <7 (vsa) T — Wt(vse = T (wvsy)).

(b) We have
(™t — wh(o = 7(wv)), 29) < £(z) — d(v = “(wv).
Equality holds if and only if v € LP(z).
Proof. (a) We compute

(V80) i — Wt(vsq = “(wvsy)) =v " i — (u,vada” — wt(vsy = v)
—wt(v = 7(wv)) — wt (7 (wv) = 7(wvsy))
>y — (p,vadaY — dF (va)a¥
—wt(v = 7 (wv)) — T (—wva)a”

=0t — wt(v = 7 (wv)) — (L(z,va) + 1)
(

>v 7y — wt(v = “(wv)).

97



(b) Indeed, using Corollary 2.11 and Lemma 3.6, we obtain

o — wt(v = T (ww)), 2p) =, 2p) — £(v) + L(wv) — d(v = 7 (wv))
<l(z) —d(v = (wv)),

with equality iff v € LP(x). O

Corollary 7.4. Let x = we* € w. Among all elements v € LP(x), pick one such that
the distance d(v = 7 (wv)) in the quantum Bruhat graph becomes minimal. Then

Ao = vt — wt(v = 7 (wv)) € Xu(T)r.
In particular, the generic Newton point of x is given by
vy = conv(v tp — wt(v = 7(wv))).

Proof. We know that A, = (v/)"'u — wt(v' = 7 (wv’)) for some v' € W by the theorem.
Using the above lemma, we conclude that the same equality holds for some v" € LP(z).
Now vl — wt(v = 7(wv)) < (v/)"tp — wt(v' = 7(wv’)) by the theorem, and

™= wi(o = 7 (w0), 20 = ()= wh(v! = 7 (wd)), 20)
by choice of v. The claim follows. O

The following lemma might be helpful for computing v,.

Lemma 7.5. Let x = wel e W, v e LP(x) and J < A such that J = o(J) and
Vae @\®F 1 {(z,va) > 0.
Then there exists J' = J with o(J") = J' and
conv(v™tp — wt(v = T(wv))) = mp (v — wt(v = 7(wv))).
Proof. In view of Lemma 6.5 (e), it suffices to show for each v € ®\®7 that
(avg, (v 1 — wt(v = “(wv))),a) = 0.

Let N > 1 such that the action of o™ on X,(T)r, becomes trivial. Then

0t = wi(v = 7 (wo)), 0¥ (a))

2|
1=

(avg, (v — wi(v = 7 (wv))), ) =

k=1

{p,vo* (@) — (wi(v = 7 (w)), 0% (a)).

I
2|
1=

x>
Il

1



By? [HN21, Section 2.5], we may estimate

(wt(v = (wv)), o (a)) <@t (—vok(a)) + &1 (7 (wv)o®(a))
=0T (—vo®(a)) + & (wva™(a)).

Thus

2[ =
M=

(s 00" (@) = (wi( = 7 (wo)), o () )

WV
=
iMzz

(
(G, 00" (@) = @ (—vot(a)) = &F (woo ()
(G0

Z\H
M=

a)) = &* (—vo* (@) - & (weo*(a)))

x>
Il
—

Z\H
M=

(E(a:,ok(oz)) 1) > 0.

x>
Il
—

This finishes the proof. O

Corollary 7.6. If x = wet lies in a shrunken Weyl chamber and LP(z) = {v}, then
ve = vt — wt(v = 7(wv)) € Xu(T)r, ® Q.
Proof. Set J := J in the previous lemma. O

If G is split and p sufficiently regular, this corollary is the main result of [Mil21], which
was the first paper to derive an explicit formula for v, from Theorem 7.1. Milievié¢’s
result since has been generalized by Sadhukhan [Sad21], who proves the statement of
Corollary 7.6 if G is split and u satisfies a regularity condition that is weaker than
Mili¢evié¢’s. He and Nie [HN21, Proposition 3.1] proved Corollary 7.6 as stated here.

As an application of Theorem 7.2, we classify the cordial elements from Mili¢evié-
Viehmann [MV20].

Definition 7.7. Let 2 = we# € W and v € W be the specific length positive element
constructed in Example 2.8. Then zx is cordial if

0(z) — (vt 7 (wv)) = (vg, 2p) — def(by).

3The original formulation of this statement has a small typo, the version cited here is the correct one:
Indeed, let 2,y € W and define dominant coweights p1, p2 € X4 (T)r, on each simple root « € A as
follows:

{py0p = ®F(—y ™ a), (uz,a) = ¥ (za).

Then one checks easily that we are in the situation of [HN21, Theorem 1.1], and part (1) of this
theorem yields (wt(y™ = z),0) < ®T(—y~'a) + T (za).
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Proposition 7.8. Let x = wet € W andve LP(x). Then
((x) — (v~ 17 (wv)) < Vg, 2p) — def (by,).
Equality holds if and only if both conditions (a) and (b) are satisfied. Moreover, the
condition (a) is always equivalent to (a’).
(a) The generic A-invariant A\, is given by

Ao = vt — wt(v = 7 (wv)) € Xo(T)r.

(a’) We have

div="(wv)) = v,gﬁiprzx) d(v' = 7 (wv')).

(b) We have d(v = 7 (wv)) = £(v"17 (wv)).

Proof. By Lemma 7.3 and Theorem 7.2, (a) < (a’).
For the remaining claims, we calculate

£(2) — £ 7 (w0) <) — dlo = “(wv)
o = wt(o = *(wn), 26
T§.2<)\m’ 2p) - Wy, 2p) — def (by). O

Corollary 7.9. Let v = wet € W and ve W be of minimal length such that v='p is
dominant. Then x is cordial if and only if the following two conditions are both satisfied:

(1) For each v' € LP(x), d(v = 7 (wv)) < d(v' = 7 (wv')).
(2) d(v = (wv)) = L(v™! 7 (wv)). O

This corollary generalizes the description of superregular cordial element for split G
due to Mili¢evié-Viehmann [MV20, Proposition 4.2] and the description of shrunken
cordial elements due to He-Nie [HN21, Remark 3.2]. One can generalize the statement
and proof of [MV20, Theorem 1.2 (b), (c)] accordingly.

The notion of cordiality depends on one specific and non-canonical length positive
element for . We conjecture that it is possible to generalize this notion to all length
positive elements.

Conjecture 7.10. Assume that char(F) > 0 and let x = we* € W and v € LP(z). For
allbe B(G), we expect
1
dim X, (b) < 5 ((z) + (v~ (ww)) — (v (b),2p) — def (b)) .
Remark 7.11. (a) The conjecture has been tested for a large number of randomly gen-
erated z using the sagemath computer algebra system [Sage; SaCo|. This computer
search did not find a single counter-example.
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(b)

For the one v constructed in Example 2.8, the right-hand side of Conjecture 7.10 is
exactly the virtual dimension of [Hel4], and then the conjecture is proved in that
paper. He’s proof does not seem to be easily generalized to arbitrary v € LP(xz),
though.

If b = b, is the generic o-conjugacy class associated with x, then

dim X, (by) =l(x) — (w(by),2p) = l(x) — Az, 2p) — def(by)

= min dv="° — def(by).
in (v = "(wv)) — def(bz)

The first equality is [Hel5, Theorem 2.23] and the second one is Proposition 6.9.

We see that the conjecture is true whenever b = b,. In particular, X, (b) is non-
empty for only one element b € B(G), the conjecture is true. This is e.g. the case if
x is of minimal length in its o-conjugacy class in W, cf. [Hel4, Theorem 3.5].

Let z € W and v e LP(x) such that the following two assumptions are both satisfied:
(1) Conjecture 7.10 is satisfied for (z,v) and all b € B(G) and

(2) for b = b,, the inequality in conjecture 7.10 becomes an equality:

dim X, (by) = = (€(z) — £(v™" 7 (wv)) — vy, 2p) — def(by)) .

N =

One can check assumption (2) using Proposition 7.8.
Under these two assumptions, the major results and proofs of [MV20] can be gener-

alized in a straightforward manner.

In view of Corollary 7.9, we are led to ask which (wy,ws) € W? satisfy the condition
d(wy = we) = E(w;lwl). (%)
By [MV20, Remark 4.4], this is the case if and only if there is a shortest path

w1 — - -+ — wy where each arrow is of the form v — us, for some o € A.

While it appears unreasonable to ask for a “general formula” for d(w; = ws), de-
scribing the elements for which (x) holds might prove to be an easier task.

If wy is smaller than ws in the right weak Bruhat order, then (x) is certainly satisfied.
This applies in particular for w; = 1 (cf. [He21b, Theorem 4.2]) or we = wyg (cf.
[MV20, Theorem 1.2 (a)]).

From [MV20, Theorem 1.2 (b), (c)], we obtain moreover the following criteria:
o If L(wy 'wy) = # supp(ws "wy), then (x) holds true.

o If wy =1, then (*) holds true if and only if w; is small height avoiding as in
[MV20, Definition 4.7]. This notion is discussed in [MV20]; yet one may still
hope for a more explicit classification of those elements.
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If wy # 1, we may of course use Lemma 3.8 to reduce to the wo = 1 case. Indeed, if
a € A satisfies wy Lo e ®, one may argue as follows:

o If wl_loz € 7, then d(wy = wy) = d(sqwi = Sqwsz). Thus (wy,ws) satisfies
(%) iff (sqwi,sqwse) satisfies (x).

o Ifwi'ae ®™, then d(w; = ws) = d(w; = saws) + 1. Moreover,
(((sqw2) " twy) = L(wy tsqwr) < L(wy  wy).

Thus (wy,ws) satisfy (x) if and only if the following two conditions are both
satisfied: (w1, sqws) satisfies (*) and E(w;lsawl) = E(w;lwl) —1.

While these partial results are somewhat promising, the question which pairs satisfy
(%) is still very much open.

7.1. Proof of the Theorem

Fix 2 = we* € W. We need to show the following two claims:

e There exists some v € W such that

e < vl —wt(v = 7 (wv)) € Xu(T)r.

e For each v € W, we have
v — wt(v = 7(wv)) < A\p € Xo(T)r.
By definition of Ag(z), this is equivalent to

avg, (v — wt(v = 7 (wv))) < vy € Xo(T)r, ® Q.

Let us use the shorthand notation A <7 ) to say that the image of X in X, (T)r is less
than or equal to the image of X in X, (T)r (A, N being elements of X, (T), X (T)r, or
X«(T)r).

We write A =7 ) to denote A <% X and N <% A. Similarly, we write A <7 X to
denote A <7 X but X €7 \.

For this section, call an element v € W mazimal if there exists no v’ € W such that

v — wt(v = T(wv)) <7 (V) u = wt(v' = T(wr')).
Lemma 7.12. Let v e W be maximal. Moreover, fix a root o € ®* such that
wt(v = “(wv)) =7 a¥ @ (—va) + wt(vse = 7 (wv)).

Then precisely one of the following conditions is satisfied:
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(1) ¢(xz,va) > 0, and the element

~

)GW

A SN A
= wel = ary e+ (—va

satisfies x' < x and

(v8a) ' — wt(vse = 7(W'vsa)) =7 vy — wt(v = 7 (wv)).

(2) l(x,va) =0, vsq € W is mazimal with
v — wt(v = T(wo)) =7 (vse) L — wt(vse = 7 (wusy))
and

wt(vse = 7(wvsy)) =7 wt(vsy = 7 (wv)) + a1 (—wva).

Remark 7.13. If v # 7 (wv) and v — vs, is an edge in QB(WW) that is part of a shortest
path from v to 7 (wv), then the root o € ®* will satisfy the condition of the Lemma.

Proof of Lemma 7.12. We use maximality of v by comparing to vs,. Now calculate

(08a) "t — wt(vsq = 7 (wvsy))
>(vsq) T — wt(vse = “(wv)) — wt(7 (wv) = 7 (wvsy)).
=7 (vs) tp 4 VT (—va) — wt(v = “(wv)) — wt(wv = wvs,)
<o () by AT
>v7 " — (uyvadaY + a¥ T (—va) — wt(v = 7(wv)) — ¥ & (wva)
=t — wt(v = 7 (wv)) — £z, va)a”.
If {(z,va) < 0, we get a contradiction to the maximality of v.
Next assume that ¢(z,va) = 0. Then every inequality in the above computation

must be an equality (up to o-coinvariants), or we would again get a contradiction. In
particular, vs, must be maximal, as

o

v — wt(v = T(wo)) =7 (vse) i — wt(vse = 7 (wusy)).

Moreover, we obtain
wt(vsq = 7 (wvsy)) =7 wt(vsq = 7 (wv)) + ¥ (—wva).

This shows all the claims in (2).
Finally assume ¢(z,va) > 0. The claim 2’ < z, i.e. z(va, ¥ (—va)) € @, follows
from Lemma 2.9. Calculating explicitly, we get

Ot (—va)va¥ _ wsyagsua(u)Jr‘bJr(fva)vaV )

’ i
w'et = wetsyae

So indeed,

(v5a) Ll — Wt(vsq = T(W'vsa)) =0t — a¥®T (—va) — wt(vse = 7 (wv))

=Ty — wt(v = 7 (wo)). O
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Corollary 7.14. Let v be mazximal. Then at least one of the following conditions is
satisfied:

(1) There exists x' = w'e” < x and v' € W such that

v — wt(v = T(wo)) =7 (V)7 — wt(v = T(w'v')).

(2) The element ° (wv) € W is mazimal, and we have

v — wt(v = T(wv)) =7 7 (wo) T — wt(7(wv) = 7 (w (wv))).

Proof. Choose a shortest path in QB(W)
PV USa, — USaySay — * " — USaySas *** Sap = _ (W0).
Consider the roots
Bi = USay ** Sa;_, () € P, 1=1,...,k.

We fix i* € {0,. .., k} maximally such that ¢(x,3;) = 0 for 1 <i < i*.
We claim that each v; for i = 0, ..., i* satisfies the following conditions:

(a) v; is maximal,
(b) d(v; = 7 (wv;)) = d(v; = 7 (wv)) + d(7 (wv) = 7 (wvy)).
(c) vl —wt(v = (wv)) =7 v; tp — wt(v; = 7 (wry)).

Induction on 7. Since vy = v, the claim is clear for ¢ = 0. Now in the inductive step,
assume that i < ¢* and that the conditions (a)—(c) are true for v;. We apply Lemma 7.12
to (v, o). This is possible, as v; — v;41 is part of a shortest path from v; to “(wv) (by
choice of the path p), hence part of a shortest path from v; to 7 (wv;) by (b).

Since ¢ < i*, we get {(z,v;a;) = 0, so condition (2) of Lemma 7.12 must be satisfied.
Now (a) and (c) follow immediately for v;41. For condition (b), use condition (2) of the
lemma to compute

We see that equality must hold in every step (up to the o-action). In light of Lemma 3.6,
condition (b) for v;4; follows, finishing the induction.
With the above claim proved for all i € {0, ...,i*}, we distinguish two cases:

104



(1) Case i* < k. Then l(x,Bxy1) = l(x,v(ayx41)) > 0 by choice of i*. Applying
Lemma 7.12 to v;x and a;x,1, we immediately get the desired z’.

(2) Case i* = k. Then ?(wv) = v; and we obtain everything claimed. O
Lemma 7.15. Let v e W. Then there exists some &' < x with

v(x') = avg, (v i — wt(v = 7 (wo))).
In other words, Ay =° vty — wt(v = 7 (wv)).

Proof. Induction on ¢(x). We may certainly assume that v is maximal. If there exists
2’ = w'et <z and v € W with

v — wt(v = T(wv)) =7 (V)7 — wt(v = T (w'v')),

we may apply the inductive hypothesis to 2’ and are done.
Let us assume that this is not the case. By the above corollary, we see that 7 (wv) is
maximal and

—0

v —wt(v = T(wv)) =7 T(wo) i — wt(7(wv) = (w7 (w))).

For n > 0, we define the element v, € W by vg := v and v,41 := 7 (wv,) € W. A simple
induction argument shows that each v, is maximal and

v —wt(v = T(wv)) =7 v, e — wt(v, = 7 (woy)).
We calculate for A € X, (T)rp,:
vpA = 7 (Wonp_1)A = g o wv,_1 (071A) = (0 ow) v(c™"N).
Thus
v N = o™ (o ow) ().

Let N > 1 such that the action of (o o w)" on X,(T) becomes trivial. We see that

avg, (U,jlu — wt(vy, = 7 (wuy)))

I
z| =
=

3
Il
—

avg, (v = wi(v = 7 (wv)))

I\
=] =
M=
2
o
q
-
3
=

3
I
—

n

(U_l(a ow) ")

I
==
M=
2
oQ
q

3
I
—

n

1
=avg, Uﬁlﬁ Z (cow) ™ "u.
n=1
<avg, v(z) = v(x).

Thus we may choose ' = x, finishing the induction and the proof. O
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Lemma 7.16. Let x = we' € W be a fundamental element, and choose v' € LP(x) with
def([z],) = £((v") L7 (w')) as in Lemma 6.12. Then

Ao =7 (V) — wt(v' = 7 (wv)).
Proof. By Lemma 7.15, we have

Ao =7 (V) — wt(v' = T (wr)).
Now we calculate

Oz = () + wi(v' = 7 (wr)), 2p)
=,y 2p) — U(z) + d(v = 7 (wr))
oo Qa@), 2p) = (w(@), 2p) + d(v' = 7 (wr'))
=, — def([z]o) + d(v" = 7 (wr)))

< — def([z]y) + L((V) L7 (w')) =

assump.

The inequality on the last line is [MV20, Lemma 4.3]. O
Lemma 7.17. There exists v e W such that
e <7 ol —wt(v = 7(wv)).

Proof. Induction on ¢(x).

Let us first consider the case that there exists an element 2/ = w'e” < x with [by] =
[b.] € B(G). If this is the case, we may further assume by definition of the Bruhat order
that ' = zr, for some affine root a € <I>;rf.

Using the induction assumption, we find some v € W such that

Aot = A <7 (V)1 — wt(v) = T(w')).

Write a = (a, k) such that w’ = ws, and p' = s, () + ka¥. The condition £(x') < (x)
means that xa € ®_;, which we can rewrite as

k—{p,a) < @ (wa).
We distinguish the following cases.
e Case (v')"'a e ® . Define v := s,v" and compute
e <7 (V)7 — wt(v) = T(w'v'))

= N — kaV) — wt(sqv = 7(wv))

<ol — kv laY —wt(v = T (w)) + (v = 840)
< -1, k —1 —wt V<I>+
< v ke (o = () + (—a)

(
v — wt(v = “(wv)) + (21 (—a) — kv laY
)

<v ™l — wt(v = 7(wv)).
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The inequality on the last line follows since @ (—a) — k < 0 (as a € ®};) and
v la e ®T by assumption.

e Case (v')"'a e ®*. Define v := v’ and compute

e <7 (V)TN —wt(v = T(w'))
=v (p — {p, ada” + kaV) — wt(v = wsaw)
<o+ (=) + kv laY — wt(v = T (wv)) + wt(wsev = wo)
C3<.17U_1M + (=, a) + kv taY —wt(v = “(wv)) — v laY & (wa)

=v 4 (—(p, @) + k — &1 (wa))v?

a¥ —wt(v =7 (wv))

<v - wt(v = 7(wv)).

The inequality on the last line follows since —(p, &) +k—®F (wa) < 0 (as za € P ;)
and v~ 'a € ®T by assumption.

In any case, we find an element v € W with the desired property, proving the claim for
x.

It remains to study the case where [b,] > [by/] for all 2/ < z. By Lemma 6.13, x must
be fundamental. The result follows from Lemma 7.16. O

Proof of Theorem 7.2. The Theorem follows immediately from Lemmas 7.15 and 7.17.
O

7.2. General groups

In this section, we drop the assumption that G should be quasi-split. We keep the
notation from Section 2.1. As announced, we show how to compute generic o-conjugacy
classes and classify cordial elements in this case.

The Frobenius action on the apartment A preserves the base alcove a, but no longer
the chosen special vertex r. We denote by u, € V' the uniquely determined element such
that o(r) =1 + to-

Moreover, there is a natural Frobenius action on X, (T)r,. We denote the induced
linear map by ojjn : V =V

Under the identification of A with V' by r — 0, the map oy, is given by

Olin: V-V, v o) — .

Since oy, permutes the alcoves in A, it permutes the Weyl chambers in V. We hence
find a uniquely determined element o1 € W with 01;,(C) = 01(C). Define 09 := oy Lo ot
such that o2(C) = C. Then the action of o on V' is given by the composed action

o =ty, 001009,

where ¢, is the translation by p,. Note that o9 fixes both 0 and C, hence it fixes a
being the only alcove in C' adjacent to 0. It follows that also ¢,,, o 01 fixes a. So the map
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ty, co1: V. — V “looks like” the action of an element in Q2 < W, except that a lift of
to €V to Xu(T)r, might not exist; and if it exists, it might not be unique.

For each wi,wy € W, the difference wy s — wope lies in Z®V, so we may consider
w1 e — Walle as a well-defined element of X (T")r, even if neither w; y, nor wap, lies in
X« (D), -

We define maps

avg,, :X«(T)r, ® Q — X4 (T)r, ® Q,
avg; :Xu(T)r, ®Q — Xu(T)r, ®Q (J € A)

as in Section 6.1. If J = o3(J), we define 7; := avg;oavg,,. For an element u €
X«(T)r, ®Q or € Xu(T)r, we define

conv(u) 1= max avg; ave,,(u) € Xu(T)r, ® Q.
J=02(J)

Then we can describe generic Newton points as follows:

Theorem 7.18. Assume that char(F') does not divide the order of m1(Gaq), the Borovoi
fundamental group of the adjoint quotient*.
Let x = wet € W. The generic Newton point of x is given by

1
Vg = MaX conv (vl,u —wt(oy v = 72 (wv)) + T Z (v iy — ul,ug)> .

ve ueW
In fact, the maximum is attained for some v € LP(x).

We prove this theorem by reduction to the previously established results for quasi-split
groups, following Goertz-He-Nie [GHN15, Section 2].

By [GHN15, Corollary 2.2.2], it suffices to prove the Theorem for adjoint groups, by
comparing B(G), with B(Gad)z-

Let us now assume that G is adjoint. Then v := ¢ o g; is a well-defined element
of T/IN/', hence of . Following [GHN15, Proposition 2.5.1], we can identify B(G), with

B(G)zy - v~L. Here, G is a quasi-split inner form of G with maximal torus T and
Frobenius given by 2. We see that

G G —1
T = bl) = b :
e = V9 (s ) =v0(max (0771])

A quick calculation shows that for all [b] € B(G), we have

() = () = g X e

ueW

Tt is conjectured in [GHN15, Section 2.2] that this assumption can be dropped; and in fact, it does
not appear any more in [HN21, Section 3.2].
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Thus

~ 1
v = V(lbwn) = g D5 o

ueW

Calculating v%([b;]) using Corollary 7.4 shows Theorem 7.18.

Let us return to the general situation. Following Mili¢evié-Viehmann [MV20, Re-
mark 1.3], we define an element z € W to be cordial if the corresponding element T in
the extended affine Weyl group of the quasi-split group G under the above reduction
is cordial. Then the results from [MV20] on cordial elements guarantee that the affine
Deligne-Lusztig varieties associated with Z satisfy the most desirable properties as dis-
cussed earlier. By the above reduction method of [GHN15], it follows that also the affine
Deligne-Lusztig varieties associated with = satisfy these properties.

Straightforward calculation shows the following;:

Proposition 7.19. Assume that char(F) does not divide the order of m1(Gaq).
Let x = wet € W and pick ve W of minimal length such that

v ip+ o, eV

1s dominant. Then crl_lv € LP(x). The element x is cordial if and only if the following
two conditions are both satisfied:

(1) For any o7 'v' € LP(z), we have

d(oy ™" = 72 (w') = d(o7 v = 7 (wo)).
(2) We have

d(o7 v = T (wv)) = £ (v 1oy 72 (wo)) . ]
7.3. Connection to Demazure products

To conclude the section, we use our previous results on Demazure products to find a
different description of generic Newton points. Following He [He21a], we consider twisted
Demazure powers of x.

Definition 7.20. Let n = 1. We define the n-th o-twisted Demazure power of = as
zHO = (Tx) ke x <‘7n71x> e W.

For n = 2, let us write

such that
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We can calculate x,, in terms of x and UlfnLP(x*"’"_l) using Theorem 5.11. By Corol-
lary 5.26, we have

LP(@™") = p,n-1, (LP(z*7" 1) = = pon-1, 00 pry (LP(2)).

Observe that by definition of the generic action p,, we may write

n

pon (7 (1) = 7" (pa ().
Let us define the map pgq i= ps 0% (-): W — W by
paa () = pa(” ().
Then
LP(z*7") =p,n-1_ 00 pry (LP(2)) .
— ("7 (epo” () oo (T (Y opro”
=7 ()0 pug 00 pua (LP())

n—1

7 (pio (LP(2))) -

Lemma 7.21. (a) There exists an integer N > 1 such that for eachn > N,

1—n 1

() (LP(2))

IN = Tn and p;]c\fa(LP(x)) = PZ,a(LP(w))

Denote the eventual values by xo := xn resp. pry(LP(x)) := pl,(LP(x)).

(b) We have
ProLP(x)) ={ve LP(x) [ In >1: v = pp,(v)}.
*,0,1n
tim ) )

(¢c) The element xoo is fundamental. For each v € p3’, (LP(x)), it can be written as

o1
LTop = (071 U)Pm,a (v)—lgﬂ_pz,o’(u) Wt( v:»wpz,a(v)) :

Proof. (a) Observe that p , induces an endomorphism LP(z) — LP(z). We obtain a
weakly decreasing sequence of subsets of W

LP(2) 2 puo(LP(2)) 2 2 ,(LP(2)) 2 - - |

Since W is finite, this sequence must stabilize eventually.

Because x,, only depends on the values of p ' (LP(z)) and x, the result follows.

(b) Both claims follow immediately from (a).
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(c) Let N be as in (a), and let n > 1. Then

#,0,N+n N _oN+n—1

*,0,N o Top + -

T =z Teo

is a length additive product. In particular,

n—1

Uo7 Zop) = nl(Top).

By [Nielb, Theorem 1.3] or Proposition 6.11, 2, is fundamental.
Next let v € p3’, (LP(x)). Then also p.,(v) € pi’, (LP(x)), and we get

UN,OLU(U) e LP(IL‘*’U’N+1) _ LP(IE*’U’N " JN$) _ LP(QZ'*’U’N . oN ($OO))

In view of Proposition 5.12, we find a uniquely determined element Nl e LP(z*oN)
such that

(0 UI,Gpr,U(U)) c M(x*,U,N’UN

Then by Theorem 5.11,
Top = v’paa(v)_laﬂ_p“’(”) wt(v'=wpz,o (V)

Note that 70’ € ”17NLP(9U*’U’N) = pr.(LP(x)). The minimality condition on the tu-

ple (°" v/, ”pryg(v)) moreover implies that pg(v') = pg.o (V") = pgo(v) (Lemma 5.24).

The map pz : p,(LP(z)) — pi’, (LP(x)) is a surjective, and the set pg°, (LP(x)) is
finite. It follows that the restriction of p, . to pg,(LP(z)) is bijective. Recall that
v and v’ are two elements of p;°,(LP(z)) whose images under p, , coincide. Thus
v = 99/, finishing the proof. O

Theorem 7.22. (a) The o-conjugacy class [v] € B(G) is the generic o-conjugacy
class of x.

(b) For any v € py,(LP(x)), we have £(xx) = £(x) — d(v = 7 (wpz,s(v))).

(¢) Fiz v e pP,(LP(x)) and define J = supp,(pe,s(v)1v), so J = A consists of all o-
orbits of simple roots whose corresponding simple reflections occur in some reduced
decomposition of py.(v) " lve W.

We can express the generic Newton point of x as
_ -1 o
vy =my (v — wt(v = 7(wv))).
Proof. (a) By Theorem 7.1, we can express the generic o-conjugacy class of = as
[bz] = max{[y] | y < z} = max{[y] | y < = and y is fundamental}.

In particular, [b;] = [z«]. For the converse inequality, pick some y < x fundamental
with [b.] = [y] € B(G).
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By definition of the Demazure product, we get

20N — ok (O'x) - <on71x> >y (o’y) o (Un71y> '

Thus, using the fact that y and xo are fundamental, we get

> lim K(yoy;l-” Yy _ nlggog(y) = (w(y),2p) = (v(bs), 2p).

This estimate shows that [zs] = [bs].

(b) This follows from the explicit description of z, in Lemma 7.21 together with Corol-
lary 2.11 and the simple observation p; ,(v) € LP(2).

(c) Let us write o = wee”®. The generic Newton point of x is the Newton point of
Zop, Which we express using Lemma 6.7.

Let N > 1 such that the action of (6 owy) on X, becomes trivial. We want to show
for each v € p’, (LP(z)) that

N
vt Z (oo woo)kﬂoo eX,®Q
k=1

is dominant.

Note each v € pg°, (LP(x)) may be written as v = p; ,(u) for some u € p°, (LP(z)).

1

By Lemma 7.21, it follows that we, = (7 w)v~!. Thus u = “(wev) € p, (LP(2)).
This shows “(wxv) € pi,(LP(x)) for each v € p’, (LP(z)). It follows for each
o€ ®* that

N

N N
o7 Yo own) e ) = Y e, (770 wee) vt
k=1 k=1

I
M=

o (7.0 w0 Vo) + (0 0 win) 0) = B (070 w0

E
Il
—

U2, (00 woo)kva) = 0.

I
M=

e
Il
—

This shows the above dominance claim. As v € p’, (LP(z)) was arbitrary, the same
claim holds for p, ,(v). With

J i=SupPy (pa0 (V) " T (W .0 (V) = SUPD, (P (V) ' 0),
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Lemma 6.7 proves that

V(To) = FJ(Px,U(U)ilﬂoo) L7 21 WJ(px,o(v)ilﬂ - Wt(a_lv = WPz,o(v)))

pe e, ™ (o (V) = Wt(v = 7 (wpr5(v))).

Now observe that

p:p,g(v)_l,u v 'y (mod QBY),
wt(v = 7(wpg o (v))) = wt(v = 7(wv)) (mod QPY). O

Part (a) of the above Theorem readily implies [He21a, Theorem 0.1]. Our previous

result Corollary 7.4 expresses the generic Newton point v, as a formula similar to part
(c) of the above theorem, but the allowed elements v € LP(z) are usually different ones.
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A. Some quantum Bruhat graphs

In this appendix, we show pictures of a couple of quantum Bruhat graphs and parabolic
quantum Bruhat graphs. For size reasons, only the root systems As, By, Go and As are
covered.

The simple roots are numbered aq, oo (and ag for As). For types Bs and Ga, we use
the convention that «; is long and oy is short®. We write s; as a shorthand for Say;
(i=1,2,3).

Elements of the Weyl group W are represented by lexicographically minimal reduced
words. In each ot the diagrams, the elements of the same length form a row of the
diagram, with the neutral element on the bottom and the longest element on the top.
Within each row, the elements are sorted lexicographically.

It follows that Bruhat edges always go upwards and quantum edges always go down-
wards.

For parabolic quantum Bruhat graphs, the quantum edges are drawn in a dark blue
shade and are labelled by their respective weight (in the parabolic case, a representative
of the coset in Z®Y /Z®Y ). The Bruhat edges are drawn in black and are unlabelled.

The pictures are rendered using the KTEX package tikz-cd. The KTEX-code was
generated using the computer algebra system sage-combinat ([Sage], [SaCo]), with
manual tweaking of the arrows to improve readability.

A.1. Root System A,

The root system has three positive roots, namely a1, as and a3 + as. The Weyl group
consists of six elements. These are the two reflection orderings:

o1 < o1 + o < @,

oy <) +ag <og.

Quantum Bruhat graph Parabolic quantum
QB(W) Bruhat graph QB(WY)
with J = {a1}
518281 5152
W/ | X |
sisz 1T Tsysy oy | 82
] [[-s |
S1 52 1

The parabolic quantum Bruhat graph QB(W122}) is isomorphic to the one printed above,

SFor type G, the opposite labelling is used in sage.
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by interchanging a; and as. The parabolic quantum Bruhat graph QB(W{C”’O‘?}) con-
sists of only one point.
A.2. Root System B,

The root system has four positive roots, namely the long roots ai,a; + 2a9 and the
short roots ag, a1 + az. The Weyl group consists of eight elements. These are the two
reflection orderings:

ap < a1 +ag < ap + 209 < as,

ag < a1 + 200 < a1 + ag < 1.

The quantum Bruhat graph and the double Bruhat graph are given as follows:

52518281

These are the two non-trivial parabolic quantum Bruhat graphs, with QB(W*}) on
the left and QB(W{22}) on the right:

525152 515281
S182 ay 18281
ay tay
ED) S1 |y
1 1

A.3. Root System G,

The root system has six positive roots, namely the three long roots a1, a; + 3as and
2a1 + 3o as well as the three short roots g, a1 + o and a3 + 2a0. The Weyl group
consists of twelve elements. These are the two reflection orderings:

a1 < a1 +ag <201 + 3a2 < a1 + 2a9 < a1 + 3ag < g,

g < o + 309 < a1 + 2000 < 2001 + 309 < a1 + ag < .
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Now the quantum Bruhat graph is given as follows:

5152515825152
51595158251 5251525152
ay ay
8158928189 52818281
ag ay oy +af
5158951 525152
ay +ay o “
5189 5251
oy ay
S1 52

The two non-trivial parabolic quantum Bruhat graphs are given as follows, with QB(W{O‘l} )
on the left and QB(W{2}) on the right:

5251825152 5152815251
51525152 ay | S2818281
825182 ay +ay .| 18251
o
ay +2ay
ay tay 5182 ay | 8281
S92 ay S1
1 1
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A.4. Root System A;

The root system has six positive roots, namely a1, ag, a3, a1 +ag, as+a3 and g +as+as.
The Weyl group consists of 24 elements. These are the 16 reflection orderings:

ag <oy <oapt+togt+az3 <o +oag <o+ oz <o,
ay <o) t+oar<agt+az3 <oy +ar+ a3z <asz<ag,
a3 <oy t+az3 <o toataz <o <o+ ay <o,
a3 <o) <o +agt+az3 <o +az <o+ ag <ag,
a1 <az3 <o t+oayt+oaz3 <o +az <o+ ay <,
ag<aytoazg<ag<oatoayt+az <o t+oa <oq,
oy <agt+oaz <o t+toay <o +oa+oz3<az <o,
g <ap+oagy <o <o+ o+ a3 <o+ a3 <as,
o] <ap+oay <oy <o+ o+ a3 <o+ a3 <as,
a3 <aptaz3<apt+oart+oaz <o <o +a <aoq,
a] <o) t+ay<apt+oart+ a3 <az <ag+az <ag,
o1 <o)y toar<ortoataz3 <o <o+ az <as,
ay <o) t+oar<agt+az3 <oy +a+ a3z <a; <as,
ay <agt+az <oy t+ay <o +a+ a3z <a; <as,
g <agt+oaz3<oaz<opt+oag+az <o +a <o,
o <az3 <o t+art+az3<a;+ar <o+ az < ar.

The quantum Bruhat graph is printed on the next page.
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Below is the parabolic quantum Bruhat graph QB(W{al}). It is isomorphic to QB(W{O‘3})
after interchanging a1 and as.

5152535152
NG
ay +ay r\\\\\\\

51525352 82838182

N

535152

Q3

This is QB(W{o2}):

5182835251

/////:}+a§+a§

51525153

52838251

Finally, we have QB(W{@1:2}) on the left and QB(W{*1-23}) on the right. Note that
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QB(W a2ty ~ QB(We23}) after interchanging o and as.

515283

52

53

52515352
ay T

8158382

5152 5352
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