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A B S T R A C T   

Precise localization of semantic segmentation is attracting increasing attention, and salient performances are 
dominated by deep learning-based methods, especially deep convolutional neural networks (DCNNs). However, 
the outputs from the final layer of DCNNs are not sufficiently localized for accurate object boundaries due to their 
invariance properties, which makes precise boundary recovery of semantic segmentation an academically 
challenging question. Both 2D and 3D objects suffer from the same problem. Considering this, this paper con
ducts a comprehensive survey of precise boundary recovery for semantic segmentation, focusing mainly on 2D 
images and 3D point clouds. Firstly, we formulate the problem of potential boundary recovery for semantic 
segmentation based on DCNNs, elaborate on the terminology as well as background concepts in this field. Then, 
we categorize boundary recovery methods into four strategies according to their techniques and network ar
chitectures to discuss how they obtain accurate boundaries of semantic segmentation. Next, publicly available 
datasets on which they have been assessed are argued. To compare these datasets, we design diagrams based on 
five indicators to help researchers judge which are the ones that best suit their tasks. Moreover, we further 
compare and analyze the performance of all the reviewed methods through experimental results. Finally, current 
challenges and prospective research issues are discussed extensively.   

1. Introduction 

Semantic segmentation requires object classification, object detec
tion and boundary localization (Lateef and Ruichek, 2019). It originally 
applies to 2D images, aiming at a more precise understanding of scenes 
by assigning a semantic label to each pixel. Since it is defined at the pixel 
or point level, the assignment of class labels alone is not sufficient; 
precise localization of each pixel or point is also required. In recent 
years, with the increased availability and affordability of 3D sensors, 
including 3D scanners, LiDARs, and RGB-D cameras, 3D data have 
quickly attracted the increasing interest of researchers. 3D point clouds, 
as a widely popular 3D data format, can preserve the original geometric 
information in 3D space without any discretization (Guo et al., 2020). 
Therefore, it is the preferred representation for many applications 
related to 3D scene understanding, such as High Definition Mapping 
(HDM), autonomous driving/drones, and Simultaneous Localization 
And Mapping (SLAM) (Armeni et al., 2016; Xie et al., 2020). In this 
regard, semantic segmentation has gradually evolved from being 

exclusively pixel-wise to including point-wise labeling as well. 
Semantic segmentation is, by definition, a dense procedure, hence it 

requires precise boundary localization of class labels at the pixel-level or 
point-level. For example, in robot-assisted surgery, pixel-level errors in 
semantic image segmentation can lead to life-or-death situations (Ulku 
and Akagunduz, 2019). In autonomous driving, point-level errors in 
semantic segmentation of point clouds can also cause the same kind of 
personal injuries. In robotic precision grasping, pixel-level or point-level 
errors can cause not only grasp failure but even damage to the targets. 
Therefore, it is extremely crucial for certain applications. This technol
ogy is sometimes confused with contour extraction, which belongs to 
object detection from the perspective of application domains. That is one 
reason that we review this topic under the title ’precise boundary 
recovery’. 

Both data types (2D images and 3D point clouds) are summarized in 
this review on precise boundary recovery, and the reasons are as follows. 
Firstly, 2D images and 3D point clouds complement each other. 3D point 
clouds can make up for the issues of illumination and posture 
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encountered in 2D images and provide rich spatial information for 
complex scenes as well (Guo et al., 2020), while 2D images can provide 
extra RGB information. Both of these provide an opportunity for a better 
and more realistic understanding of the surrounding environments. 
Second, semantic segmentation of 3D point clouds based on deep 
learning originates from image-based methods. For example, MVCNN 
(Su et al., 2015) and VoxNet (Maturana and Scherer, 2015), which 
transformed 3D point clouds to 2D images and then applied existing 
knowledge to extract features for point cloud processing. Third, this 
survey mainly focuses on precise boundary recovery of semantic seg
mentation. The research objects involve various data formats, including 
2D, 2.5D and 3D, while 2D images and 3D point clouds are two of the 
most important and popular ones for scene understanding in the fields of 
computer vision, remote sensing, mapping geographic information, 
navigation and positioning, etc., which have considerable research sig
nificance and extensive application prospects. Based on above analyses 
and the relevance between the two type of data, this survey concentrates 
on precise boundary recovery of semantic segmentation for 2D images 
and 3D point clouds. 

In recent years, deep neural networks (DNNs) have been proven to 
excel at a wide range of computer vision and machine learning tasks, e.g. 
classification, detection, segmentation, etc., among which significant 
improvements have been achieved by a subset of DNNs known as Con
volutional Neural Networks (CNNs). Especially in the past five years, 
there has been a dramatic increase in global interest in the subject of 
semantic segmentation (Ulku and Akagunduz, 2019). However, only a 
few surveys of semantic segmentation using deep learning on 2D images 
are available, such as (Garcia-Garcia et al., 2018; Lateef and Ruichek, 
2019; Ulku and Akagunduz, 2019; Zhao et al., 2017). Additionally, even 
fewer surveys of deep learning-based semantic segmentation on 3D 
point clouds have begun to be published in the past two years, such as 
(Bello et al., 2020; Guo et al., 2020; Xie et al., 2020; Zhang et al., 2019). 
These surveys mainly focused on semantic segmentation, including 
background concepts, existing datasets, challenges, description of 
methods and evaluation of segmentation results to name a few. 
Regarding accurate boundary recovery for semantic segmentation, 
Garcia-Garcia et al. (2018) and Ulku and Akagunduz (2019) only briefly 

mentioned conditional random fields (CRFs) for 2D images. Lateef and 
Ruichek (2019) simply presented methods using CRF and Markov 
random field (MRF) and alternative to CRF for 2D images. Additionally, 
Guo et al. (2020) described an attention mechanism for 3D point clouds 
in only one paragraph. All of these references are restricted to one aspect 
and not their key contributions. 

To the best of our knowledge, our paper is the first review to focus 
specifically on deep learning-based precise boundary recovery of se
mantic segmentation for 2D images and 3D point clouds. Existing 
research on boundary recovery appears scattered in pieces of literature 
on semantic segmentation, which makes it very time-consuming and 
even difficult to keep track of the works. Based on above analyses, this 
survey is useful either for new researchers who are interested in 
boundary recovery or for experienced researchers in related fields. It is 
helpful for new researchers to fully understand the process of develop
ment, theories and methods of precise boundary recovery techniques for 
semantic segmentation, and benchmark datasets on which these 
methods are assessed. Meanwhile, it is conductive for experienced re
searchers to obtain related recent advances, grasp the challenges and 
pay attention to future trends. 

Compared with the existing reviews, the main contributions of this 
survey can be summarized as follows:  

(1) A comprehensive review of deep learning-based precise boundary 
recovery techniques for semantic segmentation for 2D images 
and 3D point clouds, as shown in Fig. 1.  

(2) Fusion of two data types:2D images and 3D point clouds, rather 
than only one type or other types.  

(3) Statistical analysis of benchmark datasets. Histograms, line charts 
and scatter charts to compare and analyze six public 2D image 
datasets according to five indicators. Parts are illustrated in Fig. 5 
and Fig. 6. 

(4) Comparison and analysis between the initial semantic segmen
tation results and the results after boundary recovery. 

The remainder of this paper is organized as follows. Firstly, Section 2 
explains the challenges of precise boundary recovery, and clarifies the 
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Fig. 1. Visual representation of precise boundary recovery techniques for semantic segmentation.  
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terminology as well as the background concept of semantic segmenta
tion, such as the spatial invariance and smoothing property. Next, Sec
tion 3 presents a comprehensive survey of existing precise boundary 
recovery techniques for semantic segmentation which are grouped into 
four categories. Then, Section 4 summarizes the benchmark datasets on 
which the aforementioned methods are assessed. Moreover, it also an
alyzes the characteristics of benchmark datasets and designs histograms, 
line charts and scatterplots. Based on these benchmarks, we concentrate 
on evaluating the performance of deep learning-based boundary re
covery models under their experimental results. Following that, chal
lenges and future research directions are discussed. Finally, Section 5 
concludes this paper. 

2. Terminology and background concepts 

To properly understand how precise boundary recovery of semantic 
segmentation is tackled by DCNNs, it is necessary to become aware of 
the corresponding terminology and background knowledge. The term 
boundary in this review is used to describe the object boundary of se
mantic segmentation. In detail, the boundary of a 2D/3D object refers to 
the pixels/points located at the outermost part of the object. Likewise, 
the boundary of a 3D point cloud, for example, represents the collection 
of points at the outermost part of the point cloud. Boundary recovery of 
semantic segmentation refers to the boundary optimization techniques 
used to obtain better segmentation results of boundaries. It is an oper
ation based on the results of preliminary semantic segmentation. The 
purpose of boundary recovery is to improve the pixel/point segmenta
tion performance of each class, especially for the pixels/points localized 
on the boundaries. In the field of object segmentation, quantitative 
relevant literature prefers to describe the improvement of the semantic 
segmentation of the outermost points as boundary recovery/optimiza
tion, as shown in Fig. 3. Therefore, in this review, we keep this termi
nology in use. This term is also used to distinguish from contour 
extraction in the field of object detection. 

After defining the key terms used in boundary recovery of semantic 
segmentation, it is then important to ask why the results of semantic 
segmentation need to be subject to boundary optimization. Semantic 
segmentation is not an isolated field, but rather a natural step in the 

progression from coarse to fine inference. The origin could be located at 
classification, which consists of predicting an input, i.e., predicting the 
object that appears in an image. Localization is the next step toward fine- 
grained inference, providing not only the classes but also additional 
information regarding the spatial location of those classes. Considering 
this, it is obvious that semantic segmentation is the natural step to 
achieve fine-grained inference (Garcia-Garcia et al., 2018). However, 
DCNNs have two properties that are positively detrimental to the 
inference, one is the spatial invariance and the other is the smoothing 
property of pooling layers. Spatial information refers to the information 
having location-based relations with other information. Spatial invari
ance implies insensitivity to the position of, for example, objects in an 
image. In the deeper layer of DCNNs, convolutional operations change 
the representation of the object, so that it is no longer the original. At the 
last layer, the features extracted by the CNN have no information about 
their position on the original image. We even lose the information on the 
pixel size of original objects because of the pooling layers. If we want to 
get a result of the same size, up-sampling has to be adopted. Up- 
sampling uses the semantic information of one key pixel to represent 
the semantic annotation of several pixels surrounding the key one, and 
the results obtained in this way are inevitably mislabeled, especially for 
pixels located at the boundaries, which appear jagged. This is the so- 
called smoothing effect. The goal of semantic segmentation is twofold: 
classification and precise localization. It is not just classification, nor is it 
purely a smoothing effect. Therefore, precise boundary recovery of se
mantic segmentation is the key challenge for improving the accuracy of 
semantic segmentation, and it is one of the fundamental problems of 
semantic segmentation based on DCNNs. 

For providing a more intuitive view of the effect of precision 

Fig. 2. Coarse score maps of an aeroplane from DCNN before CRF (Chen et al., 2015).  

Fig. 3. Boundary optimization and partially enlarged details based on super
pixels (Zhao et al., 2018). 

Fig. 4. Visualization results of precise boundary recovery on VOC 2021 val set 
(Chen et al., 2015). For each row, we show the input image, the preliminary 
segmentation result, and the result after the boundary recovery based on fully 
connected CRF. 
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boundary recovery, we show the superpixel-based and CRF-based cases 
in Figs. 3 and 4, respectively. 

3. Precise boundary recovery for semantic segmentation 

As illustrated in Fig. 2, DCNN can reliably predict the presence and 
rough position of objects in an image but are less well suited for pin
pointing their exact boundaries of semantic segmentation (Chen et al., 
2015). There is a natural trade-off between classification accuracy and 
localization accuracy with convolutional networks: Deeper models with 
multiple max-pooling layers have been proven successful in classifica
tion tasks, however, their increased invariance and large receptive fields 
make the problem of inferring position from the scores at their top 
output levels more challenging. 

Based on the algorithm theories and model structures, we classify 
deep learning-based precise boundary recovery methods of semantic 
segmentation into four categories. In this section, we will provide a 
comprehensive review of all four of them at greater length. 

3.1. Multi-scale prediction 

Multi-scale prediction refers to models in which multiple layers at 
different scales are concatenated together to improve the boundary 
localization accuracy of semantic segmentation. For example, FCN, 
proposed by Long et al. (2015), is a representative multi-scale network, 
which defined a skip structure that combined coarse, deep layer infor
mation with fine, shallow layer information. The skip structure lets the 
model make more local predictions from shallow layers since their 
receptive fields are smaller and see fewer pixels. In contemporary works, 
aiming for precise localization, Hariharan et al. (2015) used hyper
columns as pixel descriptors to capture fine details of the segmentation, 
which also maintains the high resolution of the lower layers and up- 
samples the higher layers. DeepLab-V1 (Chen et al., 2015) also 
explored this multi-scale prediction method, denoted as DeepLab-MSc 
(Chen et al., 2015), through which the performance on PASCAL VOC 
2012 val set was improved from 59.8% to 61.3% mean Intersection- 
over-Union (mIoU). However, it is not as good as DeepLab-MSc-CRF, 
DeepLab-CRF-LargeFOV and DeepLab-MSc-CRF-LargeFOV (Chen et al., 
2015), which adopted post-processing CRFs. 

Through the above description, we can see that the multi-scale fea
tures can also refine the object boundaries of semantic segmentation. 
However, the boundary location effect of these methods is only better 
than the traditional machine learning methods or the plain neural 
network models with non-multiscale prediction. Subsequent studies 
usually combine these multi-scale prediction models with superpixels, 
CRFs, or other boundary refining techniques. 

3.2. Superpixel representation 

A superpixel can be defined as a group of pixels that share common 
properties, such as location, color, texture and pixel intensity. Super
pixel techniques are widely used for image segmentation due to the 
following characters: First, superpixels carry more information than 
pixels. Second, superpixels have a perceptual meaning since pixels 
belonging to a given superpixel share similar visual properties. Third, 
their ability to adhere to image boundaries. Based on these characters, 
superpixel representation is applied to optimize the coarse segmentation 
boundaries extracted by convolutional neural networks. 

Mostajabi et al. (2015) proposed a zoom-out architecture, which 
utilized simple linear iterative clustering (SLIC) to generate superpixel- 
level region information, and feature representations were extracted 
from a sequence of these regions around the superpixels. Then, all the 
features were combined and fed to a feedforward multilayer network. 
Although this method is simple, zoom-out lacks the structured nature of 
the segmentation task. And it is not as effective as CRFs. 

Zhao et al. (2018) proposed to optimize the boundaries of semantic 

segmentation based on superpixels and CRFs. Superpixels were also 
generated by SLIC. Different from zoom-out method, Zhao et al. (2018) 
firstly employed the fully convolutional network (FCN) to extract the 
pixel-level semantic features. After that, the pixel-level information and 
superpixels were fused to get the boundary-optimized semantic seg
mentation. Finally, CRF was adopted to get accurate boundaries. To 
facilitate the comparison and analysis in a later stage, we name it “FCN- 
superpixel-CRF” in this paper. Besides, we name the combination of 
FCN-8s with superpixels and CRFs as FCN-superpixel and FCN-CRF, 
respectively. To evaluate the efficiency of the utility of superpixels 
and CRFs, Zhao et al. (2018) compared the FCN-superpixel-CRF with the 
plain FCN-8s model, FCN-superpixel and FCN-CRF, respectively, as 
shown in Table 1. From the experimental results, we can find that the 
result of FCN-superpixel is 3.7% better than that of the plain FCN-8s on 
the PASCAL VOC 2012 val dataset. The result with FCN-CRF is 3.6% 
better than that of FCN-superpixel. And the performance based on 
superpixels and CRF is further improved by 5% than that of the FCN- 
CRF, which outperforms the first two boundary recovery techniques 
by a significant margin. The same trend is seen on Cityscapes. From the 
description, the combination of superpixels and CRF can achieve the 
more accurate segmentation result. However, the number of superpixels 
is set artificially based on prior knowledge, from which the optimal 
parameter is determined. 

From those, we can conclude that the methods based on superpixels 
have achieved more accurate results comparing with neural network 
alone. But the number of superpixels is related to the resolution of im
ages. Therefore, this method is not suitable for multi-scale datasets, and 
parameters affect the accuracy of boundary recovery. 

3.3. Conditional random fields 

CRFs are the most widely used methods for improving the boundary 
localization accuracy of semantic segmentation, and CRFs can use the 
incredible power of CNNs to fine-tune all model features. Additionally, 
CNNs can more easily capture global properties, such as object shape 
and contextual information (Kirillov et al., 2015). Therefore, CRFs and 
CNNs can complement each other’s strengths. The combination mode 
between CRFs and deep convolutional neural networks (DCNNs) can be 
divided into two subclasses. In one subclass, CRFs are employed as a 
separate post-processing step disconnected from DCNN training, while 
in the other, CRFs are formulated as a Recurrent Neural Network (RNN), 
and thus can be embedded as layers in an existing neural network. 

The main advantages of CRFs over other graphical models (such as 
Markov Random Fields and stochastic grammars) are their conditional 
nature and their ability to avoid problems of label bias (Lafferty et al., 
2001). Consequently, a variety of methods that combine the strengths of 
CRFs with CNNs to realize accurate localization have been proposed. 
This section provides comprehensive reviews of the two categories of 
CRFs (post-processing CRFs and embedded CRFs), and each category is 
further divided into two subcategories from the perspective of data 
types: 2D images and 3D point clouds. 

3.3.1. Post-processing CRFs 
Post-processing CRFs used for Image Semantic Segmentation. Chen 

et al. (2015) proposed DeepLab-V1, which integrated with fully con
nected CRFs (FC-CRFs) to improve its localization ability. DeepLab-V1 is 
a novel direction based on coupling the recognition capacity of DCNNs 

Table 1 
The mIoU scores of the comparative experiments (Zhao et al., 2018).  

Datasets Plain FCN- 
8s 

FCN- 
Superpixels 

FCN- 
CRF 

FCN-superpixel- 
CRF 

PASCAL VOC 
2012 

62.2 65.9 69.5 74.5 

Cityscapes 56.1 58.9 61.3 65.4  
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and the fine-grained localization accuracy of FC-CRFs, also known as 
dense CRFs. Papandreou et al. (2015) developed an alternative method, 
Expectation-Maximization (EM), for model training under weakly su
pervised and semi-supervised settings, which decoupled the DCNN and 
dense CRF training stages and learned the CRF parameters by cross- 
validation to maximize IoU segmentation accuracy. Although the neu
ral network structures are different, the two models adopted the same 
fully connected CRF module in the post-processing stage. 

Different from CRFs, GMF-CRF (Vemulapalli et al., 2016) utilized a 
Gaussian CRF model for the task of semantic segmentation by the 
combination of the Gaussian Mean Field (GMF) and DCNNs. GMF-CRF 
has the desired property that each of its layers produces an output 
that is closer to the maximum a posteriori solution of the Gaussian CRF 
compared to its input. The “patch-patch” model (Lin et al., 2016; Lin 
et al., 2017) employed the dense CRF as a post-processing method to 
sharpen the object boundary for generating the final high-resolution 
prediction. Patch-patch performed approximate training to avoid the 
repeated inference at every stochastic gradient descent iteration by 
using piecewise training of CRFs. Unlike other post-processing CRFs, 
patch-patch learned CNN-based pairwise potential functions for 
modeling semantic relations between patches. However, the size of the 
range box was set artificially when constructing the CRF graph, and 
there was no explicit explanation in the paper as to why it was set to such 
a size. 

DeepLab-V2 (Chen et al., 2017) continuously adopted FC-CRFs and 
achieved remarkable success in addressing the localization challenge 
and producing accurate semantic segmentation results. Subsequent re
searchers pursued efforts in this direction. For example, Wang et al. 
(2019a) employed the FC-CRF to realize the boundary optimization of 
buildings and roads on remote sensing images. Zhao et al. (2020) pro
posed a land cover classification algorithm of polarimetric synthetic 
aperture radar (SAR) with improved FCN and CRF, where the FC-CRF 
was used to transfer full image information over global rough classifi
cation for fine classification. All these methods employed the FC-CRF as 
a separate post-processing step disconnected from the DCNN training, 
where DCNNs first extracted features from input data and then used the 
outputs as the unary potentials into the fully connected CRF. However, 
the CRF model considered for precise localization here is a loopy graph, 
for which the inference is generally computationally expensive due to 
hundreds of thousands of stochastic gradient descent (SGD) iterations 
required for training CNNs (Lin et al., 2016). 

To further compare and discuss the detailed performance of the 
above image segmentation models on PASCAL VOC 2012, Table 2 
summarizes them based on the following three parameters: GPU type, 
CRF style, datasets used for evaluation, and performance (mIoU) of 
before/after CRF. Quantitatively, we can see that DeepLab series 
localize segment boundaries at a level of accuracy which is beyond 
previous methods. For DeepLab-V1 (Chen et al., 2015), the mIoU value 
after CRF is improved to 68.7% from 64.21%, which increases about 

4.5% on PASCAL VOC 2012 val set, while the value is improved to 
71.6% with augmented trainval set. The performance of DeepLab-V2 
(Chen et al., 2017) is increased by 1.34% after CRF. The difference be
tween DeepLab-V1 and DeepLab-V2 is the backbone network, which 
changes from VGG-16 to ResNet-101. 

Post-processing CRFs used for point cloud Semantic Segmentation. 
Point cloud semantic segmentation allows finding accurate object 
boundaries along with their labels in 3D space, which is useful for fine- 
grained tasks such as object manipulation and detailed scene modeling 
(Tchapmi et al., 2017). The post-processing CRFs in image boundary 
recovery of semantic segmentation are gradually extended to 3D point 
cloud for scene understanding, due to their remarkable success in 2D 
images. However, the image boundary recovery approaches only 
consider regular 2D pixel-level data, while 3D point clouds have 
completely different properties: higher-dimensional, irregular, disor
dered, unstructured, large-scale and noisy. This means that the precise 
boundary recovery methods of 2D images cannot be transferred to 3D 
point clouds directly. 

Originally, the combination of CRFs and 3D point clouds is primarily 
used for the extraction of a single object, rather than the study of 
boundary optimization in the post-processing inference. 3D CNNs used 
to process raw point clouds did not appear until 2017, when Qi et al. 
(2017) designed a novel type of neural network, PointNet, which is a 
pioneering deep learning framework that can directly consume raw 
point clouds. From then on, researchers have been beginning to try to 
combine CRFs with CNNs for boundary refinement for 3D point clouds, 
and this technique has stepped into a high-speed development stage. 

For example, MS-PCNN (Ma et al., 2019) provided an end-to-end 
feature extraction framework for 3D point cloud segmentation by 
using dynamic point-wise convolutional operations in multiple scales, 
then CRF algorithm was developed for improving segmentation 
boundary accuracy. For CRF inference, it adopted the implementation of 
(Chen et al., 2017) to 3D point clouds. Li et al. (2020) employed a CNNs- 
based semantic segmentation method to develop semantic maps of the 
real-time road scenes by integrating LiDAR and camera information, and 
then utilized a higher-order 3D CRF model to optimize the semantic 
map, denoted as Road-CRF. The 3D CRF model defined different smooth 
terms and added higher-order terms. This method ensures the real-time 
and accurate requirements, but application scenarios are limited to 
simpler scenes such as urban roads, and more complex terrain needs to 
be further considered. 

The performance of the methods mentioned above was evaluated 
with various benchmark datasets, summarized in Table 3. We can see 
that the styles of CRFs are 3D CRFs, but, none of them is able to consider 
fine details and long-range contextual information simultaneously. 

From the above description, we can see that post-processing CRFs 
have been a de facto standard in precise boundary recovery for semantic 
segmentation for a long time (Wang et al., 2019b). However, since CRFs 
are applied as a separate part following CNNs, the parameters of CRFs 
and DNNs cannot be optimized simultaneously, resulting in the 
strengths of both not being exploited. Meanwhile, the above methods 
concentrate on piecewise training or maximum likelihood learning of 
restricted model families, such as Gaussian CRFs. For these reasons, 

Table 2 
Performance of image semantic segmentation models combined with post- 
processing CRFs on PASCAL VOC 2012. “–” means void, mIoU: mIoU of 
before/after CRF.  

Model GPU CRF mIoU 

DeepLab-V1 (Chen et al., 
2015) 

Titan X Dense CRF 64.21/68.7 (on val set)    

70.3/71.6 (on val set, with 
augmented trainval set) 

EM (Papandreou et al., 
2015) 

Tesla 
k40 

Dense CRF –/71.7 (on val set) 

GMF-CRF (Vemulapalli 
et al., 2016) 

– Gaussian 
CRF 

–/73.2 (on test set) 

patch-patch (Lin et al., 
2016; Lin et al., 2017) 

– Dense CRF –/78.0(on test set) 

DeepLab-V2 (Chen et al., 
2017) 

Titan X Dense CRF 76.35/77.69 (on val set)  

Table 3 
Performance of point cloud segmentation models combined with post- 
processing CRFs. OA: Overall Accuracy of before/after CRF, mIoU: mIoU of 
before/after CRF.  

Model GPU CRF Datasets OA mIoU 

MS-PCNN (Ma 
et al., 2019) 

GTX 
1080 Ti 

3D dense 
CRF 

Paris-Lille- 
3D 

– –/70.5    

ScanNet –/87.6 –/56.8    
S3DIS –/87.3 –/67.8 

Road-CRF (Li 
et al., 2020) 

GTX 
1070Ti 

Higer-order 
3D CRF 

KITTI – –/85.34    

Cityscapes – –/73.04  

R. Zhang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 102 (2021) 102411

6

another trend is to explore the combination of the two modeling para
digms, CNNs and CRFs. 

3.3.2. Embedded CRFs 
In contrast to approaches presented in Section 3.3.1, this section 

reviews end-to-end frameworks that jointly learn the parameters of 
CNNs and CRFs. 

Transferring CRF as Embedded Layers of CNNs for 2D Images. The 
idea of formulating the CRF algorithm to a Recurrent Neural Network 
(RNN) originated from CRF-RNN (Zheng et al., 2015), which was 
embedded as a part of the CNN to obtain a deep network. The mean-field 
algorithm it adopted could be traced back to Krahenbuhl and Koltun 
(2011), depending on which CRF-RNN described it as CNN layers. CRF- 
RNN used the FCN-8s as its fundamental architecture, which provided 
unary potentials for the CRF module. The performance was improved by 
3.4% mIoU comparing with post-processed CRF on PASCAL VOC 2012 
val set. From then on, this strategy began to be widely implemented by 
academia and industry. For example, Motivated by Jancsary et al. 
(2012) and Tappen et al. (2007),Chandra and Kokkinos (2016) proposed 
a structured prediction technique that combined the virtues of Gaussian 
Conditional Random Fields (GCRF) with Deep Learning, which learned 
features and model parameters simultaneously in an end-to-end FCN 
training. 

Besides, CRF-Grad (Larsson et al., 2017) integrated CNNs with the 
gradient descent CRF, which was also formulated as RNN layers for 
scene segmentation. Liu et al. (2019) proposed a network that combined 
the recognition ability of DCNNs with the fine-grained localization 
ability of FC-CRFs. We refer to this network as RS-CRF. Here, the coarse 
segmentation results of the output layer of neural networks were used as 
input into CRFs to improve the segmentation accuracy of object 
boundary details in remote sensing images. 

The comparison of those methods using CRFs as embedded layers of 
DCNNs is listed in Table 4 according to three indicators: type of CRF, 
datasets on which they were assessed, and the performance of these 
models on evaluated datasets. As we can see, for the type of CRF, in 
addition to the dense CRF, others adopted the variations of FC-CRFs, 
such as gaussian CRF and gradient descent CRF. CRF-RNN and GCRF 
provided both performances of “before-CRF” and “after-CRF”. Through 
the mIoU values and visualization presented in corresponding papers, 
we can conclude that this end-to-end fashion produces sharp boundaries 
and dense segmentation. Unfortunately, however, the drawbacks of 
embedded CRFs need further investigation, such as the multi-scale 
problem. Although embedded CRFs can integrate contextual informa
tion, they do not take into account the size of the objects. 

Transferring CRF as Embedded Layers of CNNs for 3D Point 
Clouds. To extend the strengths of the combination of CNNs and CRFs to 
the 3D space, many studies have attempted to extend 2D CRF-RNN 
(Zheng et al., 2015) to higher-order 3D CRFs applicable for point clouds. 

For instance, SEGCloud (Tchapmi et al., 2017) combined the ad
vantages of NNs, trilinear interpolation (TI) and the FC-CRF to obtain 3D 
point-level segmentation based on voxel predictions. Firstly, 3D point 
clouds were voxelized, and coarse voxel predictions from a 3D NN were 
transferred back to the raw 3D points via TI, then 3D FC-CRF was used to 

provide fine-grained labels for 3D points. The purpose of voxelization is 
to reduce memory consumption and simplify the semantic labeling 
process because all 3D points within a voxel are assigned the same se
mantic label. However, voxelization limits the resolution of semantic 
labels at the CRF stage, and thus the low resolution leads to information 
loss. It is difficult to keep a balance between memory requirements and 
an adequate representation of the 3D space without information loss. 

Wu et al. (2018) proposed a CNN-based end-to-end pipeline, 
SqueezeSeg, to address the semantic segmentation of road objects in 3D 
LiDAR point clouds, including only car, pedestrian and cyclist. The output 
of the CNN, a point-wise label map, was then refined by a CRF imple
mented as a recurrent layer. After CRF, the overall segmentation accu
racy on the KITTI dataset was improved, with the segmentation 
performance (IoU) of the car category increasing from 60.9% to 64.6%. 
However, the accuracy of the other two categories, pedestrian and cyclist, 
decreased instead. In 2019, the second version, SqueezeSegV2 (Wu 
et al., 2019), was proposed. It focused on the improvement of network 
structure, while the CRF layer was removed. Later, Milioto et al. (2019) 
validated the overall performance of SqueezeSeg and SqueezeSegV2 on 
the KITTI test set, shown in Table 5. The segmentation performance of 
SqueezeSeg is 29.5% before CRF and 30.8% mIoU after CRF respec
tively, which are marginally different, and the performance of Squee
zeSegV2 has no improvement after CRF. This indicates that not all 
models will improve their performance after embedded CRFs. Besides, 
TGNet (Li et al., 2020) proposed a graph convolution architecture to 
learn expressive and compositional local geometric features from point 
clouds, which also integrated CRF-RNN (Zheng et al., 2015) for joint 
training and inference, and achieved 57.8% and 68.17% mIoU on S3DIS 
and Paris-Lille-3D datasets, respectively. Regrettably, the results before 
CRF are not provided. 

From these descriptions, we can conclude that although integrating 
CRFs into the original architecture achieves better results in most cases, 
it is not a substantial improvement. Moreover, embedding CRFs in CNNs 
is a difficult task because of the additional parameters and high 
computational complexity required during training. 

3.4. Alternatives 

With the development of deep neural network architectures, the 
performance of boundary recovery using postprocessing CRFs and CRF- 
RNN has been surpassed by some CNNs-based alternatives. For example, 
Landrieu and Simonovsky (2018) proposed a structure called SuperPoint 
Graph (SPG) to organize 3D point clouds, which could offer a compact 

Table 4 
Performance of image semantic segmentation models integrated with embedded 
CRFs on PASCAL VOC 2012. mIoU: mIoU of before/after CRF.  

Model CRF mIoU 

CRF-RNN (Zheng et al., 2015) Dense Gaussian 
CRF 

768.3/72.9(on val set) 

Generic CNN-CRF (Kirillov et al., 
2015) 

Generic CRF –/89.01(average 
accuracy) 

GCRF (Chandra and Kokkinos, 
2016) 

Gaussian CRF 73.86/75.46(on val set) 

RS-CRF (Liu et al., 2019) Dense CRF 68.68/-(on val set)   
–/77.2(on test set)  

Table 5 
Performance of point cloud segmentation models integrated with embedded 
CRFs.OA: Overall Accuracy of before/after CRF, mIoU: mIoU of before/after 
CRF.  

Model GPU CRF Datasets OA mIoU 

SEGCloud ( 
Tchapmi 
et al., 2017) 

– 3D FC- 
CRF 

S3DIS – 47.46/ 
48.92 (6- 
fold cross- 
validation)    

KITTI – 35.65/ 
36.78    

Semantic3D – 58.2/61.3 
SqueezeSeg ( 

Wu et al., 
2018) 

TITAN 
X 

Recurrent 
CRF 

KITTI – 9.5/30.8 ( 
Milioto 
et al., 
2019) 

SqueezeSegV2 
(Wu et al., 
2019) 

TITAN 
X 

Recurrent 
CRF 

KITTI – 39.7/39.6 ( 
Milioto 
et al., 
2019) 

TGNet (Li 
et al., 2020) 

GTX 
1080Ti 

Recurrent 
CRF 

S3DIS –/88.5 –/57.8    

Paris-Lille- 
3D 

–/96.97 –/68.17  
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but still rich representation of contextual relationships between object 
parts. The results of SPG were then used as the input of the graph con
volutional network to extract point cloud features, which achieved 
62.1% and 70.8% mIoU on the S3DIS dataset and Semantic3D dataset 
respectively. SPG described that graph convolution had a similar func
tion with deep learning formulation of CRFs and quantitative experi
ments and the comparison with CRFs certified this point. Wang et al. 
(2019b) proposed a graph attention convolution network (GACNet), 
which shared the same characteristics as CRF by combining the spatial 
and feature constraints for attentional weights generation. GACNet is 
equivalent to unfolding the recurrent network of CRF into each layer of 
the network and also can map the input signals into a hidden feature 
space for further feature extraction. Experiments verified that GACNet 
had the same effectiveness as CRF-RNN, but did not show the 
outstanding advantages. RangeNet++ (Milioto et al., 2019) replaced the 
CRF with a GPU-based k-Nearest-Neighbor (kNN) search acting directly 
on the full, unordered point cloud, which enabled the retrieval of labels 
for all points in the cloud, and achieved accurate boundary recovery and 
fast semantic segmentation simultaneously. However, this applies to the 
cases when the samples are evenly distributed. When the samples are 
unbalanced, the prediction accuracy for rare categories would be low 
and the retrieval speed would also be very slow. 

4. Discussion 

4.1. Evaluation of methods 

4.1.1. Benchmark datasets and statistical analysis 
The availability of public datasets has furthered research on exact 

boundary recovery for semantic segmentation. For any deep learning- 
based models and applications, the degree of success is undoubtedly 
validated by the quality of the datasets used for training. The efficiencies 
of exact boundary recovery techniques are only comparable and 
convincing when the models are evaluated with the same benchmarks. 
For this reason, several datasets assessed using the method presented in 
Section 3 will be described in further detail. 

Representative 2D image benchmark datasets used to evaluate 
boundary recovery techniques are presented in Table 6. The purpose of 
this statistical analysis is to provide readers with a deeper understanding 
of the data architecture and to facilitate the selection of benchmarks for 
future studies. 

In particular, we summarize the point cloud representation, which is 
one of the core techniques for deep learning-based 3D scene under
standing, as shown in Table 7. We find that different datasets adopt 

different representations, which severely limits their generalization and 
popularity. If there was a unified standard to represent point cloud 
features, this would certainly facilitate the rapid development of more 
advanced technologies based on deep learning and further applications 
in the industry. 

Datasets are acquired from various scenarios, with different sizes, 
scales and categories. So, the selection of the right datasets to evaluate 
and improve our models is crucial. The performance of deep learning 
models greatly relies on the datasets. Usually, the choice of a dataset is 
determined by its acquisition environment and application fields. If a 
model gains superior performance on one dataset, it does not mean that 
it can achieve the same results on other datasets, because the datasets 
have different characteristics even if they are labeled as the same class. 
Therefore, we design a novel approach to evaluate the semantic seg
mentation models of Section 3 and to compare and analyze the datasets 
presented in Table 6. 

We design histograms, line charts and scatter charts to compare and 
analyze the six public 2D image datasets listed in Table 6, excluding the 
KITTI. Firstly, the total number of categories and the total number of 
instances on the train and val set of the six datasets are counted. Then we 
program to calculate the number of categories per image, the number of 
instances per image, and the correspondence between the number of 
categories and the number of instances. On this basis, we plot all the 
statistics, for example, the number of categories per image for six 
datasets is shown in Fig. 5, while the numbers of images in each of these 
three datasets for each category are shown in Fig. 6. Our statistic data, 
statistic codes, diagram codes and all other graphs are publicly available 
on our project page: https://github.com/zhangrui0828/2D-categoriy- 
instance-statistics. 

Fig. 5 visually illustrates the distribution of categories per image and 
the distinction among them, with the mean values in parentheses. Based 
on Fig. 5, we can find that the number of categories in each image on 
Cityscapes ranges from 4 to 23, and the number of categories in each 
image on PASCAL-Context ranges from 1 to 24, which means both have 
a higher complexity than the other four datasets. In contrast to City
scapes and PASCAL-Context, the maximum number of categories per 
image on PASCAL VOC 2012 and PASCAL-Part is 6, while only one 
image contains the maximum category of 18 on the MS COCO dataset, 
although it has 80 different categories in total. 

Next, taking PASCAL VOC 2012 and PASCAL-Context as examples, 
we further analyze the datasets based on the statistical results. Table 8 
presents the experimental results (mIoU) of DeepLab-V2 and CRF-RNN 
with PASCAL VOC 2012 val set and PASCAL-Context dataset. We can 
see that the semantic segmentation results with PASCAL VOC 2012 are 
much higher than those with PASCAL-Context, which reflects the in
fluence of the number of categories on semantic segmentation results. 
More categories mean more complex scenes, and the overall accuracy of 
semantic segmentation will be lower. For specific segmentation accu
racy of each category, the PASCAL VOC 2012 test set is taken as an 
example, as shown in Table 9. Using only the VOC training set, the 
overall IoU of both DeepLab-V1 and CRF-RNN is above 70%, but the IoU 
in the category of chair is very low, only about 30%. This means that 
some models, while achieving significant overall performance, still 
perform poorly in some categories. However, from Fig. 6 we find that the 
number of images that include the chair category is higher than most. 

Fig. 6 illustrates the number of images per category in MS COCO, 
PASCAL-Part and PASCAL VOC 2012. Fig. 6 shows that MS COCO has 
the most categories of all three datasets and each category appears in 
much more images. Taking the person category as an example, there are 
66,808 images in MS COCO, while PASCAL VOC 2012 and PASCAL-Part 
contain 4,087 and 3,589 images, respectively. 

4.1.2. Comparison and analysis of 2D CNN models 
The recent state-of-the-art approaches of precise boundary recovery 

for 2D image semantic segmentation were reviewed in Section 3. Here, 
we further analyze the efficiency and applicability of these approaches. 

Table 6 
2D image semantic segmentation datasets. Classes: semantic classes. Scenes: 
data acquisition scenes. Resolution: image resolution. Numbers: number of im
ages annotated. For 5,000(20,000), 5,000 is the number of fine labels, and 
20,000 is the number of coarse labels.  

Dataset Classes Scenes Resolution Numbers 

SIFT-flow (Liu et al., 
2009) 

33 Outdoor 256*256 2,688 

PASCAL VOC 2012 ( 
Everingham et al., 
2015) 

20 Indoor/ 
Outdoor 

375*500, 
500*375 

11,530 

KITTI (Geiger et al., 
2013) 

– Outdoor 1392*512 – 

PASCAL-Context ( 
Mottaghi et al., 
2014) 

459 
(59) 

Indoor/ 
Outdoor 

Multi-scale 10,103 

PASCAL-Part (Chen 
et al., 2014) 

14 Indoor/ 
Outdoor/ 
body part 

Multi-scale 10,103 

MS COCO (Lin et al., 
2014) 

80 Indoor/ 
Outdoor 

640*512 >200,000 

Cityscapes (Cordts 
et al., 2016) 

30 Outdoor 2048*1024 5,000 
(20,000)  
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Table 10 details the performance descriptions of the methods pre
sented in Section 3, which are tested on PASCAL VOC 2012, PASCAL- 
Context, PASCAL-Part, Cityscapes and SIFT-flow. We can see that all 
the models are evaluated with PASCAL VOC 2012, except for CRF-Grad 
(Larsson et al., 2017). The last two columns of Table 10 show the per
formance of these approaches on PASCAL VOC 2012, val set and test set 
respectively. Values in parentheses present the results which do not use 
MS COCO data for training. Notably, DeepLab-V2 (Chen et al., 2017), 
which adopted post-processing CRF to refine boundary segmentation, 
showed superior performance to other models on PASCAL VOC 2012 val 
set. This framework was evaluated with four distinguishable datasets, 

including data from indoor datasets, outdoor datasets and a body part 
dataset. 

4.1.3. Comparison and analysis of 3D CNN models 
The research on point cloud semantic segmentation based on deep 

neural networks is still ongoing. New ideas and approaches on the topic 
of 3D deep learning-based frameworks are being increasingly investi
gated. Current achievements have led to the improvement of the accu
racy of 3D point cloud semantic segmentation (Xie et al., 2020). 

As described in Section 3, the use of 3D CNNs to directly process raw 
point clouds began in 2017. Therefore, the approaches that we have 
reviewed are all relatively up-to-date, originating from 2017 to 2020. 
And several of them were just published this year. In this section, we 
further compare and analyze the performance with alternatives. 

Table 11 illustrates the performance evaluation of the methods 
adopting CRFs or alternatives. As can be seen, although adopting the 
same CRF style (such as embedded CRFs) and evaluating using the same 
dataset (such as S3DIS), SEGCloud and TGNet achieved different effi
ciencies of boundary recovery after CRF. This is not because of CRF, but 

Table 7 
3D point cloud semantic segmentation datasets. Points: number of points annotated in millions. MLS: Mobile Laser Scanning, TLS: Terrestrial Laser Scanning. Classes: 
number of labeling. Feature representation: a vector by which each point is represented.  

Dataset Sensors Ranges Points Classes Scenes Feature representation 

KITTI (Geiger et al., 2013) MLS 39.2 km 1,799 – Outdoor [XYZ, reflectance, label, class] 
S3DIS (Armeni et al., 2016) Structured-light 6,000m2  215 13 Indoor [XYZ, RGB, Normalized coordinates] 

Semantic3D.net TLS – 4,009 8 Outdoor [XYZ, intensity, RGB] 
(Hackel et al., 2017) 
ScanNet (Dai et al., 2017) RGB-D 34,453 m2  242 21 Indoor [XYZ, RGB, label] 

Paris-Lille-3D MLS 2 km 143 50 Outdoor [XYZ, xyz_origin, GPS_time, reflectance, label, class] 
(Roynard et al., 2018)  

Fig. 5. Categories per image.  

Fig. 6. Number of images per category in MS COCO, PASCAL-Part and PASCAL VOC 2012. The bars are overlaid on the same categories.  

Table 8 
Semantic segmentation results on PASCAL VOC 2012 val set and PASCAL- 
Context.  

Model PASCAL VOC 2012 val set PASCAL-Context 

DeepLab-V2 77.69 45.7 
(Chen et al., 2017) 
CRF-RNN 72.9 39.28 
(Zheng et al., 2015)  
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the neural network structures themselves are different, resulting in 
different semantic segmentation results, i.e., the input to the unitary 
potential energy of CRF is already different. Taking the subsampling 
techniques used in the network architecture as an example, SEGCloud 
used a random subsampling of points in highly dense datasets, while 
TGNet conducted the farthest point sampling (FPS) algorithm to sub
sample the point set with a family of ratios. The last three lines illustrate 
that three alternative methods, including graph convolution, graph 
attention convolution and kNN approach, also achieve good boundary 
recovery efficiencies. 

Among all the approaches listed in Table 11, five of them had been 
evaluated with the S3DIS. For fully comparing their performance, the 
percentage points of mIoU on S3DIS are summarized in the penultimate 
column. From 2017 till now, significant improvements have been ach
ieved in semantic segmentation based on 3D point clouds, improving 
from 48.92% to 62.85. However, most of them are still lacking higher 
representativeness and remarkable robustness. Although CNNs have 
become the de facto standard for semantic segmentation, they have not 
yet brought a true breakthrough for 3D point clouds. The related re
searches are still very limited and in the infant stage compared to 2D 
semantic image segmentation. The main challenge is the thorough and 
efficient extraction of high-level 3D point cloud features, specifically in 
large-scale and complex outdoor environments. 

4.2. Challenges 

Through the above discussion, we find that the following issues need 
to be further investigated for boundary recovery of semantic 
segmentation. 

1. Hybrid framework. For precise boundary recovery of semantic seg
mentation, hybrid strategies are efficient solutions. One key problem 
is which modules to choose and how to integrate them. A hybrid 
framework usually includes at least two parts, one is used to segment 
coarsely and the other to recover accurate boundaries. A good 
example of this is the fusion of CNNs and RNNs. For instance, ReSeg 
(Visin et al., 2016) fed the input image to a VGG-like CNN encoder 
and then processed afterward by recurrent layers (namely the ReNet 
architecture) to better localize the pixel labels. Another example is 
the hybrid dilated convolution (HDC) framework (Wang et al., 
2018), which enlarged the receptive fields of the network to aggre
gate global information in the encoding phase. 

2. Raw point cloud-based boundary recovery. Boundary recovery tech
niques originate from 2D image processing and then are transformed 
and applied to 3D point clouds through Transfer Learning. One of the 
popular solutions is dimensionality reduction. To be more specific, 
3D point clouds are projected into 2D images from multiple per
spectives. Then 2D CNNs are adopted to extract features from each 
view. Finally, 2D semantic segmentation results are projected back to 
3D point clouds. Thereby, 3D semantics can be acquired. However, 
this method would cause numerous limitations and lead to the loss of 
a large number of important geometric spatial information, which 
finally affects the accuracy of point cloud segmentation, and it is also 
seriously influenced by the angle of projection (Zhang et al., 2019). 
Moreover, in some cases, the algorithms suitable for 2D images 
cannot be applied to 3D point clouds directly. Consequently, the 
research directly based on raw point clouds is still in its infancy and 
has significant potential for development, especially for large-scale, 
sparse, or unbalanced point clouds.  

3. Criterion for annotating datasets. There are mainly three methods for 
the annotation of 2D images and 3D point clouds: (1) manual la
beling (Hackel et al., 2017; Roynard et al., 2018), (2) Combining 
models with human assistance, and (3) crowdsourcing (Dai et al., 
2017). For the second method, a segmentation model is first used to 
obtain the coarse labels, and then the fine labels are obtained with 
manual assistance. However, the criterion for annotating datasets is Ta
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not uniform, resulting in different data representations and file for
mats, which can be time-consuming in the preprocessing stage. As 
shown in Table 7, vectors of different dimensions were used for 
feature representation. It is imperative to develop a unified labeling 
criterion or industry standard. 

4. Tremendous performance gap among different categories. The tremen
dous segmentation performance gap among different categories is 
still a significant challenge. For example, DeepLab-V1 achieved an 
overall IoU of 71.6% on PASCAL VOC 2012 val set, but a very low 
IoU of 30.7% on the class of chair and meanwhile a very high IoU of 
85.1% on the class of bus. This is a huge gap of 54.4%, as shown in 
Table 9. The same is true of the CRF-RNN model. Nevertheless, the 
number of images that include the chair category is much higher than 
most other categories in the PASCAL VOC2012 benchmark. If we 
could improve the performance of the least effective categories, then 
undoubtedly the overall performance will be substantially improved.  

5. Data fusion. The precise boundary recovery methods of 2D images are 
more mature and easier for realization than 3D point clouds, and not 
all current algorithms in computer vision can be used for such remote 
sensing datasets directly. Moreover, the 3D point cloud datasets 
reviewed are usually multi-source and multi-modal data. Data fusion 
has become a mainstream trend in remote sensing. For example, 
Joint 2D-3D-Semantic data provides a variety of modalities including 
2D RGB images, 2.5D depth, 3D point clouds and 3D meshes (Armeni 
et al., 2017). Patra et al. (2018) fused 2D images and 3D depth data 
obtained from SLAM for road segmentation. Our previous work 
(Zhang et al., 2018) fused 2D images and 3D point clouds for se
mantic segmentation of large-scale outdoor scenes.  

6. Interpretability of deep learning. Deep learning has notable advantages 
for large-scale and complex scene semantic segmentation. 

Nevertheless, poor interpretability is its principal shortcoming. 
Recently, how each type of layer (e.g., convolution, activation, 
pooling) works is well known. However, the detailed internal 
decision-making process is not yet completely understood (Xie et al., 
2020). If we could have good interpretability of deep learning and 
fully describe the rationale, we would be able to build the network 
structure according to the requirements, without having to fine-tune 
the hyper-parameters based on prior knowledge blindly. Then, the 
development of deep learning will have a qualitative leap forward, 
including the application in precise boundary recovery of semantic 
segmentation. 

This review focuses on boundary recovery techniques of semantic 
segmentation for natural scene understanding, but of course, some cases 
are not considered. For example, according to Table 7, we can see that 
aerial point clouds and photogrammetric point clouds are not included 
in this review from the sensor perspective. From the perspective of 
application scenarios, only the boundary recovery of natural scene 
segmentation closely related to people’s life is considered, excluding 
special scenarios such as mountains, tunnels, railway tracks, etc. 

5. Conclusion 

Although the current prominence of semantic segmentation is 
dominated by DCNNs, due to the spatial invariance and smoothing 
properties of convolutional operation, DCNNs are inevitably unfavor
able for the precise localization of semantic segmentation. The parts that 
are localized incorrectly are usually the pixels or points located at the 
boundary, so fine-grained boundary recovery becomes a key element 
affecting overall segmentation accuracy. The purpose of this review is to 

Table 10 
Performance comparison of reviewed 2D CNN models with different boundary recovery strategies.  

Boundary recovery 
strategy 

Model PASCAL VOC 
2012 

PASCAL- 
Context 

PASCAL- 
Part 

Cityscapes SIFT- 
flow 

mIoU (with val 
set) 

mIoU (with test 
set) 

multi-scale prediction FCN-8s (Long et al., 2015) • – (62.2) 
Hypercolumns (Hariharan et al., 

2015) 
• – (62.6) 

DeepLab-MSc (Chen et al., 2015) • 61.3 – 
superpixel 

representation 
Zoom-out (Mostajabi et al., 2015) • – 69.6(64.4) 
FCN-superpixel-CRF (Zhao et al., 

2018) 
• • 74.5 – 

Post-processing CRFs DeepLab-V1 (Chen et al., 2015) • 68.7 (71.6) 
EM (Papandreou et al., 2015) • • 71.7 – 

GMF-CRF (Vemulapalli et al., 2016) • – 73.2 
patch-patch (Lin et al., 2016; Lin 

et al., 2017) 
• • • – 78.0(75.3) 

DeepLab-V2 (Chen et al., 2017) • • • • 77.69 – 
Embedded CRFs CRF-RNN (Zheng et al., 2015) • • 72.9(69.6) 74.7(72.0) 

GCRF (Chandra and Kokkinos, 
2016) 

• 75.46 – 

CRF-Grad (Larsson et al., 2017)    • – – 
RS-CRF (Liu et al., 2019) • – 77.2  

Table 11 
Performance evaluation of the reviewed 3D CNN models. The penultimate column shows the percentage points of mIoU on S3DIS.“*” denotes the 6-fold cross vali
dation is used when it is evaluated with S3DIS dataset.  

Boundary recovery strategy Model S3DIS Semantic3D.net Paris-Lille-3D KITTI ScanNet 6-fold cross validation mIoU 

Post-processing CRF MS-PCNN (Ma et al., 2019) • • • 67.8 
Road-CRF (Li et al., 2020)    • – 

Embedded CRFs SEGCloud (Tchapmi et al., 2017) • • • * 48.92 
SqueezeSeg (Wu et al., 2018)    • –  

SqueezeSegV2 (Wu et al., 2019)    • –  
TGNet (Li et al., 2020) • • 57.8 

Alternatives SPG (Landrieu and Simonovsky, 2018) • * 62.1 
GACNet (Wang et al., 2019b) • • 62.85 

RangeNet++ (Milioto et al., 2019)    • –  
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assess contemporary deep learning-based boundary recovery techniques 
for improving the performance of semantic segmentation. 

To the best of our knowledge, this is the first review that focuses 
specifically on deep learning-based precise boundary recovery of se
mantic segmentation for images and point clouds. This paper provides a 
comprehensive survey of existing precise boundary recovery techniques 
of semantic segmentation to stimulate future research. It also includes a 
performance comparison of these techniques, their merits and demerits, 
the benchmark datasets used for evaluating their performance, and 
potential challenges. The techniques are surveyed from two perspec
tives: model structures and data types. 

We firstly divided boundary recovery techniques into four categories 
(multi-scale prediction, superpixel representation, conditional random 
fields and alternatives), and provided an overview of each category 
separately. Regarding the third strategy, we further categorized it into 
two subclasses based on how CRFs were combined with deep network 
structures. 

Furthermore, we described benchmark datasets on which these 
models were evaluated, summarized their characteristics, and compared 
their applications. Moreover, we presented the category and instance 
statistics of image benchmark datasets and designed histograms, line 
charts and scatterplots to visualize and analyze them. We believe this is 
novel in the sense that it provides insight into the advantages and dis
advantages of these datasets and gives suggestions to researchers about 
how to choose them. Regarding the review of 3D point cloud datasets, 
we presented the point cloud representation of each dataset listed in 
Table 7 for researchers to gain a clearer conception of how the points 
were represented. 

In the end, all the methods reviewed were further evaluated based on 
the statistical analyses of the benchmark datasets, and we provided 
useful insight for challenges in this field. The comparison and analysis of 
2D CNNs showed that CRFs are a kind of classical boundary recovery 
method. However, it is difficult to make further significant break
throughs in the theory of the algorithm itself, and hybrid methods are a 
direction to explore. The development of precise boundary recovery 
techniques based on 3D point clouds is even more promising, some of 
the alternative techniques are especially showing signs of prosperity. 
There is an irrefutable need for scientific institutions and industry- 
leading companies alike to pay attention to where the challenges and 
future directions for boundary recovery lie. We also aim at closing the 
gap to help unleash the full potential of deep learning approaches for 3D 
semantic segmentation. 
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