
3D-VField: Adversarial Augmentation of Point Clouds
for Domain Generalization in 3D Object Detection

Alexander Lehner∗,◦,1,2 Stefano Gasperini∗,1,2 Alvaro Marcos-Ramiro2 Michael Schmidt2

Mohammad-Ali Nikouei Mahani2 Nassir Navab1,3 Benjamin Busam1 Federico Tombari1,4

1 Technical University of Munich 2 BMW Group 3 Johns Hopkins University 4 Google

Abstract

As 3D object detection on point clouds relies on the ge-
ometrical relationships between the points, non-standard
object shapes can hinder a method’s detection capability.
However, in safety-critical settings, robustness to out-of-
domain and long-tail samples is fundamental to circumvent
dangerous issues, such as the misdetection of damaged or
rare cars. In this work, we substantially improve the gener-
alization of 3D object detectors to out-of-domain data by
deforming point clouds during training. We achieve this
with 3D-VField: a novel data augmentation method that
plausibly deforms objects via vector fields learned in an
adversarial fashion. Our approach constrains 3D points
to slide along their sensor view rays while neither adding
nor removing any of them. The obtained vectors are trans-
ferable, sample-independent and preserve shape and occlu-
sions. Despite training only on a standard dataset, such as
KITTI, augmenting with our vector fields significantly im-
proves the generalization to differently shaped objects and
scenes. Towards this end, we propose and share CrashD: a
synthetic dataset of realistic damaged and rare cars, with a
variety of crash scenarios. Extensive experiments on KITTI,
Waymo, our CrashD and SUN RGB-D show the general-
izability of our techniques to out-of-domain data, different
models and sensors, namely LiDAR and ToF cameras, for
both indoor and outdoor scenes. Our CrashD dataset is
available at https://crashd-cars.github.io.

1. Introduction

With the established wide-spread progress of learning-
based methods tackling a variety of perception tasks (e.g.,

∗ The authors contributed equally.
◦ Contact author: Alexander Lehner (alexander.lehner@tum.de).
Work partly sponsored by the German Federal Ministry for Economic

Affairs and Energy (grant 19A19005B), VDA KI-Absicherung project.

out-of-domain samples baseline: PointPillars 3D-VField [ours]

Figure 1. Predictions of PointPillars [18] trained on KITTI [13],
without and with our adversarial augmentations on out-of-domain
samples from the proposed CrashD dataset. CrashD comprises
rare (top) and damaged (bottom) vehicles, resulting in natural ad-
versarial examples [17]. As the models were applied to CrashD
without fine-tuning, due to the different object shapes, the stan-
dard PointPillars delivered two false negatives and a false positive.
Images used with courtesy of BeamNG GmbH.

object detection, semantic and panoptic segmentation), a re-
cent trend denoted a focus shift towards ensuring the safe
applicability of these powerful approaches in critical sce-
narios, such as autonomous driving and robotics [27]. This
has led to the pursuit of improving the model robustness and
generalization [12,22,37], especially against out-of-domain
data, which can naturally occur in the real world [17]. Such
approaches include domain adaptation [39] and generaliza-
tion [37], uncertainty estimation [11], simulations [4], and
adversarial alterations [35].

Since corner cases are difficult to be captured as they oc-
cur in a dynamic real-life scenario, current datasets include
only a limited amount of them, if any [5], leaving most of
these cases out-of-domain. However, taking care of cor-
ner cases is particularly important in safety-critical settings,
where long-tail and out-of-distribution samples could lead
to dangerous issues if not accounted for during training [5].

While several works have addressed some of these con-
cerns on the imaging domain [4, 11, 16, 26], this is still

1

https://crashd-cars.github.io

mostly unexplored for 3D point clouds [35], also due to the
inherent challenges of point clouds, as they are unordered,
sparse and irregularly sampled. Nevertheless, as the output
of 3D sensors (e.g., LiDAR, ToF cameras), point clouds are
especially useful in high automation, where robustness and
redundancy are intertwined with safety.

In this context, real non-standard objects, such as dam-
aged and rare cars, or those from different regions, can lead
to false negatives, as shown in Figure 1, since the inter-
point geometry on which 3D detectors rely is different than
usual. While these examples can naturally occur in the real-
world [17], they can also be generated artificially with ad-
versarial attacks [14]. This kind of approaches show the
vulnerabilities of a model, which can then be addressed to
improve robustness. Recent adversarial point cloud alter-
ation methods [35] have tackled this problem to improve
the generalization to out-of-distribution data. However,
despite being effective attacks, existing adversarial defor-
mation strategies [19, 40] are sample-specific, lack wide-
applicability, and by being designed without considering a
3D sensor, are mostly unconstrained in space [19].

In this work, we substantially improve the generaliza-
tion capability of 3D object detectors to out-of-domain data,
bridging this gap by deforming point clouds during train-
ing. We propose 3D-VField: a novel adversarial augmenta-
tion method that learns to deform point clouds via widely-
applicable and sample-independent vector fields (i.e., col-
lections of vectors linked to a set of points in a given space).
Our deformations preserve the overall object shape, only
slide points along the view ray, and do not add or remove
any points. After learning a vector field, we use it to al-
ter objects as data augmentation. The main contributions of
this paper can be summarized as follows:

• We raise awareness on natural adversarial examples,
such as those represented by damaged and rare cars,
around their ability to fool popular 3D object detectors.

• We propose 3D-VField: a sensor-aware adversarial
point cloud deformation method based on vector fields
able to increase the generalization of 3D object detec-
tors to out-of-domain samples via data augmentation.

• We introduce and publicly release CrashD: a dataset
of damaged and rare cars. Extensive experiments on
four outdoor and indoor datasets, namely KITTI [13],
Waymo [33], our CrashD, and SUN RGB-D [30],
show the wide applicability of our approach.

2. Related Work
Our work is about adversarial augmentation to improve

the generalization of 3D object detectors for point clouds.
In this section we provide a brief overview of existing ap-
proaches in these neighboring fields.

2.1. Improving Generalization

Generalization to unseen data is a highly desirable prop-
erty for any learning-based approach [37]. Unseen data in-
cludes any samples on which a model has not been trained
on, comprising both out-of-domain and in-domain data
(e.g., validation set), depending on the size of the domain
shift. In particular, domain generalization deals with im-
proving the performance on a target domain, without any
knowledge about it [37], in contrast to domain adaptation
which has access to the target data [39]. These works can be
grouped in two broad categories: those acting on the model
itself, and those operating on the input data.

Among the former category, model regularization strate-
gies are commonly used to reduce overfitting [31] or ad-
dress domain generalization [3]. Estimating the model
uncertainty was also found beneficial for out-of-domain
data [11]. Moreover, specific architectures can be found via
search algorithms to improve robustness [22].

A different category of works targets generalization by
manipulating the input data. Towards this end, it is pos-
sible to leverage pretraining and multi-task learning to im-
prove on out-of-distribution samples [2]. Additionally, syn-
thetic data can be included to increase the accuracy on rare
classes [4]. Data augmentation methods [16, 32, 45] also
belong to this category. Among these, there are adversarial
approaches, which extended the training data with altered
inputs learned in an adversarial fashion as a way to improve
generalization [26, 35, 36].

The method we propose in this work addresses domain
generalization (i.e., does not use any target information) and
belongs to the data category, specifically to the adversarial
approaches, which are detailed in Section 2.2.

2.1.1 Generalization for 3D Object Detection

In the context of generalization, some works addressed the
task of 3D object detection, which is also the focus of this
work. Simonelli et al. [29] created virtual views normaliz-
ing the objects with respect to their distance, to better gen-
eralize to samples at different depths in the image domain.
Tu et al. [35] improved the generalization towards cars with
roof-mounted objects, via adversarial examples on LiDAR
point clouds. Wang et al. [39] used domain adaptation to
fill the gap between vehicles from multiple countries and
different LiDAR sensors.

2.2. Adversarial Examples

Adversarial examples are input alterations designed to
lead a model to false predictions [14, 34]. A variety
of works explored adversarial examples in the image do-
main [9,23,24,41,44], where pixel perturbations impercep-
tible to humans are able to fool the target model. Alaifari et
al. [1] deformed images using a different adversarial vector

2

view rays

3D sensor

previous worksinput 3D-VField [ours]

smoothness
preservation

Figure 2. Adversarial deformations introduced by previous works,
compared to ours. Other methods add, drop or move points with
minor constraints. Ours only slides points along the view ray,
while preserving shapes and occlusions.

field learned for each sample. Wang et al. [38] proposed
adversarial morphing fields to alter image pixels spatially
and fool classifiers. However, this topic is still mostly un-
explored on point clouds, especially those captured by 3D
sensors (e.g., LiDAR, ToF camera).

2.2.1 Adversarial point clouds

Adversarial methods for 3D point clouds can be grouped
in three categories: generation if they add points, removal
if they remove points, and perturbation if points are only
shifted. Then we present the methods from the perspective
of generalization to out-of-domain samples.

Generation and removal Xiang et al. [40] pioneered ad-
versarial point clouds proposing a series of methods, some
of which added points to fool the shape recognition. Cao et
al. [8] showed the vulnerability of LiDAR-based methods
against adversarial objects added to the scene. Similarly, Tu
et al. [35] added adversarial meshes on top of cars. A differ-
ent line of works explored sensor attacks, adding points by
means of a spoofing device [7]. Conversely, removal meth-
ods adversarially learn to discard a few critical points [43].

Perturbation Xiang et al. [40] also proposed the first
two adversarial perturbation approaches. One is the itera-
tive gradient L2 attack, which is an adaptation of PGD from
the image domain [20], optimizing for a minimal deforma-
tion constrained by the L2 norm. Another approach is the
Chamfer attack, which uses the Chamfer distance (CD) be-
tween the original and the deformed object to decrease the
perceptibilty of the attack [19]. The CD is measured by
averaging the sum of the distances of the nearest neighbor
from each point of the original point cloud to the deformed
one. Using this distance function encourages point shifts
across the surface of the object. Our method is closely re-
lated to the iterative gradient L2 attack, but we do not learn
a vector for each point of each sample. Instead, we learn a
sample-independent vector field and introduce further con-
straints to improve our deformations. Liu et al. [19] inves-
tigated perturbations more noticeable than the ones of Xi-
ang et al., while producing continuous shapes by altering
neighboring points accordingly. Cao et al. [6] 3D printed

adversarial objects to fool multi-modal (LiDAR and cam-
era) detectors.

Generalization Several works on adversarial point
clouds were proposed targeting the ModelNet dataset [15,
19, 40], which comprises a set of synthetic 3D point clouds
resembling various object shapes. Since ModelNet was not
created with a 3D sensor, these foundation works often pro-
duce unrealistic outputs [19, 40], that were not intended to
improve the generalization of the models, but rather set the
basis for adversarial attacks on point clouds [40]. Addition-
ally, these mechanisms are sample-specific, making their
applicability limited [15, 19, 40]. Instead, Tu et al. [35] ex-
plored the impact on LiDAR object detection of meshed
objects, such as canoes and couches, synthesized on top
of a car roof. Moreover, they attacked these meshes in an
adversarial fashion, and used them to defend the detector,
thereby improving its robustness and generalization capa-
bility to unseen samples with roof-mounted objects.

Our work sets itself apart from all sample-specific meth-
ods [1, 19, 40, 43], as we construct a single highly trans-
ferrable and generic set of perturbations. Similar to the
work of Tu et al. [35], we aim to improve the generalization
to out-of-domain samples. However, compared to theirs, as
can be seen in Figure 2, we do not add any points, making
ours a perturbation method. Additionally, unlike Tu et al.,
by not making any assumptions on the object nor the kind
of sensor, our method has a wider applicability, from indoor
to outdoor settings. Plus, we improve realism by taking
into account occlusion constraints, which were ignored so
far, and making our deformations sensor-aware, as we only
shift points along the sensor ray. Additionally, our method
differs from all the ones above also because it generates ad-
versarial point clouds via transferable learned vector fields,
which has not been explored yet.

3. Method
We now illustrate our method, based on deforming point

clouds to account for natural object variations, thereby im-
proving the generalization of 3D object detectors to out-of-
domain data via adversarial augmentation. As shown in
Figure 3, we achieve this by adversarially learning a vec-
tor field (Section 3.1). Once trained, this vector field can be
frozen and then applied to any previously seen or unseen ob-
jects, after scaling it to match the target size and constrain-
ing the points movement to preserve shapes and occlusions
(Section 3.2). We apply it to deform all objects of its class,
which we use as data augmentation (Section 3.3).

3.1. Adversarially learned vector field

We create a lattice of uniformly spaced 3D vectors within
a 3D bounding box. Since the aim is to perturb the point
cloud without adding or removing points, vectors are an
immediate representation of this set of point shifts. This

3

sensor-aware
adversarial deformation deformed object point cloudobject point cloud object detector prediction

backprop.

3D sensor

same learned vector
field for every object

Figure 3. Overview of the proposed 3D-VField. We first learn a vector field adversarially to plausibly deform objects, taking constraints
into account. The modified scenes are later used as augmentations to improve the generalization to unseen object shapes.

allows for both compactness and transferability, since the
same learned vector field can be applied to any target ob-
ject. To construct such a vector field, we discretize the space
of a default bounding box Bo with a step size t to obtain
root coordinates f in 3D space and assign an empty vector
v = (x, y, z) to each root. Bo is defined by width w, height
h, length l, orientation angle α and its center c = (x, y, z).

Adversarial loss We use a binary cross entropy loss
to suppress all relevant bounding box proposals, follow-
ing [35]. We consider a proposal as relevant if the prediction
confidence score s > 0.1. Q is the set of relevant proposal
q, where each q has a confidence score s. We minimize s,
weighed by the 3D IoU with the the ground truth q∗:

Ladv =
∑

q,s ∈ Q
−IoU(q∗, q) log(1− s). (1)

By repeatedly reducing the confidence score while training
the vector field, the detector misses the object or predicts a
misaligned box. During training, we apply the same vector
field to each target object in every scene, minimizing the
loss on the whole dataset. At each optimization step, the
vectors are updated, resulting in differently deformed point
clouds of target objects, which eventually lead to different
predictions. As Ladv smoothly converges, the performance
of the detector, against which the vector field is optimized,
decreases. Once trained, the vectors can be used for data
augmentation.

3.2. Objects Deformation

Before applying a vector field, we scale it to match the
target object size. Manipulating the points through these
vectors, we constrain their movement as described below.

Optical ray consistency To help generalization and pre-
serve the sensor’s physical constraints when generating de-
formations, we employ a simple sensor model in which the
3D points can only be moved across the optical ray. We
first compute the ray ui between the 3D sensor and each
point pi, which determines the deformation direction for
each point. Then we calculate the deformation vectors ri,
for each pi by projecting its nearest vector vi onto the ray
ui. Points are therefore only moved by ri.

Regularizing the deformations We limit the perturba-
tion of the points by restricting the vectors with ‖v‖∞ < ε
following the standard PGD L∞ attack [20]. We then en-
sure shape smoothness along the object surface by sampling
multiple k neighboring vectors to move a given 3D point.
For each j-th nearest neighbor we calculate the euclidean
distance dij between each point pi of the object and its near-
est vector vij from the vector field. The final shift mi of
each point is calculated by weighting the deformation vec-
tors rij with their corresponding distance dij :

mi =

∑k
j=1 dijrij

k
(2)

This allows for a more gradual depth difference between
neighboring points, as neighboring vectors with opposite di-
rections would lead to almost no movement of the affected
point. Thus, shape smoothness is preserved and less irregu-
lar deformations are produced.

Relative rotation We found that using a single vector
field for all objects present in the dataset leads to very low
amounts of deformation. Due to the various object poses,
its vectors would be pointing in all directions, decreasing its
efficacy. We circumvent this and allow for a larger degree of
alignment between neighboring vectors, by first clustering
all the objects in the dataset w.r.t. the relative orientation
between object and sensor, and then learning G different
fields, one for each cluster.

3.3. Adversarial Data Augmentation

During training of the object detector, we perturb the
input point clouds by using the adversarially learned vec-
tor fields as data augmentation. This increases the robust-
ness, given that the learned deformations are structurally-
consistent, and are therefore more capable than standard
augmentations (e.g., scaling, flip, rotation) of resembling
out-of-domain car shapes, such as vehicles from a different
country [39]. We increase the variability by learning N dif-
ferent vector fields for each of theG rotations (Section 3.2).
During training, we randomly select only one object in the
scene, and we deform it with a randomly chosen vector field
out of theN possible ones for its relative rotation. This high

4

variability ensures that the model learns both normal and
deformed objects, and that each sample can be deformed
differently across training, thereby preventing overfitting to
specific deformations.

4. Experiments and Results

4.1. Experimental Setup

Datasets We conducted our experiments on four differ-
ent datasets. Three of them are autonomous driving LiDAR-
based: KITTI [13], the Waymo Open Dataset [33], and
the proposed synthetic CrashD, which we introduce be-
low. Additionaly, we apply our method also on the in-
door SUN RGB-D dataset [30], showing its wide applica-
bility. KITTI is a popular 3D object detection benchmark
recorded in Germany. We adopted a standard split [18],
which comprises 3712 training and 3769 validation LiDAR
point clouds, where we used the car class, reporting on
the standard easy, moderate and hard. We evaluated mod-
els trained on KITTI (without any fine-tuning) on Waymo
and our CrashD to assess the generalization capability of
the models to out-of-domain data, particularly critical for
autonomous driving. The Waymo dataset is a challeng-
ing large-scale collection of real scenes recorded in vari-
ous locations of the USA. It is highly diverse with different
weather and illumination conditions, such as rain and night.
Furthermore, in the Supplementary Material we show the
wide-applicability of our techniques on time-of-flight (ToF)
cameras with the SUN RGB-D dataset.

CrashD dataset To quantify the generalizability on out-
of-domain samples, we produced a synthetic dataset named
CrashD. As this includes various types of cars, such as nor-
mal, old, sports and damaged, it comprises a variety of plau-
sible vehicle shapes, thereby serving as a valuable out-of-
domain test. Specifically, the crashes are individually gen-
erated with a realistic simulator [21] and distinguished de-
pending on the intensity, namely light, moderate, hard, as
well as the kind of damage: clean (i.e., undamaged), lin-
ear (i.e., frontal or rear), and t-bone (i.e., lateral). The ran-
domly and automatically generated 15340 scenes were cap-
tured by a 64-beam LiDAR configured to mimic the KITTI
one. Each scene presents between 1 and 5 vehicles, with
visible damages, before being repaired and placed at the
same locations to collect the clean set, resulting in a total
of 46936 cars. We are releasing this data publicly, as an
out-of-domain evaluation benchmark for models trained on
KITTI [13], Waymo [33] or similar datasets. Further details
can be found in the Supplementary Material.

Evaluation metrics We evaluated the object detection
performance on the standard AP, with a 3D IoU threshold
of 0.7 for KITTI and CrashD, 0.5 for Waymo, and the stan-
dard 0.25 for SUN RGB-D. To measure the quality of the
adversarial perturbations we followed Tu et al. [35] using

the attack success rate (ASR) metric. It measures the per-
centage of objects that become false negatives after under-
going an adversarial alteration. For the ASR, we considered
an object detected if its 3D IoU was larger than 0.7.

Network architectures We used four different 3D ob-
ject detectors. PointPillars [18] voxelizes the scene in ver-
tical columns (i.e., pillars) from the bird’s eye view, us-
ing PointNet for feature extraction. Second [42] voxelizes
the point cloud and uses a learned voxel feature encod-
ing. Part-A2 Net [28] is an extension of PointRCNN that
predicts intra-object part locations for improved accuracy.
VoteNet [25] (Supplementary Material) is based on Point-
Net++ and Hough voting. While the first three are mostly
used for autonomous driving, VoteNet is used indoor.

Implementation details We constructed each vector
field within Bo with w = 1.8m, h = 1.6m, l = 4.6m and
a step size of t = 20cm resulting in 1656 vectors per vector
field. If not stated otherwise, we grouped objects by rela-
tive rotations with G = 12 groups, and set N = 6. During
the perturbation stage, we moved points according to their
k = 2 nearest vectors and deform only along the sensor ray.
For the PGD optimization, we used Adam with a learning
rate of 0.05. The distance threshold was set to ε = 30cm.
Each vector was randomly initialized form a uniform dis-
tribution with values between -1cm and 1cm. We trained
all models using PyTorch and MMDetection3D [10] on a
single NVIDIA Tesla V100 32GB GPU.

Prior works and baseline We focused on object de-
tection and compared with other adversarial methods. All
models were applied on PointPillars [18], unless otherwise
noted. As point perturbation methods we used the iterative
gradient L2 [40] and the Chamfer attack [19]. For genera-
tion we used [40] adding 10% and [43] removing 10% of
the objects points. For a fair comparison, we trained all on
the same KITTI dataset split [18], with ε = 30cm, then we
altered the point clouds as data augmentation with the same
settings as ours (i.e., random selection of one object per
scene to augment). Moreover, we combined ours with the
domain adaptation statistical normalization (SN) strategy
of [39]. Following [39], after computing the average box di-
mensions in the target datasets (i.e., Waymo and CrashD),
we scaled the source (i.e., KITTI) point clouds within the
ground truth boxes accordingly and fine-tuned the trained
models with this altered target-aware source data.

4.2. Quantitative Results

Adversarial methods and generalization Table 1
shows the comparison between our 3D-VField and related
adversarial approaches when applied on PointPillars [18] in
the context of generalization. In particular, we report other
adversarial perturbation methods, such as the iterative gra-
dient L2 [40] and the Chamfer attack [19], adversarial gen-
eration [40], as well as adversarial removal [43]. Augment-

5

KITTI →Waymo → CrashD
AP AP normal AP rare

Architecture Method easy mod. hard ASR AP clean crash clean crash

PointPill. [18]

no augm. [18] 70.00 61.88 56.23 - 30.68 1.79 0.93 3.92 2.33
no obj. sampl. [18] 83.83 74.14 68.30 - 37.85 50.36 36.44 28.70 20.02
PointPillars [18] 88.24 77.11 74.55 - 40.86 65.20 43.67 34.14 22.48
iter. grad. L2 [40] 86.24 76.92 73.84 ∗95.9 39.86 58.65 41.86 35.92 23.69
Chamfer att. [19] 87.15 77.05 74.07 ∗99.8 40.54 56.84 39.56 36.29 24.73
advers. gener. [40] 86.12 76.39 73.18 ∗91.6 40.55 57.75 38.03 35.73 24.18
advers. remov. [43] 86.51 76.85 74.04 ∗86.1 40.32 66.52 48.88 41.42 28.10
3D-VField [ours] 87.05 77.13 75.55 63.4 44.61 67.95 52.87 43.40 30.37

SN dom. adapt. [39] - - - - 49.27 79.42 72.59 60.53 48.23
[ours] + SN [39] - - - - 51.32 92.14 87.28 86.26 76.42

Second [42] Second [42] 88.93 78.68 76.87 - 42.45 72.73 56.74 41.85 32.84
3D-VField [ours] 88.87 78.56 76.81 54.9 43.51 76.54 60.51 47.47 36.14

Part-A2 [28] Part-A2 [28] 89.60 79.16 78.52 - 49.76 83.05 63.25 74.03 52.33
3D-VField [ours] 89.65 79.26 78.62 50.5 56.08 88.80 73.80 81.10 61.34

Table 1. Comparison of models trained on KITTI [13] towards out-of-domain data (without any fine-tuning), namely Waymo validation
set [33] and our CrashD datasets, as well as on the KITTI validation set. Each method applies a data augmentation (for adversarial ones
ASR is measured on their adversarial examples), or performs domain adaptation (only SN [39] in this work), resulting in the reported APs.
→: transfer from KITTI. ∗: being sample-specific, the adversarial method had to be trained on the validation set of KITTI.

ing with the adversarial examples of our 3D-VField did not
reduce the overall in-domain AP compared to PointPillars,
but brought numerous benefits in terms of out-of-domain
generalization. As demonstrated by Wang et al. [39], the
transfer from KITTI to Waymo is particularly challenging
due to the different shapes and sizes of the vehicles found
in Germany and the USA, as well as the 50% higher point
density and the narrower field of view [33]. This test as-
sesses the quality of the generated deformations with re-
spect to real vehicle shapes found in a different country.
On Waymo our 3D-VField delivered more than 9% rela-
tive improvement over PointPillars and the other adversarial
methods, and 13% over Part-A2 [28], proving the benefit of
our added sensor-awareness on real and challenging out-of-
domain data. On the right of Table 1 we report the results on
the proposed CrashD. It can be seen that despite the trans-
fer from KITTI, the AP on clean normal cars is relatively
high for all approaches, likely because those samples are
not particularly difficult. However, when damaging those
exact same vehicles and placing them at the same locations
(crash), the detection performance dropped. This shows the
effort required for the methods to relate these to the cars
learned on KITTI, and proves them as natural adversarial
examples. Similarly, with rare cars (i.e., old and sports
cars), the AP dropped even more, quantifying the domain
shift from normal vehicles. Rare crash cars, by combin-
ing the two out-of-domain aspects (i.e., rarity and damage),

were the hardest for all methods, reducing the AP from nor-
mal clean by up to two thirds (PointPillars). Nevertheless,
our method improved significantly over the detectors and
the other adversarial approaches for all transfers and cate-
gories. This can be attributed to our adversarial augmenta-
tions introducing diversity in the training data, while being
sensor-aware. In particular, the sensor-awareness ensures
that the deformed point clouds are still plausible, thereby
better resembling possible out-of-domain samples, such as
those of Waymo and CrashD. Among the other adversarial
approaches, only removing points [43] improved general-
ization to CrashD, probably because it preserved the over-
all point clouds. Nevertheless, [43] was not beneficial on
Waymo, which features denser point clouds and more chal-
lenging real scenes.

Combination with data augmentations As adversarial
data augmentation, our 3D-VField is not alternative to dif-
ferent augmentation strategies, but can be applied in combi-
nations with others. In Table 1 we show how common data
augmentation techniques impact the detections for Point-
Pillars [18]. Using no augmentations (no augm.) criti-
cally reduced the APs, especially on CrashD at IoU 0.7 (Ta-
ble 1). At IoU 0.5, this resulted in an AP on normal clean of
65.59, while the baseline [18] delivered 98.91. Introducing
standard augmentations (no obj. sampl., e.g., flip and rota-
tion) improved, but adding the popular object sampling [18]
(PointPillars) increased the APs further. On top, our aug-

6

G K. ASR ↑ K. mod. →Waymo # vectors

1 55.08 77.32 40.43 10K
12 63.37 77.13 44.61 120K
360 44.84 77.06 40.30 3.6M

Table 2. Our 3D-VField trained on KITTI (K.) with varying
amounts of relative rotations G. →: transfer no fine-tuning.

mentations substantially improved all transfers, without de-
creasing the in-domain performance.

Combination with domain adaptation By addressing
domain generalization, our approach does not use any tar-
get information. Therefore, ours is not alternative to domain
adaptation methods [39], which make use of target data.
However, similarly to other data augmentation strategies,
our 3D-VField can be combined with domain adaptation
techniques. As shown in Table 1, such combination further
boosts the performance on challenging out-of-domain data.
By altering the objects size via the statistical normalization
(SN) of [39], the AP on Waymo increased. Constrained by
the high amount of false positives and negatives, when com-
bined with SN, ours retained a margin of over 2% compared
to PointPillars with SN. Moreover, the AP on CrashD im-
proved dramatically across all categories, especially for the
hardest rare crash group. The results show how, despite a
substantial increase in AP from PointPillars [18], SN alone
did not reach the full potential of the detector. Only when
combined with ours, the AP doubled (normal crash) and
more than tripled (rare crash) over PointPillars, without us-
ing any extra target information. This shows the benefit of
this combination, and reiterates the added value of incorpo-
rating adversarially deformed objects via data augmentation
to improve generalization to out-of-domain samples.

Adversarial methods as attacks In terms of ASR (Ta-
ble 1), our approach is not as strong as the other adversarial
methods, namely the iterative gradient L2 [40], the Chamfer
attack [19], adversarial generation [40] and removal [43].
However, this is expected as our vector fields are sample-
independent, compared to their point-to-point deformations
being sample-specific. Due to this reason, their alterations
had to be learned directly on the KITTI validation set, on
which the ASR was measured. Nevertheless, a very high
ASR means the altered objects are unrecognizable, which
does not aid generalization. The goal of our method is
not having a detector fully miss the attacked objects (high
ASR), but rather deforming them to improve the perfor-
mance on out-of-domain data. Towards this end, the per-
turbed objects need to be at the same time altered enough
to add diversity to the training data, and not be too far apart
from the training distribution to avoid confusing the detec-
tor. We found this balance by learning our vector fields ad-

KITTI →W. → CrashD
Method mod. ASR n.,clean r.,crash

P.P. [18] 77.11 - 40.86 65.20 22.48
no learn 76.36 10.1 41.62 62.94 21.75
unleash 76.82 97.7 40.95 60.43 27.55
ray con. 76.35 59.5 41.03 59.82 29.16
full 77.13 63.4 44.61 67.95 30.37

Table 3. Ablation on the deformation constraints imposed by our
method, compared to PointPillars (P.P.) [18]. Trained on KITTI.
→: transfer no fine-tun.; W.: Waymo.

versarially, while preserving the objects shape and the sen-
sor realism with our added constraints.

Different 3D detectors In Table 1, we also compare the
performance of our 3D-VField when paired with different
3D object detectors, namely PointPillars [18], Second [42],
and Part-A2 [28]. Remarkably, using the proposed adver-
sarial augmentation improved the AP of Part-A2 on Waymo
by a large margin. The superiority of Part-A2 over the other
detectors can be attributed to its part-awareness [28], which
might have set its focus on the most relevant object parts
(e.g., wheels) and their relationships to identify cars also in
out-of-domain settings. For Second [42], the performance
on KITTI turned out lower than the one reported in [10],
despite using the same settings and framework. This re-
duced AP affected both the baseline [42] and our approach.
Nevertheless, adding our adversarial deformations signifi-
cantly improved the generalization of all three detectors to
out-of-domain data, despite training our vector fields solely
against PointPillars. This shows the wide applicability and
transferability of our techniques.

Specificity-generalization trade-off Table 2 shows that
by varying the amount of relative rotations G, a trade-
off arises between generalization, attack specificity (i.e.,
strength on individual samples by overfitting to the train-
ing data), and storage (i.e., amount of vectors). G = 12
offers a good balance. With the extreme G =# of objects,
ours would become sample-specific, inheriting the weaker
generalization capabilities of [19,43]. While these methods
needed to be trained on the validation set, allowing for high
ASRs (Table 1), our vectors were learned on the training
set. So with high G, ours overfitted on the training data,
which is visible evaluating on the validation set. Our aug-
mentation strategy learns only 1656 3D vectors to perturb
objects. However, by training with G = 12 and N = 6,
the amount of vectors increased to 120K. Conversely, the
sample-specific iterative gradient L2 [40] and the Cham-
fer [19] attacks required 10.9M and 12.6M vectors for train-
ing and validation sets respectively. This shows the easy
applicability of our 3D-VField.

7

out-of-domain samples / GT 3D-VField [ours]

W
ay

m
o

→
K

IT
TI

baseline: PointPillars w/ iter. grad. L2 adv. augm.

C
ra

sh
D

→

Figure 4. Predictions on challenging out-of-domain samples from the proposed CrashD (top) and Waymo [33] (bottom). Models based on
PointPillars [18] trained on KITTI (without fine-tuning). Iterative gradient L2 [40] and ours trained with adversarial augmentation.

Ablation study on deformation constraints As we in-
troduced the sensor-awareness and the surface smoothness
constraints to our deformations, we investigate their impact
in terms of generalization to out-of-domain data. In Table 3,
we report this comparison when limiting the deformations
to ε = 30 cm. It can be seen that not learning the per-
turbations, but applying all our constraints (no learn) could
already be a beneficial augmentation technique, as it im-
proved the transfer to Waymo. Instead, removing all con-
straints, but learning the vector fields (unleash) delivered
a strong ASR of 97.7%. This significantly increased the
AP on the CrashD rare cars. When deforming with sensor-
awareness (ray con.), ASR reduced, but the AP on the most
difficult transfer settings (i.e., rare crash) improved. Our
full model 3D-VField, adds the distance smoothing (Sec-
tion 3.2) delivering superior transfer capabilities. Further-
more, increasing the maximum deformation ε to 40 or 60
cm, improved the ASR to 73.3% and 87.1%, but as aug-
mentation decreased the AP on KITTI by 1% and 1.7%,
respectively. This means that higher deformations do not
generalize well, as their plausibility decreases, while 30 cm
offers a good trade-off.

4.3. Qualitative Results

In Figure 4 we compare the transfer predictions from
KITTI to CrashD and Waymo [33] of the standard Point-
Pillars [18], augmented with ours and the iterative gradient
L2 adversarial approach [40], which is the closest to ours in
terms of adversarial deformation (Section 2). For CrashD,
as seen in the quantitative results (Section 4.2), the iterative
gradient L2 method delivered better detections compared to
not using any adversarial augmentations [18], but our 3D-
VField outperformed it, with a more aligned box for the
left damaged car. The figure also shows the severity of the
hard damages present in CrashD, and how adversarial aug-
mentation helps to detect such challenging samples. For
the difficult transfer KITTI→Waymo (Section 4.2), it can
be seen that all methods had troubles detecting the cars with
few points in the parking lot on the left. Furthermore, Point-
Pillars [18] ignored 3 recognizable cars with a high amount

of points, while augmenting with the iterative gradient L2
caused missing 2 of them and detecting 2 further ones, al-
beit with misaligned boxes. Instead, despite missing further
ones, our method was able to recognize these visible cars.

Chamfer attack 3D-VField [ours]original point cloud

Figure 5. Example deformations by our method and the Chamfer
attack [19] on a car of the KITTI validation set [13].

Figure 5 confirms that the strong ASR of the Chamfer at-
tack [19] seen in Table 1 corresponds to unrecognizable ob-
jects. It also provides an example of the minor deformations
introduced by our adversarial vector fields. By preserving
the overall shape of the car and its surfaces, ours allowed
for superior generalization to unseen data.

We refer to the Supplementary Material for more re-
sults on indoor settings, transferability, robustness against
noise, detailed evalutations on CrashD, and various abla-
tion studies on grouping and aggregation strategies, as well
as the amount of deformed objects during training.

5. Conclusion

In this paper we presented 3D-VField: an adversarial
augmentation method for point clouds to improve the object
detection performance on natural adversarial examples and
out-of-domain data, such as rare, damaged cars, or vehicles
from different regions. Towards this end, 3D-VField pro-
duces plausible shapes used as data augmentation. Exten-
sive experiments showed the high generalization and trans-
ferability of the proposed approach, from indoor to outdoor
settings, on both real and synthetic data. Furthermore, we
proposed and released CrashD: a new benchmark to chal-
lenge 3D object detectors on out-of-domain data, including
various kinds of damaged and rare cars.

8

A. Supplementary Material
In this supplementary material we include further de-

tails and results. Specifically, Section A.1 describes the
proposed CrashD out-of-domain dataset to a greater ex-
tent, Section A.2 provides additional implementation de-
tails, Sections A.3 and A.4 report more quantitative and
qualitative results on outdoor data, while Section A.5 pro-
vides results on ToF camera data in indoor settings.

A.1. Details on the Proposed Dataset: CrashD

In this section we further describe the proposed dataset:
CrashD. We refer the reader to the dataset webpage to see
examples of the generated accidents and scenes.

A.1.1 Intended Use

This dataset was designed to evaluate the performance of
LiDAR-based 3D object detectors on out-of-domain data.
It is meant to serve as a test benchmark for 3D detectors
trained on KITTI [13], Waymo [33], or similar datasets.

It should be noted, that CrashD is not intended for train-
ing and evaluating an object detector directly, since the gen-
erated LiDAR scenes do not include anything other than
ground and cars. Therefore, training and evaluating on this
dataset would be rather trivial, since the detector could learn
that anything rising from the ground is a car, except for the
relatively small spare parts separated by the accidents (e.g.,
the tire in Figure 1).

Nevertheless, reasonable uses of the proposed CrashD
could include domain adaptation, transfer learning, and do-
main generalization [37], as well as synthetic-to-real trans-
fers. Furthermore, it could be used to assess the damage
of a vehicle, and also for uncertainty estimation or similar
methods to detect out-of-distribution samples. Moreover, it
could serve for point cloud reconstruction, or anomaly seg-
mentation approaches comparing damaged and undamaged
cars, since for each crashed vehicle in a scene we provide
its repaired counterpart at the same location.

A.1.2 Driving Simulator

CrashD was generated using a driving simulator developed
by BeamNG [21], which includes a realistic physics engine,
allowing for realistic damages. It offers a Python interface
to setup the scenarios programmatically. Furthermore, it
features a variety of sensors, including a LiDAR with cus-
tomizable settings. Therefore, we equipped the ego vehicle
with a LiDAR that imitates the one used in KITTI [13].

A.1.3 Data Generation and Collection

We generated random accidents with random settings (e.g.,
hitting angle, distance, type of hitting car, type of hit car),

Figure 6. LiDAR scene setup of CrashD. For each car, a black
arrow indicates its damaged area, which is ensured to be visible
from the sensor viewpoint. Image used with courtesy of BeamNG
GmbH.

and placed the cars randomly in the LiDAR scene. On each
type of car (i.e., normal and rare), we applied 2 types of
accidents (i.e., linear and t-bone), with 3 intensities each
(i.e., light, moderate and hard). That results in 12 different
categories of damaged cars and their 12 undamaged coun-
terparts (i.e., clean), resulting in 24 categories overall. As
the undamaged cars were placed at the exact same locations
in the LiDAR scenes, they can be used as control group, to
check the performance drop of a 3D detector when intro-
ducing the damages on the same cars.

We generated the accidents as follows. For each of the
12 categories of damages, we randomly selected 5 cars of
the corresponding vehicle type (i.e., normal, rare), and 1
hitting vehicle. The hitting vehicle crashed into each of the
5 cars, getting repaired before each crash. We then repeated
this process at least 64 times for each of the 12 categories,
generating more than 3840 different accidents.

Furthermore, within each category, we used several ran-
dom parameters, resulting in a high amount of possible
damages. The intensity was determined by the distance
from which the hitter starts, so the higher the distance, the
higher the speed at which it will hit the target (i.e., one of
the 5 cars). The effect of different intensities on the two
types of cars for a linear crash can be seen in Figure 7. For
each intensity type, there was a random variable determin-
ing a variation of the distance at which the hitter was placed.
Then, the hitting angle and the side (i.e., front or back for
linear, and left or right for t-bone) were also randomized.
Overall, this covered 360 degrees for each type of car and
intensity.

Each batch of 5 cars, after being hit, was randomly
placed in the LiDAR scene, such that the damaged area was
visible from the sensor viewpoint, as shown in Figure 6.
We considered a crash visible if the sensor was within 35

9

light moderate hard

no
rm
al

ra
re

Figure 7. Comparison of linear damage intensities for normal and rare cars of CrashD. For each type of car, the accidents were created by
the same hitting vehicle, coming from the same angle. It can be seen that the hard crash compromised the structure of the weaker rare car,
while the normal car absorbed the impact differently, leaving the cabin unchanged.

degrees from the hitting angle. This ensured that a car clas-
sified as damaged is represented by a deformed point cloud.
Moreover, if the damaged part was not visible from the sen-
sor, the car was discarded from the batch.

This was due to a series of reasons, resulting in the lack
of control over the rotation of the damaged car within the
LiDAR scene. In particular, BeamNG setup the simula-
tor [21] such that if a vehicle is rotated programmatically,
it gets automatically repaired. Plus, depending on the dy-
namics of a crash, a damaged vehicle could rotate following
the impact. So, as we reduced the LiDAR scene to the front
180 degrees, we had to discard some cars to be sure that
they were not classified as damaged if their impacted area
was not visible. To avoid that crashes with a set of hitting
angles could systematically not be placed in the scene, we
randomly rotated the whole accident scenarios.

For each batch of 5 cars, we recorded 10 frames with
the cars with visible damages (between 1 and 5), where we
randomized the distance from the sensor, as well as the an-
gle around it. Moreover, again to avoid that a vehicle is
considered damaged if the affected area is not visible, we
excluded occlusions considering only 25 angles around the
sensor, and preventing two cars from occupying the same
one. This resulted in 750 possible different locations in the
scene. With this setup, a given vehicle might be discarded
in one frame if the angles from which its damage is visible
are occupied by other cars, but might appear in a subsequent
frame if it gets placed beforehand.

Furthermore, we put the objects only in the front, moti-
vated by the front-facing setup of KITTI [13], thereby fa-
cilitating transfers from KITTI to the proposed CrashD. To-

wards this end, we positioned the vehicles from 10 to 40
meters away from the LiDAR, around its front 180 degrees.
As shown in Figure 6, the scene features a large parking lot,
where no object is located, other than the cars. We selected
a totally empty parking lot (lacking poles, trees, or anything
else), to fully focus on the task at hand, providing test data
for evaluating the generalization capability of a method to
different object shapes. Instead, having distracting elements
(e.g., trees) in the scene, could have led to a different kind
of transfer evaluation (e.g., the ability of recognizing cars
compared to other objects in the scene), which goes beyond
the scope of this dataset. Nevertheless, in the main paper, as
well as in additional results in this supplementary material,
we also show a transfer from KITTI [13] to Waymo [33],
which features real complex scenes, with trees and other
objects, thereby challenging the 3D detector in a different
way compared to transferring to the proposed CrashD.

A.1.4 Vehicles

The simulator offers a variety of fictional vehicles, which
are shown in Figures 8, 9 and 10. In particular, the 12
normal cars used are shown in Figure 8, resembling the
vast majority of vehicles on the road today in the coun-
tries where common LiDAR datasets were recorded, such
as Germany and USA, for KITTI [13] and Waymo [33] re-
spectively. Figure 9 shows the 7 rare cars used for CrashD,
including older cars from Europe, USA and Asia, as well as
a wedge-shaped sports car. Among older cars, the simulator
features different muscle cars, and also a very small car (at
the top left of Figure 9).

10

Figure 8. Normal cars of CrashD. These were classified as normal as they resemble the vast majority of cars on the road today in Germany,
USA, and other locations where popular LiDAR datasets, such as KITTI [13] and Waymo [33], have been recorded.

*

*

Figure 9. Rare cars of CrashD. These were classified as rare as they complement the normal (i.e., common) cars shown in Figure 8. In
particular, rare ones resemble old cars from various regions, and also include a wedge-shaped sports car. * indicates cars that cannot hit
other vehicles (due to their low speed and weight), but can only be hit by others.

The significant gap between the two types of cars can
be seen by comparing the normal and rare vehicles in Fig-
ures 8 and 9 respectively. Specifically, considering the
normal cars resemble those from KITTI and Waymo, the
shapes of the rare ones are rather different, posing a sub-
stantial challenge for any LiDAR-based 3D object detector
transferring on this dataset from those two others. Anal-
ogously, detecting the cars with the various deformations
resulting from the accidents, which can be seen in Figure 7,
pose a different, but also significant challenge for a detector
trained on KITTI, Waymo, or a similar dataset.

Since the KITTI [13] car annotations do not include
vans, trucks, pickups and busses, we excluded these from
the detectable vehicles of CrashD. Nevertheless, these ve-
hicles were part of the pool of hitting vehicles, and they

are shown in Figure 10. Hitting vehicles also included all
the ones shown in Figure 8, as well as those in Figure 9.
However, we excluded the 2 cars marked with * due to their
relatively low speed and weight, which would have not pro-
vided an accident as intense as those caused by the other
vehicles, thereby altering the data distribution along the in-
tensity types (i.e., light, moderate, hard). In spite of that,
the 2 with * were part of the detectable vehicles.

A.1.5 Dataset Statistics

In total, the proposed CrashD includes 46936 cars, half of
which are damaged and half are not, as the LiDAR scenes
were repeated with and without damages. Normal cars are
23314, while rare ones are 23622, again half of each is dam-

11

Figure 10. These vehicles can only hit others and are not detectable objects, as they do not fit the KITTI [13] criteria for being a car, so
they would not get recognized by a model transferred from KITTI.

aged. 8124 cars were hit by light accidents, 7453 moderate
and 7891 hard. 11530 were affected by a linear crash, while
11938 by a t-bone. Due to the vehicle placement in the Li-
DAR scene being dependent on the damage visibility, cars
undergoing a linear crash were more likely to be included
from a frontal or rear perspective (including 3/4 views),
while t-bone ones were only included from the sides.

A.2. Additional Implementation Details

Iterative gradient L2 attack For this attack [40] we
minimize our adversarial loss Ladv constraining the defor-
mation m for each point p with ‖m‖2 < ε, with ε = 30
cm.

Chamfer attack For the Chamfer attack [19] we used
the Chamfer distance to measure the gap between the origi-
nal and perturbed point clouds, which is given by:

C(X,Y) =
1

|X|
∑
x∈X

min
y∈Y
||x− y||2 (3)

for two sets X and Y . We perturb by minimizing:

Lcha = Ladv + λC(p+m,p) (4)

with λ set to 0.1 and the amount of deformation constrained
by C(p + m,p) < ε, with ε = 30 cm. It should be noted
that single deformations vectors could lead to perturbations
larger than 30 cm, since what is bounded is the overall
Chamfer distance and not single vectors. This attack led to
only a small amount of perturbed points, but the ones that
moved showed large displacements.

Adversarial removal For the removal attack we fol-
low [43] and remove 10% of the critical points of an object.
These are those input points that if removed, the prediction
changes. We estimate them as those with the highest defor-
mation magnitude from the iterative gradient L2 attack [40].

Adversarial generation We follow [40] adding 10% of
the objects points. We initialize their location as that of the
critical points (see removal). We then perform the iterative
gradient L2 attack [40] solely on the added points. Thus
shifting them to decrease the detection quality.

Transfer to Waymo To evaluate the transfers to
Waymo [33], we used the standard KITTI evaluation.
Therefore, the LiDAR scene was cut until 70 m in front of

the ego vehicle and 40 m to both sides. We also lowered the
whole point cloud and ground truth bounding boxes by 1.6
m, to match the KITTI coordinates and ground plane.

A.3. Additional Outdoor Quantitative Results

A.3.1 Transferability of the Vector Fields

PointP. [18] Second [42] Part-A2 [28]
Adv.aug. AP ASR AP ASR AP ASR

none 77.1 63.4 79.2 54.9 79.2 50.5
w/o Ladv 76.4 60.0 77.2 52.5 79.3 47.4
[ours] 77.1 21.8 78.1 18.3 79.3 18.7

Table 4. Moderate AP and ASR ↓ across different models, show-
ing transferability and efficacy of our deformations, on the vali-
dation set of KITTI. ASRs on Second and Part-A2 are measured
on vector fields trained on the defended PointPillars, to report the
transferability. Adv.aug.: adversarial augmentation; w/o Ladv:
ours not learned.

Table 4 shows the high transferability of our adversarial
deformations to other 3D object detectors. It can be seen
that perturbations learned on PointPillars [18] are highly ef-
fective also on rather different architectures such as Sec-
ond [42] and Part-A2 [28], maintaining up to 86% ASR
across the models. Table 4 reports also the benefit of our
adversarial augmentation strategy against our deformations.
The perturbed point clouds targeting PointPillars are effec-
tive also to defend the other models.

A.3.2 Robustness against noise

Method -10% -5% 0% +5% +10%

PointP. [18] 70.51 70.88 77.11 67.36 65.27
[ours] 71.45 71.75 77.13 69.57 65.86

Table 5. KITTI validation moderate AP under various % of re-
moved and added points within the cars bounding boxes.

12

normal, linear normal, t-bone rare, linear rare, t-bone
→ CrashD light mod. hard light mod. hard light mod. hard light mod. hard

Po
in

tP
.[

18
]

clean baseline [18] 59.6 64.4 60.6 65.5 73.7 67.3 33.5 33.8 27.7 37.5 35.1 37.3
3D-VF [ours] 61.8 64.2 62.0 72.4 76.7 70.6 39.6 41.1 35.0 49.6 47.4 47.7

crash baseline [18] 46.5 33.8 28.6 57.9 54.9 40.2 26.7 22.9 15.4 31.2 23.3 15.4
3D-VF [ours] 54.3 46.6 40.6 65.3 60.2 50.2 33.4 31.0 21.5 41.7 33.0 22.1

Se
co

nd
[4

2]

clean baseline [42] 67.0 68.6 68.7 76.1 81.1 75.0 39.3 43.8 37.5 43.7 42.5 44.4
3D-VF [ours] 71.3 75.4 73.1 79.3 82.4 77.7 40.9 47.5 41.5 52.8 49.2 53.0

crash baseline [42] 60.1 46.4 43.0 72.0 65.6 53.3 36.1 37.8 28.8 40.1 31.4 22.9
3D-VF [ours] 64.8 50.4 44.9 75.5 69.4 58.1 38.4 37.0 29.1 49.3 37.7 25.4

Pa
rt

-A
2

[2
8]

clean baseline [28] 77.9 82.7 78.4 86.6 87.6 85.2 71.5 72.7 73.7 78.3 72.9 75.1
3D-VF [ours] 85.6 86.2 86.0 91.3 93.2 90.5 80.0 81.6 79.8 83.7 79.3 82.2

crash baseline [28] 71.1 58.6 49.3 79.7 64.3 56.5 61.7 55.5 49.0 67.0 48.6 32.2
3D-VF [ours] 81.1 69.4 63.3 87.3 75.8 65.9 74.9 69.1 59.0 74.5 53.8 36.7

Table 6. Detailed AP comparison of PointPillars [18], Second [42], and Part-A2 [28] trained on KITTI [13] and transferred to the proposed
CrashD without any fine-tuning. The evaluation is shown according to the various accident types, and intensities, as well as the kinds of
car. Baseline indicates the standard method, while [ours] shows the impact of our adversarial augmentation strategy.

IoU 0.1 IoU 0.5 IoU 0.7
→ CrashD baseline [18] 3D-VF [ours] baseline [18] 3D-VF [ours] baseline [18] 3D-VF [ours]

normal, clean
TP ↑ 11547 11651 11539 11638 8571 8894
FP ↓ 4069 419 4077 432 7045 3176
FN ↓ 110 6 118 19 3086 2763

normal, crash
TP ↑ 11485 11642 11391 11562 6770 7620
FP ↓ 4550 772 4644 852 9265 4794
FN ↓ 172 15 266 95 4887 4037

rare, clean
TP ↑ 11761 11805 11747 11790 6091 7528
FP ↓ 4700 316 4714 331 10370 4593
FN ↓ 50 6 64 21 5720 4283

rare, crash
TP ↑ 11724 11804 11566 11680 4688 6011
FP ↓ 4742 590 4900 714 11778 6383
FN ↓ 87 7 245 131 7123 5800

Table 7. Impact of our adversarial augmentation on the main categories of the proposed CrashD according to true positives (TP), false
positives (FP) and false negatives (FN) at different IoU thresholds. The models were based on PointPillars [18], trained on KITTI [13] and
transferred to CrashD without any fine-tuning. For reference, the total amount of cars in CrashD is 46936.

In Table 5 we report the performance of PointPillars [18]
with and without our adversarial augmentation strategy. For
this set of experiments, at inference time we randomly
added and removed points within the cars bounding boxes
according to the percentages reported in the table. Both
models were the same as in the rest of this work, simply
evaluated with this setup. Thanks to the improved general-
ization provided by our vector fields, the augmented model

was more robust against such noise. Our augmentation
acts as regularization during training, allowing the model
to learn more meaningful features independent of specific
points. This led to a constant gap between 5 and 10% re-
moval. Conversely, randomly adding points is not realistic
from the sensor perspective, since occlusions and its phys-
ical properties are not respected. Due to this reason, both
models suffered more when adding points, than removing.

13

A.3.3 Detailed transfer to CrashD

Evaluation by categories In Table 6, we show a detailed
evaluation of the various 3D object detectors along the dif-
ferent sub-categories of the proposed CrashD, with various
kinds of damages, different intensities and types of cars.
Our adversarial augmentation strategy outperformed all de-
tectors [18,28,42] across the board by a significant margin,
especially on rare cars. In particular, with high intensity
crashes (hard), the baselines [18, 28, 42] severely underper-
formed, reducing by half their APs on cars undergoing a
t-bone accident. This can be due to the large point displace-
ment introduced by the impacts, especially with weaker
old cars. Conversely, our 3D-VField, as it was trained on
sensor-aware deformations, was more robust against these
damages, delivering a smaller decrease from the clean cars
to their crash counterparts. Interestingly, rare vehicles were
often more challenging to be detected than normal crash
ones. This can be attributed to an accident typically affect-
ing only a local region of a vehicle, leaving the rest of it
untouched and detectable, compared to a rare design which
has an impact on the whole object point cloud, making it
in general harder to be recognized. Comparing the same
cars with and without damages (crash and clean) shows that
the former are significantly more difficult for every detector,
due to the different resulting shapes. All detectors substan-
tially benefited from our adversarial augmentations, despite
training the vector fields solely against PointPillars [18].
The values also confirm the superiority of Part-A2 [28] over
the other 3D detectors, as seen in Table 1.

Correct and wrong detections on CrashD Table 7 re-
ports a comparison of PointPillars [18] without and with
our adversarial augmentations on CrashD, according to the
number of true positives, false positives and false negatives,
depending on the main categories of the proposed dataset,
at different IoU thresholds. It can be seen that the base-
line [18] had a strong tendency towards over-predicting the
amount of objects in the scene, resulting in a high number
of false positives. In fact, even with a low IoU threshold
of 0.1, over 30% of the boxes predicted by the baseline did
not match any car in the scene. At the same time, it com-
pletely ignored several cars, both damaged and undamaged,
resulting in false negatives. On the other hand, as seen al-
ready in the main paper showing the APs, the proposed 3D-
VField delivered a significantly better detection rate, vastly
reducing the amount of false positives and negatives, de-
spite being based on the same architecture and settings as
the baseline [18].

A.3.4 Ablation Studies

Amount of deformed objects In Table 8 we report the ef-
fect of augmenting various amounts of objects during train-
ing. Specifically, augmenting more objects in each scene

KITTI →W. → CrashD
augm. objects mod. n.,clean r.,crash

[ours] 1 obj. 77.13 44.61 67.95 30.37
[ours] 50% obj. 76.31 39.60 53.99 23.63
[ours] 100% obj. 59.30 32.84 38.29 14.83

Table 8. Models trained on KITTI, augmented with our adversarial
technique. In each row, the amount of objects augmented at train-
ing time in each scene changes. The chosen number of augmented
objects was 1. mod.: moderate difficulty; →: transfer without any
fine-tuning; W.: Waymo; n.: normal; r.: rare.

did not help generalization, as it made difficult to recognize
standard objects. Augmenting all cars means the detector
never learns a normal vehicle, making it rather hard to iden-
tify one at inference time. This can be seen in the AP drop
on KITTI [13] from augmenting half of the cars, to all of
them. Instead, augmenting a single object allowed to retain
the same AP on KITTI, while significantly improving it on
the out-of-domain Waymo [33] and the proposed CrashD.

Grouping strategies In Table 9 we show the impact of
varying amounts of learned vector fields on the ASR, ac-
cording to different distinguishing criteria. We compare the
chosen relative rotation (Section 3.2) with selecting by dis-
tance of the object to the sensor or number of object points.
Relative rotation delivered superior ASR, as it favors the
mutual alignment between neighboring vectors. In contrast,
less vector fields (i.e., 1 and 6) or different criteria resulted
in contrasting vectors, reducing the object deformation.

Grouping 1-ASR 6-ASR 12-ASR 18-ASR

distance 55.1 56.2 57.3 57.6
nr. points 55.1 56.9 56.0 57.1
rel. rotation 55.1 59.2 63.4 63.7

Table 9. ASR ↑ on the validation set of KITTI for different group-
ing strategies and amount of vector fields.

Aggregation strategies Table 10 shows the effect of dif-
ferent aggregation strategies of vectors when applying the
deformations on the cars of KITTI [13]. It can be seen how
the different amount of groupings (G) and neighboring vec-
tors (k) considered for each point shift affected the adversar-
ial performance of the method (ASR). In general, all defor-
mations in the table were restricted to a maximum of ε = 30
cm. The amount of learned vector fields G had an impact
on the ASR of each aggregation strategy. For example, sum
was more effective with 12 G than 1 G, since the vectors of
the 12 fields were better aligned to each other than those of
the single field (Section 4.2), so summing them increased

14

Aggregation
- sum average distance

k 1 2 3 2 3 2 3

G = 1 46.3 44.4 33.4 45.4 52.0 50.3 47.0

G = 12 59.6 76.5 80.3 61.9 62.4 63.4 59.6

Table 10. ASR ↑ on the validation set of KITTI [13] for different
aggregation strategies and number of neighbors (k) involved in
each deformation, for both number of groups G = 1 and G = 12.
All configurations are based on PointPillars [18].

the deformation magnitude. In fact, the high ASR of sum
with 12 G, was due to larger perturbations.

Grid step size In Table 11 we show the impact of differ-
ent step sizes t of the vector field grid. A larger step size,
results in a coarser grid, which in turn means less vectors
for each field. Intuitively, with more vectors, each would be
more specific for a given point shift, but less generalizable
to others. So, each vector would overfit to its training points.
There is in fact a trade-off between the amount of vectors
and the generalizability of the learned vector field, as seen
in Table 2. That can be seen by the ASR, as the vectors were
learned on the training set of KITTI [13], and applied to
its validation set, on which the values are reported. Down-
scaling t from 20 to 5 cm, significantly reduced the ASR.
Conversely, increasing t to 30 cm worsened their general-
ization. Therefore, t = 20 cm was chosen as the grid step
size, offering a good trade-off between the vector specificity
and generalizability, as shown by the ASR.

Step size 5 cm 10 cm 20 cm 30 cm

ASR ↑ 44.1 46.3 53.0 49.6

Table 11. ASR ↑ on the validation set of KITTI [13] for different
step sizes of the vector field grid. A smaller step size increases
the amount of vectors. All configurations are based on PointPil-
lars [18], with G = 1.

A.4. Additional Outdoor Qualitative Results

In this section we provide qualitative results of the
learned deformations.

A.4.1 Deformations on KITTI

Figure 11 shows the deformations learned by our method.
It can be seen that only local areas are affected, and the
cars preserved their overall shapes with smoothly deformed
parts.

0

15

30

Figure 11. Color-coded deformations in cm learned by the pro-
posed method. The perturbation does not affect every point, its
magnitude is relatively low, and local smoothness is preserved.

Figure 12 shows the effect of each vector of the adver-
sarial field to the ASR. It can be seen that the most affected
was the front bumper, which can easily be deformed with
an accident. The side of the car is mostly unaffected, prob-
ably due to the relatively limited amount of vehicles visible
from the side in KITTI. Interestingly, the model has learned
to avoid the areas without points (e.g., the windows).

0.0

0.5

1.0

front side back

Figure 12. Color-coded contribution of each vector to the ASR, in
percentage.

Figure 13 shows a comparison of the deformations ap-
plied by each method to a set of cars from KITTI [13]. We
included related works, such as the Chamfer attack [19] and
the iterative gradient L2 approach [40], as well as varia-
tions of the proposed 3D-VField. The Chamfer attack [19]
shifted some points far away while many remained close to
the original location, resulting in an almost perfect ASR.
However, this came at the cost of rather obvious perturba-
tions. The iterative gradient L2 [40] method also achieved
a highly effective ASR (Table 1), but with significantly less
evident deformations. As expected from the high ASR (Ta-
ble 3), our unconstrained (unleashed) method delivered sub-
stantially perturbed objects, even more distorted than those
produced by the Chamfer attack. Applying the ray con-
straint allowed for less perturbed (and less effective ASR),
but more recognizable objects. It can be seen how this con-
straint alone impacts the realism of the deformations, by
comparing it to the unleashed version. Moreover, aggregat-
ing neighboring vectors via distance weighting in our full
approach (Section 3.2), further improved the resemblance
of the object to the original point cloud. Although the dif-
ference is subtle, this can be appreciated comparing the rear
wheel, the floor, and the windows of the car in the bottom
half of Figure 13. Thanks to the realism and the smooth al-
terations of the points visible in the figure, training with our
deformations allowed for superior transfer performance to

15

Chamfer attack iterative gradient L2

3D-VField [ours]ray constrained [ours]unleashed [ours]

original point cloud

Chamfer attack iterative gradient L2

3D-VField [ours]ray constrained [ours]unleashed [ours]

original point cloud

Figure 13. Comparison of adversarial perturbations on a set of cars from two different point clouds of KITTI [13]. The effect of the
Chamfer attack [19], the iterative gradient L2 [40], and multiple variations of our approach are shown. It can be seen that our 3D-VField
preserves the shape of the original point cloud better than the other approaches.

challenging out-of-domain data (Table 1).

A.5. Results on Indoor Data

A.5.1 Experimental setup

In these experiments we used the SUN RGB-D dataset [30],
which posed a completely new set of challenges compared
to the three driving datasets. SUN RGB-D contains indoor
furniture objects captured by depth cameras such as time-
of-flight (ToF), as opposed to driving scenes captured by a
LiDAR. We trained on all 10 classes, but we selected one
at a time for learning our vector fields. In particular, we re-
port on the classes bed, sofa and the highly diverse chair,
as they are the ones where deformations are more plausible
compared to others (e.g., table). In this setting, we apply

our method on a VoteNet [25] architecture. Moreover, we
followed the same setup as for the outdoor experiments, ex-
cept that we reduced the maximum deformation ε to 10 cm,
making it more plausible in indoor settings.

A.5.2 Quantitative Results

Table 12 shows the wide applicability of our deformation
and augmentation strategies when applied to point clouds
from depth sensors capturing furniture objects from SUN
RGB-D [30]. Shifting the points with our 3D-VField pro-
duced a strong ASR against the not adversarially augmented
models (none), especially on sofas and chairs. Using the
deformations as augmentation even improved the AP on the
validation set, confirming the benefit of our techniques to-

16

beds sofas chairs
Adv.aug. AP ASR AP ASR AP ASR

none 85.6 49.7 67.4 70.6 77.4 70.9
w/o Ladv 85.2 41.1 67.5 65.4 76.9 62.1
[ours] 86.0 19.7 68.5 34.8 77.5 39.6

Table 12. AP and ASR ↓ on the validation set of SUN RGB-
D [30], with a VoteNet [25] architecture. Adv.aug.: adversarial
augmentation; w/o Ladv: ours not learned.

wards the generalization to unseen data, despite the rather
different setting, sensor, objects, and architecture. Further-
more, defending with our adversarial augmentations signif-
icantly reduced the ASR, showing the gained robustness
against deformed objects.

reference images deformations by 3D-VField [ours]

0 105point displacement in cm

Figure 14. Color-coded deformations applied by the proposed 3D-
VField on various objects of the SUN RGB-D dataset [30]. The
color corresponds to the shift of each point in centimeters, limited
to a maximum of 10 cm. Adversarial deformations learned against
VoteNet [25].

A.5.3 Qualitative Results

In Figure 14 we show the deformations learned by our
method against VoteNet [25] on three different categories
of objects from SUN RGB-D [30], namely chairs, sofas,
and beds. It can be seen that the overall shape of each ob-

ject is preserved, with minor perturbations applied. In this
indoor setting, such alterations could resemble the presence
of pillows, a blanket, or simply a different design of the ob-
ject.

References
[1] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson.

ADef: An iterative algorithm to construct adversarial defor-
mations. In Proceedings of the International Conference on
Learning Representations, 2019. 2, 3

[2] Isabela Albuquerque, Nikhil Naik, Junnan Li, Nitish Keskar,
and Richard Socher. Improving out-of-distribution gener-
alization via multi-task self-supervised pretraining. arXiv
preprint arXiv:2003.13525, 2020. 2

[3] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-
lappa. Metareg: Towards domain generalization using meta-
regularization. Advances in Neural Information Processing
Systems, 31:998–1008, 2018. 2

[4] Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish
Kapoor, Neel Joshi, Markus Meister, and Pietro Perona. Syn-
thetic examples improve generalization for rare classes. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 863–873, 2020. 1, 2

[5] Daniel Bogdoll, Jasmin Breitenstein, Florian Heidecker,
Maarten Bieshaar, Bernhard Sick, Tim Fingscheidt, and
Marius Zollner. Description of corner cases in automated
driving: Goals and challenges. In IEEE/CVF International
Conference on Computer Vision Workshop, pages 1023–
1028, 2021. 1

[6] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin
Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo
Li. Invisible for both camera and LiDAR: Security of multi-
sensor fusion based perception in autonomous driving under
physical-world attacks. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 176–194, 2021. 3

[7] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou,
Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and
Z Morley Mao. Adversarial sensor attack on LiDAR-based
perception in autonomous driving. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2267–2281, 2019. 3

[8] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang,
Ruigang Yang, Mingyan Liu, and Bo Li. Adversarial ob-
jects against lidar-based autonomous driving systems. arXiv
preprint arXiv:1907.05418, 2019. 3

[9] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 39–57, 2017. 2

[10] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 5, 7

[11] Stefano Gasperini, Jan Haug, Mohammad-Ali Nikouei Ma-
hani, Alvaro Marcos-Ramiro, Nassir Navab, Benjamin
Busam, and Federico Tombari. CertainNet: Sampling-free
uncertainty estimation for object detection. IEEE Robotics
and Automation Letters, 7(2):698–705, 2021. 1, 2

17

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

[12] Stefano Gasperini, Patrick Koch, Vinzenz Dallabetta, Nassir
Navab, Benjamin Busam, and Federico Tombari. R4Dyn:
Exploring radar for self-supervised monocular depth estima-
tion of dynamic scenes. In Proceedings of the IEEE Inter-
national Conference on 3D Vision (3DV), pages 751–760,
2021. 1

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE,
2012. 1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Proceed-
ings of the International Conference on Learning Represen-
tations, 2015. 2

[15] Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard
Ghanem. AdvPC: Transferable adversarial perturbations on
3D point clouds. In Proceedings of the European Conference
on Computer Vision, pages 241–257. Springer, 2020. 3

[16] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021. 1, 2

[17] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15262–15271, 2021. 1,
2

[18] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. PointPillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019. 1, 5, 6, 7, 8, 12, 13,
14, 15

[19] Daniel Liu, Ronald Yu, and Hao Su. Adversarial shape
perturbations on 3D point clouds. In Proceedings of the
European Conference on Computer Vision, pages 88–104.
Springer, 2020. 2, 3, 5, 6, 7, 8, 12, 15, 16

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In Proceedings of
the International Conference on Learning Representations,
2018. 3, 4

[21] Pascale Maul, Marc Mueller, Fabian Enkler, Eva
Pigova, Thomas Fischer, and Lefteris Stamatogiannakis.
BeamNG.tech technical paper, 2021. 5, 9, 10

[22] Jisoo Mok, Byunggook Na, Hyeokjun Choe, and Sungroh
Yoon. AdvRush: Searching for adversarially robust neural
architectures. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12322–12332, 2021.
1, 2

[23] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. DeepFool: A simple and accurate method to
fool deep neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2574–2582. IEEE,
2016. 2

[24] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In Pro-
ceedings of the IEEE European Symposium on Security and
Privacy, pages 372–387, 2016. 2

[25] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep Hough voting for 3D object detection in point
clouds. In Proceedings of the IEEE International Conference
on Computer Vision, 2019. 5, 16, 17

[26] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020. 1, 2

[27] Martin Rabe, Stefan Milz, and Patrick Mader. Development
methodologies for safety critical machine learning applica-
tions in the automotive domain: A survey. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 129–141, 2021. 1

[28] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3D object detec-
tion from point cloud with part-aware and part-aggregation
network. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2020. 5, 6, 7, 12, 13, 14

[29] Andrea Simonelli, Samuel Rota Bulo, Lorenzo Porzi, Elisa
Ricci, and Peter Kontschieder. Towards generalization across
depth for monocular 3D object detection. In Proceedings of
the European Conference on Computer Vision, pages 767–
782. Springer, 2020. 2

[30] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
SUN RGB-D: A RGB-D scene understanding benchmark
suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 567–576, 2015. 2, 5,
16, 17

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958, 2014.
2

[32] Cecilia Summers and Michael J Dinneen. Improved mixed-
example data augmentation. In Proceedings of the IEEE
Winter Conference on Applications of Computer Vision,
pages 1262–1270, 2019. 2

[33] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2446–2454, 2020. 2, 5, 6, 8, 9,
10, 11, 12, 14

[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In Proceedings of
the International Conference on Learning Representations,
2014. 2

[35] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming
Liang, Bin Yang, Richard Du, Frank Cheng, and Raquel Ur-
tasun. Physically realizable adversarial examples for LiDAR

18

object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
13713–13722, 2020. 1, 2, 3, 4, 5

[36] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. In
Proceedings of the International Conference on Neural In-
formation Processing Systems, pages 5339–5349, 2018. 2

[37] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
and Tao Qin. Generalizing to unseen domains: A sur-
vey on domain generalization. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages
4627–4635, 2021. 1, 2, 9

[38] Run Wang, Felix Juefei-Xu, Qing Guo, Yihao Huang, Xi-
aofei Xie, Lei Ma, and Yang Liu. Amora: Black-box adver-
sarial morphing attack. In Proceedings of the ACM Interna-
tional Conference on Multimedia, pages 1376–1385, 2020.
3

[39] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath
Hariharan, Mark Campbell, Kilian Q Weinberger, and Wei-
Lun Chao. Train in Germany, test in the USA: Making 3D
object detectors generalize. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11713–11723, 2020. 1, 2, 4, 5, 6, 7

[40] Chong Xiang, Charles R. Qi, and Bo Li. Generating 3D ad-
versarial point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9128–9136, 2019. 2, 3, 5, 6, 7, 8, 12, 15, 16

[41] Chaowei Xiao, Bo Li, Jun-yan Zhu, Warren He, Mingyan
Liu, and Dawn Song. Generating Adversarial Examples
with Adversarial Networks. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages
3905–3911, July 2018. 2

[42] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Em-
bedded Convolutional Detection. Sensors, 18(10):3337, Oct.
2018. 5, 6, 7, 12, 13, 14

[43] Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni,
Jinxian Liu, and Qi Tian. Adversarial attack and defense on
point sets. arXiv preprint arXiv:1902.10899, 2019. 3, 5, 6,
7, 12

[44] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adver-
sarial Examples: Attacks and Defenses for Deep Learning.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 30(9):2805–2824, 2019. 2

[45] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghor-
bani, and James Zou. How does mixup help with robustness
and generalization? In Proceedings of the International Con-
ference on Learning Representations, 2021. 2

19

	. Introduction
	. Related Work
	. Improving Generalization
	Generalization for 3D Object Detection

	. Adversarial Examples
	Adversarial point clouds

	. Method
	. Adversarially learned vector field
	. Objects Deformation
	. Adversarial Data Augmentation

	. Experiments and Results
	. Experimental Setup
	. Quantitative Results
	. Qualitative Results

	. Conclusion
	. Supplementary Material
	. Details on the Proposed Dataset: CrashD
	Intended Use
	Driving Simulator
	Data Generation and Collection
	Vehicles
	Dataset Statistics

	. Additional Implementation Details
	. Additional Outdoor Quantitative Results
	Transferability of the Vector Fields
	Robustness against noise
	Detailed transfer to CrashD
	Ablation Studies

	. Additional Outdoor Qualitative Results
	Deformations on KITTI

	. Results on Indoor Data
	Experimental setup
	Quantitative Results
	Qualitative Results

