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Abstract
Affine Deligne-Lusztig varieties capture the delicate interplay between the Iwahori-
Bruhat decomposition of an algebraic group and its decomposition into σ-conjugacy
classes. Our four main results express geometric properties of these decompositions in
terms of combinatorial properties of the quantum Bruhat graph.
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1. Introduction
To keep the introduction concise, we refer to Section 2.1 for a detailed description of our
technical setup and notation. For now, let us summarize that G denotes an algebraic
group over a local field F , whose maximal unramified extension we denote by L “ F̆ .
We are interested in two important decompositions of the topological space GpLq.
The first is the Iwahori-Bruhat decomposition of the topological space GpLq. For an

Iwahori subgroup I Ď GpLq and the extended affine Weyl group ĂW , we have

GpLq “
ğ

xPĂW

IxI.

The closure of an Iwahori double coset IxI is naturally a union of Iwahori double cosets,
with closure relations given by the Bruhat order ď on ĂW .

IxI “
ğ

yďx

IyI.

The Bruhat order has an alternative, purely Coxeter-theoretic description. However,
both these approaches can be tricky to work with. In Section 4, we present a new
description of the Bruhat order on ĂW that is amenable to both theoretical reasoning
and practical computation.

Theorem 1.1. Let x1, x2 P ĂW , and write them as x1 “ w1ε
µ1 , x2 “ w2ε

µ2. Then
x1 ď x2 in the Bruhat order if and only if for each v1 P W , there exists some v2 P W
satisfying

v´1
1 µ1 ` wtpv2 ñ v1q ` wtpw1v1 ñ w2v2q ď v´1

2 µ2.

Here, wt denotes the weight function of the quantum Bruhat graph. This function
will be studied in detail in Section 3.

For more refined descriptions of the Bruhat order, we refer to Theorems 4.2 and 4.36
as well as Remark 5.23.
As an application, we give a new description of the admissible sets in ĂW as introduced

by Kottwitz and Rapoport [KR00; Rap02] (Propositions 4.12 and 4.38).
The product of two Iwahori double cosets is in general not an Iwahori double coset.

After passing to closures however, we do find for each x, y P ĂW a uniquely determined
z “ x ˚ y P ĂW such that

IxI ¨ IyI “ IzI.

The Demazure product also has a purely Coxeter-theoretic description, namely

x ˚ y “ maxtx1y1 | x1 ď x, y1 ď yu.

Using our previously established result on the Bruhat order, we give a new description
of the Demazure product ˚ on ĂW in Section 5.
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Theorem 1.2 (Cf. Theorem 5.11). Let x1, x2 P ĂW , and write them as x1 “ w1ε
µ1 and

x2 “ w2ε
µ2. Then for explicitly described v1, v2 PW , we have

x1 ˚ x2 “ w1v1v
´1
2 εv2v

´1
1 µ1`µ2´v2 wtpv1ñw2v2q.

This description of Demazure products will then shed some light both on our previous
result on the Bruhat order and the next result on generic σ-conjugacy classes.
There is a second important stratification on GpLq, namely the decomposition into

σ-conjugacy classes. Denoting by σ the Frobenius of L{F , it acts on GpLq and we define
for g1, g2 P GpLq:

g1 „σ g2 ðñ Dh P GpLq : g1 “ h´1g2σphq.

The set of σ-conjugacy classes in GpLq is denoted BpGq. The σ-conjugacy class of an
element g P GpLq is determined by two invariants, as proved by Kottwitz in [Kot85;
Kot97]. These invariants are called the Newton point νpgq and the Kottwitz point κpgq.
The closure of a σ-conjugacy class rbsσ is again a union of σ-conjugacy classes, so we

can write

rbsσ “
ğ

rb1sσďrbsσ

rb1sσ.

The order ď on σ-conjugacy classes is easily described as κpb1q “ κpbq and νpb1q ď νpbq in
the dominance order. This result is proved by Rapoport-Richartz [RR96] and Viehmann
[Vie13] for split groups and by He [He16] for general groups.
We are interested in the intersections IxI X rbs for x P ĂW and rbs P BpGq, called

Newton strata. It is an important open question which Newton strata are non-empty,
i.e. to describe the set

BpGqx :“ trbs P BpGq | IxI X rbs ‰ Hu.

Related to these intersections are the affine Deligne-Lusztig varieties (cf. [Rap02]), de-
fined by

XxpbqpFqq “ tg P GpF̆ q{I | g´1bσpgq P IxIu.

The dimension and the question of equi-dimensionality of Xxpbq have been intensively
studied in the past, yet both problems remain largely open [GHKR06; GHKR10; GH10;
He14; MST19]. Affine Deligne-Lusztig varieties for certain groups of small rank have
been studied explicitly [Reu02; Bea09; Yan14].

Affine Deligne-Lusztig varieties have been introduced by Rapoport [Rap02] to define
Rapoport-Zink moduli spaces, which play an important role for the study of Shimura
varieties.

The construction of affine Deligne-Lusztig varieties resembles a classical construction
of certain varieties due to Deligne-Lusztig [DL76]. They used the cohomology of these
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Deligne-Lusztig varieties to describe all complex representations of finite groups of Lie
type.
If one replaces the Iwahori subgroup by a hyperspecial subgroup, the resulting affine

Deligne-Lusztig varieties have been well-understood after concentrated effort by many
researchers, e.g. [Kot06; GHKR06; Vie06; Ham15].
For the affine Deligne-Lusztig varieties considered in this paper, there are a number

of important partial results describing their geometry.
It is proved by Görtz-He-Nie [GHN15] and Viehmann [Vie21] that BpGqx always

contains a uniquely determined smallest element, which is explicitly described. More-
over, BpGqx always contains a uniquely determined largest element. This follows from
the specialization theorem of Rapoport-Richartz [RR96, Theorem 3.6], as explained by
Viehmann [Vie14, Proof of Corollary 5.6]. Rapoport-Richartz also prove a version of
Mazur’s inequality, which states that for rbs P BpGqx with x “ wεµ, we must have an
identity of Kottwitz points κpbq “ κpxq and the inequality νpbq ď µdom P X˚pT qΓ0 bQ.
While the dimension dimXxpbq is difficult to compute, the virtual dimension dxpbq

introduced by He [He14] is easy to evaluate and always an upper bound for dimXxpbq.
Moreover, we have dimXxpbq “ dxpbq for a number of cases, but not always. Cf. [He14;
MV20; He21b], affirming conjectures of Reuman and others [Reu02; GHKR06]. The
virtual dimension is defined as

dxpbq “
1
2 p`pxq ` `pησpxqq ´ xνpbq, 2ρy ´ defpbqq .

Here, `pxq denotes the length of x in ĂW , as explained in Section 2.1. By ησpxq, we denote
a certain element in the finite Weyl group associated with x, as explained in Section 2.2.
These two terms only depend on the element x P ĂW .

The defect of a σ-conjugacy class is a non-negative integer that is bounded by the
rank of the root system. We will focus on this invariant in Section 6.2.

The uniquely determined largest element of BpGqx is called generic σ-conjugacy class
rbxsσ. It is the unique σ-conjugacy class such that rbxsσX IxI is dense in IxI. The Kot-
twitz point of bx coincides with the Kottwitz point of x, which is easy to compute. The
calculation of its Newton point, i.e. the generic Newton point of x, is less straightforward.
We are able to prove the following:

Theorem 1.3 (Cf. Theorem 7.2). Let x “ wεµ P ĂW . We can give an explicit closed
formula for the generic Newton point νx “ νpbxq in terms of µ and the weight function
of the quantum Bruhat graph.

This theorem may be seen as a refinement of the aforementioned Mazur inequality, as
it gives a sharp upper bound for tνpbq | rbs P BpGqxu. We also give a concise formula
for the λ-invariant λGprbxsq as introduced by Hamacher-Viehmann [HV18]. This result
is useful for proving our second main result.
If the dimension coincides with the virtual dimension for the generic σ-conjugacy class,

i.e. dimXxpbxq “ dxpbxq, the element x is called cordial following Milićević-Viehmann
[MV20]. They prove in [MV20, Corollary 3.17, Theorem 1.1] that cordial elements
satisfy the most desirable properties. In particular, the set BpGqx is explicitly described
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as a closed interval in BpGq, and for each b P BpGqx, the affine Deligne-Lusztig varieties
Xxpbq is equi-dimensional of dimension dxpbq. Using our result on generic Newton points,
we are able to fully classify the cordial elements in ĂW .
Theorem 1.4 (Cf. Corollary 7.9). Let x P ĂW . Then x is cordial if and only if two
conditions are satisfied, that we can summarize as a genericness condition on x and an
extremality condition on certain vertices in the quantum Bruhat graph.
The theory of cordial elements has been used by He [He21b] to compute the dimensions

of many affine Deligne-Lusztig varieties, even for non-cordial elements x P ĂW .
Our main results were known previously only for elements x P ĂW satisfying certain

regularity conditions: Our result on the Bruhat order was previously only known for
superregular elements, as a result of Lam-Shimozono [LS10], as well as groups of type
An and Cn (cf. Chapter 8 of the textbook of Brenti-Björner on Coxeter groups [BB05]).
Our result on Demazure products generalizes the ones from He-Nie [HN21].
A description of generic Newton points for superregular elements is originally due to

Milićević [Mil21]. Sadhukhan [Sad21] proved a version with a weaker superregularity
constraint. More generally, for shrunken elements in the extended affine Weyl group,
a description of generic Newton points is due to He-Nie [HN21]. Each of these results
also gives a criterion to check which of the respective regular elements are cordial, as the
proof of [MV20, Proposition 4.2] can be easily adapted.
While it is true that most elements in ĂW lie in a shrunken Weyl chamber, the most

interesting ones typically do not. e.g. when one is interested in applications to Shimura
varieties, one would be interested in minuscule elements in ĂW , of which only very few
are also shrunken.
The backbone on our results on the affine flag variety are new combinatorial methods

developed in Sections 2 and 3. To each element x P ĂW , we associate the length functional
`px, ¨q and the set of length positive elements LPpxq ĎW . The set LPpxq consists of only
one element if and only if x lies in a shrunken Weyl chamber. This is one reason why
previous approaches, that did not have this language available, failed for non-shrunken
elements x P ĂW . A number of crucial results on the quantum Bruhat graph, as intro-
duced and proved in Section 4, complement our machinery to prove our main theorems.
A newly introduced semi-affine weight function in Section 3.4 yields a generalization of
our description of the Bruhat order, which also generalizes the previously known criteria
for types An and Cn. Moreover, this semi-affine weight function precisely describes the
admissible sets from [Rap02], cf. Proposition 4.38.

As a preparation for the more geometric aspects of our proofs, we review and refine a
number of known results on the set of σ-conjugacy classes in Section 6. Our main results
hold true whenever G is connected and reductive. Following Görtz-He-Nie [GHN15], we
can prove this via a reduction to the case where G is quasi-split. However, many impor-
tant foundational results have been proved only under the somewhat stricter assumption
that G should be unramified. We show how to generalize these classical results to the
quasi-split case, allowing us to prove our main results in this setting (Corollaries 7.4
and 7.9). This enables us to conclude them for arbitrary connected reductive groups
(Theorem 7.18 and Proposition 7.19).
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The main results of this dissertation have been made accessible to the academic com-
munity in the form of preprints and have been submitted for publication in peer-reviewed
journals. Summarizing broadly, Sections 2, 6 and 7 constitute the paper [Sch22b], and
Sections 3, 4 and 5 constitute the paper [Sch22a].
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2. The affine root system
2.1. Group-theoretic setup
We fix a non-archimedian local field F whose completion of the maximal unramified
extension will be denoted L “ F̆ . We write OF and OL for the respective rings of
integers. Let ε P F be a uniformizer. The Galois group Γ “ GalpL{F q is generated by
the Frobenius σ.

Concretely, this means we have one of the following situations:

• Mixed characteristic case: F {Qp is a finite extension for some prime p. Then OF
is the set of integral elements of F .

• Equal characteristic case: OF is a ring of formal power series Fqrrεss, F “ Fqppεqq
is its fraction field, OL “ Fqrrεss and L “ Fqppεqq. The Frobenius σ acts on L via

σ
´

ÿ

anε
n
¯

“
ÿ

aqnε
n.

We consider a connected and reductive group G over F . We construct its associated
affine root system and affine Weyl group following Haines-Rapoport [HR08] and Tits
[Tit79].
Fix a maximal L-split torus S Ď GL and write T for its centralizer in GL, so T is

a maximal torus of GL. Write A “ ApGL, Sq for the apartment of the Bruhat-Tits
building of GL associated with S. We pick a σ-invariant alcove a in A. This yields a
σ-stable Iwahori subgroup I Ă GpLq.

Denote the normalizer of T in G by NpT q. Then the quotient

ĂW “ NGpT qpLq{pT pLq X Iq

is called extended affine Weyl group, andW “ NGpT qpLq{T pLq is the (finite) Weyl group.
The Weyl group W is naturally a quotient of ĂW .
The affine roots as constructed in [Tit79, Section 1.6] are denoted Φaf . Each of these

roots a P Φaf defines an affine function a : A Ñ R. The vector part of this function is
denoted clpaq P V ˚, where V “ X˚pSq b R “ X˚pT qΓ0 b R. Here, Γ0 “ GalpL{Lq is the
absolute Galois group of L, i.e. the inertia group of Γ “ GalpF {F q. The set of (finite)
roots is1 Φ :“ clpΦafq.
The affine roots in Φaf whose associated hyperplane is adjacent to our fixed alcove a

are called simple affine roots and denoted ∆af Ď Φaf .
Writing Waf for the extended affine Weyl group of the simply connected quotient of

G, we get a natural σ-equivariant short exact sequence (cf. [HR08, Lemma 14])

1 ÑWaf Ñ ĂW Ñ π1pGqΓ0 Ñ 1.

Here, π1pGq :“ X˚pT q{ZΦ_ denotes the Borovoi fundamental group.
1This is different from the root system that [Tit79] and [HR08] denote by Φ; it coincides with the root
system called Σ in [HR08].
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For each x P ĂW , we denote by `pxq P Zě0 the length of a shortest alcove path from a
to xa. The elements of length zero are denoted Ω. The above short exact sequence yields
an isomorphism of Ω with π1pGqΓ0 , realizing ĂW as semidirect product ĂW “ Ω˙Waf .

Each affine root a P Φaf defines an affine reflection ra on A. The group generated by
these reflections is naturally isomorphic to Waf (cf. [HR08]), so by abuse of notation,
we also write ra P Waf for the corresponding element. We define Saf :“ tra | a P ∆afu,
called the set of simple affine reflections. The pair pWaf , Safq is a Coxeter group with
length function ` as defined above.

We pick a special vertex x P A that is adjacent to a. We identify A with V via x ÞÑ 0.
This allows us to decompose Φaf “ Φˆ Z, where a “ pα, kq corresponds to the function

V Ñ R, v ÞÑ αpvq ` k.

From [HR08, Proposition 13], we moreover get decompositions ĂW “ W ˙X˚pT qΓ0 and
Waf “ W ˙ ZΦ_. Using this decomposition, we write elements x P ĂW as x “ wεµ with
w P W and µ P X˚pT qΓ0 . For a “ pα, kq P Φaf , we have ra “ sαε

kα_ P Waf , where
sα P W is the reflection associated with α. The natural action of ĂW on Φaf can be
expressed as

pwεµqpα, kq “ pwα, k ´ xµ, αyq.

We define the dominant chamber C Ď V to be the Weyl chamber containing our
fixed alcove a. This gives a Borel subgroup B Ď G, and corresponding sets of posi-
tive/negative/simple roots Φ`,Φ´,∆ Ď Φ.

By abuse of notation, we denote by Φ` also the indicator function of the set of positive
roots, i.e.

Φ` : Φ Ñ t0, 1u, α ÞÑ

#

1, α P Φ`,
0, α P Φ´.

The following easy facts will be used often, usually without further reference:

Lemma 2.1. Let α P Φ.

(a) Φ`pαq ` Φ`p´αq “ 1.

(b) If β P Φ and k, ` ě 1 are such that kα` `β P Φ, we have

0 ď Φ`pαq ` Φ`pβq ´ Φ`pkα` `βq ď 1.

The sets of positive and negative affine roots can be defined as

Φ`af :“pΦ` ˆ Zě0q \ pΦ´ ˆ Zě1q “ tpα, kq P Φaf | k ě Φ`p´αqu,
Φ´af :“´ Φ`af “ ΦafzΦ`af “ tpα, kq P Φaf | k ă Φ`p´αqu.

One checks that Φ`af are precisely the affine roots that are sums of simple affine roots.
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Decompose Φ as a direct sum of irreducible root systems, Φ “ Φ1 \ ¨ ¨ ¨ \ Φr. Each
irreducible factor contains a uniquely determined longest root θi P Φ`i . Now the set of
simple affine roots is

∆af “ tpα, 0q | α P ∆u \ tp´θi, 1q | i “ 1, . . . , ru Ă Φ`af .

The Bruhat order on Waf is the usual Coxeter-theoretic notion. The Bruhat order on
ĂW can be defined as ωx ď ω1x1 iff ω “ ω1 and x ď x1 for ω, ω1 P Ω and x, x1 PWaf .
We call an element µ P X˚pT qΓ0bQ dominant if xµ, αy ě 0 for all α P Φ`. For elements

µ, µ1 in X˚pT qΓ0 bQ (resp. X˚pT qΓ0 or X˚pT qΓ), we write µ ď µ1 if the difference µ1´µ
is a Qě0-linear combination of positive coroots.

The induced action of Γ0 on A,Φaf ,ĂW,Waf and W is trivial by construction. The
Frobenius action on A, X˚pT qΓ0 ,Φaf and Φ will be denoted by σ. Note that σ preserves
the set of simple affine roots. The Frobenius action on W,ĂW and Waf will be denoted
by x ÞÑ σx. Then the action of σx on X˚pT qΓ0 is the same as the composed action
σ ˝ x ˝ σ´1 (x PW or ĂW ).

For the most part, we consider the case where G is quasi-split over F . This is a
convenient assumption that lightens the notational burden significantly. In Section 7.2,
we return to the more general setting of connected reductive G and generalize our main
results via a reduction to the quasi-split case.
If G is quasi-split, we may and do choose the vertex x to be σ-invariant. With this

choice, the decompositions Φaf “ ΦˆZ and ĂW “W˙X˚pT qΓ0 are Frobenius equivariant.
This means

@pα, kq P Φaf : σpα, kq “ pσpαq, kq,
@wεµ P ĂW : σpwεµq “ pσwqεσpµq.

In particular, σ preserves the set of simple roots ∆.
The case where G is unramified has often been studied in the literature. In this

case, S is a maximal torus of GL, so S “ T and Φ is the usual root system of pG,T q.
Each root system Φ together with a Frobenius action comes from such an unramified
group. However, care has to be taken when using results proved for unramified groups
in the quasi-split setting, as X˚pT qΓ0 may have a torsion part if G is not unramified. In
particular, the map X˚pT qΓ0 Ñ X˚pT qΓ0 b R “ V – A might fail to be injective.

2.2. Root functionals
For every coweight µ, there exists a uniquely determined dominant coweight in the W -
orbit of µ. In other words, there exists some w PW such that µpwαq ě 0 for all α P Φ`.
In this section, we introduce and study certain functions ϕ : Φ Ñ Z which are more

general than coweights, but still enjoy this property.

Definition 2.2. (a) A root functional is a function ϕ : Φ Ñ Z satisfying the following
two conditions for all α, β P Φ:
(1) |ϕpαq ` ϕp´αq| ď 1.
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(2) If α` β P Φ, then

|ϕpα` βq ´ ϕpαq ´ ϕpβq| ď 1.

(b) If ϕ is a root functional, the dual root functional is defined by ϕ_pαq “ ´ϕp´αq.

(c) Let v PW . The set of inversions of v with respect to ϕ is

invϕpvq “ tα P Φ` | ϕpvαq ă 0u Y tα P Φ´ | ϕpvαq ą 0u.

We call v positive for ϕ if invϕpvq “ H. If α P invϕpvq, we call vsα PW an adjustment
of v for ϕ.

Lemma 2.3. Let ϕ : Φ Ñ Z be a root functional and v PW be not positive for ϕ. If v1
is an adjustment of v for ϕ, then

# invϕpv1q ă # invϕpvq.

Proof. Let α P invϕpvq with v1 “ vsα. Up to replacing pα,ϕq by p´α,ϕ_q, we may
assume α P Φ`, so ϕpvαq ă 0. Define

I :“ tβ P Φ`ztαu | sαpβq P Φ´u.

We write

# invϕpv1q “#tβ P Φ`zI | ϕpv1βq ă 0u `#tβ P I | ϕpv1βq ă 0u
`#tβ P Φ´zp´Iq | ϕpv1βq ą 0u `#tβ P ´I | ϕpv1βq ą 0u

Note that ϕpv1αq “ ϕp´vαq ě ´1 ´ ϕpvαq ě 0 and sαpΦ`zpI Y tαuqq “ Φ`zpI Y tαuq.
Thus

#tβ P Φ`zI | ϕpv1βq ă 0u “#tβ P Φ`zpI Y tαuq | ϕpvsαβq ă 0u
“#tβ P Φ`zpI Y tαuq | ϕpvβq ă 0u
“#tβ P Φ`zI | ϕpvβq ă 0u ´ 1.

Similarly, we have

#tβ P Φ´zp´Iq | ϕpv1βq ą 0u “#tβ P Φ´zp´I Y t´αuq | ϕpv1βq ą 0u
“#tβ P Φ´zp´I Y t´αuq | ϕpvβq ą 0u
ď#tβ P Φ´zp´Iq | ϕpvβq ą 0u.

Therefore, it suffices to prove the following estimates:

#tβ P I | ϕpv1βq ă 0u ď #tβ P I | ϕpvβq ă 0u, (1)
#tβ P ´I | ϕpv1βq ą 0u ď #tβ P ´I | ϕpvβq ą 0u. (2)

We only prove (1), as the proof of (2) is similar.
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In order to prove (1), we consider the involution β ÞÑ ´sαpβq, which acts freely on I.
Let o “ tβ,´sαpβqu Ď I be an orbit for this involution. It suffices to show

#tβ P o | ϕpv1βq ă 0u ď #tβ P o | ϕpvβq ă 0u. (˚)

In order to prove this, we calculate

#tβ P o | ϕpv1βq ă 0u “#tβ P ´sαpoq | ϕpv1βq ă 0u
“#tβ P o | ϕp´vβq ă 0u
ď#tβ P o | ϕpvβq ě 0u
“2´#tβ P o | ϕpvβq ă 0u.

If #tβ P o | ϕpvβq ă 0u ě 1, we immediately get p˚q.
Now suppose that ϕpvβq ě 0 for all β P o. Fix an element β P o and write

β1 :“ ´sαpβq “ xα_, βyα´ β.

Note that kα´ β P Φ for k “ 0, . . . , xα_, βy. Thus

∣∣ϕpvβ1q ´ xα_, βyϕpvαq ´ ϕp´vβq∣∣ ď xα_,βyÿ

k“1
|ϕpvpkα´ βqq ´ ϕpvαq ´ ϕpvpk ´ 1qα´ βq|

ďxα_, βy.

In particular, we get

ϕpvβ1q ´ ϕp´vβq ď xα_, βyp1` ϕpvαqq ď 0.

Thus ϕp´vβq ě ϕpvβ1q ě 0.
Since β P o was arbitrary, we get ϕpv1βq “ ϕp´vp´sαqβq ě 0 for all β P o. This proves

p˚q, which finishes the proof of the lemma.

Corollary 2.4. If ϕ : Φ Ñ Z is a root functional and v P W is any element, there is a
sequence

v “ v1, . . . , vk PW

such that vi`1 is an adjustment for vi for ϕ (where i “ 1, . . . , k ´ 1), and vk is positive
for ϕ. In particular, positive elements exist for each root functional.

The most important root functional for us will be the length functional associated to
an element x P ĂW , which we introduce now.

Definition 2.5. Let x “ wεµ P ĂW and α P Φ. We define

`px, αq :“ xµ, αy ` Φ`pαq ´ Φ`pwαq.

14



The absolute value |`px, αq| can be understood as counting affine root hyperplanes be-
tween the base alcove and xa, while the sign accounts for the orientations (cf. Lemma 2.9).

Lemma 2.6. Let x “ wεµ P ĂW . Then `px, ¨q is a root functional. For each α P Φ, we
have

`px, αq ` `px,´αq “ 0.

Proof. Let α, β P Φ.

(1) We have

`px, αq ` `px,´αq “xµ, αy ` Φ`pαq ´ Φ`pwαq ` xµ,´αy ` Φ`p´αq ´ Φ`p´wαq
“Φ`pαq ` Φ`p´αq ´ pΦ`pwαq ` Φ`p´wαqq “ 1´ 1 “ 0.

(2) Suppose α` β P Φ. We know that

0 ď Φ`pαq ` Φ`pβq ´ Φ`pα` βq ď 1.

Thus, we obtain

|`px, α` βq ´ `px, αq ´ `px, βq|
“|Φ`pα` βq ´ Φ`pαq ´ Φ`pβq

loooooooooooooooooomoooooooooooooooooon

Pt´1,0u

´Φ`pwpα` βqq ` Φ`pwαq ` Φ`pwβq
loooooooooooooooooooooooomoooooooooooooooooooooooon

Pt0,1u

| ď 1.

This finishes the proof.

Definition 2.7. Let x P ĂW and v PW . We say that v is length positive for x and write
v P LPpxq if v is positive for the length functional `px, ¨q. Explicitly, v is length positive
for x if `px, vαq ě 0 for all α P Φ`.

Example 2.8. Let x “ wεµ P ĂW . The W -orbit of µ contains a unique dominant element
of X˚pT qΓ0 , and there is a unique v PW of minimal length such that v´1µ is dominant.
The element v is uniquely determined by the following condition for each positive root
α:

xv´1µ, αy ě Φ`p´vαq.

It follows that

`px, vαq “ xv´1µ, αy ´ Φ`p´vαq ` Φ`p´wvαq ě 0.

We see that this particular v is length positive. This gives an alternative proof that
length positive elements always exist.
Recall the definition of the virtual dimension for x P ĂW and b P BpGq.

dxpbq “
1
2 p`pxq ` `pησpxqq ´ xνpbq, 2ρy ´ defpbqq .
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Here, 2ρ P X˚pT qΓ denotes the sum of positive roots. With v PW constructed as above,
we have

ησpxq “
σ´1
pvq´1wv PW.

Because of the importance of the virtual dimension, the specific v constructed in this
example is of particular interest.
However, the construction of this v PW is not quite natural in terms of x P ĂW , e.g. in

view of certain automorphisms of ĂW that preserve dimensions of affine Deligne-Lusztig
varieties.
Studying the group GL3 for example, there are three simple affine reflections s0, s1, s2 P

ĂW . Each of these satisfies `psiq “ dimXsip1q “ 1. The two simple affine reflections that
come from W also satisfy `pησps1qq “ `pησps2qq “ 1, so that

dsipr1sσq “
1
2 p1` 1´ 0´ 0q “ 1 “ dimXsip1q, i “ 1, 2.

For the remaining affine simple reflection s0, we do however have `pησps0qq “ 3. Thus
ds0p1q “ 2 ą dimXs0p1q.
We see that s1, s2 satisfy dimXsip1q “ dsip1q (so both are cordial), whereas s0 does

not have this property. This is problematic insofar as there exists an automorphism
of the affine Dynkin diagram sending s1 to s0, hence naturally Xs0p1q – Xs1p1q. This
natural isomorphism is not reflected in the corresponding virtual dimensions, which
comes precisely from the term `pησpxqq.
Searching for a replacement of this specific v that is invariant under such automor-

phisms, we found the notion of length positive elements. The set of length positive
elements is well-behaved under such automorphisms, as it allows the following root-
theoretic interpretation.

Lemma 2.9 (cf. [Len+15, Lemma 3.12]). Let x “ wεµ P ĂW and α P Φ. Then

#tk P Z | pα, kq P Φ`af and xpα, kq P Φ´afu “ maxp0, `px, αqq.

Proof. We have

tpα, kq P Φ`af | xpα, kq P Φ´afu

“tpα, kq P Φaf | k ě Φ`p´αq and pwα, k ´ xµ, αyq P Φ´afu

“tpα, kq P Φaf | k ě Φ`p´αq and k ´ xµ, αy ď ´Φ`pwαqu.
–tk P Z | Φ`p´αq ď k ď xµ, αy ´ Φ`pwαqu.

The cardinality of this set is given by

maxp0, xµ, αy ` 1´ Φ`pwαq ´ Φ`p´αqq “ maxp0, `px, αqq.

Corollary 2.10 ([IM65, Proposition 1.23]). Let x “ wεµ P ĂW . Then

`pxq “
ÿ

αPΦ
maxp0, `px, αqq.
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Proof. Use that

`pxq “ #tpα, kq P Φ`af | xα P Φ´afu

and decompose the latter set depending on the α P Φ.

Corollary 2.11. Let x “ wεµ P ĂW and v PW . Then

`pxq ě xv´1µ, 2ρy ´ `pvq ` `pwvq.

Equality holds if and only if v is length positive for x.

Proof. We calculate

`pxq ě
ÿ

αPΦ`
`px, vαq

“
ÿ

αPΦ`

`

xµ, vαy ´ Φ`p´vαq ` Φ`p´wvαq
˘

“xv´1µ, 2ρy ´ `pvq ` `pwvq.

Lemma 2.12. Let x “ wεµ, x1 “ w1εµ
1

P ĂW and α P Φ.

(a) `pxx1, αq “ `px,w1αq ` `px1, αq.

(b) `px´1, αq “ ´`px,w´1αq and LPpx´1q “ w LPpxqw0.

Proof. (a) Note that xx1 “ ww1εpw
1q´1µ`µ1 such that

`px,w1αq ` `px1, αq

“ xµ,w1αy ` xµ1, αy ´ Φ`pww1αq ` Φ`pw1αq ´ Φ`pw1αq ` Φ`pαq
“ xpw1q´1µ` µ1, αy ´ Φ`pww1αq ` Φ`pαq “ `pxx1, αq.

(b) By (a), we have

0 “ `p1, αq “ `pxx´1, αq “ `px,w´1αq ` `px´1, αq.

Now observe that for v PW ,

v P LPpx´1q ðñ @β P Φ` : `px´1, vβq ě 0
ðñ @β P Φ` : `px´1, vp´w0βqq ě 0
ðñ @β P Φ` : `px,w´1vw0βq ě 0 ðñ v P w LPpxqw0.

Lemma 2.13. Let x “ wεµ, x1 “ w1εµ
1

P ĂW . The following are equivalent:

(i) `pxx1q “ `pxq ` `px1q.
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(ii) For each root α P Φ, the values `px,w1αq and `px1, αq P Z never have opposite signs,
i.e.

`px,w1αq ¨ `px1, αq ě 0.

(iii)
`

pw1q´1 LPpxq
˘

X LPpx1q ‰ H.

In this case, LPpxx1q “
`

pw1q´1 LPpxq
˘

X LPpx1q.

Proof. (i) ðñ (ii): By Corollary 2.10 and the equation `px, αq “ ´`px,´αq, we get

`pxx1q “
ÿ

αPΦ`

∣∣`pxx1, αq∣∣
“

L2.12(a)

ÿ

αPΦ`

∣∣`px,w1αq ` `px1, βq∣∣
ď
p˚q

ÿ

αPΦ`

∣∣`px,w1αq∣∣` ∣∣`px1, αq∣∣
“`pxq ` `px1q.

Equality holds at p˚q iff the values `px,w1αq and `px1, αq never have opposite signs. We
see that (i) ðñ (ii).
(iii) ñ (ii): Pick v P

`

pw1q´1 LPpxq
˘

X LPpx1q. If α P Φ`, then both `px,w1vαq and
`px1, vαq must be non-negative by length positivity. If α P Φ´, then both `px,w1vαq and
`px1, vαq must be non-positive. We see that (ii) must hold true.

Finally, let us assume that (ii) holds. It suffices to show that

LPpxx1q “
`

pw1q´1 LPpxq
˘

X LPpx1q,

as (iii) follows from this identity. Now for v PW , we have

v P LPpxx1q ðñ @α P Φ` : `pxx1, vαq ě 0
ðñ

L2.12(a)
@α P Φ` : `px,w1vαq ` `px1, vαq ě 0

ðñ
piiq

@α P Φ` : `px,w1vαq ě 0 and `px1, vαq ě 0

ðñ v P
`

pw1q´1 LPpxq
˘

X LPpx1q.

Given one element v P LPpxq, one can use it to iteratively enumerate all length positive
elements for x.

Lemma 2.14. Let x “ wεµ P ĂW and v P LPpxq.

(a) For every simple root α P ∆, we have

`px, vαq “ 0 ðñ vsα P LPpxq.

(b) If the root α P Φ` satisfies `px, vαq “ 0, then there also exists a simple root with
this property.
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(c) Consider the undirected graph GLPpxq whose vertices are given by LPpxq and whose
edges are of the form pv, vsαq for α P ∆ and v, vsα P LPpxq. Then GLPpxq is
connected.

Proof. (a) If vsα P LPpxq, then `px, vαq and `px, vsααq “ ´`px, vαq must both be non-
negative. This is only possible if `px, vαq “ 0.
If `px, vαq “ 0, confirm that `px, vβq ě 0 for all β P Φ` Y t´αu. The latter set is
preserved by sα.

(b) Suppose α P Φ`z∆ satisfies `px, vαq “ 0. We can write α “ β ` γ for positive roots
β, γ P Φ`. By length positivity, `px, vβq, `px, vγq ě 0. If both of these values are
ě 1, we get `px, vαq ě 1 by the root functional property. Hence `px, vβq “ 0 or
`px, vγq “ 0. We can iterate this argument.

(c) Let C Ď LPpxq denote the connected component that contains v. Among all v1 P C,
pick one such that `pwv1q is minimal.
We claim that

@α P ∆ : xµ, v1αy ` Φ`pv1αq ě 1. (˚)

• If `px, v1αq “ 0, then v1sα P C. The minimality of `pwv1q ensures that `pwv1sαq ě
`pwv1q, i.e. wv1α P Φ`. The definition of `pxv1αq “ 0 implies xµ, v1αy `
Φ`pv1αq “ 1.

• If `px, v1αq ě 1, we get

xµ, v1αy ` Φ`pv1αq ě `px, v1αq ě 1.

Let us re-read condition p˚q: not only is pv1q´1µ dominant, we have v1α P Φ` for
all α P ∆ with xpv1q´1µ, αy “ 0. This describes exactly the length positive element
constructed in Example 2.8.
To summarize: No matter which connected component of GLPpxq we consider, it will
always contain the one length positive element from Example 2.8. Hence GLPpxq is
connected.

We obtain the following description of the shrunken Weyl chambers:

Proposition 2.15. For x P ĂW , the following are equivalent:

(i) x lies in the lowest two-sided Kazhdan-Lusztig cell of ĂW .

(ii) For all α P Φ, `px, αq ‰ 0.

(iii) The set LPpxq contains only one element.

In this case, we say that x lies in a shrunken Weyl chamber.
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Proof. The equivalence (i) ðñ (ii) is well known, cf. [HN21, Section 3.1].
The equivalence (ii) ðñ (iii) follows directly from Lemma 2.14.

Remark 2.16. The length functional presented here is related to the k-function from
[Shi87a]. For w PW,µ P X˚pT q and α P Φ, Shi proves

kpwtµ, αq “ xµ, α_y ` Φ`ppαqpw´1qq ´ Φ`pαq.

This result is a translation of [Shi87a, Lemma 3.1] and [Shi87a, Theorem 3.3] into our
“Φ`p¨q”-notation. Up to a few changes of conventions, this recovers exactly our length
functional. We will make these changes to express a few of Shi’s ideas in terms of the
length functional.
Shi classifies the functions Φ Ñ Z that are of the form `px, ¨q in [Shi87a, Proposi-

tion 5.1].
Associated to each element x P ĂW and root α P Φ, he defines the value Xpx, αq P

t`,©,´u as

Xpx, αq “

$

’

&

’

%

`, `px, αq ą 0,
©, `px, αq “ 0,
´, `px, αq ă 0.

The sign type of x is defined as ζpxq “ pXpx, αqqαPΦ. The admissible sign types, i.e. the
image of ζ : ĂW Ñ t`,©,´uΦ, is explicitly described in [Shi87b, Theorem 2.1]. Shi also
computes the number of sign types and canonical representatives in Wa for each.
For root systems of type An, the preimages ζ´1pSq for the different admissible sign

types S form exactly the set of left Kazhdan-Lusztig cells for Wa [Shi86]. An explicitly
described equivalence relation of sign types then classifies the two-sided Kazhdan-Lusztig
cells.
The question to fully describe the Kazhdan-Lusztig cells for all affine Weyl groups

seems to be open.
The sign type ζpxq determines the set of length positive elements for x. The converse

is not true, i.e. it is possible to find groups G and elements x, y P ĂW with LPpxq “ LPpyq
but ζpxq ‰ ζpyq. Computer searches have revealed such counterexamples for root systems
of types G2 and B2, thus for every non simply-laced root system. For simply-laced root
systems, we can prove that the set LPpxq determines the sign type ζpxq.

Proposition 2.17. Assume that Φ is simply laced, x P ĂW and α P Φ. Then the following
are equivalent:

(i) `px, αq ą 0.

(ii) For all v P LPpxq, we have v´1α P Φ`.

Proof. The implication (i) ñ (ii) follows from the definition of length positivity.
Now assume (ii). The condition v´1α P Φ` for one v P LPpxq already implies `px, αq ě

0. Aiming for a contradiction, we thus assume that `px, αq “ 0.
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Recall from Example 2.8 that there exists an element v P LPpxq such that

@β P Φ` : xµ, vβy ` Φ`pvβq ě 1.

Considering the case β “ v´1α P Φ` (by (ii)), we see

`px, αq “ xµ, vβy ` Φ`pvβq ´ Φ`pwαq ě 1´ Φ`pwαq.

So if wα P Φ´, we conclude (i).
Considering the same situation for x´1 by Lemma 2.12, we find an element v P LPpxq

such that

@β P Φ` : xµ, vβy ´ Φ`pwvβq ě 0.

Considering the case β “ v´1α P Φ`, we see

`px, αq “ xµ, vβy ` Φ`pαq ´ Φ`pwvβq ě Φ`pαq.

So if α P Φ`, we are done again.
Let us thus assume from now on that α P Φ´ and wα P Φ`. In light of the assumption

`px, αq “ 0, we can restate this as xµ, αy “ ´1.
For roots β, γ P Φ, we write β ď γ if the difference γ ´ β is a sum of positive roots,

and we write β ă γ is moreover β ‰ γ.
We define a root sequence associated to an element v P LPpxq to be a sequence

v´1α “ β1 ą ¨ ¨ ¨ ą β` P Φ`

such that βi`1 ´ βi P Φ` for i “ 1, . . . , `´ 1 and xµ, vβiy “ ´1 for i “ 1, . . . , `.
Certainly, we can find a root sequence for each v P LPpxq of length 1 by setting

β1 “ v´1α.
We order the set of root sequences lexicographically. Explicitly, let pβ1, . . . , β`q be a

root sequence associated with v P LPpxq and pβ11, . . . , β1`1q associated with v1 P LPpxq.
We write pβ1, . . . , β`q ă pβ

1
1, . . . , β

1
`1q if one of the following conditions is satisfied:

• There is i P t1, . . . ,mint`, `1uu with βi1 “ β1i1 for i1 “ 1, . . . , i´ 1 and βi ă β1i.

• We have ` ą `1 and βi “ β1i for i “ 1, . . . , `1.

Among all possible v P LPpxq and root sequences pβ1, . . . , β`q associated with them,
we choose a pair such that the root sequence becomes minimal with respect to the above
order.
We first claim that β` is simple: Indeed, if we had β` “ γ1 ` γ2 for positive roots

γ1, γ2, then `px, vγ1q, `pv, γ2q ě 0 by length positivity. Thus

xµ, vγ1y ě ´1, xµ, vγ2y ě ´1, xµ, vγ1 ` vγ2y “ ´1.

Hence xµ, vγiy “ ´1 for one of the roots γ1, γ2. We see that we can extend the root
sequence pβ1, . . . , β`q, which contradicts minimality by definition.
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Note that xµ, vβ`y “ ´1 and `px, vβ`q ě 0 implies `px, vβ`q “ 0. By Lemma 2.14, this
means v1 “ vsβ` P LPpxq.

If ` “ 1, then pv1q´1α “ ´v´1α, so we get the desired contradiction to (ii). Therefore,
` ą 1.

We claim that xβ_` , βiy ě 0 for i “ 1, . . . , `: Indeed, if we had xβ_` , βiy ă 0, then
βi ` β` P Φ`. So we get

`px, vpβi ` β`qq ě 0 and xµ, vβi ` vβ`y “ ´2.

This is impossible.
Note that xβ_` , β`´1y “ 1, as β`´1 is the sum of β` with another root, and Φ is simply

laced.
We thus may pick `1 P t1, . . . , `´ 1u minimally such that xβ_` , β`1y ą 0. Consider the

root sequence

β1i “ sβ`pβiq, i “ 1, . . . , `1.

This is a root sequence associated with v1 “ vsβ` P LPpxq. Since β1i “ βi for i “
1, . . . , `1 ´ 1 (by choice of `1), and β1`1 ă β`1 , it is a smaller root sequence.

This is finally a contradiction to minimality.

The above proof encodes an algorithm, which finds for each root α P Φ with `px, αq “ 0
and each v P LPpxq a sequence of elements in LPpxq as in Lemma 2.14. The sequence
starts at v and ending in an element v1 P LPpxq satisfying pv1q´1α P Φ´. As noted
before, this Proposition is false for every non simply laced root system.
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3. Quantum Bruhat graph
In this section, we recall the definition of quantum Bruhat graphs and study its weight
functions. Before turning to the abstract theory of these graphs, we will discuss the
situation of root systems of type An as a motivational example.
For each simple affine root a “ pα, kq P ∆af , we define a coweight ωa P QΦ_ as follows:

For β P ∆, we define

xωa, βy “

#

1, α “ β,

0, α ‰ β.

In particular, ωa “ 0 if α R ∆.
Let now x1 “ w1ε

µ1 , x2 “ w2ε
µ2 P ĂW . By [BB05, Theorem 8.3.7], we have

x1 ď x2 ðñ @a, a1 P ∆af : pµ1 ` ωa ´ w
´1
1 ωa1q

dom ď pµ2 ` ωa ´ w
´1
2 ωa1q

dom.

Here, we write νdom P X˚ for the unique dominant element in the W -orbit of ν P X˚.
Suppose that µ1 and µ2 are sufficiently regular, such that we find v1, v2 PW with

@a, a1 P ∆af : pµi ` ωa ´ w´1
i ωa1q

dom “ v´1
i pµi ` ωa ´ w

´1
i ωa1q.

Then we conclude

x1 ď x2 ðñ @a, a1 : v´1
1 pµ1 ` ωa ´ w

´1
1 ωa1q ď v´1

2 pµ2 ` ωa ´ w
´1
2 ωa1q

ðñ v´1
1 µ1 ` sup

aP∆af

pv´1
1 ωa ´ v

´1
2 ωaq ` sup

a1P∆af

`

pw2v2q
´1ωa1 ´ pw1v1q

´1ωa1
˘

ď v´1
2 µ2.

So if we define

wtpv1 ñ v2q :“ sup
aP∆af

pv´1
2 ωa ´ v

´1
1 ωaq, (3.1)

we can conclude a version of our result on the Bruhat order (Theorem 1.1).
Indeed, formula (3.1) holds true for root systems of type An, but not for any other

root system. Many properties of the weight function are easier to prove for type An,
where an explicit formula exists, so it is helpful to keep this example in mind.

We refer to a paper of Ishii [Ish21] for explicit formulas for the weight functions of
all classical root systems (while he discusses explicit criteria for the semi-infinite order,
these can be translated to explicit formulas for the weight function as outlined above in
the An case).

3.1. (Parabolic) quantum Bruhat graph
We start with a discussion of the quantum roots in Φ`.

Lemma 3.2. Let α P Φ`. Then

`psαq ď xα
_, 2ρy ´ 1.

Equality holds if and only if for all α ‰ β P Φ` with sαpβq P Φ´, we have xα_, βy “ 1.
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Roots satisfying the equivalent properties of Lemma 3.2 are called quantum roots.
We see that all long roots are quantum (so in a simply laced root system, all roots are
quantum). Moreover, all simple roots are quantum.
The first inequality of Lemma 3.2 is due to [BFP98, Lemma 4.3]. By [BMO11,

Lemma 7.2], we have the following more explicit (but somehow less useful for us) result:
A short root α is quantum if and only if α is a sum of short simple roots.

Proof of Lemma 3.2. We calculate

xα_, 2ρy “ 1
2 pxα

_, 2ρy ` xsαpα_q, sαp2ρqyq “
1
2xα

_, 2ρ´ sαp2ρqy.

Let

I :“ tβ P Φ` | sαpβq P Φ´u.

Then sαpIq “ ´I and sαpΦ`zIq “ Φ`zI. It follows that

2ρ´ sαp2ρq “
ÿ

βPI

pβ ´ sαpβqq `
ÿ

βPΦ`zI
pβ ´ sαpβqq

“2
ÿ

βPI

β.

Therefore, we obtain

xα_, 2ρy “
ÿ

βPI

xα_, βy.

Certainly, α P I. Hence

xα_, 2ρy “ 2`
ÿ

α‰βPΦ`
sαpβqPΦ´

xα_, βy.

Now if α, β P Φ` and sαpβq “ β ´ xα_, βyα P Φ´, we get xα_, βy ě 1. We conclude

xα_, 2ρy “ 2`
ÿ

α‰βPΦ`
sαpβqPΦ´

xα_, βy ě 2`#tβ P Φ`ztαu | sαpβq P Φ´u “ 1` `psαq.

All claims of the lemma follow immediately from this.

The parabolic quantum Bruhat graph as introduced by Lenart-Naito-Sagaki-Schilling-
Schimozono [Len+15] is a generalization of the classical construction of the quantum
Bruhat graph by Brenti-Fomin-Postnikov [BFP98]. To avoid redundancy, we directly
state the definition of the parabolic quantum Bruhat graph, even though we will be
mostly concerned with the (ordinary) quantum Bruhat graph.
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Fix a subset J Ď ∆. We denote by WJ the Coxeter subgroup of W generated by the
reflections sα for α P J . We let

W J “ tw PW | wpJq Ď Φ`u.

For each w P W , let wJ P W J and wJ P WJ be the uniquely determined elements with
w “ wJ ¨ wJ [BB05, Proposition 2.4.4].

We write ΦJ “ WJpJq for the root system generated by J . The sum of positive
roots in ΦJ is denoted 2ρJ . The quotient lattice ZΦ_{ZΦ_J is ordered by declaring
µ1 ` Φ_J ď µ2 ` Φ_J if the difference µ2 ´ µ1 ` Φ_J is equal to a sum of positive coroots
modulo Φ_J .

Definition 3.3. (a) The parabolic quantum Bruhat graph associated with W J is a di-
rected and pZΦ_{ZΦ_J q-weighted graph, denoted QBpW Jq. The set of vertices is
given by W J . For w1, w2 P W J , we have an edge w1 Ñ w2 if there is a root
α P Φ`zΦJ such that w2 “ pw1sαq

J and one of the following conditions is satisfied:
(B) `pw2q “ `pw1q ` 1 or
(Q) `pw2q “ `pw1q ` 1´ xα_, 2ρ´ 2ρJy.
Edges of type (B) are Bruhat edges and have weight 0 P ZΦ_{ZΦ_J . Edges of type
(Q) are quantum edges and have weight α_ P ZΦ_{ZΦ_J .

(b) A path in QBpW Jq is a sequence of adjacent edges

p : w “ w1 Ñ w2 Ñ ¨ ¨ ¨ Ñ w``1 “ w1.

The length of p is the number of edges, denoted `ppq P Zě0. The weight of p is the
sum of its edges’ weights, denoted wtppq P ZΦ_{ZΦ_J . We say that p is a path from
w to w1.

(c) If w,w1 PW J , we define the distance function by

dQBpWJ qpw ñ w1q “ inft`ppq | p is a path in QBpW Jq from w to w1u P Zě0 Y t8u.

A path p from w to w1 of length dQBpWJ qpw ñ w1q is called shortest.

(d) The quantum Bruhat graph of W is the parabolic quantum Bruhat graph associated
with J “ H, denoted QBpW q :“ QBpWHq. We also shorten our notation to

dpw ñ w1q :“ dQBpW qpw ñ w1q.

Remark 3.4. Let us consider the case J “ H, i.e. the quantum Bruhat graph. If w PW
and α P ∆, then w Ñ wsα is always an edge of weight α_Φ`p´wαq.

The quantum edges are precisely the edges of the form w Ñ wsα where α is a quantum
root and `pwsαq “ `pwq ´ `psαq.

Proposition 3.5 ([Len+15, Proposition 8.1] and [Len+17, Lemma 7.2]). Consider
w,w1 PW J .
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(a) The graph QBpW Jq is strongly connected, i.e. there exists a path from w to w1 in
QBpW Jq.

(b) Any two shortest paths from w to w1 have the same weight, denoted

wtQBpWJ qpw ñ w1q P ZΦ_{ZΦ_J .

(c) Any path p from w to w1 has weight wtppq ě wtQBpWJ qpw ñ w1q P ZΦ_{ZΦ_J .

(d) The image of

wtpw ñ w1q :“ wtQBpW qpw ñ w1q P ZΦ_

under the canonical projection ZΦ_ Ñ ZΦ_{ZΦ_J is given by wtQBpWJ qpw ñ w1q.

One interpretation of the weight function is that it measures the failure of the in-
equality w1WJ ď w2WJ in the Bruhat order onW {WJ (cf. [BB05, Section 2.5]): Indeed,
w1WJ ď w2WJ if and only if wtQBpWJ qpw1 ñ w2q “ 0.

We have the following converse to part (c) of Proposition 3.5:
Lemma 3.6 (Cf. [MV20, Formula 4.3]). Let w1, w2 P W

J . For any path p from w1 to
w2 in QBpW Jq, we have

xwtppq, 2ρ´ 2ρJy “ `ppq ` `pw1q ´ `pw2q.

In particular,

xwtQBpWJ qpw1 ñ w2q, 2ρ´ 2ρJy “ dQBpWJ qpw1 ñ w2q ` `pw1q ´ `pw2q,

and p is shortest if and only if wtppq “ wtQBpWJ qpw1 ñ w2q.

Proof. Note that if p : w1 Ñ w2 “ pw1sαq
J is an edge in QBpW Jq, then by definition,

`pw2q “ `pw1q ` 1´ xwtppq, 2ρ´ 2ρJy.

In general, iterate this observation for all edges of p.

The weights of non-shortest paths do not add more information:
Lemma 3.7. Let µ P ZΦ_{ZΦ_J and w1, w2 PW . Then µ ě wtQBpWJ qpw1 ñ w2q if and
only if there is a path p from w1 to w2 in QBpW Jq of weight µ.
Proof. By part (d) of Proposition 3.5, it suffices to consider the case J “ H, i.e. the
quantum Bruhat graph.
The if condition is part (c) of Proposition 3.5. It remains to show the only if condition.

Note that for each w PW and α P ∆, we get a “silly path” of the form

w Ñ wsα Ñ w

in QBpW q. Precisely one of the edges is quantum with weight α_, and the other one is
Bruhat with weight 0.
If µ ě wtpw1 ñ w2q, we may compose a shortest path from w1 to w2 with suitably

chosen silly paths as above to obtain a path from w1 to w2 of weight µ.
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Lemma 3.8 ([Len+15, Lemma 7.7]). Let J Ď ∆, w1, w2 P W
J and a “ pα, kq P ∆af

such that w´1
2 α P Φ´.

(a) We have an edge psαw2q
J Ñ w2 in QBpW Jq of weight ´kw´1

2 α_ P ZΦ_{ZΦ_J .

(b) If w´1
1 α P Φ`, then the above edge is part of a shortest path from w1 to w2, i.e.

dQBpWJ qpw1 ñ w2q “ dQBpWJ qpw1 ñ psαw2q
Jq ` 1.

(c) If w´1
1 α P Φ´, we have

dQBpWJ qpw1 ñ w2q “dQBpWJ qppsαw1q
J ñ psαw2q

Jq,

wtQBpWJ qpw1 ñ w2q “wtQBpWJ qppsαw1q
J ñ psαw2q

Jq ` kpw´1
1 α_ ´ w´1

2 α_q.

We can use this lemma to reduce the calculation of weights wtpw1 ñ w2q to weights
of the form wtpw ñ 1q: If w2 ‰ 1, we find a simple root α P ∆ with w´1

2 α P Φ´. Then

wtpw1 ñ w2q “

#

wtpw1 ñ sαw2q, w´1
1 α P Φ`,

wtpsαw1 ñ sαw2q, w´1
1 α P Φ´,

“wtpminpw1, sαw1q, sαw2q.

For an alternative proof of this reduction, cf. [Sad21, Corollary 3.3].
The quantum Bruhat graph has a number of useful automorphisms.

Lemma 3.9. Let w1, w2 PW , and let w0 PW be the longest element.

(a) wtpw0w1 ñ w0w2q “ wtpw2 ñ w1q.

(b) wtpw0w1w0 ñ w0w2w0q “ ´w0 wtpw1 ñ w2q.

(c) wtpw1 ñ 1q “ wtpw´1
1 ñ 1q.

Proof. Part (a) follows from [Len+15, Proposition 4.3].
For part (b), observe that we have an automorphism of Φ given by α ÞÑ ´w0α. The

induced automorphism of W is given by w ÞÑ w0ww0. Since the function wtp¨ ñ ¨q is
compatible with automorphisms of Φ, we get the claim.
Now for (c), consider a reduced expression

w0w1 “ s1 ¨ ¨ ¨ sq.

Then, iterating Lemma 3.8, we get

wtpw1 ñ 1q “
(a)

wtpw0 ñ w0w1q “ wtpw0 ñ s1 ¨ ¨ ¨ sqq

“wtps1w0 ñ s2 ¨ ¨ ¨ sqq “ ¨ ¨ ¨ “ wtpsq ¨ ¨ ¨ s1w0 ñ 1q
“wtppw0w1q

´1w0 ñ 1q “ wtpw´1
1 ñ 1q.
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Given elements w1, w2 P W , there are generally several shortest paths from w1 to w2
in QBpW q. However, one can make a somewhat canonical choice:
Proposition 3.10 ([BFP98, Theorem 6.4]). Let u, v P W and ă a reflection order on
Φ`. There is a uniquely determined path

p : u “ w1 Ñ ¨ ¨ ¨ Ñ w``1 “ v, wi`1 “ wisαi , αi P Φ`

in QBpW q such that α1 ă ¨ ¨ ¨ ă α` with respect to the fixed reflection order. Moreover,
p is shortest.

Corollary 3.11. Let J Ď ∆ and w1, w2 PWJ . Then

wtQBpW qpw1 ñ w2q “ wtQBpWJ q
pw1 ñ w2q P ZΦJ .

Proof. Pick a reflection order ă on ΦJ and extend it to a reflection order on Φ. Now if
p is the unique path from w1 to w2 in QBpWJq that is increasing with respect to this
order, p is shortest both in QBpWJq and QBpW q by the proposition.

Remark 3.12. As an application and illustration of the introduced methods, we show
how to compute the weight wtpw0 ñ 1q where w0 PW is the longest element.

Denote by θ P Φ` the longest root of some irreducible component of Φ. Then p´θ, 1q P
∆af . By Lemma 3.8,

wtpw0 ñ 1q “ ´ w0θ
_ ` wtpsθw0 ñ 1q

“ θ_ ` wtpsθw0 ñ 1q.

Define J “ tα P ∆ | xθ_, αy “ 0u. Then

tα P Φ` | psθw0qpαq P Φ´u “w0tα P Φ´ | sθpαq P Φ´u
“w0tα P Φ´ | xθ_, αy “ 0u
“w0pΦJ X Φ´q “ ΦJ X Φ`.

We see that sθw0 PWJ is the longest element, so

wtpw0 ñ 1q “ θ_ ` wtQBpWJ q
pw0pJq ñ 1q.

We can iterate this process for the smaller root system ΦJ to compute wtpw0 ñ 1q. For
explicit results, we refer to [Sad21, Section 5].

3.2. Lifting the parabolic quantum Bruhat graph
For sufficiently regular elements of the extended affine Weyl group, the Bruhat covers in
ĂW are in a one-to-one correspondence with edges in the quantum Bruhat graph [LS10,
Proposition 4.4]. This result is very useful for deriving properties about the quantum
Bruhat graph. Moreover, our strategy to prove our results on the Bruhat order will be
to reduce to this superregular case.
The result of Lam and Shimozono has been generalized by Lenart et. al. [Len+15, The-

orem 5.2], and the extra generality of the latter result will be useful for us. Throughout
this section, let J Ď ∆ be any subset.
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Definition 3.13 ([Len+15]). (a) Define

pW Jqaf :“tx PWaf | @α P ΦJ : `px, αq “ 0u,
ČpW Jq :“tx P ĂW | @α P ΦJ : `px, αq “ 0u.

(b) Let C ą 0 be any real number. We define Ω´CJ to be the set of all elements
x “ wεµ PČpW Jq such that

@α P Φ`zΦJ : xµ, αy ď ´C.

Similarly, we say x P ΩC
J if

@α P Φ`zΦJ : xµ, αy ě C.

(c) For elements x, x1 P ĂW , we write x Ì x1 and call x1 a Bruhat cover of x if `px1q “
`pxq ` 1 and x´1x1 is an affine reflection in ĂW .

Theorem 3.14 ([Len+15, Theorem 5.2]). There is a constant C ą 0 depending only on
Φ such that the following holds:

(a) If x “ wεµ Ì x1 “ w1εµ
1 is a Bruhat cover with x P Ω´CJ and x1 PČpW Jq, there exists

an edge pw1qJ Ñ wJ in QBpW Jq of weight µ´ µ1 ` ZΦ_J .

(b) If x “ wεµ P Ω´CJ and w̃1 Ñ wJ is an edge in QBpW Jq of weight ω, then there
exists a unique element x Ì x1 “ w1εµ

1

P ČpW Jq with w̃1 “ pw1qJ and µ ” µ1 ` ω
pmod ZΦ_J q.

This theorem “lifts” QBpW Jq into the Bruhat covers of Ω´CJ for sufficiently large C.
The theorem is originally formulated only for pW Jqaf , but the generalization to ČpW Jq

is straightforward.
With a bit of book-keeping, we can compare paths in QBpW Jq (i.e. sequences of edges)

with the Bruhat order on Ω´CJ (i.e. sequences of Bruhat covers).

Lemma 3.15. Let C1 ą 0 be any real number. Then there exists some C2 ą 0 such that
for all x “ wεµ P ΩC2

J and x1 “ w1εµ
1

PČpW Jq with `px´1x1q ď C1, we have

x ď x1 ðñ µ´ wtpw1 ñ wq ď µ1 pmod Φ_J q.

The latter condition is shorthand for

µ´ wtpw1 ñ wq ´ µ1 ` ZΦ_J ď 0` ZΦ_J P ZΦ_{ZΦ_J .

Proof. Let C ą 0 be a constant sufficiently large for the conclusion of Theorem 3.14 to
hold. We see that if x1 Ì x2 is any cover in Ω´CJ , then there are only finitely many
possibilities for x´1

1 x2, so the length `px´1
1 x2q is bounded. We fix a bound C 1 ą 0 for

this length.
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We can pick C2 ą 0 such that for all x1 “ wεµ P Ω´C2
J and x2 P ĂW

J with `px´1
1 x2q ď

C1C
1, we must at least have x2 P Ω´CJ .

We now consider elements x “ wεµ P Ω´C2
J and x1 “ w1εµ

1

P ĂW J with `px´1x1q ď C1.
First suppose that x ď x1. We find elements x “ x1 Ì x2 Ì ¨ ¨ ¨ Ì xk “ x1. Note that

k “ `px1q ´ `pxq ď `px´1x1q ď C1. By choice of C 1, we conclude that `px´1xiq ď C 1i ď
C 1C1 for i “ 1, . . . , k. Thus xi P Ω´CJ .
By Theorem 3.14, we get a path from pw1qJ to wJ of weight µ´ µ1 ` ZΦ_J . Thus

wtpw1 ñ w2q ď µ´ µ1 pmod Φ_J q,

which is the estimate we wanted to prove.
Now suppose conversely that we are given µ ´ wtpw1 ñ wq ě µ1 pmod Φ_J q. By

Lemma 3.7, we find a path pw1qJ “ w1 Ñ w2 Ñ ¨ ¨ ¨ Ñ wk “ wJ in QBpW Jq of weight
µ´µ1`ZΦ_J . Since µ´µ1 is bounded in terms of C1, the length k of this path is bounded
in terms of C1 as well. By adding another lower bound for C2, we can guarantee that
each such path w1 Ñ ¨ ¨ ¨ Ñ wk can indeed be lifted to Ω´CJ , proving that x ď x1.

We find working with superdominant instead superantidominant coweights a bit easier,
so let us restate the lemma for ΩC

J instead of Ω´CJ .

Corollary 3.16. Let C1 ą 0 be any real number. Then there exists some C2 ą 0 such
that for all x “ wεµ P ΩC2

J and x1 “ w1εµ
1

PČpW Jq with `px´1x1q ď C1, we have

x ď x1 ðñ µ` wtpw ñ w1q ď µ1 pmod Φ_J q.

Proof. Let w0pJq P WJ be the longest element. Let C2 ą 0 such that the conclusion of
the previous Lemma is satisfied.
If x P ΩC2

J , then xw0pJqw0 P Ω´C2
´w0pJq

. Moreover, w0pJqw0 is a length positive element
for x, so `pxw0pJqw0q “ `pxq ` `pw0pJqw0q. Choosing C2 appropriately, we similarly
may assume x1 P ΩC

J for some C ą 0 and obtain `px1w0pJqw0q “ `px1q ` `pw0pJqw0q.
Then, with the right choice of constants and using the automorphism α ÞÑ ´w0α of Φ,
we get

x ď x1 ðñ xw0pJqw0 ď x1w0pJqw0

ðñ w0w0pJqµ´ wtpw1w0pJqw0 ñ ww0pJqw0q ě w0w0pJqµ
1 pmod Φ_´w0pJq

q

ðñ w0pJqµ` wtpw0w
1w0pJq ñ w0ww0pJqq ď w0pJqµ

1 pmod Φ_J q
ðñ

[Len+15, Pr. 4.3]
w0pJqµ` wtpw ñ w1q ď w0pJqµ

1 pmod Φ_J q

Since w0pJqµ ” µ pmod Φ_J q, we get the desired conclusion.

As an immediate consequence, we obtain a crucial estimate on the weight function.

Corollary 3.17. Let w PW and α P Φ`. Then

wtpwsα ñ wq ď Φ`pwαqα_.

30



Proof. The claim is clear if wα P Φ´, as then wsα ă w in the Bruhat order, and we find
a path from wsα to w consisting solely of Bruhat edges.

Now suppose that wα P Φ`. Let µ P Q_ be dominant and superregular. Put x :“ wεµ.
Then xpα, xµ, αy ´ 1q P Φ´af , so that

wεµ “ x ą wεµsαε
pxµ,αy´1qα_ “ wsαε

µ´α_ .

With the superregularity constant for µ sufficiently large, we get

µ´ α_ ` wtpwsα ñ wq ď µ,

showing the desired claim.

3.3. Computing the weight function
We already saw in Lemma 3.8 how to find for all w1, w2 P W an element w P W such
that wtpw1 ñ w2q “ wtpw ñ 1q. It remains to find a method to compute these weights.
First, we note that we only need to consider quantum edges for this task.

Lemma 3.18 ([MV20, Proposition 4.11]). For each w P W , there is a shortest path
from w to 1 in QBpW q consisting only of quantum edges.

So we only need to find for each w PW zt1u a quantum edge w Ñ w1 in QBpW q with
dpw1 ñ 1q “ dpw ñ 1q ´ 1. In this section, we present a new method to obtain such
edges. If it happens that w´1θ P Φ´ for the longest root θ of an irreducible component
of Φ, we can use the quantum edge w Ñ sθw by Lemma 3.8. We even might strengthen
this a bit using Corollary 3.11. If this method would always work, we could compute
the weight wtpw ñ 1q as in Remark 3.12. However, there are in general elements w PW
where this strategy is not applicable.
In this section, we show that the aforementioned strategy will still work whenever θ

is any maximal element in tα P Φ` | w´1α P Φ´u. This yields a general algorithm
and useful theoretical method to describe some quantum edges w Ñ w1 with the desired
property dpw1 ñ 1q “ dpw ñ 1q ´ 1.
We remark that not every shortest path w ñ 1 will consist only of quantum edges, nor

will every shortest path that does be obtainable by our method of maximal inversions.

Definition 3.19. Let w PW .

(a) The set of inversions of w is

invpwq :“ tα P Φ` | w´1α P Φ´u.

(b) An inversion γ P invpwq is a maximal inversion if there is no α P invpwq with
α ‰ γ ď α. Here, γ ď α means that α´ γ is a sum of positive roots.
We write max invpwq for the set of maximal inversions of w.
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Remark 3.20. If θ P invpwq is the longest root of an irreducible component of Φ, then
certainly θ P max invpwq. In this case, everything we want to prove is already shown in
[Len+15, Section 5.5]. Our strategy is to follow their arguments as closely as possible
while keeping the generality of maximal inversions.

Lemma 3.21. Let w PW and γ P max invpwq. Then w Ñ sγw is a quantum edge.

Proof. Note that sγw “ ws´w´1γ . We have to show that ´w´1γ is a quantum root and
that

`pws´w´1γq “ `pwq ´ `ps´w´1γq.

Step 1. We show that ´w´1γ is a quantum root using Lemma 3.2. So pick an element
´w´1γ ‰ β P Φ` with s´w´1γpβq P Φ´. We want to show that x´w´1γ_, βy “ 1.

Note that

s´w´1γpβq “ β ` x´w´1γ_, βyw´1γ.

In particular, k :“ x´w´1γ_, βy ą 0. It follows from the theory of root systems that

βi :“ β ` iw´1γ P Φ, i “ 0, . . . , k.

Since β0 “ β P Φ` and βk “ s´w´1γpβq P Φ´, we find some i P t0, . . . , k ´ 1u with
βi P Φ` and βi`1 P Φ´. We show that k ď 1 as follows:

• Suppose wβi P Φ`. Then wβi`1 “ wβi ` γ ą γ. In particular, wβi`1 P Φ`. We
see that wβi`1 P invpwq, contradicting maximality of γ.

• Suppose wβi`1 P Φ´. Then ´wβi “ ´wβi`1 ` γ ą γ. In particular, ´wβi P Φ`.
We see that ´wβi P invpwq, contradicting maximality of γ.

• Suppose i ě 1. Then γ ´ wβi “ ´wβi´1 P Φ. We already proved wβi P Φ´,
so ´wβi P invpwq. Since also γ P invpwq, we conclude γ ă ´wβi´1 P invpwq,
contradicting the maximality of γ.

• Suppose i ď k ´ 2. Then wβi`2 “ wβi`1 ` γ P Φ. Since both γ and wβi`1 are
in invpwq, we conclude that γ ă wβi`2 P invpwq, which is a contradiction to the
maximality of γ.

In summary, we conclude 0 “ i ě k ´ 1, thus k ď 1. This shows x´w´1γ_, βy “ 1.
Step 2. We show that

`pws´w´1γq “ `pwq ´ `ps´w´1γq.

Suppose this is not the case. Then we find some α P Φ` such that wα P Φ` and
s´w´1γpαq P Φ´. As we saw before, x´w´1γ_, αy “ 1, so s´w´1γpαq “ α ` w´1γ P Φ´.
Now consider the element ws´w´1γpαq “ wα ` γ P Φ. Since wα P Φ` by assumption,
we have ws´w´1γpαq ą γ, in particular ws´w´1γpαq P Φ`. We conclude ws´w´1γpαq P
invpwq, yielding a final contradiction to the maximality of γ.
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Lemma 3.22. Let w P W and α P Φ` such that w Ñ wsα is a quantum edge. Let
moreover ´wα ‰ γ P max invpwq. Then γ P max invpwsαq and x´w´1γ_, αy ě 0.

Proof. We first show γ P invpwsαq, i.e. sαw´1γ P Φ´.
Aiming for a contradiction, we thus suppose that

sαp´w
´1γq “ xα_, w´1γyα´ w´1γ P Φ´.

Then ´w´1γ is a positive root whose image under sα is negative. Since α is quantum,
we conclude xα_,´w´1γy “ 1. Thus ´α´ w´1γ P Φ´. Consider the element

wpα` w´1γq “ γ ` wα P Φ.

We distinguish the following cases:

• If γ ` wα P Φ´, we get γ ă ´wα P invpwq, contradicting maximality of γ.

• If γ ` wα P Φ`, we compute

wsαp´w
´1γq “ ´pwsαw

´1qγ “ ´swαpγq “ ´pγ ` wαq P Φ´.

In other words, the positive root ´w´1γ P Φ` gets mapped to negative roots both
by sα and by wsα P W . This is a contradiction to `pwq “ `pwsαq ` `psαq (since
w Ñ wsα was supposed to be a quantum edge).

In any case, we get a contradiction. Thus γ P invpwsαq.
The quantum edge condition w Ñ wsα implies `pwq “ `pwsαq ` `psαq, so invpwsαq Ă

invpwq. Because γ is maximal in invpwq and γ P invpwsαq Ď invpwq, it follows that γ
must be maximal in invpwsαq as well.

Finally, we have to show x´w´1γ_, αy ě 0. If this was not the case, then we would
get

γ ă sγp´wαq “ ´wα` xw
´1γ_, αyγ P invpwq,

again contradicting maximality of γ.

Proposition 3.23. Let w PW and γ P max invpwq. Then

wtpw ñ 1q “ wtpsγw ñ 1q ´ w´1γ_.

Proof. Since the estimate

wtpw ñ 1q ďwtpw ñ sγwq ` wtpsγw ñ 1q
ď ´ w´1γ_ ` wtpsγw ñ 1q

follows from Corollary 3.17, all we have to show is the inequality “ě”.
For this, we use induction on `pwq. If 1 ‰ w P W , we find by Lemma 3.18 some

quantum edge w Ñ wsα with wtpw ñ 1q “ wtpwsα ñ 1q ` α_. If α “ ´w´1γ, we are
done.

33



Otherwise, γ P max invpwsαq and x´w´1γ_, αy ě 0 by the previous lemma. By
induction, we have

wtpw ñ 1q “wtpwsα ñ 1q ` α_

“wtpsγwsα ñ 1q ` α_ ´ pwsαq´1γ_. (3.24)

By Lemma 3.21, we get the following three quantum edges:

w

wsα sγw

sγwsα

This allows for the following computation:

`psγwsαq “ `pwsαq ` 1´ x´pwsαq´1γ_, 2ρy
“ `pwq ` 2´ xα_, 2ρy ´ x´w´1γ_ ´ x´w´1γ_, αyα_, 2ρy
“ `psγwq ` 1` px´w´1γ_, αy ´ 1qxα_, 2ρy. (3.25)

We now distinguish several cases depending on the value of x´w´1γ_, αy P Zě0.

• Case x´w´1γ_, αy “ 0. In this case, we get a quantum edge sγw Ñ sγwsα by
(3.25). Evaluating this in (3.24), we get

wtpw ñ 1q “wtpsγwsα ñ 1q ` α_ ´ pwsαq´1γ_

ěwtpsγw ñ 1q ´ sαw´1γ_

“wtpsγw ñ 1q ´ w´1γ_.

• Case x´w´1γ_, αy “ 1. In this case, we get a Bruhat edge sγw Ñ sγwsα by (3.25).
Evaluating this in (3.24), we get

wtpw ñ 1q “wtpsγwsα ñ 1q ` α_ ´ pwsαq´1γ_

ěwtpsγw ñ 1q ` α_ ´ sαw´1γ_

“wtpsγw ñ 1q ´ w´1γ_.

• Case x´w´1γ_, αy ě 2. We get

`psγwsαq ď`psγwq ` `psαq ď
L3.2

`psγwq ` xα
_, 2ρy ´ 1

ă`psγwq ` `psαq ď `psγwq ` 1`
`

x´w´1γ_, αy ´ 1
˘

xα_, 2ρy.

This is a contradiction to (3.25).
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In any case, we get a contradiction or the required conclusion, finishing the proof.

Remark 3.26. (a) By Lemma 3.6, it follows that concatenating the quantum edge w Ñ
sγw with a shortest path sγw ñ 1 yields indeed a shortest path from w to 1. Thus,
iterating Proposition 3.23, we get a shortest path from w to 1.

(b) If w P W J and γ P max invpwq, we do not in general have a quantum edge w Ñ

psγwq
J in QBpW Jq. However, we can concatenate a shortest path from w to psγwqJ

(which will have weight ´w´1γ_ ` ZΦ_J ) with a shortest path from psγwq
J to 1 in

QBpW Jq to get a shortest path from w to 1.

3.4. Semi-affine quotients
We saw that for w1, w2 PW and J Ď ∆, we can assign a weight to the cosets w1WJ and
w2WJ in ZΦ_{ZΦ_J . In this section, we consider left cosets WJw instead. This is pretty
straightforward if J Ď ∆; however, it is more interesting if J is instead allowed to be a
subset of ∆af . The quotient of the finite Weyl group by a set of simple affine roots will
be called semi-affine quotient.
In this section, we introduce the resulting semi-affine weight function. This new

function generalizes properties of the ordinary weight function. We have the following
two motivations to study it:

• For root systems of type An, we can explicitly express the weight function using
formula (3.1):

wtpv2 ñ v1q “ sup
aP∆af

pv´1
2 ωa ´ v

´1
1 ωaq.

Using the semi-affine weight function, we can prove a generalization of this formula,
expressing the weight wtpv2 ñ v1q as a supremum of semi-affine weights (Lemmas
3.36 and 4.37)

• There is a close relationship between the quantum Bruhat graph and the Bruhat
order of the extended affine Weyl group ĂW . Now Deodhar’s lemma [Deo77] is an
important result on the Bruhat order of general Coxeter groups. Translating the
statement of Deodhar’s lemma to the quantum Bruhat graph yields exactly the
semi-affine weight function.
Conversely, using the semi-affine weight function and Deodhar’s lemma, we can
generalize our result on the Bruhat order in Section 4.3.

In this thesis, the results of this section are only used in Section 4.3, whose results are
not used later. A reader who is not interested in the aforementioned applications is thus
invited to skip these two sections.

Definition 3.27. Let J Ď ∆af be any subset.
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(a) If a “ pα, kq P ∆af , we define ωa : ZΦ Ñ Z to be the Z-linear function with

@β P ∆ : ωapβq “

#

1, α “ β,

0, α ‰ β.

(b) We denote by ΦJ the root system generated by the roots

cl J :“ tclpaq | a P Ju “ tα | pα, kq P Ju.

(c) We denote by WJ the Weyl group of the root system ΦJ , i.e. the subgroup of W
generated by tsα | α P cl Ju.

(d) Similarly, we denote by pΦafqJ Ď ΦJ the (affine) root system generated by J , and
by ĂWJ the Coxeter subgroup of Waf generated by the reflections ra with a P J .

(e) We say that J is a regular subset of ∆af if no connected component of the affine
Dynkin diagram of Φaf is contained in J , i.e. if ĂWJ is finite.

Lemma 3.28. Let J Ď ∆af be a regular subset.
(a) cl J is a basis of ΦJ . The map pΦafqJ Ñ ΦJ , pα, kq ÞÑ α is bijective.

(b) Writing Φ`J for the positive roots of ΦJ with respect to the basis cl J , we get a bijection

Φ`J Ñ pΦafq
`
J , α ÞÑ pα,Φ`p´αqq.

Proof. (a) Consider the Cartan matrix

Cα,β :“ xα_, βy, α, β P cl J.

This must be the Cartan matrix associated to a certain Dynkin diagram, namely
the subdiagram of the affine Dynkin diagram of Φaf with set of nodes given by J .
We know that this must coincide with the Dynkin diagram of a finite root system
by regularity of J . Hence, C‚,‚ is the Cartan matrix of a finite root system. Both
claims follow immediately from this observation.

(b) Let ϕ denote the map

ϕ : Φ`J Ñ Φ`af , α ÞÑ pα,Φ`p´αqq.

By (a), the map is injective. For each root α P clpJq, we certainly have ϕpαq P Φ`J .
Now, for an inductive argument, suppose that α P Φ`J , β P clpJq and α ` β P Φ
satisfy ϕpαq P Φ`J . We want to show that ϕpα` βq P Φ`J .
We have pα,Φ`p´αqq, pβ,Φ`p´βqq P Φ`J , hence

pα` β,Φ`p´αq ` Φ`p´βqq P Φ`J .

Hence it suffices to show that Φ`p´αq ` Φ`p´βq “ Φ`p´α´ βq.
If β P ∆, this is clear. Hence we may assume that β “ ´θ, where θ is the longest
root of the irreducible component of Φ containing α, β. Then α ´ θ P Φ implies
α P Φ` and α´θ P Φ´. We see that Φ`p´αq`Φ`pθq “ Φ`p´α`θq holds true.

36



The parabolic subgroup ĂWJ Ď Waf allows the convenient decomposition of Waf as
Waf “ ĂWJ ¨

JWaf [BB05, Proposition 2.4.4]. We get something similar for WJ ĎW .

Definition 3.29. Let J Ď ∆af .

(a) By Φ`J , we denote the set of positive roots in ΦJ with respect to the basis clpJq. By
abuse of notation, we also use Φ`J as the symbol for the indicator function of Φ`J ,
i.e.

Φ`J pαq :“
#

1, α P Φ`J ,
0, α P ΦzΦ`J .

.

(b) We define
JW :“tw PW | @b P J : w´1 clpbq P Φ`u

“tw PW | @β P Φ`J : w´1β P Φ`u.

(c) For w PW , we put
J`pwq :“ #tβ P Φ`J | w

´1β P Φ´u.

Lemma 3.30. If w PW and β P Φ`J satisfy w´1β P Φ´, then
J`psβwq ă

J`pwq.

Proof. Write

I :“ tβ ‰ γ P Φ`J | sβpγq R Φ`J u.

Then
J`psβwq “#tγ P Φ`J | w

´1sβpγq P Φ´u
“#tγ P Φ`J zpI Y tβuq | w

´1sβpγq P Φ´u `#tγ P I | w´1sβpγq P Φ´u.

Since sβ permutes the set Φ`J zpI Y tβuq, we get

. . . “#tγ P Φ`J zpI Y tβuq | w
´1γ P Φ´u `#tγ P I | w´1sβpγq P Φ´u.

Note that if γ P I, then xβ_, γy ą 0 and thus

w´1sβpγq “ w´1γ ´ xβ_, γyw´1β ą w´1γ.

We obtain

#tγ P Φ`J zpI Y tβuq | w
´1γ P Φ´u `#tγ P I | w´1sβpγq P Φ´u

ď#tγ P Φ`J zpI Y tβuq | w
´1γ P Φ´u `#tγ P I | w´1γ P Φ´u

“ J`pwq ´ 1.
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Lemma 3.31. Let J Ď ∆af be a regular subset. Then there exists a uniquely determined
map Jπ : W Ñ JW ˆ ZΦ_ with the following two properties:
(1) For all w P JW , we have Jπpwq “ pw, 0q.

(2) For all w PW and β P Φ`J where we write Jπpwq “ pw1, µq, we have
Jπpsβwq “ pw

1, µ` Φ`p´βqw´1β_q

and wµ P Z clpJq.
Proof. We fix an element λ P ZΦ_ that is dominant and sufficiently regular (the required
regularity constant follows from the remaining proof).
For w PW , we consider the element wελ P ĂW . Then there exist uniquely determined

elements w1ελ1 P JWaf and y P ĂWJ such that

wελ “ y ¨ w1ελ
1

.

We define Jπpwq :“ pw1, λ´ λ1q and check that it has the required properties.

(0) w1 P JW : Since ĂWJ is a finite group, we may assume that λ1 is superregular and
dominant as well. For pα, kq P J , we have

pw1ελ
1

q´1pα, kq “ ppw1q´1α, k ` xλ1, pw1q´1αyq P Φ`af ,

because w1ελ1 P JWaf . Since λ1 is superregular and dominant, we have

ppw1q´1α, k ` xλ1, pw1q´1αyq P Φ`af ðñ pw1q´1α P Φ`.

This proves w1 P JW .

(1) If w P JW , then Jπpwq “ pw, 0q: The proof of (0) shows that wελ P JWaf , so that
wελ “ w1ελ

1 .

(2) Let w PW and β P Φ`J . We have to show
Jπpsβwq “ pw

1, λ´ λ1 ` Φ`p´βqw´1β_q.

Put

b :“ pβ,Φ`p´βqq P Φ`af .

By Lemma 3.28, we have b P pΦafq
`
J . The projection of

rbwε
λ “ sβwε

λ`Φ`p´βqw´1β_ P ĂWJ ¨ wε
λ

onto JWaf must again be w1ελ1 . We obtain
Jπpsβwq “ pw

1, λ` Φ`p´βqw´1β_ ´ λ1q

as desired.
For the second claim, it suffices to observe that

εwpλ´λ
1q “ wελε´λ

1

w´1 “ yw1ελ
1

ε´λ
1

w´1 “ y w1w´1
loomoon

PWJ

P ĂWJ .
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The fact that Jπ is uniquely determined (in particular, independent of the choice of λ)
can be seen as follows: If w P JW , then Jπpwq is determined by (1). Otherwise, we find
β P Φ`J with w´1β P Φ´. We multiply w on the left with sβ, and iterate this process,
until we obtain an element in JW . This process will terminate after at most J`pwq
steps with an element in JW . Now for each of these steps, we can use property (2) to
determine the value of Jπpwq.

We call the set JW a semi-affine quotient of W , as it is a quotient of a finite Weyl
group by a set of affine roots. The map Jπ is the semi-affine projection. We now
introduce the semi-affine weight function.

Lemma 3.32. Let w1, w2 PW and J Ď ∆ be a regular subset. Write

Jπpw1q “ pw
1
1, µ1q,

Jπpw2q “ pw
1
2, µ2q.

Then

wtpw11 ñ w12q ´ µ1 ` µ2 “ wtpw11 ñ w2q ´ µ1 ď wtpw1 ñ w2q.

Proof. We first show the equation

wtpw11 ñ w12q ` µ2 “ wtpw11 ñ w2q.

Induction by J`pw2q. The statement is trivial if w2 P
JW . Otherwise, we find some

α P clpJq with w´1
2 α P Φ´. Because pw11q´1α P Φ`, we obtain from Lemma 3.8 that

wtpw11 ñ w2q “wtpw11 ñ sαw2q ´ Φ`p´αqw´1
2 α_.

By Lemma 3.31, we have

Jπpsαw2q “ pw
1
2, µ2 ` Φ`p´αqw´1

2 α_q.

Using the inductive hypothesis, we get

wtpw11 ñ w2q “wtpw11 ñ sαw2q ´ Φ`p´αqw´1
2 α_

“wtpw11 ñ w12q ` µ2 ` Φ`p´αqw´1
2 α_ ´ Φ`p´αqw´1

2 α_

“wtpw11 ñ w12q ` µ2.

This finishes the induction.
It remains to prove the inequality

wtpw11 ñ w2q ´ µ1 ď wtpw1 ñ w2q.

The argument is entirely analogous, using Corollary 3.17 in place of Lemma 3.8.

Definition 3.33. Let w1, w2 PW and J Ď ∆af be a regular subset. We write

Jπpw1q “ pw
1
1, µ1q,

Jπpw2q “ pw
1
2, µ2q.
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(a) We define the semi-affine weight function by

Jwtpw1 ñ w2q :“ wtpw11 ñ w12q ´ µ1 ` µ2 “ wtpw11 ñ w2q ´ µ1 P ZΦ_.

(b) If β P ΦJ and pβ, kq P pΦafqJ is the image of β under the bijection of Lemma 3.35,
we define χJpβq :“ ´k.
If β P ΦzΦJ , we define χJpβq :“ Φ`pβq.
In other words, for β P Φ, we have

χJpβq “ Φ`pβq ´ Φ`J pβq.

Example 3.34. Suppose that Φ is irreducible of type A2 with basis α1, α2. Let J “
tp´θ, 1qu “ tp´α1 ´ α2, 1qu, such that Φ`J “ t´θu “ t´α1 ´ α2u. We want to compute
Jwtp1 ñ s1s2q (writing si :“ sαi).

Observe that Jπp1q “ psθ, θ_q. Hence

Jwtp1 ñ s1q “wtpsθ ñ s1s2q ´ θ
_

“wtps1s2s1 ñ s1s2q ´ α
_
1 ´ α

_
2 “ ´α

_
2 .

Unlike the usual weight function, the value Jwtpw1 ñ w2q no longer needs to be a sum
of positive coroots.

Lemma 3.35. Let w1, w2, w3 PW and let J Ď ∆ be a regular subset.

(a) The semi-affine weight function satisfies the triangle inequality,

Jwtpw1 ñ w3q ď
Jwtpw1 ñ w2q `

Jwtpw2 ñ w3q.

(b) If α P ΦJ , we have

Jwtpsαw1 ñ w2q “
Jwtpw1 ñ w2q ` χJpαqw

´1
1 α_,

Jwtpw1 ñ sαw2q “
Jwtpw1 ñ w2q ´ χJpαqw

´1
2 α_.

(c) If β P Φ`, we have

Jwtpw1sβ ñ w2q ď
Jwtpw1 ñ w2q ` χJpw1βqβ

_,
Jwtpw1 ñ w2sβq ď

Jwtpw1 ñ w2q ` χJp´w2βqβ
_.

Proof. Part (a) follows readily from the definition. Let us prove part (b). We focus on
the first identity, as the proof of the second identity is analogous.
Up to replacing α by ´α, which does not change the reflection sα nor the value of

χJpαqw
´1
1 α_,
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we may assume α P Φ`J . Now write

Jπpw1q “ pw
1
1, µ1q,

Jπpw2q “ pw
1
2, µ2q.

Then Jπpsαw1q “ pw
1
1, µ1 ` Φ`p´αqw´1

1 α_q. Thus

Jwtpsαw1 ñ w2q “wtpw11 ñ w12q ´ µ1 ´ Φ`p´αqw´1
1 α_ ` µ2

“ Jwtpw1 ñ w2q ´ Φ`p´αqw´1
1 α_

“ Jwtpw1 ñ w2q ` χJpαqw
´1
1 α_

as α P Φ`J .
Now we prove part (c). Again, we only show the first inequality. If w1β P ΦJ , the

inequality follows from part (b). Otherwise, we use (a) and Corollary 3.17to compute

Jwtpw1sβ ñ w2q ď
Jwtpw1sα ñ w1q `

Jwtpw1 ñ w2q

ď
L3.32

wtpw1sα ñ w1q `
Jwtpw1 ñ w2q

ď Φ`pwαqα_ ` Jwtpw1 ñ w2q

“ χJpwαqα
_ ` Jwtpw1 ñ w2q.

This finishes the proof.

Lemma 3.36. Let w1, w2 PW and J Ď ∆af be regular. Suppose that for all α P Φ`J , at
least one of the following conditions is satisfied:

w´1
1 α P Φ` or w´1

2 α P Φ´.

Then Jwtpw1 ñ w2q “ wtpw1 ñ w2q.

Proof. We show the claim via induction on J`pw1q. If w1 P
JW , then the claim follows

from Lemma 3.32.
Otherwise, we find some α P clpJq with w´1

1 α P Φ´. By assumption, also w´1
2 α P Φ´.

Using Lemma 3.8, we get

wtpw1 ñ w2q “wtpsαw1 ñ sαw2q ` χJpαqw
´1
1 α_ ´ χJpαqw

´1
2 α_.

Since J`psαw1q ă
J`pw1q by Lemma 3.30, we want to show that psαw1, sαw2q also satisfy

the condition stated in the lemma.
For this, let β P Φ`J . If β “ α, then psαw1q

´1α “ ´w´1
1 α P Φ` by choice of α. Now

assume that β ‰ α, so that sαβ P Φ`J . By the assumption on w1 and w2, we must have
w´1

1 sαpβq P Φ` or w´1
2 sαpβq P Φ´. In other words, we have

psαw1q
´1β P Φ` or psαw2q

´1β P Φ´.

This shows that psαw1, sαw2q satisfy the desired properties.
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By the inductive hypothesis and Lemma 3.35, we get

wtpsαw1 ñ sαw2q ` χJpαqw
´1
1 α_ ´ χJpαqw

´1
2 α_

“ Jwtpsαw1 ñ sαw2q ` χJpαqw
´1
1 α_ ´ χJpαqw

´1
2 α_

“ Jwtpw1 ñ w2q.

This completes the induction and the proof.

Corollary 3.37. Let w1, w2 P W and let J Ď ∆af be regular. Denote by w0 P W the
longest element. Then

Jwtpw1w0 ñ w2w0q “ ´w0
Jwtpw2 ñ w1q.

Proof. Both sides of the equation behave identically when multiplying w1 or w2 on the
left by a reflection in WJ : For α P ΦJ , we use Lemma 3.35 to see

Jwtpsαw1w0 ñ w2w0q ´
Jwtpw1w0 ñ w2w0q “ ´χJpαqpw1w0q

´1α_

“´ w0
`

Jwtpw2 ñ sαw1q ´ wtpw2 ñ w1q
˘

.
Jwtpw1w0 ñ sαw2w0q ´

Jwtpw1w0 ñ w2w0q “ χJpαqpw2w0q
´1α_

“´ w0
`

Jwtpsαw2 ñ w1q ´ wtpw2 ñ w1q
˘

.

Therefore, it suffices to show the desired equality in case w1, w2 P
JW . By Lemma 3.36,

we get

Jwtpw1w0 ñ w2w0q “ wtpw1w0 ñ w2w0q,
Jwtpw2 ñ w1q “ wtpw2 ñ w1q.

Now the claim follows from Lemma 3.9.

3.5. Maximal subsets
In this section, we specialize to the situation where Φ is irreducible and J “ ∆afztau for
some a P ∆af . As we saw before, the calculation of weight functions can be reduced to
this situation.

We define the fundamental coweight ωa P QΦ_ by declaring for each β P ∆ that

xωa, βy “

#

1, a “ pβ, 0q,
0, a ‰ pβ, 0q.

Denote the longest root of Φ by θ. Then we define the normalized coweight rωa P QΦ_
by

rωa “

#

ωa “ 0, a “ p´θ, 1q,
1

ωapθq
ωa, a ‰ p´θ, 1q.
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Lemma 3.38. If w P W , there exists a uniquely determined element w1 P WJw X
JW ,

and it satisfies

Jπpwq “ pw1, w´1
rωa ´ pw

1q´1
rωaq.

Proof. From the definition of Jπpwq in Lemma 3.31, it follows that the intersection
WJw X

JW contains exactly one element w1, and that Jπpwq has the form pw1, µq for
some µ.
Define a function ϕ : W Ñ JW ˆQΦ_ via

ϕpwq “ pw1, w´1
rωa ´ pw

1q´1
rωaq if Jπpwq “ pw1, µq.

We show that ϕ “ Jπ by verifying the recursive definition of Jπ.
If w P JW , then certainly w1 “ w and ϕpwq “ pw, 0q.
Now suppose that w P W is any element with ϕpwq “ Jπpwq and pick β P Φ`J . We

have

Jπpsβwq “ pw
1, µ` Φ`p´βqw´1β_q.

Now we calculate

ϕpsβwq “pw
1, psβwq

´1
rωa ´ pw

1q´1ωaq

“pw1, w´1
rωa ´ xrωa, βyw

´1β_ ´ pw1q´1ωaq

“pw1, µ´ xrωa, βyw
´1β_q.

In order to conclude ϕpsβwq “ Jπpsβwq (completing the induction and the proof), it
remains to show

´xrωa, βy “ Φ`p´βq.

If a “ p´θ, 1q, both sides are trivially zero (as β P Φ`J “ Φ`). Thus let us assume that
a ‰ p´θ, 1q.
We use the condition β P Φ`J . By Lemma 3.28, we have pβ,Φ`p´βqq P Φ`J , so

ωapβ ` Φ`p´βqθq “ 0 ùñ xrωa, β ` Φ`p´βqθy “ 0
ùñ ´ xrωa, βy “ Φ`p´βqxrωa, θy “ Φ`p´βq.

The proof is finished.

Lemma 3.39. For w1, w2 PW , we have

Jwtpw1 ñ w2q ě w´1
2 rωa ´ w

´1
1 rωa.

In case WJw1 “WJw2, we have equality.

Note that Jwtpw1 ñ w2q is an integral sum of coroots, whereas w´1
2 rωa ´ w

´1
1 rωa will,

in general, be only a rational linear combination of coroots.
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Proof of Lemma 3.39. We want to use the definition of the semi-affine weight function,
so let us write

Jπpw1q “ pw
1
1, µ1q,

Jπpw2q “ pw
1
2, µ2q.

Then, by definition,
Jwtpw1 ñ w2q “wtpw11 ñ w12q ´ µ1 ` µ2

“
L3.38

wtpw11 ñ w12q ´ w
´1
1 rωa ` pw

1
1q
´1

rωa ` w
´1
2 rωa ´ pw

1
2q
´1

rωa.

If WJw1 “WJw2, we get w11 “ w12 and the claim follows. In general, we need to prove

@w11, w
1
2 PW : wtpw11 ñ w12q ě pw

1
2q
´1

rωa ´ pw
1
1q
´1

rωa. (3.40)

This is clear if a “ p´θ, 1q, as then the right-hand side vanishes. Hence let us assume
that a ‰ p´θ, 1q. It suffices to show the inequality (3.40) for edges w11 Ñ w12 in QBpW q,
as we then can use induction on dpw11 ñ w12q.
Now suppose that w12 “ w11sα for some root α P Φ`. Then

pw12q
´1

rωa ´ pw
1
1q
´1

rωa “sαpw
1
1q
´1

rωa ´ pw
1
1q
´1

rωa

“´ xpw1q
´1

rωa, αyα
_

“´ xrωa, w
1
1αyα

_

ďΦ`p´w11αqα_ “ wtpw11 ñ w12q.

We conclude that inequality (3.40) holds true for edges w11 Ñ w12 in QBpW q, which
finishes the last gap in the proof.

If α is special, the estimate in Lemma 3.39 is an equality:

Lemma 3.41. Suppose that a P ∆af is a special node, i.e. such that a “ p´θ, 1q or
ωapθq “ 1. Then JW consists only of one element. For w1, w2 PW , we have

Jwtpw1 ñ w2q “ w´1
2 ωa ´ w

´1
1 ωa.

Proof. If a “ p´θ, 1q, then J “ ∆ and Φ`J “ Φ`. Now JW “ t1u, ωa “ 0 and χJ ” 0.
It follows that Jwtp¨ ñ ¨q “ 0 by Lemma 3.35.

Let us consider the case a “ pα, 0q. We first show that JW consists only of one
element: Let w P JW and J 1 :“ clpJq X∆. We claim that

@β P Φ` : w´1β P Φ` ðñ β P ΦJ 1 . (3.42)

By definition of JW , the claim is satisfied for β P J 1, and hence for sums of those roots.
i.e. if β P Φ`J 1 , then w´1β P Φ`.

Now suppose that β P Φ`zΦ`J 1 . We write

β “
ÿ

γP∆
cγγ,

θ “
ÿ

γP∆
c1γγ.
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As θ is the longest root, cγ ď c1γ for all γ P ∆. By choice of a, we have c1α ď 1, and by
choice of β, we have cα ě 1. Thus cα “ c1α “ 1.

By definition of w P JW and p´θ, 1q P J , we see that w´1θ P Φ´. Now observe that

w´1β “w´1θ `
ÿ

α‰γP∆
pcγ ´ c

1
γq

looomooon

ď0

w´1γ
loomoon

PΦ`

ďw´1θ P Φ´.

Thus w´1β P Φ´. The claim (3.42) is proved. It follows that JW consists of only one
element.
By Lemma 3.38, we conclude W “WJ . Thus WJw1 “WJw2 for all w1, w2 PW , such

that the final claim follows from Lemma 3.39.

Remark 3.43. For irreducible root systems of type An, all nodes are special and Lemmas
3.36, 4.37 and 3.41 allow an easy way to compute the weight function. This recovers
formula (3.1). As mentioned before, this formula fails for all other root systems, precisely
because not all nodes are special: Indeed, if a “ pα, 0q is a non-special node, we get

ωa ´ sθpωaq “ xωa, θyθ
_ “ ωapθqθ

_ ą θ_ “ wtpsθ ñ 1q.

In general, let us write

rw´1
2 rωa ´ w

´1
1 rωas P ZΦ_

for the smallest element in ZΦ_ that is ě w´1
2 rωa ´ w

´1
1 rωa P QΦ_. We have

wtpw1 ñ w2q ě sup
a

rw´1
2 rωa ´ w

´1
1 rωas. (3.44)

and we may ask whether equality holds. In general, we cannot expect equality to hold
(the resulting criterion for the Bruhat order of finite Weyl groups would be “too sim-
ple”). It is interesting though that the lack of equality in (3.44) explains precisely the
difference between the so-called admissible and permissible subsets as defined in [KR00],
cf. Corollary 4.15.
Remark 3.45. The computation of weight functions for non simply laced root systems
can be reduced to a calculation for a simply laced root system using the technique of
Dynkin diagram folding:

Suppose that ϕ : Φ Ñ Φ is an automorphism of the root system with ϕp∆q “ ∆. We
obtain the folded root system Φ{ϕ with coroots

pΦ{ϕq_ “
#

ÿ

αPo

α | o Ď Φ_ is a ϕ-orbit
+

Ď ZΦ_.

Thus, the roots in Φ{ϕ are in bijection with ϕ-orbits in Φ. The Weyl group of Φ{ϕ is
given by Wϕ, the ϕ-invariant elements of W . Similarly, the affine Weyl group of Φ{ϕ is
given by pWafq

ϕ.
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Both Wϕ and pWafq
ϕ inherit the Bruhat order from the larger groups W resp. Waf

(This is a simple Coxeter theoretic fact). Using Corollary 3.16, we see that

@w1, w2 PW
ϕ : wtQBpW qpw1 ñ w2q “ wtQBpWϕqpw1 ñ w2q.

We observe, using the classification of root systems, that the only irreducible root
systems with non-trivial automorphisms are those of type An, Dn and E6. If Φ is of
type An and ϕpαq “ ´w0pαq is the non-trivial automorphism of order 2, then Φ{ϕ is
of type Crn{2s. The quotient of D4 by one of the automorphisms of order 3 is G2; the
quotient of anyDn by an automorphism of order 2 is given by Bn´1. Finally, the quotient
of E6 by the unique automorphism of order 2 is given by F4.
For root systems of type Cn, the calculation of the weight function can thus be reduced

to this calculation for A2n´1, for which an explicit formula is known. Alternatively, one
can compare Corollary 3.16 to the explicit criterion for the Bruhat order on the affine
Weyl group given by [BB05, Theorem 8.4.7].
The An case gives hope that the semi-affine weight function ∆afztauwtp¨ ñ ¨q would

be easier to compute than the “full” weight function wtp¨ ñ ¨q. While this is true for
Cn (due to the aforementioned reduction to An), such formulas seem to be unknown for
other root systems.
For types Bn and, more generallyDn, the recent paper of Ishii [Ish21] seems promising.

Ishii presents explicit criteria for the semi-infinite order, which should yield explicit
formulas for the weight function.
For the remaining exceptional root systems, the question of how to compute the weight

function can, in principle, be solved by giving a finite list of answers. It is doubtful how
feasible or useful such a task would be.
A “simple formula” to describe the weight function for all root systems would, in

particular, entail a “simple criterion” for the Bruhat order for all finite Weyl groups,
which seems already to be a difficult problem2.

2This leads to the somewhat paradoxical situation that we are able to prove new results for the Bruhat
order on the affine Weyl group, but nothing new for the Bruhat order on the finite Weyl group.
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4. Bruhat order
The Bruhat order on ĂW is a fundamental Coxeter-theoretic notion that has been studied
with great interest, e.g. [BB95; KR00; Rap02; Len+15]. In this section, we present new
characterizations of the Bruhat order on ĂW .

The structure of this section is as follows: In Section 4.1, we state our main criterion
for the Bruhat order as Theorem 4.2 and discuss some of its applications. We then
prove this criterion in Section 4.2. Finally, Section 4.3 will cover some consequences of
Deodhar’s lemma (cf. [Deo77]) and feature an even more general criterion.

4.1. A criterion
Definition 4.1. Let x “ wεµ P ĂW . A Bruhat-deciding datum for x is a tuple pv, J1, . . . , Jmq
where v PW and J‚ is a finite collection of arbitrary subsets J1, . . . , Jm Ď ∆ withm ě 1,
satisfying the following two properties:

(1) The element v is length positive for x, i.e. `px, vαq ě 0 for all α P Φ`.

(2) Writing J :“ J1 X ¨ ¨ ¨ X Jm, we have `px, vαq “ 0 for all α P ΦJ .

The name Bruhat-deciding is justified by the following result.

Theorem 4.2. Let x “ wεµ, x1 “ w1εµ
1

P ĂW . Fix a Bruhat-deciding datum pv, J1, . . . , Jmq
for x. Then the following are equivalent:

(1) x ď x1.

(2) For all i “ 1, . . . ,m, there exists an element v1i PW such that

v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq ď pv
1
iq
´1µ1 pmod Φ_Jiq.

We again use the shorthand notation µ1 ď µ2 pmod Φ_J q for µ1´µ2`ZΦ_J ď 0`ZΦ_J
in ZΦ_{ZΦ_J .
This theorem is the main result of this section. We give a proof in Section 4.2.
First, let us remark that the construction of a Bruhat-deciding datum is easy. It

suffices to choose any length positive element v for x, and then pv,Hq is Bruhat-deciding.
The inequality of Theorem 4.2 is only interesting for v P LPpxq and v1i P LPpx1q, as

explained by the following lemma in conjunction with Lemma 2.3.

Lemma 4.3. Let x “ wεµ, x1 “ w1εµ
1

P ĂW . Suppose we are given elements v, v1 PW , a
subset J Ď ∆ and a positive root α P Φ`.

(a) Assume `px, vαq ă 0. Then the inequality

pvsαq
´1µ` wtpv1 ñ vsαq ` wtpwvsα ñ w1v1q ď pv1q´1µ1 pmod Φ_J q

implies

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ1 pmod Φ_J q.
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(b) Assume `px1, vαq ă 0. Then the inequality

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ1 pmod Φ_J q

implies

v´1µ` wtpv1sα ñ vq ` wtpwv ñ w1v1sαq ď pv
1sαq

´1µ1 pmod Φ_J q.

Proof. (a) We have

pv1q´1µ1 ěpvsαq
´1µ` wtpv1 ñ vsαq ` wtpwvsα ñ w1v1q

ěv´1µ´ xv´1µ, αyα_ ` wtpv1 ñ vq ´ wtpvsα ñ vq

` wtpwv ñ w1v1q ´ wtpwv ñ wvsαq

ě
p˚q

v´1µ´ xv´1µ, αyα_ ` wtpv1 ñ vq ´ Φ`pvαqα_

` wtpwv ñ w1v1q ´ Φ`p´wvαqα_

“v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ´ p`px, vαq ` 1qα_

ěv´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q pmod Φ_J q.

The inequality p˚q is Corollary 3.17.

(b) The calculation is completely analogous:

pv1sαq
´1µ1 “pv1q´1µ1 ´ xpv1q´1µ, αyα_

ěv´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ´ xµ, v1αyα_

ěv´1µ` wtpv1sα ñ vq ´ wtpv1sα ñ v1q

` wtpwv ñ w1v1sαq ´ wtpw1v1 ñ w1v1sαq ´ xµ, v
1αyα_

ěv´1µ` wtpv1sα ñ vq ´ Φ`pv1αqα_

` wtpwv ñ w1v1sαq ´ Φ`p´w1v1αqα_ ´ xµ, v1αyα_

“v´1µ` wtpv1sα ñ vq ` wtpwv ñ w1v1sαq ´ p`px
1, v1αq ` 1qα_

ěv´1µ` wtpv1sα ñ vq ` wtpwv ñ w1v1sαq.

Proof of Theorem 1.1 using Theorem 4.2. We use the notation of Theorem 1.1. In view
of Lemma 4.3 and Lemma 2.3, the condition

Dv2 PW : v´1
1 µ1 ` wtpv2 ñ v1q ` wtpw1v1 ñ w2v2q ď v´1

2 µ2 (˚)

is true for all v1 P LPpxq iff it is true for all v1 PW . We see that asking condition p˚q for
all v1 PW is equivalent to asking condition (2) of Theorem 4.2 for each Bruhat-deciding
datum. In this sense, Theorem 4.2 implies Theorem 1.1.

If x1 is in a shrunken Weyl chamber, there is a canonical choice for v1.

48



Corollary 4.4. Let x “ wεµ and x1 “ w1εµ
1. Assume that x1 is in a shrunken Weyl

chamber and that v1 is the length positive element for x1. Pick any length positive element
v for x. Then x ď x1 if and only if

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ1.

Proof. pv,Hq is a Bruhat-deciding datum for x. By Lemma 4.3 and Corollary 2.4, the
inequality in Theorem 4.2 (2) is satisfied by some v1 PW iff it is satisfied by the unique
length positive element v1 for x1.

We now show how Theorem 4.2 can be used to describe Bruhat covers in ĂW . The
following proposition generalizes the previous results of Lam-Shimozono [LS10, Propo-
sition 4.1] and Milićević [Mil21, Proposition 4.2].

Proposition 4.5. Let x “ wεµ, x1 “ w1εµ
1

P ĂW and v P LPpxq. Then the following are
equivalent:

(a) x Ì x1, i.e. x ă x1 and `pxq “ `px1q ´ 1.

(b) There exists some v1 P LPpx1q such that
(b.1) v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q “ pv1q´1µ1 and
(b.2) dpv1 ñ vq ` dpwv ñ w1v1q “ 1.

(c) There is a root α P Φ` satisfying at least one of the following conditions:
(c.1) There exists a Bruhat edge v1 :“ sαv Ñ v in QBpW q with x1 “ xsα and

v1 P LPpx1q.
(c.2) There exists a quantum edge v1 :“ sαv Ñ v in QBpW q with v´1α P Φ`, x1 “

xrp´α,1q and v1 P LPpx1q.
(c.3) There exists a Bruhat edge wv Ñ sαwv in QBpW q such that x1 “ sαx and

v P LPpx1q.
(c.4) There exists a quantum edge wv Ñ sαwv in QBpW q with pwvq´1α P Φ´,

x1 “ rp´α,1qx and v P LPpx1q.

(d) There exists a root α P Φ` satisfying at least one of the following conditions:
(d.1) We have w1 “ wsα, µ

1 “ sαpµq, `psαvq “ `pvq ´ 1 and for all β P Φ`:

`px, vβq ` Φ`psαvβq ´ Φ`pvβq ě 0.

(d.2) We have w1 “ wsα, µ
1 “ sαpµq ´ α_, `psαvq “ `pvq ´ 1 ` xv´1α_, 2ρy and for

all β P Φ`:

`px, vβq ` xα_, vβy ` Φ`psαvβq ´ Φ`pvβq ě 0.

(d.3) We have w1 “ sαw, µ
1 “ µ, `psαwvq “ `pwvq ` 1 and for all β P Φ`:

`px, vβq ` Φ`pwvβq ´ Φ`psαwvβq ě 0.
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(d.4) We have w1 “ sαw, µ
1 “ µ´w´1α_, `psαwvq “ `pwvq`1`xpwvq´1α_, 2ρy and

for all β P Φ`:

`px, vβq ` xα_, wvβy ` Φ`pwvβq ´ Φ`psαwvβq ě 0.

Proof. (a) ðñ (b): We start with a key calculation for v1 P LPpx1q:

xpv1q´1µ1 ´ wtpv1 ñ vq ´ wtpwv ñ w1v1q ´ v´1µ, 2ρy
“

L3.6
xpv1q´1µ, 2ρy ´ dpv1 ñ vq ´ `pv1q ` `pvq

´ dpwv ñ w1v1q ´ `pwvq ` `pw1v1q ´ xv´1µ, 2ρy
“

C2.11
`px1q ´ `pxq ´ dpv1 ñ vq ´ dpwv ñ w1v1q.

First assume that (a) holds, i.e. x Ì x1. By Theorem 4.2 and Lemma 4.3, we find
v1 P LPpx1q such that

pv1q´1µ1 ´ wtpv1 ñ vq ´ wtpwv ñ w1v1q ´ v´1µ ě 0

By the above key calculation, we see that

`px1q ě `pxq ` dpv1 ñ vq ` dpwv ñ w1v1q,

where equality holds if and only if (b.1) is satisfied. Note that x Ì x1 implies that x´1x1

must be an affine reflection, thus w ‰ w1. We see that v ‰ v1 or wv ‰ w1v1, thus in
particular

`pxq ` 1 “ `px1q ě `pxq ` dpv1 ñ vq ` dpwv ñ w1v1q ě `pxq ` 1.

Since equality must hold, we get (b.1) and (b.2).
Now assume conversely that (b) holds. By (b.1) and Theorem 4.2, we see that x ă x1.

Now using the key calculation and (b.2), we get `px1q “ `pxq ` 1.
(b) ðñ (c): The condition (b.2) means that either v “ v1 and wv Ñ w1v1 is an edge

in QBpW q, or wv “ w1v1 and v1 Ñ v is an edge. If we now distinguish between Bruhat
and quantum edges, we get the explicit conditions of (c) (or (d)).
Let us first assume that (b) holds. We distinguish the following cases:

(1) wv “ w1v1 and v1 Ñ v is a Bruhat edge: Then we can write v1 “ sαv for some α P Φ`
with v´1α P Φ´. Now the condition wv “ w1v1 implies w1 “ wsα. Condition (b.1)
implies v´1µ “ pv1q´1µ1, so µ1 “ sαpµq. We get (c.1).

(2) wv “ w1v1 and v1 Ñ v is a quantum edge: Then we can write v1 “ sαv for some
α P Φ` with v´1α P Φ`. Now the condition wv “ w1v1 implies w1 “ wsα. Condition
(b.1) implies v´1µ` v´1α_ “ pv1q´1µ1, so µ1 “ sαpµq ´ α

_. We get (c.2).

(3) v “ v1 and wv Ñ w1v1 is a Bruhat edge: Then we can write w1v1 “ sαwv for some
α P Φ` with pwvq´1α P Φ´. Now the condition v “ v1 implies w1 “ sαw. Condition
(b.1) implies v´1µ “ pv1q´1µ, so µ1 “ µ. We get (c.3).
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(4) v “ v1 and wv Ñ w1v1 is a quantum edge: Then we can write w1v1 “ sαwv for some
α P Φ` with pwvq´1α P Φ´. Now the condition v “ v1 implies w1 “ sαw. Condition
(b.1) implies v´1µ´ pwvq´1α_ “ pv1q´1µ, so µ1 “ µ´ w´1α_. We get (c.4).

Reversing the calculations above shows that (c) ùñ (b).
For (c) ðñ (d), we just explicitly rewrite the conditions for length positivity of v1,

and the definition of edges in the quantum Bruhat graph.

Remark 4.6. If the translation part µ of x “ wεµ is sufficiently regular, the estimates
for the length function of x in part (d) of Proposition 4.5 are trivially satisfied. Writing
LPpxq “ tvu, we get a one-to-one correspondence

tBruhat covers of xu Ø tedges ? Ñ vu \ tedges wv Ñ?u.

If Φ is simply laced and x to lies in a shrunken Weyl chamber, then still all the estimated
for the length function of x in part (d) are satisfied. I.e. each edge ? Ñ v or wv Ñ?
yields a Bruhat cover, but different edges might yield the same element x1.
If Φ is not simply laced, being in a shrunken Weyl chamber is not sufficient: Indeed,

consider the case where x “ w0 (so LPpxq “ t1u) and α any short simple root. Then
sα Ñ 1 is an edge in QBpW q, but x ă xrp´α,1q is not a Bruhat cover.

We obtain the following useful technical observation from Proposition 4.5:

Corollary 4.7. Let x P ĂW , v P LPpxq and pα, kq P ∆af with `px, αq “ 0. If v´1α P Φ`,
then sαv P LPpxq.

Proof. Since xpα, kq P Φ` by Lemma 2.9, we have x ă xra. Since a is a simple affine root,
we must have x Ì xra. So one of the four possibilities (c.1) – (c.4) of Proposition 4.5
must be satisfied.

If (c.3) or (c.4) are satisfied, we get v P LPpx1q. Since x1 “ xra is a length additive
product, Lemma 2.13 shows sαv P LPpxq, finishing the proof.
Now assume that (c.1) is satisfied. Then x1 “ xsβ for some β P Φ` means k “ 0 and

α “ β. Now v´1α P Φ` means that `psαvq ą `pvq, so sαv Ñ v cannot be a Bruhat edge.
Finally assume that (c.2) is satisfied. Then x1 “ xrp´β,1q for some β P Φ` means that

k “ 1 and α “ ´β P Φ´. Then sαv Ñ v cannot be a quantum edge, as `psαvq ă `pvq.
We get the desired claim or a contradiction, finishing the proof.

As a second application, we discuss the semi-infinite order on ĂW as introduced by
Lusztig [Lus80]. It plays a role for certain constructions related to the affine Hecke
algebra, cf. [Lus80; NW17].

Definition 4.8. Let x “ wεµ P ĂW .

(a) We define the semi-infinite length of x as

`
8
2 pxq :“ `pwq ` xµ, 2ρy.
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(b) We define the semi-infinite order on ĂW to be the order ă8
2 generated by the relations

@x P ĂW,a P Φaf : x ă
8
2 xra if `

8
2 pxq ď `

8
2 pxraq.

We have the following link between the semi-infinite order and the Bruhat order:

Proposition 4.9 ([NW17, Proposition 2.2.2]). Let x1, x2 P ĂW . There exists a number
C ą 0 such that for all λ P ZΦ_ satisfying the regularity condition xλ, αy ą C for every
positive root α, we have

x1 ď
8
2 x2 ðñ x1ε

λ ď x2ε
λ.

Corollary 4.10. Let x1 “ w1ε
µ1 , x2 “ w2ε

µ2 P ĂW . Then x1 ď
8
2 x2 if and only if

µ1 ` wtpw1 ñ w2q ď µ2.

Proof. Let λ be as in Proposition 4.9. Choosing λ sufficiently large, we may assume that
x1ε

λ and x2ε
λ are superregular with LPpx1ε

λq “ LPpx2ε
λq “ t1u. Now x1ε

λ ď x2ε
λ if

and only if

µ1 ` wtpw1 ñ w2q ď µ2,

by Corollary 4.4.

We finish this section with another application of our Theorem 4.2, namely a discussion
of admissible and permissible sets in ĂW , as introduced by Kottwitz and Rapoport [KR00].

Definition 4.11. Let x “ wεµ P ĂW and λ P X˚pT qΓ0 a dominant coweight.

(a) We say that x lies in the admissible set defined by λ, denoted x P Admpλq, if there
exists u PW such that x ď εuλ with respect to the Bruhat order on ĂW .

(b) The fundamental coweight associated with a “ pα, kq P ∆af is the uniquely deter-
mined element ωa P QΦ_ such that for each β P ∆,

xωa, βy “

#

1, a “ pβ, 0q,
0, a ‰ pβ, 0q.

In particular, ωa “ 0 iff k ‰ 0.

(c) Let a “ pα, kq P ∆af , and denote by θ P Φ` the longest root of the irreducible
component of Φ containing α. The normalized coweight associated with a is

rωa “

#

0, k ‰ 0,
1

xωa,θy
ωa, k “ 0.

52



(d) We say that x lies in the permissible set defined by λ, denoted x P Permpλq, if µ ” λ
pmod Φ_q and for every simple affine root a P ∆af , we have

pµ` rωa ´ w
´1

rωaq
dom ď λ in X˚pT qΓ0 bQ.

It is shown in [KR00] that the admissible set is always contained in the permissible
set and that equality holds for the groups GLn and GSp2n if λ is minuscule (i.e. a
fundamental coweight of some special node). It is a result of Haines and Ngô [HN02]
that Admpλq ‰ Permpλq in general. We show how the latter result can be recovered
using our methods.

Proposition 4.12 (Cf. [HY21, Prop. 3.3]). Let x “ wεµ P ĂW and λ P X˚pT qΓ0 a
dominant coweight. Then the following are equivalent:

(1) x P Admpλq.

(2) For all v PW , we have

v´1µ` wtpwv ñ vq ď λ.

(3) For some v P LPpxq, we have

v´1µ` wtpwv ñ vq ď λ.

Proof. (1) ùñ (2): Suppose that x P Admpλq, so x ď εuλ for some u P W . Let also
v PW . By Lemma 4.17, we find ũ PW such that

v´1µ` wtpũñ vq ` wtpwv ñ ũq ď ũ´1uλ.

Thus

v´1µ` wtpwv ñ vq ďv´1µ` wtpũñ vq ` wtpwv ñ ũq

ďũ´1uλ

ďpũ´1uλqdom “ λ.

Since (2) ùñ (3) is trivial, it remains to show (3) ùñ (1). So let v P LPpxq satisfy
v´1µ`wtpwv ñ vq ď λ. By Theorem 4.2, we immediately get x ď εvλ, showing (1).

Lemma 4.13. Let x “ wεµ P ĂW and λ P X˚pT qΓ0 a dominant coweight. Then the
following are equivalent:

(1) x P Permpλq.

(2) For all v PW , we have

v´1µ` sup
aP∆af

`

v´1
rωa ´ pwvq

´1
rωa
˘

ď λ.

53



If moreover x lies in a shrunken Weyl chamber, the conditions are equivalent to

(3) For the uniquely determined v P LPpxq, we have

v´1µ` sup
aP∆af

`

v´1
rωa ´ pwvq

´1
rωa
˘

ď λ.

Proof. We have

(1) ðñ @a P ∆af :
`

µ` rωa ´ w
´1

rωa
˘dom

ď λ

ðñ @a P ∆af , v PW : v´1 `µ` rωa ´ w
´1

rωa
˘

ď λ

ðñ @v PW : sup
aP∆af

v´1 `µ` rωa ´ w
´1

rωa
˘

ď λ

ðñ (2).

Now assume that x is in a shrunken Weyl chamber, LPpxq “ tvu and a P ∆af . We claim
that

`

µ` rωa ´ w
´1

rωa
˘dom

“ v´1 `µ` rωa ´ w
´1

rωa
˘

.

Once this claim is proved, the equivalence (1) ðñ (3) follows.
It remains to show that v´1 `µ` rωa ´ w

´1
rωa
˘

is dominant. Hence let α P Φ`. We
obtain

@

v´1 `µ` rωa ´ w
´1

rωa
˘

, α
D

“xµ, vαy ` xrωa, vαy ´ xrωa, wvαy

ěxµ, vαy ´ Φ`p´vαq ´ Φ`pwvαq
“`px, vαq ´ 1 ě 0.

Corollary 4.14 ([KR00, Sec. 11.2]). For all dominant λ P X˚, the admissible set is
contained in the permissible set, Admpλq Ď Permpλq.

Proof. Let x “ wεµ P ĂW . Then

x P Admpλq ùñ
P4.12

@v PW : v´1µ` wtpwv ñ vq ď λ

ùñ
(3.44)

@v PW : v´1µ` sup
aP∆af

v´1
rωa ´ pwvq

´1
rωa ď λ

ùñ
L4.13

x P Permpλq.

Corollary 4.15. For any fixed root system Φ, the following are equivalent:

(1) For all dominant λ P X˚pT qΓ0, we get the equality Admpλq “ Permpλq.

(2) For all w1, w2 PW , the element
S

sup
aP∆af

w´1
2 rωa ´ w

´1
1 rωa

W

:“ mintz P ZΦ_ | z ě sup
aP∆af

w´1
2 rωa ´ w

´1
1 rωa in QΦ_u

agrees with wtpw1 ñ w2q.
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(3) Each irreducible component of Φ is of type An pn ě 1q, B2, C3 or G2.

Proof. (1) ùñ (2): Comparing condition (3) of Proposition 4.12 with condition (3) of
Lemma 4.13 for superregular elements x P ĂW yields the desired claim.

(2) ùñ (1): We can directly compare condition (2) of Proposition 4.12 with condition
(2) of Lemma 4.13.
(2) ðñ (3): Call an irreducible root system Φ1 good if condition (2) is satisfied for

Φ1, and bad otherwise. Certainly, Φ is good iff each irreducible component of Φ is good.
Moreover, root systems of type An are good, we saw this in formula (3.1) and again in
Remark 3.43.
If ΦJ Ď Φ is bad for some J Ď ∆, then certainly Φ is bad as well (cf. Corollary 3.11). It

remains to show that root systems of types C3 and G2 are good, and that root systems of
types B3, C4 and D4 are bad. Each of these claims is easily verified using the Sagemath
computer algebra system [Sage; SaCo].

For irreducible root systems of rank ě 4, the equivalence (1) ðñ (3) is due to
[HN02], using a result of Deodhar:

Proposition 4.16 ([Deo78]). For any fixed root system Φ, the following are equivalent:

(1) For all w1, w2 PW , we have

w1 ď w2 ðñ sup
aP∆af

w´1
2 ωa ´ w

´1
1 ωa ď 0

(2) Each irreducible component of Φ has rank ď 3 or is of type An pn ě 1q.

4.2. Proof of the criterion
The goal of this section is to prove Theorem 4.2. We start with the direction (1) ùñ
(2), which is the easier one.

Lemma 4.17. Let x “ wεµ, x1 “ w1εµ
1

P ĂW and v P W . If x ď x1, then there exists an
element v1 PW such that

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ.

Proof. First note that the relation

x ĺ x1 : ðñ @vDv1 : v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ

is transitive. Thus, it suffices to show the implication x ď x1 ùñ x ĺ x1 for generators
px, x1q of the Bruhat order.
In other words, we may assume that x1 “ xra for an affine root a “ pα, kq P Φ`af with

xa “ pwα, k ´ xµ, αyq P Φ`af .
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This means that w1 “ wsα and µ1 “ µ` pk ´ xµ, αyqα_, where k ´ xµ, αy ě Φ`p´wαq.
We now do a case distinction depending on whether the root v´1α is positive or negative.
Case v´1α P Φ´. Put v1 “ sαv such that wv “ w1v1. Then using Corollary 3.17,

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q

“ v´1µ` wtpvs´v´1α ñ vq ` 0
ď v´1µ´ Φ`p´αqv´1α_

ď v´1µ´ kv´1α_

“psαvq
´1psαpµq ` kα

_q “ pv1q´1µ1.

Case v´1α P Φ`. Put v1 “ v such that w1v1 “ wvsv´1α. Then using Corollary 3.17,

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q

“ v´1µ` wtpwv ñ wvsv´1αq

ď v´1µ` Φ`p´wαqv´1α_

ď v´1µ` pk ´ xµ, αyqα_ “ pv1q´1µ1.

This finishes the proof.

The direction (1) ùñ (2) of Theorem 4.2 follows directly from this lemma. We now
start the journey to prove (2) ùñ (1).

Lemma 4.18. Let x “ wεµ, x1 “ w1εµ
1

P ĂW , and suppose that p1, J1, . . . , Jmq is a
Bruhat-deciding datum for both x and x1. If the inequality

µ` wtpw ñ w1q ď µ1 pmod Φ_Jiq

holds for i “ 1, . . . ,m, then x ď x1.

Proof. Let J “ J1 X ¨ ¨ ¨ X Jm. Then we get

µ` wtpw ñ w1q ď µ1 pmod Φ_J q.

Let C1 :“ `px´1x1q and pick C2 ą 0 such that the conclusion of Corollary 3.16 holds
true. We can find an element λ P ZΦ_ such that xλ, αy “ 0 for all α P J and

xλ, αy ě C2

for all α P Φ`zΦJ . Since 1 P W is length positive for both x and x1, it follows from
Lemma 2.13 that

`pxελq “ `pxq ` `pελq, `px1ελq “ `px1q ` `pελq.

So it suffices to show xελ ď x1ελ. Note that xελ, x1ελ P ΩC2
J by choice of λ. Moreover,

we have

µ` λ` wtpw ñ w1q ď µ1 ` λ pmod Φ_J q

by assumption. Therefore, the inequality xελ ď x1ελ follows from Corollary 3.16.
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Lemma 4.19. Let x “ wεµ, x1 “ w1εµ
1

P ĂW , and suppose that p1, J1, . . . , Jmq is a
Bruhat-deciding datum for x. If the inequality

µ` wtpw ñ w1q ď µ1 pmod Φ_Jiq

holds for i “ 1, . . . ,m, then x ď x1.

Proof. Induction on `px1q.
If p1, J, . . . , Jmq is also Bruhat-deciding for x1, we are done by Lemma 4.18. Otherwise,

we must have that 1 PW is not length positive for x1, or that J :“ J1 X ¨ ¨ ¨ X Jm allows
some α P ΦJ with `px1, αq ‰ 0.

First consider the case that 1 PW is not length positive for x1. Then we find a positive
root α P Φ` with `px1, αq ă 0. Hence a :“ p´α, 1q P Φ`af with x1a P Φ´, so that

x2 :“ w2εµ
2 :“ x1ra “ w1sαε

µ1´p1`xµ1,αyqα_ ă x1.

We calculate

µ` wtpw ñ w2q ďµ` wtpw ñ w1q ` wtpw1 ñ w1sαq

ďµ1 ` Φ`p´w1αqα_

“µ1 ´ p1` xµ1, αyqα_ ` pxµ1, αy ` 1` Φ`p´w1αqqα_

“µ2 ` p`px1, αq ` 1qα_ ď µ2 pmod Φ_J q.

By induction, x ď x2. Since x2 ă x1, we conclude x ă x1 and are done.
Next consider the case that 1 P W is indeed length positive for x1, but we find some

α P ΦJ with `px1, αq ‰ 0. We may assume α P Φ`, and then `px1, αq ą 0 by length
positivity. Then a “ pα, 0q P Φ`af with x1a P Φ´. We conclude that

x2 :“ w2εµ
2 :“ x1ra “ w1sαε

µ1´xµ1,αyα_ ă x1.

We calculate

µ` wtpw ñ w2q ďµ` wtpw ñ w1q ` wtpw1 ñ w1sαq

ďµ1 ` Φ`p´w1αqα_

“µ2 ` pΦ`p´w1αq ` xµ1, αyqα_

”µ2 pmod Φ_J q,

as α_ P Φ_J . So as in the previous case, we get x ď x2 ă x1 and are done.
This completes the induction and the proof.

Before we can continue the series of incremental generalizations, we need a technical
lemma.

Lemma 4.20. Let x “ wεµ, x1 “ w1εµ
1

P ĂW . Let J Ď ∆ and v1 PW be given such that

µ` wtpv1 ñ 1q ` wtpw ñ w1v1q ď pv1q´1µ1 pmod Φ_J q.

Then there exists an element v2 P W satisfying the same inequality as v1 above, and
satisfying moreover the condition `px1, γq ă 0 for all γ P max invpv2q.
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Proof. Among all v1 PW satisfying the inequality

µ` wtpv1 ñ 1q ` wtpw ñ w1v1q ď pv1q´1µ1 pmod Φ_J q,

pick one of minimal length in W . We prove that `px1, γq ă 0 for all γ P max invpv1q.
Suppose that this was not the case, so `px1, γq ě 0 for some γ P max invpv1q. The

condition γ P invpv1q implies `psγv1q ă `pv1q. Moreover, wtpv1 ñ 1q “ wtpsγv1 ñ
1q ´ pv1q´1γ_ by Proposition 3.23. We calculate

µ` wtpsγv1 ñ 1q ` wtpw ñ w1sγv
1q

“µ` wtpv1 ñ 1q ` pv1q´1γ_ ` wtpw ñ w1sγv
1q

ďµ` wtpv1 ñ 1q ` pv1q´1γ_ ` wtpw ñ w1v1q ` wtpw1v1 ñ w1sγv
1q

ďpv1q´1µ1 ` pv1q´1γ_ ` wtpw1v1 ñ w1sγv
1q

“pv1q´1µ1 ` pv1q´1γ_ ` wtpw1sγv1s´pv1q´1pγq ñ w1sγv
1q

ďpv1q´1µ1 ` pv1q´1γ_ ´ Φ`pw1γqpv1q´1γ_

“psγv
1q´1µ1 ` xµ1, γypv1q´1γ_ ` pv1q´1γ_ ´ Φ`pw1γqpv1q´1γ_

“psγv
1q´1µ1 ` `px1, γqpv1q´1γ_ ď psγv

1q´1µ1 pmod Φ_J q.

This is a contradiction to the choice of v1, so we get the desired claim.

Lemma 4.21. Let x “ wεµ, x1 “ w1εµ
1

P ĂW , and suppose that p1, J1, . . . , Jmq is a
Bruhat-deciding datum for x. If for each i “ 1, . . . ,m, there exists some v1i PW with

µ` wtpv1i ñ 1q ` wtpw ñ w1v1iq ď pv
1
iq
´1µ1 pmod Φ_Jiq,

then x ď x1.

Proof. Induction on `px1q.
By Lemma 4.20, we may assume that for each i P t1, . . . ,mu and γ P max invpv1iq, we

have `px1, γq ă 0.
If 1 P W is length positive for x1, i.e. `px1, αq ě 0 for all α P Φ`, then we get

max invpv1iq “ H for all i “ 1, . . . ,m, i.e. v1i “ 1. Now the claim follows from Lemma 4.19.
Thus suppose that the set

tα P Φ` | `px1, αq ă 0u

is non-empty. We fix a root α that is maximal within this set. Now a “ p´α, 1q P Φ`af
satisfies x1a P Φ´af , as `px1, αq ă 0. Consider

x2 :“ w2εµ
2 :“ x1ra “ w1sαε

µ1´p1`xµ1,αyqα_ ă x1.

We want to show x ď x2 using the inductive assumption. So pick an index i P t1, . . . ,mu.
We do a case distinction based on whether the root pv1iq´1α is positive or negative.
Case pv1iq´1α P Φ´. Then α P invpv1iq, so there exists some γ P max invpv1iq with

α ď γ. By choice of v1i, we get `px1, γq ă 0. By maximality of α and α ď γ, we get
α “ γ. In other words, α P max invpv1iq.
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Define v2i :“ sαv
1
i. Then by Proposition 3.23, wtpv1i ñ 1q “ wtpv2i ñ 1q ´ pv1iq´1α_.

We compute

µ` wtpv2i ñ 1q ` wtpw ñ w2v2i q

“µ` wtpv1i ñ 1q ` pv1iq´1α_ ` wtpw ñ w1v1iq

ď pv1iq
´1µ1 ` pv1iq

´1α_

“psαv
1
iq
´1pµ1 ´ p1` xµ1, αyqα_q “ pv2i q´1µ2 pmod Φ_Jiq.

Case pv1iq´1α P Φ`. We define v2i :“ v1i and use Corollary 3.17 to compute

µ` wtpv2i ñ 1q ` wtpw ñ w2v2i q

ďµ` wtpv1i ñ 1q ` wtpw ñ w1v1iq ` wtpw1v1i ñ w1v1ispv1iq´1αq

ď pv1iq
´1µ1 ` Φ`p´w1αqpv1iq´1α_

“pv1iq
´1pµ1 ´ p1` xµ1, αyqα_q ` pxµ1, αy ` 1` Φ`p´w1αqqpv1iq´1α_

“pv1iq
´1µ2 ` p`px1, αq ` 1qpv1iq´1α_ ď pv2i q

´1µ2 pmod Φ_Jiq.

In any case, we get the desired inequality

µ` wtpv2i ñ 1q ` wtpw ñ w2v2i q ď pv
2
i q
´1µ2 pmod Φ_Jiq.

By induction, x ď x2 ă x1, completing the induction and the proof.

Lemma 4.22. Let x “ wεµ, x1 “ w1εµ
1

P ĂW , and suppose that pv, J1, . . . , Jmq is a
Bruhat-deciding datum for x. If for each i “ 1, . . . ,m, there exists some v1i PW with

v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq ď pv
1
iq
´1µ1 pmod Φ_Jiq,

then x ď x1.

Proof. Induction on `pvq. If v “ 1, this follows from Lemma 4.21.
Let J :“ J1 X ¨ ¨ ¨ X Jm. If α P J , then vsα trivially satisfies the same condition as v.

So we may assume that v PW J .
Since v ‰ 1, we find a simple root α P ∆ with v´1α P Φ´. In particular, `px, αq ď 0,

such that x ă xsα.
We claim that psαv, J1, . . . , Jmq is a Bruhat-deciding datum for xsα. Indeed, for β P Φ,

we use Lemma 2.12 to compute

`pxsα, sαvβq “`px, vβq ` `psα, sαvβq

“ `px, vβq `

$

’

&

’

%

1, vβ “ ´α,

´1, vβ “ α,

0, vβ ‰ ˘α.

If β P Φ`, the condition v´1α P Φ´ forces vβ ‰ α, showing

`pxsα, sαvβq ě `px, vβq ě 0.
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Now consider the case β P Φ`J . Then `px, vβq “ 0 by assumption. Moreover, vβ P Φ`
as v PW J , so that vβ ‰ ´α. We conclude `pxsα, sαvβq “ `px, vβq “ 0 in this case.
This shows that psαv, J1, . . . , Jmq is Bruhat-deciding for xsα. Since `psαvq ă `pvq, we

may apply the inductive hypothesis to xsα to prove xsα ď maxpx1, x1sαq. We distinguish
two cases.
Case `px1, αq ď 0. This means x1 ă x1sα, so we wish to prove xsα ă x1sα, using the

inductive hypothesis. So let i P t1, . . . ,mu. By Lemma 4.3, we may assume that v1i is
length positive for x1.
First assume that pv1iq´1α P Φ´. By Lemma 3.8, we get

wtpv1i ñ vq “ wtpsαv1i ñ sαvq.

Define v2i :“ sαv
1
i. Then

psαvq
´1psαµq ` wtpv2i ñ sαvq ` wtpwsαsαv ñ w1sαv

2
i q

“ v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq

ď pv1iq
´1µ1 “ pv2i qpsαµ

1q pmod Φ_Jiq.

Next, assume that pv1iq´1α P Φ`. By length positivity, we must have `px1, αq “ 0. By
Lemma 3.8, we get

wtpv1i ñ vq “ wtpv1i ñ sαvq.

Define v2i :“ v1i. Then using Corollary 3.17,

psαvq
´1psαµq ` wtpv2i ñ sαvq ` wtpwsαsαv ñ w1sαv

2
i q

“ v´1µ` wtpv1i ñ vq ` wtpwv ñ w1sαv
1
iq

ď v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq ` wtpw1v1i ñ w1v1ispv1iq´1αq

ď pv1iq
´1µ1 ` Φ`p´w1αqpv1iq´1α

“pv1iq
´1sαµ

1 ` pxµ1, αy ` Φ`p´w1αqqpv1iq´1α

“pv2i q
´1sαµ

1 ` `px1, αqpv1iq
´1α “ pv2i q

´1sαµ. pmod Φ_Jiq.

We see that the inequality

psαvq
´1psαµq ` wtpv2i ñ sαvq ` wtpwsαsαv ñ w1sαv

2
i q ď pv

2
i q
´1sαµ pmod Φ_Jiq

always holds, proving xsα ď x1sα. Since sα is a simple reflection in ĂW , x ă xsα and
x1 ă x1sα, we conclude that x ď x1 must hold as well.
Case `px1, αq ą 0. We now wish to show xsα ď x1, as x1 ą x1sα. We prove this using

the inductive assumption, so let i P t1, . . . ,mu. As in the previous case, we assume that
v1i is length positive for x1. In particular, pv1iq´1α P Φ`.
By Lemma 3.8, we get

wtpv1i ñ vq “ wtpv1i ñ sαvq.
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Define v2i :“ v1i. Then

psαvq
´1psαµq ` wtpv2i ñ sαvq ` wtpwsαsαv ñ w1v2i q

“v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq

ďpv1iq
´1µ1 “ pv2i q

´1µ1.

By the inductive assumption, we get xsα ď x1. Thus x ă xsα ď x1.
This completes the induction and the proof.

Proof of Theorem 4.2. The implication (1) ñ (2) follows from Lemma 4.17.
The implication (2) ñ (1) follows from Lemma 4.22.

4.3. Deodhar’s lemma
In this section, we apply Deodhar’s lemma [Deo77] to our Theorem 4.2. We need the
semi-affine weight functions and related notions as introduced in Section 3.4. We more-
over need a two-sided version of Deodhar’s lemma, which seems to be well-known for
experts, yet our standard reference [BB05, Theorem 2.6.1] only provides a one-sided
version. We thus introduce the two-sided theory briefly. For convenience, we state it for
the extended affine Weyl group ĂW , even though it holds true in a more general Coxeter
theoretic context.

Definition 4.23. Let L,R Ď Φaf be any sets of affine roots (we will mostly be interested
in sets of simple affine roots).

(a) By ĂWL, we denote the subgroup of ĂW generated by the affine reflections ra for a P L.

(b) We define

L
ĂWR :“ tx P ĂW : x´1L Ď Φ`af and xR Ď Φ`afu.

Recall that we called a subset L Ď ∆af regular if ĂWL is finite.

Proposition 4.24. Let x, y P ĂW and L,R Ď ∆af be regular.

(a) The double coset ĂWLxĂWR contains a unique element of minimal length, denoted
LxR, and a unique element of maximal length, denoted ´Lx´R. We have

L
ĂWR X

´

ĂWLxĂWR

¯

“
 

LxR
(

,

´L
ĂW´R X

´

ĂWLxĂWR

¯

“
 

´Lx´R
(

.

(b) We have

LxR ď x ď ´Lx´R
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in the Bruhat order, and there exist (non-unique) elements xL, x1L P ĂWL and xR, x1R P
ĂWR such that

x “ xL ¨
LxR ¨ xR and `pxq “ `pxLq ` `

`

LxR
˘

` `pxRq,
´Lx´R “ x1L ¨ x ¨ x

1
R and `

`

´Lx´R
˘

“ `px1Lq ` ` pxq ` `px
1
Rq.

(c) If x ď y, then

LxR ď LyR and ´Lx´R ď ´Ly´R.

(d) Suppose L1, . . . , L`, R1, . . . , Rr Ď ∆af are regular subsets such that L “ L1X¨ ¨ ¨XL`
and R “ R1 X ¨ ¨ ¨ XRr. Then

LxR ď LyR ðñ @i, j : LixRj ď LiyRj .

Proof. (a) We only show the claim for LxR, as the proof for ´Lx´R is analogous.
Let x1 P ĂWLxĂWR an element of minimal length. It is clear that each such element
must lie in L

ĂWR.

Let now x0 P
L
ĂWR X

´

ĂWLxĂWR

¯

be any element. It suffices to show that x0 “ x1.

Since x1 P ĂWLx0ĂWR, we find xL P ĂWL, xR P ĂWR such that x1 “ xLx0xR. We show
x1 “ x0 via induction on `pxLq. If xL “ 1, the claim is evident.
As x0 P

L
ĂWR and xR P ĂWR, it follows that `px0xRq “ `px0q` `pxRq, cf. Lemma 2.13

or [BB05, Proposition 2.4.4]. Now

`px0q ě `px1q “ `pxLx0xRq ě `px0xRq ´ `pxLq “ `px0q ` `pxRq ´ `pxLq.

We conclude that `pxLq ě `pxRq. By an analogous argument, we get `pxLq ď `pxRq,
such that `pxLq “ `pxRq. It follows that

`px0q “ `px1q “ `pxLx0xRq “ `px0xRq ´ `pxLq.

Since we may assume xL ‰ 1, we find a simple affine root a P L with xLpaq P Φ´af , so
that px0xRq

´1paq P Φ´af . Since x0 P
L
ĂWR, we have x´1

0 paq P Φ`af , so rx´1
0 paqxR ă xR.

We see that we can write

x1 “ xLx0xR “ pxLraq
loomoon

ăxL

x0 prx´1
0 paqxRq

looooomooooon

ăxR

,

finishing the induction and thus the proof.
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(b) The claims on the Bruhat order are implied by the claimed existences of length
additive products, so it suffices to show the latter. We again focus on LxR.
Among all elements in

tx̃ P ĂW | DxL P ĂWL, xR P ĂWR : x “ xLx̃xR and `pxq “ `pxLq ` `px̃q ` `pxRqu,

choose an element x0 of minimal length. As in (a), one shows easily that x0 P
L
ĂWR.

By (a), we get x0 “
LxR, so the claim follows.

(c) This is [BB05, Proposition 2.5.1].

(d) If LxR ď LyR and i P t1, . . . , `u, j P t1, . . . , ru, we get L Ď Li, R Ď Ri such that

LixRj “ Li
`

LxR
˘

Rj ď
(c)

Li
`

LyR
˘

Rj “ LiyRj .

It remains to show the converse.
In case R “ H and r “ 0, this is exactly [BB05, Theorem 2.6.1]. Similarly, the claim
follows if L “ H and ` “ 0. Writing LxR “ L

`

xR
˘

etc. one reduces the claim to
applying [BB05, Theorem 2.6.1] twice.

We first describe a replacement for the length functional `px, ¨q that is well-behaved
with passing to LxR.

Definition 4.25. Let L,R Ď ∆af be regular. Then we define for each x “ wεµ P ĂW the
coset length functional

L`Rpx, ¨q : Φ Ñ Z, α ÞÑ L`Rpx, αq,
L`Rpx, αq :“ xµ, αy ` χRpαq ´ χLpwαq.

We refer to Definition 3.33 for the definition of χL, χR.

Lemma 4.26. Let K,L,R Ď ∆af be regular subsets and let x “ wεµ P ĂW .

(a) For α P Φ, we have

χKpαq ` χKp´αq “

#

1, α P ΦzΦK ,

0, α P ΦK .

If α, β P Φ satisfy α` β P Φ, then

χKpαq ` χKpβq ´ χKpα` βq P t0, 1u.

(b) L`Rpx, ¨q is a root functional, as studied in Section 2.2.
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Proof. (a) We have

χKpαq ` χKp´αq “ 1´ Φ`Kpαq ´ Φ`Kp´αq “
#

1, α P ΦzΦK ,

0, α P ΦK .

Now suppose α` β P Φ. Observe that the set
R :“ Φ´af Y pΦafqK Ď Φaf

is closed under addition, in the sense that for a, b P R with a ` b P Φaf , we have
a` b P R.
By definition, pα,´χKpαqq, pβ,´χKpβqq P R. Thus

c :“ pα` β,´χKpαq ´ χKpβqq P R.
If c P pΦafqK , then χKpα` βq “ χKpαq ` χKpβq by definition of χKpα` βq. Hence
let us assume that c P Φ´afzpΦafqK .
The condition c P Φ´af means that

´χKpαq ´ χKpβq ď ´Φ`pα` βq ď ´χKpα` βq.
This shows χKpαq ` χKpβq ´ χKpα ` βq ě 0. We want to show it lies in t0, 1u, so
suppose that

χKpαq ` χKpβq ´ χKpα` βq ě 2.
We observe that

pα, 1´ χKpαqq
loooooooomoooooooon

PΦafzR

`pβ, 1´ χKpβqq
loooooooomoooooooon

PΦafzR

“ pα` β, 2´ χKpαq ´ χKpβqq
looooooooooooooooomooooooooooooooooon

PR

.

Since also the set ΦafzR is closed under addition, this is impossible. The contradic-
tion shows the claim.

(b) This is immediate from (a):
L`Rpx, αq ` L`Rpx,´αq “xµ, αy ` xµ,´αy ` χRpαq ` χRp´αq

looooooooomooooooooon

Pt0,1u

´ pχLpwαq ` χLp´wαqq
looooooooooooomooooooooooooon

Pt0,1u

Pt´1, 0, 1u.
Now if α` β P Φ, we get

L`Rpx, αq ` L`Rpx, βq ´ L`Rpx, α` βq

“xµ, αy ` xµ, βy ´ xµ, α` βy ` χRpαq ` χRpβq ´ χRpα` βq
loooooooooooooooooomoooooooooooooooooon

Pt0,1u

´ pχLpwαq ` χLpwβq ´ χLpwα` wβqq
loooooooooooooooooooooooomoooooooooooooooooooooooon

Pt0,1u

Pt´1, 0, 1u.
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We are ready to state our main result for this subsection:

Proposition 4.27. Let x “ wεµ, x1 “ w1εµ
1

P ĂW , let L,R Ď ∆af be regular subsets
and v P W be positive for L`Rpx, ¨q. Moreover, fix subsets J1, . . . , Jm Ď ∆ such that
J :“ J1 X ¨ ¨ ¨ X Jm satisfies

@α P ΦJ : L`Rpx, vαq ě 0.

We have LxR ď Lpx1qR if and only if for each i “ 1, . . . ,m, there exists some v1i P W
with

v´1µ` Rwtpv1i ñ vq ` Lwtpwv ñ w1v1iq ď pv
1
iq
´1µ1 pmod Φ_Jiq.

We remark that this recovers Theorem 4.2 in case L “ R “ H.
We now start the work towards proving Proposition 4.27.

Lemma 4.28. Let K Ď ∆af be regular, α P ΦK and β P Φ. Then

χKpsαpβqq “ χKpβq ´ xα
_, βyχKpαq.

Proof. Consider the affine roots a “ pα,´χKpαqq P pΦafqK and b “ pβ,´χKpβqq P Φaf .
If β P ΦK , then b P pΦafqK such that rapbq P pΦafqK . Explicitly,

rapbq “ psαpβq,´χKpβq ` xα
_, βyχKpαqq ,

such that the claim follows from the definition of χKpsαpβqq.
Next assume that β R ΦK , such that b P pΦafq

´zpΦafqK . Since ra stabilizes the set
pΦafq

´zpΦafqK , we get rapbq P pΦafq
´zpΦafqK . This proves (together with the above

calculation) that

´χKpβq ` xα
_, βyχKpαq ď ´Φ`psαpβqq “ ´χKpsαpβqq.

If the inequality above was strict, we would get

b1 :“ psαpβq,´χKpβq ` xα_, βyχKpαq ` 1q P Φ´afzpΦafqK

with

rapb
1q “ pβ, 1´ χKpβqq P Φ`af ,

contradiction.

Lemma 4.29. Let x P ĂW,xL P ĂWL and xR P ĂWR where L,R Ď ∆af are regular subsets.
Denoting the image of xR in W by clpxRq, we have the following identity for every α P Φ:

L`RpxLxxR, αq “
L`Rpx, clpxRqpαqq.
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Proof. We start with two special cases:
In case xL “ ra and xR “ 1 for some pβ, kq :“ a P L, we obtain

L`RpxLxxR, αq “
L`R

´

sβwε
µ`kw´1β_ , α

¯

“xµ` kw´1β_, αy ` χRpαq ´ χLpsβwαq

“xµ, αy ´ χLpβqxβ
_, wαy ` χRpαq ´ χLpsβwαq

“
L4.28

xµ, αy ` χRpαq ´ χLpwαq “
L`Rpx, αq.

In case xL “ 1 and xR “ ra for some pβ, kq :“ a P R, we obtain

L`RpxLxxR, αq “
L`R

´

wsβε
sβpµq`kβ

_

, α
¯

“xsβpµq ` kβ
_, αy ` χRpαq ´ χLpwsβαq

“xµ, sβpαqy ´ χRpβqxβ
_, αy ` χRpαq ´ χLpwsβαq

“
L4.28

xµ, sβpαqy ` χRpsβαq ´ χLpwsβαq

“ L`Rpx, sβαq.

Now in the general case, pick reduced decompositions for xL P ĂWL and xR P ĂWR and
iterate the previous arguments.

Definition 4.30. By a valid tuple, we mean a seven tuple

px “ wεµ, x1 “ w1εµ
1

, v, v1, L,R, Jq

consisting of

• elements x “ wεµ, x1 “ w1εµ
1

P ĂW ,

• elements v, v1 PW ,

• regular subsets L,R Ď ∆af and

• a subset J Ď ∆,

satisfying the condition

v´1µ` Rwtpv1 ñ vq ` Lwtpwv ñ w1v1q ď pv1q´1µ1 pmod Φ_J q.

The tuple is called strict if v is positive for L`Rpx, ¨q and v1 is positive for L`Rpx1, ¨q.

We have the following analogue of Lemma 4.3:

Lemma 4.31. Let px “ wεµ, x1 “ w1εµ
1

, v, v1, L,R, Jq be a valid tuple. If v1 is not
positive for L`Rpx1, ¨q and v2 is an adjustment in the sense of Definition 2.2, then
px, x1, v, v2, L,R, Jq is also a valid tuple.
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Proof. This means that there is a root α P Φ` such that v2 “ v1sα and either
L`Rpx1, v1αq ă 0 or L`Rpx1,´v1αq ą 0.

We calculate

v´1µ` Rwtpv2 ñ vq ` Lwtpwv ñ w1v2q

“v´1µ` Rwtpv1sα ñ vq ` Lwtpwv ñ w1v1sαq

ď
L3.35

v´1µ` Rwtpv1 ñ vq ` χRpv
1αqα_ ` Lwtpwv ñ w1v1q ` χLp´w

1v1αqα_

ďpv1q´1µ` pχRpv
1αq ` χLp´w

1v1αqqα_

“pv2q´1µ`
`

xµ, αy ` χRpv
1αq ` χLp´w

1v1αq
˘

α_ pmod Φ_J q

In case L`Rpx1, v1αq ă 0, we use the fact χLp´w1v1αq ď 1´ χLpw1v1αq (cf. Lemma 4.26)
to show

xµ, αy ` χRpv
1αq ` χLp´w

1v1αq

ďxµ, αy ` χRpv
1αq ` 1´ χLpw1v1αq

“ L`Rpx1, αq ` 1 ď 0.

Similarly if L`Rpx1,´v1αq ą 0, we get

xµ, αy ` χRpv
1αq ` χLp´w

1v1αq

ďxµ, αy ` 1´ χRp´v1αq ` χLp´w1v1αq
“1´ L`Rpx1,´αq ď 0.

In any case, we see that

xµ, αy ` χRpv
1αq ` χLp´w

1v1αq ď 0,

from where the desired claim is immediate.

Lemma 4.32. Let px “ wεµ, x1 “ w1εµ
1

, v, v1, L,R, Jq be a (strict) valid tuple. Let
moreover xL, x1L P ĂWL and xR, x1R P ĂWR be any elements. Then

pxLxxR, x
1
Lx
1x1R, clpxRqv, clpx1Rqv1, L,R, Jq

is a (strict) valid tuple as well.
Proof. Similar to the proof of Lemma 4.29, it suffices to show the claim in case three
of the four elements xL, x1L, xR, x1R are trivial and the remaining one is a simple affine
reflection.
We just explain the argument in case xL “ ra, x

1
L “ xR “ x1R “ 1 for some a P L, as

the remaining arguments are very similar. Write a “ pα, kq so that χLpαq “ ´k. Then
xLx “ sαwε

µ`kw´1α_ We calculate

v´1 `µ` kw´1α_
˘

` Rwtpv1 ñ vq ` Lwtpsαwv ñ w1v1q

“
L3.35

v´1µ` kpwvq´1α_ ` Rwtpv1 ñ vq ` χLpαqpwvq
´1α_ ` Lwtpwv ñ w1v1q

“ v´1µ` Rwtpv1 ñ vq ` Lwtpwv ñ w1v1q.
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It follows that pxLx, x1, v, v1, L,R, Jq is a valid tuple. The strictness assertion follows
from Lemma 4.29.

Using Lemma 4.32, it will suffice to show Proposition 4.27 only in the case x P LĂWR

and x1 P ´LĂW´R.

Lemma 4.33. Let px “ wεµ, x1 “ w1εµ
1

, v, v1, L,R, Jq be a strict valid tuple.

(a) If x P LĂWR and α P Φ satisfies L`Rpx, αq ě 0, then `px, αq ě 0.

(b) If x P LĂWR and α P Φ`L satisfies pwvq´1α P Φ´, then

px, x1, sw´1αv, v
1, L,R, Jq

is a strict valid tuple as well.

(c) If x1 P ´LĂW´R and α P Φ`R satisfies v´1α P Φ´, then

px, x1, v, sαv
1, L,R, Jq

is a strict valid tuple as well.

Proof. We write
L`Rpx, αq “xµ, αy ` χRpαq ´ χLpwαq

“xµ, αy ` Φ`pαq ´ Φ`Rpαq ´ Φ`pwαq ` Φ`L pwαq
“`px, αq ´ Φ`Rpαq ` Φ`L pwαq.

(a) If wα R Φ`L , then

`px, αq “ L`Rpx, αq ` Φ`Rpαq ě 0.

If wα P Φ`L , then the condition x P LĂWR already implies `px, αq ě 0.

(b) The condition α P Φ`L together with x P LĂWR yields `px,w´1αq ě 0. We have
L`Rpx,´w´1αq “ L`Rpx, vp´pwvq´1αqq ě 0

by the positivity assertion on v. By (a), we conclude `px,´w´1αq ě 0, so altogether
we get `px,w´1αq “ 0.
By the above computation, we get

L`Rpx,w´1αq “ ´Φ`Rpw
´1αq ` Φ`L pαq “ 1´ Φ`Rpw

´1αq.

On the other hand, we have
L`Rpx,w´1αq “ L`Rpx, vpwvq´1αq ď 0

by the positivity assertion on v. Thus L`Rpx,w´1αq “ 0 and w´1α P Φ`R.
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Consider the elements a “ pα,Φ`p´αqq P pΦafq
`
L and b “ pw´1α,Φ`p´w´1αqq P

pΦafq
`
R. We have

xpbq “pα,Φ`p´w´1αq ´ xµ,w´1αyq

“pα,Φ`p´αq ` `px,´w´1αqyq “ pα,Φ`p´αqq “ a.

We see that x “ raxrb. Now the claim follows from Lemma 4.32.

(c) The proof is analogous to (b): We have `px1, αq ą 0 as α P Φ`R and x1pα,Φ`p´αqq P
Φ´af . Now

0 ď L`Rpx1,´αq “ `px1,´αq ´ Φ`Rp´αq ` Φ`L p´w
1αq

“`px1,´αq ` Φ`L p´wαq ď ´1` Φ`L p´w
1αq ď 0.

So equality must hold, hence `px1, αq “ 1 and ´w1α P Φ`L .
Writing b “ pα,Φ`p´αqq P pΦafq

`
R and a “ p´w1α,Φ`pw1αqq, we compute

x1pbq “pw1α,Φ`p´αq ´ xµ1, αyq
“pw1α, `px1,´αq ` Φ`p´w1αqq
“pw1α,´1` Φ`p´w1αqq “ pw1α,´Φ`pw1αqq “ ´a.

Hence rax
1rb “ x1 with ra P ĂWL and rb P ĂWR. The conclusion follows from

Lemma 4.32.

Proof of Proposition 4.27. Let us fix L,R, J1, . . . , Jm, J for the entire proof. To keep our
notation concise, we make the following convention: We call a triple px, x1, vq valid if,
for each i “ 1, . . . ,m, there exists v1i P W such that px, x1, v, v1i, L,R, Jiq is a strict valid
tuple.
First assume that LxR ď Lx1R. We want to show that px, x1, vq is valid. Write

x “ xL ¨
LxR ¨ xR with xL P ĂWL, xR P ĂWR. It suffices to show that

`

LxR, x1, clpxRq´1v
˘

is valid by Lemma 4.32.
In other words, we may assume that x P LĂWR and x ď x1 for proving that px, x1, vq is

valid. By Lemma 4.17, we find v1 PW such that

v´1µ` wtpv1 ñ vq ` wtpwv ñ w1v1q ď pv1q´1µ1.

Now recall from Lemma 3.32 that

Rwtpv1 ñ vq ď wtpv1 ñ vq,
Lwtpwv ñ w1v1q ď wtpwv ñ w1v1q.

We conclude that px, x1, v, v1, L,R, Jiq is valid for all i “ 1, . . . ,m. Up to iteratively
choosing adjustments for v1, we may assume that the tuple is strict valid, so px, x1, vq is
indeed valid.
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For the converse direction, let us assume that px, x1, vq is valid. We have to show
LxR ď Lpx1qR. Again, we can use Lemma 4.32 and Lemma 4.29 to reduce this to any
other elements in ĂWLxĂWR resp. ĂWLx

1
ĂWR.

Thus, we may and will assume that x P L
ĂWR and x1 P ´LĂW´R. We then have to

show x ď x1 using the fact that px, x1, vq is valid for some v PW .
Among all v PW such that px, x1, vq is valid, choose one such that L`pwvq is as small as

possible. If wv R LW , then we find some α P Φ`L with pwvq´1 P Φ´. By Lemma 4.33, also
px, x1, sw´1αvq is valid and by Lemma 3.30, L`psαwvq ă L`pwvq. This is a contradiction
to the minimality of L`pwvq.
We see that we always find some v PW such that px, x1, vq is valid and wv P LW .
We now prove that x ď x1 using Theorem 4.2.
By Lemma 4.33 (a), it follows that v PW is length positive for x and that `px, vαq ě 0

for all α P ΦJ . Since ΦJ “ ´ΦJ and `px,´vαq “ ´`px, vαq, this is only possible if
`px, vαq “ 0 for all α P ΦJ . We conclude that pv, J1, . . . , Jmq is a Bruhat-deciding
datum for x.

Now for each i “ 1, . . . ,m, by assumption, there exists some vi P W such that
px, x1, v, v1i, L,R, Jiq is a strict valid tuple. Minimizing R`pv1iq as before, we may assume
that v1i P RW by Lemma 4.33.
We see that px, x1, v, v1i, L,R, Jiq is a strict valid tuple with wv P LW and v1i P

RW .
By definition of the semi-affine weight function, we get

Rwtpv1i ñ vq “ wtpv1i ñ vq,
Lwtpwv ñ w1v1iq “ wtpwv ñ w1v1iq.

We conclude

v´1µ` wtpv1i ñ vq ` wtpwv ñ w1v1iq

“ v´1µ` Rwtpv1i ñ vq ` Lwtpwv ñ w1v1iq

ď
valid

pv1q´1µ1 pmod Φ_Jiq.

This is exactly the inequality we had to check in order to apply Theorem 4.2. So we
conclude x ď x1, finishing the proof.

We finish the section with three applications for this proposition. Our first application
re-proves the well-known criterion for type An, and even a bit more.

Corollary 4.34. Suppose that Φ is irreducible and that aL, aR P ∆af are special nodes.
Let L “ ∆afztaLu, R “ ∆afztaRu and write ωaL , ωaR P QΦ_ for the corresponding
coweights.
Let x “ wεµ, x1 “ w1εµ

1

P ĂW , and assume that µ ” µ1 pmod Φ_q. Then we have
LxR ď Lpx1qR ðñ pµ` ωaR ´ w

´1ωaLq
dom ď pµ1 ` ωaR ´ pw

1q´1ωaLq
dom.

Proof. For all α P Φ, we easily verify xωaL , αy “ χLpαq. Thus v P W is positive for
L`Rpx, ¨q if and only if v´1 `µ` ωaR ´ w

´1ωaL
˘

is dominant.
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Similarly, v1 PW is positive for L`Rpx1, ¨q if and only if pv1q´1 `µ1 ` ωaR ´ pw
1q´1ωaL

˘

is dominant.
Finally observe that for all v, v1 PW , we can use Lemma 3.41 to compute

v´1µ` Rwtpv1 ñ vq ` Lwtpwv ñ w1v1q ´ pv1q´1µ1

“v´1µ` v´1ωaR ´ pv
1q´1ωaR ` pw

1v1q´1ωaL ´ pwvq
´1ωaL ´ pv

1q´1µ1

“v´1pµ` ωaR ´ w
´1ωaLq ´ pv

1q´1pµ` ωaR ´ pw
1q´1ωaLq.

The conclusion follows in light of Proposition 4.27.

For irreducible root systems of type A, this recovers the Bruhat order criterion pre-
sented at the beginning of Section 3.
As another application, we present our most general criterion for the Bruhat order on

affine Weyl groups.

Definition 4.35. Let x P ĂW . A Deodhar datum for x consists of the following:

• Regular subsets L1, . . . , L`, R1, . . . , Rr Ď ∆af with `, r ě 1 such that L :“ L1 X
¨ ¨ ¨ X L` and R :“ R1 X ¨ ¨ ¨ XRr satisfy x P LĂWR.

• For each i P t1, . . . , `u and j P t1, . . . , ru an element vi,j P W that is positive for
Li`Rj px, ¨q.

• For each i P t1, . . . , `u and j P t1, . . . , ru a collection of subsets

Jpi, jq1, . . . , Jpi, jqmpi,jq Ď ∆

such that mpi, jq ě 1 and Jpi, jq :“ Jpi, jq1 X ¨ ¨ ¨ X Jpi, jqmpi,jq satisfies

@α P ΦJpi,jq : Li`Rj px, vi,jαq ě 0.

Theorem 4.36. Let x “ wεµ P ĂW and fix a Deodhar datum

L1, . . . , L`, R1, . . . , Rr, pv‚,‚q, pJp‚, ‚q‚q.

Let x1 “ w1εµ
1

P ĂW . Then x ď x1 if and only if for each i P t1, . . . , `u, j P t1, . . . , ru and
k P t1, . . . ,mpi, jqu, there exists some v1i,j,k PW such that

v´1
i,j µ`

Rjwtpv1i,j,k ñ vi,jq `
Liwtpwvi,j ñ w1v1i,j,kq ď pv

1
i,j,kq

´1µ1 pmod Φ_Jpi,jqkq.

Proof. In view of Proposition 4.27, the existence of the v1i,j,k for fixed i, j means precisely

LixRj ď Lipx1qRj .

By Deodhar’s lemma, i.e. Proposition 4.24, this is equivalent to x “ LxR ď x1.
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Lemma 4.37. Let w1, w2 P W . Let moreover R1, . . . , Rk Ď ∆af be regular subsets with
k ě 1 and R :“ R1 X ¨ ¨ ¨ XRk. Then we have the following equality in ZΦ_:

Rwtpw1 ñ w2q “ sup
i“1,...,k

Riwtpw1 ñ w2q.

Proof. Consider Proposition 4.27 for µ and µ1 sufficiently regular, with L “ H and
pJ1, . . . , Jmq “ pHq. Then by Proposition 4.24,

xR ď px1qR ðñ @i P t1, . . . , ku : xRi ď px1qRi .

The claim follows from Proposition 4.27 with little effort.

Together with Lemma 3.36, this result allows us to express the weight function of
the quantum Bruhat graph wt : W ˆW Ñ ZΦ_ as a supremum of semi-affine weight
functions.
As our final application of Proposition 4.27, we generalize Proposition 4.12 to the

admissible subsets considered in [Rap02].

Proposition 4.38. Let K Ď ∆af be regular, x “ wεµ P ĂW and λ P X˚pT qΓ0 dominant.
Then the following are equivalent:

(i) x P ĂWK AdmpλqĂWK .

(ii) For every v PW , we have

v´1µ` Kwtpwv ñ vq ď λ.

(iii) There exists some v PW that is positive for K`Kpx, ¨q and satisfies

v´1µ` Kwtpwv ñ vq ď λ.

Proof. By definition, (i) means that there exists u PW such that

KxK ď KpεuλqK .

By Proposition 4.27, we get condition (ii) for every v PW that is positive for K`Kpx, ¨q.
Now a simple adjustment argument, similar to Lemma 4.31, shows that (ii) holds for
every v PW .
(ii) ùñ (iii) is clear, as we always find a positive element for each root functional

Corollary 2.4.
(iii) ùñ (i): It suffices to show that KxK ď εvλ. This follows immediately from

Proposition 4.27.
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5. Demazure product

The Demazure product ˚ is another operation on the extended affine Weyl group ĂW .
In the context of the Iwahori-Bruhat decomposition of a reductive group, the Demazure
product describes the closure of the product of two Iwahori double cosets, cf. [HN21,
Section 2.2]. In a more Coxeter-theoretic style, we can define the Demazure product of
ĂW as follows:

Proposition 5.1 ([He09, Lemma 1]). Let x1, x2 P ĂW . Then each of the following three
sets contains a unique maximum (with respect to the Bruhat order), and the maxima
agree:

tx1x
1
2 | x

1
2 ď x2u, tx11x2 | x

1
1 ď x1u, tx11x

1
2 | x

1
1 ď x1, x

1
2 ď x2u.

The common maximum is denoted x1 ˚ x2. If we write x1 ˚ x2 “ x1x
1
2 “ x11x2, then

`px1 ˚ x2q “ `px1q ` `px
1
2q “ `px11q ` `px2q.

Demazure products have recently been studied in the context of affine Deligne-Lusztig
varieties [Sad21; He21a; HN21]. While the Demazure product is a somewhat simple
Coxeter-theoretic notion, it is connected to the question of generic Newton points of
elements in ĂW . He [He21a] shows how to compute generic Newton points in terms of
iterated Demazure products, a method that we will review in Section 7.3. Conversely,
He and Nie [HN21] use the Milićević’s formula for generic Newton points [Mil21] to show
new properties of the Demazure product.
In this section, we prove a new description of Demazure products in ĂW , generalizing

the aforementioned results of [HN21]. As applications, we obtain new results on the
quantum Bruhat graph that shed some light on our previous results on the Bruhat
order.

5.1. Computation of Demazure products
If one plays a bit with our Theorem 4.2 or [HN21, Proposition 3.3], one will soon get
an idea of how Demazure products should roughly look like. We capture the occurring
formulas as follows.

Situation 5.2. Let x1 “ w1ε
µ
1 , x2 “ w2ε

µ
2 P

ĂW . Let v1, v2 PW and define

x11 :“w11εµ
1
1 :“ pw1v1qpw2v2q

´1εw2v2v
´1
1 µ1´w2v2 wtpv1ñw2v2q,

x12 :“w12εµ
1
2 :“ v1v

´1
2 εµ2´v2 wtpv1ñw2v2q,

x˚ :“w˚εµ˚ :“ w1v1v
´1
2 εv2v

´1
1 µ1`µ2´v2 wtpv1ñw2v2q “ x11x2 “ x1x

1
2.

In this situation, we want to compute the Demazure product x1 ˚ x2, knowing that
x1 ˚ x2 can be written as x̃1x2 “ x1x̃2 for some x̃1 ď x1 and x̃2 ď x2. If x1 is in a
shrunken Weyl chamber with LPpx1q “ v1, and x2 is shrunken with LPpx2q “ tv2u, then
x˚ “ x1 ˚ x2 by [HN21, Proposition 3.3], so x̃1 “ x11 and x̃2 “ x12.
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In the general case, our goal is to find conditions on v1, v2 P W to ensure that x˚ “
x1 ˚ x2.
Before examining this situation further, it will be very convenient for our proofs to

see that the property

px1 ˚ x2q
´1 “ x´1

2 ˚ x´1
1

is reflected by our construction in Situation 5.2.

Lemma 5.3. Suppose we are in Situation 5.2. Let us write y1 :“ x´1
2 and y2 :“ x´1

1 .
Define v11 :“ w2v2w0 resp. v12 :“ w1v1w0.
Construct y11, y12, y˚ associated with py1, y2, v

1
1, v

1
2q as in Situation 5.2. Then

y11 “ px
1
2q
´1, y12 “ px

1
1q
´1, y˚ “ x´1

˚ .

Moreover,

• v1 P LPpx1q iff v12 P LPpy1q.

• v2 P LPpx2q iff v11 P LPpy2q.

• dQBpW qpv1 ñ w2v2q “ dQBpW qpv
1
1 ñ w´1

1 v12q and
wtpv1 ñ w2v2q “ ´w0 wtpv11 ñ w´1

1 v2q.

Proof. Write

y1 “ w´1
2 ε´w2µ2 , y2 “ w´1

1 ε´w1µ1

and compute

y12 “pw2v2w0qpw1v1w0q
´1ε´w1µ1´w1v1w0 wtpw2v2w0ñpw1q´1w1v1w0q

“pw2v2qpw1v1q
´1ε´w1µ1`w1v1 wtpv1ñw2v2q “ px11q

´1.

A similar computation, or a repetition of this argument for x1 “ py2q
´1, x2 “ py1q

´1,
shows that y11 “ px12q´1. Then the conclusion y˚ “ x´1

˚ is immediate.
For the “Moreover” statements, recall that

LPpy1q “ LPpx´1
2 q “

Lemma 2.12
w2 LPpx2qw0.

The same holds for y2 “ x´1
1 . The final statement is due to the fact that v11 “ w2v2w0

and w´1
1 v12 “ v1w0 using the duality anti-automorphism of the quantum Bruhat graph,

cf. Lemma 3.9.

The first step towards proving x1 ˚ x2 “ x˚ is the following estimate:

Lemma 5.4. Let x1, x2 P ĂW and v2 P LPpx1 ˚ x2q. There exists v1 P LPpx1q such that

`px1 ˚ x2q ď `px1q ` `px2q ´ dpv1 ñ w2v2q.
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Proof. Write x1 ˚ x2 “ yx2 for some element y “ w1εµ
1

ď x1. Observe that `pyx2q “
`pyq ` `px2q, so that v2 must be length positive for x2 and w2v2 must be length positive
for y.
Since y ď x1, using Lemma 4.17, we find a length positive element v1 for x1 such that

pw2v2q
´1µ1 ` wtpv1 ñ w2v2q ` wtpw1w2v2 ñ w1v1q ď pv1q

´1µ1.

Pairing with 2ρ and using Lemma 3.6, we compute

x2ρ, pw2v2q
´1µ1y ` `pv1q ´ `pw2v2q

` dpv1 ñ w2v2q ` `pw
1w2v2q ´ `pw1v1q ` dpw

1w2v2 ñ w1v1q

ď x2ρ, pv1q
´1µ1y.

Using the length positivity of w2v2 for y and v1 for x1 (Corollary 2.11), we conclude

`pyq ` dpv1 ñ w2v2q ` dpw
1w2v2 ñ w1v1q ď `px2q.

Thus

`px1 ˚ x2q “ `pyq ` `px2q ď `px1q ` `px2q ´ dpv1 ñ w2v2q ´ dpw
1w2v2 ñ w1v1q.

We obtain the desired conclusion.

We now study the Situation 5.2 further.

Lemma 5.5. Consider Situation 5.2, and assume that v1 P LPpx1q. Then we always
have the estimate

`px11q ě `px1q ´ dQBpW qpv1 ñ w2v2q.

The following are equivalent:

(i) Equality holds above:

`px11q “ `px1q ´ dQBpW qpv1 ñ w2v2q.

(ii) w2v2 is length positive for x11.

(iii) For any positive root α, we have

`px1, v1αq ´ xwtpv1 ñ w2v2q, αy ` Φ`pw2v2αq ´ Φ`pv1αq ě 0

In that case, x11 ď x1, so that x˚ ď x1 ˚ x2.
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Proof. Consider the calculation

`px11q ě
C2.11

@

pw2v2q
´1 `w2v2v

´1
1 µ1 ´ w2v2 wtpv1 ñ w2v2q

˘

, 2ρ
D

´ `pw2v2q ` `pw1v1q

“
L3.6
xv´1

1 µ, 2ρy ´ `pv1q ` `pw2v2q ´ dpv1 ñ w2v2q ´ `pw2v2q ` `pw1v1q

“
C2.11

`px1q ´ dpv1 ñ w2v2q.

This shows the estimate and (i) ðñ (ii). In order to show (ii) ðñ (iii), we compute

`px11, w2v2αq “xw2v2α,w2v2v
´1
1 µ1 ´ w2v2 wtpv1 ñ w2v2q, αy ` Φ`pw2v2αq ´ wtpw1v1αq

“`px1, v1αq ´ Φ`pv1αq ´ xwtpv1 ñ w2v2q, αy ` Φ`pw2v2αq.

Finally, assume that (i) – (iii) are satisfied. We have to show x11 ď x1. For this, we
calculate

pw2v2q
´1 `w2v2v

´1
1 µ1 ´ w2v2 wtpv1 ñ w2v2q

˘

` wtpv1 ñ w2v2q

` wtpw1v1 ñ w1v1q

“ v´1
1 µ1.

Since we assumed w2v2 P LPpx11q, we conclude x11 ď x1 by Theorem 4.2. Now by
definition of the Demazure product, we get x˚ “ x11x2 ď x1 ˚ x2.

By the duality presented in Lemma 5.3, we obtain the following:

Lemma 5.6. Consider Situation 5.2, and assume that v2 P LPpx2q. Then we always
have the estimate

`px12q ě `px2q ´ dQBpW qpv1 ñ w2v2q.

The following are equivalent:

(i) Equality holds above:

`px12q “ `px2q ´ dQBpW qpv1 ñ w2v2q.

(ii) v2 is length positive for x12.

(iii) For any positive root α, we have

`px2, v2αq ´ xwtpv1 ñ w2v2q, αy ` Φ`pw2v2αq ´ Φ`pv1αq ě 0.

In that case, x12 ď x2, so that x˚ ď x1 ˚ x2.

Proof. Under Lemma 5.3, this is precisely Lemma 5.5.
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Lemma 5.7. Suppose we are given Situation 5.2, and that v1 P LPpx1q and v2 P LPpx2q.
We have the estimate

`px˚q ě `px1q ` `px2q ´ dpv1 ñ w2v2q.

Equality holds if and only if v2 P LPpx˚q.

Proof. Using again Corollary 2.11and Lemma 3.6, we calculate

`px˚q ě
@

v´1
2

`

v2v
´1
1 µ1 ` µ2 ´ v2 wtpv1 ñ w2v2q

˘

, 2ρ
D

´ `pv2q ` `pw1v1q

“xv´1
1 µ1, 2ρy ` xv´1

2 µ2, 2ρy ´ dpv1 ñ w2v2q ´ `pv1q ` `pw2v2q ` `pv2q ` `pw1v1q

“`px1q ` `px2q ´ dpv1 ñ w2v2q

Both claims follow from this calculation.

Lemma 5.8. Let x “ wεµ P ĂW and u PW . Among all v P LPpxq, there is a unique one
such that dpv ñ uq becomes minimal. For this particular v, we have

@α P Φ` : `px, vαq ´ xwtpv ñ uq, αy ` Φ`puαq ´ Φ`pvαq ě 0.

Proof. Let x2 “ tuλ with λ P X˚pT qΓ0 superregular and dominant. Let v “ v1 P LPpxq
such that dpv ñ uq becomes minimal. Set v2 “ u.
Consider Situation 5.2 for x1 “ x and x2 as above. Now the condition (iii) of

Lemma 5.6 is satisfied by superregularity of λ. We conclude that x12 ď x2, so that
x˚ ď x ˚ x2.

Combining Lemma 5.4 with Lemma 5.7 shows

`pxq ` `px2q ´ dpv ñ uq ě `px1 ˚ x2q ě `px˚q ě `pxq ` `px2q ´ dpv ñ uq.

In particular, we get x1 ˚ x2 “ x˚.
The above argument works whenever v P LPpxq is chosen such that dpv ñ uq becomes

minimal. Since the value of x1 ˚ x2 does not depend on the choice of such an element v,
nor does x˚ “ x1 ˚ x2. In particular, the classical part clpx˚q “ wvu´1 does not depend
on v, hence v is uniquely determined.
The formula x˚ “ x1 ˚ x2 “ x11x2 implies that `px˚q “ `px11q ` `px2q. Using the

previously computed length of x˚, we conclude `px11q “ `px1q ´ dpv ñ uq. Now the
estimate follows from Lemma 5.5.

Considering Lemma 5.8 for the inverse x´1, we obtain the following:

Lemma 5.9. Let x “ wεµ P ĂW and u PW . Among all v P LPpxq, there is a unique one
such that dpuñ wvq becomes minimal. For this particular v, we have

@α P Φ` : `px, vαq ´ xwtpuñ wvq, αy ´ Φ`puαq ` Φ`pwvαq ě 0.

Definition 5.10. Let x P ĂW and u PW . The uniquely determined v P LPpxq such that
dpv ñ uq is minimal will be denoted by v “ ρ_x puq. The uniquely determined v P LPpxq
such that dpuñ wvq is minimal will be denoted by v “ ρxpuq “ w´1ρ_x´1puw0qw0.
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The functions ρx and ρ_x will be studied in Section 5.2. For now, we state our an-
nounced description of Demazure products in ĂW .
Theorem 5.11. Let x1 “ w1ε

µ1 , x2 “ w2ε
µ2 P ĂW . Among all pairs pv1, v2q P LPpx1q ˆ

LPpx2q, pick one such that the distance dpv1 ñ w2v2q becomes minimal.
Construct x˚ as in Situation 5.2. Then

x1 ˚ x2 “ x˚ “ w1v1ε
v´1
1 µ1`v

´1
2 µ2´wtpv1ñw2v2qv´1

2 ,

`px1 ˚ x2q “ `px1q ` `px2q ´ dpv1 ñ w2v2q,

v2 P LPpx1 ˚ x2q.

Proof. We have x˚ ď x1 ˚ x2 by Lemmas 5.8 and 5.5. By Lemma 5.4, we find pv11, v12q P
LPpx1q ˆ LPpx2q such that
`px1q ` `px2q ´ dpv

1
1 ñ w2v

1
2q ě `px1 ˚ x2q ě `px˚q ě `px1q ` `px2q ´ dpv1 ñ w2v2q.

By choice of pv1, v2q, the result follows.

We note the following consequences of Theorem 5.11.
Proposition 5.12. Let x1 “ w1ε

µ1 , x2 “ w2ε
µ2 P ĂW . Write

M “Mpx1, x2q :“ tpv1, v2q P LPpx1q ˆ LPpx2q |

@pv11, v
1
2q P LPpx1q ˆ LPpx2q : dpv1 ñ w2v2q ď dpv11 ñ w2v

1
2qu

for the set of all pairs pv1, v2q such that the theorem’s condition is satisfied.
(a) The following two functions on M are both constant:

ϕ1 : M ÑW, pv1, v2q ÞÑ v1v
´1
2 ,

ϕ2 : M Ñ ZΦ_, pv1, v2q ÞÑ v2 wtpv1 ñ w2v2q.

(b) The following is a well-defined bijective map:

M Ñ LPpx1 ˚ x2q, pv1, v2q ÞÑ v2.

Proof. (a) From the theorem, we get that the function

M Ñ ĂW, pv1, v2q ÞÑw1v1v
´1
2 εv2v

´1
1 µ1`µ2´v2 wtpv1ñw2v2q

“w1ϕ1pv1, v2qε
ϕ1pv1,v2q´1µ1`µ2´ϕ2pv1,v2q

is constant with image tx1 ˚ x2u. This proves that ϕ1 and ϕ2 are constant.

(b) Injectivity follows from (a). Well-definedness follows from the theorem. For surjec-
tivity, let v2 P LPpx1 ˚ x2q. Then certainly v2 P LPpx2q. By Lemma 5.4, we find
v1 P W such that `px1 ˚ x2q ď `px1q ` `px2q ´ dpv1 ñ w2v2q. By the theorem,
we find pv11, v12q P M with `px1 ˚ x2q “ `px1q ` `px2q ´ dpv11 ñ w2v

1
2q, such that

dpv1 ñ w2v2q ď dpv11 ñ w2v
1
2q. It follows that pv1, v2q P M , finishing the proof of

surjectivity.

Remark 5.13. In case `px1x2q “ `px1q ` `px2q, we get x1x2 “ x1 ˚ x2. In this case, we
recover Lemma 2.13.
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5.2. Generic action
Studying the Demazure product where one of the factors is superregular induces actions
of pĂW, ˚q on W , that we denoted by ρx resp. ρ_x in Definition 5.10. In this section, we
study these actions and the consequences for the quantum Bruhat graph.
Lemma 5.14. Let x1 “ w1ε

µ1 , x2 “ w2ε
µ2 P ĂW . Then

ρx1˚x2 “ ρx2 ˝ ρx1 .

Proof. Note that if z P ĂW is in a shrunken Weyl chamber with LPpzq “ tuu and x P ĂW ,
then by Proposition 5.12,

LPpz ˚ xq “ tρxpuqu.

Hence we have

tρx2pρx1puqqu “ LP ppz ˚ x1q ˚ x2q “ LP pz ˚ px1 ˚ x2qq “ tρx1˚x2puqu.

This shows the desired claim.

Remark 5.15. (a) There is a dual, albeit more complicated statement for the dual generic
action ρ_.

(b) If x “ ωra1 ¨ ¨ ¨ ran is a reduced decomposition with simple affine roots a1, . . . , an P
∆af and ω P Ω of length zero, then

ρx “ ρω˚ra1˚¨¨¨˚ran
“ ρran ˝ ¨ ¨ ¨ ˝ ρra1

˝ ρω.

The map ρω is simply given by ρωpvq “ clpωqv, as LPpωq “ W . We now describe
the ρrai as follows:
For a simple affine root pα, kq P ∆af , we have

`prpα,kq, βq “

$

’

&

’

%

1, β “ α,

´1, β “ ´α,

0, β ‰ ˘α.

Thus

LPprpα,kqq “ tv PW | v´1α P Φ`u.

Let v P W . If v´1α P Φ´, then sαv P LPprpα,kqq with dpv ñ sαpsαvqq “ 0. Hence
ρrpα,kqpvq “ sαv.
If v´1α P Φ`, then v P LPprpα,kqq with dpv ñ sαvq “ 1 by Lemma 3.8. Since there
exists no u P LPprpα,kqq with dpv ñ sαuq “ 0, a distance of 1 is already minimal.
We see that ρrpα,kqpvq “ v. Summarizing:

ρrpα,kqpvq “

#

v, v´1α P Φ`,
sαv, v´1α P Φ´.

This gives an alternative method to compute ρx. One easily obtains a dual method
to compute ρ_x in a similar fashion.
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Lemma 5.16. Let x P ĂW and v, v1 P LPpxq be two length positive elements. There exists
a shortest path p from v to v1 in the quantum Bruhat graph such that each vertex in p
lies in LPpxq.

Proof. Let us first study the case v1 “ 1.
We do induction on `pvq. If `pvq “ 0, the statement is clear.
Otherwise, there exists a quantum edge v Ñ vsα for some quantum root α P Φ` such

that dpv ñ v1q “ dpvsα ñ v1q ` 1 (Lemma 3.18). In this case, it suffices to show that
vsα P LPpxq.

The quantum edge condition means that `pvsαq “ `pvq ´ `psαq. In other words, every
positive root β P Φ` with sαpβq P Φ´ satisfies vpβq P Φ´.
Let β P Φ`, we want to show that `px, vsαpβqq ě 0. This follows from length positivity

of v if sαpβq P Φ`. So let us assume that sαpβq P Φ´. Then vsαpβq P Φ`, applying the
above observation to ´sαpβq. Hence `px, vsαpβqq ě 0, as 1 P LPpxq. This finishes the
induction, so the claim is established whenever v1 “ 1.

For the general case, we do induction on `pv1q. If v1 “ 1, we have proved the claim,
so let us assume that `pv1q ą 0. Then we find a simple root α P ∆ with sαv1 ă v1. In
particular, pv1q´1α P Φ´ so that `px, αq ď 0. Consider the element x1 :“ xsα Í x. We
observe that for any u PW and β P Φ,

`px1, sαuβq “ `px, uβq ` `psα,´uβq “

$

’

&

’

%

`px, uβq, uβ ‰ ˘α,

´`px, αq ` 1 ą 0, uβ “ ´α,

`px, αq ´ 1 ă 0, uβ “ α.

It follows that

LPpx1q “ tsαu | u P LPpxq and u´1α P Φ´u.

In particular, sαv1 P LPpx1q. Now suppose that v´1α P Φ´. Then also sαv P LPpx1q.
We may apply the inductive assumption to get a path p1 from sαv to sαv1 in LPpx1q.
Multiplying each vertex by sα on the left, we obtain the desired path p in LPpxq.
Finally assume that v´1α P Φ`. Then sαv P LPpxq by Corollary 4.7.
By Lemma 3.8, v Ñ sαv is an edge in QBpW q and

dQBpW qpv ñ v1q “ dQBpW qpv ñ sαv
1q “ dQBpW qpsαv ñ v1q ` 1.

We get a path from sαv to v1 in LPpxq by repeating the above argument, then concatenate
it with v Ñ sαv.

This finishes the induction and the proof.

Corollary 5.17. Let x “ wεµ P ĂW and v, v1 P LPpxq. Then

v´1µ´ pv1q´1µ´ wtpv ñ v1q ` wtpwv ñ wv1q “ 0.

In particular, dpv ñ v1q “ dpwv ñ wv1q.
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Proof. Let

p : v “ v1
α1
ÝÑ v2

α2
ÝÑ ¨ ¨ ¨

αn´1
ÝÝÝÑ vn “ v1

be a path in LPpxq of weight wtpv ñ v1q. Now for i “ 1, . . . , n´ 1, observe that both vi
and visαi are in LPpxq. Thus `px, viαiq “ 0. We conclude that

pviq
´1µ´ pvi`1q

´1µ´ wtpvi ñ vi`1q ` wtpwvi ñ wvi`1q

“xviαi, µyα
_
i ´ Φ`p´viαiqα_i ` wtpwvi ñ wvisαiq

ďxviαi, µyα
_
i ´ Φ`p´viαiqα_i ` Φ`pwviαiqα_i

“`px, viαiqα
_
i “ 0.

Summing these estimates for i “ 1, . . . , n´ 1, we conclude

v´1µ´ pv1q´1µ´ wtpv ñ v1q ` wtpwv ñ w1v1q ď 0.

Considering the same argument for x´1, wvw0, wv
1w0, we get the other inequality.

The “in particular” part follows from inspecting the argument given. Alternatively,
pair the identity just proved with 2ρ, then apply Lemma 3.6 and Corollary 2.11.

Remark 5.18. The corollary can be shown directly by evaluating the Demazure product

εwv
12ρ ˚ x ˚ εv2ρ

in two different ways, using the associativity property of Demazure products.

Proposition 5.19. Let x “ wεµ P ĂW , v P LPpxq and u PW . Then

dpuñ wvq “ dpuñ wρxpuqq ` dpwρxpuq ñ wvq.

Proof. Let λ be superregular and y :“ εuλ. Define the element

z :“ y ˚ x “ uρxpuq
´1ερxpuqλ`µ´ρxpuqwtpuñwρxpuqq.

Then z is superregular with LPpzq “ tρxpuqu. Consider the element

ỹ1 :“ upwvq´1εwvλ´wvwtpuñwvq.

This is superregular with LPpỹ1q “ twvu. Note that Theorem 4.2 implies ỹ1 ď y, as

pwvq´1pwvλ´ wvwtpuñ wvqq ` wtpuñ wvq ` wtpuñ uq “ λ.

Thus z̃ ď z, where

z̃ “ ỹx “ uv´1εvλ`µ´vwtpuñwvq.
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Note that z̃ is superregular with LPpz̃q “ tvu. In light of Theorem 4.2, the inequality
z̃ ď z means

v´1pvλ` µ´ vwtpuñ wvqq`wtpρxpuq ñ vq ` wtpuñ uq

ď ρxpuq
´1pρxpuqλ` µ´ ρxpuqwtpuñ wρxpuqqq.

Rewriting this, we get

v´1µ´ wtpuñ wvq ` wtpρxpuq ñ vq ď ρxpuq
´1µ´ wtpuñ wρxpuqq.

Corollary 5.17 yields the equation

v´1µ´ ρxpuq
´1µ` wtpρxpuq ñ vq “ wtpwρxpuq ñ wvq.

We conclude

wtpuñ wvq ě wtpuñ wρxpuqq ` wtpwρxpuq ñ wvq.

This implies the desired claim.

By the duality from Lemma 5.3, we obtain the following.

Corollary 5.20. Let x “ wεµ P ĂW , v P LPpxq and u PW . Then

dpv ñ uq “ dpv ñ ρ_x puqq ` dpρ
_
x puq ñ uq.

Remark 5.21. In the language of [BFP98, Section 6], this means that the set w LPpxq
contains a unique minimal element with respect to the tilted Bruhat order ĺu. Since
w LPpxq “ LPpx´1qw0, it follows that the set LPpxq contains a unique maximal element
with respect to ĺu. If x “ εµ is a pure translation element, this recovers [Len+15,
Theorem 7.1].
The converse statements are generally false, i.e. LPpxq will in general not contain tilted

Bruhat minima, and w LPpxq will not contain maxima. For a concrete example, choose
x to be a simple affine reflection of type A2.
The set LPpxq satisfies a number of interesting structural properties with respect to

the quantum Bruhat graph, namely containing shortest paths for any pair of elements
(Lemma 5.16) and the existence of tilted Bruhat maxima. One may ask the question
which subsets of W occur as the set LPpxq for some x P ĂW .

Corollary 5.22. Let x “ wεµ P ĂW and u1, u2 PW . Then the function

ϕ : W Ñ X˚pT qΓ0 , v ÞÑ v´1µ´ wtpu1 ñ wvq ´ wtpv ñ u2q

has a global maximum at ρxpu1q, and another global maximum at ρ_x pu2q.
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Proof. If v P W is not length positive for x, and vsα is an adjustment, it is easy to see
that ϕpvq ď ϕpvsαq. So we may focus on ϕ|LPpxq.

Let v P LPpxq and v1 “ ρxpu1q, so that

ϕpvq “ v´1µ´ wtpu1 ñ wvq ´ wtpv ñ u2q

“ v´1µ´ wtpu1 ñ wv1q ´ wtpwv1 ñ wvq ´ wtpv ñ u2q

“
C5.17

pv1q´1µ´ wtpv1 ñ vq ´ wtpu1 ñ wv1q ´ wtpv ñ u2q

ď pv1q´1µ´ wtpu1 ñ wv1q ´ wtpv1 ñ u2q “ ϕpv1q.

This shows the first maximality claim. The second one follows from the duality of
Lemma 5.3.

Remark 5.23. Let x1 “ w1ε
µ1 , x2 “ w2ε

µ2 P ĂW and v1 P LPpx1q. Theorem 4.2 states
that x1 ď x2 in the Bruhat order if and only if there is some v2 PW with

v´1
1 µ1 ` wtpv2 ñ v1q ` wtpw1v1 ñ w2v2q ď v´1

2 µ2.

By the above corollary, it is equivalent to require this inequality for v2 “ ρx2pw1v1q. One
can alternatively require it for v2 “ ρ_x2pv1q.

Lemma 5.24. Let x1 “ w1ε
µ1 , x2 “ w2ε

µ2 P ĂW and v1 P LPpx1q, v2 P LPpx2q. The
following are equivalent:

(i) The distance dpv1 ñ w2v2q is minimal for all pairs in LPpx1q ˆ LPpx2q, i.e.
pv1, v2q PMpx1, x2q.

(ii) v1 “ ρ_x1pw2v2q and v2 “ ρx2pv1q.

Proof. (i) ñ (ii): Certainly, v1 minimizes the function dp¨ ñ w2v2q on LPpx1q, showing
the first claim. The second claim is analogous.
(ii) ñ (i): Consider Situation 5.2. By Lemmas 5.5 and 5.8, we conclude that w2v2

must be length positive for x11. It follows that x˚ ď x1 ˚ x2 and

`px˚q “ `px11q ` `px2q “ `px1q ` `px2q ´ dpv1 ñ w2v2q.

By Lemma 5.7, v2 is length positive for x˚. Write x1 ˚ x2 as w̃εµ̃. Using Lemma 4.17
with Lemma 4.3, the condition x˚ ď x1 ˚ x2 yields some v12 P LPpx1 ˚ x2q with

v´1
1 µ1 ` v

´1
2 µ2 ´ wtpv1 ñ w2v2q ` wtpv12 ñ v2q ` wtpw1v1 ñ w̃v12q ď pv

1
2q
´1µ̃.

By Proposition 5.12, we find v11 such that pv11, v12q P Mpx1, x2q. By Theorem 5.11, we
can express x1 ˚ x2 in terms of pv11, v12q. Then the above inequality becomes

v´1
1 µ1 ` v

´1
2 µ2 ´ wtpv1 ñ w2v2q ` wtpv12 ñ v2q ` wtpw1v1 ñ w1v

1
1q

ď pv11q
´1µ1 ` pv

1
2q
´1µ2 ´ wtpv11 ñ w2v

1
2q.
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Since v1, v
1
1 P LPpx1q and v2, v

1
2 P LPpx2q, we can apply Corollary 5.17 twice to obtain

wtpv1 ñ v11q ` wtpw2v
1
2 ñ w2v2q ´ wtpv1 ñ w2v2q ď ´wtpv11 ñ w2v

1
2q.

Rewriting, we get

wtpv1 ñ v11q ` wtpv11 ñ w2v
1
2q ` wtpw2v

1
2 ñ w2v2q ď wtpv1 ñ w2v2q.

In other words, there is a shortest path from v1 to w2v2 that passes through v11 and w2v
1
2.

By condition (ii), this is only possible if v1 “ v11 and v2 “ v12, showing (i).

Corollary 5.25. Consider Situation 5.2 with v1 P LPpx1q, v2 P LPpx2q. There exists
pv11, v

1
2q PMpx1, x2q such that

dpv1 ñ w2v2q “ dpv1 ñ v11q ` dpv
1
1 ñ w2v

1
2q ` dpw2v

1
2 ñ w2v2q.

Proof. For convenience, we define a set of admissible pairs by

A :“ tpv11, v12q P LPpx1q ˆ LPpx2q |

dpv1 ñ w2v2q “ dpv1 ñ v11q ` dpv
1
1 ñ w2v

1
2q ` dpw2v

1
2 ñ w2v2qu.

Then pv1, v2q P A, so that A is non-empty. Choose pv11, v12q P A such that dpv11 ñ w2v
1
2q

becomes minimal among all pairs in A. We claim that pv11, v12q P Mpx1, x2q. For this,
we use Lemma 5.24. It remains to show that v11 “ ρ_x1pw2v

1
2q and v12 “ ρx2pv1q. By

Proposition 5.19 and Corollary 5.20, we obtain

dpv11 ñ w2v
1
2q “ dpv11 ñ ρ_x1pw2v

1
2qq ` dpρ

_
x1pw2v

1
2q ñ w2v

1
2q,

dpv11 ñ w2v
1
2q “ dpv11 ñ w2ρx2pv1qq ` dpw2ρx2pv1q ñ w2v

1
2q.

It follows that pρ_x1pw2v
1
2q, v

1
2q P A and pv11, ρx2pv

1
1qq P A. By choice of pv11, v12q and the

above computation, we get that v11 “ ρ_x1pw2v
1
2q and v12 “ ρx2pv

1
1q. This finishes the

proof.

Corollary 5.26. For x1, x2 P ĂW , we have LPpx1 ˚x2q “ ρx2pLPpx1qq “ ρ_x1pw2 LPpx2qq,
where w2 PW is the classical part of x2.

Proof. We only show LPpx1 ˚ x2q “ ρx2pLPpx1qq, the other claim is completely dual.
If v2 P LPpx1˚x2q, we find v1 P LPpx1q such that pv1, v2q PMpx1, x2q. By Lemma 5.24,

v2 “ ρx2pv1q P ρx2pLPpx1qq.
Now let v2 P ρx2pLPpx1qq and write v2 “ ρx2pv1q for some rv1 P LPpx1q. By Corol-

lary 5.25, we find pv11, v12q PMpx1, x2q such that

dpv1 ñ w2v2q “dpv1 ñ w2v
1
2q ` dpw2v

1
2 ñ w2v2q.

Since v2 “ ρx2pv1q, we use Proposition 5.19 to obtain

dpv1 ñ w2v
1
2q “dpv1 ñ w2v2q ` dpw2v2 ñ w2v

1
2q.

This is only possible if v2 “ v12. Since v12 P LPpx1 ˚ x2q by Proposition 5.12, we obtain
the desired claim v2 P LPpx1 ˚ x2q.
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6. σ-conjugacy classes
In this section, we review various descriptions of the set BpGq of σ-conjugacy classes
in GpLq. This serves mostly as a preparation for the next section, which discusses the
generic σ-conjugacy class of an element x P ĂW . Throughout this section, we assume
that G is quasi-split.
We begin with the classical result of Kottwitz [Kot85; Kot97] that describes the σ-

conjugacy class of an element g P GpLq by two invariants. These are called Kottwitz point
κpgq P π1pGqΓ “ pX˚pT q{ZΦ_qΓ and (dominant) Newton point νpgq P X˚pT qΓ0 bQ.

If g lies in the normalizer of the maximal torus, g P NGpT qpLq, then it corresponds to
an element in wεµ P ĂW . In this case, κpgq is the image of µ in π1pGqΓ.
Viewing both w and σ as automorphisms of X˚pT qΓ0 , we write σ ˝w for their compo-

sition. Let N ě 1 such that the pσ ˝wqN is the identity map. Then νpgq P X˚pT qΓ0 bQ
is the unique dominant element in the W -orbit of

1
N

N
ÿ

k“1
pσ ˝ wqkµ.

It is true, e.g. by [He14, Section 3.3], that each σ-conjugcacy class rbs P BpGq contains
an element of NGpT qpLq, so that the above descriptions of κpgq and νpgq actually cover
all σ-conjugacy classes.
In this section, we review a few important results related to these invariants. Our main

concern is to bridge the gap between the unramified case, which is often studied in the
relevant literature, and the quasi-split case, which we need for our final generalization.

6.1. Parabolic averages and convex hull
We start by formally defining some averaging functions and proving their basic proper-
ties. Neither our results nor our proofs in this section should be too surprising for the
educated reader, especially if one keeps the example of GLn and its Newton polygons in
mind.
Let N ě 1 be an integer such that the action of σN on X˚pT q becomes trivial. Then

we define the σ-average of an element µ P X˚pT qΓ0 bQ by

avgσpµq :“ 1
N

N
ÿ

k“1
σkpµq P pX˚pT qΓ0 bQqxσy.

Since avgσ vanishes on terms of the form µ´ σpµq, it follows that we get a well-defined
map avgσ : X˚pT qΓ Ñ pX˚pT qΓ0 bQqxσy.

A similar notion of average is the following: For J Ď ∆, denote by WJ the Coxeter
subgroup ofW generated by the reflections tsα | α P Ju. For µ P X˚pT qΓ0bQ, we define

avgJpµq :“ 1
#WJ

ÿ

wPWJ

wpµq P X˚pT qΓ0 bQ.
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Finally, if J “ σpJq, we define the function πJ by

πJ :“ avgJ ˝ avgσ “ avgσ ˝ avgJ : X˚pT qΓ0 bQÑ pX˚pT qΓ0 bQqxσy.

This map was introduced by Chai [Cha00, Definition 3.2]. Again, we get an induced
map πJ : X˚pT qΓ Ñ pX˚pT qΓ0 b Qqxσy. If G is split, it can be identified with the slope
map as introduced by Schieder [Sch15, Section 2.1.3].

We start with a collection of easy facts on these averages.

Lemma 6.1. Let β P X˚pT qΓ and µ P X˚pT qΓ0 bQ. Let J Ď ∆ be any subset.

(a) For any preimage β1 P X˚pT qΓ0 of β, we have

xβ1, 2ρy “ xavgσpβq, 2ρy.

In particular, it makes sense to write xβ, 2ρy.

(b) If xµ, αy “ 0 for all α P J , then avgJpµq “ µ.

(c) For all α P J , we have xavgJpµq, αy “ 0.

(d) If µ ě 0, then avgJpµq ě 0.

(e) If xµ, αy ď 0 for all α P J , then µ ď wµ for all w PWJ . In particular, µ ď avgJpµq.

Proof. (a) follows since σp2ρq “ 2ρ and avgσpbq “ avgσpb1q.
For (b) and (c), note that the following are equivalent:

• xµ, αy “ 0 for all α P J ,

• wpµq “ µ for all w PWJ .

Then both statements follow easily.
For (d), it suffices to only consider the case where µ is a simple coroot µ “ α_. If

α P J , then avgJpµq “ 0. Otherwise wpαq P Φ` for all w PWJ , such that avgJpµq ą 0.
We prove (e) via induction on `pwq, the inductive start being clear. If now `pwq ě 1

and wα P Φ´ for some α P J , then

wµ “ pwsαqpµ´ xµ, αyα
_q “ pwsαqµ` xµ, αywα

_ ě pwsαqµ ě
ind.

µ.

This finishes the induction and the proof.

Definition 6.2. Let µ P X˚pT qΓ0 bQ and J Ď ∆ be any subset.

(a) We say that J is µ-improving if we can write J “ tα1, . . . , αku such that

xavgtα1,...,αi´1upµq, αiy ď 0

for i “ 1, . . . , k.
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(b) We say that J is maximally µ-improving if it is µ-improving, and any µ-improving
superset J 1 Ě J satisfies avgJpµq “ avgJ 1pµq.

E.g. any µ-improving subset of maximal cardinality will be maximally µ-improving.
Since the empty set is µ-improving, it follows that maximally µ-improving subsets always
exist. We make the following immediate observations:

Lemma 6.3. Let µ P X˚pT qΓ0 bQ and J Ď ∆.

(a) If J is µ-improving, then µ ď avgJpµq.

(b) If J is maximally µ-improving, then avgJpµq is dominant.

(c) If c P X˚pT qΓ0 bQ is dominant and µ ď c, then

avgJpµq ď avgJpcq ď c.

If follows that there is a uniquely determined maximum

conv1pµq :“ max
JĎ∆

avgJpµq,

and that conv1pµq “ avgJpµq for every maximally µ-improving J . We define

convpµq :“ conv1pavgσpµqq, µ P X˚pT qΓ0 bQ or µ P X˚pT qΓ.

Example 6.4. For the split group G “ GLn, the operations conv and conv1 agree. Draw-
ing elements of X˚pT q b Q as polygons, the function conv corresponds to taking the
upper convex hull (hence its name).

Lemma 6.5. Let µ P X˚pT qΓ0 bQ.

(a) The value conv1pµq is the uniquely determined element c P X˚pT qΓ0 satisfying the
following three conditions:

• µ ď c,
• c is dominant and
• c “ avgJpµq for some J Ď ∆.

(b) If µ1 P X˚pT qΓ0 bQ satisfies µ ď µ1, then conv1pµq ď conv1pµ1q.

(c) Write

conv1pµq ´ µ “
ÿ

αP∆
cαα

_,

J1 :“tα P ∆ | cα ‰ 0u,
J2 :“tα P ∆ | xconv1pµq, αy “ 0u.

For any subset J Ď ∆, we have

conv1pµq “ avgJpµq ðñ J1 Ď J Ď J2.
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(d) There exists J Ď ∆ with σpJq “ J and convpµq “ πJpµq. In particular,

convpµq “ max
JĎ∆
σpJq“J

πJpµq.

(e) Let J Ď ∆ such that

@α P Φ`zΦ`J : xµ, αy ě 0.

Then there exists J 1 Ď J with conv1pµq “ avgJ 1pµq. In other words, the set J1 from
(c) is a subset of J .

Proof. (a) and (b) are immediate.

(c) Let us first consider a subset J Ď ∆ with conv1pµq “ avgJpµq. Then conv1pµq ´
µ P QΦ_J by definition of avgJpµq. We see that J1 Ď J must hold. Similarly,
xconv1pµq, αy “ 0 for all α P J by Lemma 6.1. Thus we must have J1 Ď J Ď J2.
We show that avgJ1pµq is dominant. Let α P ∆. If α P J1, then xavgJ1pµq, αy “ 0
by Lemma 6.1. So let us assume that α P ∆zJ1. Because avgJ1pµq ď conv1pµq and
avgJ1pµq ” µ ” conv1pµq pmod QΦ_J1

q, we can write

conv1pµq ´ avgJ1pµq “
ÿ

βPJ1

c1ββ
_, c1β P Qě0.

Now we get

xavgJ1pµq, αy “ xconv1pµq, αy
loooooomoooooon

ě0

`
ÿ

βPJ1

c1βx´β
_, αy

looooomooooon

ě0

ě 0.

This shows that avgJ1pµq is dominant.
If J is chosen such that conv1pµq “ avgJpµq, then

conv1pµq ě avgJ1pµq ěL6.1
avgJ avgJ1pµq “

J1ĎJ
avgJpµq “ conv1pµq.

Thus avgJ1pµq “ conv1pµq.
So if for any intermediate set J1 Ď J Ď J2, we obtain

avgJpµq “ avgJpavgJ1pµqq “ avgJpconv1pµqq “
JĎJ2

conv1pµq.

(d) Replacing µ by avgσpµq, we may certainly assume µ P pX˚pT qΓ0 b Qqσ. Since
µ “ σpµq, we conclude conv1pµq “ σpconv1pµqq. Then we can choose J be either of
the sets J1 or J2 from (c).
Now the “in particular” part is easy to see.
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(e) Let J 1 Ď J be a µ-improving subset such that there is no µ-improving subset J 1 Ĺ
J2 Ď J . By Lemma 6.3, µ ď avgJ 1pµq. It suffices to show that avgJ 1pµq is dominant.
Seeing µ as a coweight for the root system ΦJ , the set J 1 is maximally µ-improving
from this perspective, so xavgJ 1 µ, αy ě 0 for all α P Φ`J .
If α P Φ`zΦ`J , then wα P Φ`zΦ`J for all w PWJ , such that

xavgJ 1pµq, αy “
1

#WJ 1

ÿ

wPWJ1

xµ,wαy
loomoon

ě0

ě 0.

Here, we use the assumption made on µ and J .
As avgJ 1pµq is dominant, we get the desired result by (a).

As an immediate application, let us describe Newton points of elements in ĂW with
this language:

Definition 6.6. For w PW ,we write supppwq Ď ∆ for the set of all simple roots whose
corresponding simple reflections occur in some/every reduced expression for w. Define
suppσpwq :“

Ť

nPZ σ
npsupppwqq.

Lemma 6.7. Let x “ wεµ P ĂW and N ą 0 such that pσ ˝ wqN “ id. Pick v P W such
that

v´1 1
N

N
ÿ

k“1
pσ ˝ wqkpµq P X˚pT qΓ0 bQ

becomes dominant. Let J “ suppσpv´1 σpwvqq. Then

νpxq “ πJpv
´1µq.

Proof. Straightforward calculation. For an alternative proof, cf. [Cha00, Proposition 4.1].
By definition, we have

νpxq “v´1 1
N

N
ÿ

k“1
pσ ˝ wqkpµq

“
1
N

N
ÿ

k“1
pv´1 ˝ σ ˝ wvqkpv´1µq

“
1
N

N
ÿ

k“1
pv´1 σpwvq ˝ σqkpv´1µq.

Note that

pv´1 σpwvq ˝ σqpνpxqq “ νpxq.
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We see that σpνpxqq lies in the same W -orbit as νpxq, so νpxq “ σpνpxqq by dominance
(this is well-known). Thus v´1 σpwvq stabilizes νpxq. Write J 1 “ tα P ∆ | xνpxq, αy “ 0u.
Then v´1 σpwvq PWJ 1 , so J Ď J 1. Hence

νpxq “πJpνpxqq “
1
N

N
ÿ

k“1
πJ

”

pv´1 σpwvq ˝ σqkpv´1µq
ı

“
1
N

N
ÿ

k“1
πJ

“

pv´1µq
‰

“ πJpv
´1µq.

6.2. λ-invariant and defect
For this section, we fix a σ-conjugacy class rbs P BpGq. Following Hamacher-Viehmann
[HV18, Lemma/Definition 2.1], we define its λ-invariant by

λGpbq :“ maxtλ̃ P X˚pT qΓ | avgσpλ̃q ď νpbq and κpbq “ λ` ZΦ_ in π1pGqΓu.

While the article of Hamacher-Viehmann assumes the group to be unramified, the con-
struction of λGpbq works without changes for quasi-split G.

Let us write

νpbq ´ avgσpλGpbqq “
ÿ

αP∆
cαα

_,

J1 :“tα P ∆ | cα ‰ 0u,
J2 :“tα P ∆ | xνpbq, αy “ 0u.

We have the following simple observations:
Lemma 6.8. (a) Pick µ P X˚pT qΓ and J Ď ∆ with J “ σpJq such that νpbq “ πJpµq

and κpbq “ µ` ZΦ_ P π1pGqΓ. Then

νpbq “ πJpλGpbqq “ convpλGpbqq.

(b) We have J1 Ď J2. For J Ď ∆ with σpJq “ J ,

νpbq “ πJpλGpbqq ðñ J1 Ď J Ď J2.

Proof. (a) Choose a lift µ̃ P X˚pT qΓ0 . Then

πJpµq “ πJpµ̃q “ avgσ
ÿ

wPWJ

wµ̃.

We can choose an element w PWJ such that wµ̃ becomes anti-dominant with respect
to the roots in J , i.e. xwµ̃, αy ď 0 for all α P J . Then πJpµ̃q “ πJpwµ̃q ě wµ̃ by
Lemma 6.1.
In particular, the image of wµ̃ in X˚pT qΓ is ď λGpbq by construction of λGpbq. Thus

νpbq “ πJpwµ̃q ď πJpλGpbqq ď convpλGpbqq.

Since avgσpλGpbqq ď νpbq and νpbq is dominant, we use Lemma 6.3 to see that
convpλGpbqq ď νpbq. Hence νpbq “ convpλGpbqq “ πJpλGpbqq.
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(b) By [He14, Section 3.3], b “ rxs for some x P ĂW . Applying Lemma 6.7 to x, we see
that µ and J exist as in (a). In particular, νpbq “ convpλGpbqq.
Now all claims follow from Lemma 6.5.

Related to the notion of the λ-invariant is the notion of defect of an element rbs P BpGq.
Following [Kot85, Proposition 6.2], we fix an element x “ wεµ of length zero in the

extended affine Weyl group ĂWJ2 of the Levi subgroup of G associated with J2 such that
rbs “ rxs P BpGq.

We denote by Jb the σ-twisted centralizer of b P GpLq, i.e. the reductive group over F
with F -valued points

JbpF q “ tg P GpLq | g
´1bσpgq “ bu.

Then the defect of rbs has the following equivalent descriptions:

Proposition 6.9. The following non-negative integers all agree. The common value is
called the defect of rbs, denoted defpbq.

(i) dimpX˚pT qΓ0 bQqσ ´ dimpX˚pT qΓ0 bQqσw,

(ii) rkF pGq ´ rkF pJbq,

(iii) xνpbq, 2ρy ´ xλGpbq, 2ρy,

(iv) #pJ1{σq, the number of σ-orbits in J1,

(v) minvPW `pv´1 σpwvqq,

(vi) minvPWJ1
`pv´1 σpwvqq.

The notion of defect was originally defined in [Kot06, Equation 1.9.1] for split groups,
using the expression in (i). Kottwitz shows the equality with (ii) as [Kot06, Theo-
rem 1.10.1] and the equality with (iii) as [Kot06, Theorem 1.9.2].
If G is not split, the expression of (ii) is commonly used as definition. In the unramified

case, the equality of (ii) with (iii) is then known as [Ham15, Proposition 3.8], and
Hamacher’s proof shows the equality with (i) and (iv).
For the remainder of this section, we sketch how to prove Proposition 6.9 for quasi-split

groups G. The main idea is a reduction to the superbasic case.

Lemma 6.10. Assume that rbs is superbasic. Denote by n “ #p∆{σq the number of
σ-orbits in ∆.

(a) We have

pX˚pT qΓ0 bQqσw “ tµ P X˚pT qΓ0 bQ | σpµq “ µ and xµ,Φy “ t0uu.

In particular,

n “ dimpX˚pT qΓ0 bQqσ ´ pX˚pT qΓ0 bQqσw.
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(b) We have

n “ min
vPW

`pv´1 σpwvqq.

More precisely, we find v PW and a subset ∆1 Ď ∆ such that #∆1 “ n and v´1 σpwvq
is a Coxeter element for ∆1.

(c) We have

n “ xνpbq ´ avgσpλGpbqq, 2ρy.

Proof. Superbasic elements only exist if each irreducible component of Φ is a root system
of type A.

All claims may certainly be checked individually on each σ-connected component, so
to lighten our notation, we will assume that ∆ is σ-connected.

(a) If µ P X˚pT qΓ0 b Q is σ-stable and orthogonal to all roots, it is certainly fixed by
σw. Let conversely µ P X˚pT qΓ0 b Q satisfy σwpµq “ µ. Then we find v P W such
that vµ P X˚pT qΓ0 bQ is dominant. Observe that

`

v σpwv´1q
˘

σvµ “ vσwv´1vµ “ vµ.

Since σvµ is dominant and in the W -orbit of vµ, we get σvµ “ vµ. In particular,
the dominant coweight vµ gets stabilized by v σpwv´1q PW .
Let J :“ Stabpvµq denote the stabilizer of the dominant coweight vµ. Then J “
σpJq, so J defines a σ-stable Levi subgroup of G. Its extended affine Weyl group
ĂWJ contains v´1 σpxvq, so b comes from a σ-conjugacy class in this Levi subgroup.
This is only possible if J “ ∆, i.e. xvµ,Φy “ t0u. In particular, vµ “ v´1pvµq “ µ,
proving the claim.

(b) Decompose the Dynkin diagram of ∆ into connected components, written as ∆ “

C1 \ . . . \ Ck, such that σpCiq “ Ci`1 for i “ 1, . . . , k ´ 1 and σpCkq “ C1. Let
WC :“WC1 denote the Weyl group of C :“ C1.
Note that each Ci is of type An with n as given. Write Caf for the affine Dynkin
diagram associated with C “ C1. Then the action of σk on Caf must fix the special
node, and be either the identity or the unique involution on the complement, i.e. C.
The element x σx ¨ ¨ ¨ σk´1

x, being an element of length zero in the affine Weyl group
of C, acts on Caf by some cyclic permutation. The composition of these two maps,
pσ ˝ xqk, should act transitively on Caf .
One quickly checks that this is only possible if σk is the identity map on Caf .

Now write w “ w1
σ
pw2q ¨ ¨ ¨

σk´1
pwkq with w1, . . . , wk PWC . Let v1 PWC and define

v :“ v1
σ
pv2q ¨ ¨ ¨

σk
pvkq PW, vi`1 “ wivi for i “ 1, . . . , k ´ 1.
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Then

v´1 σpwvq “v´1
1

σ
pv´1

2 q ¨ ¨ ¨
σk
pv´1
k q ¨ pwkvkq

σ
pw1v1q ¨ ¨ ¨ ¨ ¨ ¨

σk´1
pwk´1vk´1q

“v´1
1 wkvk “ v´1

1 wk ¨ ¨ ¨w1v1 PWC .

We know that WC is a Coxeter group of type An, so a symmetric group. It is a
classical result that each element in a symmetric group is conjugate to a Coxeter
element for a parabolic subgroup. In other words, we find v1 and ∆1 Ď C such that
v´1

1 wk ¨ ¨ ¨w1v1 is a Coxeter element of ∆1.
In particular, we get

n “ #C ě #∆1 “ `pv´1 σpwvqq ě # supppv´1 σpwvqq ě
superbasic

n.

Thus #∆1 “ n.

(c) It remains to evaluate

xνpbq ´ avgσpλGpbqq, 2ρy “
ÿ

αP∆
2cα.

This calculation is carried out by Hamacher [Ham15, Section 3], and we obtain the
value n as claimed. The equality only depends on the affine root system together
with the σ-action, so the fact that Hamacher only considers unramified groups is
irrelevant. While his argument using characters of finite group representations is
very elegant, one can also obtain the same result in a more straightforward manner
with explicit calculations of Newton polygons (as we are in the An case).

Proof of Proposition 6.9. The equality of (i) with (ii) is a standard Bruhat-Tits theoretic
argument, cf. [Kot06, Section 4.3] or [Ham15, Proof of Prop. 3.8].
Observe that the values of (i), (iii), (iv) and (vi) do not change if we pass to the

Levi subgroup of G defined by J1. If we do so, rbs becomes a superbasic σ-conjugacy
class. Then the equalities of (i), (iii), (iv) and (vi) follow immediately from the preceding
lemma.
It remains to show that, in the general case, (v) agrees with (vi). Suppose this was

not the case. Then we would find some v PW such that

`pv´1 σpwvqq ă #pJ1{σq.

Consider the element y “ v´1 σpxvq P ĂW and the subset J Ď ∆ given by J :“
suppσpv´1 σpwvqq. Then J defines a σ-stable Levi subgroup M Ď G such that rbs has a
preimage in BpMq. This is only possible if J1 Ď J , so J “ J1. But we must have

`pv´1 σpwvqq ě # supppv´1 σpwvqq ě #pJ{σq “ #pJ1{σq,

contradiction!
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6.3. Fundamental elements
Recall the equivalent characterizations of fundamental elements:

Proposition 6.11. For x “ wεµ P ĂW , the following are equivalent:

(i) `pxq “ xνpxq, 2ρy.

(ii) For all n ě 1, we have

`px ¨ σx ¨ ¨ ¨ σ
n´1

xq “ n`pxq.

(iii) There exist v P LPpxq and a σ-stable J Ď ∆ such that v´1 σpwvq P WJ and for all
α P ΦJ , we have `px, vαq “ 0.

(iv) For every orbit O Ď Φ with respect to the action of pσ ˝ wq on Φ, we have

p@α P O : `px, αq ě 0q or p@α P O : `px, αq ď 0q .

If G is defined over OF , this is moreover equivalent to

(v) Every element y P IxI is of the form y “ i´1x σi for some i P I.

If these equivalent conditions are satisfied, we call x fundamental.

Let us first discuss the unramified case. In this case, the equivalence of (i) and (ii)
is due to He [He10, Lemma 8.1]. Elements satisfying these conditions are called good
in [He10] and σ-straight in more recent literature. Condition (iii) is a reformulation of
the notion of fundamental pJ,w, δq-alcoves from Goertz-He-Nie [GHN15, Section 3.3].
Condition (v) is the notion of fundamental elements from [GHKR10]. The equivalence
of (i), (iii) and (v) is a result of Nie [Nie15]. Condition (iv) is new, but we will not need
it in the sequel.
If G is quasi-split but not unramified, the cited proofs fail because the map X˚pT qΓ0 Ñ

X˚pT qΓ0 b Q might no longer be injective. It is conceivable that the proofs might be
generalized with a bit of work. Instead, we sketch how to prove the equivalences of
(i)–(iv) using our language of length functionals, where issues with the torsion part of
X˚pT qΓ0 are non-existent.

Proof of Proposition 6.11. Lemma 2.13 implies the equivalence of (ii) and (iv). More-
over, the implication (iii) ùñ (iv) is immediate.
Let N ą 0 such that the action of pσ ˝ wqN on X˚pT qΓ0 becomes trivial. For any
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v PW and α P Φ, we calculate
C

1
N
v´1

N
ÿ

k“1
pσ ˝ wqkµ, α

G

“
1
N

N
ÿ

k“1
xµ, pσ ˝ wqkvαy

“
1
N

N
ÿ

k“1
xµ, pσ ˝ wqkvαy ` Φ`ppσ ˝ wqkvαq ´ Φ`ppσ ˝ wqk`1vαq

“
1
N

N
ÿ

k“1
`px, pσ ˝ wqkvαq.

Pick now v PW such that v´1 řN
k“1pσ ˝ wq

kµ “ νpxq. Then

xνpxq, 2ρy “
ÿ

αPΦ`

1
N

N
ÿ

k“1
`px, pσ ˝ wqkvαq ě `pxq.

Equality holds if and only if pσ ˝ wqkv P LPpxq for all k P Z. If we define J :“
suppσpv´1 σpwvqq, we see that (i) implies (iii).
It remains to show that (iv) implies (i). This follows directly from the above calcula-

tion.

Fundamental elements play an important role for our description of generic σ-conjugacy
classes. If x is fundamental, the generic σ-conjugacy class rbxs coincides with the σ-
conjugacy class of x, whose Newton and Kottwitz points are easily computed. The
λ-invariant and the defect of rxs however are less straightforward to see. For now, we
compute the defect.

Lemma 6.12. Let x be fundamental, and choose v P LPpxq and J Ď ∆ as in Proposi-
tion 6.11 (iii).

(a) Every v1 P vWJ is length positive for x. Moreover, px, v1, Jq also satisfies condition
(iii) of Proposition 6.11.

(b) If v PW J , then pσ´1
vq´1xv coincides with an element of length zero in the extended

affine Weyl group ĂWJ “WJ ˙X˚pT qΓ0.

(c) The defect of x is given by

defprxsq “ min
v1PvWJ

`ppv1q´1 σpwv1qq “ min
v1PW

`ppv1q´1 σpwvqq.

Proof. (a) This is a very straightforward calculation.

(b) By definition, pσ´1
vq´1xv P ĂWJ . The length calculation is straightforward using

Lemma 2.12. For an alternative proof concept, cf. [HN14, Proposition 3.2].
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(c) In view of (a), we may assume v PW J . Then

defprxsq “ def
´

rpσ
´1
vq´1xvs

¯

By (b), the element pσ´1
vq´1xv P ĂW satisfies the conditions needed to compute its

defect using Proposition 6.9 (v) and (vi). The claim follows.

In order to reduce claims about arbitrary elements in ĂW to fundamental ones, we need
the following lemma. If G is unramified, this is a classical result of Viehmmann [Vie14,
Proposition 5.5].

Lemma 6.13. Let x P ĂW and rbs P BpGqx, i.e. rbs P BpGq with Xxpbq ‰ H. Then there
exists a fundamental element y P ĂW such that y ď x in the Bruhat order and rys “ rbs
in BpGq.

Proof. Induction by `pxq. We distinguish a number of cases.

1. Suppose that x is of minimal length in its σ-conjugacy class in ĂW and that x “ uy
for some fundamental y P ĂW with `pxq “ `puq ` `pyq and rxs “ rys.
By [He14, Theorem 3.5], rbs “ rxs so that y ď x satisfies the desired conditions.

2. Suppose that there exists a simple affine reflection s P Saf such that `psx σsq ă `pxq.
By the “Deligne-Lusztig reduction method” of Goertz-He [GH10, Corollary 2.5.3], we
must have rbs P BpGqx1 for x1 “ sx σs or x1 “ sx. By induction, we get an element
y ď x1 with the desired properties. Since x1 ă x, the claim follows.

3. In general, we find by [HN14, Theorem 3.4] a sequence of elements

x “ x1, . . . , xn P ĂW

such that
• xi`1 “ sixi

σsi for some simple reflection si P S (i “ 1, . . . , n´ 1),
• `pxiq “ `pxq for i “ 1, . . . , n and
• xn satisfies condition 1. or 2.

In particular, we find y1 ď xn fundamental with ry1s “ rbs.
By [Nie15, Lemma 2.3], there exists y ď x with `pyq ď `py1q and y being σ-conjugate
to y1 in ĂW . While Nie’s proof only covers unramified groups, this statement is purely
about combinatorics of root systems and affine Weyl groups, so the generalization to
quasi-split groups is immediate.
Now observe that rys “ ry1s “ rbs P BpGq. In particular,

xνpbq, 2ρy ď `pyq ď `py1q “ xνpbq, 2ρy.

We see that y must be fundamental as well.

In any case, the claim follows, finishing the induction and the proof.
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7. Generic σ-conjugacy class

For an element x P ĂW , the generic σ-conjugacy class rbs “ rbxs P BpGq is the uniquely
determined σ-conjugacy class such that IxI X rbs is dense in IxI. For each y P ĂW , we
write rys P BpGq for the σ-conjugacy class of any representative of y in GpLq. We have
the following description due to Viehmann:

Theorem 7.1 ([Vie14, Corollary 5.6]). Let x P ĂW . Then rbxs is the largest σ-conjugacy
class in BpGq of the form rys where y ď x in the Bruhat order on ĂW .

Viehmann’s original proof makes the assumption that the group under considera-
tion is unramified, but it is not hard to remove this assumption. Indeed, we saw in
Lemma 6.13 that [Vie14, Proposition 5.5] can be proved without this assumption, and
then Viehmann’s proof of [Vie14, Corollary 5.6] works without further changes.
We can now describe this generic σ-conjugacy class more explicitly:

Theorem 7.2. Assume that G is quasi-split. Let x “ wεµ P ĂW and denote by rbxs is
generic σ-conjugacy class. Writing λx :“ λGpbxq, we have

λx “ max
vPW

`

v´1µ´ wtpv ñ σ
pwvqq

˘

P X˚pT qΓ.

We call λx the generic λ-invariant of x. We discuss previous works and some appli-
cations of this result now, before giving its proof in the next subsection.
We begin with a more explicit way to calculate generic λ-invariants. The following

lemma does not depend on the theorem, while the corollary does.

Lemma 7.3. Let x “ wεµ P ĂW and v PW .

(a) If v is not length positive for x, and vsα is an adjustment, then

v´1µ´ wtpv ñ σ
pwvqq ďσ pvsαq

´1 ´ wtpvsα ñ σ
pwvsαqq.

(b) We have

xv´1µ´ wtpv ñ σ
pwvqq, 2ρy ď `pxq ´ dpv ñ σ

pwvqq.

Equality holds if and only if v P LPpxq.

Proof. (a) We compute

pvsαq
´1µ´ wtpvsα ñ σ

pwvsαqq ěv
´1µ´ xµ, vαyα_ ´ wtpvsα ñ vq

´ wtpv ñ σ
pwvqq ´ wtpσpwvq ñ σ

pwvsαqq

ěσv´1µ´ xµ, vαyα_ ´ Φ`pvαqα_

´ wtpv ñ σ
pwvqq ´ Φ`p´wvαqα_

“v´1µ´ wtpv ñ σ
pwvqq ´ p`px, vαq ` 1q

ěv´1µ´ wtpv ñ σ
pwvqq.
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(b) Indeed, using Corollary 2.11 and Lemma 3.6, we obtain

xv´1µ´ wtpv ñ σ
pwvqq, 2ρy “xv´1µ, 2ρy ´ `pvq ` `pwvq ´ dpv ñ σ

pwvqq

ď`pxq ´ dpv ñ σ
pwvqq,

with equality iff v P LPpxq.

Corollary 7.4. Let x “ wεµ P ĂW . Among all elements v P LPpxq, pick one such that
the distance dpv ñ σ

pwvqq in the quantum Bruhat graph becomes minimal. Then

λx “ v´1µ´ wtpv ñ σ
pwvqq P X˚pT qΓ.

In particular, the generic Newton point of x is given by

νx “ convpv´1µ´ wtpv ñ σ
pwvqqq.

Proof. We know that λx “ pv1q´1µ´ wtpv1 ñ σ
pwv1qq for some v1 P W by the theorem.

Using the above lemma, we conclude that the same equality holds for some v1 P LPpxq.
Now v´1µ´ wtpv ñ σ

pwvqq ď pv1q´1µ´ wtpv1 ñ σ
pwv1qq by the theorem, and

xv´1µ´ wtpv ñ σ
pwvqq, 2ρy ě xpv1q´1µ´ wtpv1 ñ σ

pwv1qq, 2ρy

by choice of v. The claim follows.

The following lemma might be helpful for computing νx.

Lemma 7.5. Let x “ wεµ P ĂW , v P LPpxq and J Ď ∆ such that J “ σpJq and

@α P Φ`zΦ`J : `px, vαq ą 0.

Then there exists J 1 Ď J with σpJ 1q “ J 1 and

convpv´1µ´ wtpv ñ σ
pwvqqq “ πJ 1pv

´1µ´ wtpv ñ σ
pwvqqq.

Proof. In view of Lemma 6.5 (e), it suffices to show for each α P Φ`zΦ`J that

xavgσpv´1µ´ wtpv ñ σ
pwvqqq, αy ě 0.

Let N ą 1 such that the action of σN on X˚pT qΓ0 becomes trivial. Then

xavgσpv´1µ´ wtpv ñ σ
pwvqqq, αy “

1
N

N
ÿ

k“1
xv´1µ´ wtpv ñ σ

pwvqq, σkpαqy

“
1
N

N
ÿ

k“1
xµ, vσkpαqy ´ xwtpv ñ σ

pwvqq, σkpαqy.
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By3 [HN21, Section 2.5], we may estimate

xwtpv ñ σ
pwvqq, σkpαqy ďΦ`p´vσkpαqq ` Φ`pσpwvqσkpαqq

“Φ`p´vσkpαqq ` Φ`pwvσk´1pαqq.

Thus

1
N

N
ÿ

k“1

´

xµ, vσkpαqy ´ xwtpv ñ σ
pwvqq, σkpαqy

¯

ě
1
N

N
ÿ

k“1

´

xµ, vσkpαqy ´ Φ`p´vσkpαqq ´ Φ`pwvσk´1pαqq
¯

“
1
N

N
ÿ

k“1

´

xµ, vσkpαqy ´ Φ`p´vσkpαqq ´ Φ`pwvσkpαqq
¯

“
1
N

N
ÿ

k“1

´

`px, σkpαqq
looooomooooon

ě1

´1
¯

ě 0.

This finishes the proof.

Corollary 7.6. If x “ wεµ lies in a shrunken Weyl chamber and LPpxq “ tvu, then

νx “ v´1µ´ wtpv ñ σ
pwvqq P X˚pT qΓ0 bQ.

Proof. Set J :“ H in the previous lemma.

If G is split and µ sufficiently regular, this corollary is the main result of [Mil21], which
was the first paper to derive an explicit formula for νx from Theorem 7.1. Milićević’s
result since has been generalized by Sadhukhan [Sad21], who proves the statement of
Corollary 7.6 if G is split and µ satisfies a regularity condition that is weaker than
Milićević’s. He and Nie [HN21, Proposition 3.1] proved Corollary 7.6 as stated here.
As an application of Theorem 7.2, we classify the cordial elements from Milićević-

Viehmann [MV20].

Definition 7.7. Let x “ wεµ P ĂW and v P W be the specific length positive element
constructed in Example 2.8. Then x is cordial if

`pxq ´ `pv´1 σpwvqq “ xνx, 2ρy ´ defpbxq.

3The original formulation of this statement has a small typo, the version cited here is the correct one:
Indeed, let x, y P W and define dominant coweights µ1, µ2 P X˚pT qΓ0 on each simple root α P ∆ as
follows:

xµ1, αy :“ Φ`p´y´1αq, xµ2, αy :“ Φ`pxαq.

Then one checks easily that we are in the situation of [HN21, Theorem 1.1], and part (1) of this
theorem yields xwtpy´1

ñ xq, αy ď Φ`p´y´1αq ` Φ`pxαq.

99



Proposition 7.8. Let x “ wεµ P ĂW and v P LPpxq. Then

`pxq ´ `pv´1 σpwvqq ď xνx, 2ρy ´ defpbxq.

Equality holds if and only if both conditions (a) and (b) are satisfied. Moreover, the
condition (a) is always equivalent to (a’).

(a) The generic λ-invariant λx is given by

λx “ v´1µ´ wtpv ñ σ
pwvqq P X˚pT qΓ.

(a’) We have

dpv ñ σ
pwvqq “ min

v1PLPpxq
dpv1 ñ σ

pwv1qq.

(b) We have dpv ñ σ
pwvqq “ `pv´1 σpwvqq.

Proof. By Lemma 7.3 and Theorem 7.2, (a) ðñ (a’).
For the remaining claims, we calculate

`pxq ´ `pv´1 σpwvqq ď`pxq ´ dpv ñ σ
pwvqq

“xv´1µ´ wtpv ñ σ
pwvqq, 2ρy

ď
T7.2
xλx, 2ρy “

P6.9
xνx, 2ρy ´ defpbxq.

Corollary 7.9. Let x “ wεµ P ĂW and v P W be of minimal length such that v´1µ is
dominant. Then x is cordial if and only if the following two conditions are both satisfied:

(1) For each v1 P LPpxq, dpv ñ σ
pwvqq ď dpv1 ñ σ

pwv1qq.

(2) dpv ñ σ
pwvqq “ `pv´1 σpwvqq.

This corollary generalizes the description of superregular cordial element for split G
due to Milićević-Viehmann [MV20, Proposition 4.2] and the description of shrunken
cordial elements due to He-Nie [HN21, Remark 3.2]. One can generalize the statement
and proof of [MV20, Theorem 1.2 (b), (c)] accordingly.
The notion of cordiality depends on one specific and non-canonical length positive

element for x. We conjecture that it is possible to generalize this notion to all length
positive elements.

Conjecture 7.10. Assume that charpF q ą 0 and let x “ wεµ P ĂW and v P LPpxq. For
all b P BpGq, we expect

dimXxpbq ď
1
2
`

`pxq ` `pv´1 σpwvqq ´ xνpbq, 2ρy ´ defpbq
˘

.

Remark 7.11. (a) The conjecture has been tested for a large number of randomly gen-
erated x using the sagemath computer algebra system [Sage; SaCo]. This computer
search did not find a single counter-example.
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(b) For the one v constructed in Example 2.8, the right-hand side of Conjecture 7.10 is
exactly the virtual dimension of [He14], and then the conjecture is proved in that
paper. He’s proof does not seem to be easily generalized to arbitrary v P LPpxq,
though.

(c) If b “ bx is the generic σ-conjugacy class associated with x, then

dimXxpbxq “`pxq ´ xνpbxq, 2ρy “ `pxq ´ xλx, 2ρy ´ defpbxq
“ min
vPLPpxq

dpv ñ σ
pwvqq ´ defpbxq.

The first equality is [He15, Theorem 2.23] and the second one is Proposition 6.9.
We see that the conjecture is true whenever b “ bx. In particular, Xxpbq is non-
empty for only one element b P BpGq, the conjecture is true. This is e.g. the case if
x is of minimal length in its σ-conjugacy class in ĂW , cf. [He14, Theorem 3.5].

(d) Let x P ĂW and v P LPpxq such that the following two assumptions are both satisfied:
(1) Conjecture 7.10 is satisfied for px, vq and all b P BpGq and
(2) for b “ bx, the inequality in conjecture 7.10 becomes an equality:

dimXxpbxq “
1
2
`

`pxq ´ `pv´1 σpwvqq ´ xνx, 2ρy ´ defpbxq
˘

.

One can check assumption (2) using Proposition 7.8.
Under these two assumptions, the major results and proofs of [MV20] can be gener-
alized in a straightforward manner.

(e) In view of Corollary 7.9, we are led to ask which pw1, w2q PW
2 satisfy the condition

dpw1 ñ w2q “ `pw´1
2 w1q. (˚)

By [MV20, Remark 4.4], this is the case if and only if there is a shortest path
w1 Ñ ¨ ¨ ¨ Ñ w2 where each arrow is of the form uÑ usα for some α P ∆.
While it appears unreasonable to ask for a “general formula” for dpw1 ñ w2q, de-
scribing the elements for which p˚q holds might prove to be an easier task.
If w1 is smaller than w2 in the right weak Bruhat order, then p˚q is certainly satisfied.
This applies in particular for w1 “ 1 (cf. [He21b, Theorem 4.2]) or w2 “ w0 (cf.
[MV20, Theorem 1.2 (a)]).
From [MV20, Theorem 1.2 (b), (c)], we obtain moreover the following criteria:

• If `pw´1
2 w1q “ # supppw´1

2 w1q, then p˚q holds true.
• If w2 “ 1, then p˚q holds true if and only if w1 is small height avoiding as in

[MV20, Definition 4.7]. This notion is discussed in [MV20]; yet one may still
hope for a more explicit classification of those elements.
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If w2 ‰ 1, we may of course use Lemma 3.8 to reduce to the w2 “ 1 case. Indeed, if
α P ∆ satisfies w´1

2 α P Φ´, one may argue as follows:
• If w´1

1 α P Φ´, then dpw1 ñ w2q “ dpsαw1 ñ sαw2q. Thus pw1, w2q satisfies
p˚q iff psαw1, sαw2q satisfies p˚q.

• If w´1
1 α P Φ´, then dpw1 ñ w2q “ dpw1 ñ sαw2q ` 1. Moreover,

`ppsαw2q
´1w1q “ `pw´1

2 sαw1q ă `pw´1
2 w1q.

Thus pw1, w2q satisfy p˚q if and only if the following two conditions are both
satisfied: pw1, sαw2q satisfies p˚q and `pw´1

2 sαw1q “ `pw´1
2 w1q ´ 1.

While these partial results are somewhat promising, the question which pairs satisfy
p˚q is still very much open.

7.1. Proof of the Theorem
Fix x “ wεµ P ĂW . We need to show the following two claims:

• There exists some v PW such that

λx ď v´1µ´ wtpv ñ σ
pwvqq P X˚pT qΓ.

• For each v PW , we have

v´1µ´ wtpv ñ σ
pwvqq ď λx P X˚pT qΓ.

By definition of λGpxq, this is equivalent to

avgσpv´1µ´ wtpv ñ σ
pwvqqq ď νx P X˚pT qΓ0 bQ.

Let us use the shorthand notation λ ďσ λ1 to say that the image of λ in X˚pT qΓ is less
than or equal to the image of λ1 in X˚pT qΓ (λ, λ1 being elements of X˚pT q, X˚pT qΓ0 or
X˚pT qΓ).
We write λ ”σ λ1 to denote λ ďσ λ1 and λ1 ďσ λ. Similarly, we write λ ăσ λ1 to

denote λ ďσ λ1 but λ1 ęσ λ.
For this section, call an element v PW maximal if there exists no v1 PW such that

v´1µ´ wtpv ñ σ
pwvqq ăσ pv1q´1µ´ wtpv1 ñ σ

pwv1qq.

Lemma 7.12. Let v PW be maximal. Moreover, fix a root α P Φ` such that

wtpv ñ σ
pwvqq ”σ α_Φ`p´vαq ` wtpvsα ñ σ

pwvqq.

Then precisely one of the following conditions is satisfied:
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(1) `px, vαq ą 0, and the element

x1 :“ w1εµ
1 :“ xrvα,Φ`p´vαq P ĂW

satisfies x1 ă x and

pvsαq
´1µ1 ´ wtpvsα ñ σ

pw1vsαqq ”
σ v´1µ´ wtpv ñ σ

pwvqq.

(2) `px, vαq “ 0, vsα PW is maximal with

v´1µ´ wtpv ñ σ
pwvqq ”σ pvsαq

´1µ´ wtpvsα ñ σ
pwvsαqq

and

wtpvsα ñ σ
pwvsαqq ”

σ wtpvsα ñ σ
pwvqq ` α_Φ`p´wvαq.

Remark 7.13. If v ‰ σ
pwvq and v Ñ vsα is an edge in QBpW q that is part of a shortest

path from v to σ
pwvq, then the root α P Φ` will satisfy the condition of the Lemma.

Proof of Lemma 7.12. We use maximality of v by comparing to vsα. Now calculate

pvsαq
´1µ´ wtpvsα ñ σ

pwvsαqq

ěpvsαq
´1µ´ wtpvsα ñ σ

pwvqq ´ wtpσpwvq ñ σ
pwvsαqq.

”σpvsαq
´1µ` α_Φ`p´vαq ´ wtpv ñ σ

pwvqq ´ wtpwv ñ wvsαq
looooooooomooooooooon

ďα_Φ`pwvαq by C3.17

ěv´1µ´ xµ, vαyα_ ` α_Φ`p´vαq ´ wtpv ñ σ
pwvqq ´ α_Φ`pwvαq

“v´1µ´ wtpv ñ σ
pwvqq ´ `px, vαqα_.

If `px, vαq ă 0, we get a contradiction to the maximality of v.
Next assume that `px, vαq “ 0. Then every inequality in the above computation

must be an equality (up to σ-coinvariants), or we would again get a contradiction. In
particular, vsα must be maximal, as

v´1µ´ wtpv ñ σ
pwvqq ”σ pvsαq

´1µ´ wtpvsα ñ σ
pwvsαqq.

Moreover, we obtain

wtpvsα ñ σ
pwvsαqq ”

σ wtpvsα ñ σ
pwvqq ` α_p´wvαq.

This shows all the claims in (2).
Finally assume `px, vαq ą 0. The claim x1 ă x, i.e. xpvα,Φ`p´vαqq P Φ´af , follows

from Lemma 2.9. Calculating explicitly, we get

w1εµ
1

“ wεµsvαε
Φ`p´vαqvα_ “ wsvαε

svαpµq`Φ`p´vαqvα_ .

So indeed,

pvsαq
´1µ1 ´ wtpvsα ñ σ

pw1vsαqq “v
´1µ´ α_Φ`p´vαq ´ wtpvsα ñ σ

pwvqq

”σv´1µ´ wtpv ñ σ
pwvqq.
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Corollary 7.14. Let v be maximal. Then at least one of the following conditions is
satisfied:

(1) There exists x1 “ w1εµ
1

ă x and v1 PW such that

v´1µ´ wtpv ñ σ
pwvqq ”σ pv1q´1µ1 ´ wtpv1 ñ σ

pw1v1qq.

(2) The element σpwvq PW is maximal, and we have

v´1µ´ wtpv ñ σ
pwvqq ”σ σ

pwvq´1µ´ wtpσpwvq ñ σ
pw σ

pwvqqq.

Proof. Choose a shortest path in QBpW q

p : v Ñ vsα1 Ñ vsα1sα2 Ñ ¨ ¨ ¨ Ñ vsα1sα2 ¨ ¨ ¨ sαk “
σ
pwvq.

Consider the roots

βi “ vsα1 ¨ ¨ ¨ sαi´1pαiq P Φ, i “ 1, . . . , k.

We fix i˚ P t0, . . . , ku maximally such that `px, βiq “ 0 for 1 ď i ď i˚.
We claim that each vi for i “ 0, . . . , i˚ satisfies the following conditions:

(a) vi is maximal,

(b) dpvi ñ σ
pwviqq “ dpvi ñ

σ
pwvqq ` dpσpwvq ñ σ

pwviqq.

(c) v´1µ´ wtpv ñ σ
pwvqq ”σ v´1

i µ´ wtpvi ñ σ
pwviqq.

Induction on i. Since v0 “ v, the claim is clear for i “ 0. Now in the inductive step,
assume that i ă i˚ and that the conditions (a)–(c) are true for vi. We apply Lemma 7.12
to pvi, αiq. This is possible, as vi Ñ vi`1 is part of a shortest path from vi to σ

pwvq (by
choice of the path p), hence part of a shortest path from vi to σ

pwviq by (b).
Since i ă i˚, we get `px, viαiq “ 0, so condition (2) of Lemma 7.12 must be satisfied.

Now (a) and (c) follow immediately for vi`1. For condition (b), use condition (2) of the
lemma to compute

wtpvi`1 ñ
σ
pwvi`1qq

”σ wtpvi`1 ñ
σ
pwviqq ` α

_
i Φ`p´wviαiq

“
(b)

wtpvi`1 ñ
σ
pwvqq ` wtpσpwvq ñ σ

pwviqq ` α
_
i Φ`p´wviαiq

ěσ

C3.17
wtpvi`1 ñ

σ
pwvqq ` wtpσpwvq ñ σ

pwviqq ` wtpσpwviq ñ σ
pwvi`1q

ěwtpvi`1 ñ
σ
pwvqq ` wtpσpwvq ñ σ

pwvi`1qq

ěwtpvi`1 ñ
σ
pwvi`1qq.

We see that equality must hold in every step (up to the σ-action). In light of Lemma 3.6,
condition (b) for vi`1 follows, finishing the induction.

With the above claim proved for all i P t0, . . . , i˚u, we distinguish two cases:
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(1) Case i˚ ă k. Then `px, βi˚`1q “ `px, vi˚pαi˚`1qq ą 0 by choice of i˚. Applying
Lemma 7.12 to vi˚ and αi˚`1, we immediately get the desired x1.

(2) Case i˚ “ k. Then σ
pwvq “ vi˚ and we obtain everything claimed.

Lemma 7.15. Let v PW . Then there exists some x1 ď x with

νpx1q ě avgσpv´1µ´ wtpv ñ σ
pwvqqq.

In other words, λx ěσ v´1µ´ wtpv ñ σ
pwvqq.

Proof. Induction on `pxq. We may certainly assume that v is maximal. If there exists
x1 “ w1εµ

1

ă x and v1 PW with

v´1µ´ wtpv ñ σ
pwvqq ”σ pv1q´1µ1 ´ wtpv1 ñ σ

pw1v1qq,

we may apply the inductive hypothesis to x1 and are done.
Let us assume that this is not the case. By the above corollary, we see that σpwvq is

maximal and

v´1µ´ wtpv ñ σ
pwvqq ”σ σ

pwvq´1µ´ wtpσpwvq ñ σ
pw σ

pwvqqq.

For n ě 0, we define the element vn PW by v0 :“ v and vn`1 :“ σ
pwvnq PW . A simple

induction argument shows that each vn is maximal and

v´1µ´ wtpv ñ σ
pwvqq ”σ v´1

n µ´ wtpvn ñ σ
pwvnqq.

We calculate for λ P X˚pT qΓ0 :

vnλ “
σ
pwvn´1qλ “ σ ˝ wvn´1

`

σ´1λ
˘

“ pσ ˝ wqnvpσ´nλq.

Thus

v´1
n λ “ σnv´1pσ ˝ wq´npλq.

Let N ě 1 such that the action of pσ ˝ wqN on X˚pT q becomes trivial. We see that

avgσ
`

v´1µ´ wtpv ñ σ
pwvqq

˘

“
1
N

N
ÿ

n“1
avgσ

`

v´1
n µ´ wtpvn ñ σ

pwvnqq
˘

ď
1
N

N
ÿ

n“1
avgσ

`

v´1
n µ

˘

“
1
N

N
ÿ

n“1
avgσ

`

v´1pσ ˝ wq´nµ
˘

“ avgσ v´1 1
N

N
ÿ

n“1
pσ ˝ wq´nµ.

ď avgσ νpxq “ νpxq.

Thus we may choose x1 “ x, finishing the induction and the proof.
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Lemma 7.16. Let x “ wεµ P ĂW be a fundamental element, and choose v1 P LPpxq with
defprxsσq “ `ppv1q´1 σpwv1qq as in Lemma 6.12. Then

λx ”
σ pv1q´1µ´ wtpv1 ñ σ

pwv1qq.

Proof. By Lemma 7.15, we have

λx ě
σ pv1q´1µ´ wtpv1 ñ σ

pwv1qq.

Now we calculate

xλx ´ pv
1q´1µ` wtpv1 ñ σ

pwv1qq, 2ρy
“

L7.3
xλx, 2ρy ´ `pxq ` dpv1 ñ σ

pwv1qq

“
fund.

xλGpxq, 2ρy ´ xνpxq, 2ρy ` dpv1 ñ σ
pwv1qq

“
P6.9

´ defprxsσq ` dpv1 ñ σ
pwv1qq

ď ´ defprxsσq ` `ppv1q´1 σpwv1qq “
assump.

0.

The inequality on the last line is [MV20, Lemma 4.3].

Lemma 7.17. There exists v PW such that

λx ď
σ v´1µ´ wtpv ñ σ

pwvqq.

Proof. Induction on `pxq.
Let us first consider the case that there exists an element x1 “ w1εµ

1

ă x with rbx1s “
rbxs P BpGq. If this is the case, we may further assume by definition of the Bruhat order
that x1 “ xra for some affine root a P Φ`af .
Using the induction assumption, we find some v1 PW such that

λx1 “ λx ď
σ pv1q´1µ1 ´ wtpv1 ñ σ

pw1v1qq.

Write a “ pα, kq such that w1 “ wsα and µ1 “ sαpµq ` kα
_. The condition `px1q ă `pxq

means that xa P Φ´af , which we can rewrite as

k ´ xµ, αy ă Φ`pwαq.

We distinguish the following cases.

• Case pv1q´1α P Φ´. Define v :“ sαv
1 and compute

λx ď
σ pv1q´1µ1 ´ wtpv1 ñ σ

pw1v1qq

“v´1pµ´ kα_q ´ wtpsαv ñ σ
pwvqq

ďv´1µ´ kv´1α_ ´ wtpv ñ σ
pwvqq ` wtpv ñ sαvq

ď
C3.17

v´1µ´ kv´1α_ ´ wtpv ñ σ
pwvqq ` v´1α_Φ`p´αq

“v´1µ´ wtpv ñ σ
pwvqq ` pΦ`p´αq ´ kqv´1α_

ďv´1µ´ wtpv ñ σ
pwvqq.
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The inequality on the last line follows since Φ`p´αq ´ k ď 0 (as a P Φ`af) and
v´1α P Φ` by assumption.

• Case pv1q´1α P Φ`. Define v :“ v1 and compute

λx ď
σ pv1q´1µ1 ´ wtpv1 ñ σ

pw1v1qq

“v´1pµ´ xµ, αyα_ ` kα_q ´ wtpv ñ wsαvq

ďσv´1µ` p´xµ, αy ` kqv´1α_ ´ wtpv ñ σ
pwvqq ` wtpwsαv ñ wvq

ď
C3.17

v´1µ` p´xµ, αy ` kqv´1α_ ´ wtpv ñ σ
pwvqq ´ v´1α_Φ`pwαq

“v´1µ` p´xµ, αy ` k ´ Φ`pwαqqv´1α_ ´ wtpv ñ σ
pwvqq

ďv´1µ´ wtpv ñ σ
pwvqq.

The inequality on the last line follows since ´xµ, αy`k´Φ`pwαq ď 0 (as xa P Φ´af)
and v´1α P Φ` by assumption.

In any case, we find an element v P W with the desired property, proving the claim for
x.
It remains to study the case where rbxs ą rbx1s for all x1 ă x. By Lemma 6.13, x must

be fundamental. The result follows from Lemma 7.16.

Proof of Theorem 7.2. The Theorem follows immediately from Lemmas 7.15 and 7.17.

7.2. General groups
In this section, we drop the assumption that G should be quasi-split. We keep the
notation from Section 2.1. As announced, we show how to compute generic σ-conjugacy
classes and classify cordial elements in this case.
The Frobenius action on the apartment A preserves the base alcove a, but no longer

the chosen special vertex x. We denote by µσ P V the uniquely determined element such
that σpxq “ x` µσ.

Moreover, there is a natural Frobenius action on X˚pT qΓ0 . We denote the induced
linear map by σlin : V Ñ V
Under the identification of A with V by x ÞÑ 0, the map σlin is given by

σlin : V Ñ V, v ÞÑ σpvq ´ µσ.

Since σlin permutes the alcoves in A, it permutes the Weyl chambers in V . We hence
find a uniquely determined element σ1 PW with σlinpCq “ σ1pCq. Define σ2 :“ σ´1

1 ˝σlin
such that σ2pCq “ C. Then the action of σ on V is given by the composed action

σ “ tµσ ˝ σ1 ˝ σ2,

where tµσ is the translation by µσ. Note that σ2 fixes both 0 and C, hence it fixes a
being the only alcove in C adjacent to 0. It follows that also tµσ ˝σ1 fixes a. So the map
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tµσ ˝ σ1 : V Ñ V “looks like” the action of an element in Ω Ď ĂW , except that a lift of
µσ P V to X˚pT qΓ0 might not exist; and if it exists, it might not be unique.
For each w1, w2 P W , the difference w1µσ ´ w2µσ lies in ZΦ_, so we may consider

w1µσ ´w2µσ as a well-defined element of X˚pT qΓ0 even if neither w1µσ nor w2µσ lies in
X˚pT qΓ0 .
We define maps

avgσ2 :X˚pT qΓ0 bQÑ X˚pT qΓ0 bQ,
avgJ :X˚pT qΓ0 bQÑ X˚pT qΓ0 bQ pJ Ď ∆q

as in Section 6.1. If J “ σ2pJq, we define πJ :“ avgJ ˝ avgσ2 . For an element µ P
X˚pT qΓ0 bQ or µ P X˚pT qΓ, we define

convpµq :“ max
JĎ∆

J“σ2pJq

avgJ avgσ2pµq P X˚pT qΓ0 bQ.

Then we can describe generic Newton points as follows:

Theorem 7.18. Assume that charpF q does not divide the order of π1pGadq, the Borovoi
fundamental group of the adjoint quotient4.
Let x “ wεµ P ĂW . The generic Newton point of x is given by

νx “ max
vPW

conv
˜

v´1µ´ wtpσ´1
1 v ñ σ2pwvqq `

1
#W

ÿ

uPW

pv´1µσ ´ u
´1µσq

¸

.

In fact, the maximum is attained for some v P LPpxq.

We prove this theorem by reduction to the previously established results for quasi-split
groups, following Goertz-He-Nie [GHN15, Section 2].
By [GHN15, Corollary 2.2.2], it suffices to prove the Theorem for adjoint groups, by

comparing BpGqx with BpGadqx.
Let us now assume that G is adjoint. Then γ :“ εµσ ˝ σ1 is a well-defined element

of ĂW , hence of Ω. Following [GHN15, Proposition 2.5.1], we can identify BpGqx with
BpG̃qxγ ¨ γ

´1. Here, G̃ is a quasi-split inner form of G with maximal torus T and
Frobenius given by σ2. We see that

νx “ νG
´

max
rbsPBpGqx

rbs
¯

“ νG
´

max
rbsPBpG̃qxγ

rbγ´1s
¯

.

A quick calculation shows that for all rbs P BpGq, we have

νGprbsq “ νG̃prbγsq ´
1

#W
ÿ

uPW

uµσ.

4It is conjectured in [GHN15, Section 2.2] that this assumption can be dropped; and in fact, it does
not appear any more in [HN21, Section 3.2].
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Thus

νx “ νG̃prbxγsq ´
1

#W
ÿ

uPW

uµσ.

Calculating νG̃prbxγsq using Corollary 7.4 shows Theorem 7.18.
Let us return to the general situation. Following Milićević-Viehmann [MV20, Re-

mark 1.3], we define an element x P ĂW to be cordial if the corresponding element x̃ in
the extended affine Weyl group of the quasi-split group G̃ under the above reduction
is cordial. Then the results from [MV20] on cordial elements guarantee that the affine
Deligne-Lusztig varieties associated with x̃ satisfy the most desirable properties as dis-
cussed earlier. By the above reduction method of [GHN15], it follows that also the affine
Deligne-Lusztig varieties associated with x satisfy these properties.

Straightforward calculation shows the following:

Proposition 7.19. Assume that charpF q does not divide the order of π1pGadq.
Let x “ wεµ P ĂW and pick v PW of minimal length such that

v´1µ` v´1µσ P V

is dominant. Then σ´1
1 v P LPpxq. The element x is cordial if and only if the following

two conditions are both satisfied:

(1) For any σ´1
1 v1 P LPpxq, we have

dpσ´1
1 v1 ñ σ2pwv1qq ě dpσ´1

1 v ñ σ2pwvqq.

(2) We have

dpσ´1
1 v ñ σ2pwvqq “ `

`

v´1σ1
σ2pwvq

˘

.

7.3. Connection to Demazure products
To conclude the section, we use our previous results on Demazure products to find a
different description of generic Newton points. Following He [He21a], we consider twisted
Demazure powers of x.

Definition 7.20. Let n ě 1. We define the n-th σ-twisted Demazure power of x as

x˚,σ,n :“ x ˚ pσxq ˚ ¨ ¨ ¨ ˚
´

σn´1
x
¯

P ĂW.

For n ě 2, let us write

xn :“ σ1´n
´

`

x˚,σ,n´1˘´1
x˚,σ,n

¯

,

such that

x˚,σ,n “ x˚,σ,n´1 ˚
´

σn´1
x
¯

“ x˚,σ,n´1 ¨
´

σn´1
xn

¯

.
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We can calculate xn in terms of x and σ1´nLPpx˚,σ,n´1q using Theorem 5.11. By Corol-
lary 5.26, we have

LPpx˚,σ,nq “ ρσn´1
x

`

LPpx˚,σ,n´1q
˘

“ ¨ ¨ ¨ “ ρσn´1
x
˝ ¨ ¨ ¨ ˝ ρσx pLPpxqq .

Observe that by definition of the generic action ρx, we may write

ρσnxp
σn
puqq “ σn

pρxpuqq.

Let us define the map ρx,σ :“ ρx ˝
σ´1
p¨q : W ÑW by

ρx,σpuq :“ ρxp
σ´1
puqq.

Then

LPpx˚,σ,nq “ρσn´1
x
˝ ¨ ¨ ¨ ˝ ρσx pLPpxqq .

“

´

σn´1
p¨q ˝ ρx ˝

σ1´n
p¨q

¯

˝ ¨ ¨ ¨ ˝

´

σ1
p¨q ˝ ρx ˝

σ´1
p¨q

¯

pLPpxqq

“
σn´1

p¨q ˝ ρx,σ ˝ ¨ ¨ ¨ ˝ ρx,σpLPpxqq
“ σn´1 `

ρn´1
x,σ pLPpxqq

˘

.

Lemma 7.21. (a) There exists an integer N ą 1 such that for each n ě N ,

xN “ xn and ρNx,σpLPpxqq “ ρnx,σpLPpxqq.

Denote the eventual values by x8 :“ xN resp. ρ8x,σpLPpxqq :“ ρNx,σpLPpxqq.

(b) We have

ρ8x,σpLPpxqq “tv P LPpxq | Dn ě 1 : v “ ρnx,σpvqu.

lim
nÑ8

`px˚,σ,nq

n
“`px8q.

(c) The element x8 is fundamental. For each v P ρ8x,σpLPpxqq, it can be written as

x8 “ p
σ´1

vqρx,σpvq
´1ε

µ´ρx,σpvqwt
´

σ´1
vñwρx,σpvq

¯

.

Proof. (a) Observe that ρnx,σ induces an endomorphism LPpxq Ñ LPpxq. We obtain a
weakly decreasing sequence of subsets of W

LPpxq Ě ρx,σpLPpxqq Ě ρ2
x,σpLPpxqq Ě ¨ ¨ ¨ .

Since W is finite, this sequence must stabilize eventually.
Because xn only depends on the values of ρn´1

x,σ pLPpxqq and x, the result follows.

(b) Both claims follow immediately from (a).
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(c) Let N be as in (a), and let n ě 1. Then

x˚,σ,N`n “ x˚,σ,N ¨ σ
N
x8 ¨ ¨ ¨

σN`n´1
x8

is a length additive product. In particular,

`px8 ¨ ¨ ¨
σn´1

x8q “ n`px8q.

By [Nie15, Theorem 1.3] or Proposition 6.11, x8 is fundamental.
Next let v P ρ8x,σpLPpxqq. Then also ρx,σpvq P ρ8x,σpLPpxqq, and we get

σNρx,σpvq P LPpx˚,σ,N`1q “ LPpx˚,σ,N ˚ σNxq “ LPpx˚,σ,N ¨ σ
N

px8qq.

In view of Proposition 5.12, we find a uniquely determined element σN v1 P LPpx˚,σ,N q
such that

pσ
N
v1, σ

N
ρx,σpvqq PMpx

˚,σ,N , σ
N
xq.

Then by Theorem 5.11,

x8 “ v1ρx,σpvq
´1εµ´ρx,σpvqwtpv1ñwρx,σpvqq.

Note that σv1 P σ1´NLPpx˚,σ,N q “ ρ8x,σpLPpxqq. The minimality condition on the tu-
ple pσN v1, σNρx,σpvqqmoreover implies that ρxpv1q “ ρx,σp

σv1q “ ρx,σpvq (Lemma 5.24).
The map ρx,σ : ρ8x,σpLPpxqq Ñ ρ8x,σpLPpxqq is a surjective, and the set ρ8x,σpLPpxqq is
finite. It follows that the restriction of ρx,σ to ρ8x,σpLPpxqq is bijective. Recall that
v and σv1 are two elements of ρ8x,σpLPpxqq whose images under ρx,σ coincide. Thus
v “ σv1, finishing the proof.

Theorem 7.22. (a) The σ-conjugacy class rx8s P BpGq is the generic σ-conjugacy
class of x.

(b) For any v P ρ8x,σpLPpxqq, we have `px8q “ `pxq ´ dpv ñ σ
pwρx,σpvqqq.

(c) Fix v P ρ8x,σpLPpxqq and define J “ suppσpρx,σpvq´1vq, so J Ď ∆ consists of all σ-
orbits of simple roots whose corresponding simple reflections occur in some reduced
decomposition of ρx,σpvq´1v PW .
We can express the generic Newton point of x as

νx “ πJ
`

v´1µ´ wtpv ñ σ
pwvqq

˘

.

Proof. (a) By Theorem 7.1, we can express the generic σ-conjugacy class of x as

rbxs “ maxtrys | y ď xu “ maxtrys | y ď x and y is fundamentalu.

In particular, rbxs ě rx8s. For the converse inequality, pick some y ď x fundamental
with rbxs “ rys P BpGq.
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By definition of the Demazure product, we get

x˚,σ,n “ x ˚ pσxq ¨ ¨ ¨ ˚
´

σn´1
x
¯

ě y pσyq ¨ ¨ ¨
´

σn´1
y
¯

.

Thus, using the fact that y and x8 are fundamental, we get

xνpx8q, 2ρy “`px8q “ lim
nÑ8

`px˚,σ,nq

n

ě lim
nÑ8

`py σy ¨ ¨ ¨ σ
n´1

yq

n
“ lim

nÑ8
`pyq “ xνpyq, 2ρy “ xνpbxq, 2ρy.

This estimate shows that rx8s “ rbxs.

(b) This follows from the explicit description of x8 in Lemma 7.21 together with Corol-
lary 2.11 and the simple observation ρx,σpvq P LPpx8q.

(c) Let us write x8 “ w8ε
µ8 . The generic Newton point of x is the Newton point of

x8, which we express using Lemma 6.7.
Let N ě 1 such that the action of pσ ˝w8q on X˚ becomes trivial. We want to show
for each v P ρ8x,σpLPpxqq that

v´1
N
ÿ

k“1
pσ ˝ w8q

kµ8 P X˚ bQ

is dominant.
Note each v P ρ8x,σpLPpxqq may be written as v “ ρx,σpuq for some u P ρ8x,σpLPpxqq.
By Lemma 7.21, it follows that w8 “ pσ

´1
uqv´1. Thus u “ σ

pw8vq P ρ
8
x,σpLPpxqq.

This shows σ
pw8vq P ρ8x,σpLPpxqq for each v P ρ8x,σpLPpxqq. It follows for each

α P Φ` that
C

v´1
N
ÿ

k“1
pσ ˝ w8q

kµ8, α

G

“

N
ÿ

k“1
xµ8, pσ ˝ w8q

kvαy

“

N
ÿ

k“1

´

xµ8, pσ ˝ w8q
kvαy ` Φ`ppσ ˝ w8qkvαq ´ Φ`ppσ ˝ w8qk`1vαq

¯

“

N
ÿ

k“1
`px8, pσ ˝ w8q

kvαq ě 0.

This shows the above dominance claim. As v P ρ8x,σpLPpxqq was arbitrary, the same
claim holds for ρx,σpvq. With

J :“ suppσpρx,σpvq´1 σpw8ρx,σpvqqq “ suppσpρx,σpvq´1vq,
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Lemma 6.7 proves that

νpx8q “ πJpρx,σpvq
´1µ8q “

L7.21
πJpρx,σpvq

´1µ´ wtpσ´1
v ñ wρx,σpvqqq

“
Def. πJ

πJpρx,σpvq
´1µ´ wtpv ñ σ

pwρx,σpvqqqq.

Now observe that

ρx,σpvq
´1µ ” v´1µ pmod QΦ_J q,

wtpv ñ σ
pwρx,σpvqqq ” wtpv ñ σ

pwvqq pmod QΦ_J q.

Part (a) of the above Theorem readily implies [He21a, Theorem 0.1]. Our previous
result Corollary 7.4 expresses the generic Newton point νx as a formula similar to part
(c) of the above theorem, but the allowed elements v P LPpxq are usually different ones.
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A. Some quantum Bruhat graphs
In this appendix, we show pictures of a couple of quantum Bruhat graphs and parabolic
quantum Bruhat graphs. For size reasons, only the root systems A2, B2, G2 and A3 are
covered.
The simple roots are numbered α1, α2 (and α3 for A3). For types B2 and G2, we use

the convention that α1 is long and α2 is short5. We write si as a shorthand for sαi
(i “ 1, 2, 3).

Elements of the Weyl group W are represented by lexicographically minimal reduced
words. In each ot the diagrams, the elements of the same length form a row of the
diagram, with the neutral element on the bottom and the longest element on the top.
Within each row, the elements are sorted lexicographically.
It follows that Bruhat edges always go upwards and quantum edges always go down-

wards.
For parabolic quantum Bruhat graphs, the quantum edges are drawn in a dark blue

shade and are labelled by their respective weight (in the parabolic case, a representative
of the coset in ZΦ_{ZΦ_J ). The Bruhat edges are drawn in black and are unlabelled.
The pictures are rendered using the LATEX package tikz-cd. The LATEX-code was

generated using the computer algebra system sage-combinat ([Sage], [SaCo]), with
manual tweaking of the arrows to improve readability.

A.1. Root System A2

The root system has three positive roots, namely α1, α2 and α1 ` α2. The Weyl group
consists of six elements. These are the two reflection orderings:

α1 ă α1 ` α2 ă α2,

α2 ă α1 ` α2 ă α1.

Quantum Bruhat graph
QBpW q

Parabolic quantum
Bruhat graph QBpW Jq

with J “ tα1u
s1s2s1

s1s2 s2s1

s1 s2

1

α_1 `α
_
2

α_1 α_2

α_2 α_1

α_1 α_2

s1s2

s2

1

α_2

The parabolic quantum Bruhat graph QBpW tα2uq is isomorphic to the one printed above,

5For type G2, the opposite labelling is used in sage.
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by interchanging α1 and α2. The parabolic quantum Bruhat graph QBpW tα1,α2uq con-
sists of only one point.

A.2. Root System B2

The root system has four positive roots, namely the long roots α1, α1 ` 2α2 and the
short roots α2, α1 ` α2. The Weyl group consists of eight elements. These are the two
reflection orderings:

α1 ă α1 ` α2 ă α1 ` 2α2 ă α2,

α2 ă α1 ` 2α2 ă α1 ` α2 ă α1.

The quantum Bruhat graph and the double Bruhat graph are given as follows:
s2s1s2s1

s1s2s1 s2s1s2

s1s2 s2s1

s1 s2

1

α_2 α_1

α_1 `α
_
2α_1 α_2

α_1 `α
_
2α_2 α_1

α_1 α_2

These are the two non-trivial parabolic quantum Bruhat graphs, with QBpW tα1uq on
the left and QBpW tα2uq on the right:

s2s1s2

s1s2

s2

1

α_1 `α
_
2

s1s2s1

s2s1

s1

1

α_1

α_1

A.3. Root System G2

The root system has six positive roots, namely the three long roots α1, α1 ` 3α2 and
2α1 ` 3α2 as well as the three short roots α2, α1 ` α2 and α1 ` 2α2. The Weyl group
consists of twelve elements. These are the two reflection orderings:

α1 ă α1 ` α2 ă 2α1 ` 3α2 ă α1 ` 2α2 ă α1 ` 3α2 ă α2,

α2 ă α1 ` 3α2 ă α1 ` 2α2 ă 2α1 ` 3α2 ă α1 ` α2 ă α1.
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Now the quantum Bruhat graph is given as follows:

s1s2s1s2s1s2

s1s2s1s2s1 s2s1s2s1s2

s1s2s1s2 s2s1s2s1

s1s2s1 s2s1s2

s1s2 s2s1

s1 s2

1

α_2 α_1

α_2 `α
_
1

α_2 `2α_1

α_1

α_2 `2α_1

α_2

α_2 `α
_
1α_2

α_2 `α
_
1

α_1

α_1 α_2

α_2 `α
_
1α_2 α_1

α_1 α_2

The two non-trivial parabolic quantum Bruhat graphs are given as follows, with QBpW tα1uq

on the left and QBpW tα2uq on the right:

s2s1s2s1s2

s1s2s1s2

s2s1s2

s1s2

s2

1

α_2 `α
_
1

α_2 `α
_
1

s1s2s1s2s1

s2s1s2s1

s1s2s1

s2s1

s1

1

α_1

α_2 `2α_1
α_1

α_1

α_1
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A.4. Root System A3

The root system has six positive roots, namely α1, α2, α3, α1`α2, α2`α3 and α1`α2`α3.
The Weyl group consists of 24 elements. These are the 16 reflection orderings:

α3 ă α1 ă α1 ` α2 ` α3 ă α1 ` α2 ă α2 ` α3 ă α2,

α2 ă α1 ` α2 ă α2 ` α3 ă α1 ` α2 ` α3 ă α3 ă α1,

α3 ă α2 ` α3 ă α1 ` α2 ` α3 ă α1 ă α1 ` α2 ă α2,

α3 ă α1 ă α1 ` α2 ` α3 ă α2 ` α3 ă α1 ` α2 ă α2,

α1 ă α3 ă α1 ` α2 ` α3 ă α2 ` α3 ă α1 ` α2 ă α2,

α3 ă α2 ` α3 ă α2 ă α1 ` α2 ` α3 ă α1 ` α2 ă α1,

α2 ă α2 ` α3 ă α1 ` α2 ă α1 ` α2 ` α3 ă α3 ă α1,

α2 ă α1 ` α2 ă α1 ă α1 ` α2 ` α3 ă α2 ` α3 ă α3,

α1 ă α1 ` α2 ă α2 ă α1 ` α2 ` α3 ă α2 ` α3 ă α3,

α3 ă α2 ` α3 ă α1 ` α2 ` α3 ă α2 ă α1 ` α2 ă α1,

α1 ă α1 ` α2 ă α1 ` α2 ` α3 ă α3 ă α2 ` α3 ă α2,

α1 ă α1 ` α2 ă α1 ` α2 ` α3 ă α2 ă α2 ` α3 ă α3,

α2 ă α1 ` α2 ă α2 ` α3 ă α1 ` α2 ` α3 ă α1 ă α3,

α2 ă α2 ` α3 ă α1 ` α2 ă α1 ` α2 ` α3 ă α1 ă α3,

α2 ă α2 ` α3 ă α3 ă α1 ` α2 ` α3 ă α1 ` α2 ă α1,

α1 ă α3 ă α1 ` α2 ` α3 ă α1 ` α2 ă α2 ` α3 ă α2.

The quantum Bruhat graph is printed on the next page.
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s 2
s 1
s 3

s 2
s 3
s 2
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Below is the parabolic quantum Bruhat graph QBpW tα1uq. It is isomorphic to QBpW tα3uq

after interchanging α1 and α3.

s1s2s3s1s2

s1s2s3s2 s2s3s1s2

s1s2s3 s2s3s2 s3s1s2

s1s2 s2s3 s3s2

s2 s3

1

α_2
α_3

α_2 `α
_
3

α_3

α_2 `α
_
3 α_2

α_3
α_3

α_2

α_2

α_3

α_3

This is QBpW tα2uq:

s1s2s3s2s1

s1s2s1s3 s2s3s2s1

s1s2s3 s2s1s3 s3s2s1

s1s3 s2s1 s2s3

s1 s3

1

α_1 α_3

α_1 `α
_
2 `α

_
3

α_3 α_1

α_3

α_1

α_1

α_3

Finally, we have QBpW tα1,α2uq on the left and QBpW tα1,α3uq on the right. Note that
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QBpW tα1,α2uq – QBpW tα2,α3uq after interchanging α1 and α3.

s1s2s3

s2s3

s3

1

α_3

s2s1s3s2

s1s3s2

s1s2 s3s2

s2

1

α_2

α_2
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