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Prof. Dr. Aurélien Tellier
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Abstract

After the development of clinical risk prediction models, external validation of the predic-

tion models using data different from the training one is an essential step to assess if the

models can perform well with different samples and can be recommended for applications

in practice. Usually, the calibration and discrimination of the model are evaluated in the

validation. In many clinical trials, the outcome of interest is only known for certain partic-

ipants who go through the diagnostic verification process but not the rest. Those verified

participants are usually not a random sample of the population but rather those who meet

the verification criteria. The clinical prediction models are built on the subgroup of verified

participants in the training cohort and then, validated with external samples. The validation

cohort may differ from the training one in many aspects including the distribution of risk

factors, the prevalence of the event of interest, and the verification process. Such hetero-

geneity between training and validation cohorts could bias the external validation results

leading to a fallacious conclusion.

This thesis focuses on accommodating the selection bias coming from different distribu-

tions of risk factors and the verification bias coming from different diagnosis test schemes

between the training and validation cohorts in the external validation of prediction models,

where it requires that the individual participant data from both training and validation co-

horts should be available. A novel method is proposed to accommodate the selection and

verification biases. The concepts of “reproducibility” and “transportability” is formalized in

the discussion of selection bias adjustment.

The proposed framework results in weighted versions of the usual performance metrics

with different weights addressing verification bias, selection bias, or the combination of the

two. The novel approach is illustrated with a simulation study and a real data example from

two large North American prostate cancer screening and prevention trials. The simulation

study shows that the weighted metrics could perfectly correct the bias when the unweighted

ones are distorted. Researchers are encouraged to share data underlying their published

risk prediction models to facilitate external validation. The proposed performance mea-

sures are recommended as reference values in external validation of risk prediction models

to account for the impact of differences in risk factor distributions or verification processes

between training and validation cohorts.
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Zusammenfassung

Nach der Entwicklung klinischer Risikovorhersagemodelle ist die externe Validierung der

Vorhersagemodelle mit anderen Daten als dem Trainingsmodell ein wesentlicher Schritt,

um zu beurteilen, ob die Modelle mit verschiedenen Stichproben gut funktionieren und für

Anwendungen in der Praxis empfohlen werden können. Üblicherweise werden bei der Va-

lidierung die Kalibrierung und Diskrimination des Modells evaluiert. In vielen klinischen

Studien ist das interessierende Ergebnis nur bestimmten Teilnehmern bekannt, die den

diagnostischen Verifizierungsprozess durchlaufen, nicht aber den Rest. Diese verifizierten

Teilnehmer sind in der Regel keine zufällige Stichprobe der Bevölkerung, sondern diejeni-

gen, die die Verifizierungskriterien erfüllen. Die klinischen Vorhersagemodelle werden auf

der Untergruppe der verifizierten Teilnehmer in der Trainingskohorte aufgebaut und dann

mit externen Stichproben validiert. Die Validierungskohorte kann sich in vielen Aspekten

von der Schulungskohorte unterscheiden, einschließlich der Verteilung von Risikofaktoren,

der Prävalenz des interessierenden Ereignisses und des Überprüfungsprozesses. Eine

solche Heterogenität zwischen Schulungs- und Validierungskohorten könnte die externen

Validierungsergebnisse verfälschen und zu einer falschen Schlussfolgerung führen.

In dieser Arbeit geht es darum, den Selektionsbias, der sich aus der unterschiedlichen

Verteilung der Risikofaktoren ergibt, und den Verifikationsbias, der sich aus den unter-

schiedlichen Diagnosetestschemata zwischen den Trainings- und Validierungskohorten ergibt,

bei der externen Validierung von Vorhersagemodellen zu berücksichtigen, was voraussetzt,

dass die individuellen Teilnehmerdaten sowohl aus den Trainings- als auch aus den Vali-

dierungskohorten verfügbar sind. Es wird eine neuartige Methode vorgeschlagen, um die

Auswahl- und Verifizierungsverzerrungen zu berücksichtigen. Die Konzepte der “repro-

ducibility” und “transportability” werden in der Diskussion über die Anpassung der Selek-

tionsverzerrungen formalisiert.

Der vorgeschlagene Rahmen führt zu gewichteten Versionen der üblichen Leistungsmetriken

mit unterschiedlichen Gewichtungen, um Verifikationsverzerrungen, Selektionsverzerrun-

gen oder die Kombination der beiden zu berücksichtigen. Der neue Ansatz wird anhand

einer Simulationsstudie und eines realen Datenbeispiels aus zwei großen nordamerikanis-

chen Prostatakrebs-Screening- und Präventionsstudien veranschaulicht. Die Simulation-

sstudie zeigt, dass die gewichteten Metriken die Verzerrung perfekt korrigieren können,

wenn die ungewichteten verzerrt sind. Die Forscher werden aufgefordert, die ihren veröffentlichten

Risikovorhersagemodellen zugrunde liegenden Daten mitzuteilen, um eine externe Vali-

dierung zu erleichtern. Die vorgeschlagenen Leistungsmaße werden als Referenzwerte für
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die externe Validierung von Risikovorhersagemodellen empfohlen, um die Auswirkungen

von Unterschieden in der Verteilung der Risikofaktoren oder der Verifizierungsprozesse

zwischen Trainings- und Validierungskohorten zu berücksichtigen.
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1 Introduction

Nowadays many clinical risk prediction models are available on the internet for individuals

around the world seeking information concerning screening for disease. These models

often provide the probabilities of having diseases, namely the risk of disease, based on

the individual characteristics that are related to disease diagnosis. For example, two major

online prostate cancer risk calculators, specifically the Prostate Biopsy Collaborative Group

(PBCG) Risk Calculator and the European Randomized Study of Screening for Prostate

Cancer (ERSPC) Risk Calculator, both provide the risk of having prostate cancer based

on age, prostate-specific antigen (PSA), digital rectal exam (DRE), African ancestry, first-

degree family history, and prior negative biopsy [SWOP, 2021; Ankerst et al., 2018]. These

variables are common risk factors for prostate cancer, such aging, rising in PSA level,

having abnormal DRE, African ancestry [National Cancer Institute, 2021c], and a family

history of prostate cancer [Kiciński et al., 2011] all known to increase the cancer risk, while

having prior negative biopsy can reduce the cancer risk [Thompson et al., 2006; Ankerst

et al., 2018; Nordström et al., 2018; Alberts et al., 2019].

Though we observe substantive improvement in diseases diagnosis strategies and thera-

pies, cancer is still the leading cause of death nowadays, in which prostate cancer is the

fifth leading cause of cancer death in men in 2020 worldwide [Sung et al., 2021]. Numerous

prostate cancer risk prediction tools have been developed in the past decades providing

cancer risks based on symptoms of individual, i.e characteristics of the cancer risk fac-

tors, such as 127 unique prostate cancer risk prediction models have been detected in the

meta-analysis by Louie et al. [2015]. New risk prediction tools are coming out every now

and then, incorporating modern cancer diagnosis information from the the improvement

of detection technique and advancement in treatment, to give better risk predictions, such

as models based on various genomics markers for prostate cancer from different tissues

namely urine, prostate biopsy, or radical prostatectomy [Cucchiara et al., 2018]. Today, in-

vestigators are yet on the way to upgrade the risk prediction tools and improve the accuracy

of cancer risk predictions.

The underlying models of those risk prediction tools are built on data from the past clini-

cal studies and then, validated before publishing online. One can validate the prediction

models within the training sets or with external samples, namely the internal or external

validation, respectively. Since investigators expect these tools can benefit disease diagno-

sis for diverse people upon development in the future, the external validation of the model

is an essential step during model development, which can ensure the good performance
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1 Introduction

of the model on samples that are not involved in the model training. The external sam-

ples are often from different studies at different study sites, involving different ethnicity, and

initiating at different time points compared to the model training cohort. Therefore, the

characteristics of individual in the external validation cohorts may differ from those in the

training cohort, which heterogeneity can cause poor performance of the developed tools

upon external samples.

When the individual participant data from the training and validation cohorts are available in

the external validation, we can visualize and compare the heterogeneity between cohorts

through characteristics tables and figures, such as a figure comparing the odds ratio for

high-grade prostate cancer versus the prevalence of risk factors across different cohorts

as shown by Ankerst et al. [2018]. We can also use statistical tests in addition to the char-

acteristics tables to evaluate the significance of the difference between cohorts [Ankerst

et al., 2018]. On the contrary, if we only have the data from the validation cohort at hand

but not from the training in the external validation of public risk prediction tools, direct com-

parisons of the distributions of characteristics between cohorts are not feasible. Towards

this, one can retrain the prediction model on the validation cohort to ensure fair evalua-

tion [Vergouwe et al., 2010]. Due to optimistic bias from using the re-trained model in the

validation set, the revised performance measures are proposed as benchmark values to

supplement observed metrics.

In the following of this chapter, we first describe the risk modeling methods used in this

thesis in Section 1.1, where the mathematical foundations of multivariable logistic regres-

sion and Cox regression are recapped. After that, we review the research context about

validation of the clinical risk prediction models in Section 1.2 and focus on the evaluation

of discrimination and calibration of a model. Then, we discuss the impact of participants

heterogeneity between cohorts on external validation and the current approaches to ad-

dress them regardless having individual participant data or not in Section 1.3 and 1.4,

respectively. We close this chapter with an outline of the thesis in Section 1.5.

1.1 Risk prediction models

When estimating the risk of cancer using dichotomous cancer status, i.e. having cancer

or not, as the response, we often apply the multivariable logistic regression model with

several predictors, which model is a standard method and is frequently used when we

have binary response [Riley et al., 2016; Meurer and Tolles, 2017; van Leeuwen et al.,

2017; Shipe et al., 2019; Bhat et al., 2019; Steyerberg, 2019]. Other modeling techniques

include the penalized logistic models, such as least absolute shrinkage and selection op-

erator (LASSO) regression to exclude trivial predictors [Tibshirani, 1996; Kim et al., 2018;

Steyerberg, 2019], and machine learning methods particularly when images are used in

the prediction [van der Ploeg et al., 2016; Yala et al., 2019; Mehralivand et al., 2018].

2



1.1 Risk prediction models

Christodoulou et al. [2019] found that the machine learning methods did not outperform the

logistic regressions for clinical prediction modeling in their review of 71 studies and the ma-

chine learning algorithm was often criticized to be a ”black-box” lacking necessary clinical

transparency [Van Calster et al., 2019]. Since our data examples (See Chapter 2) contains

only a few risk factors of prostate cancer nor image, we use the multivariable logistic re-

gression to model the cancer risk for binary cancer status with R software [R Core Team,

2013].

A multivariable logistic regression model assumes that the logit function of the cancer risk,

i.e. ln(p/(1 − p)) with p be the cancer risk, equals to a linear combination of risk factors.

Let {yi, xi1, xi2, . . . , xik}ni=1 be n observations and xi = (1, xi1, xi2, . . . , xik). Let yi equal to

1 for cancer versus 0 otherwise, which is the realization of the binary cancer outcome Yi

following a Bernoulli distribution Bernoulli(pi). Let pi be the probability of having cancer

given risk factors, i.e. P (Yi = 1|xi). The multivariable logistic regression has the form of

logit(pi) = ln(
pi

1− pi
) =

k∑
j=0

xijβj , i = 1, . . . , n. (1.1)

Here ln(·) is the natural logarithm and β = (β0, . . . , βj) are the intercept and the coefficients

for corresponding risk factors. The likelihood function for the above logistic regression is

L(β) =

n∏
i=1

pyii (1− pi)1−yi .

The log likelihood function for the parameters, l(β), follows

l(β) =
n∑
i=1

yi

 k∑
j=0

xijβj

− ln(1 + e
∑k

j=0 xijβj
)
.

The first derivative of the log likelihood function with respect to βj , j = 1, . . . , k is

∂l(β)

∂βj
=

n∑
i=1

yixij −
n∑
i=1

1

1 + e
∑k

j=0 xijβj
e
∑k

j=0 xijβjxij =

n∑
i=1

yixij − pixij .

The optimal βj , i.e. its maximum likelihood estimate, is the value that makes the above first

derivative be 0.

To investigate the long-term cancer risk, such as the 5-year cancer risk, given the charac-

teristics, we can conduct survival analysis based on time-to-event data, for which the Cox

proportional hazard regression is a common method [Riley et al., 2016; Steyerberg, 2019].

In the survival analysis, we compute the cancer risk at certain time point, which is also

known as hazard function reflecting the instantaneous probability of having cancer at this

time point. Let T denote the survival time, i.e. time to cancer, the hazard function at time t

3



1 Introduction

is

h(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)

∆t
= −dS(t)/dt

S(t)
,

where S(t) is the survival function at time t equal to P (T > t), i.e. the probability of

remaining cancer-free longer than t. The cumulative hazard function at time t is then

H(t) =

∫ t

0
h(u)du = −ln(S(t))

with ln(·) be the natural logarithm.

The Cox proportional hazard regression proposed by Cox [1972] examines how the risk

factors affect the cancer risk at given time point. Suppose there are n individuals. Let ti be

the realization of the censored survival time Ti for individual i and xi = (xi1, xi2, . . . , xip) be

the realization of the risk factors for this individual. Let δi be 1 if individual i has cancer and

0 otherwise. Let β = (β1, β2, . . . , βp) be the corresponding coefficients for the p risk factors.

The hazard function from Cox proportional hazard regression at time t for individual i is

h(t|xi) = h0(t)ex
′
iβ = h0(t)e

∑p
j=1 xijβj , i = 1, . . . , n, (1.2)

where h0(t) is the baseline hazard function at time t.

Suppose there are m observed cancer cases among these n individuals and let t(1) <

t(2) < ... < t(m) be the observed distinct time to cancer for these m cases. Let Ri denote

the risk set at time t(i), i.e.
{
j : j = 1, . . . , n and tj ≥ t(i)

}
. The corresponding likelihood

function is defined as

L(β) =
n∏
i=1

δie
x
′
iβ∑

k∈Ri

ex
′
kβ
.

This likelihood function does not depend on the baseline hazard function, h0(t), and hence,

is known as partial likelihood [Cox, 1975]. The log partial likelihood function is

l(β) =
n∑
i=1

δi

ex′iβ − ln
 n∑
k∈Ri

ex
′
kβ

 .
Then, the first derivative with respect to βj is

∂l(β)

∂βj
=

n∑
i=1

δi

x
′
i −

∑
k∈Ri

ex
′
kβxkj

n∑
k∈Ri

ex
′
kβ

 , j = 1, . . . , p.

Solving
(
∂l(β)
∂βj

, . . . , ∂l(β)
∂βp

)
= (0, . . . , 0) obtains the maximum partial likelihood estimates of

coefficients. The Hessian matrix of l(β) being negative defined ensures a unique solution

for the partial likelihood function [Karim and Islam, 2019].
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Once the estimated coefficients of the Cox regression are obtained, we can compute the

estimated baseline hazard at distinct cancer time t(i) as

ĥ0(t(i)) =
di∑

k∈Ri

ex
′
kβ̂
, i = 1, . . . ,m,

where di is the number of cancer cases at the distinct cancer time t(i) [Moore, 2016; Bres-

low, 1972, 1975]. In this thesis, we implement the Cox proportional hazard regression

model by the survival package in R software [Therneau, 2021; R Core Team, 2013].

1.2 Model validation

Once a risk prediction model has been developed, we can evaluate it internally with its

deriving data as well as externally with other new samples to assess the accuracy of its

predictions. Internal validation refers to validating the model with the training data used

to develop the model. Except for simply validating with its original training data set, other

common approaches used for internal validation include cross-validation and bootstrapping

[Ramspek et al., 2021; Cowley et al., 2019; Steyerberg, 2019]. The former is to split the

model development data into training subset for building the model and the remaining for

test, while the latter is to generate new data sets out of the model development data via

sampling with replacement and evaluate the model upon these newly-generated data sets

[Ramspek et al., 2021; Steyerberg and Harrell Jr, 2016]. The internal validation shows the

optimistic performance that the prediction model can have. It evaluates rather the sampling

variability than the population differences, which the latter can be addressed in the external

validation [Cowley et al., 2019]. Hence, one should always perform external validation when

building new risk prediction models because the internal validation can never substitute the

external one [Moons et al., 2012; Steyerberg et al., 2019].

External validation of a clinical risk prediction model relies on external data samples that

are not used in the model training. In the external validation, we can assess the quality of

the model with samples similar or different to the training population, namely reproducibility

or transportability. The reproducibility reflects the internal validity of the established risk

model, while the transportability, also known as generalizability, shows whether the model

can perform well upon different but compatible external samples [Steyerberg, 2019; Debray

et al., 2015]. Here, the compatible external samples refer to those who are plausible related

to the training population, i.e. external samples can be viewed as coming from the same

super-population as the training set and the model is reasonable to be applied to these

samples [Steyerberg et al., 2001].

Usually, two aspects of model performance are evaluated: the ability to correctly distinguish

cases versus non-cases, i.e. the discriminability, and the degree of agreement between
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observed outcomes and predictions from the model, i.e. calibration [Steyerberg, 2019;

Ramspek et al., 2021]. There are other validation assessment aspects including the overall

fitness that quantifies the distance between the observations and predictions using the

metrics like the explained variation, and the clinical usefulness that evaluates whether the

model brings benefit for clinical decision making [Steyerberg et al., 2010; Steyerberg and

Vergouwe, 2014]. In this thesis, we focus on assessing the discrimination and calibration

of clinical risk prediction models.

Discrimination

The discrimination ability of a clinical risk prediction model refers to whether it can correctly

assign the observed cases with higher diseases risk and lower risk to the non-cases. The

area-under-the-receiver-operating-characteristic curve (AUC) is often used for evaluating

the discrimination, which is calculated as the area under the receiver operating character-

istic (ROC) curve that has the true positive rate on the y-axis and false positive rate on the

x-axis for binary outcomes [Riley et al., 2016; Ramspek et al., 2021]. The closer the AUC

value to one, the better the ability of discrimination of the model. The true positive rate and

true negative rate, i.e. 1-false positive rate, are sometimes reported together with clinical

models [Simon et al., 2018]. Though these two rates are crucial components in the calcu-

lation of AUC, they actually measure the proportions of being correctly classified, whereas

AUC focuses on the ability of correctly separating [Steyerberg and Vergouwe, 2014]. They

assess different aspects of a prediction model and should not be used interchangeably.

When it comes to survival analysis, Harrell et al. [1982] proposed a concordance index

(c-index) to evaluate the discrimination of a model based on time-to-event data, which c-

index is the same as the AUC if the outcomes are dichotomous. Because such c-index is

based on the order of survival times and predicted risks such that the longer survival time

should correspond to lower disease risk, it is affected by the censoring mechanism [Gönen

and Heller, 2005; Uno et al., 2011; Steyerberg, 2019]. Several extensions of the Harrell’s

c-index have been proposed for handling the censoring including the inverse probability of

censoring weighting c-index [Uno et al., 2011], involving pre-specified censoring time point

in the concordance comparison [Heagerty and Zheng, 2005], and c-index based on the

model or linear predictor, i.e. the sum of the risk factors of individual times corresponding

coefficients [van Klaveren et al., 2016; Gönen and Heller, 2005]. Royston and Sauerbrei’s

D statistic for assessing the discrimination of model with survival data is the coefficient from

a Cox model regressing the survival outcomes in the validation sample on the scaled rankit

of the linear predictors given by the model to be validated as the only predictor [Royston

and Sauerbrei, 2004]. This D statistic ranges from 0 to infinity and is independent to

censoring given the model is correctly specified [Royston and Sauerbrei, 2004; Rahman

et al., 2017]. Logarithm of the D statistics represents the hazard ratio between two equal-

size groups with low versus high predicted risk and hence, measures the separation of the
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1.2 Model validation

survival curves of the two groups. Therefore, a larger value of D statistic stands for better

separation and better discrimination of the model [Royston and Sauerbrei, 2004; Royston

and Altman, 2013; Austin et al., 2017].

Though widely used, the AUC has some limitations. For example, it ignores the calibration

of the model, such that a model lack of fitness could have a good discrimination perfor-

mance [Hosmer Jr et al., 2013; Lobo et al., 2008; Pencina and D’Agostino, 2015]. The

AUC is not sensitive to changes in the predicted risk values, such as adding new predictors

into the model or the structure error appears in measurement that the values for all partici-

pants vary in the same magnitude, as long as the rank of the risks is preserved [Lobo et al.,

2008; Ferri et al., 2005; Pencina et al., 2008; Pajouheshnia et al., 2019]. Researchers also

criticize that the AUC treats the falsely predicted positive and negative equally, which the

latter is more harmful because it shows a case to be non-case and could hinder the timing

of treatment [Lobo et al., 2008].

Other than AUC or c-index, we can also use discrimination slope calculated as the dif-

ference in the average predicted risk between the cases and non-cases to evaluate the

discrimination with a higher value indicating a better separation [Steyerberg et al., 2010;

Pencina and D’Agostino, 2015]. Instead of plotting the ROC curve, Pepe and Janes [2013]

examined the discrimination by plotting both true positive and false positive rates, on the

y-axis, versus the risk threshold on the x-axis in one figure. Such plot can clearly show

the proportions of high-risk participants who are of the interest of researchers and often

recommended to be treated, among cases and non-cases. Two curves dispersing from

each other a lot represents good discrimination of the risk prediction model.

Calibration

The evaluation of the calibration of a model is to check if the average predicted risk and

the case prevalence are identical, which can be measured overall or in subgroups [Stevens

and Poppe, 2020; Miller et al., 1991]. Intuitively, we can visualize the calibration of a model

by plotting the observed outcomes versus the predicted risks to check if this curve lies on

the diagonal. Such plot is known as the calibration plot and is widely used in clinical risk

prediction model assessment [Riley et al., 2016; Ankerst et al., 2018; Van Calster et al.,

2019].

Quantitatively, in a regression using the observed outcomes as the response and the pre-

dicted risks as the only predictor, the coefficient of the predictor when setting the inter-

cept term to be 0 is the calibration slope, whose value close to 1 shows better calibration

[Stevens and Poppe, 2020; Steyerberg, 2019]. The calibration-in-the-large (CIL) is the

average difference between the predicted risk and observed outcomes measuring the cal-

ibration of the model over the whole validation sample [Steyerberg, 2019]. A CIL close to

its ideal value 0 indicates less difference between predictions and observations and hence,
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the model is well-calibrated. Considering the regression used for calculating the calibration

slope, the CIL is just the intercept of the regression when the coefficient of the predictor

is 1. The Brier score in the form of the average squared difference between the observa-

tions and predictions is similarly defined as the CIL. It is also known as the mean squared

prediction error measuring the variance between observations and predictions and often

used to assess the overall model performance [Assel et al., 2017; Steyerberg et al., 2010].

Other CIL-like metrics for calibration assessment include the absolute error averaging the

absolute difference between observations and predictions.

We can also use statistical tests to evaluate the calibration, such as the Hosmer-Lemeshow

(HL) test for binary outcomes. It is originally designed to evaluate the goodness-of-fit of

the logistic model but is often used for calibration as well [Hosmer and Lemesbow, 1980;

Steyerberg, 2019]. The statistic used in the HL test is based on the squared differences be-

tween observations and predictions in subgroups of the validation sample and hence, can

measure the degree of agreement between them. Since it is based on grouped individuals,

HL test is affected by the choice of group partition scheme [Hosmer et al., 1997]. One

can also apply statistical tests for the calibration slope and CIL in the context of regression

to assess the calibration via the usual tests for the significance of regression coefficients,

which the null hypotheses are calibration slope be 1 and CIL be 0, respectively [Steyerberg,

2019]. Both HL and regression-coefficient-based tests are suffered from poor performance

when sample sizes are small [Steyerberg, 2019; Ramspek et al., 2021].

In addition to measuring the average gap between observations and predictions, we can

also quantify the model validation via the ratio of observations over predictions, i.e. the

observed to expected ratio (O/E) [Riley et al., 2016; Debray et al., 2017; Haga et al., 2018;

Snell et al., 2021]. Since such a ratio is often used in the disease research to compare

the observed disease incidence number versus the expected amount from epidemiology

data, it is also known as standardized incidence ratio with an ideal value 1 [Crowson et al.,

2016].

1.3 Heterogeneity between cohorts

In a clinical study, the disease status of participants is known only after verifying through

gold standard approaches, like prostate cancer confirmation via prostate biopsy. The clini-

cal risk prediction model is then developed on these verified individuals with known disease

outcomes. However, the verified individuals within the cohort used to develop the risk pre-

diction tool often differ from the unverified participants from the same cohort in substantive

ways. As an example, the online PBCG Risk Calculator (PBCG-RC) for biopsy-detectable

prostate cancer has been constructed using individual patient data collected between 2006

to 2017 from ten heterogeneous urological centers in North America and Europe [Ankerst

et al., 2018; Tolksdorf et al., 2019]. Participants used for constructing the calculator are
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1.4 Individual participant data

not a random sample of men visiting the clinics, but are more commonly presenting with

risk factors for prostate cancer, like elevated PSA or abnormal DRE, let alone the referral

criteria for prostate biopsy differ across the centers.

Though only based on a subgroup of individuals who have positive disease indication, the

developed risk prediction models are usually applied to external samples with temporal or

geographical differences compared to the training sample. The external samples and the

model training cohort can have large differences in the distributions of individuals charac-

teristics, which hinder the model from making reliable risk predictions. For instance, in a

comparison experiment, Carbunaru et al. [2019] applied the PBCG-RC to a sample col-

lected between 2009 to 2014 from five hospitals in Chicago that had a larger amount of

Blacks compared to PBCG-RC training cohort (48.5% versus 13%). They agreed with the

finding in Ankerst et al. [2018] that the PBCG-RC works well in the Whites, but over-predicts

the prostate cancer risks for the Blacks.

In the external validation, researchers have long been aware of the impact of the hetero-

geneity in participants characteristics, also known as the case-mix difference [Steyerberg,

2019], upon the validation results. Here, the case-mix difference refers to not only the dif-

ference in the distributions of risk factors but also in the outcome distribution [Steyerberg,

2019]. Verbeek et al. [2019], Drost et al. [2019], Chen et al. [2021], and Stojadinovic et al.

[2020] all claimed the heterogeneity between validation and training cohorts impairs the

accuracy of the predicted risks to certain degree in their external validations of prostate

cancer risk calculators. The prediction tools work poorly with samples that are drastically

different from the training cohorts. The variation in the verification mechanism is another

source of cohort heterogeneity that may impact the performance of external validation be-

cause the observed disease outcome depends on the verification decision, such as shown

by Drost et al. [2019] the difference in the frequency of biopsies between cohorts would

bias the predictions given by a prostate cancer active surveillance risk calculator to the

external cohort. Overall, the variation in the model performance may attribute to the differ-

ences in the distributions of risk factors, verification mechanism, risk factors measurement

strategies, and the design of studies [Chen et al., 2021; Drost et al., 2019; Luijken et al.,

2019; Ban et al., 2016].

1.4 Individual participant data

In the attempt to address the differences between training and validation cohorts in the dis-

tributions of participant characteristics, the availability of individual patient-level data from

both the training and validation sets allows the comparisons in terms of risk factor distri-

butions and outcome prevalence between training and external validation cohort. Char-

acteristics tables together with appropriate statistical tests for distributions difference are

common practice [Ankerst et al., 2018; Drost et al., 2019; Chen et al., 2021]. Distribution
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plot of risk factor is an intuitive way for cohorts comparison, such as the graphical displays

of cohort-specific risk factor distributions and univariate associations, eliciting transparency

in multi-cohort modeling and validation [Ankerst et al., 2018; Tolksdorf et al., 2019].

Utilizing data from both training and validation cohorts, Debray et al. [2015] applied a lo-

gistic model with the cohort indicator as the response to estimate the likelihood of being

in the training versus validation cohorts, i.e. the membership model. The two cohorts

are similar in the distributions of predictors and outcome events if the logistic model dis-

tinguishes poorly, such as having an AUC closed to 0.5. Austin et al. [2016] later applied

such approach to assess the temporal case-mix difference with data from two different time

periods and Steyerberg et al. [2019] used it to check the heterogeneity across cohorts in

a meta-analysis. Wang and Lee [2015] permuted individuals from both training and valida-

tion cohorts to create a new training and validation pair. They then retrained the model with

the permuted training sample and validated the retrained model with the permuted valida-

tion sample. They repeated this process multiple times to obtain a permutation p−value

under the null hypothesis of case-mix similarity with p < 0.05 reflecting the existence of the

significant difference between cohorts. However, Nieboer et al. [2016] later showed that

such permutation method can give misleading conclusions, such as showing homogeneity

between cohorts when risk factors distributions are similar but the true predictor effects for

risk factors are actually different. Debray et al. [2015] detected the severity of difference

in the distributions of risk factors between validation and training cohorts using the individ-

ual linear predictor (LP), i.e. the sum of risk factors times their corresponding coefficients,

where a larger difference in the mean LP between cohorts reveals greater between-cohort

heterogeneity in the distributions of risk factors occurs. Song et al. [2020] applied an ad-

justed maximum mean discrepancy metric to explain the variation in the performance of

the trained model versus the retrained one fit to the validation data in the belief that the

variation came from heterogeneity in predictors. Their metric is calculated with the predic-

tors data from both training and validation cohorts. As indicated by its name, the higher the

value of the adjusted maximum mean discrepancy, the larger the discrepancy in predictor

distributions between training and validation sets.

All the aforementioned discussions are about revealing or evaluating the extent of het-

erogeneity between cohorts. To eliminating the heterogeneity in risk factor distributions,

Powers et al. [2019] matched the risk factor distributions in the validation to the target pop-

ulation by applying a weight to the validation cohort computed as the ratio of the prevalence

of risk factor in the target population divided by that in the validation cohort. We can also

use propensity score to harmonize the variation in the distribution of participant risk factors

between cohorts, which score refers to the conditional probability of being in a certain co-

hort versus the other given the risk factors and is often estimated with logistic regression

built on the combined data with the binary cohort indicator as the response [Rosenbaum

and Rubin, 1983]. Weighting a sample by functions of the propensity score to approximate

the target population is a conventional approach used in the transportation of causal infer-
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ence results from one clinical trial to the target cohort [Dahabreh et al., 2019; Westreich

et al., 2017; Kern et al., 2016], or resemble a non-random sample towards the general

population in survey research [Elliot, 2013; Schonlau et al., 2017; Elliott et al., 2017]. De-

pending on the target population and the goal of analysis, one can use different forms of

the weighting function to harmonize the risk factor distributions between sample and tar-

get. Ackerman et al. [2019] weighted the validation sample with a function of propensity

score e of being in the training set to resemble the training population, where the weight is

calculated as e/(1 − e) so that a participant who represents the training cohort better will

be up-weighted. Other than weighting individuals from a sample to resemble the target,

matching individuals from sample to target based on their propensity scores can also rem-

edy the difference in the distributions of risk factors between cohorts. For instance, we can

one-to-one match the individuals who have similar propensity scores between the sample

and the target to obtain a new matched sample that has relative identical characteristics

distribution compared to the target, where the nearest neighbor can be used to reflect the

degree of similarity between individuals [Austin, 2011a,b; Austin and Stuart, 2017].

When there is no access to the individual participant data from the training cohort, the di-

rect comparison of individual characteristics between cohorts is not feasible. To separate

the impact of both heterogeneity in characteristics distributions and difference in predictor

effect on the external validation results, Vergouwe et al. [2010] introduced two discrimi-

nation benchmark values using only the validation cohort. One is a case-mix-corrected

c−index based on newly-generated disease outcome simulated from the predicted risks.

The amount of decreasing in such case-mix-corrected c−index compared to the observed

c−index, i.e. based on the observed outcome, reflects the upper limit of degree of dete-

rioration in model fitness in the validation cohort when the case-mix differences between

cohorts are ignored [Nieboer et al., 2016; Austin et al., 2016]. Another benchmark value

is a c−index by refitting the same model on the validation data and computing the c−index

based on the refitted model in the validation cohort afterward. The c−index from the re-

fitted model can show the best performance this model could achieve with this validation

cohort [Vergouwe et al., 2010]. van Klaveren et al. [2016] replaced the observed outcomes

of the external validation cohort in the calculation of AUC with the estimated linear predic-

tors from the model built on training cohort to address the impact of case-mix difference

on the observed AUC, assuming that the model is perfect for the validation cohort. The

difference in the estimated values of their model-based AUC on the training versus valida-

tion cohorts quantifies the change of the discrimination ability of the model attributing to

the heterogeneity between the two cohorts. Because the observed outcomes from the val-

idation cohorts are not involved in the calculation, the proposed model-based AUC gives

the expected discrimination the model could have on the validation and is similar to the

case-mix-corrected c-index proposed by Vergouwe et al. [2010] serving as a benchmark

value in addition to the observed metric. Royston and Altman [2013] presented the external

validation of prognostic model under different disclosure levels of training cohort informa-

tion, where the availability of individual participant data of training cohort is not required. To
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carry out a valid evaluation of a model, investigators should at least know its coefficients.

Knowing the Kaplan-Meier curves for risk groups and baseline survival function of the train-

ing cohort additionally can enable one to assess the calibration of the model, where if the

baseline survival functions from the training set are usually unavailable or only available for

specific time point, their approximations can be used [Crowson et al., 2016].

1.5 Outline

Motivated by the need to address the impact of heterogeneity in risk factors distributions on

the external validation of risk prediction model, we concentrate on accommodating the het-

erogeneity in risk factors distributions directly in the calculation of performance measures

in external validation of risk prediction model when the individual participant data from both

training and validation cohorts are accessible in this thesis. We explore the methods to

remedy the impact of heterogeneity utilizing the data from two North American prostate

cancer screening and prevention trials.

In the following, we first introduce the two prostate cancer trials used throughout this thesis

in Chapter 2. After that, we apply the standard external validation method in Chapter 3,

where we develop and validate a multivariable logistic regression for prostate cancer risk.

In Chapter 4, we accommodate the heterogeneity in the characteristics distributions and

verification mechanism between the training and validation cohorts from a weighting point

of view and illustrate the proposed novel method using survival data for prostate cancer,

where we build a Cox model to estimate the long-term cancer risk. Finally, we summarise

our approach and outlook the future works in Chapter 5.
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2 Two large North American prostate
cancer screening and prevention trials

Throughout this thesis, data from two large North American prostate cancer screening

and prevention trials are used, which are the Selenium and Vitamin E Cancer Prevention

Trial (SELECT; NCT00006392) and the Prostate, Lung, Colorectal, and Ovarian (PLCO;

NCT00002540) Cancer Screening Trial. Several prostate cancer risk models are built and

validated in the thesis, for which PLCO is used as the training set, while SELECT is the

validation set in all explorations.

2.1 Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screen-
ing Trial

PLCO was a randomized, controlled trial of screening tests for prostate(P), lung(L), col-

orectal (C), and ovarian(O) cancers. The trial was designed and sponsored by the National

Cancer Institute (NCI) to determine whether screening reduced the mortality of the four

kinds of cancer. 76685 male participants were enrolled between November 1993 and July

2001 in 10 centers across the United States. Eligible participants had to be at least 55

years old and up to 74 years old at enrollment and had no prostate cancer before study

entry. Participants were assigned to either control or screening arms randomly, resulting

in 38345 men in the control arm versus 38340 men in the screening arm [Andriole et al.,

2012].

Enrolled participants in the control arm were followed for 13 years and received the stan-

dard medical care including occasionally screening, while participants in the intervention

arm received annual screening on the prostate-specific antigen (PSA) level in the first 6

years and digital rectal exam (DRE) in the first 4 years after enrollment and were followed

by at least 7 additional years [National Cancer Institute, 2021a]. The primary endpoint of

the trial was cause-specific mortality of the PLCO cancers [Prorok et al., 2000]. During the

trial, participants with PSA greater than 4 nanograms (ng)/milliliter (mL) and/or suspicious

DRE results were encouraged to have a diagnostic verification by their physicians [Andriole

et al., 2012]. There was no centralized pathological confirmation for cancer, but the pathol-

ogy labs near the screening center assessed the medical records of men with confirmed
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prostate cancer and assigned their respective Gleason scores [National Cancer Institute,

2021b; Pinsky et al., 2007].

2.2 Selenium and Vitamin E Cancer Prevention Trial (SELECT)

SELECT was a phase III, randomized, placebo-controlled, four-arm trial to investigate

whether selenium (200 micrograms (µg)/day from L-selenomethionine) or vitamin E (400

international unit (IU)/day of all rac-α-tocopheryl acetate) or the combination of both would

bring benefit to prostate cancer prevention during a study period of minimum 7 and max-

imum 12 years. A total of 35533 men were enrolled and randomized between August 22,

2001 and June 24, 2004 from 427 study sites in the United States, Canada and Puerto

Rico [Lippman et al., 2005; Klein et al., 2011].

Eligibility criteria were 55 years or older for non-African American men but 50 years or older

for African American men due to their increased prostate cancer risk. Further enrollment

criteria included a PSA level ≤ 4 ng/mL, a normal DRE, and no prior prostate cancer

diagnosis before study recruitment [Lippman et al., 2009].

Participants were monitored every 6 months for the development of prostate cancer dur-

ing the study at their study sites, during which participants were asked to report any new

events, including cardiac incidents, diabetes, and any other severe issues not attributable

to the study supplements. SELECT recommended to biopsy participants with PSA greater

than 4 ng/mL and/or abnormal DRE [Southwest Oncology Group, 2021]. Those who were

diagnosed with prostate cancer were followed annually thereafter for their cancer treat-

ments and to update the study endpoints. The primary endpoint of the study was prostate

cancer diagnosis determined by routine clinical management and reported to the study

sites by participants themselves. The prostate tissue samples and the pathology reports

from the participants with suspicious prostate cancer were sent to the central pathology

laboratory for confirmation with their corresponding Gleason scores being assigned by the

laboratory [Klein et al., 2000, 2011; Lippman et al., 2009]. The study closed early in 2008

after a median follow-up of 5.5 years due to lack of prevention effect [Lippman et al., 2009].

2.3 Data processing

Scenarios with either binary endpoint, i.e. with or without prostate cancer, or survival end-

point, i.e. time to prostate cancer, are explored in this thesis, for which two different pairs

of PLCO-SELECT cohorts are created for the analyses with binary or survival endpoints,

respectively. For either pair, we use only those participants enrolled in the screening arm

of PLCO since several PSA and DRE values from annual screening ensure the availability
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of enough data. The detailed cohorts construction criteria for each of the two pairs are

described in this section.

In PLCO and SELECT, the collected risk factors are not all the same due to different study

perspectives. Among these risk factors, we select six of them: age, PSA, DRE, first-degree

family history of prostate cancer, prior negative biopsy, and African ancestry as candidate

risk factors in the modeling of the prostate cancer risk, which are the common risk factors

collected by both cohorts and are largely used in several major online prostate cancer risk

calculators [Ankerst et al., 2018; Zaytoun et al., 2011; SWOP, 2021].

Scenario 1

In the analysis for prostate cancer prevalence with binary endpoints, we exclude men who

developed any cancer before study entry and did not have any PSA records during the

study from both PLCO and SELECT. Among the rest, we set the baseline for men without a

biopsy at the age when their latest PSA values were recorded during the study. Their most

recent PSA and DRE values recorded during the study observation period are used as the

corresponding baseline values. For men with at least one biopsy, we set the baseline at

the age of the latest biopsy date for men without cancer or at the age of cancer diagnosis

for men with cancer. Their most recent PSA and DRE values recorded within two years

before the latest biopsy date or before the cancer diagnosis date are used as the baseline

values. We exclude men without eligible PSA and DRE values and with any missing values

in first-degree family history, prior negative biopsy, and African ancestry from both cohorts.

At last, men at the age < 55 years at baseline are excluded as well, resulting in 30245

PLCO and 32629 SELECT participants for further analysis.

According to the protocols, eligible men in PLCO had to be between 55 to 74 years old

but no upper age limit for men in SELECT at study entry. Though we use the age at the

most recent PSA recorded date or at the latest biopsy date as the baseline, the inclusion

criteria still affect the new baseline age of the selected participants, which the SELECT has

a higher percentage of men older than 75 years of age compared to PLCO as shown in

Table 2.1. PLCO has higher proportions of participants with PSA greater than 10 ng/mL and

abnormal DRE at baseline compared to SELECT (1.6% versus 0.4 % for PSA > 10 ng/mL;

10.1% versus 4.0% for abnormal DRE), which the inclusion criteria of the two studies could

be a reason since PLCO does not require the PSA at study entry to be ≤ 4 ng/mL. On the

other hand, from Table 2.1, SELECT has roughly twice the percentages of participants who

have African ancestry, first-degree family history, or prior negative biopsy versus PLCO,

while the proportions of being verified are similar between the two cohorts (12.6% versus

12.8%).

In Figure 2.1, we combine the participants from both studies and calculate the odds ratio

for being in PLCO in terms of six dichotomized candidate risk factors of prostate cancer.
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Men with abnormal DRE have the odds of being in PLCO nearly three times as large

as those with normal DRE, while men with PSA > 4 ng/mL are also more likely to be

in PLCO with the odds of being in PLCO around 50% higher than those with lower PSA

values. Here the odds of being in PLCO refers to the probability of being in PLCO divided

by the probability of being in SELECT. The higher the odds of certain event, the higher

the probability of the occurrence of such event. Men with abnormal DRE having a higher

chance to be in PLCO may be due to that man with PSA > 4 ng/mL had been enrolled in

PLCO, but not in SELECT. On the other hand, African Americans have the odds of being

in SELECT nearly four times higher compared to non-African Americans. While both trials

were conducted in sites throughout North America, the higher odds of being in SELECT

for African Americans could be attributed to a special minority recruitment incentive [Cook

et al., 2005, 2010]. Men with prior negative biopsy, at the age > 75 years of age, and with

a family history of prostate cancer are more likely of being in SELECT than in PLCO with

the odds ratios around 0.49, 0.45, and 0.40, respectively.

Since both PLCO and SELECT are recommended to biopsy men with PSA > 4 ng/mL

and/or abnormal DRE, Figure 2.2 shows high odds ratios for being biopsy, i.e. being ver-

ified, for both situations. However, a PLCO participant with PSA > 4 ng/mL has around

twice the odds of receiving a biopsy compared to a SELECT participant (odds ratios: 49.2

versus 24.4), whereas the reverse is true for a participant with abnormal DRE (odds ratios:

12.9 versus 30.8). Odds ratios for the other risk factors do not differ much between the

two cohorts. When participants are at an age greater than 75 years, the odds ratios are

smaller than one (odds ratios: 0.46 and 0.59) indicating less likely to be verified in both co-

horts. This may due to that the elderly only consisted of a small proportion of participants

in both cohorts, i.e. 8.3% in PLCO and 16.8% in SELECT as shown in Table 2.1, so that

we lack well representative samples of them. Physicians may have the considerations for

balancing the harms and benefits of verifying the elderly, which could also confound the

outcome [Kotwal and Schonberg, 2017].

PLCO men with African ancestry have higher odds of being verified compared to those

without (odds ratio: 1.3), whereas having African ancestry does not affect the odds of

biopsy much in SELECT with the odds ratio being around one (odds ratio: 0.9). Having a

prior negative biopsy and a first-degree family history of prostate cancer are more likely to

be verified in both cohorts. However, men with a family history have a slightly higher odds

ratio of being biopsied in SELECT compared to that in PLCO (odds ratios: 1.7 versus 1.5),

while the odds of biopsy for men with prior negative biopsy in PLCO is around twice higher

than in SELECT (odds ratios: 3.1 versus 1.7). Among the six risk factors, only the age > 75

years decreases the probability of being biopsy in both cohorts, while all the rest increase

the likelihood of being verified. For each risk factor, the odds ratios from both cohorts are

either both greater than one or smaller except for the African Americans that SELECT has

an odds ratio slightly lower than one.
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Figure 2.3 depicts the odds ratio of having prostate cancer per binary risk factor versus the

prevalence of the respective risk factor among verified participants in PLCO and SELECT,

respectively. Having PSA > 4 ng/mL, with a family history of cancer, and having African

ancestry all increase the risk of having prostate cancer, i.e. with the odds ratio greater

than one, while having a prior negative biopsy decrease the prostate cancer risk in both

trials. Verified men in SELECT with abnormal DRE have a higher risk of having prostate

cancer compared to those with normal DRE results, while the reverse is true in PLCO that

verified men with normal DRE have a higher risk of having cancer (1.4 in SELECT versus

0.5 in PLCO). SELECT excluded men with abnormal DRE from participating in the study

but PLCO did not, which explains the higher proportion of having abnormal DRE in PLCO

in contrast to that in SELECT. To recall, we use the latest DRE and PSA values taken

within two years before the latest biopsy in this scenario. The abnormal DRE related to

decreasing prostate cancer risk in PLCO may be due to that the DRE test results were

taken much earlier than the detection of prostate cancer in PLCO.

From the left panel of Figure 2.4, we can see that the density curve for time to PSA and

the one for time to prostate cancer extend to year 6 after study enrollment in PLCO, while

the one for time to DRE stops 4 years after study enrollment. In SELECT, the density

curves for time to PSA, DRE, or prostate cancer are roughly overlapped as shown in the

right panel of Figure 2.4, which indicates that the timing of PSA test, DRE test, and the

detection of prostate cancer are close to each other. Hence, in PLCO, there is a longer

time gap between the time of DRE test and the time of prostate cancer compared to that

in SELECT, which could detriment the predictive ability of the DRE test results for prostate

cancer since the DRE test has been taken too early prior than cancer diagnosed. Other

researchers also found that in PLCO, the DRE results did not benefit much for the prostate

cancer detection when the PSA level was ≤ 4 ng/mL, where the abnormal DRE results only

captured 2% of prostate cancer in such situation [Cui et al., 2016]. Moreover, the DRE test

results depend on the experience of the physicians and the criteria of “abnormal” resulting

in substantially heterogeneous test results across study sites, which variation reduces the

accuracy of predicting prostate cancer with solely DRE results [Naji et al., 2018].

Having an age greater than 75 years does not affect the prostate cancer risk much in

PLCO, while only slightly increases the cancer risk in SELECT (odds ratios: 0.97 in PLCO

versus 1.26 in SELECT in Figure 2.3), which may attribute to that the elderly are rarely

joined in clinical trials in general and PLCO had excluded men older than 74 years of age

at enrollment. Similarly as in Figure 2.2, the odds ratio of having prostate cancer for men

with PSA > 4 ng/mL in PLCO is higher than that in SELECT (odds ratios: 2.3 versus 3.0),

while the one for men with abnormal DRE is higher in SELECT (odds ratios: 1.4 versus

0.5). For men older than 75 years of age or having a family history, the corresponding odds

ratios of having cancer in SELECT are higher than those in PLCO, while the odds ratios of

having cancer for African Americans and for men with prior negative biopsy are higher in

17



2 Two large North American prostate cancer screening and prevention trials

PLCO. Except for abnormal DRE and age > 75 years, the odds ratios from both cohorts

for each risk factor are either above one for both or below.

Table 2.1: Baseline characteristics and verification status of 30245 PLCO and 32629 SELECT
participants. All p-values from Wilcoxon (Chi-square) tests for numerical (categorical) variables are
significant and less than 0.001 except for Prostate-specific antigen (p-value = 0.88) and Verified
(p-value = 0.42). Q1 = the first quartile, Q3 = the third quartile.

PLCO (n = 30245) SELECT (n = 32629)
Age (year)
(min., Q1, median, Q3, max.) (55.0, 62.3, 66.2, 70.9, 80.1) (55.0, 63.0, 67.1, 72.9, 95.9)

Age, n(%)
[55, 65] 12338 (40.8) 12149 (37.2)
(65, 75] 15409 (50.9) 15003 (46.0)
(75, 95.9] 2498 (8.3) 5477 (16.8)

Prostate-specific antigen (ng/mL)
(min., Q1, median, Q3, max.) (0.0, 0.7, 1.2, 2.4, 1137.5) (0.0, 0.7, 1.3, 2.4, 790.9)

Prostate-specific antigen, n(%)
[0, 4] 26493 (87.6) 29485 (90.4)
(4, 10] 3257 (10.8) 2999 (9.2)
(10, 1137.5] 495 (1.6) 145 (0.4)

Digital rectal exam, n(%)
Abnormal 3046 (10.1) 1301 (4.0)
Normal 27199 (89.9) 31328 (96.0)

African ancestry, n(%)
Yes 1286 (4.3) 4464 (13.7)
No 28959 (95.7) 28165 (86.3)

First-degree family history, n(%)
Yes 2254 (7.5) 5482 (16.8)
No 27991 (92.5) 27147 (83.2)

Prior negative biopsy, n(%)
Yes 1437 (4.8) 3030 (9.3)
No 28808 (95.2) 29599 (90.7)

Verified, n(%)
Yes 3813 (12.6) 4185 (12.8)
No 26432 (87.4) 28444 (87.2)
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Figure 2.1: Univariable odds ratios for being in PLCO versus prevalence of dichotomized prostate
cancer risk factors in 62874 combined participants of PLCO and SELECT (30245 (48.1%) in PLCO).
PSA = prostate-specific antigen; DRE = digital rectal exam.
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Figure 2.2: Univariable odds ratios for having a biopsy versus the prevalence of dichotomized
prostate cancer risk factors evaluating the association between the binary risk factor and the out-
come of having a biopsy performed in 30245 PLCO (3813 (12.6%) verified) and 32629 SELECT
(4185 (12.8%) verified) participants. PSA = prostate-specific antigen; DRE = digital rectal exam.
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Figure 2.3: Univariable odds ratios for having prostate cancer versus the prevalence of di-
chotomized prostate cancer risk factors in 3813 PLCO (1833 (48.4%) with cancer) and 4185 SE-
LECT (2028 (48.5%) with cancer) verified participants. PSA = prostate-specific antigen; DRE =
digital rectal exam.
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Figure 2.4: Density of the time since study registration until prostate-specific antigen (PSA) test,
digital rectal exam (DRE) test, or detection of prostate cancer (PCA) in 1833 PLCO and 2028
SELECT participants with prostate cancer. In SELECT, the time of DRE records taken before the
registration date in SELECT is set to be at the registration date.

Scenario 2

For the analysis of the prostate cancer risk with survival endpoint, we define the age at

which the first PSA value is measured as the baseline since not all men have a PSA value

recorded right at study entry. Men with a prior diagnosis of any cancer or missing values of

any risk factors, i.e. PSA, DRE, family history, prior negative biopsy, and African ancestry,

are excluded from both PLCO and SELECT. We exclude SELECT men < 55 years and

≥ 74 years at baseline since older men are not typically screened for prostate cancer as

indicated by the exclusion criterion from PLCO. We further exclude those with PSA > 10

ng/mL at baseline from PLCO. We obtain 29699 PLCO men and 26422 SELECT men for

further analysis in the end. In the analysis for time to prostate cancer, we use 5 years after

baseline as the censoring time point for both cohorts in this thesis, for which men who have

been verified within 5 years after baseline with the biopsy indicator be 1 and 0 otherwise.

Similarly, we define the censoring indicator be 1 for men who have prostate cancer within

5 years and 0 otherwise.

Figure 2.5 describes the odds ratio for being in PLCO with respect to dichotomized baseline

prostate cancer risk factors in the combined PLCO and SELECT set, where the DRE has

been excluded as all participants in SELECT have normal baseline DRE results. Men with

first PSA > 2 ng/mL or at an age greater than 65 years at baseline are more likely to be in

the PLCO compared to those with lower PSA or at a younger age at baseline. PLCO has

a larger percentage of participants with baseline PSA > 2 ng/mL compared to SELECT

as shown in Table 2.2, which explains the high odds ratio of being in PLCO for men with
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PSA > 2 ng/mL (odds ratio: 1.3). The percentage of men older than 65 years at baseline

in PLCO is only slightly higher than that in SELECT and hence, the odds ratio of being in

PLCO for age is just moderately higher than one (odds ratio: 1.1). Having prior negative

biopsy, family history of cancer, and African ancestry are more likely to be in the SELECT

cohort (odds ratios: 0.5, 0.4, and 0.3), which conclusion agrees with the numbers shown in

Table 2.2 that the percentages of men with prior negative biopsy, family history, and African

ancestry in SELECT are higher than those in PLCO.

From Figure 2.6, participants with a first PSA greater than 2 ng/mL, at an age greater than

65 years, having a family history, with African ancestry, and having prior negative biopsy

are more likely to be biopsied within 5 years after baseline, i.e. with odds ratios greater

than one, compared to those without for both studies. In PLCO, the odds ratios of having

a biopsy for men with abnormal DRE and first PSA > 2 ng/mL are far greater than one

(odds ratios: 4.5 and 12.6), which can attribute to the biopsy scheme recommending biopsy

men with PSA greater than 4 ng/mL and/or with abnormal DRE. SELECT has the same

biopsy scheme and hence, the odds ratio for men with first PSA > 2 ng/mL is around 7.2

in SELECT. The odds ratio for men > 65 years in PLCO is higher than that in SELECT

(odds ratios: 1.5 versus 1.2), while the odds ratio for men with family history in SELECT is

higher (odds ratios: 1.4 versus 1.6). The odds ratio for participants with African ancestry

is slightly higher than that in SELECT. African Americans in PLCO would be biopsied 1.3

times more often than non-African Americans, while around 1.2 times in SELECT. Men

in PLCO with prior negative biopsy would be biopsied 2.8 times more often than those

without, while around 1.8 times in SELECT. For all risk factors that apply to both cohorts,

the odds ratios from both PLCO and SELECT for each risk factor are either above one for

both cohorts or below. PLCO referred participants with any risk factors to biopsy more than

SELECT, except for family history, which may due to that PLCO cohort was less healthier

than SELECT since SELECT required enrolled participants with PSA < 4 and normal DRE.

SELECT biopsied more men with family history of cancer than PLCO, possibly due to

that SELECT started around 10 years later than PLCO and was more nervous towards

occurrence of family history of cancer because public had more knowledge about cancer

prevention and knowing that having family history of cancer would be a risky situation to

develop cancer.

As for the odds ratio of having prostate cancer within five years after baseline in terms of

risk factors, we can see from Figure 2.7 that having a first PSA greater than 2 ng/mL, older

than 65 years, having a family history, with African ancestry, and having prior negative

biopsy all relate to a higher risk of developing prostate cancer, compared to the others.

The odds ratios of having prostate cancer for men in PLCO with PSA > 2 ng/mL, older

than 65 years, with African ancestry, and having prior negative biopsy are higher than the

respective ones for SELECT, while the odds ratio in PLCO is lower than that in SELECT

for men with family history (odds ratios: 1.9 versus 1.7). Men in PLCO with higher PSA are

around 20.0 times more often having prostate cancer compared to those with lower PSA,
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while 8.2 times in SELECT. The large difference in the odds ratios between the two studies

may attribute to that PLCO did not exclude participants with PSA > 4 ng/mL at enrollment

so that men in SELECT were, in general, healthier than those in PLCO. Specifically, in

PLCO, men with abnormal baseline DRE have the odds ratio of having cancer around 2.9.

The odds ratios for men with prior negative biopsy differ between the two studies with 1.1 in

SELECT and 2.0 in PLCO. The odds ratios for participants with African ancestry are quite

similar between SELECT and PLCO (odds ratios: 1.5 versus 1.6), while the odds ratios for

the elder people differ between studies (odds ratios: 1.3 versus 1.7).

From Table 2.2, there are no participants with baseline PSA greater than 4 ng/mL or ab-

normal DRE in SELECT. The proportions of participants with African ancestry, first-degree

family history, or prior negative biopsy on PLCO are around half of the corresponding pro-

portions from SELECT, whereas the proportions of being verified and having prostate can-

cer within 5 years are similar between the cohort as shown in Figure 2.8, i.e. 12.9% in

PLCO versus 10.2% in SELECT for being verified and 5.3% in PLCO versus 4.1% in SE-

LECT for having prostate cancer. SELECT had higher percentages of African American

was due to the special recruitment grant. More SELECT participants with family history

and prio negative biopsy than PLCO, which may due to that SELECT started in 2001 with

the population at that time having more knowledge about cancer health condition and care

more about cancer prevention than PLCO started in 1993. The log-minus-log transforma-

tion is used to construct the point-wise confidence intervals for cumulative incidences to

avoid the endpoints of the asymptotic confidence intervals being out of the unit interval

[Hosmer Jr et al., 2000]. The incidence of prostate cancer in both cohorts follows much

as the patterns of the biopsy. Because PLCO has verified a larger amount of participants,

more prostate cancer men in the first year after baseline have been found in PLCO than in

SELECT. Overall, PLCO has more prostate cancer cases than SELECT as we expect since

the restricted enrollment criteria of PSA < 4 ng/mL and normal DRE prevents participants

with poor health conditions from participating in SELECT at the beginning.
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Table 2.2: Baseline characteristics verification status within 5 years of 29699 PLCO and 26422
SELECT participants. All p-values from Wilcoxon (Chi-square) tests for numerical (categorical) risk
factors and verification status are significant and less than 0.001 except for digital rectal exam as
no test was performed on it. Q1 = the first quartile, Q3 = the third quartile.

PLCO (n = 29699) SELECT (n = 26422)
Age (year)
(min., Q1, median, Q3, max.) (55.0, 58.1, 62.1, 66.1, 74.0) (55.0, 58.3, 62.0, 66.4, 74.0)

Age, n(%)
[55, 60] 10021 (33.7) 9938 (37.6)
(60, 65] 9584 (32.3) 8006 (30.3)
(65, 70] 6827 (23.0) 5767 (21.8)
(70, 74] 3267 (11.0) 2711 (10.3)

Prostate-specific antigen (ng/mL)
(min., Q1, median, Q3, max.) (0.0, 0.7, 1.1, 2.0, 10.0) (0.0, 0.7, 1.1, 1.8, 4.0)

Prostate-specific antigen, n(%)
[0, 1] 13454 (45.3) 12831 (48.6)
(1, 2] 8959 (30.2) 8165 (30.9)
(2, 3] 3465 (11.7) 3543 (13.4)
(3, 4] 1814 (6.1) 1883 (7.1)
(4, 10] 2007 (6.8) 0 (0.0)

Digital rectal exam, n(%)
Abnormal 2119 (7.1) 0 (0.0)
Normal 27580 (92.9) 26422 (100.0)

African ancestry, n(%)
Yes 1155 (3.9) 2779 (10.5)
No 28544 (96.1) 23643 (89.5)

First-degree family history, n(%)
Yes 2288 (7.7) 4623 (17.5)
No 27411 (92.3) 21799 (82.5)

Prior negative biopsy, n(%)
Yes 1359 (4.6) 2381 (9.0)
No 28340 (95.4) 24041 (91.0)

Verified within 5 years
Yes 3844 (12.9) 2691 (10.2)
No 25855 (87.1) 23731 (89.8)
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Figure 2.5: Univariable odds ratios for being in PLCO versus prevalence of dichotomized prostate
cancer risk factors in 56121 combined participants of PLCO and SELECT (29699 (52.9%) in PLCO).
PSA = prostate-specific antigen.
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Figure 2.6: Univariable odds ratios for having a biopsy within 5 years after baseline versus the
prevalence of dichotomized prostate cancer risk factors evaluating the association between the
binary risk factor and the outcome of having a biopsy in 29699 PLCO (3844 (12.9%) verified) and
26422 SELECT (2691 (10.2%) verified) participants. PSA = prostate-specific antigen; DRE = digital
rectal exam.
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Figure 2.7: Univariable odds ratios for having prostate cancer within 5 years after baseline versus
the prevalence of dichotomized prostate cancer risk factors evaluating the association between the
binary risk factor and the outcome of having cancer in 29699 PLCO (1564 (5.3%) with cancer) and
26422 SELECT (1093 (4.1%) with cancer) participants. The binary censoring status with value one
if a participant developed prostate cancer within 5 years after baseline and zero otherwise is used
for calculating the odds ratios. PSA = prostate-specific antigen; DRE = digital rectal exam.

28



2.3 Data processing

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5
Years

P
ro

p
o

rt
io

n
 w

it
h

 b
io

p
s

y

PLCO (n = 29699, %censored = 87.1)
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Figure 2.8: Cumulative incidence curves with corresponding log-minus-log confidence intervals
for time to first biopsy (left panel) and prostate cancer diagnosis (right panel) using time since
first prostate-specific antigen (PSA) measurement as the baseline among 29699 PLCO and 26422
SELECT participants.
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3 Standard validation of risk prediction
models

In this chapter, we review standard exploratory and quantitative techniques for external

validation when individual participant data are available on the training and test sets and

illustrate the method with 30245 PLCO and 32629 SELECT participants described in Sec-

tion 2.3.

3.1 Research context

Once a clinical risk prediction model has been built, we should validate it with external

samples for its validity upon samples other than the training population. As discussed

previously, the heterogeneity between training and validation cohorts confounds the per-

formance measures in the external validation of risk prediction models, where the het-

erogeneity could raise from the difference in the distribution of risk factors or variation in

the true effects of risk factors upon disease status. Researchers have proposed several

methods to assess the extent of heterogeneity between cohorts, such as the AUC from

the membership model with a high value reflecting severer heterogeneity in distributions of

both risk factors and disease outcome [Debray et al., 2015], or adjusted maximum mean

discrepancy metric measuring between-cohort variation in the distributions of risk factors

between cohorts [Song et al., 2020]. When the data from both training and validation co-

horts are available, we can weight the participants in the validation cohort to resemble the

target population or match them based on the propensity score [Ackerman et al., 2019;

Powers et al., 2019; Austin, 2011a,b; Austin and Stuart, 2017]. When the training data are

not available, which is often the case in the external validation of online risk prediction tools,

benchmark values of the external validation metrics serve as the supplement to the usual

metric that reveals the impact of variation in risk factors distributions between cohorts in the

external validation of the risk prediction models, such as the model-based c−index replac-

ing the comparison of observed disease outcomes with the comparison of linear predictors

coming from the risk prediction model [Vergouwe et al., 2010; van Klaveren et al., 2016].

One type of bias affecting the external validation of a risk prediction model comes from the

fact that we calculate the validation metrics using the data of participants who have been

verified by cancer confirmation tests and hence, with known cancer outcomes, but ignore

the rest with missing cancer outcomes. The verified participants in the validation cohort
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may not be randomly sampled from the validation population. Moreover, as discussed

before in Section 1.3, the data used to construct a risk prediction model is not a random

sample but rather a group of participants with suspicious disease-related symptoms and

later, is verified by the gold standard. Using only the data from verified participants whose

characteristics are substantially different from the unverified ones causes the so-called

verification bias.

When the data from the training cohort are not available, several studies have considered

the problem of adjusting the verification bias within the validation cohort in the assessment

for the discriminating ability of models with AUC, under either a missing at random (MAR)

assumption or with extensions to missing not at random (MNAR) models under potential

violations of MAR, where the verification bias occurs when only a part of the participants

in a cohort have been verified with gold standard and hence, the disease outcome is miss-

ing for unverified ones [Alonzo and Pepe, 2005; Fluss et al., 2009; Buzoianu and Kadane,

2008; Zhang et al., 2018; Zhou and Castelluccio, 2004; Kosinski and Barnhart, 2003].

These methods have developed a disease risk prediction model from verified cases within

the validation cohort and used this to impute the disease probability for non-verified par-

ticipants in the validation cohort. In a review in 2019, 48 publications published between

2005 to 2019 have been found considering imputing the missing outcomes to adjust the

verification bias [Umemneku Chikere et al., 2019]. For example, Alonzo and Pepe [2005]

imputed the outcomes of the unverified participants with their estimated disease risks from

a logistic regression to correct the verification bias under the MAR assumption. To impute

the disease risk, other than regression models, we can also apply non-parametric methods

to estimate the disease risks that are not subject to misspecification of the models, such

as nearest neighbor [Alonzo and Pepe, 2005; He et al., 2009; Adimari and Chiogna, 2015,

2017]. Under the MAR assumption, weighting the verified participants by the inverse of

the probability of being verified or combining imputation and weighting utilizing data of all

individuals are other approaches to remedy the verification bias [Alonzo and Pepe, 2005;

He et al., 2009; He and McDermott, 2012].

When the verification status is related to the unobserved data, MAR does not hold. In this

case, some verification bias adjustment approaches incorporate the association between

verification status and observed disease outcome in the verification model, such as the

doubly robust estimator for AUC [Rotnitzky et al., 2006; Fluss et al., 2009; Zhang et al.,

2018] and likelihood approach [Liu and Zhou, 2010; Zhou and Castelluccio, 2004]. They

all apply a pre-specified parameter to quantify the extent of association between verifica-

tion status and the disease outcomes, such as the log odds ratios of having the disease

for verified versus unverified ones under the same risk factors and diagnostic test result

levels. Other eligible verification bias adjustment methods under MNAR include propensity

score adjustment using the instrumental variable [Yu et al., 2018] and Bayesian approaches

modeling verification probability with disease outcome [Buzoianu and Kadane, 2008].
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Because the adjustment of verification bias is mainly investigated in the attempt to perfectly

evaluate the accuracy of the diagnostic test, i.e. comparing the results from the test versus

the true outcomes verified by the gold standard to determine if this test can distinguish

the case versus non-case correctly, all publications focus only on addressing the bias in

the estimation of AUC or sensitivity and specificity showing the discriminating ability of the

diagnostic test as far as we can see.

Here, we utilize the individual participant data from unverified participants in the valida-

tion cohorts in addition to the verified ones to adjust the verification bias in the external

validation results of risk models under the MAR assumption. Both verified and unverified

participants should have risk factors available, whereas clinical outcomes are only avail-

able for verified participants. We illustrate the process with data from PLCO and SELECT,

where the PLCO is used as the training cohort and SELECT as the external validation

cohort.

3.2 Notations and metrics

We outline the usual model training and validation framework in Figure 3.1. Rather than

considering the training and validation cohorts separately, we envision them as arising

from a pool of individuals, all of which have the risk predictors X for a disease measured.

In other words, the training and validation cohorts should share the same risk factors. We

let T denote which cohort the individuals have been selected into, with T = 1 the training

cohort for a prediction model and T = 0 the cohort to validate it. Selection into a cohort

typically depends on risk factors X, often specified as eligibility criteria, which is indicated

in Figure 3.1. Once in a cohort, whether or not the individual is verified for the disease, V ,

also depends on the risk factors X typically. Standards for referral for verification often vary

across cohorts and thus V may depend on X and T . Finally, we assume that the disease

status D is inherent to the individual, depending only on their risk factors X, and not on the

selection T or verification V mechanisms. Note that if V = 0 then D is unobserved.

We assume a risk prediction model is built relating the disease outcomes to the risk factors

in the training cohort either by just using the verified individuals who have outcomes avail-

able, as in the case of the prostate cancer application, or by including unverified individuals

additionally via multiple imputation for missing outcome data. The modeling yields the coef-

ficients for a risk function R(X) that can then be applied to the risk factors for individuals in

the external validation cohort. For simplicity, we assume that all individuals in both cohorts

have the same risk factors X measured, though missing risk factors could be filled in by

some imputation procedures.

In the external validation of the built model, the AUC and the CIL are two common metrics

used for evaluating the discrimination and calibration respectively. Using the notation in

Figure 3.1, the typical CIL summarizing the expected discrepancy between predicted risk
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Figure 3.1: Data collection processes of a validation and training set. Lower panels indicate defi-
nitions for the prostate cancer (PCA) application with PSA: prostate-specific antigen, DRE: digital
rectal exam.

and disease status in the validation set (T = 0) is

CIL = E(R(X)−D|T = 0, V = 1). (3.1)

Assuming that (Xi, Ti, Vi, Di) are independent and identical distributed with distribution

FX,T,V,D for i = 1, . . . , N = N0 +N1 individuals across both the training (N1) and validation

(N0) cohorts, we can approximate the CIL by the sample average as

ĈIL =

∑N0
i=1(R(Xi)−Di)Vi∑N0

i=1 Vi
. (3.2)

which is a consistent estimator of CIL by the law of large number when the effective sample

size
∑N0

i=1 Vi →∞. Specifically, let I(A) be the indicator function with value one when event

A occurs and zero otherwise, we re-write CIL and the corresponding estimator as

CIL = E(R(X)|V I(T = 0) = 1)− E(D|V I(T = 0) = 1),

ĈIL =

∑N0
i=1(R(Xi)−Di)Vi∑N0

i=1 Vi
=

∑N
i=1(R(Xi)−Di)ViI(Ti = 0)∑N

i=1 ViI(Ti = 0)
.

Since the risk function R is real-value continuous function of X, we have

1

N

N∑
i=1

R(Xi)ViI(Ti = 0)
p−−−−→

N→∞
E[R(X)V I(T = 0)];

1

N

N∑
i=1

ViI(Ti = 0)
p−−−−→

N→∞
P (V I(T = 0) = 1)
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by law of large numbers, where
p−→ denotes convergence in probability. Assuming P (V I(T =

0) = 1) > 0, by continuous mapping theorem, we have

1
N

∑N
i=1R(Xi)ViI(Ti = 0)

1
N

∑N
i=1 ViI(Ti = 0)

p−−−−→
N→∞

E[R(X)V T ]

P (V I(T = 0) = 1)
= E[R(X)|V I(T = 0) = 1].

The above equality is due to the fact that E[R(X)V I(T = 0)] =
∫
R(X)P (X,V I(T =

0) = 1)dX, where the equality holds by dividing the function inside the integral with

P (V I(T = 0) = 1). Here by assuming P (V I(T = 0) = 1) > 0 we ensure that the ver-

ified participants exist among the population with certain positive probability. When the

sample size N increases to infinity, the number of verified individuals among N goes to

infinity as well, i.e.
∑N0

i=1 Vi →∞ when N →∞. Similarly, we can show

1
N

∑N
i=1DiViI(Ti = 0)

1
N

∑N
i=1 ViI(Ti = 0)

p−−−−→
N→∞

E[DV I(T = 0)]

P (V I(T = 0) = 1)
= E[D|V I(T = 0) = 1].

Then, the sum of two consistent estimators is consistent, i.e.

1
N

∑N
i=1R(Xi)ViI(Ti = 0)

1
N

∑N
i=1 ViI(Ti = 0)

−
1
N

∑N
i=1DiViI(Ti = 0)

1
N

∑N
i=1 ViI(Ti = 0)

p−−−−→
N→∞

E[R(X)|V I(T = 0) = 1]− E[D|V I(T = 0) = 1]. (3.3)

So that ĈIL is a consistent estimator of CIL.

By the central limit theorem, the variance of ĈIL is σ2/
∑N0

i=1 Vi, where σ2 = V ar(R(X)−
D|T = 0, V = 1), and its distribution is asymptotically normal. The variance σ2 can be

estimated by the sample variance of R(X)−D among verified participants in the validation

set, yield the estimate variance of ĈIL as

v̂ar(ĈIL) =
1∑N0
i=1 Vi

(∑N0
i=1(R(Xi)−Di)

2Vi∑N0
i=1 Vi

− ĈIL
2

)
. (3.4)

Discrimination begins with true positive rates (TPRs) and false positive rates (FPRs) for

rules that would test positive for disease when R > c. They can be computed for all

possible thresholds c ∈ [0, 1], and are commonly estimated among the verified participants

in the validation set by:

TPR(c) = P (R(X) > c|V = 1, T = 0, D = 1), FPR(c) = P (R(X) > c|V = 1, T = 0, D = 0),

T̂PR(c) =

∑N0
i=1 I(R(Xi) > c)ViDi∑N0

i=1 ViDi

, F̂PR(c) =

∑N0
i=1 I(R(Xi) > c)Vi(1−Di)∑N0

i=1 Vi(1−Di)
, (3.5)

where I(·) is an indicator function equal to 1 if the argument inside the bracket holds and

0 otherwise. Higher values of the TPR and lower values of the FPR are desirable, though

these have a trade-off that depends on c. To summarize overall c, the receiver-operating-

34



3.2 Notations and metrics

characteristic (ROC) curve plots FPR(c) on the x-axis versus TPR(c) on the y-axis for all

c ∈ [0, 1]. Higher ROC curves that have maximal TPRs close to 1 for all FPRs indicate better

discrimination. The AUC summarizes the ROC curve as the area underneath it, with higher

values close to 1 indicating better discrimination. We can calculate the corresponding AUC

by trapezoidal rule and obtain its standard error via bootstrapping.

The estimators in (3.5) are consistent estimators for the corresponding rates. Applying

the same notation as before in calibration, we take TPR as an example and FPR follows

similarly. By law of large numbers, we have

1

N

N∑
i=1

I(R(Xi) > c)ViI(Ti = 0)Di
p−−−−→

N→∞
E[I(R(X) > c)V I(T = 0)D]

1

N

N∑
i=1

ViI(T = 0)Di
p−−−−→

N→∞
P (V I(T = 0)D = 1).

Then, for T̂PR(c), we can show the consistency of the estimator as

1
N

∑N
i=1 I(R(Xi) > c)DiViI(Ti = 0)

1
N

∑N
i=1 ViI(Ti = 0)Di

p−−−−→
N→∞

E[I(R(X) > c)V I(T = 0)D]

P (V I(T = 0)D = 1)

= P (I(R(X) > c)|V = 1, T = 0, D = 1)

by continuous mapping theorem given P (V I(T = 0)D = 1) > 0, i.e. the prevalence of

disease (D = 1) among the verified participants (V = 1) in the validation cohort (T = 0) is

greater than 0. According to central limit theorem, T̂PR(c) distributes asymptotically to a

normal distribution with variance of

1∑N0
i=1 ViDi

[∑N0
i=1 I(R(Xi) > c)ViDi∑N0

i=1 ViDi

(
1−

∑N0
i=1 I(R(Xi) > c)ViDi∑N0

i=1 ViDi

)]
, (3.6)

which is the sample variance of I(R(X) > c) among verified participants with the disease in

the validation cohort divided by the number of verified participants with disease among N0.

Here, the I(R(X) > c) follows a Bernoulli distribution with an estimated success probability

P (I(R(X) > c) = 1|V = 1, T = 0, D = 1) =

∑N0
i=1 I(R(Xi) > c)ViDi∑N0

i=1 ViDi

. (3.7)

Missing-at-random adjustments

Following previous approaches, we can extend the validation to include the unverified par-

ticipants in the validation set under the assumption their missing outcomes follow a missing-

at-random (MAR) mechanism [Alonzo and Pepe, 2005]. The method proceeds by substi-

tuting the missing cancer status Di for unverified individuals in the validation set with an

estimated disease probability pi = P (D = 1|Xi, T = 0) from a model for disease status built
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on the verified participants in the validation set. The adjustment of ĈIL for MAR becomes

ĈILMAR =
1

N0

N0∑
i=1

[(R(Xi)−Di)Vi + (R(Xi)− p̂i)(1− Vi)] . (3.8)

All other metrics can be similarly adjusted, such as the unweighted and weighted TPRs

and FPRs:

T̂PRMAR(c) =

∑N0
i=1 I(R(Xi) > c)[ViDi + (1− Vi)p̂i]∑N0

i=1 ViDi + (1− Vi)p̂i
,

F̂PRMAR(c) =

∑N0
i=1 I(R(Xi) > c)[Vi(1−Di) + (1− Vi)(1− p̂i)]∑N0

i=1 Vi(1−Di) + (1− Vi)(1− p̂i)
,

and the AUCs under MAR assumption follow. We can construct the confidence intervals

using the bootstrapping as well.

Weighted estimators

The above estimators can be weighted to account for training and validation cohort dif-

ferences as will be seen in Chapter 4. We show here the large sample properties of the

weighted estimates. Specifically, among n validation participants, the estimators are in the

form of
Ŝn

Ẑn
=

1/n
∑n

i=1 g(Xi, Di, Vi)w(Xi, β̂)

1/n
∑n

i=1 h(Xi, Di, Vi)w(Xi, β̂)
(3.9)

for certain bounded functions g, h for X,D, V and weights function w of X. The large sam-

ple properties of estimators depend on the behaviour of both the variables and estimated

coefficients (β̂) for X in the model for the weights (w(Xi, β̂)) and the estimated coefficients

for the probability of having cancer in the validation cohort P (D = 1|T = 0, X) when im-

pute the missing outcome for the unverified participants under MAR assumption. β is often

known as nuisance parameter.

To investigate the limiting behavior of the proposed estimators, we notice that the coeffi-

cients (β) are estimated using the observed data first and being embedded to calculate the

weighted estimators afterward. We can view such a two-step estimating problem as a one-

step problem such that the estimators and the coefficients are computed simultaneously,

which process consolidates two steps into one has been justified by Newey [1984]. In this

case, to find the estimators for CILs is to solve the summation of estimating equations over

n participants in the validation cohort, i.e. solving

n∑
i=1

{[(R(Xi)−D)Vi + k(R(Xi)− ρi)(1− Vi)]w(Xi, β)− π1} = 0 (3.10)

n∑
i=1

{[Vi + k(1− Vi)]w(Xi, β)− π2} = 0 (3.11)
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for π1 and π2, where ρi = P (Di = 1|Xi, Ti = 0) and π1, π2 correspond to the estimators for

the numerator and denominator of CILs, respectively. When w(X,β) be a constant 1 and

k = 0, π1/π2 is the estimator for CIL, while the estimator for CILMAR when k = 1. Later,

the weights w(X,β) could be a probability depending on X (see Chapter 4). Similarly for

TPRs, we solve the following summation of estimating equations:

n∑
i=1

{I(R(Xi) > c) [ViDi + k(1− Vi)ρi]w(Xi, β)− π3} = 0 (3.12)

n∑
i=1

{[ViDi + k(1− Vi)ρi]w(Xi, β)− π4} = 0 (3.13)

for π3 and π4, obtaining the estimators for the numerator and denominator of TPRs, re-

spectively. π3 corresponds to P (R(X) > c, V = 1, D = 1, T = 0), while π4 corresponds to

P (V = 1, D = 1, T = 0). When k = 0 or 1 and w(X,β) be constantly 1 or a probability

depending on X, we have the estimators for TPRs. We can define the estimating equations

for the numerator (π5) and denominator (π6) for FPRs analogously as (3.12) and (3.13).

Because the estimation for CILs does not relate to the estimation of TPRs and FPRs, we

treat the estimations of calibration and discrimination measures as distinct processes and

hence, their large sample properties can be proved separately. We now take the CILs as

the example showing the limiting properties, while the properties for TPRs and FPRs can

be checked similarly. Let π = (π1, π2)ᵀ corresponding to the numerator and denominator

of CILs and θ = (π, β)ᵀ. The superscript “ᵀ” refers to transposition. The coefficients (β)

are usually estimated from certain estimating equation as well. We then let U(θ) be an

estimating equation for θ and Un(θ) =
∑n

i=1 Ui(θ), where Ui(θ) = (Uπi (θ), Uβi (θ))ᵀ. Solving

Un(θ) = 0 for θ gives the estimators as well as the estimated coefficients all at once. We

denote θ̂n as the solution for Un(θ) = 0. Then, we just need to show the large sample

properties of the estimated θ̂n. Let Yi = (Xi, Ti, Vi, Di) be independent identical distributed

(i.i.d.) following distribution FY for i = 1, . . . , n and Ui(β) is i.i.d. across i as well. T, V,D

are dichotomous random variables. With the MAR assumption, we can impute the outcome

for the unverified participants with P (D = 1|T = 0, X). We now assume the models for

P (D = 1|T = 0, X) and the weights are correctly specified and introduce the following

additional assumptions:

H1: θ = (π, β)ᵀ ∈ Θ a closed and bounded parameter space,

H2: exists a unique θ0 ∈ Θ such that E[U(θ0)] = 0,

H3: U(θ) is differentiable and hence, a continuous function with respect to θ,

H4: the expectation of the absolute estimating equation |U(θ)| over Y : EY [supθ∈Θ |U(θ)|] <
∞.

H1 is a reasonable assumption since π is bounded and β cannot take infinite value in reality.

H2 assumes that there exists a unique solution θ0 for estimating equation E[U(θ)] = 0.
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H3 is satisfied in our case since U(θ) is continuous in π with ∂Uπ(θ)/∂π = −1. When

the weights come from logistic regression based on X with parameter β, ∂Uπ(θ)/∂β also

exists because it relates to the derivative of w(X,β) = eβX/(1 + eβX) with respective to β.

When using maximum likelihood estimation to obtain β̂ from a logistic regression

ln

(
w(X,β)

1− w(X,β)

)
= βX, (3.14)

the summation of the estimating equations for β is the derivative of log-likelihood function

(l(β)) from the logistic regression over β, i.e.

∂l(β)

∂β
=

n∑
i=1

ViXi − w(Xi, β)Xi, (3.15)

where w(Xi, β) = eβXi/(1 + eβXi) and the estimated β̂ is the solution when (3.15) is 0.

(3.15) is differentiable at β since ∂w(Xi, β)/∂β exists, while its derivative with respect to

π is 0 because it does not involve π. H4 focuses on the expectation over Y , i.e. over all

random variables in the estimating equation U(θ) other than the nuisance parameter β.

It assumes that the expectation of |U(θ)| with θ varying in the parameter space is finite,

i.e. first calculating the expectation of |U(θ)| over Y fixing θ and then, the maximum of

such expectations across different θ values is assumed to be finite. This condition holds in

our case since the estimating equation for π has bounded value and whose expectation is

finite. As long as the covariates (X) in the logistic regression have finite expectations, the

expectation of estimating equation for β is also bounded as we can see from (3.15).

The idea of showing consistency is that we have known that θ̂n solves Un(θ) = 0 and

θ0 solves E[U(θ)] = 0. When Un(θ) converges uniformly to E[U(θ)], we can show θ̂n

converges to θ0 in probability when n→∞ under the above assumptions. With H3 and H4

and the uniform law of large numbers [Newey and McFadden, 1994, Lemma 2.4], we have

that E[U(θ)] is continuous over θ ∈ Θ and

1

n

n∑
i=1

Ui(θ)
p−−−→

n→∞
E[U(θ)] uniformly. (3.16)

With these two conclusions above and H1 - H2, by Theorem 2.1 in Newey and McFadden

[1994], we conclude that

θ̂n
p−−−→

n→∞
θ0, (3.17)

which means the estimated θ̂n from solving Un(θ) = 0 is a consistent estimator of its true

value θ0. Therefore, the estimated CILs by solving the respective estimating equations are

consistent estimators of their corresponding true values because the estimated numera-

tors and denominators are components of θ̂n that is a consistent estimator for θ0, the true

parameter vector solving E[U(θ)] = 0.

Towards the limiting distribution, we make the following further assumptions:
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H5: var{U(θ0)} is positive and finite,

H6: EY [supθ∈Θ |
∂U(θ)
∂θ |] <∞,

H7: E[∂U(θ)
∂θ ] is non-singular and invertible.

We expand the estimating equation Un(θ̂n) around the true value θ0 with Taylor series

truncating at the second term according to mean value theorem as

0 =
√
nUn(θ̂n) (3.18)

=
√
nUn(θ0) +

√
n(θ̂n − θ0)

∂Un(θ̃n)

∂θ
, (3.19)

where θ̃n = αθ̂n + (1 − α)θ̂n with α ∈ (0, 1). Since θ̂n
p−→ θ0, we have θ̃n

p−→ θ0 as well. By

uniform law of large numbers and H6, we have

1

n

n∑
i=1

∂Ui(θ)

∂θ

p−−−→
n→∞

E

[
∂U(θ)

∂θ

]
uniformly. (3.20)

Then,
1

n

n∑
i=1

∂Ui(θ̃n)

∂θ

d−−−→
n→∞

E

[
∂U(θ0)

∂θ

]
(3.21)

holds by similar argument as showing consistency above. Given H5 and by central limit

theorem, we have
√
n[

1

n
Un(θ0)]

d−−−→
n→∞

N(0, var[U(θ0)]). (3.22)

Due to H7 that E
[
∂U(θ0)
∂θ

]−1
exists, we have the asymptotic normality of θ̂n by Slutzky

theorem as

√
n(θ̂n − θ0) =

[
1

n

n∑
i=1

∂Ui(θ̃n)

∂θ

]−1
√
n

(
1

n
Un(θ0)

)
d−−−→

n→∞
N

(
0, E

[
∂U(θ0)

∂θ

]−1

var{U(θ0)}
(
E

[
∂U(θ0)

∂θ

]ᵀ)−1
)
. (3.23)

Therefore, the ratio constructing with πj , j = 1, . . . , 6 follows a normal distribution asymp-

totically as well, where the asymptotic variance can be constructed by multivariate delta

method similarly as in Alonzo and Pepe [2005]. For example, for the ratio π1/π2 corre-

sponding to CILs, the asymptotic variance is

∂h(θ)

∂θ
Σ

(
∂h(θ)

∂θ

)ᵀ

,

where h(θ) = π1/π2 and ∂h(θ)/∂θ is a row vector. The Σ is the variance of the distribution

in (3.23). The asymptotic variance of the estimator of CILs relates to the variances of π1,

π2, and β as well as their covariance between each others. If we let π = (π3, π4, π5, π6), we

can show the properties for the estimators for TPRs and FPRs. Their asymptotic variances
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follow by replacing the h(θ) in (3.2) with (π3/π4, π5/π6)ᵀ, obtaining for TPRs and FPRs

simultaneously.

Now we give an approximation of the asymptotic variance of the estimated ratio. In our

case, h(X,D, V ) is always 1 and Ẑn in (3.9) becomes 1/n
∑n

i=1w(Xi, β̂). Since we are

lack of exact analytic expression of the asymptotic variance of the ratio estimator whose

variance is usually obtained via bootstrapping in practice, one approximation of this vari-

ance is [Gatz and Smith, 1995]:

n

(n− 1)
(∑n

i=1w(Xi, β̂)
)2


n∑
i=1

w2(Xi, β̂)

(
g(Xi, Di, Vi)−

Ŝn

Ẑn

)2
 , (3.24)

which Gatz and Smith [1995] claimed to be a reasonable estimation for the variance com-

pared to the one derived via bootstrap. Here, we approximate the variance through Taylor

expansion of ratio. Specifically, the variance of Taylor approximation of ratio S/Z around

the respective mean values (µS , µZ) is

var(S/Z) ≈ 1

µ2
Z

[
var(S)− 2

µS
µZ

cov(S,Z) +
µ2
S

µ2
Z

var(Z)

]
. (3.25)

The variance of S is approximated by the sample variance as

1

n

n∑
i=1

v̂ar(g(Xi, Vi, Di)w(Xi, β̂)) =

1

n(n− 1)

n∑
i=1

(
g(Xi, Vi, Di)w(Xi, β̂)−

∑n
i=1 g(Xi, Vi, Di)w(Xi, β̂)

n

)2

.

The covariance between S and Z is approximated by

1

n

n∑
i=1

ĉov(g(Xi, Vi, Di)w(Xi, β̂), w(Xi, β̂)) =

1

n(n− 1)

n∑
i=1

(
g(Xi, Vi, Di)w(Xi, β̂)−

∑n
i=1 g(Xi, Vi, Di)w(Xi, β̂)

n

)(
w(Xi, β̂)−

∑n
i=1w(Xi, β̂)

n

)
,

where cov(g(Xi, Vi, Di)w(Xi, β̂), w(Xi, β̂)) is 0 when i 6= j. The variance of Z is estimated

as

1

n

n∑
i=1

v̂ar(w(Xi, β̂)) =
1

n(n− 1)

n∑
i=1

(
w(Xi, β̂)−

∑n
i=1w(Xi, β̂)

n

)2

.

Moreover, we have the estimate of sample mean values for S and Z as

µ̂S =

∑n
i=1w(Xi, β̂)g(Xi, Vi, Di)

n
, µ̂Z =

∑n
i=1w(Xi, β̂)

n
.
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3.3 Simple analytic example

Denoting gi for g(Xi, Vi, Di) for notation simplicity, the variance of the ratio can be computed

as

v̂ar(S/Z) =
n/(n− 1)(∑n
i=1w(Xi, β̂)

)2


n∑
i=1

(
w(Xi, β̂)gi −

∑n
i=1w(Xi, β̂)gi

n

)2

+

(∑n
i=1w(Xi, β̂)gi∑n
i=1w(Xi, β̂)

)2(
w(Xi, β̂)−

∑n
i=1w(Xi, β̂)

n

)2

− 2

∑n
i=1w(Xi, β̂)gi∑n
i=1w(Xi, β̂)

n∑
i=1

(
w(Xi, β̂)gi −

∑n
i=1w(Xi, β̂)gi

n

)(
w(Xi, β̂)−

∑n
i=1w(Xi, β̂)

n

)}

=
n

(n− 1)
(∑n

i=1w(Xi, β̂)
)2

n∑
i=1

w2(Xi, β̂)

(
gi −

∑n
i=1w(Xi, β̂)gi∑n
i=1w(Xi, β̂)

)2

,

where we arrive at the same expression as (3.24). We can use the asymptotic normal-

ity result together with the above approximation for ratio variance to construct the 95%

asymptotic confidence interval for the ratio estimator.

3.3 Simple analytic example

To illustrate the performance of the validation measures, we provide a simple toy example

with a single binary risk factor, X = 0 or X = 1. The risk model for disease developed on

the training set has only two values, with r0 the risk of disease for X = 0, and r1 for X = 1.

The validation set of verified participants is of size N and has fraction f with X = 0 and

1 − f with X = 1. Let d0 denote the percent of the Nf members of the verified validation

set with X = 0 who have the disease. In other words d0 = 1
Nf

∑Nf
i=1Di, where Di = 1 if

the ith individual in the sum has the disease and 0 otherwise and the sum ranges over the

individuals in the verified validation set with X = 0. The proportion of the verified validation

set with X = 1 who have the disease is similarly defined: d1 = 1
N(1−f)

∑N(1−f)
i=1 Di.

Then the usual ĈIL calculation in (3.2) becomes:

ĈIL =
fN(r0 − d0) + (1− f)N(r1 − d1)

N
) (3.26)

= f(r0 − d0) + (1− f)(r1 − d1),

which is a weighted average of calibration for those with X = 0 and X = 1, with weight

as the fraction of the validation set with the risk factor. Expression (3.26) explains the phe-

nomena of differing validation performance for the same risk tool, and supports arguments

in the clinical model assessment literature that validation is both a property of the risk tool

and the validation set [Vickers et al., 2010]. If a validation set is “lucky” in the sense of hav-

ing only a small fraction of individuals with the risk factor for which the training risk model
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3 Standard validation of risk prediction models

shows poor calibration, then validation does not appear as poor as for a different validation

set with a higher proportion of such cases.

For discrimination, we exam the TPR and FPR. Towards this, we assume the risk of disease

for X = 1 is greater than that for X = 0, i.e. r1 > r0. Taking (r1 + r0)/2 as the threshold c,

the usual T̂PR(c) in (3.5) is the proportion of participants with disease and X = 1, i.e. the

corresponding disease risk r1 > c, among participants with disease. The F̂PR(c) is then

the proportion of participants without disease but with X = 1 among participants without

disease. Hence, the usual T̂PR(c) and F̂PR(c) are

T̂PR(c) =
(1− f)d1

(1− f)d1 + fd0
, (3.27)

F̂PR(c) =
(1− f)(1− d1)

(1− f)(1− d1) + f(1− d0)
. (3.28)

To explore the performance of CILMAR adjusting for verification bias, we now let N include

all participants regardless of being verified or not in the validation cohort. Let f̃ be the

proportion among N with X = 0 (1 − f̃ for X = 1) in the validation cohort. We inherit the

notations used in the above illustration example with all individuals being verified: r0 (r1)

be the cancer risk given by the training cohort for X = 0 (X = 1), d0 (d1) be the probability

of having cancer when X = 0 (X = 1) in the validation cohort, and p0 (p1) be the probability

of being verified in the training when X = 0 (X = 1). We further denote p̃0 (p̃1) as the

probability of being verified in the validation for X = 0 (X = 1). The estimated ĈILMAR is

then

ĈILMAR = (1− f̃)p̃1r1 + f̃ p̃0r0 −
[
(1− f̃)p̃1d1 + f̃ p̃0d0

]
+ (1− f̃)(1− p̃1)r1 − (1− f̃)(1− p̃1)d1 + f̃(1− p̃0)r0 − f̃(1− p̃0)d0

= f̃(r0 − d0) + (1− f̃)(r1 − d1). (3.29)

The ĈILMAR has similar structure as ĈIL just using different values to weight the calibra-

tion from individuals with X = 0 and X = 1. Therefore, the estimated ĈIL and ĈILMAR

depends on the configuration of the training and validation population, such that if the

weights are smaller for the subgroup calibrates poorly while higher for the well calibrated

subgroup, the resulting CILs would close to 0.

Similarly, we have the verification bias adjusted T̂PRMAR(c) and F̂PRMAR(c) under MAR

assumption using c = (r1 + r0)/2 as the threshold:

T̂PRMAR(c) =
(1− f̃)d1

(1− f̃)d1 + f̃d0

, (3.30)

F̂PRMAR(c) =
(1− f̃)(1− d1)

(1− f̃)(1− d1) + f̃(1− d0)
. (3.31)
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3.3 Simple analytic example

Comparing the TPRMAR and FPRMAR with their corresponding usual metrics, we have

T̂PR(c)− T̂PRMAR(c) =
(f̃ − f)d1d0

[(1− f)d1 + fd0][(1− f̃)d1 + f̃d0]
,

F̂PR(c)− F̂PRMAR(c) =
(f̃ − f)(1− d1)(1− d0)

[(1− f)(1− d1) + f(1− d0)][(1− f̃)(1− d1) + f̃(1− d0)]
.

The T̂PRMAR and F̂PRMAR will change in the same direction compared to T̂PR and

F̂PR, respectively. Either both increase or both decrease, guiding by f̃ − f . Hence, the

improvement in the corresponding AUCMAR compared to AUC are not guaranteed.

Numerical exploration

Following the illustration of analytic example before, we explore the it numerically using only

one risk factor X follows the binomial distribution in this part. For the training cohort, we

let X ∼ Binomial(0.7), the verification probabilities given X be (P (V = 1|X = 0), P (V =

1|X = 1)) = (0.3, 0.6), and the cancer probabilities given X be (P (D = 1|X = 0), P (D =

1|X = 1)) = (0.2, 0.8). Using notation in the analytic example section, we have r0 = 0.2

and r1 = 0.8 in this case. When X,V, and D in the validation cohort are generated exactly

as the training cohort, we obtain d0 = r0 and d1 = r1 so that ĈIL is close to 0. If in the

validation cohort, (P (D = 1|X = 0), P (D = 1|X = 1)) = (0.2, 0.5). The percentage of the

verified participants who have cancer and X = 1 among those verified participants with

X = 1 in the validation cohort, i.e. d1, is 0.5 versus d0 = 0.2. The estimated ĈIL is

ĈIL =
0.3× 0.3

0.3× 0.3 + 0.7× 0.6
(0.2− 0.2) +

(
1− 0.3× 0.3

0.3× 0.3 + 0.7× 0.6

)
(0.8− 0.5) ≈ 0.247.

(3.32)

For the TPRs and FPRs using only verified participants from the validation cohorts, we

have

T̂PR =
(1− 0.9/0.51)× 0.5

(1− 0.9/0.51)× 0.5 + 0.9/0.51× 0.2
≈ 0.921

F̂PR =
(1− 0.9/0.51)× (1− 0.5)

(1− 0.9/0.51)× (1− 0.5) + 0.9/0.51× (1− 0.2)
≈ 0.745.

To incorporate the adjustment for verification bias, we let the proportion with X = 0 in

the validation set be 0.3, i.e. f̃ = 0.3. We use (d1, d0) = (0.5, 0.2) and assume that the

probability of being verified in the validation cohort for X = 0 (X = 1), p̃0 = p0 = 0.3

(p̃1 = p1 = 0.6), i.e. the same as those from the training cohort. The estimated ĈILMAR is

ĈILMAR = (1− f̃)(r1 − d1) = 0.7× (0.8− 0.5) = 0.21. (3.33)
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3 Standard validation of risk prediction models

We weight the subgroup with X = 1 by 0.7, while around 0.8 for ĈIL. Therefore, the

ĈILMAR is slightly improved compared to ĈIL.

Similarly, we have

T̂PRMAR =
(1− 0.3)× 0.5

(1− 0.3)× 0.5 + 0.3× 0.2
≈ 0.854,

F̂PRMAR =
(1− 0.3)× (1− 0.5)

(1− 0.3)× (1− 0.5) + 0.3× (1− 0.2)
=≈ 0.593.

3.4 Application

To illustrate the methods with real data, we develop and validate a risk tool to predict

prostate cancer with data from PLCO and SELECT. For training a prostate cancer risk

prediction model, individual-level level data from PLCO are used [Andriole et al., 2009]. For

validating the PLCO risk model, individual-level data from the SELECT are used [Lippman

et al., 2009]. Table 2.1 provides a contrast the two cohorts in risk factors. Compared to the

PLCO training set, the SELECT validation set is elder with more African-Americans, has a

lower rate of abnormal digital rectal exams (DRE), and higher rates of first-degree family

histories or prostate cancer and prior negative biopsies. The rates of verification by biopsy

in both cohorts are similar at approximately 12.7%.

We perform exploratory graphical analysis of the differential verification in the PLCO train-

ing and SELECT validation sets in Figure 2.2. Protocols of both trials recommended biopsy

for prostate-specific antigen (PSA) > 4 ng/mL or abnormal DRE or both, hence the high

odds ratios for verification for these risk factors. However, a PLCO participant with PSA

> 4 ng/mL has twice the odds of receiving a biopsy compared to a SELECT participant,

whereas the reverse is true for a participant with abnormal DRE. Odds ratios for the other

risk factors do not differ as much between the cohorts.

The vector of risk factors collected for all participants in both trials are X = (PSA, DRE,

age, African ancestry, family history, prior negative biopsy), with the last three variables

as binary indicators, and family history indicating prostate cancer first-degree relative his-

tory. Transformations of PSA are used when helpful for improving the fit of models includ-

ing the log-base-2 transformation (log2PSA) and an indicator that PSA exceeds 4 ng/mL

(I(PSA > 4)). In the model for cancer risk, we use either of these two transformed PSA

values. As both studies have a longitudinal follow-up, we only use the last measurements of

the risk factors in the analysis, with designation as last depending on verification and can-

cer outcome. For men who never receive a biopsy during the trial (V = 0, D = missing),

the last recorded risk factors in the study are used. For men with multiple negative biopsies

(V = 1, D = 0), the last biopsy in the study with a PSA value within two years before it

is used. For men who ever have a positive biopsy, only the first positive biopsy is used

subject to having a PSA value within two years prior (V = 1, D = 1). When multiple PSA
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3.4 Application

measurements are available within two years before biopsy, the one most recent to biopsy

is used.

We fit a prostate cancer risk prediction model R(X) by applying a multivariable logistic

regression to model the outcome of prostate cancer on the 3813 PLCO participants who

received a biopsy, which model form is commonly used in modeling the risk of a dichoto-

mous event. Odds ratios for prostate cancer from the model are shown in Table 3.1. The

PLCO prostate cancer risk model indicates that higher PSA, African ancestry, having a

family history of prostate cancer, and no prior negative biopsy are predictive of a higher

risk of prostate cancer. Particularly, the main effect of abnormal DRE is not included in the

model described in Table 3.1 since including it gives an estimated odds ratio smaller than

1 which may due to its interaction term with log-base-2 PSA (See Table 3.3). From the

model in Table 3.1, when the PSA value increases, the cancer risk for men with abnormal

DRE will increase faster than those with normal DRE as shown in Figure 3.2, which applies

the estimated model to participants with various PSA and DRE values. To account for the

verification bias within the validation cohort, we fit a logistic model for the validation cancer

risk in the validation cohort, which model is shown in Table 3.2 and whose predictions are

used to impute the missing cancer outcomes for the unverified participants in the validation

cohort.

Table 3.1: Odds ratios for prostate cancer from logistic regression built on 3813 PLCO participants
verified by biopsy,1833 (48.1%) of which had prostate cancer; All p-values are significant and less
than 0.001 except for African ancestry and Family history (both p-values = 0.01). log2PSA =
log-base-2 of prostate-specific antigen; DRE = digital rectal examination.

Risk factors Odds ratio 95% confidence interval
Intercept 0.20 (0.17, 0.24)
log2PSA 1.92 (1.80, 2.06)
African ancestry 1.50 (1.10, 2.05)
Family history 1.39 (1.10, 1.74)
Prior negative biopsy 0.52 (0.42, 0.65)
log2PSA ∗DRE 1.24 (1.16, 1.33)

Calibration-in-the-large estimate (95% confidence intervals) for the PLCO risk model evalu-

ated on the verified SELECT participants is calculated as ĈIL = −0.056 (−0.070,−0.042),

Table 3.2: Odds ratios for prostate cancer from logistic regression built on 4185 SELECT partic-
ipants verified by biopsy, 2028 (48.5%) of which had prostate cancer; All p-values are significant
and less than 0.001. log2PSA = log-base-2 of prostate-specific antigen; DRE = digital rectal exam-
ination.

Risk factors Odds ratio 95% confidence interval
Intercept 0.09 (0.04, 0.18)
log2PSA 1.91 (1.77, 2.06)
DRE(abnormal) 2.30 (1.96, 2,72)
Age 1.02 (1.00, 1.03)
Family history 1.64 (1.42, 1.91)
Prior negative biopsy 0.54 (0.45, 0.66)
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Figure 3.2: Estimated prostate cancer risk from the risk model built on 3813 verified PLCO
participants in Table 3.1 with various prostate-specific antigen and digital rectal exam (DRE)
values with family history of prostate cancer (Family history = 1), prior negative biopsy
(Prior negative biopsy = 1), and African ancestry (African ancestry = 1).

Table 3.3: Odds ratios for prostate cancer from logistic regression including main effect of bi-
nary DRE built on 3813 PLCO participants verified by biopsy,1833 (48.1%) of which had prostate
cancer. All p-values are significant and less than 0.001 except for intercept, African ancestry,
and Family history (p-values: 0.005, 0.021, and 0.006, respectively). log2PSA = log-base-2 of
prostate-specific antigen; DRE = digital rectal examination.

Risk factors Odds ratio 95% confidence interval
Intercept 0.64 (0.46, 0.87)
log2PSA 1.29 (1.15, 1.45)
DRE(abnormal) 0.22 (0.15, 0.33)
African ancestry 1.45 (1.06, 1.99)
Family history 1.38 (1.10 1.74)
Prior negative biopsy 0.54 (0.44, 0.68)
log2PSA ∗DRE 2.16 (1.84, 2.53)

indicating under-prediction of the PLCO model for SELECT since the value is below zero.

When taking all SELECT participants into account under the missing-at-random assump-

tion, the estimated ĈILMAR = −0.029 (−0.051,−0.009) is better than the ĈIL calculated

with only the verified participants. The estimated ĈILMAR has a wider confidence inter-

val compared to the ĈIL based on verified participants, which does not surprise us since

metrics involve more participants should have higher variation. The AUC showing the dis-

crimination of the PLCO risk model on SELECT is ÂUC = 0.674 (0.661, 0.690) based on

verified participants in SELECT, while ÂUCMAR = 0.718 (0.699, 0.741) using all partici-

pants. We can see from Figure 3.3 that the gap between TPR and FPR is smaller than
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that between TPRMAR and FPRMAR explaining the higher value of ÂUCMAR compared

to the usual estimate.

Table 3.4: Estimated calibration-in-the-large (CIL) and area-under-the-receiver-operating-
characteristic curve (AUC) among 4185 verified or 32629 SELECT participants. Estimates with
subscript MAR are calculated from 32629 SELECT participants under missing-at-random (MAR)
assumption, while from 4185 verified participants for the others. 95% confidence intervals are from
bootstrapping with 600 repetitions.

Estimate 95% confidence interval
CIL -0.056 (-0.070, -0.041)
CILMAR -0.029 (-0.052, -0.007)
AUC 0.674 (0.659, 0.690)
AUCMAR 0.718 (0.699, 0.742)
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Figure 3.3: True positive rates (TPRs) and false positive rates (FPRs) calculated among 4185
verified or 32629 SELECT participants, where the latter is used for measures with MAR in the
subscript under the missing-at-random (MAR) assumption.

3.5 Summary

In this chapter, we reviewed the common measures used in the external validation of clinical

risk prediction models, where the calibration-in-the-large (CIL) for evaluating the calibration

and the area under the receiver operating characteristic (AUC) for assessing the discrimi-

nation were examined. The calculation of the usual CIL and AUC on the validation cohort
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3 Standard validation of risk prediction models

is based on the verified participants only, while ignoring those who have not been verified

and therefore, without known disease outcomes. However, the verified participants may not

be a random sample of the cohort but rather those who meet certain criteria, such as only

those who have PSA level > 4 ng/mL and suspicious DRE will be referred to further biopsy

to ascertain prostate cancer. Hence, the characteristics of the verified participants may dif-

fer from that of the unverified ones even if they belong to the same cohort. Such difference

is often referred to as the verification bias [Begg and Greenes, 1983; Alonzo and Pepe,

2005]. To adjust for such verification bias arising from ignoring the unverified participants

in the validation, we imputed their missing outcome with the risk of having the disease as

proposed by Alonzo and Pepe [2005] under the missing-at-random assumption, where the

risk of disease is given by the risk model built on the verified participants in the validation

cohort. Moreover, we also showed the consistency and asymptotic normality properties of

the estimators in this chapter.

We illustrated the method with data from two large North American prostate cancer screen-

ing and prevention trials, i.e. the Selenium and Vitamin E Cancer Prevention Trial (SE-

LECT) and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In

the application, the estimated ĈILMAR was closer to the ideal 0 compared to ĈIL, while

ÂUCMAR was higher than ÂUC. The estimates accounting for verification bias had wider

confidence intervals and hence, larger variations, compared to the usual metrics since they

involved more participants.
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4 A novel external validation method for
adjusting for training and validation
cohort differences

In this chapter, we propose a novel weighted version of the validation metrics that accom-

modates the differences in the risk factor distributions and in the outcome verification pro-

cedures between the training and validation sets, which provides a more comprehensive

assessment of model performance when individual level information from both the training

and validation sets is available. We specifically formalize the concepts of reproducibility

and transportability when externally validating clinical models taking the accommodation

of the impact of heterogeneity of risk factor distributions and verification procedures into

account. Towards this, the calibration and discrimination of a model are evaluated. We

illustrate the method with 29699 PLCO and 26422 SELECT participants shown in Section

2.3.

4.1 Research context

Once a clinical risk model has been built on the training cohort, we then validate it internally

or externally. For the former procedure, i.e. the internal validation, the cross-validation

method is often used [Steyerberg, 2019]. In the cross-validation, a subset will be sampled

randomly from the training data for the prediction model and used to validate the built

model, which can be viewed as assessing the reproducibility of the model because the

validated sample is from the same population as the training data. On the other hand,

external validation can provide a more rigorous assessment of model performance than

internal validation only, which procedure uses external samples from different populations

other than the training one and is often viewed as assessing the transportability of the

model because it involves samples with different characteristics compared to the training

set [Debray et al., 2015].

In the external validation, researchers have recognized that the heterogeneity between the

training and external validation cohorts may affect the performance of the prediction model,

which heterogeneity is also known as “case-mix differences” [Austin et al., 2016; Steyer-

berg, 2019; Davis et al., 2019; Song et al., 2020]. Most efforts to address this issue are

qualitative or descriptive, such as comparisons of patient characteristics between the train-
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ing and validation data sets [Debray et al., 2015; Ankerst et al., 2012; Metnitz et al., 2000;

Tolksdorf et al., 2019]. Other approaches include refitting the training model on the vali-

dation data and simulating outcomes in the validation data under the assumption that the

training model is correct [Vergouwe et al., 2010]. This approach can be used to determine

whether the originally observed performance is much worse than what would have been

observed in the validation data in the ideal case. Powers et al. [2019] weighted obser-

vations from the training data to see how the model would perform in a target population

with a different distribution of risk factors, but they did not use weighting to adjust such

difference in the calculation of model performance metrics.

However, a model that performs poorly and fails to transport to an external population with

different distributions of risk factors or different methods of referral for definitive disease

diagnosis may still be valuable. Here, we refer to model failure because the external popu-

lation has different risk factor distributions as “selection bias”, while model failure because

the external population uses different procedures to refer patients for definitive diagnoses

as “verification bias”. Such differences in risk factor distributions and verification proce-

dures typically reflect true differences in populations.

In a clinical trial, we only know the status of the event of interest for participants who

have been verified, but not for the unverified ones. The distribution of the event of inter-

est depends on the verification procedures, i.e. evaluation of diagnostic tests. Ideally, all

participants in the trial regardless of having diseased or not should be verified or random

samples from the trial population would be verified and hence, no verification bias occurs

in this case. However, in practice, only certain participants may be referred to receive the

verification test to assure the disease status based on their risk factors. For example, it

might be desirable to verify all men with or without prostate cancer to determine the ef-

fect of a new substance in a clinical trial. But physicians may decide who will be biopsied

based on the characteristics of the man such as elevated PSA level and abnormal DRE and

hence, verification bias presents. Begg and Greenes [1983] and Alonzo and Pepe [2005]

developed weighting methods to correct for non-random selection for verification, i.e. cor-

rection of the verification bias. If a risk model has been developed in a training population

in which verification mechanisms differ from those in the external validation population,

verification bias occurs and can impair risk model performance in the external population.

Here, we use weighting to account for differences in disease verification with a different ob-

jective than that in Begg and Greenes [1983] and Alonzo and Pepe [2005], where we focus

on eliminating the verification bias from different verification mechanisms used in different

populations. When only certain participants in a clinical trial have been verified but not

all, the disease risk prediction model built on the data of the verified participants does not

predict disease risk, but rather predicts the joint probability that the participant is verified,

i.e. receives the diagnostic test, and such diagnostic test shows positive for the disease.

Thus, we design a weighting procedure to see how well the risk model would predict this
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joint probability if the external population has similar verification procedures as the training

population.

Here, we focus on external validation of the risk prediction model and propose a novel

weighting procedure to adjust for the selection and verification bias in the calculation of

the measures assessing model performance, such as calibration and discrimination. By

comparing unadjusted and adjusted measures of performance, we can gain insight into

which factors might contribute to mis-calibration in the external population. In particular, we

also give the conditions on the risk model and the characteristics of training and validation

populations that ensure reproducibility or transportability of the model on the external pop-

ulation, where we check these conditions with unweighted versus the proposed weighted

performance measures.

In the following Section 4.2, we introduce notation, define the performance metrics, develop

the adjustment method, and present the estimates of the weighted performance metrics

and their asymptotic properties. Section 4.3 evaluates the robustness of these methods

when assumptions violate via simulations. In Section 4.4, we illustrate our method by

building and validating a survival model that predicts prostate cancer incidence using two

large North American prostate cancer screening trials. The two trial populations differ not

only in their distributions of risk factors but also in their PSA screening scheme that use

to decide the timing of biopsies for prostate cancer diagnosis (see Section 2.3 for more

information). We close with a brief discussion of our approach in Section 4.5.

4.2 Method

Notation and assumptions

Let X denote the vector of model predictors. We assume that a risk model R = R(X)

estimates the probability of an outcome D = 1 for those who have the outcome of interest

and D = 0 for those who do not. Let NT , T = 0, 1, be the sizes of the validation (N0) and

training (N1) data sets. We assume that the risk model R is estimated from a sample of

a training population (T = 1). The performance of R will be assessed in a sample from

an independent validation population (T = 0). R can be a logistic model if we predict dis-

ease prevalence, or it can be an absolute risk from a survival model that predicts disease

incidence over a given projection period τ . We assume there are additional risk factors/-

covariates Z that are not included in the prediction model R but are available in both the

training and validation sets, and let X∗ = (X,Z).

For each individual in the validation set, we compute the risk estimate Ri = R(Xi) given

the respective risk factor Xi, for i = 1, . . . , N0. We will add the verification mechanism

later. For models that depend on a projection period τ , we assume that we observe D up

51



4 A novel external validation method for adjusting for training and validation cohort differences

to the end of the τ follow-up period. We will address the censoring of outcomes in a later

section. For notation brevity, we omit τ in the following and denote the validation data by

(Ri, Di,X
∗
i ), i = 1, . . . , N0.

We assume that the true probabilities of outcome in the training and validation populations

are πT (X∗) = P (D = 1|X∗, T ), T = 0, 1. We assume the disease status D depends only

on predictors X, i.e.

πT (X) = P (D = 1|X, T ) =

∫
z
πT (X, z)dFT (z|X), T = 0, 1. (4.1)

Here, π0(X∗) = π1(X∗) implies π0(X) = π1(X) only if F0(Z|X) = F1(Z|X) holds in addition,

i.e. the conditional distributions of the omitted risk factor (Z) given the predictors X used in

modeling R are the same between the two data sets.

Performance metrics

We discuss the model calibration first followed by the measures of accuracy and discrim-

ination, where the former refers to evaluating if the model predictions and observations

are identical, while the latter is about assessing if the model can separate disease versus

non-disease participants correctly.

Calibration measures

We define a model R to be strongly calibrated if P (D = 1|X = x) = R(x) for all values

of X, while well calibrated if the predicted and observed numbers of events agree in the

subsets or the overall population, i.e.

C =
E(D)

E(R)
=

∫
x∗ π(x∗)dF (x∗)∫
xR(x)dF (x)

= 1, (4.2)

where F (x) and F (x∗) denote the distributions of X and X∗, respectively. Obviously, if the

model is strongly calibrated, P (D = 1) = E[R(X)] and therefore, R is also well calibrated

[Pfeiffer and Gail, 2017]. We focus on the overall calibration for the ease of exposition in

this section and discuss calibration in subgroups in more detail in the data example.

From the definition in (4.2), a model R that is strongly calibrated in the training data (T = 1)

can only be strongly calibrated in the validation data (T = 0) as well if π0(x) = π1(x) =

R(x). This condition holds when π1(x∗) = π0(x∗) and F0(z|x) = F1(z|x), i.e. given these

two equations and (4.1):

P0(D = 1|X) =

∫
z
π0(X, z)dF0(z|X) =

∫
z
π1(X, z)dF1(z|X) = π1(X) = R(X).
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The difference between predication and observations, i.e. the calibration-in-the-large (CIL),

is an alternative measure to assess calibration:

CIL = E(R(X)−D). (4.3)

When C = 1, we haveE(D) = E[R(X)] and thus CIL = E(R(X) −D). Therefore, a test

for C = 1 is equal to testing CIL = 0 and we focus on C here.

The calibration ratio on the validation cohort can be estimated consistently by replacing the

expectation in (4.2) by the empirical mean as

Ĉ0 =

∑N0
i=1Di∑N0

i=1R(Xi)
. (4.4)

Accuracy and discrimination measures

Commonly used accuracy measures for clinical decision making, such as recommending a

patient for further clinical practice, depending on a particular risk threshold r∗ are the true

positive rate (TPR) and false positive rate (FPR), i.e.

TPR0(r∗) = P0(R ≥ r∗|D = 1) =
E0{I(R(X) ≥ r∗)D}

E0(D)
, (4.5)

and

FPR0(r∗) = P0(R ≥ r∗|D = 0) =
E0{I(R(X) ≥ r∗)(1−D)}

E0(1−D)
, (4.6)

where I denotes the indicator function and subscript 0 denotes for validation set. TPR and

FPR are estimated consistently by

T̂PR0(r∗) =

∑N0
i=1 I(R(Xi) ≥ r∗)Di∑N0

i=1Di

(4.7)

F̂PR0(r∗) =

∑N0
i=1 I(R(Xi) ≥ r∗)(1−Di)∑N0

i=1(1−Di)
. (4.8)

The receiver operator characteristic (ROC) curve plots the TPR on the y-axis against the

FPR on the x-axis across different risk thresholds. A summary measure of the ROC

curve evaluating the discrimination of the model is the area-under-the-receiver-operating-

characteristic curve (AUC), which can be computed as the probability that a randomly se-

lected case (Di = 1) has a larger risk estimate than a randomly selected control (Dj = 0),

AUC0 = P0(R(Xi) > R(Xj)|Di = 1, Dj = 0). The AUC on the validation set can be written

in terms of the risk factor distribution in cases and non-cases by applying Bayes theorem

to F0(x|D), D = 0, 1 as

AUC0 =
E0

[
I{R(X) > R(X̃)}π0(X){1− π0(X̃)}

]
E0(D){1− E0(D)}

. (4.9)
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An empirical estimate of (4.9) in the validation cohort with the accommodation of ties is

ÂUC0 =

∑N0
i=1

∑N0
j=1Di(1−Dj)[I(R(Xi) > R(Xj) + 0.5I(R(Xi) = R(Xj))]∑N0

i=1

∑N0
j=1Di(1−Dj)

. (4.10)

Accommodating selection bias

We first define the weights addressing the differences in the distributions of risk factor X∗

between training and validation sets, i.e. accounting for the “selection bias”, and present

the impact of such differences with the weighted and unweighted validation performance

measures afterward.

Selection weighted performance measures

Towards accommodating the difference in the distribution of predictors between training

and validation sets, we propose the selection weights:

w(X∗) =
dF1(X∗)

dF0(X∗)
=
P (X∗|T = 1)

P (X∗|T = 0)
=
P (T = 1|X∗)P (T = 0)

P (T = 0|X∗)P (T = 1)
. (4.11)

The corresponding selection weighted calibration ratio on validation cohort is

CW0 =
E0[Dw(X∗)]

E0[R(X)w(X∗)]
=

∫
x∗ π0(x∗)w(x∗)dF0(x∗)∫
x∗ R(x)w(x∗)dF0(x∗)

. (4.12)

Here, we weight both the predictions and the observations adjusting for the difference in the

distribution of risk factors between the training and validation populations. The proposed

weights can depend on a broader set of variables X∗, i.e. including additional variables

that might impact the true probability of the outcome (π) other than the model predictors.

The selection weighted TPR and FPR on validation cohort are

TPRW0 (r∗) =
E0{w(X∗)I(R(X) ≥ r∗)D}

E0{w(X∗)D}
, (4.13)

FPRW0 (r∗) =
E0{w(X∗)I(R(X) ≥ r∗)(1−D)}

E0{w(X∗)(1−D)}
. (4.14)

The selection weighted AUC is defined as

AUCW0 =
E0

[
I{R(X) > R(X̃)}π0(X)w(X∗){1− π0(X̃)}w(X̃∗)

]
E0{Dw(X∗)}E0{(1−D)w(X∗))}

. (4.15)

Properties of unweighted and selection weighted performance measures in the vali-
dation cohort
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We assume the model is well calibrated in the training cohort, i.e.

C1 =
E1(D)

E1{R(X)}
=

∫
x∗ π1(x∗)dF1(x∗)∫

xR(x)dF1(x)
= 1, (4.16)

and the true disease probabilities between the training and validation populations are the

same, i.e.

π0(X∗) = π1(X∗). (4.17)

Model reproducibility

In addition to π0(X∗) = π1(X∗), we assume that the predictor distributions and the con-

ditional covariate distributions are the same between the two populations, i.e. F0(X∗) =

F1(X∗) and F0(Z|X) = F1(Z|X), respectively. These two additional assumptions imply that

F0(X) = F1(X) because FT (X) = FT (X∗)/FT (Z|X) for T = 0, 1 by Bayes theorem. In this

situation, the validation and training populations do not differ in disease probabilities and

distributions of risk factors that are relevant for assessing the performance of the predic-

tion model R. The weights in (4.11) are all one i.e. w(X∗) = 1, since F0(X∗) = F1(X∗).

Therefore, the unweighted and weighted calibration measures are the same,

C0 =

∫
x∗ π0(x∗)dF0(x∗)∫

xR(x)dF0(x)
=

∫
x∗ π1(x∗)dF1(x∗)∫

xR(x)dF1(x)
= CW0 = C1 = 1. (4.18)

In this situation, the risk model is “reproducible” as it gives identical calibration results in

the training and validation populations [Debray et al., 2015].

Actually, the model is reproducible as long as∫
x∗
π1(x∗)w(x∗)dF1(x∗) =

∫
x
R(x)dF1(x), (4.19)

i.e. R is well calibrated in the training population. But it does not require R(X) = π1(X) for

each x value, which is rather referred to as R is strongly calibrated.

Model transportability

We now still assume π0(X∗) = π1(X∗), but weaken the assumptions made on the risk factor

distribution by only assuming F0(Z|X) = F1(Z|X), but allowing F0(X) 6= F1(X). Then, we

have

π0(X) =

∫
z
π0(X, z)dF0(z|X) =

∫
z
π1(X, z)dF1(z|X) = π1(X),

according to the definition of true disease probability (4.1). If we assume R is strongly

calibrated in the training data (T = 1) in addition, i.e. π1(x) = P1(D = 1|X = x) = R(x) for

any x, we have

C0 =

∫
x∗ π0(x∗)dF0(x∗)∫

xR(x)dF0(x)
=

∫
x π0(x)dF0(x)∫
xR(x)dF0(x)

=

∫
x π1(x)dF0(x)∫
xR(x)dF0(x)

= 1, (4.20)
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i.e. the model is “transportable” as the unweighted calibration ratio on validation cohort is

equal to the ideal one [Debray et al., 2015]. In the second equality of (4.20), we replace

the numerator
∫
x∗ π0(x∗)dF0(x∗) with

∫
x π0(x)dF0(x) because in discrete case, we have∑

x

∑
z

π0(X = x,Z = z)P0(z,x)

=
∑
x

∑
z

π0(X = x,Z = z)P0(z|x)P0(x)

=
∑
x

∑
z

P0(D = 1,X = x,Z = z)

P0(X = x,Z = z)

P0(z,x)

P0(x)
P0(x)

=
∑
x

[∑
z

P0(D = 1,Z = z|X = x)

]
P0(x)

=
∑
x

P0(D = 1|X = x)P0(x) =
∑
x

π0(x)P0(x).

The continuous case follows similarly.

If R is just well but not strongly calibrated in the training data, then the unweighted calibra-

tion ratio C0 is not equal to C1, i.e.

C0 =

∫
x∗ π0(x∗)dF0(x∗)∫

xR(x)dF0(x)
=

∫
x π1(x)dF0(x)∫
xR(x)dF0(x)

6= C1 = 1 (4.21)

since π1(x) 6= R(x) for any x under well calibrated assumption. However, the weighted

calibration ratio has

CW0 =

∫
x∗ π0(x∗)w(x∗)dF0(x∗)∫
x∗ R(x)w(x∗)dF0(x∗)

=

∫
x∗ π0(x∗)dF1(x∗)∫

xR(x)dF1(x)
=

∫
x∗ π1(x∗)dF1(x∗)∫

xR(x)dF1(x)
= C1 = 1,

(4.22)

provided the weights are correctly modeled.

Thus, the evaluation of the transportability of the risk predication model R corresponds to

assessing that if F0(Z|X) = F1(Z|X) and R is strongly calibrated by checking if C0 = 1

or alternatively, if F0(Z|X) = F1(Z|X) and R is well calibrated by checking if C0 6= 1 but

CW0 = 1.

Similarly in the assessment for accuracy and discrimination, we have TPR0(r∗) = TPR1(r∗),

FPR0(r∗) = FPR1(r∗) and AUC0 = AUC1 when π0(X∗) = π1(X∗), F0(Z|X) = F1(Z|X)

and R is strongly calibrated. Whereas if R is well calibrated, only the selection weighted

but not the unweighted TPR, FPR and AUC are equivalent to the respective measures in

the training population, i.e. TPRW0 (r∗) = TPR1(r∗), FPRW0 (r∗) = FPR1, and AUCW0 =

AUC1.

Failure to transport

When π0(X∗) 6= π1(X∗), i.e. the training a validation populations have different true dis-

ease probabilities, possibly because of differences in the distributions of unmeasured con-
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founders, then CW0 = C1 only if
∫
x∗ π0(x∗)dF1(x∗) =

∫
x∗ π1(x∗)dF1(x∗). Otherwise

CW0 =

∫
x∗ π0(x∗)w(x∗)dF0(x∗)∫
x∗ R(x)w(x∗)dF0(x∗)

=

∫
x∗ π0(x∗)dF1(x∗)∫
x∗ R(x)dF1(x∗)

6= C1. (4.23)

For the accuracy and discrimination measures, when π0(X∗) 6= π1(X∗), we also have

TPRW0 (r∗) 6= TPR1(r∗), FPRW0 (r∗) 6= FPR1(r∗), and AUCW0 6= AUC1 if no additional

assumptions have been made.

Table 4.1 summarizes the discussion of the reproducibility and transportability conditions

in this section. When the true disease probabilities and the conditional distributions of the

covariates given risk model predictors are the same, i.e, π1(X∗) = π0(X∗) and F0(Z|X) =

F1(Z|X), assessing if C0 = CW0 = 1 is the same as evaluating if the model is reproducible

(F0(X) = F1(X)). Given such assumptions, if only the selection weighted but not the un-

weighted calibration ratio is one, the model is transportable (F0(X) 6= F1(X)). When the

true disease probabilities are not the same, the model is neither reproducible nor trans-

portable as the calibration ratio, regardless of being weighted or not, is not the same as

the internal value C1. If the true disease probabilities are the same but not the conditional

distributions of the covariates given predictors in R, having F0(X) = F1(X) in addition does

not help in the reproducibility of the model, while the model is not transportable either in

this case.

In practice, when evaluating a model with external samples believing that their distributions

of predictors are not the same as the one in the training population, we can conclude that

the model is transportable if the selection weighted calibration ratio but not the unweighted

one is equal to the internal calibration ratio, while not transportable if the selection weighted

calibration ratio is not equal to the C1 either.

Table 4.1: Unweighted (C0) and weighted (CW
0 ) calibration ratios and weighted AUCW

0 for risk
model R(X) under different settings. X∗ = (X,Z), πT (X∗) = PT (D = 1|X∗), πT (X) =∫
z
πT (X, z)dFT (z|X).

Relationship of true
outcome probabilities

and/or conditional
distribution of covariates

Risk factors
distributions

C0 CW0 AUCW0

π1(X∗) = π0(X∗) Reproducibility
= C1 = 1 = C1 = 1 = AUC1and F0(X) = F1(X)

F0(Z|X) = F1(Z|X) Transportability ∫
x∗ π0(x∗)dF0(x∗)∫

xR(x)dF0(x)
= C1 = 1 = AUC1F0(X) 6= F1(X)

π1(X∗) 6= π0(X∗) Reproducibility 6= C1 = 1 6= C1 = 1 6= AUC1or F0(X) = F1(X)
{π1(X∗) = π0(X∗) Transportability 6= C1 = 1 6= C1 = 1 6= AUC1and F0(Z|X) 6= F1(Z|X)} F0(X) 6= F1(X)
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Analytic example

We illustrate the performance of the unweighted and selection weighted calibration ratios

using an analytic example with two binary risk factors X and Z, X∗ = (X,Z). We let the

true disease probabilities in the training and validation populations be the same, π0(X∗) =

π1(X∗), but the joint distributions of X and Z differ, i.e. F1(Z|X) 6= F0(Z|X). The following

Table 4.2 gives the numerical settings.

Table 4.2: Distributions of outcome D, model predictor X, and risk factor Z with resulting C0 and
CW

0 . πT (X,Z) = PT (D = 1|X,Z).
Set T X PT (X) PT (Z = 1|X) πT (X,Z = 0) πT (X,Z = 1) Measure
T = 1 1 0.9 0.8 0.05 0.1 C1 = 1

(training) 0 0.1 0.2 0.01 0.05
T = 0 1 0.2 0.2 0.05 0.1 C0 = 0.716

(validation) 0 0.8 0.1 0.01 0.05 CW0 = 1

We assume that the risk model R is only a function of X with values corresponding to the

true probabilities in the training set, i.e.

R(X = 1) = P1(D = 1|X = 1) =
∑
z

P1(D = 1|X = 1, Z = z)P1(Z = z|X = 1)

= 0.05× 0.2 + 0.1× 0.8 = 0.09.

Similarly, R(X = 0) = 0.01 × 0.8 + 0.05 × 0.2 = 0.018. Thus R is strongly calibrated in the

training set and C1 = 1.

In the validation set, the unweighted calibration ratio is

C0 =
E0(D)

E0[R(X)]
=

∑
x

∑
z P0(D = 1|X = x, Z = z)P0(Z = z|X = x)P0(X = x)∑

x

∑
z R(X = x)P0(X = x, Z = z)

=
0.0232

0.0324
= 0.716. (4.24)

The selection weights w(X∗) given X∗ = (X,Z) are computed from equation (4.11) and

Table 4.2 using that PT (X = x, Z = z) = PT (Z = z|X = x)PT (X = x), T = 0, 1. The

values of w(X∗) for (X,Z) = (1, 1), (1, 0), (0, 1), (0, 0) are 18, 9/8, 1/4, 1/9, respectively,

reflecting that validation set has much lower proportion of individuals with (X,Z) = (1, 1)

compared to the training data because the corresponding weight is the highest among the

four combinations. Multiplying each summation term in the numerator and denominator in

(4.24) by the weights yields

CW0 =
E0[Dw(X∗)]

E0[R(X)w(X∗)]
=

0.0828

0.0828
= 1,

58



4.2 Method

indicating that the model is transportable but not reproducible with such validation cohort as

the selection weighted calibration ratio on the validation cohort is one while the unweighted

ratio is away from one.

Estimating selection weighted performance measures

To estimate the selection weighted measures, we first calculate the selection weights w

based on a model built on the combined cohort of training and validation sets using a

binary cohort indicator as the response. We then plug in the computed selected weights

into the empirical versions of the performance measures.

We estimate the selection weights based on N0 +N1 individuals in the pooled training and

validation data via logistic regression. The model for the weights can include predictors Z

in addition to the predictors X used in the risk model R:

P (T = 1|X∗,γ) = exp(γ0 + γ1
′X + γ2

′Z)/{1 + exp(γ0 + γ1
′X + γ2

′Z)}, (4.25)

where X∗ = (X,Z), γ1 and γ2 are the log-odds ratios for risk factors X and Z respectively

and γ = (γ0,γ1,γ2)′. We then compute the weights for participants in the validation cohort

ŵ(x∗i ) = w(x∗i , γ̂) =
P̂ (T = 1|x∗i )N0

P̂ (T = 0|x∗i )N1

= exp(γ̂0 + γ̂ ′1xi + γ̂ ′2zi)
N0

N1
, i = 1, . . . , N0, (4.26)

where γ̂ is the maximum likelihood estimate (MLE) of γ.

The estimate of the selection weighted calibration ratio on validation cohort is

ĈW0 =

∑N0
i=1Diŵ(x∗i )∑N0

i=1R(xi)ŵ(x∗i )
. (4.27)

The estimates of the selection weighted TPR and FPR are

T̂PR
W

0 (r∗) =

∑N0
i=1 ŵ(x∗i )I(R(xi) ≥ r∗)Di∑N0

i=1Diŵ(x∗i )
(4.28)

FPRW0 (r∗) =

∑N0
i=1 ŵ(x∗i )I(R(xi) ≥ r∗)(1−Di)∑N0

i=1(1−Di)ŵ(x∗i )
. (4.29)

The estimate of the selection weighted AUC accounting for ties is

ÂUC
W

0 =

∑N0
i=1

∑N0
j=1Di(1−Dj)ŵ(x∗i )ŵ(x∗j )[I(R(xi) > R(xj)) + 0.5I(R(xi) = R(xj))]∑N0

i=1

∑N0
j=1Di(1−Dj)ŵ(x∗i )ŵ(x∗j )

.

(4.30)

Note that the constant N0/N1 in (4.26) cancels out in all estimates as it appears in both the

numerator and denominator of (4.27) - (4.30). The estimates (4.27) - (4.30) are consistent

for the respective population measures and asymptotically normally distributed, which proof

follows similarly as showing the large sample properties in Section 3.2. Here, though we

have the proposed selection weights in a form different to the example form of weights we
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check in the Section 3.2, they are also from logistic regression. Therefore, the arguments

in Section 3.2 apply to here as well.

Accommodate verification bias

In addition to the previously discussed selection bias arising from different distributions of

model risk factors, we discuss the impact of differences in disease verification procedures

between the training and validation populations, which affects the observed probabilities of

disease status D.

We denote V = 1 if the verification test to diagnose disease has been performed and V = 0

otherwise. The true probability of disease is

πT (X∗) = PT (D = 1|X∗) = PT (D = 1, V = 1|X∗)+PT (D = 1, V = 0|X∗), T = 0, 1. (4.31)

However, we only observe the definitive disease status D when the verification test has

been performed but not for the others, i.e. we only observe P (D = 1, V = 1|X∗, T ) =

P (D = 1|X∗, T, V = 1)P (V = 1|X∗, T ) in practice.

First, we assume F0(X∗) = F1(X∗), such that the only difference between the training

and validation cohorts is the verification process. We combine disease verification bias

adjustment with adjustment for selection bias discussed in the previous section. If R is

developed in the training data using only verified disease as the outcome, then R is actually

a model for P1(D = 1, V = 1|X∗) = P1(DV = 1|X∗) but not for π1(X∗) = P1(D = 1|X∗).
Here, DV = 1 when event {D = 1, V = 1} occurs, while DV = 0 corresponds to the events

{V = 0} ∪ {D = 0, V = 1}, i.e. being not verified or having no disease and being verified.

The ∪ refers to the union of the events. We use a tilde in this section to distinguish the

measures from the ones presented in the earlier sections. We assume the model is well

calibrated in the training population, i.e.

C̃1 =
E1(DV )

E1[R(X)]
=

∫
x∗ P1(D = 1|x∗, V = 1)P1(V = 1|x∗)dF1(x∗)∫

xR(x)dF1(x)
= 1. (4.32)

To assess the impact of differences in verification process between the training and valida-

tion data on calibration, we define verification weights as

v(X∗) =
P1(V = 1|X∗)
P0(V = 1|X∗)

and v̄(X∗) =
P1(V = 0|X∗)
P0(V = 0|X∗)

, (4.33)

The weight v̄ is only used in the computation of performance measures that rely on verified

individuals without detected disease or unverified individuals, i.e. DV = 0, such as in the

calculation of FPR and AUC.

60



4.2 Method

The verification weighted calibration ratio in the validation population is defined as

C̃V0 =
E0[DV v(X∗)]

E0[R(X)]
=

∫
x∗ P0(D = 1|x∗, V = 1)P0(V = 1|x∗)v(x∗)dF0(x∗)∫

xR(x)dF0(x)
. (4.34)

If F0(X∗) = F1(X∗), P0(D = 1|X∗, V = 1) = P1(D = 1|X∗, V = 1) or P0(D = 1|X∗) =

π0(X∗) = π1(X∗) if D is conditionally independent of V given X∗, i.e. PT (D = 1|X∗, V ) =

PT (D = 1|X∗), we have

C̃V0 =
E0[DV v(X∗)]

E0[R(X)]
=

∫
x∗ P0(D = 1|x∗, V = 1)P0(V = 1|x∗)v(x∗)dF0(x∗)∫

xR(x)dF0(x)

=

∫
x∗ P1(D = 1|x∗, V = 1)P1(V = 1|x∗)dF1(x∗)∫

xR(x)dF1(x)
= C̃1 = 1, (4.35)

given that the model for v is correctly specified. Unlike the case adjusting for selection bias

that we weight both predictions and observations, we weight the observations but not the

predictions here. The formula for the verification weighted TPR is

T̃PR
V

0 (r∗) =
E0{v(X∗)I(R(X) ≥ r∗)DV }

E0{DV v(X∗)}

=

∫
x∗ I(R(x) ≥ r∗)P0(D = 1|x∗, V = 1)P1(V = 1|x∗)dF0(x∗)∫

x∗ P0(D = 1|x∗, V = 1)P1(V = 1|x∗)dF0(x∗)
. (4.36)

Therefore, if F0(X∗) = F1(X∗) and P0(D = 1|X∗, V = 1) = P1(D = 1|X∗, V = 1), we can

show

T̃PR
V

0 (r∗) =

∫
x∗ I(R(x) ≥ r∗)P0(D = 1|x∗, V = 1)P1(V = 1|x∗)dF0(x∗)∫

x∗ P0(D = 1|x∗, V = 1)P1(V = 1|x∗)dF0(x∗)

=

∫
x∗ I(R(x) ≥ r∗)P1(D = 1|x∗, V = 1)P1(V = 1|x∗)dF1(x∗)∫

x∗ P1(D = 1|x∗, V = 1)P1(V = 1|x∗)dF1(x∗)

= T̃PR1(r∗). (4.37)

To obtain the verification adjusted FPR, we first note that by Bayes theorem,

FT (X∗|DV = 0) =
{PT (V = 0|X∗) + PT (D = 0|X∗, V = 1)PT (V = 1|X∗)}FT (X∗)

1− ET (DV )
,

(4.38)

where we use P (DV = 0) = 1− P (DV = 1) = 1− E(DV ). Thus, we have

F̃PRT (r∗) = PT (R(X) ≥ r∗|DV = 0) =
ET
[
I(R(X) ≥ r∗){(1− V ) + (1−D)V }

]
ET {(1− V ) + (1−D)V }

. (4.39)

The first term in the numerator of (4.39) captures the contribution of the unverified individ-

uals to the FPR, and the second term captures the contribution of those who were verified

and found to be not diseased, i.e. V = 1 and D = 0. Thus the verification weighted version
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is

F̃PR
V

0 (r∗) =
E0

[
I(R(X) ≥ r∗){v(X∗)(1−D)V + v̄(X∗)(1− V )}

]
E0[v(X∗)(1−D)V + v̄(X∗)(1− V )]

. (4.40)

We can write it as

F̃PR
V

0 (r∗)

=

∫
x∗ I(R(x) ≥ r∗)[P0(V = 0|x∗)v̄(x∗) + P0(D = 1|x∗, V = 1)P0(V = 1|x∗)v(x∗)]dF0(x∗)∫

x∗ [P0(V = 0|x∗)v̄(x∗) + P0(D = 1|x∗, V = 1)P0(V = 1|x∗)v(x∗)]dF0(x∗)

=

∫
x∗ I(R(x) ≥ r∗)[P1(V = 0|x∗) + P0(D = 1|x∗, V = 1)P1(V = 1|x∗)]dF0(x∗)∫

x∗ [P1(V = 0|x∗) + P0(D = 1|x∗, V = 1)P1(V = 1|x∗)]dF0(x∗)
. (4.41)

When F0(X∗) = F1(X∗) and P0(D = 0|X∗, V = 1) = P1(D = 0|X∗, V = 1), we have

F̃PR
V

0 (r∗) = F̃PR1(r∗).

Using Bayes theorem and recalling that the risk model is based only on X but the true

disease probability depends on X∗, we have

ÃUCT =

∫
u∗

∫
y∗
I{R(u) > R(y)}dFT (u∗|DV = 1)dFT (y∗|DV = 0)

=
S1
T + S2

T

ET (DV )ET (1−DV )
, T = 0, 1, (4.42)

where

S1
T =

∫
u∗

∫
y∗
I{R(u) > R(y)}PT (D = 1|u∗, V = 1)PT (V = 1|u∗)PT (V = 0|y∗)dFT (u∗)dFT (y∗),

(4.43)

and

S2
T =

∫
u∗

∫
y∗
I{R(u) > R(y)}PT (D = 1|u∗, V = 1)PT (V = 1|u∗)

PT (D = 0|y∗, V = 1)PT (V = 1|y∗)dFT (u∗)dFT (y∗). (4.44)

Similar to the FPR, the S1
T captures the contribution of the unverified individuals to the AUC,

and S2
T is the contribution of those verified and found to be not diseased. Here, to obtain

S1
T and S2

T , we first write the integral in (4.42) as

ÃUCT =

∫
u∗

∫
y∗
I{R(u) > R(y)}dFT (u∗|DV = 1)dFT (y∗|DV = 0)

=
1

PT (DV = 1)

1

PT (DV = 0)

∫
u∗

∫
y∗
I{R(u) > R(y)}dFT (u∗, DV = 1)dFT (y∗, DV = 0)

=
1

ET (DV )ET (1−DV )

∫
u∗

∫
y∗
I{R(u) > R(y)}dFT (u∗, DV = 1)dFT (y∗, DV = 0).
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Because {DV = 0} consists of events {V = 0} and {D = 0, V = 1}, we have

dFT (u∗, DV = 1) =
PT (DV = 1,u∗)

PT (u∗)
PT (u∗)

= PT (DV = 1|u∗)dFT (u∗)

= PT (D = 1|u∗, V = 1)P (V = 1|u∗)dFT (u∗). (4.45)

For dFT (y∗, DV = 0), we have

dFT (y∗, DV = 0) = PT (DV = 0|y∗)dFT (y∗)

= [PT (V = 0|y∗) + PT (D = 0|y∗, V = 1)PT (V = 1|y∗)]dFT (y∗).

Then, we can give the expressions of S1
T and S2

T as (4.43) and (4.44), respectively.

Under the assumptions that P0(D = 1|X∗, V = 1) = P1(D = 1|X∗, V = 1) and F0(x∗) =

F1(x∗), E0[DV v(X∗)] =
∫
P1(D = 1|x∗, V = 1)P1(V = 1|x)dF1(x) = E1(DV ). We then

have

SV 1
0 =

∫
u∗

∫
y∗
I{R(u) > R(y)}v(u∗)v̄(y∗)P0(D = 1|u∗, V = 1)P0(V = 1|u∗)

PT (V = 0|y∗)dF0(u∗)dF0(y∗) = S1
1 , (4.46)

SV 2
0 =

∫
u∗

∫
y∗
I{R(u) > R(y)}v(u∗)v(y∗)P0(D = 1|u∗, V = 1)P0(V = 1|u∗)

P0(D = 0|y∗, V = 1)P0(V = 1|y∗)dF0(u∗)dF0(y∗) = S2
1 . (4.47)

The verification weighted AUC is defined as:

ÃUC
V

0 =
SV 1

0 + SV 2
0

E0(DV v(X∗))E0{v̄(X∗)(1− V ) + v(X∗)(1−D)V }
, (4.48)

which is the same as the AUC in the training set (ÃUC1) given the above assumptions

hold.

Failure to validate in the presence of verification differences

C̃V0 in (4.35) is not equal to one, if P0(D = 1|x∗, V = 1) 6= P1(D = 1|x∗, V = 1) or

P0(D = 1|X∗) = π0(X∗) 6= π1(X∗) when D is conditionally independent of V given X∗. All

above assume that the weights v are correctly modeled and F0(X∗) = F1(X∗). C̃V0 can

also not equal to one if either of these two conditions does not hold, i.e. the weights v are

not correctly modeled or F0(X∗) 6= F1(X∗).

Performance assessment only in the verified population

We can also restrict the model assessment to only the verified outcomes depending on

the target population and the investigation purpose. For example, several models pre-

63



4 A novel external validation method for adjusting for training and validation cohort differences

dict the probability of prostate cancer in individuals who are verified via prostate biopsy

[Ankerst et al., 2018]. In such application, RV=1(X) estimates P (D = 1|X, V = 1) and

the performance assessment is also restricted to individuals with V = 1. In the diagnostic

testing literature, this is known as complete case analysis [Alonzo and Pepe, 2005]. The

unweighted calibration ratio restricted to the verified participants in the validation set is

C0(RV=1) =
E0{DV }

E0{RV=1(X)V }
=

∫
x∗ P0(D = 1|x∗, V = 1)P0(V = 1|x∗)dF0(x∗)∫

xR
V=1(x)P0(V = 1|x∗)dF0(x∗)

(4.49)

and the corresponding verification weighted measure is

CV0 (RV=1) =
E0{DV v(X∗)}
E0{RV=1(X)V }

=

∫
x∗ P0(D = 1|x∗, V = 1)P0(V = 1|x∗)v(x∗)dF0(x∗)∫

xR
V=1(x)P0(V = 1|x∗)v(x∗)dF0(x∗)

.

(4.50)

Similar to CV0 that is computed in the overall population, when F0(X∗) = F1(X∗) and

P0(D = 1|x∗, V = 1) = P1(D = 1|x∗, V = 1), then CV0 (RV=1) = C1(RV=1).

Among those who have been verified including diseased and non-diseased but verified

individuals, the unweighted AUC is computed as

AUC0(RV=1) =
1

E0(DV )E0(1−DV )

∫
u∗

∫
y∗
I{RV=1(u) > RV=1(y)}

P0(D = 1|u∗, V = 1)P0(V = 1|u∗)P0(D = 0|y∗, V = 1)P0(V = 1|y∗)dF0(u∗)dF0(y∗).

(4.51)

The corresponding verification weighted quantity is

AUCV0 (RV=1) =
1

E0(DV )E0(1−DV )

∫
u∗

∫
y∗
I{RV=1(u) > RV=1(y)}

P0(D = 1|u∗, V = 1)P0(V = 1|u∗)v(u∗)P0(D = 0|y∗, V = 1)P0(V = 1|y∗)v(y∗)dF0(u∗)dF0(y∗).

(4.52)

Here only v but not v̄ is used in AUCV0 (RV=1). The same as the situation for the calibration

measure, AUCV0 (RV=1) = AUC1(RV=1) when F0(X∗) = F1(X∗) and P0(D = 1|x∗, V =

1) = P1(D = 1|x∗, V = 1).

Estimating verification weighted performance measures

The verification weights are estimated by computing PT (V = 1|X∗) or PT (V (τ) = 1|X∗), T =

0, 1, for models that predict over a pre-specified period τ , separately in the training and ver-

ification sets using logistic regression models

P̂T (V = 1|X∗) = exp(ηT0 + +η′T1X + η′T2Z)/{1 + exp(ηT0 + +η′T1X + η′T2Z)}, (4.53)

and then taking the ratio. Alternatively one could fit a survival model S(t,X∗) to the time

to disease verification and compute P̂T (V (τ) = 1|X∗) = 1 − Ŝ(τ,X∗), T = 0, 1.The final
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weights are

v̂(X∗) =
P̂1(V = 1|X∗)
P̂0(V = 1|X∗)

and ̂̄v(X∗) =
P̂1(V = 0|X∗)
P̂0(V = 0|X∗)

. (4.54)

We replace the expressions in (4.34) and (4.48) by their empirical quantities to obtain es-

timates of the verification weighted performance measures. For notation simplicity, we ig-

nore the tilde in the notation for verification weighted measures calculated on the validation

cohort from now on. We estimate them as:

ĈV0 =

∑N0
i=1 v̂(x∗i )DiVi∑N0
i=1R(xi)

, (4.55)

T̂PR
V

0 (r∗) =

N0∑
i=1

v̂(x∗i )I(R(xi) ≥ r∗)DiVi

N0∑
i=1

v̂(x∗i )DiVi

, (4.56)

F̂PR
V

0 (r∗) =

N0∑
i=1

I(R(x∗i ) ≥ r∗){v̂(x∗i )(1−Di)Vi + ̂̄v(x∗i )(1− Vi)}

N0∑
i=1
{̂̄v(x∗i )(1− Vi) + v̂(x∗i )(1−Di)Vi}

, (4.57)

and

ÂUC
V

0 =
ŜV 1

0 + ŜV 2
0

{
N0∑
i=1

DiViv̂(x∗i )}
N0∑
i=1
{̂̄v(x∗i )(1− Vi) + v̂(x∗i )(1−Di)Vi}

, (4.58)

where

ŜV 1
0 =

N0∑
i=1

N0∑
j=1

DiVi(1− Vj)v̂(x∗i )̂̄v(x∗j )[I(R(xi) > R(xj)) + 0.5I(R(xi) = R(xj))], (4.59)

and the verification weighted version of the second term is

ŜV 2
0 =

N0∑
i=1

N0∑
j=1

DiVi(1 − Dj)Vj v̂(x∗i )v̂(x∗j )[I(R(xi) > R(xj)) + 0.5I(R(xi) = R(xj))].

(4.60)

The consistency and asymptotic normality hold for these estimators with similar arguments

as shown in Section 3.2.
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Joint weighting with selection and verification weights

In a final step, we combine the selection and verification weights for all the measures,

adjusting for both selection and verification bias. The combined weighted measures are

CWV
0 =

E0{DV v(X∗)w(X∗)}
E0{R(X)w(X∗)}

, (4.61)

TPRWV
0 (r∗) =

E0{w(X∗)v(X∗)I(R(X) ≥ r∗)DV }
E0{DV w(X∗)v(X∗)}

, (4.62)

FPRWV
0 (r∗) =

1

E0{w(X∗)v̄(X∗)(1−DV )}
[
E0{I(R(X) ≥ r∗)w(X∗)v̄(X∗)(1− V )}

+ E0{I(R(X) ≥ r∗)(1−D)V w(X∗)v(X∗)}
]
, (4.63)

and

AUCWV
0 =

SWV 1
0 + SWV 2

0

E0{DV w(X∗)v(X∗)}E0{w(X∗)v̄(X∗)(1−DV )}
, (4.64)

where

SWV 1
0 =

∫
u∗

∫
y∗
I{R(u) > R(y)}P0(D = 1|u∗, V = 1)P0(V = 1|u∗)P0(V = 0|y∗)

w(u∗)w(y∗)v(u∗)v̄(y∗)dF0(u∗)dF0(y∗), (4.65)

and

SWV 2
0 =

∫
u∗

∫
y∗
I{R(u) > R(y)}P0(D = 1|u∗, V = 1)P0(V = 1|u∗)P0(D = 0|y∗, V = 1)

P0(V = 1|y∗)w(u∗)w(y∗)v(u∗)v(y∗)dF0(u∗)dF0(y∗). (4.66)

The estimates of the jointly weighted performance measures are

Ĉ0
WV

=

∑N0
i=1 ŵ(x∗i )v̂(x∗i )DiVi∑N0
i=1R(xi)ŵ(x∗i )

, (4.67)

T̂PR
WV

0 (r∗) =

N0∑
i=1

v̂(x∗i )ŵ(x∗i )I(R(xi) ≥ r∗)DiVi

N0∑
i=1

ŵ(x∗i )v̂(x∗i )DiVi

, (4.68)
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F̂PR
WV

0 (r∗) =

N0∑
i=1

I(R(x∗i ) ≥ r∗)ŵ(x∗i ){v̂(x∗i )(1−Di)Vi + ̂̄v(x∗i )(1− Vi)}

N0∑
i=1

ŵ(x∗i ){̂̄v(x∗i )(1− Vi) + v̂(x∗i )(1−Di)Vi}
, (4.69)

and

ÂUC
WV

0 =
ŜWV 1

0 + ŜWV 2
0

{
N0∑
i=1

DiViŵ(x∗i )v̂(x∗i )}
N0∑
i=1
{ŵ(x∗i )̂̄v(x∗i )(1− Vi) + ŵ(x∗i )v̂(x∗i )(1−Di)Vi}

,

(4.70)

where

ŜWV 1
0 =

N0∑
i=1

N0∑
j=1

DiVi(1−Vj)ŵ(x∗i )ŵ(x∗j )v̂(x∗i )̂̄v(x∗j )[I(R(xi) > R(xj))+0.5I(R(xi) = R(xj))],

(4.71)

and the weighted version of the second term is

ŜWV 2
0 =

N0∑
i=1

N0∑
j=1

DiVi(1−DVj)ŵ(x∗i )ŵ(x∗j )v̂(x∗i )v̂(x∗j )[I(R(xi) > R(xj))+0.5I(R(xi) = R(xj))].

(4.72)

Consistency and asymptotic normality of the jointly weighted estimates follow as before.

4.3 Simulation study

We conduct a simulation study to explore the proposed weighted methods to adjust the se-

lection bias or verification bias or both. We first generate training cohorts with N1 = 30000

individuals. We then build the risk model R(X) (later with R(X,Z1) as sensitivity analy-

sis) with the training data and validate it under different validation scenarios. To compute

the performance measures, for each validation scenario, we simulate B = 500 validation

samples with each containing N0 = 20000 individuals.

Configuration

We first describe the distributions used to generate the training data, followed by the risk

model configuration. Then, we give the distributions used in simulating the validation co-

horts and the method used to add on verification for both training and validation cohorts.

We end this section with the settings of the models for the selection and verification weights.

Training data generation
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The training cohort consists ofN1 = 30000 individuals with continuous risk factorsX,Z1, Z2,

where X is used in the risk prediction model R(X). The vector of risk factors (X,Z1, Z2) is

sampled from a multivariate normal (MVN) distribution with mean (0, 0, 0) and covariance

matrix

Σ =


1 0.1 0.1

0.1 1 0.5

0.1 0.5 1

 . (4.73)

We let c = 50 as the maximum follow-up time and Smax = 0.98, i.e. 98% of individuals

survive until administrative censoring at time c. We generate the survival time Y ∗ given the

predictors X and Z1 of each individual by an exponential probability distribution with the

hazard rate of

λ = λ0 exp(β1X + β2Z1), (4.74)

where λ0 = − log(Smax)/c ≈ 4.0 × 10−4 is the baseline hazard rate and β1 = log(2) and

β2 = log(1.2). We allow individuals to exit the cohort at any time YD before c, e.g. death due

to causes other than event of interest. YD is sampled from another exponential distribution

with hazard rate

λ = − log(Scmax)/Ymax ≈ 2.2× 10−3, (4.75)

where Scmax = 0.9 is the proportion of individuals who do not lost during follow-up. Incor-

porating administrative censoring at c = 50 and loss during follow-up, the observed event

time is given by Y = min(Y ∗, YD, c = 50) and the event indicator is D = I(Y = Y ∗).

Risk model estimation

We obtain the risk model R by fitting a Cox regression model as in (4.78) to the training

cohort, but only using the risk factor X as the predictor, i.e. omitting Z1 that also impacts

disease risk in the population. In sensitivity analysis, we model the risk via R(X,Z1), which

model is correctly specified and includes the main effects of X and Z1.

Validation data generation

We generate validation cohorts of size N0 = 20000 using the same data generation mech-

anism as described above for the training data but with several different distributions of

(X,Z1, Z2). We study three different scenarios for validation samples: Scenario S1, where

(X,Z1, Z2) ∼ MVN((0, 0, 0),Σ) with Σ given in (4.73); Scenario S2, where (X,Z1, Z2) ∼
MVN((0, 0.5, 0.5),Σ) with Σ given in (4.73); Scenario S3 with (X,Z1, Z2) ∼MVN((0, 0, 0),Σ2)

where

Σ2 =


1 0.6 −0.4

0.6 1 −0.2

−0.4 −0.2 1

 . (4.76)
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Adding verification to training and validation data

To add on disease verification to the training (T = 1) and validation (T = 0) cohorts, we

generate the verification status from binomial distribution: Vi ∼ Binom(1, pViT ) for each

individual i, i = 1, . . . , NT , which binomial distribution has the probability

pViT = PT (Vi = 1|Xi, Z1i) =
exp(ηT0 + ηT1Xi + ηT2Z1i)

1 + exp(ηT0 + ηT1Xi + ηT2Z1i)
, T = 0, 1. (4.77)

We estimate the model R(X) based on all individuals in the training cohort, T = 1, using

the observed event times and the observed event indicator DV . The model R is then

evaluated on all individuals in the validation cohort (T = 1) based on the event indicator

DV .

Let ηT = (ηT0, ηT1, ηT2), T = 0, 1. we first assume the same verification mechanism is used

in both training and validation data, i.e. η0 = η1 = (−1.4, 1.3,−0.1) (Scenario V 1). Second,

we vary only the intercept in (4.77) with different sign, but all the other parameters are the

same, i.e. η0 = (−1.4, 1.3,−0.1) and η1 = (1.4, 1.3,−0.1) (Scenario V 2). For Scenario V 3,

all parameters used in (4.77) differ with η0 = (−1.4, 1.3,−0.1) and η1 = (1.4,−1.3, 0.1).

Weights and performance measures

We also explore different models used for computing the weights. The selection weights

w1 and verification weights v1 come from logistic regressions including the main effects of

X and Z1, their interaction term, and their quadratic effects. The w2 and v2 come from

logistic regressions including (X,Z1, Z2) as the main effects, their interaction terms, and

their quadratic effects. The w3 and v3 use logistic regressions with (X,Z2) as the main

effects, their interaction term, and their quadratic effects, where the important variable, Z1,

is omitted in this setting.

Simulation results

In the simulation, we generate three different training cohorts each with setting S1, V 1,

S1, V 2, and S1, V 3, respectively. In contrast, for each scenario shown in Table 4.3, we

generate the validation cohort 500 times and estimate the unweighted and weighted per-

formance measures on the validation cohort each time. The mean values and standard

deviations, given in the row below the mean values, of the estimated weighted and un-

weighted calibration ratios and AUCs with various scenarios and different weighting strate-

gies are summarized in Table 4.3. The risk model R(X) is evaluated in the Table 4.3. From

the column right next to the “Setting” column, we show the unweighted measures. Mea-

sures with “S1” in the setting are based on validation samples with the same risk factors

distribution as the respective training cohorts, while those with “V 1” in the setting have no

verification bias as training and validation cohorts use the same verification mechanism.
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4 A novel external validation method for adjusting for training and validation cohort differences

In the setting S1, V 1, the unweighted metrics (C0 and AUC0) correspond to the values

from internal validation since the training and validation cohorts are generated following

the same distributions for risk factors and verification probability. Under this setting, the risk

model is well calibrated with all kinds of estimated calibration ratios around 1.03 regardless

of being weighted or not, and the unweighted and weighted AUCs are all around 0.75.

When the risk factors distributions are the same (S1) but the verification probabilities differ

(V 2 and V 3) between training and validation cohorts, the unweighted metrics and selection

weighted metrics are greatly biased with poorly estimated calibration ratios, where the

calibration ratios are around 2.9. The AUC is around 0.62 for S1, V 2 and just 0.47 for S1, V 3.

Once involving the verification weights, the weighted calibration ratios improve substantially

with the values around 1.03 no matter with only verification weighting or combined selection

and verification weighting. However, when the model for verification weights omits the

important variable Z1 (v3), the verification weighted or combined weighted calibration ratios

are around 1.08, though improved (see S1, V 3). After weighting for verification bias, the

resulting weighted AUCs are all around 0.75 regardless of with only verification weighting

or combined weighting.

On the other hand, when the verification mechanisms are the same (V 1) but the distribu-

tions of risk factors differ between training and validation cohorts (S2 and S3), adjusting only

the verification bias or no adjustment at all results in biased estimated verification weighted

calibration ratios, i.e. CV0 be around 1.54 for S2, V 1 while 1.13 for S3, V 1. The unweighted

and verification weighted AUCs are slightly biased, compared to the reference value 0.75.

While adjusting with richest models for weights, w2v2, gives the combined weighted cali-

bration ratios CWV
0 = 1.03 and CWV

0 = 1.02, respectively for S2, V 1 and S3, V 1, while the

corresponding AUCs are around 0.75. When the distribution of risk factors for the valida-

tion cohort differ in the covariant matrix compared to that in the training (S3) and using a

model for the selection weights ignoring Z1, i.e. using w3, the combined weighted AUCs are

biased with the values around 0.80, no matter what verification probability model is used.

When the risk factors distributions and the verification mechanism differ between cohorts,

adjusting for either verification bias or selection bias yields severe biased estimated met-

rics. However, when the combined verification and selection weighting with the models for

weights including all important variables (X and Z1), the resulting weighted metrics are

improved. For example, in the setting S2, V 3, the combined weighted calibration ratios with

w2v1 or w2v2 are around 1.03. But if weighting with w3v1 or w3v2 instead, i.e. ignoring Z1

in the model for selection weights, the resulting weighted calibration ratios are poor around

1.20. The combined weighted AUCs are all around 0.75 in settings S2, V 2 and S2, V 3. In the

setting S3, V 2 and S3, V 3, if the model for selection weights ignore Z1 (w3), the combined

weighted AUCs are biased with values around 0.80, compared to the combined weighted

AUCs with selection weights w1 or w2 with values ranging from 0.73 to 0.75. The respec-

tive combined weighted calibration ratios using w3 are also biased with values around 1.3

regardless of the models for v. The S3, V 2 and S3, V 3 perform poorly with w3 compared to
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the corresponding scenarios with S2 may be due to the distributions of risk factors used by

the validation cohort in S3 differ from the training cohort in the covariance matrix, which is

difficult to capture by a mis-specified model with missing important predictor for selection

bias adjustment.

Based on the simulation results, the proposed weighting method can substantially reduce

selection and verification bias in the calculation of the calibration ratio and AUC, even with

weighting models that do not include all the factors affecting selection or verification. A

rich model that includes main effects, interactions, and quadratic terms of all the relevant

factors is especially effective for bias correction in all examined settings.

We also explore the situation if the risk model R is correctly specified including the main

effects of both risk factors X and Z1, i.e. R(X,Z1), as sensitivity analysis. Table 4.4

summarizes the corresponding results, which are similar as before when the risk model R

is not correctly specified including only X.

4.4 Prostate cancer example

We now use a real data sample to illustrate the proposed methods, where we will develop

and validate a risk model predicting the 5-year risk of prostate cancer. We use the data

from two prostate cancer screening and prevention trials held in North America.

Training and validation data

We use the data from the prostate cancer screening arm of the Prostate, Lung, Colorec-

tal, and Ovarian Trial (PLCO) [Andriole et al., 2009] to develop a 5-year prostate cancer

risk prediction model. Men in PLCO had to be 55-74 years old at enrollment, and under-

went annual prostate-specific antigen (PSA) testing for six years and annual digital rectal

examination (DRE) screening for four years. We use the Selenium and Vitamin E Can-

cer Prevention Trial (SELECT) to validate the model developed on PLCO [Lippman et al.,

2009]. SELECT was a randomized study evaluating the effect of selenium and/or vitamin E

supplementation for prostate cancer prevention. Participants in SELECT had to be at least

55 years old if non-African American, and 50 if African American. In contrast to PLCO, men

in SELECT were required to have the PSA ≤ 4 ng/mL and a normal DRE at enrollment to

rule out potential prostate cancer [Cook et al., 2005]. There was no mandatory PSA and

DRE annual screening in SELECT, but rather recommended visits at local clinics follow-

ing community standards every half year. The different PSA screening schedules are also

reflected in the left panel of Figure 2.8 plotting the Kaplan-Meier estimate for time to first

biopsy, where PLCO biopsied more than SELECT. We exclude patients from both studies

with a prior diagnosis of any cancer or missing values of any candidate risk factors.
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4 A novel external validation method for adjusting for training and validation cohort differences

Because not all participants had a PSA value measured at study entry, we define the

baseline as the age of the first PSA measurement in this application. We exclude SELECT

men younger than 55 years and older than 74 years at baseline since older men are not

typically screened for prostate cancer as indicated by exclusion from PLCO. We further

exclude PLCO participants with PSA > 10 ng/mL at baseline as these are typically referred

to the urologists and exempt from screening tools [Ankerst et al., 2014]. These exclusion

criteria result in N1 = 29699 men in the PLCO training set and N0 = 26422 in the SELECT

validation set described in Table 2.2.

Men in PLCO tended to receive biopsies earlier than in SELECT as they were mandatory

to screen for PSA and DRE, which causes a shorter time to prostate cancer diagnosis as

shown in the right panel of Figure 2.8. The steep increase in the curve for PLCO in the

first six months after the first PSA measurement reflects the detection of prevalent prostate

cancers. In contrast, SELECT excluded cancer cases at study entry by requiring a normal

PSA and DRE at enrollment.

Risk model estimation

We build a risk model for prostate cancer based on the PLCO training data using a Cox

proportional hazards model with age as the underlying time metric because it is more rea-

sonable to expect the baseline hazard for prostate cancer is a function depending on age

rather than on the time in trials. The hazard function is defined as λ(t|X) = λ0(t) exp(β′X),

where λ0(t) is the unspecified baseline hazard function, β is the vector of log relative risk

parameters and X denotes the baseline risk factors [Cox, 1972]. Let Y ∗ denote the age at

prostate cancer diagnosis, Lj denote the age at study entry, i.e. age at first PSA test, and

Cj the age at censoring for individual j = 1, . . . , N1. The observed age for the jth individual

is Yj = min
(
Y ∗j , Cj

)
and δj = I(Lj < Y ∗j ≤ Cj) is his censoring indicator. We assume

that Lj and Cj are independent of Y ∗j given Xj and participants are censored at 5 years

after baseline when estimating the model.

We obtain the log-hazard ratio estimates β̂ from the standard Cox partial likelihood de-

scribed in Section 1.1 and use the Bayesian information criterion (BIC) to select the pre-

dictors, allowing up to two-way interactions of the first PSA value in log-base-2 scale

(log2PSA), family history, African ancestry, and prior negative biopsy. Table 4.5 summa-

rizes the estimated hazard ratios of the final Cox model. A higher PSA, having a first-degree

family history of prostate cancer, and a prior negative biopsy all significantly increase the

risk of being diagnosed with prostate cancer within five years after baseline under annual

screening (all p < 0.001 except for prior negative biopsy with p = 0.008). Among the three

risk factors, the PSA increases the cancer risk the most as expected. The interaction term

indicates that for men with prior negative biopsy, the prostate cancer risk diminishes with
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4.4 Prostate cancer example

increasing PSA, possibly due to a benign condition, such as having benign hyperplasia

may contribute to the increasing PSA rather than prostate cancer.

Given β̂ and the Breslow estimate of the cumulative baseline hazard Λ̂0(a) at age a plotted

in Figure 4.1 with ranges from 0 to around 0.07 when age ranging from 55 to 79 [Bres-

low, 1972], the predicted τ–year risk of prostate cancer for a man with risk factors X and

baseline age a is calculated by

R (τ,X, a) = P (Y ∗ ≤ τ + a |X, Y ∗ > a) = 1− exp
[
−{Λ̂0(τ + a)− Λ̂0(a)} exp (β̂′X)

]
.
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Figure 4.1: Cumulative baseline hazard function from the Cox model for 5-year prostate cancer risk
estimated based on 29699 PLCO participants.

Table 4.5: Hazard ratios and 95% confidence intervals (CIs) estimated from the Cox model for 5-
year prostate cancer risk fit to 29699 PLCO participants using age as the time metric. All risk factors
have p-values < 0.001 except for Prior negative biopsy, which has a p-value of 0.008.

Risk factor Hazard ratio (95% CI)
log2PSA 4.32 (4.09, 4.58)
Family history 1.42 (1.22, 1.65)
Prior negative biopsy 1.83 (1.17, 2.87)
log2PSA ∗ Prior negative biopsy 0.61 (0.50, 0.74)

To illustrate the range of estimated probabilities from the model, we show the estimated

5-year prostate cancer risk for several profiles in Figure 4.2 based on the following com-

binations of risk factors: age at baseline be 55, 66, or 74, family history be yes or no, no

prior negative biopsy, and different baseline PSA values. In general, the cancer risk in-

crease when the PSA level increase in each combination. Within groups of the same age,
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4 A novel external validation method for adjusting for training and validation cohort differences

men with no family history have a lower prostate cancer risk than those with family history.

Among men without a family history of cancer, the prostate cancer risk for men at 74 years

old is the lowest among the three different age levels, while at 65 is the highest. This may

be due to fewer elderly participants joining the trials. According to Table 2.2, men with

age between 70 to 74 years only consist a small proportion in respective cohorts (11.0% in

PLCO; 10.3% in SELECT).
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Figure 4.2: Estimated 5-year prostate cancer risk from the risk model built on 29699 PLCO par-
ticipants for select risk profiles with various ages at baseline, with/without family history of prostate
cancer, and no prior negative biopsy.

Accounting for censoring

Censoring occurs when the follow-up ends before the projection time τ , due to events other

than the outcome of interest. One approach to accommodate censoring is to compute Ri
for those who are censored before τ only up to their censoring time and set Di = 0 [Pfeiffer

and Gail, 2017]. This approach yields unbiased estimates of calibration, but is based on

variate projection intervals rather than a fixed time τ . Another method suggested by Li et al.

[2018] is to impute the outcome for those who censored before τ . In their method, let Yi
denote the observed survival time and δi the event indicator (1 if event, 0 if censored) for
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4.4 Prostate cancer example

subject i in the validation cohort, the censoring weighted outcome for individual i is

DC
i (τ) = P (Ti ≤ τ |Ri, δi, Yi) = E[Di(τ)|Ri, δi, Yi]

=

[
1− (1− δi)

ST (τ |Ri)
ST (Yi|Ri)

]
I{Yi ≤ τ}. (4.78)

The conditional survival function S(t|Ri) is estimated using a kernel weighted Kaplan-Meier

estimate

Ŝ(t|Ri) = P̂ (Ti ≥ t|Ri) =
∏

s∈Ω,s≤t

1−

∑
j
Kh(Rj , Ri)I(Yj = s)δj∑
j
Kh(Rj , Ri)I(Yj ≥ s)

 (4.79)

where Kh(Rj , Ri) = I{|(Rj − Ri)/h| ≤ 1}/2h is a kernel weight with band width h and Ω

denotes the set of distinct event times. We estimate Kh(Rj , Ri) with the function calc.kw in

the R package tdROC with bandwidth h = 0.003 and Ŝ(t|Ri) using survfit from the survival

package with Kh as the weight. When apply the method by Li et al. [2018], the censoring

weighted outcome DC is 1 for men with cancer within 5 years, 0 for men who survive longer

than 5 years, while some probability values for the rest. We evaluate the performance

measures using the censoring weighted outcome, DC , in the sensitivity analysis.

Bootstrapping procedure

We use bootstrapping to estimate the 95% percentiles confidence intervals in this applica-

tion, which procedure is described in Algorithm 1. In each of the B bootstrap repetitions,

we generate new PLCO and SELECT by sampling with replacements from the PLCO and

SELECT cohorts, respectively. The models for the probability of being in PLCO, the prob-

ability of being verified in PLCO, and the probability of being verified in SELECT are then

refitted using the new bootstrap samples. If the censoring outcome as defined in (4.78)

is used to calculate the performance measure, we also re-estimate the DC for the new

SELECT sample. At last, we calculate the unweighted and weighted performance mea-

sure using the new SELECT sample, where the weights come from the refitted models.

We then construct the 95% confidence interval for each performance measure using the

corresponding 2.5% and 97.5% percentiles of the bootstrapping output.

Internal validation of the prediction model

To assess model performance in PLCO, we apply five-fold cross-validation by dividing the

PLCO cohort into five non-overlapping subsets of equal size. To avoid numerical problems,

we ensure that roughly equal numbers of prostate cancer cases are included in all subsets.

We successively use four subsets to estimate the risk model R in (4.78) and the remaining
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4 A novel external validation method for adjusting for training and validation cohort differences

Algorithm 1: Bootstrapping procedure.
input : PLCO, SELECT
output: Estimated unweighted and weighted performance measures

for i = 1, . . . , B do
(1) draw PLCOi (SELECTi) from PLCO (SELECT) with replacement such that
PLCOi (SELECTi) has the same size as PLCO (SELECT).

(2) refit the model for the probability of being in PLCO with combined data of
PLCOi and SELECTi.

(3) refit the model of being verified in PLCO with PLCOi (with step-wise selection
if applicable).

(4) refit the model of being verified in SELECT with SELECTi (with step-wise
selection if applicable).

(5) applied the refitted models to SELECTi calculating the selection, verification,
and combined weights.

if using censoring outcome then
(6) re-calculate the censoring outcome (DC) for SELECTi.
(7) estimate the unweighted and weighted performances measures with
SELECTi using the new weights and DC .

end
if using observed outcome D then

(6) estimate the unweighted and weighted performances measures with
SELECTi using the new weights.

end
end

subset to validate the model. The average of these five performance measures is the

cross-validated estimates (see Algorithm 2 for details).

The C1 and AUC1 in 29699 PLCO participants estimated using cross-validated predicted

risks with D are C1 = 0.993 (95% CI: 0.951, 1.035) and AUC1 = 0.883 (95% CI: 0.875, 0.892)

as given in Table 4.6, indicating the model is well calibrated and has a good discriminating

ability. The results using D and DC are similar, with the C1 using DC being around 1.003.

Confidence intervals are based on the 2.5% and 97.5% percentiles from bootstrapping

with 600 repetitions of the cross-validated predictions, which procedure is described in Al-

gorithm 3. Here, we simply calculate the performance measures with the bootstrap sample

without re-estimating the cancer risk in each repetition due to the concern that refitting the

model and re-estimating the cancer risk may result in too much variation.

Table 4.6: Estimated unweighted calibration ratio (C1) and area under the receiver operating char-
acteristic curve (AUC1) in 29699 PLCO participants, using D or censoring outcome DC . 95%
confidence intervals (CIs) are percentiles of the bootstrap empirical distribution function with 600
bootstrap repetitions.

Estimate with D (95% CI) Estimate with DC (95% CI)
C1 0.993 (0.951, 1.035) 1.003 (0.961,1.045)
AUC1 0.883 (0.875, 0.892) 0.883 (0.875, 0.892)
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4.4 Prostate cancer example

Algorithm 2: Five-fold cross-validation procedure
input : PLCO
output: Estimated unweighted performance measures

(1) split PLCO into five disjoint subsets.
for i = 1, . . . , 5 do

(a) train the model for cancer risk in Table 4.5 with subsets j, j 6= i.
(b) apply model from (a) to subset i estimating the cancer risk.
(c) calculate the unweighted performance measures with subset i.

end
(2) output the average of the five estimated unweighted performance measures.

Algorithm 3: Bootstrapping procedure for internal validation
input : PLCO with estimated cancer risk from five-fold cross-validation
output: Estimated unweighted performance measures

for i = 1, . . . , B do
(1) draw PLCOi from PLCO with replacement such that PLCOi has the same
size as PLCO.

(2) calculate the unweighted performance measures using PLCOi.
end

External model validation

Before validating the developed prostate cancer risk prediction model with SELECT, we

first build the models for the selection and verification weights, where different logistic re-

gressions are estimated. We then apply the model for cancer risk and the models for

weights to the SELECT cohort and calculate the unweighted and weighted performance

measures, where we also explore the situation when using censoring outcome instead in

the calculation of performance measures.

Estimation of the selection and verification weights

We fit a logistic regression model to the combined PLCO and SELECT data estimating

P (T = 1|X∗) to obtain ŵ(X∗) in (4.11), where T = 1 for PLCO and T = 0 for SELECT.

Step-wise model selection with the BIC selection criterion is used, allowing up to two-way

interactions of age at first PSA test, log-based-2 PSA (log2PSA), family history, African

ancestry, and prior negative biopsy. Table 4.7 describes the estimated odds ratios for the

final logistic model for the probability of being in PLCO. Men with lower PSA values, having

a family history, having African ancestry, or having a prior negative biopsy are more likely

to be in SELECT than in PLCO. In sensitivity analysis, we estimate the selection weights

using the same logistic model but without model selection (see model described in Table

4.10).

Verification in this application refers to receiving a prostate biopsy within 5 years after

baseline. To obtain v̂(X∗), we fit two logistic regression models as in (4.53) to estimate
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4 A novel external validation method for adjusting for training and validation cohort differences

the probabilities of being verified in PLCO or SELECT, respectively. The values of PSA

and DRE used in these logistic models are those closest to the first biopsy for verified

participants or closest to the end of the five-year follow-up after baseline for unverified

participants. Table 4.8 shows the odds ratios of the resulting logistic regression models for

PLCO and SELECT. The estimated odds ratio for PSA > ng/mL and abnormal DRE are

much higher than the other risk factors, which is due to that both trials were recommended

to biopsy men with PSA > ng/mL and abnormal DRE. These two odds ratios in PLCO are

higher than the respective ones in SELECT. Having a family history of cancer increases

the risk of being biopsied in both trials, while having a prior negative biopsy history reduces

the risk of being biopsied in PLCO but increases in SELECT, highlighting the differences in

disease verification mechanism between the two cohorts.

Figure 4.3 presents the estimated SELECT 5-year verification risk P̂0(V = 1|X∗) on the

x-axis versus the PLCO 5-year verification risk P̂1(V = 1|X∗) on the y-axis for the 26422

SELECT participants. From Figure 2.8, it appears that verification is more frequent in

PLCO as the cumulative incidence curve for biopsy for PLCO is higher than the one for

SELECT indicating more biopsy events in PLCO. However, after conditioning on risk fac-

tors, the 5-year SELECT verification probability (P0(V = 1|X∗)) is on average higher than

the corresponding 5-year PLCO verification probability (P1(V = 1|X∗)) for most men in

SELECT, resulting in most values of v being much smaller than one. In sensitivity analysis,

we add the number of PSA tests within 5 years after baseline to the logistic models (see

characteristic description in Table 4.11) and apply different model selection processes to

model PT (V = 1|X∗), T = 0, 1 (see Table 4.13). The percentages of participants with PSA

> 4 ng/mL and abnormal DRE are higher than those in SELECT. The distributions of the

number of PSA tests within 5 years after baseline are comparable between the two cohorts.

PLCO has much more men who received four tests compared to SELECT (21.1% versus

13.7%). SELECT has 15 participants taken more than 7 PSA tests, while none in PLCO. Ta-

ble 4.12 summarise the resulting models for verification probabilities under various model

selection processes.

Table 4.7: Odds ratios and 95% confidence intervals from the step-wise logistic selection weight
model with outcome (1:in PLCO versus 0: in SELECT) applied to the 56121 participants of both
studies (29699 from PLCO and 26422 from SELECT). All risk factors have p-values < 0.001 except
for log2PSA, which has a p-value of 0.008. PSA = prostate-specific antigen.

Risk factor Odds ratio 95% Confidence interval
Intercept 2.14 (1.72, 2.65)
log2PSA 0.78 (0.64, 0.94)
Age 0.993 (0.990, 0.997)
Family history 0.39 (0.37, 0.41)
African ancestry 0.33 (0.30, 0.35)
Prior negative biopsy 0.43 (0.40, 0.47)
log2PSA ∗Age 1.006 (1.003, 1.009)
log2PSA ∗African ancestry 1.15 (1.08, 1.23)
log2PSA ∗ Prior negative biopsy 1.18 (1.11, 1.25)
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4.4 Prostate cancer example

Table 4.8: Odds ratios and 95% confidence intervals (CIs) from logistic models fit to having a biopsy
within 5 years fit to 29699 PLCO and 26422 SELECT participants respectively. PSA = prostate-
specific antigen; DRE = digital rectal exam.

PLCO (N1 = 29699) SELECT (N0 = 26422)
Risk factor Odds ratios (95% CI) Odds ratios (95% CI)
Intercept 0.005 (0.002, 0.014) 0.015 (0.013, 0.017)
log2PSA 4.73 (3.73, 6.03) 4.46 (4.06, 4.92)
I(PSA > 4) 350.38 (93.18,1320.18) 28.20 (15.32, 50.92)
DRE(abnormal) 511.01 (364.03, 735.38) 86.35 (69.22, 107.94)
Age 0.98 (0.97, 1.00) -
Family history 1.22 (1.03, 1.46) 1.37 (1.21, 1.54)
African ancestry 0.010 (0.001, 0.219) -
Prior negative biopsy 0.81 (0.68, 0.97) 1.77 (1.33, 2.34)
log2PSA ∗ I(PSA > 4) 0.78 (0.60, 1.01) 0.38 (0.29, 0.49)
log2PSA ∗DRE(abnormal) 0.27 (0.21, 0.35) 0.31 (0.26, 0.37)
log2PSA ∗ Prior negative biopsy - 0.76 (0.65, 0.89)
I(PSA > 4) ∗DRE(abnormal) 0.11 (0.07, 0.17) 0.62 (0.35, 1.12)
I(PSA > 4) ∗Age 0.97 (0.95, 0.99) -
Age ∗African ancestry 1.08 (1.02, 1.13) -
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Figure 4.3: Estimated SELECT 5-year verification probability P̂0(V = 1|X∗) on the x-axis versus
PLCO 5-year verification probability P̂1(V = 1|X∗) on the y-axis estimated from logistic models
given in Table 4.8 on 26422 SELECT participants. The marginal histogram of the SELECT verifi-
cation probability is given on top of the scatter plot, the PLCO verification risk histogram is given to
the right. The diagonal line indicates equal probabilities.
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4 A novel external validation method for adjusting for training and validation cohort differences

Performance measures

Table 4.9 gives the estimated unweighted and weighted calibration ratios and AUCs in

26422 SELECT participants. Confidence intervals are based on the 2.5% and 97.5% per-

centiles from the bootstrapping with 600 repetitions following the procedure shown in Al-

gorithm 1. Such bootstrapping procedure re-samples individuals from PLCO and SELECT

and also re-estimates the weights in each bootstrap repetition, thus accounting for all the

uncertainties in the performance estimates.

The overall unweighted calibration ratio C0 = 1.191 suggests that the model under-predicts

the number of events in SELECT since the ratio is over one. The selection weighted calibra-

tion ratio is CW0 = 1.155. Though still pronounced, the selection bias adjustment reduces

the under-prediction by around 0.035. Figure 4.4 provides further insight into unweighted

model performance and after accommodating for selection bias in the subgroups of risk

factors among the 26422 SELECT participants. The estimated selection weights for par-

ticipants with family history, African ancestry, and prior negative biopsy differ largely from

the corresponding rest groups, while similar when comparing the subgroup with first PSA

> 2 ng/mL versus without or the subgroup with age at baseline > 65 versus without. The

estimated unweighted calibration ratio is worst in the subgroup with African ancestry. But

this subgroup also receives lower selection weights compared to the subgroup with no

African ancestry, giving an insight into the bias reduction after weighting though the result-

ing calibration ratio is based on overall calculation. The reduction in the selection weighted

calibration ratio may attribute to giving lower weights to those with poorer calibration per-

formance.

Adjusting verification bias alone leads to CV0 = 0.893, corresponding to an over-prediction

of the model after accommodating differences in prostate cancer verification mechanism.

Adjusting the selection bias in additional does not improve the calibration further with

CWV
0 = 0.884. Figure 4.5 shows the distributions of verification weights and the corre-

sponding performance measure CV0 in various risk factors subgroups. Only a small pro-

portion of men in SELECT have verification weights v > 1, which has been indicated by

Figure 4.3. After verification weighting, the calibration ratio in the subgroup with African

ancestry reduces from the unweighted value 1.736 to 1.336, while from the 1.339 to 0.939

for the subgroup with family history. Figure 4.6 shows the distributions of the combined

selection and verification weights and CWV
0 by risk factors subgroups. Including selection

weights additionally does not noticeably change the weighted calibration measures in any

risk factor subgroup, compared to those with only verification weighting. The vastly different

values of the verification weighted calibration ratios, overall or in subgroups of risk factors,

emphasizing the need to account for the differences in the verification mechanism between

the validation and training cohorts.

The selection weighted AUC (AUCW0 = 0.824) is just slightly lower than the unweighted one

(AUC0 = 0.828), but the verification weighted AUC increases to AUCV0 = 0.853. Combined
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4.4 Prostate cancer example

selection and verification weighting do not further improve the AUC (AUCWV = 0.851).

However, including the adjustment for verification bias improves the resulting estimated

AUC compared to the unweighted one, indicating the need to accommodate the differ-

ence in the verification process between the training and validation populations. Figure

4.8 presents the estimated unweighted and weighted TPRs and FPRs versus the risk

threshold ranging from 0 to 0.3 among 26422 SELECT participants. The FPR values are

not changed by weighting since the curves are overlapping, but the verification weighted

and combined weighted TPR curves are higher compared to the unweighted or selection

weighted ones, which explains the noticeable improvement in the verification weighted and

combined weighted AUCs. As shown in Figure 4.8, the corresponding verification weighted

or combined weighted ROCs are higher than the other two curves as well.

Table 4.9: Estimated unweighted and weighted calibration ratios (C0, CW
0 , CV

0 , CWV
0 ) and areas

under the receiver operating characteristic curves (AUC0, AUCW
0 , AUCV

0 , AUCWV
0 ) in 26422 SE-

LECT participants. 95% confidence intervals are percentiles of the bootstrap empirical distribution
function with 600 bootstrap repetitions. The outcome without censoring weighting (D) is used in
the calculation of the measures. The selection weights w are from the model in Table 4.7 and the
verification weights v are from the models in Table 4.8.

Estimate 95% Confidence interval
C0 1.191 (1.126, 1.258)
CW0 1.155 (1.086, 1.221)
CV0 0.893 (0.839, 0.952)
CWV

0 0.884 (0.824, 0.941)
AUC0 0.828 (0.817, 0.840)
AUCW0 0.824 (0.812, 0.835)
AUCV0 0.853 (0.842, 0.865)
AUCWV

0 0.851 (0.839, 0.862)

Sensitivity analyses

When the selection weights w and verification weights v are based on different models, the

resulting estimated performance measures giving in Table 4.13 are similar as before. The

selection weighted calibration ratio with w from the model without model selection (MS) is

1.157 versus the 1.155 before. Using models from Table 4.8 for v and w without MS gives

the combined weighted calibration ratio of 0.886, versus 0.884 before. When using the

selection weights given by model in Table 4.7 but using different models described in Table

4.12 for v, the estimated verification weighted calibration ratios are 0.878, 0.858, and 0.833

for models VM2, VM3, and VM4, respectively. The estimated CV0 when using the model

VM4 for v, i.e. the optimal model after step-wise model selection including additionally the

number of PSA tests as a candidate risk factor, is the worst, which means the VM4 may

not be able to address the verification bias properly. Similarly, the estimated combined

weighted calibration ratio when using VM4 for v is just 0.828 or 0.830 when using w with

or without model selection, respectively. The AUCW0 is similar as before when w from the

model without MS. The verification or combined weighted AUCs are comparable without

much variation no matter which models are used for w and v, ranging from 0.850 to 0.853.
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4 A novel external validation method for adjusting for training and validation cohort differences

If using the probability of censoring weighted outcome, DC instead, the validation results

are similar to those based on the censored projection times as shown in Table 4.14. Fig-

ures 4.9, 4.10, and 4.11 present the distributions of the estimated weights for various risk

factor subgroups with the estimated unweighted or weighted calibration measures using

the censoring weighted outcomes DC given alongside as before. The densities of weights

by subgroups also look similar to those using D and therefore, we leave out further inter-

pretation here.

4.5 Discussion

Validating the developed clinical risk models with external data is essential before extensive

applications. If the validation population and the training one resemble, the performance

measures calculated with the validation data should have a similar value as those from

internal validation, i.e. validation with samples from the training population. In this case,

one evaluates the “reproducibility” of the developed risk models. On the other hand, when

the distributions of risk factors or the disease verification mechanism, or both are different

between the training data and the external validation population, we assess rather the

“transportability” of the models in the external validation. Such differences in either the

risk factors distributions or the disease diagnostic test scheme may distort the estimated

performance measure and fallaciously suggest that the developed risk model should not

be used though the model is valid for the training population.

We developed a novel weighting method to address the differences in the risk factor dis-

tributions or in the disease verification mechanism between training and validation popula-

tions in the external validation of clinical risk models. The selection or verification weights

are proposed to adjust for selection bias arising from different distributions in risk factors

or verification bias arising from different verification mechanisms between training and val-

idation cohorts, respectively. These weights capture the differences and can improve the

assessment of model performance after incorporating them into the calculation of the per-

formance measures.

When only the difference in the risk factor distributions is considered, we apply the selection

weight to resemble the external sample to the training population. We formalized the con-

cepts of reproducibility and transportability. If the unweighted performance measures have

similar values as those from internal validation, the model is reproducible and can be ap-

plied to the population similar to the training one. If only the selection weighted, but not the

unweighted, performance measures resemble the values of unweighted measures from in-

ternal validation, we conclude that the model is transportable to other populations that may

not have similar risk factor distributions as the training population. During the discussion

of reproducibility and transportability, we always assume that the true disease probabilities

are the same between training and validation populations based on predictors in the risk
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model (X) and other variables omitted in the risk modeling (Z), i.e. π1(X∗) = π0(X∗). If the

conditional distribution of omitted covariates given predictors is the same between training

and validation sets (F1(Z|X) = F0(Z|X)) in addition, the risk model R(X) is well calibrated

with selection weighting in the validation data, i.e. model is transportable. Instead, if the

marginal distributions of X are the same in the two distributions (F1(X) = F0(X)), R(X)

is well calibrated without selection weighting and the model is reproducible in this case.

Other approaches to address the heterogeneity in the distribution of risk factors in external

validation through weighting include the work by Powers et al. [2019] that used weighting

to estimate the performance of a model with external samples to resemble its performance

in the target population, whose work had a different aim than ours and the difference in

verification scheme was omitted.

Towards the adjustment of bias from different verification mechanisms between cohorts,

we proposed the verification weights, where the verified and unverified participants receive

different forms of verification weight. For adjusting the verification bias, we weighted the

observations but not the predictions. When taking the verification process into account,

we rather model the probability of being verified and being tested positive for the disease

in the verification given risk factors (P (DV = 1|X∗)), than the disease probability P (D =

1|X∗). We discussed the situations when the external performance measures have similar

values as internal validation after verification weighting as well. When the distributions of

predictors and other covariates are the same and the probabilities of disease conditional on

X∗ and be verified are the same between the training and validation cohorts, the verification

weighted performance measures are similar to those from internal validation. We also

gave the expressions for combined weighted performance measures accounting for both

selection and validation bias.

The accommodation of the selection bias and verification bias relies on modeling the veri-

fication probabilities in training and the validation populations, respectively. Correctly mod-

eling these probabilities is essential for bias correction, which is a challenge as shown in

the prostate cancer example that we have intrinsic different screening plans between the

two sets and only limited risk factors are available from both sets. The modeling variable

selection and the existence of potential confounders could add extra uncertainty to the

calculation of weighted performance measures. Despite these limitations, we recommend

using the proposed weighting to see if differences in the distribution of risk factors and ver-

ification procedures may account for discrepancies in the values of performance measures

estimated in the validation population versus in the training data, rather than due to the

failure of the risk model.
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Figure 4.4: Histograms of the selection weights w from the logistic model in Table 4.7 used for cal-
culation of ĈW

0 for the 26422 SELECT participants according to baseline risk factor categories. C0

(top numbers) and CW
0 (bottom numbers) calculated for each subgroup and corresponding sample

sizes are shown in each panel.
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Figure 4.5: Histograms of the verification weights v from the logistic model shown in Table 4.8 used
for calculation of ĈV

0 for the 26422 SELECT participants according to baseline risk factor categories.
C0 (top numbers) and CV

0 (bottom numbers) calculated for each subgroup and corresponding sam-
ple sizes are shown in each panel. The y-axes are on the log-base-10 scale.
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Figure 4.6: Histograms of the combined selection and verification weights used for calculation of
ĈWV

0 for the 26422 SELECT participants according to baseline risk factor categories. C0 (top
numbers) and CWV

0 (bottom numbers) calculated for each subgroup and corresponding sample
sizes are shown in each panel. The selection weights w are based on the logistic model in Table
4.7 and the verification weights v are based on the logistic models in Table 4.8. The y-axes are on
the log-base-10 scale.
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Figure 4.7: Unweighted and weighted receiver operating characteristics curves among 26422 SE-
LECT participants. The selection weights w are based on the logistic model in Table 4.7 and the
verification weights v are based on the logistic models in Table 4.8.
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Figure 4.8: Unweighted and weighted true positive rates (TPRs) and false positive rates (FPRs)
among 26422 SELECT participants. The selection weights w are based on the logistic model in
Table 4.7 and the verification risks on the logistic models in Table 4.8.
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Table 4.10: Odds ratios from the logistic regression model for the probability of being in PLCO
without model selection with outcome (1:in PLCO versus 0: in SELECT) applied to the 56121
participants of both studies (29699 from PLCO and 26422 from SELECT).

Risk factor Odds ratio (95% Confidence interval)
Intercept 2.22 (1.75, 2.82)
log2PSA 0.75 (0.62, 0.91)
Age 0.993 (0.989, 0.996)
Family history 0.27 (0.13, 0.52)
African ancestry 0.08 (0.03, 0.21)
Prior negative biopsy 2.02 (0.77, 5.33)
log2PSA ∗Age 1.006 (1.003, 1.009)
log2PSA ∗ Family history 1.04 (0.99, 1.10)
log2PSA ∗African ancestry 1.12 (1.05, 1.20)
log2PSA ∗ Prior negative biopsy 1.17 (1.11, 1.24)
Age ∗ Family history 1.01 (0.99, 1.02)
Age ∗African ancestry 1.02 (1.01, 1.04)
Age ∗ Prior negative biopsy 0.98 (0.96, 0.99)
Family history ∗African ancestry 1.17 (0.92, 1.49)
Family history ∗ Prior negative biopsy 1.13 (0.91, 1.40)
African ancestry ∗ Prior negative biopsy 1.20 (0.86, 1.65)

Table 4.11: Characteristics table of the latest prostate-specific antigen (PSA), the indicator of the
latest PSA greater than 4 (I(PSA > 4)), and digital rectal exam (DRE) among 29699 PLCO and
26422 SELECT participants. The latest PSA and DRE are the latest records taken before the first
biopsy within 5 years for verified participants, while the latest records taken within 5 years after
baseline for unverified ones.

PLCO (N1 = 29699) SELECT (N0 = 26422)
Latest PSA (min., 1st quartile, median, 3rd quartile, max.)

(0.00, 0.71, 1.29, 2.50, 842.90) (0.00, 0.70, 1.21, 2.28, 790.93)
I(PSA > 4), n(%)

- 1 3909 (13.2) 2044 (7.7)
- 0 25790 (86.8) 24378 (92.3)

Latest DRE, n(%)
- Abnormal 2982 (10.0) 731 (2.8)
- Normal 26717 (90.0) 25691 (97.2)

Number of PSA tests
within 5 years, n(%)

- 1 722 (2.4) 729 (2.8)
- 2 1211 (4.1) 1747 (6.6)
- 3 1473 (5.0) 2323 (8.8)
- 4 6272 (21.1) 3633 (13.7)
- 5 9230 (31.1) 9261 (35.1)
- 6 10676 (35.9) 8559 (32.4)
- 7 115 (0.4) 155 (0.6)
- 8 0 (0) 14 (0.1)
- 9 0 (0) 1 (0.0)
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Table 4.12: Odds ratios estimated from logistic models for 5-year verification risk fit separately to
men PLCO and SELECT. PSA=prostate-specific antigen; DRE=digital rectal exam; CI=confidence
interval. For VM2 we used step-wise model selection and included up to two-way interactions of
log2PSA, I(PSA > 4), DRE, age, family history, and prior negative biopsy. VM3 includes all
factors in Table 4.8 plus the number of PSA tests. VM4 is obtained after step-wise model selection
applied to a model including all main effects as for VM2, and the number of PSA tests, as well as
their two-way interactions.

PLCO (N1 = 29699) SELECT (N0 = 26422)

Risk factor Odds ratio (95% CI) Odds ratio (95% CI)

VM2: Optimal model after model selection

Intercept 0.02 (0.01, 0.03) 0.08 (0.04, 0.16)

log2PSA 3.91 (3.33, 4.63) 4.62 (4.21, 5.09)

I(PSA > 4) 33.43 (24.98, 45.13) 30.70 (16.66, 55.46)

DRE 411.76 (314.99, 545.40) 88.84 (71.19, 111.12)

Age 0.97 (0.96, 0.98) 0.97 (0.96, 0.98)

Family history - 1.35 (1.19, 1.52)

Prior negative biopsy - 1.99 (1.49, 2.64)

log2PSA ∗ I(PSA > 4) - 0.36 (0.28, 0.47)

log2PSA ∗DRE 0.33 (0.27, 0.39) 0.29 (0.25, 0.33)

log2PSA ∗ Prior negative biopsy - 0.74 (0.64, 0.87)

I(PSA > 4) ∗DRE 0.08 (0.05, 0.12) -

VM3: No model selection, including number of PSA tests

Intercept 0.02 (0.01, 0.04) 0.006 (0.005, 0.008)

log2PSA 4.67 (3.69, 5.94) 4.37 (3.97, 4.81)

I(PSA > 4) 390.59 (103.52, 1477.01) 24.57 (13.29, 44.52)

DRE 493.70 (352.83, 708.14) 81.83 (65.56, 102.34)

Age 0.98 (0.96, 0.99) -

Family history 1.22 (1.03, 1.46) 1.35 (1.20, 1.52)

African ancestry 0.011 (0.001, 0.231) -

Prior negative biopsy 0.79 (0.67, 0.95) 1.73 (1.30, 2.28)

Number of PSA tests 0.86 (0.83, 0.90) 1.20 (1.15, 1.25)

log2PSA ∗ I(PSA > 4) 0.74 (0.57, 0.97) 0.40 (0.31, 0.52)

log2PSA ∗DRE 0.27 (0.21, 0.35) 0.31 (0.26, 0.37)

log2PSA ∗ Prior negative biopsy - 0.77 (0.66, 0.90)

I(PSA > 4) ∗DRE 0.10 (0.07, 0.16) 0.64 (0.36, 1.16)

I(PSA > 4) ∗Age 0.97 (0.95, 0.99) -

Age ∗African ancestry 1.07 (1.02, 1.13) -

VM4: Optimal model after model selection including number of PSA tests as candidate risk factor

Intercept 0.02 (0.01, 0.05) 0.03 (0.02, 0.07)

log2PSA 7.12 (5.28, 9.66) 4.51 (4.11, 4.97)

I(PSA > 4) 109.31 (24.63, 488.46) 26.79 (14.48, 48.53)

DRE 127.42 (72.89, 226.86) 84.10 (67.35, 105.25)
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Age 0.98 (0.97, 1.00) 0.97 (0.96, 0.98)

Family history - 1.33 (1.18, 1.50)

Prior negative biopsy - 1.95 (1.46, 2.58)

Number of PSA tests 0.82 (0.74, 0.92) 1.20 (1.15, 1.25)

log2PSA ∗ I(PSA > 4) - 0.38 (0.29, 0.49)

log2PSA ∗DRE 0.35 (0.29, 0.42) 0.29 (0.25, 0.34)

log2PSA ∗ Prior negative biopsy - 0.75 (0.64, 0.88)

log2PSA ∗Number of PSA tests 0.87 (0.82, 0.92) -

I(PSA > 4) ∗DRE 0.08 (0.05, 0.12) -

I(PSA > 4) ∗Age 0.96 (0.94, 0.98) -

I(PSA > 4) ∗Number of PSA tests 1.35 (1.18, 1.55) -

DRE ∗Number of PSA tests 1.26 (1.13, 1.41) -
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Table 4.13: Sensitivity analysis. Estimated calibration ratios (C0, CW
0 , CV

0 , CWV
0 ) and areas under

the receiver operating characteristic curves (AUC0, AUCW
0 , AUCV

0 , AUCWV
0 ) in 26422 SELECT

participants using D in the calculation of the measures. 95% confidence intervals (CIs) are based
on percentiles of the bootstrap empirical distribution function with 600 bootstrap repetitions. The
model for w including all risk factors and their two-way interactions without model selection (MS) is
shown in Table 4.10. The model for v without MS is shown in Table 4.8. Model VM2 for v is the
optimal model after step-wise MS allowing up to two-way interactions of log2PSA, I(PSA > 4),
DRE, Age, Family history, and Prior negative biopsy. Model VM3 for v includes all factors in
Table 4.8 plus the number of PSA tests. Model VM4 for v is the optimal model after step-wise
model selection applied to to a model including the same base model as for VM2 plus the number
of PSA tests, and their two-way interactions. Coefficients for v from VM2, VM3, and VM4 are shown
in Table 4.12.

Estimate 95% CI Model for weights
CW0 1.157 (1.088, 1.226) w, no MS
CV0 0.878 (0.826, 0.942) v, VM2, MS
CV0 0.858 (0.803, 0.918) v, VM3, no MS
CV0 0.833 (0.782, 0.900) v, VM4, MS
CWV

0 0.875 (0.819, 0.937) v, VM2, MS; w, MS
CWV

0 0.849 (0.789, 0.908) v, VM3, no MS; w, MS
CWV

0 0.828 (0.775, 0.893) v, VM4, MS; w, MS
CWV

0 0.886 (0.826, 0.944) v, no MS; w, no MS
CWV

0 0.877 (0.820, 0.939) v, VM2, MS; w, no MS
CWV

0 0.851 (0.790, 0.912) v, VM3, no MS; w, no MS
CWV

0 0.830 (0.778, 0.897) v, VM4, MS; w, no MS
AUCW0 0.825 (0.813, 0.836) w, no MS
AUCV0 0.853 (0.841, 0.865) v, VM2, MS
AUCV0 0.852 (0.840, 0.864) v, VM3, no MS
AUCV0 0.852 (0.839, 0.864) v, VM4, MS
AUCWV

0 0.851 (0.839, 0.861) v, VM2, MS; w, MS
AUCWV

0 0.850 (0.837, 0.861) v, VM3, no MS; w, MS
AUCWV

0 0.850 (0.837, 0.861) v, VM4, MS; w, MS
AUCWV

0 0.851 (0.839, 0.862) v, no MS; w, no MS
AUCWV

0 0.851 (0.840, 0.862) v, VM2, MS; w, no MS
AUCWV

0 0.850 (0.838, 0.862) v, VM3, no MS; w, no MS
AUCWV

0 0.850 (0.838, 0.861) v, VM4, MS; w, no MS
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Table 4.14: Sensitivity analysis. Estimated calibration ratios (C0, CW
0 , CV

0 , CWV
0 ) and areas under

the receiver operating characteristic curves (AUC0, AUCW
0 , AUCV

0 , AUCWV
0 ) in 26422 SELECT

participants using the censoring weighted outcome, DC , in the calculation of the measures. 95%
confidence intervals (CIs) are based on percentiles of the bootstrap empirical distribution function
with 600 bootstrap repetitions. The model for w including all risk factors and their two-way interac-
tions without model selection (MS) is shown in Table 4.10. The model for v without MS is shown in
Table 4.8. Model VM2 for v is the optimal model after step-wise MS including up to two-way interac-
tions of log2PSA, I(PSA > 4), DRE, Age, Family history, and Prior negative biopsy. Model VM3
for v includes all factors in Table 4.8 plus the number of PSA tests. Model VM4 for v is the optimal
model after step-wise model selection applied to a model including the same main effects as in the
base model of VM2 plus the number of PSA tests, and their two-way interactions. Coefficients for v
from VM2, VM3, and VM4 are shown in Table 4.12.

Estimate 95% CI Model for weights
C0 1.209 (1.142, 1.277) −
CW0 1.172 (1.101, 1.239) w, MS
CW0 1.174 (1.104, 1.244) w, no MS
CV0 0.894 (0.840, 0.953) v, no MS
CV0 0.879 (0.827, 0.943) v, VM2, MS
CV0 0.859 (0.804, 0.919) v, VM3, no MS
CV0 0.834 (0.784, 0.901) v, VM4, MS
CWV

0 0.885 (0.825, 0.942) v no MS; w, MS
CWV

0 0.876 (0.820, 0.938) v, VM2, MS; w,MS
CWV

0 0.850 (0.790, 0.909) v, VM3, no MS; w, MS
CWV

0 0.829 (0.776, 0.894) v, VM4, MS; w, MS
CWV

0 0.887 (0.827, 0.945) v, no MS; w, no MS
CWV

0 0.878 (0.821, 0.940) v, VM2, MS; w no MS
CWV

0 0.852 (0.791, 0.913) v, VM3, no MS; w no MS
CWV

0 0.831 (0.778, 0.897) v, VM4, MS; w no MS
AUC0 0.826 (0.814, 0.838) −
AUCW0 0.822 (0.810, 0.834) w, MS
AUCW0 0.823 (0.811, 0.834) w, no MS
AUCV0 0.853 (0.842, 0.865) v, no MS
AUCV0 0.853 (0.841, 0.865) v, VM2, MS
AUCV0 0.852 (0.840, 0.864) v, VM3, no MS
AUCV0 0.852 (0.839, 0.864) v, VM4, MS
AUCWV

0 0.851 (0.839, 0.862) v, no MS; w, MS
AUCWV

0 0.851 (0.839, 0.861) v, VM2, MS; w, MS
AUCWV

0 0.850 (0.837, 0.861) v, VM3, no MS; w, MS
AUCWV

0 0.850 (0.837, 0.861) v, VM4, MS; w, MS
AUCWV

0 0.851 (0.839, 0.862) v, no MS; w, no MS
AUCWV

0 0.851 (0.840, 0.862) v, VM2, MS; w, no MS
AUCWV

0 0.850 (0.838, 0.862) v, VM3, no MS; w, no MS
AUCWV

0 0.850 (0.838, 0.861) v, VM4, MS; w no MS
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Figure 4.9: Histograms of the selection weights w from the logistic model in Table 4.7 used for
calculation of ĈW

0 for the 26422 SELECT participants according to baseline risk factor categories.
C0 (top numbers) and CW

0 (bottom numbers) are calculated usingDC , censoring weighted outcome.
For each subgroup, the corresponding sample sizes are shown in each panel.
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Figure 4.10: Histograms of the verification weights v from the logistic model shown in Table 4.8 used
for calculation of ĈV

0 for the 26422 SELECT participants according to baseline risk factor categories.
C0 (top numbers) and CV

0 (bottom numbers) are calculated using DC , censoring weighted outcome.
For each subgroup, the corresponding sample sizes are shown in each panel. The y-axes are on
the log-base-10 scale.
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Figure 4.11: Histograms of the combined selection and verification weights used for calculation
of ĈWV

0 for the 26422 SELECT participants according to baseline risk factor categories. C0 (top
numbers) and CWV

0 (bottom numbers) are calculated using DC , censoring weighted outcome. For
each subgroup and corresponding sample sizes are shown in each panel. The selection weights w
are based on the logistic model in Table 4.7 of the main manuscript and the verification weights v are
based on the logistic model in Table 4.8 of the main manuscript. The y-axes are on the log-base-10
scale.
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5 Summary and outlook

Nowadays, many clinical risk prediction models are available online assisting people world-

wide in the early detection, diagnosis, or prognosis of various types of diseases based on

the respective risk factors. Though aiming for different diseases, these tools all give the

estimated probability of having the event of interest, i.e. the risk of experiencing the event,

given the observed values of risk factors. Once a risk prediction model has been built, its

performance should be at least validated internally within the training population, which is

known as internal validation and is often known as assessing the “reproducibility” of the

model since it assesses the performance of the model upon the same population as the

underlying one used to build this model [Steyerberg, 2019]. One can validate a prediction

model internally by simply applying it to the training data or following a cross-validation

process [Steyerberg, 2019]. In the cross-validation process, we would first split the training

data into multiple samples. We then use each of these samples as the validation set to

assess the refitted model that has been re-trained on the rest of the samples.

Internally validated may not be the ultimate goal of developing risk prediction tools that are

planned to be released online as people around the world would apply these tools under

various circumstances to gain insights into the risk of events, such as applying them to

populations from different countries with a different ethnicity than the underlying ones used

for training those models. In such case, the objected population for applying a built model

may have different distributions of the risk factors than the training one, which differences

could attribute to geographical or temporal variations or usage of different clinical trial de-

signs between the training sample and the objected one. Only performing well internally is

not enough. One should evaluate the performance of the model with external samples that

have not been used to build the model, namely external validation, which is used to assess

the “transportability” of the model [Steyerberg, 2019]. Due to the potential differences in

the population characteristics, which are mainly presented as having different distributions

of risk factors, the external validation results may bias. We may draw wrong conclusions

and falsely recommend extending the application of the model that is just valid in certain

kinds of populations based on such distorted external validation results.

For both internal and external validation, the calibration and the discrimination of the de-

veloped model are two aspects to be assessed. The calibration of the model refers to

the degree that which the predictions from the model agree with the observed outcomes.

The calibration-in-the-large (CIL) and the calibration ratio are the two common measures

quantifying the calibration of a model, where the former is based on the difference between

98



predictions and observations with an ideal value of zero and the latter is based on the ra-

tio of them with ideal value one. We can also visualize the calibration of a model via a

calibration plot sketching observed risk on the y-axis versus predicted value on the x-axis.

Participants are grouped before plotting, usually by the percentiles of predicted probabili-

ties, to compute the observed prevalence of outcomes within the group. The discrimination

of a model reflects if it can accurately predict and correctly distinguish the participants with

versus without the event of interests such that the model gives higher risk values to those

participants with observed events, while lower for the rest. The visualization of discrimi-

nation of a model is by the receiver operating characteristic curve (ROC) showing the true

positive rates on the y-axis versus the false positive rates on the x-axis at different threshold

values. A ROC bending towards the top left is desirable. If the outcome status is binary, a

quantitative measure of discrimination related to the ROC is the area under the ROC (AUC)

with a value closer to one indicating a better ability of discrimination. Other than AUC, we

can also use the true positive rate and the false positive rate [Pearce and Ferrier, 2000;

Jehi et al., 2020], the mean difference of the estimated predictions between the groups

with and without the event of interest [Steyerberg et al., 2010; Pencina and D’Agostino,

2015], or the plot with the true and false positive rate on the y-axis versus the threshold for

assessing the discrimination of the model in practice [Pepe and Janes, 2013].

The heterogeneous between the training and the external validation cohorts in the distribu-

tions of risk factors, also known as “case-mix difference” [Steyerberg, 2019], can distort the

external validation results leading to fallacious conclusions about the validity of the devel-

oped model upon external population. When the individual participant data from both train-

ing and validation cohorts are available, where training data are often not publicly available

or available only upon required, we can directly compare the distributions of risk factors be-

tween cohorts. The characteristics tables or distribution plots are commonly used for such

comparison [Ankerst et al., 2018; Tolksdorf et al., 2019]. Debray et al. [2015] used logistic

regression with the cohort indicator as the response developed on the data pooling two

cohorts together to check if the two cohorts are similar, where two cohorts may be more

similar if the internally estimated AUC of this logistic model is away from one. Powers et al.

[2019] weighted the validation sample to obtain a cohort resembling the target population.

Given that the developed prediction model would be perfect for the validation cohort if the

training and validation cohorts are from the same population with the same distributions of

risk factors, Vergouwe et al. [2010] proposed to and later, applied by Austin et al. [2016],

simulate the outcomes for the validation cohort based on the predictions and then, cal-

culated the performance measures using the simulated outcomes. Such values would be

free of the impact of the heterogeneity in the distributions of features between training and

validation populations. van Klaveren et al. [2016] replaced the comparison of the observed

outcomes with the comparison of the estimated linear predictors in the calculation of AUC

with external data, obtaining an AUC value that one would have if the prediction model is

correct for the validation set, similarly to the simulation-based values used in Vergouwe
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et al. [2010]. These benchmark values in Vergouwe et al. [2010] and Debray et al. [2015]

do not require the availability of the training data.

From the perspective of matching or balancing the distributions of risk factors between two

cohorts, one can find a rich literature using propensity score weighting/matching in various

research areas like survey research and causal inference [Rosenbaum and Rubin, 1983;

Dahabreh et al., 2019; Kern et al., 2016; Westreich et al., 2017; Elliot, 2013; Schonlau

et al., 2017; Elliott et al., 2017], where the propensity scores are the probability of being in

one cohort versus the others from a logistic model built on the data pooling both cohorts

together with the cohort indicator as the response. Ackerman et al. [2019] used the propen-

sity score weighting resembling the validation cohort to the training one, where participants

in the validation who represents the training population better would have higher weights.

In the development of the risk prediction model, not all participants would be used to train

the model but only those with known status of the event of interest. Often, the participants

will go through a verification process to ascertain their outcomes, like receiving a prostate

biopsy to confirm the status of prostate cancer. Some verification procedures are invasive,

such as the biopsy to ascertain cancer that needs surgery to sample tissue from the organ.

To avoid unnecessary verification and wasting of resources, the participants who are sent to

verify should meet certain criteria. For example, in the prostate cancer screening trial, only

men with PSA levels above the threshold, usually 4 ng/mL, or having abnormal DRE would

be recommended to receive a biopsy. In the COVID-19 pandemic, due to limited laboratory

load, usually, only people who are in close contact or have positive antigen rapid test results

would be recommended to have the polymerase chain reaction (PCR) test to confirm the

status of infection. Without the verification process, the outcome status of a participant is

unknown and hence, missing. Because there are criteria of recommending to be verified,

even within the same cohort, the characteristics of participants who have been verified

may differ from the unverified ones and hence, verification bias appears. The verified

participants are not a random sample from the population when the bias occurs. To address

the verification bias in the calculation of the true and false positive rates for the assessment

of the accuracy of a prediction model, Begg and Greenes [1983] and Alonzo and Pepe

[2005] imputed the missing outcome for the unverified participants with the estimated risk

from the model built with the verified participants data under the missing-at-random (MAR)

assumption. In the external validation, the verification mechanisms, such as the criteria for

recommending to be biopsied, could differ between cohorts due to different trial designs,

where the verification bias between cohorts may exist and affect the external validation

results as well. We checked their proposed verification bias adjustment method under

MAR assumption in Chapter 3.

In this thesis, we focus on addressing the impact of the differences in the distribution of

risk factors and verification process between the training and validation populations in the

external validation of the clinical risk prediction model, given that the data from both popu-

lations are available. In Chapter 4, we introduced a novel weighting framework to address
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the selection and verification bias, resembling the validation population to the training one

in the risk factors distribution and disease prevalence. In this setting, we first presumed that

the true disease probability depends on the risk factors (X∗) consisting of the predictors

used in the prediction model (X) as well as the omitted features (Z). We also assumed that

the developed risk prediction model (R(X)) is well calibrated and accurate with the internal

calibration ratio and AUC both equal to one.

When no verification bias occurs but only selection bias, we checked the performance of

the selection weighted calibration ratio and AUC against the corresponding internally esti-

mated unweighted values and formalized the idea of “reproducibility” and “transportability”.

When both populations have equal true disease risk and the same conditional distribution

of the omitted features (Z) given predictors (X), the unweighted and selection weighted

calibration ratios and AUCs on the validation cohort are equal to the respective unweighted

values estimated with training data if additionally assuming the distributions of predictors

are the same between populations (F0(X) = F1(X)). In this case, the model is repro-

ducible in the validation population since it is well calibrated and discriminated. External

validation with such a population is just the same as internal validation. On the other hand,

if the additional assumption that F0(X) = F1(X) does not hold, only the selection weighted

calibration ratio and AUC on the validation cohort are ideally one, but not their correspond-

ing unweighted measures. The model is transportable, i.e. the unweighted calibration ratio

on validation cohort is one, only if the risk prediction model (R(X)) is strongly calibrated in

the training data in this case. Here, the strongly calibrated refers to the true disease risk

given X is the same as the prediction R(X) for any X values. When validation bias occurs,

instead of modeling the risk of disease, we rather model the risk of having the disease as

well as being verified. We weight the observations, i.e. the numerator of the calibration

ratio in our expression, but not the prediction to adjust the verification bias. By assuming

that the training and validation populations have the same distribution of X∗ and the same

conditional probability of having the disease given X∗ and be verified, one could have the

verification weighted, but not the unweighted, calibration ratio be one.

From the simulation study, we showed that if no verification bias occurs but only selection

bias (S2, V 1 and S3, V 1), the selection weighted or combined selection and verification

weighted measures are less biased than the unweighted or verification weighted ones

given that the model for selection bias is correctly specified. When both risk factor dis-

tribution and the verification process differ between the populations, only the combined

weighted measures could substantially reduce the bias. In the application with PLCO and

SELECT, we studied the 5-year prostate cancer risk via the Cox regression using age as

the time scale. As shown in Table 4.9, the weighted values improved compared to the un-

weighted one regardless of the types of weighting except that the selection weighted AUC

was slightly lower than the unweighted one. We recommend using the proposed weight-

ing methods to accommodate the selection and verification biases, checking if the poor
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model performance on the validation population may be rather due to the bias between

populations than the failure of the developed model.

There are some limitations to the proposed methods. The weighting framework requires

the availability of both training and validation data to be used for modeling the weights. We

have to correctly specify the models for the weights to properly adjust the bias, which is a

challenge in practice because trials have different designs and we could miss crucial risk

factors in the models for bias adjustment. For the adjustment for selection bias, we need the

same risk factors from both cohorts. The number of risk factors used for adjusting selec-

tion bias may be very limited because trials can have different assessment plans and data

sharing policies such that not all features available in one trial would also be available in the

other. Even if the same risk factors have been collected in both training and validation data,

the underlying collection methods could be different, such as using different devices that

the modern ones may give more precise results compared to the previous ones. Because

all proposed performance measures rely on weights, the variation of the resulting perfor-

mance measures may increase due to different choices of weighting models. Though with

limitations, we still recommend applying the proposed bias-adjusted measures to have an

insight into the impact of selection bias or verification bias or both on the external validation

results, where the modeling of weights should be carefully considered.

We can extend the proposed framework to adjust other biases occurring in the external

validation prediction model. Due to advancing in the medical apparatus techniques and the

modernization of disease diagnosis and prevention standards, prediction tools developed

with past data may not be valid for samples from later time points. Therefore, the mea-

surements of risk factors may inevitably systematically differ, resulting in different predictor

effects between samples or the underlying diagnosis process differ such that the timing

of disease detection could regularly vary. In this case, the temporal bias could occur in

the validation of the tools with the latest samples. In the COVID-19 pandemic, the rapidly

changing screening and reporting policies and variations of the virus demand constant

calibration of the developed prediction tools. One may not able to gain enough qualified

samples suitable for assuring the external validity of these tools because of the poor data

reporting quality, different referral policies across countries, let alone the heterogeneous

medical history of participants and different pandemic phases the participants at. When

using the samples at hand to validate the developed COVID-19 risk prediction tools, we

should consider adjusting for the explicit bias between the validation and training data. For

example, if a potential COVID-19 infected participant is first screened at the primary care

site and then, referred to secondary medical care for further diagnosis, we can introduce

the referral weights that may consist of the probability of referral, in addition to verification

weights, to accommodate the referral bias under our bias adjustment framework. We can

define the weights used for bias adjustment flexibly depending on the reality and the need.

To conclude, one should have an omnibus view of the training and validation populations,

including the knowledge of the designs of trials, variable collection methods, and diagnosis
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criteria, to properly adjust the bias in the external validation of the developed prediction

model. We encourage researchers to disclose relevant information and share the underly-

ing data when publishing risk prediction models to facilitate external validation.

An alternative method to address the bias in the external validation performance assess-

ments due to heterogeneity in the distributions of risk factors between the training and

validation cohorts would be from a causal inference perspective using potential outcomes

[Neyman, 1923; Rubin, 1974]. Specifically, current definitions of the complier average

causal effect (CACE) and survival average causal effect (SACE) could be extended to the

define a concept of verified average causal effect (VACE) or selected and verified average

causal effect (SVACE) in external validation studies [Guo et al., 2022; Hayden et al., 2005].

CACE is routinely used for causal inference to determine treatment effects in randomized

trials among the principal stratum of always-compliers, defined as patients who would have

complied with treatment regardless of randomized assignment. The principal stratum of

always-compliers is not identifiable, and thus requires assumptions and sensitivity analyses

to violations of the assumptions. With Z = 0, 1 denoting randomized treatment assignment,

the hypothetical compliance indicators C(0), C(1) under each treatment arm are modeled

for each participant, as well as the hypothetical outcomes O(0), O(1) on each treatment

arm. Each participant thus has four potential outcomes, C(0), C(1), O(0), O(1) for which

only half are observed, namely those for the treatment arm the participant was observed

to be assigned. Conditional on covariates X, CACE was defined as

CACE = E(O(1)−O(0)|C(0) = C(1) = 1, X).

SACE is defined similarly as the treatment effect on outcomes measurable only for sur-

vivors for the always-survivors, defined as patients who would have survived under both

treatment arms.

The potential outcomes framework can be extended to the selection and verification pro-

cesses depicted in Figure 3.1, by assigning Z = 1, 0 to indicate the training and validation

set, T (0), T (1) patient selection indicators into each set, V (0), V (1) verification indicators

for each set, and X the baseline risk factors, PSA, DRE, and so forth. Then instead of the

difference in outcomes O(1)−O(0) as the primary endpoint, SVACE would use R(X)−D,

which is a risk model and is the outcome of prostate cancer evaluated on the principal

stratum,

SV ACE = E(R(X)−D|T (0) = T (1) = V (0) = V (1) = 1, X).

We are currently working on identifying the minimal set of assumptions needed to iden-

tify SVACE. From the parallels to CACE and SACE, the resulting estimators should be

weighted sums as in (3.9), for which the same consistency theorems would hold.
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Acronyms

AUC Area-under-the-receiver-operating-characteristic curve

CI Confidence interval

CIL Calibration-in-the-large

DRE Digital rectal examination

ERSPC European Randomized Study of Screening for Prostate Cancer

LP Linear predictor

MAR Missing-at-random

ng/mL Nanogram per milliliter

PBCG Prostate Biopsy Collaborative Group

PBCG-RC Prostate Biopsy Collaborative Group Risk Calculator

PLCO Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial

PCA Prostate cancer

PSA Prostate-specific antigen

ROC Receiver operating characteristic curve

SELECT Selenium and Vitamin E Cancer Prevention Trial
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