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Abstract

We study a sequence of conditional mean estimators (CMEs) and a method to learn
an observation matrix for compressive sensing purposes. In both cases, we aim to
recover a channel vector from noisy linear observations. The channel is assumed to
be distributed according to an unknown probability density function (PDF) and we
assume we have access to a training data set of channel samples.

First, we approximate the unknown channel PDF by means of a Gaussian mixture
model (GMM). This is motivated by universal approximation properties of GMMs
according to which for any given continuous PDF, there exists a sequence of GMMs
which converges uniformly to it. For each GMM sequence element, a CME for channels
distributed according to the GMM sequence element can be analytically calculated.
Hence, the sequence of GMMs implies a sequence of CMEs. Assuming an invertible
observation matrix, we show the pointwise convergence of the sequence of CMEs to
the optimal CME which corresponds to the unknown channel PDF. However, since
the channel PDF is unknown, this optimal CME cannot be computed, which makes
one of the GMM-based CMEs an attractive approximation thereof. The pointwise
convergence result holds more generally: Whenever a sequence of PDFs converges
uniformly to the channel PDF, the corresponding sequence of CMEs converges
pointwise to the optimal CME. We study the case of noninvertible observation matrices
in numerical experiments and observe a convergent behavior.

Second, the goal is to learn an observation matrix with the restricted isometry
property (RIP). To this end, we interpret a matrix with the RIP as a matrix which maps
vectors of interest from a high-dimensional unit hypersphere to a low-dimensional
unit hypersphere. In addition to this property, we argue that the vectors on the
low-dimensional hypersphere should be uniformly distributed to combat noise. We
formulate the goal to obtain such a matrix as the learning problem of matching the
distribution of the channel in the range space of the matrix to a uniform distribution on
the low-dimensional hypersphere. The distance between the distributions is measured
by means of a maximum mean discrepancy (MMD) metric. Lastly, we observe that the
GMM-based CME can be used in conjunction with the learned observation matrices.
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1.1

Introduction

In this dissertation, we are interested in the equation
y=Ah+n

where A is a matrix and the remaining quantities are vectors. In the studied setting,
the vector y is given and n represents an unknown noise realization. The noise is
modeled by means of a known Gaussian probability density function (PDF). The goal
is to estimate the vector h and we measure the estimation error in terms of the mean
square error (MSE). The vector h is a realization of a random variable with a PDF
fr which is continuous. The PDF f}, is not assumed to be known but we assume a
(training) data set {ht}tT;"l of realizations h; to be given.
In this context, we discuss the following two main topics:

1. We propose an algorithm to estimate h and study its optimality (Chapter 3).

2. We propose an algorithm to obtain a matrix A suitable for the problem of
estimating h (Chapter 4).

Since we work with a given data set, both topics make use of machine learning methods.
The main tools used throughout the dissertation are introduced in Chapter 2. Chapter 5
presents a numerical simulation where the two proposed algorithms are combined.
Lastly, Chapter 6 concludes the dissertation with an outlook.

Asymptotically Optimal Estimation

The first main topic (Chapter 3) is an algorithm to estimate h. We use Gaussian
mixture models (GMMs) to estimate the PDF fj, corresponding to h. Every GMM is a
PDF f(%X) which consists of K € N components. GMM:s are universal approximators
and can therefore approximate any continuous PDF arbitrarily well [1]. More precisely,
in theory, there always exists a sequence (f ))Cf{ozl of GMMs which converges
uniformly to the PDF fj,. In practice, we take this as a motivation to use an expectation-
maximization (EM) algorithm together with the given data set to obtain a K -component
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GMM f(5) that approximates f,. If the approximation is perfect, i.e., if f(5) = f3,
holds, then the conditional mean estimator (CME), which achieves the minimum
MSE, for h can be computed in closed form. If the approximation is not perfect, we
still compute a closed-form estimator based on f(5) and we can observe that this
GMM-based estimator converges to the CME for K’ — oco. We prove this result for the
case where the matrix A is invertible. The noninvertible case is evaluated in numerical
experiments and also shows a convergent behavior.

Learning a Compressive Sensing Matrix

The second main topic (Chapter 4) is an algorithm to design a matrix A for the problem
of estimating h. Here, we are mainly interested in underdetermined systems where
A is a wide matrix that maps from an N-dimensional space to an m-dimensional
space with m < N. Compressive sensing theory studies the problem of estimating
h in this setting when h lies in a suitable form of a low-dimensional subspace. In
particular, compressive sensing theory provides properties which, if a matrix A fulfills
them, guarantee good estimates. One of these properties is the restricted isometry
property (RIP). The RIP comes along with a restricted isometry constant which is a
nonnegative number where a smaller number indicates a better matrix. We interpret a
matrix A with the RIP as a function which maps normalized vectors h/| k|| into a thin
layer around the m-dimensional unit hypersphere. The layer’s thickness determines
the restricted isometry constant so that in the best case, all Ah/||k|| lie exactly on
the m-dimensional unit hypersphere (restricted isometry constant equal to zero). In
addition to requiring this hypersphere mapping property, we argue that it is desireable
to distribute the points Ah /|| k|| isotropically around the origin to combat the influence
of the noise. Assuming that all h are realizations of a random variable h, in the best
case, the random variable Ah/|| h|| is thus uniformly distributed on the m-dimensional
unit hypersphere. This leads us to propose an optimization problem which aims to
determine the matrix A such that the distance between the distribution of Ah/||h|| and
the uniform distribution on the m-dimensional unit hypersphere is minimized. We use a
kernel-based maximum mean discrepancy (MMD) [2] to measure the distance between
the two distributions and to formulate the distribution matching optimization problem
as a learning problem. Finally, we incorporate the constraint that all entries of the
matrix A should have the same modulus into the MMD minimization problem. This
constant modulus constraint on A is motivated by one of the applications considered
in the dissertation.
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1.3 Motivation and Application

The main motivation for studying the described problems and the application presented
in the numerical experiments is channel estimation [3]. In this context, the vector
y is called observation and the goal is to estimate the channel h. The observation
corresponds, e.g., to the receive signal at a base station with a certain number of
antennas. The matrix A is called observation matrix and it can, for example, represent
(the positions of) pilot symbols. It can also represent analog phase shifters which
can, for example, be used in order to connect a large number of antennas to a smaller
number of receiver chains. In this case, the matrix A is a wide matrix where the
number of rows corresponds to the number of receiver chains and the number of
columns corresponds to the number of antennas. All elements of a phase shifters
matrix have the same constant modulus. This case is the main motivation for designing
such a matrix in Chapter 4.
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2.2

Preliminaries

The notation and concepts introduced here are used in the main chapters.

Notation

We write N (e, C) for the probability density function (PDF) of a real-valued Gaussian
random variable with mean vector p and covariance matrix C. We write N (x; p, C)
to evaluate this density at a suitable vector :
. - 1 1 T -1
N, €)= e (-3le-wrete-w). @

Analogously, we use N to denote the PDF of a complex-valued circularly-symmetric
Gaussian random variable. Generally, we write z ~ p to indicate that z is a random
variable with PDF p.

The supremum norm of a continuous function f : KV — K is ||f|le =
Supgexn | f(x)| with K € {R,C}. A sequence (f5))3_, of continuous functions
fUH) KN — K is said to converge uniformly to f : KN — K if

Jim |If = P =0 2.2)
—00

holds. For a vector d € K%, diag(d) € KV* is the N x N matrix with d on its
main diagonal and zeros elsewhere. For a matrix D € K¥*¥ diag(D) € K is the
vector on its main diagonal. Further, || - || denotes the Euclidean norm, 0 € K or
0y denotes the zero vector in KV, I € KVN*¥ or Iy is the identity matrix in KV >/,
AU denotes the adjoint (conjugate transpose) of a matrix A, and A ® B denotes
the Kronecker product of two matrices A and B. Lastly, vec(A) € K™V denotes
stacking the columns of a matrix A € K™*¥ into a long vector, and j is the imaginary
unit.

Signal Model

The signal model considered throughout the dissertation is

y=Ah+n (2.3)
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where y € C™ is called the observation, A € C™* is called the observation matrix,
h € CV is called the channel, and n € C™ is called the noise. The noise is assumed
to be a realization of a Gaussian random variable n ~ N (0, X) with mean vector
0 € C™ and covariance matrix 3 € C™*",

One topic of interest in the context of the signal model (2.3) is to design a channel
estimation algorithm. There, we assume that the observation y, the observation
matrix A, and the noise PDF are given, and the goal is to obtain an estimate of the
channel h. We propose such an algorithm in Chapter 3. Another topic of interest is to
design the observation matrix A. There, one goal could be to design A such that it
harmonizes well with a certain channel estimation algorithm. A particular challenge
when designing A can be to incorporate structural matrix constraints. In Chapter 4,
we propose an algorithm to find an observation matrix which can harmonize with
compressive sensing channel estimation algorithms and which is constrained to have
constant modulus entries. In contrast to this, the standard procedure in compressive
sensing theory is to draw A randomly, see Section 2.3 for details. Advantages of
designed matrices can be a reduced computational complexity of the corresponding
channel estimation algorithms, an improved estimation performance as compared to
random matrices, or better compatibility for analog implementations.

Special Cases

The receive signal
y=h+n (2.4)

corresponding to a single-antenna mobile terminal which transmits a pilot to an
N-antenna base station is a special case of the signal model in (2.3), see, e.g., [3,4].
This case is interesting for us because potential channel estimation algorithms can
be studied without having to consider the difficulty of finding a suitable observation
matrix. Another reason is that the observation matrix (the identity matrix) is invertible
which addresses a special case considered in Chapter 3.

The multiple-input multiple-output (MIMO) signal model

Y =HP+N (2.5)

with the channel matrix H € CNo*Nu | the pilot matrix P € CNoxNp and the noise
matrix N € CNo*No | where an N-antenna mobile terminal transmits N, pilots
to an Nc-antenna base station (see, e.g., [4]), is another special case of (2.3). This
can be seen using the definitions h = vec(H ), y = vec(Y), n = vec(IN), and
A=PT® Iy, such that we have m = Nx N, and N = Nx N.
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2.3 Compressive Sensing

Another special case is the single-input single-output (SISO) transmission over a
frequency-selective fading channel H € CNe*Nt where N, is the number of subcarriers
and NV, is the number of time slots. If only NV, of the N.IV; resource elements are
occupied with pilots, then these can be selected via a matrix A € {0, 1}VpxNeNe
which represents the pilot positions. Defining h = vec(H) € CNeMt, the observed
signal is given by (2.3) with m = N, and N = N.N;.

The cases mentioned so far are studied in Chapter 3. The next case is what we are
concerned with in Chapter 4. There, we consider the setting where a single-antenna
mobile terminal transmits a pilot to an /NV-antenna base station which does not have
a dedicated receiver chain for every antenna. Instead, the NV antennas are connected
to m < N receiver chains via an analog mixing network which is represented by a
matrix A € C"™*" such that y = Ah + n is the base station’s receive signal, see,
e.g., [5-9]. The analog mixing network is assumed to consist of phase shifters so that
every entry of A has the form

(Al = \/% exp(j dr,) (2.6)

with a phase ¢, ; € R. We refer to such a matrix as a constant modulus matrix because

all entries have a constant modulus constraint: |[A]y ;| = —=. Such a setting is often

=
approached from a compressive sensing perspective.

Compressive Sensing

One part of compressive sensing theory studies the problem of recovering the channel
h from an observation of the form (2.3). There exist recovery guarantees if the matrix
has the restricted isometry property (RIP) [10]. Assuming the channel lies in an
(infinite) union of subspaces or some abstract subset H C CN (see, e.g., [11-13]), the
observation matrix A is said to have the RIP if the restricted isometry constant § > 0
is small in

(1= )lR* < |AR|* < (1 +6)|R[ 2.7)

for all h € H.

In the most prominent case, # is the set of all p-sparse vectors s € CV (p nonzero
entries). If h is not sparse itself, it may be sparsely represented in a basis ¥ € CV*V
such that h = Ws holds. Writing

y— AUs+n 2.8)
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Algorithm 1 Orthogonal Matching Pursuit (OMP) [10]
Require: matrix C € C™*L, observation ¥, sparsity p
LSO 50 0

2: fori=1topdo

3 j* < argmaxjeqy 1 {[CH(y — CsU7D)];}
4 SO SE=Dy 1
5

6

7

—_

s « argming{||ly — C3||, support(s) c S©}
: end for
. return s®) // p-sparse vector

the greedy recovery algorithm orthogonal matching pursuit (OMP) [14-16] can be
used to obtain an estimate § of s and the channel is then estimated as h = ¥§. OMP
is summarized in Algorithm 1 and would be used with C' = AW here.

Random matrices provide a well-known source for matrices with the RIP. For
example, a Gaussian random matrix where the entries are drawn independently with
[A]g ~ Nc(0, \/%) is known to have the RIP with high probability [10]. Furthermore,
bounded random variables are sub-Gaussian random variables [10] and because sub-
Gaussian random matrices have the RIP with high probability [10], there also exist
constant modulus matrices with the RIP. To this end, the entries of A are drawn

independently and have the form
1
Jm exp(j¢) with ¢~ U([0,2n]) (2.9)

where ¢ is uniformly distributed in the interval [0, 27].

Gaussian Mixture Models

A Gaussian mixture model (GMM) is a PDF of the form [17]
K
FEVRN 5 R @ f5 () = p(k)N (25 pi, Cik).- (2.10)
k=1

The summands represent the K GMM components. Each component consists of a
mixing coefficient p(k) with ) | 5:1 p(k) = 1 and of a Gaussian PDF with mean vector
pr € RN and covariance matrix Cj, € RV*N_ Given a realization € R, the
probability p(k | «) of it stemming from component & can be computed [17]:

p(k)N (x; g, Cy.)

klx)= .
pik| ) S p(i)N (@; i, C)

@2.11)
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2.5 Maximum Mean Discrepancy

Being able to calculate these responsibilities (2.11) plays an important role in Chapter 3.

In Chapter 3, we are also interested in approximating an unknown continuous
PDF f via a K-component GMM. To this end, all mixing coefficients {p(k)}_,, all
mean vectors {p;} 5, and all covariance matrices {C }2_, of the K-component
GMM need to be determined. Maximum likelihood estimates of all theses parameters
can be obtained using an expectation-maximization (EM) algorithm and a data set
{ht}tTgl of realizations h; of a random variable h ~ f. Such a data set is assumed to
be given. Details about the GMM fitting process can be found, e.g., in [17]. A list of
convergence properties of the EM algorithm can be found, e.g., in [18].

The motivation for approximating the unknown PDF f via a GMM comes
from [1, Theorem 5] according to which GMMs are able to approximate any continuous
PDF arbitrarily well. We write

C= {f ‘RN S R:f> 0,/f(:c)da: =1, fis continuous} (2.12)

for the set of all continuous PDFs. Then, one part of [1, Theorem 5] says that for any
f € C, there exists a sequence of GMMs which converges uniformly to f:

Theorem 1 (Universal Approximation Property). Denoting the standard Gaussian
density by N'(0, 1), let

K
Mg = {h ch(x) = chiN./\/' (W;O,I)}
k=1 Tk Tk

be the class of K-component location-scale finite Gaussian mixtures with
pr €RY 0 > 0,0, >0 forallke{l,...,K}

and Zszl cr, = 1. Forany f € C, there exists a sequence (fU))_, with f5) ¢
M i which converges uniformly to f.

Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) can be used to compute a distance between
probability distributions and is used in Chapter 4. If X is a metric space and « and y
are two random variables with respective probability distributions p and ¢ defined on
X, MMD quite literally computes a maximization of the discrepancy between two
means [2, Definition 2]:

MMD£(p, q) = ngelg (Ezplf(@)] — Eyqlf(y)]) - (2.13)
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Here, F is a suitably chosen set of functions f : X — R. Depending on F, (2.13)
can be a metric and then we have MMD z(p,q) = 0 if and only if p = ¢, and
MMD £(p, q) > 0 otherwise. An overview of suitable function sets F can be found,
e.g.,in [19].

Solving the optimization problem (2.13) can be challenging, depending on F.
One particularly interesting set JF in this regard is the unit ball in a reproducing
kernel Hilbert space. A brief introduction to reproducing kernel Hilbert spaces can be
found in [2]. Every such Hilbert space is associated with a kernel k£ : X x X — R.
Conversely, every kernel defines an associated Hilbert space. Intuitively speaking, a
kernel k can represent all functions which are an element of the reproducing kernel
Hilbert space. For this reason, the optimization with respect to the whole set F
in (2.13) can be expressed using the kernel only and the computation of the supremum
is avoided.

Using a suitable kernel £, (2.13) can be expressed as [2, Lemma 6]

MMDi(p, q) = Ez (k(x, a:,)] -2 vay[k‘(m, y)] + Eyy [k (y, y,)]- (2.14)

Here,  and x’ are independent random variables with distribution p, and y and 4’ are
independent random variables with distribution g. Among the best known kernels is
the Gaussian kernel:

ko i REX R SR, (2,y) — ky(a,y) = e 202 12917 (2.15)

with a parameter o > 0. The Gaussian kernel is a typical choice when MMDy, is
used, as, e.g., [20-22] demonstrate. One reason is that the associated reproducing
kernel Hilbert space enjoys the property of being universal which makes (2.14) a
metric [2, Theorem 5].

Compared to (2.13), computing (2.14) no longer involves solving an optimization
problem. It is however still necessary to know both p and ¢. In some applications (in
particular in Chapter 4), only realizations {x;}} and {y; }é\le ofx ~pandy ~ g,
respectively, are given and we are still interested in determining whether p = ¢ or
whether p and ¢ are at least close to each other. In this situation, a biased estimate
of (2.14) can be computed [2, Equation (6)]:

MMD?2 ({wi}%h {y;}il1) =

N N
ZZ d?z,fL'] —QZZ mzyy] ZZ ylay] ) (216)

=1 j=1 i=1 j=1 =1

10
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2.6 Distribution Matching

The smaller the value of MMDZ ({z;}M,, {y; é\f:l), the closer p and ¢ are to each
other. One main result of [2] is that (2.16) converges in probability to (2.14) at a rate
of O((M + N)~2).

Distribution Matching

The biased MMD estimate (2.16) is differentiable because the Gaussian kernel (2.15)
is differentiable. In the literature, this fact is utilized in the context of machine
learning applications, e.g., [20-23]. One possible application, which is related to the
considerations in Chapter 4, can be described as follows. A set {x;}}, of natural
images x; is given and it is assumed that they are all samples of a random variable
x with distribution p. The goal is to draw new samples of «x, or, in other words, to
generate new natural images. To this end, a set {g4}4ca of functions gy is defined
where every g, is differentiable with respect to the parameter ¢ and where ® is a
constraint set for the parameter. For instance, every g4 could be a neural network where
¢ collects all learnable parameters (all weights and biases). Then, an auxiliary latent
random variable y’ with the distribution ¢’ is chosen (e.g., a standard Gaussian random
variable) and corresponding random variables g4(y’) with respective distributions gy
are defined. Typically, y’ is chosen such that sampling this random variable is simple.
The goal is to find ¢* € ® such that the distribution g« is close (ideally equal) to p.
This amounts to solving an optimization problem:

MMD;(p, g4+) = min MMD; (p, 45). (2.17)
New images are now generated by first drawing samples v}, y5, . .. of ¢/, which is

simple, and computing the images g4+ (Y1), 9o (¥53), - - ., which are then samples of
the distribution g«.

Since p is not known and g is generally difficult to compute, (2.17) cannot be
solved directly. However, if samples (training data) {z;}*, and {v; §VZ1 are given,
(2.16) can be used to define an alternative optimization problem:

gggMMDi ({ml}z]\ilv {g¢(y})}§v:1) : (2.18)

A problem of this form is considered in Chapter 4. Such optimization problems are
solved via stochastic gradient descent, e.g., [20-23], because the objective function
is differentiable, and are considered easy to optimize [23]. Convergence guarantees
are part of ongoing research. Solving an optimization problem via stochastic gradient
descent often involves some form of a grid or a random search. This is discussed next.

11
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Random Search

For the following explanation of the grid and the random search procedures [24], we
assume we want to train a classical feed-forward neural network using a stochastic
gradient descent algorithm. We distinguish between the optimization parameters
of the neural network and the hyperparameters of the neural network and of the
stochastic gradient descent algorithm. The values of the optimization parameters are
derived during the training (or learning) process whereas the hyperparameters are set
before the training process begins. Weights and biases constitute the neural network’s
optimization parameters. Examples of hyperparameters are the number of hidden
layers of the neural network, the stochastic gradient descent algorithm’s learning rate
(i.e., the gradient step size), or the batch size (i.e., the number of samples used to
compute the stochastic gradient). The optimization parameters are typically randomly
initialized (e.g., from a uniform or a normal distribution) and the hyperparameters are
typically determined via a grid or a random search procedure [24].

To perform a grid search, we determine sets of possible hyperparameter val-
ues, for example, P, = {5,10,25,50} for the number of hidden layers, P, =
{1075,1073,10~ '} for the learning rate, and P,s = {10, 50, 100, 250, 500} for the
batch size. Then, we train the neural network once for every combination of the
hyperparameter values, i.e., for every element of the Cartesian product Py X Py X Ppg.
In this example, we would therefore train the neural network 4 - 3 - 5 = 60 times. In
the end, a held out validation data set is used to choose the best of the 60 trained neural
networks.

The authors of [24] argue that the hyperparameters space can be explored more
efficiently if a random search procedure is employed. To this end, we would also
train the neural network, e.g., 60 times but this time the hyperparameter values would
be randomly drawn for every neural network. If uniform([a,]) denotes drawing a
sample from a continuous uniform distribution on the interval [a, b, a hyperparameter
value can be determined via

euniform([ln(a),ln(b)]) (2.19)

followed by rounding to the nearest integer if necessary [24]. Using the numerical
example for the learning rate from before, we would, e.g., set a = 107 and b = 10"

to determine the learning rate as e"iform([In(107%),In(1071)])

for a given neural network.
Here, too, a held out validation data set is used to choose the best of the 60 trained

neural networks.

12
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Asymptotically Optimal Channel
Estimation

This chapter is mainly based on our work in [25,26]. In this chapter, we distinguish
between a random variable x and a realization @ thereof.

A Sequence of Conditional Mean Estimators

We write fp, for the probability density function (PDF) of the channel random variable
h. Further, we write f, = N(0,X) for the noise PDF and f, for the observation
PDF in the model

y=Ah+n 3.1)

with A € C"™*N,

A good channel estimator is a function h : C™ — CN which leads to a small
mean square error (MSE)

E [Hh— ﬁ(y)HQ] . (3.2)

It is known that a minimizer is given by the conditional mean estimator (CME) [27]
hiCm oy hiy) =Elh |y =yl = [ hfu by G3)

where fp, (h | y) denotes the conditional PDF of h given y = y evaluated at h. For
our purposes, we first rewrite the conditional PDF via

_ Fyn [ W)falh) _ fuly — AR)fu(h)

Ty [9) e LW G
and the CME is then given by
) ) (y — AR) f(h
h:y— h(y)=Eh|y =y] = /hf y ; (y))f”( Vi, 33)
y

13
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(K) K — >

Ih

Ih

uniform convergence

closed form no closed form

h() h

K — o0
convergence?
JA~! :yes
AA~! : maybe

Figure 3.1: In Chapter 3, we discuss the following question: If a sequence ( ]‘,(,K))%o:1
of probability density functions converges uniformly to the channel probability
density function fp, does the corresponding sequence (fz(K ))%":1 of conditional mean
estimators converge to the channel conditional mean estimator h?

Computing (3.5) analytically can be difficult. On top of this, even if all involved
PDFs are given analytically, there may not exist an analytic expression of the integral
and therefore of the CME h. Another problem might be that only the noise PDF
fn—Dbut not fp—is known, which is the assumption in this dissertation, and then,
computing (3.5) is not possible. However, even if the channel PDF f, is unknown,
we can reasonably assume to have access to a sequence ( f,(IK))C;(":1 of PDFs which
converges uniformly to fj:

: )y
i [ f— £ oo =0 (3.6)

A prime example is the case where ( J“’,(,K))f(oz1 is a sequence of Gaussian mixture
models (GMMs). This case is studied in Section 3.3.

For every K € N, we now introduce an auxiliary channel random variable h(¥)
with PDF f,SK), we introduce an auxiliary signal model

y ) = ARE) 4 g (3.7)
and we write f}(,K) for the PDF of y(*). For every K € N, the CME

y — AR) £y (h)

dh (3.8)
V) (y)

ROy o RO ) = BIAE) |00 =y = [ 1"

is then an optimal channel estimator for the model (3.7). In the case where f,(,K) is a
GMM, h5) can be calculated analytically (see Section 3.3). Generally, if the sequence
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3.2.1

3.2 Pointwise Convergence

( f,SK))%Ozl is chosen such that every CME h) can be computed analytically, it
is interesting to investigate whether ) can be used as an approximation of the
optimal h, which is not available analytically. That is, we ask whether the uniform
convergence of the PDFs in (3.6) implies that the sequence (E(K ))?:1 converges to h
in some suitable sense. A main result in this chapter is that we have at least pointwise
convergence if the observation matrix A is invertible, see Theorem 2. Figure 3.1
schematically summarizes this result.

Pointwise Convergence

The PDF of a complex-valued random variable can be written in terms of its real
and imaginary parts. For this reason, this section (and only this section) considers
real-valued quantities only and the results apply to the setting discussed in Section 3.1
by stacking real and imaginary parts appropriately. The proof of the following theorem
can be found in Appendix A. The theorem uses the notation from Section 3.1.

Theorem 2. Let C = {f RN S R:f>0, [ flx)de=1,fis cantinuous} be the
set of all continuous PDFs. Let f, € C and f, = N(0,X) € C. Further, let
A € RN pe invertible and let ( f,(,K))%Ozl be a sequence of PDFs in C which
converges uniformly to fp. For every K € N, define a function RE) RN 5 RN yig

. n Ah)
AU g s / i - ar )n'(h ) in. (3.9)
fy (y)
Then, the sequence (iz( )) _, converges pointwise to h: RN = RN with
. A
by h(y / p Iy = h’ f wh) o, (3.10)

That is, we have
lim [|A(y) — 5 (y)| =0 (3.11)
K—oo

for every y € RN. Further, (3.11) holds uniformly for all y € B, with B, = {y €
Nyl < ) for any radius v > 0.
Discussion of Theorem 2

As aresult of Theorem 2, the channel estimator (%) can be viewed as an approximation
of the optimal channel estimator h for a K € N. Let » > 0 be given and let
B, = {y € RV : |ly|| <r}. According to Theorem 2, if we want the approximation
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error to be bounded by a given threshold e, > 0, there exists a K, € N which
guarantees
lh(y) — R (y)|| < eqe forall y € B, (3.12)

if we choose K > K. This does not mean that the approximation error exceeds
emr for y ¢ B,.. Due to (3.11), for any y € R, there exists a K, € N such that the
approximation error falls below ey,,. However, for some y ¢ 15,., the sequence index
K, needs to be strictly larger than K, to achieve the goal. Generally, we can expect

the channel estimation performance of h(K)

to be better for larger K.

The proof of Theorem 2 relies on A being invertible. If this is not the case, two
problems immediately arise. These are discussed in detail in Appendix B. One problem
is that the uniform convergence of ( f,(,K))?(":1 to fp does generally not imply the
uniform convergence of ( f)(,K))f(ozl to fy if A is notinvertible (see Appendix B.2). As
a consequence, a crucial step in the proof of Theorem 2 cannot be shown. Nonetheless,
numerical studies in Section 3.6 suggest that even if the matrix A is not invertible, the
performance of the estimator R) improves with increasing K.

For a noninvertible A, it seems difficult to infer a statement about the convergence
of the PDFs f)(,K), which correspond to y ) if only the uniform convergence of the
PDFs f,(TK), which correspond to h(5) is given. However, we can say something about
the convergence of the respective distribution functions. To this end, first observe that
the uniform convergence of ( f,(,K))%Ozl to fp implies the pointwise convergence as
well. By Scheffe’s lemma (e.g., [28]), the sequence of random variables (h(K ))%021
then converges to the random variable h in distribution, i.e., we have the pointwise
convergence of the sequence of distribution functions corresponding to h®) to the
distribution function corresponding to h. We denote this by h(*) 9 h. Since nis
independent of h(*) and of h, also (%), n) N (h, n) holds. Applying the continuous
mapping theorem (e.g., [29]) using the continuous mapping

s: RNt 5 RNT™ (b n) — (h, Ah +n) (3.13)

implies s(h) n) = (W), y(K)) 4 s(h,n) = (h,y). In other words, with
(h) | y(K)) we have an approximation of both the channel h and the observation y.
The author of [30] investigates whether in this case E[h(% ) | y¥)] is an approximation
of E[h | y]. This is answered affirmatively for suitable distributions. Since we assume
fn to be unknown, a discussion of [30] is omitted. Note, (E[p(%) | y(K))%_ is a
sequence of random variables and [30] provides conditions under which this sequence
convergences in distribution to the random variable E[h | y]. In contrast, we investigate
the pointwise convergence of the functions (y +— E[hK) | y(K) = y])%0_ to the
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3.3.1

3.3 Example: Gaussian Mixture Models

function y — E[h | y = y]. Thus, Theorem 2 and [30] are related but study different
mathematical objects and different types of convergence. In particular, Theorem 2 is
not a consequence of [30].

We still need to address the question of how to obtain a sequence ( f ,(,K))%ozl of
PDFs which converges uniformly to fj and how to compute the estimator hE) so
that it can be used for channel estimation in practice. In the remainder of this chapter,
we study the example of a sequence of GMMs which shows the desired convergence
behavior and leads to a closed-form expression for h) (left column in Figure 3.1).

Example: Gaussian Mixture Models

We come back to the notation introduced in Section 3.1 where all quantities are
complex-valued. Theorem 2 assumes a channel PDF f, to be given and then requires a
sequence ( f,(,K) )7%%_ of PDFs which converges uniformly to fj. In light of Theorem 1
(in Section 2.4), there always exists a sequence of GMMs which fulfills that requirement.
Henceforth, ( f,SK))‘;(Ozl denotes a suitable sequence of GMMs. As discussed next,
GMMs have the benefit that %) from (3.8) can be computed in closed form for every
K € N which results in a practically useful channel estimator.

The GMM Estimator

For a given K € N, we are interested in obtaining an analytic expression for hE)
from (3.8). Since this estimator is based on GMMs for the remainder of Chapter 3, we
call it the GMM estimator from now on. Let

K
YO SR e 110 (h) = p(k)Ne (B e, Cr) (3.14)
k=1

be the Kth GMM. For notational convenience, we omit the sequence index K
when we write the GMM parameters so that we have p(k), py, Cj, instead of, e.g.,
pF (), u,gK), CIEK). Let k be the discrete mixing variable such that (h(%) | k =
k) ~ Nc(pg, Cy) is the kth Gaussian in the GMM (3.14). Since also the noise
n ~ N¢(0, ) is Gaussian, the observation y) = Ah(X) 4+ n conditioned on k = k
is Gaussian as well:

(v | k = k) ~ Ne(fur, Cr) (3.15)
with fi, = Apy, and C, = AC,LAT + 3. (3.16)
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Consequently, the PDF of y(%) s the following GMM:

ROCm SR,y e £ Zp Wely; fir, Cr). (B.17)
k=1

The quantities obtained so far can now be used to compute the desired channel
estimator A(5) from (3.8). To this end, let y € C™ and employ the law of total
expectation:

R (y) = E[AT) |y = g (3.18)
K

= ok [y =y BT |y B =y k=K.  (3.19)
k=1

The first factor in (3.19) can be identified as a responsibility (cf. (2.11)) of the GMM
f,(,K) and can be calculated in closed form:

p(k)Nc(y; fug, C~7k)~ _
K ()N (y; i, )

Since both h) as well as y¥) conditioned on k = k are Gaussian random variables,

plk |y = y) = (3.20)

the second factor in (3.19) is the CME known as linear minimum mean square error
(LMMSE) estimator and has a well-known closed-form expression. For later reference,
we give this estimator the name hj ymMsE

himmser : C™ = CV, y = hivmse i (y) = B[R | yB) =y k = k] (3.21a)
= CvA"C, M (y — fu) + pi- (3.21b)

In summary, the closed-form expression of the GMM estimator h) reads:

RE) .cm N (3.22a)

K

p(k)Ne(y; fix, Cr)
h y (3.22b)

,;z,: PGy, G AMSEHY)

with hpavse x defined in (3.21).
The formula in (3.22) is known and can also be found, e.g., in [31]. Therein, the

Y=

authors assume that f,(,K) in (3.14) is equal to the PDF f}, of the channel h (for some
fixed K) so that (3.22) is the optimal channel estimator. They then study this estimator
in the high signal-to-noise ratio (SNR) regime to derive suitable pilot symbols. In

(K)

contrast to this, we view f,~’ as an approximation of the unknown channel PDF f,.
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Algorithm 2 GMM Estimator
Offline GMM Training Phase
Require: training data {h;},"";, number K of GMM components
1 ({p(R) M L {CR M)« EM({h},K) /| an EM-algorithm

computes all parameters of ff(LK)

Online Channel Estimation Phase

Require: observation y, observation matrix A, noise matrix X
2 A 0
3: fork =1to K do

. (K) — p(K)Ne(y;Apy, AC, AH4+3)
i Zj(k ¥ y) Sis1 p()Ne(y;Api AC; AP 4E)
h «— CyAT(AC,AY + 3) 7 (y — App) + pi

5
6 A ) 4 pk | yE) = y)h
7
8

: end // many quantities in the loop can be precomputed
. return h5) /] estimated channel, see 3.22)

The approximation becomes better as K increases and due to Theorem 2, we can view
h¥) as an approximation of the optimal channel estimator h. In that sense, we study
h¥) in the “high number of components regime”’. The contribution of this chapter
lies in providing a strong motivation to use h5) for channel estimation even if the
channel is not distributed according to f ,SK).

Computing the GMM Estimator in Practice

At first glance, the GMM estimator R) now seems to be given analytically so that it
can be used for channel estimation. However, we still need to discuss how to obtain the
required parameters which appear in the formula in (3.22) in practice. To this end, we
assume a set {ht}tTgl of realizations of the channel h ~ f}, to be given. This training
data set can then be used to fit a K'-component GMM as explained in Section 2.4. The
result of the fitting process are the mixing coefficients {p(k)}%£_,, the mean vectors
{px}E |, and the covariance matrices {Cy}X_, of the GMM f ,(,K). Thereafter, the
mean vectors {fi; }+_ | and covariance matrices {Cj } | of the GMM fj(,K) can be
determined via (3.16). After this offline initialization process, all quantities required
to compute ) are given and R) can be used for online channel estimation. The
whole process is summarized in Algorithm 2.

Note that since the covariance matrices {Cj,} 5, of fj(,K) depend on the noise

covariance matrix X (cf. (3.16)), the estimator hE) also depends on it. In particular,
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if the SNR changes, the estimator h) needs to be updated. However, this only
requires updating {C’k}le—it is not necessary to fit a new GMM. The fitting process
only determines f,(,K), which does not depend on the SNR, and it only needs to be
run once for a given K € N. Generally, it makes sense to precompute the quantities
in (3.22) for a number of different SNRs so that computing h()
to matrix-vector multiplications. The complexity of computing the GMM estimator

online only amounts

h(X) is discussed next.

Computational Complexity and Number of Parameters

As mentioned in Section 3.3.2, once the GMM fitting process, which yields {p(k) }5:1,
{pi}E_ |, and {Cy } |, is done, the remaining quantities in (3.22) can be precomputed
for different SNRs. This is, in particular, also true for the costly inverses {é n ! }szl
and determinants {det(C})}._,. Both of these quantities are required to evaluate
the responsibilities in (3.22) because a Gaussian PDF with mean vector 1 € C™ and
covariance matrix C € C™*™ is given by

N o — HO (e — i
x5 Ne(a; i, C) = exp(—(z w”lti)et(é’) (@—p), (3.23)

It can now be seen that for m < N, an evaluation of N¢(f1, C) has a complexity of
O(N?). The last ingredient to computing R¥) is the LMMSE formula (3.21b) which
costs O(N 2). Since this needs to be done K times (cf. (3.22)), the overall complexity
of computing the GMM estimator h(X) is O(K N?2).

In some cases, we are interested in reducing the number of parameters of the
GMM f,(,K). The parameters are the mixing coefficients {p(k)}ﬁ(zl, the mean vectors
{pr}E_ |, and the covariance matrices {Cy, }_, so that we have K + K N + K M
scalar parameters if we take symmetries in {Ck}szl into account. One reason to
reduce the number of parameters is to reduce the computational complexity. As
demonstrated in Section 3.3.3.1, cases exist where the complexity of computing
h%) can be reduced to O(K N log(N)). Another reason to reduce the number of
parameters is to improve the GMM fitting process. We can expect to need a larger
number T}, of training data {ht}tT;rl in order to successfully fit a GMM with a larger
number of parameters. For a given amount of training data, we can either choose
a smaller K to control the number of GMM parameters, or, as discussed next, we
can impose structure on the covariance matrices. The following two examples are

motivated by commonly encountered matrix structures in mobile communications.
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3.3.3.1 Circulant covariance matrices

In the first example, we force every covariance matrix of the GMM f,(,K) to have the
circulant structure

C, = Fldiag(ci)F (3.24)

where F' € CV*¥ is the discrete Fourier transform (DFT) matrix and ¢, € CV.
This significantly reduces the number of GMM parameters to K + KN + KN.
The motivation comes from the fact that channel covariance matrices are Toeplitz
structured if the base station employs a uniform linear array (ULA) and that Toeplitz
matrices are well approximated by circulant matrices [32]. The charm of circulant
matrices is that thanks to fast Fourier transforms, matrix-vector multiplications can be
performed in O(N log(N)) time. This is particularly interesting if we have A = I
and ¥ = 021 = 02 FH F because the LMMSE formula (3.21b) simplifies to

himwise i (y) = F™ diag(dy) F(y — pr) + o, (3.25)
where the ith entry of the vector dy, is given by [dx]; = [CIE]CﬂiUQ , such that (3.25) can

be calculated in O (N log(N)) time. On top of this, with a circulant covariance matrix,
the Gaussian density can be written as

2 s No(a: . FY ding (o) F) = SR F @ = )" diag(e) ' F(@ — )
= Ne(z; p g(e)F) — Hf\il[c]i

(3.26)
In contrast to (3.23), this can be computed in O(N log(/N)) time. Consequently,
computing h ") has a complexity of O(K N log(N)). Even if A # I, such that we
may not arrive at a complexity of O(K N log(N)), circulant covariance matrices can
still be interesting to control the number of GMM parameters and thereby also the
GMM fitting process. In Section 3.6, we investigate how the amount of training data
and the number of GMM parameters influence the performance of h(¥).

To implement the circulant structure (3.24), e.g., in Python, we can make use of
the fact that diagonal covariance matrices are a commonly used constraint for GMM
components so that there exist specialized versions of the expectation-maximization
(EM) fitting algorithm for this case. We can fit a GMM with diagonal covariance ma-
trices on Fourier transformed training data { F'h; tTgl, which yields the mean vectors
{Fp Y | and covariance matrices {diag(ck)}X_,, so that we obtain the correspond-
ing quantities for the original data {h;}r", as {py ", and {F" diag(c;,) F},
by making use of the DFT matrix. A numerical evaluation of the circulant GMM
estimator is presented in Section 3.6.2.
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Kronecker covariance matrices

Another common channel covariance matrix structure results from the assumption that
the scattering in the vicinity of the transmitter and of the receiver are independent of
each other, cf. [33]. In that case, we can force the covariance matrices to have the form

Ci = Cix 1 ® Cx (3.27)

where Cix 1, and C' j represent a transmit and a receive side spatial covariance matrix,
respectively. Using the signal model (2.5), if mobile terminals have Vi antennas
and the base station has N antennas, the training data {Ht}tT;r1 consist of channel
matrices H; € CN~*Nw_ If no constraints on the covariance matrices of the GMM
are to be taken into account, we fit a K-component GMM on the vectorized training
data {vec(H;)} L, see also Section 2.2.1.

In contrast, in order to obtain a GMM with matrices of the form (3.27), we
first fit two GMMs: We fit a K-component GMM on all rows of {Ht}?gl, and
we fit a K x-component GMM on all columns of {H, tT;‘fl. This results in two
sets of GMM parameters: {(utx,iaCtx,i)}fi“l and {(perx ;5 Crx,j)}f:“l. These are
now combined to obtain the GMM f,(,K) with K = K K;x components: {(f i ®
Mrxj, Cii @ Cryj) 1 <0 < Kix,1 < j < K}, Lastly, given these K mean
vectors and covariance matrices, we compute the mixing coefficients {p(k)}&_,
corresponding to f,(,K) by performing one E-step (cf. [17]) of the EM algorithm.
Overall, the GMM obtained as described has a significantly reduced number of
parameters: K + KN + KixNix + Ktxw + erw in contrast to
K+ KNxNyx + K W Plugging the Kronecker product matrices into
the LMMSE formula (3.21b) does not necessarily lead to a computational advantage
due to the inverse being a matrix which is generally not a Kronecker product of two
smaller matrices. This inverse, however, can be approximated by means of a Kronecker
product, cf., e.g., [34], if the computational complexity is an issue. A numerical
evaluation of the Kronecker GMM estimator is presented in Section 3.6.2.

Channel Models for Numerical Evaluation

Section 3.6 presents a numerical evaluation of the GMM estimator. We consider the
single-input multiple-output (SIMO), the multiple-input multiple-output (MIMO),
and the wideband single-input single-output (SISO) signal models described in
Section 2.2.1. The channels are generated according to one of the following two
models.
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3GPP

To generate the SIMO and the MIMO channels, we use a spatial channel model [35,36]
where channels are modeled as (h | d = d) ~ N¢(0, Cy). That s, given a realization
d of a random variable d which models the angles of arrival/departure and the path
gains of the main propagation clusters between a mobile terminal and the base station,
the channel is assumed to be Gaussian with a covariance matrix C'g which depends
on the realized angles and gains. To generate 7' channel samples {h;}7_,, we realize
T different d; and corresponding Cy,. For every Cy,, we then realize one Gaussian
vector h; from N¢(0, Cg, ).

If both the mobile terminal and the base station employ ULAsS, the transmit and
receive side spatial channel covariance matrices are given by

C{tx,rx},d = / 9{tx,rx} (9, d)a{tx,rx} (e)a'{tx,rx} (Q)Hde (3.28)

Here,
A} () = [1, ™50 I Wiy =1 sin(@))T (3.29)

is the array steering vector for an angle of arrival/departure 6 and gy v} is a power
density consisting of a sum of weighted Laplace densities whose standard deviations
describe the angle spread of the propagation clusters [35]. Assuming independent
scattering in the vicinity of the transmitter and the receiver, cf., e.g., [33], the full
covariance matrices are then given as Cq = Cix ¢ ® Cix q. In the SIMO case, we
have Cd = Crx,d-

QuaDRiGa

We use version 2.4 of the QuaDRiGa channel simulator [37,38]. The base station has
a height of 25 meters and covers a 120° sector in an urban macrocell scenario. It is
equipped with an Nx-antenna ULA with “3GPP-3D” antennas. Mobile terminals are
equipped with an Nk-antenna ULA with “omni-directional” antennas. The mobile
terminals have a minimum and a maximum distance to the base station of 35 meters
and 500 meters, respectively. In 80% of the cases, the mobile terminals are located
indoors at different floor levels. The mobile terminals’ height is 1.5 meters in the
case of outdoor locations. For the SIMO and the MIMO simulations, we generate
single-carrier channels at a center frequency of 2.53 GHz. For the wideband SISO
simulations, we have a typical 5G frame structure (cf. [39]) with N, = 24 carriers over
a bandwidth of 360 kHz and with N; = 14 time symbols over slots of 1 ms duration.
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The center frequency is again 2.53 GHz. Each mobile terminal moves at a certain
velocity v in a random direction.

The QuaDRiGa simulator models a channel corresponding to a carrier ¢ (with
frequency f.) and a time symbol ¢ as H,; = >~ Ge~27i/eTt where [ is the path
number. The [th path delay corresponding to the time symbol ¢ is 7; ;. The number of
multi-path components L depends on whether there is line of sight (LOS), non-line
of sight (NLOS), or outdoor-to-indoor (O2I) propagation: Lyos = 37, LnLos = 61,
or Loy = 37, cf. [40]. The attenuation of the /th path, the antenna radiation pattern
weighting, and the polarization are collected in the coefficients matrix G, cf. [40].
The generated channels are post-processed to remove the path gain as described in the
QuaDRiGa manual [38].

Other Channel Estimators

We now discuss the algorithms which we compare the GMM estimator h) to. The
numerical evaluation is presented in Section 3.6.

Using the Moore-Penrose pseudoinverse A, a simple baseline algorithm is given
by the least squares (LS) channel estimation:

y — his(y) = Aly. (3.30)

Further, using a set {ht}fgl of training data, we can compute a sample covariance

T%,r ;‘F;rl h:h!! and employ this matrix together with the LMMSE

formula such that we have the following channel estimator:

matrix C =

Y= il'sample cov.(y) = C’AH(ACAH + E)_ly. (331)

When using the 3GPP channel model from Section 3.4.1, every channel is generated
from a Gaussian PDF N (0, Cy) so that we have a channel covariance matrix Cy for
every channel sample. Given this matrix (or, equivalently, given the realization d), the
LMMSE estimator

Y > hgen Lvmse(y) = Elh |y = y,d = d] = C4AMN(ACA" + )1y (3.32)

is optimal. Note, however, that this estimator is not equal to the CME h from (3.5)
because of the additional knowledge of the realization d = d. Since, in practice,
the channel covariance matrix Cy is not given, we speak of a genie-aided LMMSE
estimator (gen. LMMSE). For this reason, izgen_ LMMsSE yields a performance bound
for all estimators in this chapter and we can generally not expect to reach this bound
with any of the other algorithms.
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Another channel estimator is based on a convolutional neural network (CNN). The
estimator is introduced in [36] for the SIMO case (cf. (2.4)) and [41] presents our
generalization of it to the MIMO case (cf. (2.5)). For example, assuming the noise
covariance matrix is ¥ = 02T € CV*¥ | the SIMO CNN estimator is given by [36]

Yy iLCNN(y) = FQH diag (a(z) * ReLU <a(1) * %\ngP + b(1)> + b(2)> Fyy

(3.33)
where the columns of the matrix F, € C2N*N consist of the first N columns
of the 2N x 2N DFT matrix, ReLU denotes the rectified linear unit, the abso-
lute value in |Fyy|? is applied elementwise, = denotes circular convolution, and
a®, a@ bM b3 e R2N are learnable parameters which are optimized based on an
MSE loss function. We use this estimator for SIMO channel estimation. For the MIMO
case, we use the estimator as described in [41] where the activation function is also
the rectified linear unit. In both cases, the computational complexity is O(N log(NV)).
During the training phase, samples corresponding to the channel model on which the
estimator is later tested are used. Note that the CNN estimator depends on ¢ and
thereby on the SNR such that a new estimator needs to be trained for every SNR value.

Many modern channel estimation algorithms focus on compressive sensing ap-
proaches, cf., e.g., the surveys [42,43]. For channel estimation by means of compressive
sensing algorithms, every channel realization is modeled as (approximately) sparse:
h ~ Ws. The dictionary ¥ € CN*L is typically an oversampled DFT matrix
(e.g., [44]), and s € C! is a sparse vector. Given an observation y, compressive
sensing algorithms then introduce the auxiliary model y = AWs 4 n and recover
an estimate $ of s so that the channel can be estimated as ilcs = W3s. One example
algorithm is orthogonal matching pursuit (OMP) [14—16] which is detailed in Algo-
rithm 1 (in Section 2.3) and would be used with C = AW¥. Since OMP requires
the sparsity order (number of nonzero elements in s) and since this is not known
for the two channel models described in Section 3.4, we provide the true channel
realization to the OMP algorithm so that it can find the optimal sparsity order, see
Algorithm 3. This genie-aided approach yields a performance bound for OMP. Another
compressive sensing algorithm we compare our results with is approximate message
passing (AMP) [45,46], which does not need to know the sparsity order.

For wideband channel estimation (cf. Section 2.2.1), we compare our results
with the concrete autoencoder (CAE) algorithm from [47]. The vectorized wideband
channels have a dimension of N.N; and the pilot selection matrix A € {0, 1}/VpxNelVt
allows to observe N, < N.IN; of the channel elements. The idea of the CAE is to
replace the encoder of an autoencoder by a concrete selector layer which extracts
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Algorithm 3 Genie-Aided Orthogonal Matching Pursuit (gen. OMP)

Require: observation matrix A, dictionary ¥ € CNV*-

Require: observation y and corresponding true channel h
1: SO 0,50 0, e+ 0
2: fori=1to Ldo
3 g e argmaxjep {[(A®)(y — ATsE-D)])
4: SO SE=D %}
5: s « argming{|ly — A®35|, support(s) c S®}
6: if [[h— ¥s| < ¢ then
7 e« ||h—®sD| /1 ®sD is closer to the true h than ¥s(—1)
8: else
9 return Ws(—Y  // the new estimate Ws is worse than the previous one
10  endif
11: end for
12: return ¥s(l)

the N, most important features of the N./V;-dimensional input. This corresponds to
designing the matrix A. The decoder of the CAE then serves as the channel estimator.
The training phase uses noisy channel data so that the CAE performs both a denoising
of the input as well as a reconstruction of the N./N;-dimensional channels. Since the
training data is noisy, a new CAE needs to be trained for every SNR. We do not employ
further denoising networks after the decoder of the CAE.

Another wideband channel estimator, called ChannelNet, can be found in [48]. It
consists of 2D CNNs and combines both an image super-resolution network and an
image restoration network. The super-resolution network has three layers, the image
restoration network has twenty layers. In this context, the receive signal is interpreted
as a low-resolution image and the channel is the image that needs to be restored. Again,
a new ChannelNet needs to be trained for every SNR.

Numerical Evaluation

We look at SIMO, MIMO, and wideband channel estimation scenarios (cf. Sec-
tion 2.2.1) involving the GMM estimator R from (3.22). To obtain the GMM
estimator, we fit one GMM on the given training data via an EM algorithm, see
Section 3.3.2. Thereafter, the inverses and the determinants in (3.22) are precomputed
for every SNR. In comparison, the neural network-based estimators from Section 3.5
all require new estimators to be trained for every SNR. In particular, for every SNR, a
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hyperparameter search (cf. Section 2.7) is necessary.

Channel estimation performance is measured in terms of the normalized MSE
(nMSE). To this end, Tis; = 10* N-dimensional test channel samples {ht}fg are
generated and used to get a corresponding number of noisy observations of the
form (2.3) from which channel estimates {fbt}tTj{ are computed with every algorithm
of interest. Then, we calculate nMSE = ﬁm ZtT;S{ |h¢ — hy||%. The channels
are normalized such that E[||h||?] = N holds. The noise covariance matrix is
3 = 02T € CV*N which leads us to define the SNR as 0—12 For algorithms which
require training data (including the sample covariance estimator (3.31)), we generate
Tir = 10° samples unless another T3, is stated. Generally, we choose 7}, large enough

such that increasing it does not lead to better results in the testing phase.

SIMO Channel Estimation

In the SIMO case (Figures 3.2 to 3.6), the observation matrix is the identity matrix
A =TI € CV*V and the dictionaries of OMP and AMP are L = 4N and L = 2N
times oversampled DFT dictionaries, respectively. These numbers lead to the best
performance in our simulations. We use a training data size of 7T, = 19 - 10% to fit the
GMM unless another 73, is stated.

The first experiment, displayed in Figure 3.2, uses the 3GPP channel model from
Section 3.4.1 with one propagation cluster and the number [V of antennas at the base
station is varied. The genie-aided LMMSE estimator from (3.32) provides a utopian
performance bound for all estimators. The GMM estimator with K = 128 components
comes close to this performance bound. At around N = 96 antennas, the CNN
estimator (cf. (3.33)) starts to become better than the genie-aided OMP estimator. The
reason is that the assumptions which are made in [36] to derive the CNN estimator
are better fulfilled for larger V. Generally, the qualitative behavior of all estimators
does not change much as NV varies. For this reason, the number of antennas is fixed at
N = 128 in the other experiments.

In Figure 3.3, we again use the 3GPP channel model from Section 3.4.1 with one
propagation cluster. From the mid- to high-SNR range, the two compressive sensing
algorithms show a similar performance and they are among the better estimators.
For most SNRs, the GMM estimator with K = 128 components comes close to
the genie-aided LMMSE performance bound. In Figure 3.4, where we have three
propagation clusters, the CNN estimator’s strong performance in the mid-SNR range is
prominent. In the high-SNR range, all estimators tend to show a similar performance
to the LS estimator. The only exception is the GMM estimator which still improves
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Figure 3.2: SIMO signal model and 3GPP channel model (Section 3.4.1) with one
propagation cluster at 10 dB SNR. The performance of the circulant GMM estimator
“circ. GMM?”, ---, Section 3.3.3.1) is shown, too. In both cases, K = 128
components are used.

upon the LS estimator. Recall that we generally cannot expect any estimator to reach
the genie LMMSE curve because it has more knowledge (the true covariance matrix
for every sample, cf. (3.32)) than is usually available.

In Figure 3.5, we consider the QuaDRiGa channel model (cf. Section 3.4.2)
where the channel covariance matrices and therefore the genie LMMSE curve are no
longer available. The two compressive sensing algorithms’ performances now differ
considerably which may be attributed to a lack of sparsity of the channels. Both the
CNN and the GMM estimators generally show a strong performance mainly differing
in the low-SNR range where the GMM estimator is better.

In Figure 3.6, we investigate the interplay between the number K of GMM
components and the number T, of training data used to fit the K-component GMM.
We concentrate on the 3GPP channel model with three propagation clusters at an SNR
of 10 dB (see also Figure 3.4). As expected, since increasing K leads to a larger
number of GMM parameters, more training data is necessary for a good fit. As long as
Ti, is large enough, the behavior indicated by Theorem 2 can be observed: increasing
K improves the estimator’s performance. Theorem 2 can be applied because we have
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Figure 3.3: SIMO signal model and 3GPP channel model (Section 3.4.1) with one
propagation cluster and N = 128 antennas. The performance of the circulant GMM
estimator (“circ. GMM?”, -+, Section 3.3.3.1) is shown, too. In both cases, K = 128
components are used.

A = I which is invertible. At this point, note that we generally cannot expect the
GMM estimator to converge to the genie LMMSE estimator (3.32) (which is displayed
in Figure 3.4). The genie LMMSE estimator has more knowledge (namely the true
channel covariance matrix Cy for every channel realization) and is therefore not the
CME y — h(y) = E[h | y = y] which we want to approximate in Theorem 2. The
CME h cannot be computed (because fj, is not known) which is the motivation to
study the GMM estimator in the first place.

GMM Estimator with Structured Covariance Matrices

We briefly study the circulant and Kronecker GMM estimators from Section 3.3.3.1 and
Section 3.3.3.2, respectively. The circulant GMM estimator uses circulant covariance
matrices in the GMM. Figures 3.3 to 3.5 contain the corresponding curves. The
circulant GMM estimator has a significantly reduced number of parameters and a
computational complexity of O(N log(NN)). Its performance is not as good as that of
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Figure 3.4: SIMO signal model and 3GPP channel model (Section 3.4.1) with three
propagation clusters and N = 128 antennas. The performance of the circulant GMM
estimator (“circ. GMM?”, --¢-, Section 3.3.3.1) is shown, too. In both cases, K = 128
components are used.

the GMM estimator with unconstrained covariance matrices but it can compete with
the other depicted estimators. In particular, in Figure 3.5 the circulant GMM estimator
performs well and is even comparable to the unconstrained GMM estimator.

For a brief discussion of the Kronecker GMM estimator, we consider a MIMO
simulation with a scaled DFT matrix as pilot matrix P, cf. (2.5). Our main interest is
to compare the Kronecker GMM estimator and the GMM estimator with unconstrained
covariance matrices. First, we generate Tt = 10° training data { H; tTgl. Then, in
order to obtain the GMM estimator with unconstrained covariance matrices, we fit a
GMM with K = 32 components on the vectorized data {vec(H;)} . In contrast, in
order to get the Kronecker GMM estimator, we fit two GMMs: a GMM with K = 4
components using all of the rows of { H; tT;rl and a GMM with Kx = 8 components
using all of the columns of { H; tTgl. These two GMMs are then combined to obtain
the Kronecker GMM estimator with K Kx = 32 components. The details are

explained in Section 3.3.3.2.
A MIMO simulation with (N, Nix) = (32, 4) can be found in Figure 3.7. It can
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Figure 3.5: SIMO signal model and QuaDRiGa channel model (Section 3.4.2) with
N = 128 antennas. The performance of the circulant GMM estimator (“circ. GMM”,
, Section 3.3.3.1) is shown, too. In both cases, K = 128 components are used.

be seen that the two GMM estimators show a similar performance. This is interesting
because these two estimators have a different number of parameters. In particular, the
GMM estimator with unconstrained covariance matrices has K w = 264,192
covariance parameters with N = Nx N = 128. By comparison, the Kronecker GMM
estimator has only erw + Ktxw = 4,224 + 40 = 4,264 covariance
parameters. As the number of parameters differs, we can expect the Kronecker GMM
estimator to show a better performance if the amount of training data is relatively small.
This behavior can be seen in Figure 3.8: The performance of the two different GMM
estimators is very different for a small amount of training data and the unconstrained
GMM estimator starts to outperform the Kronecker GMM estimator when enough
training data are available. Another observation in Figure 3.7 is that also the CNN
estimator performs similarly to the GMM estimators with a minor performance loss
in the high-SNR regime. All three mentioned estimators outperform the channel
covariance matrix-based estimator as well as the genie-aided OMP algorithm. The
OMP algorithm uses a Kronecker product of two two-times oversampled DFT matrices

as a dictionary in this simulation.
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Figure 3.6: SIMO signal model and 3GPP channel model (Section 3.4.1) with three
propagation clusters and N = 128 antennas. The SNR is 10 dB. The GMM estimator
is fit using T3, = 7T - 10? training data.

Wideband Channel Estimation

For wideband simulations, we focus on the 5G frame structure described in Section 3.4.2.
The number of pilots is N, = 50 so that 50 out of the 24 - 14 = 336 resource elements
are occupied with pilots. Thus, here, the observation matrix A € {0, 1}°0%336 is not
invertible so that Theorem 2 does not apply. Nonetheless, the following Figures 3.9
to 3.11 show the desired behavior of an improving GMM estimator if the number K of
components is increased. In this subsection, the considered algorithms are the GMM
estimator, the sample covariance matrix-based estimator in (3.31), ChannelNet, and
the CAE estimator (see Section 3.5). All estimators are trained on 7}, = 10° channel
samples. There are three commonly used types of pilot arrangements: block, comb,
lattice (see, e.g., [49,50]). We indicate in the figures which of these is used.

Figure 3.9 shows results of a simulation where the mobile terminals move at a
constant velocity of v = 3 km/h. The block-type pilot arrangement is used with
the CAE estimator as the only exception because it uses its own optimized pilot
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Figure 3.7: MIMO signal model and QuaDRiGa channel model (Section 3.4.2) with
(Nix, Nix) = (32,4). The GMM estimator (“GMM?”, - &-) uses K = 32 components
and the Kronecker GMM estimator (“Kron. GMM”, , Section 3.3.3.2) uses
K =4 - 8 components.

pattern. Both ChannelNet and the CAE estimator behave similarly and outperform
the sample covariance matrix-based estimator. The GMM estimator can compete
with or outperforms both of those estimators. Noticably, an increase of the number
of components from K = 8 to K = 128 leads to a performance improvement even
though the observation matrix A is not invertible.

In Figure 3.10, the mobile terminals’ velocities are chosen uniformly at random
from the interval [0,300] km/h. In this setting, the lattice-type pilot arrangement
is used. Overall, channel estimation is more difficult now and the gap between the
sample covariance matrix-based estimator and the other estimators increases. Further,
choosing a larger number K of components for the GMM estimator is necessary for a
competitive performance. Again, the GMM estimator shows the desired behavior of an
improved performance for increased K. The last figure, Figure 3.11, investigates the
GMM estimator’s performance for different numbers of components and highlights the
importance of a large enough amount of training data. Overall, the considerations in
this subsection provide some numerical evidence for the GMM estimator’s convergence
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Figure 3.8: MIMO signal model and QuaDRiGa channel model (Section 3.4.2) with
(Nix, Nix) = (32,4). The SNR is 10 dB. The Kronecker product GMM estimator
(“Kron. GMM”, , Section 3.3.3.2) has fewer parameters than the GMM estimator
with unconstrained covariance matrices. Both estimators have K' = 32 components.

in case of noninvertible observation matrices.

Conclusion

The main contribution of this chapter is a strong motivation to employ the GMM
estimator even if the channel PDF f}, is not a GMM. On the one hand, we have a
theretical motivation in terms of Theorem 2. On the other hand, we have a motivation
in terms of the numerical simulations. Overall, the numerical simulations seem to
show the performance promised by Theorem 2. In the SIMO and in the MIMO
settings, Theorem 2 can be applied directly and the desired behavior is evident. In
the wideband setting, the observation matrix is not invertible so that we do not know
whether Theorem 2 holds. Nonetheless, the GMM estimator’s performance improves
when the number of components is increased.
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Figure 3.9: Wideband signal model and QuaDRiGa channel model (Section 3.4.2)
with N}, = 50 pilots for N. = 24 carriers and [V; = 14 time symbols for v = 3 km/h.
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Figure 3.10: Wideband signal model and QuaDRiGa channel model (Section 3.4.2)
with V), = 50 pilots for N, = 24 carriers and N; = 14 time symbols for v € [0, 300]

km/h.
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Figure 3.11: Wideband signal model and QuaDRiGa channel model (Section 3.4.2)
with IV, = 50 pilots for N, = 24 carriers and IV; = 14 time symbols for v = 3 km/h.

The block-type pilot arrangement is used. The SNR is 20 dB. The GMM estimator is
fit using Ty, = T - 103 training data.
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4.1

Learning an Observation Matrix

This chapter is mainly based on our work in [51]. In Chapter 3, we study a channel
estimator for the signal model
y=Ah+n. 4.1)

In this chapter, we propose a method to find a suitable observation matrix A € C™*V
to recover h given this model. The focus lies on constant modulus matrices, see
Section 2.2.1. For ease of exposition, we define the set of constant modulus matrices
in C™N as MIXN = LA € C™N : |[Algy| = ﬁ} We assume that all channel
realizations are an element of a set # C C. For example, H could be the set of
all p-sparse vectors for some p < N; or, H could, e.g., contain vectors which have a
sparse representation in some unknown basis, see also Section 2.3. The goal in this
chapter is to obtain a fixed constant modulus observation matrix suitable for recovering
vectors in H from observations of the form (4.1).

Proposed Method

Compressive sensing theory provides answers to the question what properties of an
observation matrix A € C™*Y with m < N can facilitate the recovery of h from (4.1).
One widely used property is the restricted isometry property (RIP) in (2.7). Since
0 € CV fulfills (2.7) for any § > 0 and any A € C™* | we exclude it from the set
and then write the RIP condition as follows:

h 2

(1-90)< HAHhH <(1+4) forallh € H. 4.2)

Matrices which fulfill (4.2) with § as small as possible are desired.

The vector h = ﬁ € C in (4.2) lies on the (unit) hypersphere in CN and
according to (4.2), A maps h to a vector Ah € C™ which lies (approximately) on
the (unit) hypersphere in C"—the Euclidean distance between Ah and the closest
point to it on the hypersphere in C™ is at most §. In this analogy, finding an A
with a small § corresponds to determining a matrix which brings all Ah close to
the hypersphere in C™. In this chapter, we aim to find a fixed matrix which has this
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Figure 4.1: The image of 500 points h; /||h;|| with h; € H under two different matrices
A (left) and A’ (right).

property. Construction methods to obtain a matrix with the RIP deterministically are
generally unknown and one typically resorts to drawing random matrices which have
the RIP with high probability, cf. Section 2.3. In view of this, it seems advisable to
design a probabilistic method to achieve our goal.

To motivate the design of our proposed method, consider the sketch in Figure 4.1.
With the hyperspheres interpretation of (4.2) in mind, imagine two matrices are given,
A and A’ with the RIP, and assume § = 0 holds for both matrices. That is, both A and
A’ map all h perfectly onto the hypersphere in C™. Further, imagine A maps all h in
such a way onto the hypersphere in C™ that the points Ah are all clustered around
the point e; = (1,0,0,...)T € C™ (i.e., all Ah are clustered around a “pole”). In
contrast, assume A’ maps all h in such a way onto the hypersphere in C™ that the
points A’h are isotropically distributed around the origin.

We would now like to argue that the matrix A’ offers more robustness against
measurement noise than the matrix A. To this end, let hq, ho € H be two vectors with
|lh1]| # ||h2|| so that we also have || Ahq|| # ||Ahz|| as well as || A’h|| # || A he||
(because § = 0 is assumed). This means that both A and A’ map h; and hs onto two
different noiseless observations —Ah; # Ahs and A’hy # A’hy— so that there
is a chance of uniquely recovering h; and ho in both cases. At the same time, note
that we have || Ah;|| = ||A’hq|| and || Ahs|| = ||A’hs]| (because § = 0 is assumed).
Therefore, the main difference between the pairs of noiseless observations (Ah, Ahs)
and (A’hy, A’hy) are their relative directions. That is, given the “pole clustering
property” of A, the vectors Ah; and Ahs tend to point in the same direction (in the
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direction of e;) whereas the vectors A’hy and A’hs can point in more dissimilar
directions and are thus farther apart from one another. In the presence of noise,
i.e., if we have observations y; = Ah; + n; and y, = A’h; + n;, it can occur that
the noise realizations map y; and ys close to each other, making them numerically
indistinguishable, which, in turn, makes recovering distinct estimates of h; and ho
difficult. At the same time, ¥} and y) might still be distinguishable because A'h;
and A’hy are likely to be farther apart from one another. Generally, we believe that
observations under A’ are more robust with respect to noise than under A, making A’
preferable.

In view of this, we aim to find a matrix A which maps all h to the hypersphere in
C™ and which at the same time distributes the points isotropically around the origin.
The first requirement corresponds to satisfying the RIP condition with a small § and
the latter requirement aims to combat measurement noise. Therefore, in summary, we
want all Ah to be uniformly distributed on the hypersphere in C™ to achieve both
requirements. To express this goal in terms of an optimization problem, we let all
vectors in A be realizations of a random variable h so that also h and Ah are random
variables. Note that Ah is a random variable because h is a random variable whereas
A is not random. Further, let w be a random variable with a uniform distribution on the
(unit) hypersphere in C™. That is, we have ||u|| = 1 and w is isotropically distributed
around the origin. If we find a matrix which achieves the stated goal, then Ah has the
same distribution as u. Generally, we aim to find an A which brings the distribution
of Ah close to the distribution of . Using the maximum mean discrepancy (MMD)
as a metric between probability distributions (cf. Section 2.5), we can encapsulate our
goal in the following distribution matching (cf. Section 2.6) optimization problem:

. 2 B
aJnin | MMD (pu .47 (4.3)

where we write py, and g 43 for the distributions of w and Ah, respectively. Further, &
in (4.3) denotes a kernel (cf. Section 2.5).

A main challenge with (4.3) is that in order to evaluate the objective function, the
distribution g 4 needs to be available in closed form. Even if that is the case, the
evaluation can be too difficult. This is a challenge which MMD shares with alternative
distances like, e.g., the Kullback-Leibler divergence. An advantage of MMD however is
the possibility to estimate MMD% (Pus q 47,) based on samples of u and h (and thereby
Ah), which can easily be generated (in case of u) or are assumed to be available (in
case of h). This, together with differentiability, makes MMD charming and enables us
to employ machine learning techniques to solve the optimization problem (4.3).
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Learning a Constant Modulus Matrix

Coming back to the goal of finding a suitable constant modulus matrix, we want to

solve
min ~ MMD? (pu, ¢ a7)- 4.4
AeCmxN k(pu th) 4.4)
|[A}k,z|=\/%
mxN

This optimization problem aims to find a constant modulus matrix A € M
that brings ¢ 47 as close to a uniform distribution on the (unit) hypersphere in C™

const

as possible. Obtaining an analytic solution seems difficult in general, for example,
because an analytic expression of g 47 is not available.

However, as detailed in Section 2.6 where we go from problem (2.17) to prob-
lem (2.18), we can use samples {h;}. and {u;}*, of both h and u to solve an
approximation of (4.4). A random variable u with uniform distribution on the (unit)
hypersphere in C™ is given by normalization of an isotropic Gaussian random variable,
e.g.,u= H%H with v ~ N¢(0, I'), which means that sampling is simple. If

stk : C™ — R?™, z — stk(z) = [R(2)T, S(2) 1T 4.5)

denotes stacking real and imaginary parts of a complex vector into a real vector, we
can formulate an approximation of (4.4):

min  MMD? ({stk(ut)}T“ (stk(ARy) T) (4.6)
AeCmx
\[A]k,l|=ﬁ

We would further like to express (4.6) in terms of real-valued optimization variables.
Every entry of A € M7xN has the form [A]y; = % exp(j ¢r,) with a phase
dry € Rsothat A € MIXN < €™V is parameterized by mN real-valued
parameters which we collect in the matrix & € R™*N_ Applying sin and cos
elementwise, we can write
A=RA)+]3I(A) =

cos(®) + j —= sin(P) 4.7)

1
N

— cos(P) sin(®) —
_ [®(an @) @7 p®
stk(AR) [%EAhil | {;)] %Ehi _ A(®)stk(R) (4.8
Jm NG
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Algorithm 4 Learning A € MTXN
Require: training data {(hy, us)}17,
1: randomly initialize & € R™*N
2: while termination criterion not met do
3:  draw a batch of T’ samples uniformly from the training data: {(h;,us)}; C
{(Etv ut) ?gl
4:  compute the stochastic gradient

g = e MMD? ({stk(u) oy, {A(®) stk(R)) L)

5:  update ® with a gradient algorithm using g4
6: end while

where the notation A(®) € R?™*2N emphasizes that A only depends on the m.\ real
parameters in ®. The optimization problem with real-valued optimization parameters
is thus

Luin  MMD ({stk(ut) Tie [ A(®) stk(hy) tTgl) . 4.9)

As explained in Section 2.6, such a problem is typically solved via stochastic gradient
descent, see Algorithm 4. An example of how the kernel £ can be chosen and of
how good hyperparameters of the gradient algorithm in Algorithm 4 can be found is
presented in Section 4.6.3.

Calculating the gradient in Algorithm 4 has the same order of computational
complexity as evaluating MMD% in the forward pass if backpropagation is used [52].
One evaluation of MMD% for a batch of T samples requires O(7?) evaluations of
the kernel, see (2.16), where the vectors have dimension 2m due to stacked real and
imaginary parts. Evaluating the kernel can be done in O(m), see (2.15). Computing
A(®)stk(h) can be done in O(mN). Therefore, the computational complexity of
evaluating MMD? is O(mNT +mT?). To save computation time, it can be interesting
to use a linear (in 1) version of MMD which can be found in [2, Lemma 14]. This
would result in a complexity of O(mNT).

Related Literature

The following reviews different approaches to design an observation matrix. It is worth
pointing out that the approaches focus on real-valued observation matrices without
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constraints, which differs from the approach presented in Section 4.1 where we are

mxN

looking for a complex-valued constant modulus matrix in M,

. The only exception
is the very recently introduced algorithm in [53] which also studies constant modulus
matrices, see Section 4.4. The comparison of Algorithm 4 to the method in [53] is new
in this dissertation and not present in [51]. Further, we modify an algorithm from [54]
such that it also yields constant modulus matrices, see Section 4.3.1.

The proposed Algorithm 4 and all reviewed approaches have a data dependency in
common. This is the case because either data samples are used explicitly or because
the obtained matrix is based on a dictionary which, in turn, is typically suitable for
a particular data set. In contrast, random matrices, which are the default choice in
compressive sensing applications (cf. Section 2.3), enjoy a universality property
which makes them applicable with almost any dictionary and thus data [10]. The
data dependency, therefore, introduces a tradeoff where universality is traded for a
potentially better performance on a given data set.

Literature Review

The real-valued signal model y = Ah + n with A € R™*¥ s studied in [55]. Given
a set {ht}?gl of samples, the proposed Uncertain Component Analysis determines

Ttr
A= arg max HPr(ht | ye; A) (4.10)
AcRm™*N AAT=I; 4

with y; = Ah; and where Pr(h: | ys; A) is the posterior probability of the data. Two
fixed-point equations are used to solve the optimization problem algorithmically.

The author of [56] works with the signal model y = AWs with A € R™*N and
where ¥ € RV*L (N < L) is a dictionary such that s is sparse. The author proposes
minimizing the ¢-averaged mutual coherence 1i;(AW) with respect to A. To this end,
the columns of AW are normalized and then the Gram matrix G = (A¥)T(AP)
is computed. The t-averaged mutual coherence is now given by the average of all
entries with |[G]j ;| > ¢. An iterative algorithm which alternates between two stages is
developed to achieve the goal. The algorithm chooses a down-scaling factor v € (0, 1)
and starts with an initial A("). In iteration 4, the entries of G(*) = (AD )T (AO W),
which have an absolute value larger than ¢, are multiplied by v to shrink them. This
yields a matrix G which is decomposed in the algorithm’s second stage. The
decomposition aims to find A1) such that (A D®)T(AGHD®) is close to GO,
The two stages are alternated for a predetermined number of iterations.
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In the same setting as [56], the Gram matrix G = (AW)T (AW) is utilized to find
A € R™*N in [57]. There, the goal is to bring G close to the identity matrix. After a
random initialization, a KSVD-like algorithm determines A. Further, [57] proposes a
modification of the approach where also the dictionary W can be optimized.

Also the authors of [58] work with a Gram matrix. Their goal is to determine
A € R™*N such that a bi-Lipschitz condition is fulfilled. Specifically, given a set
{ht}f;rl of samples, the goal is to establish the RIP for all differences h; — hs. To
this end, the secant set

h; — hg }
S=<{————:1<t<s<T} 4.11
{Hht—th stessh (1D

is defined and the bi-Lipschitz criterion is expressed as
|Av|? — 1] = pTATAv — 1| = [vTGv — 1| < (4.12)
for all v € S and for G = AT A. The motivating optimization problem then is

min sup [v'Gv —1| st. G >0, rank(G)=r, trace(G)=">b (4.13)
GERNXN yes

and a relaxation thereof is solved. The related problem

min trace(G@) st sup|vTGuv—1/<§ (4.14)
GeRNXN G=GT,G*0 veS

is studied in [59]. In both cases, an eigendecomposition of the optimal G yields the
desired A.

Neural networks are used in [60] in the context of the signal model y = As with
nonnegative sparse vectors s € Rf and A € R™ V. The matrix A is learned by
unrolling the update rule of a projected subgradient method. The authors of [61]
then employ the same unrolling method for channel state information feedback.
There, the matrix A € R™*2V is used to compress a channel h € CV as y =
ARR)T, S(R)T])T € R™, allowing the base station to recover h from the fed back
signal y using compressive sensing methods. The approach is modified in [62] for
channel estimation. To this end, real and imaginary parts of channels h € CV are
treated as independent data points such that a real-valued matrix A € R™*® can be
learned.
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Algorithm 5 Learning-Based Compressive Subsampling (LBCS) [54]

Require: training data {h;}"
CN*N number m of rows to select

. .. 1T h Tir
1: normalize the training data: {h;}," {—t}

hell f =1
forr =1to N do
Qp < ZtT;rl ‘U:EtP Il v, is row r of V.
end for

Require: matrix V €

Q2 < indices r which correspond to m largest «,

AN A i

return PoV [/ learned observation matrix

Learning-Based Compressive Subsampling

The methods summarized in Section 4.2 lead to an unconstrained real-valued matrix
A € R™*N whereas we are looking for a complex-valued constant modulus matrix
A € M7XN The methods which are based on a decomposition G = AT A of a
Gram matrix seem ill-suited for our task because such a decomposition will generally
not exist if the entries are constrained to have a constant modulus. However, it
seems simple to adapt the algorithm in [54] to the constant modulus constraint. After

introducing the algorithm, we present a modified version in Section 4.3.1.

The signal model in [54] is
y=PoVh 4.15)

for a unitary matrix V€ CV*N, Here, Q C {1,2,..., N} is an index set and
P, € C™ N selects the rows of V' corresponding to the indices in . The observation
matrix is then given by A = Po V. Selecting the indices randomly is a known strategy
to obtain a suitable A. However, the authors of [54] propose to select the row indices
deterministically based on a set {Et}tT;rl of normalized samples since this strategy can
improve upon random indices. The authors of [54] select the m rows v, € CI*N of
V which maximize the average captured energy

1 Tr -
B SITIk (4.16)

T =1 reQ

of the training set. We call the algorithm “learning-based compressive subsampling
(LBCS)” after the paper’s title. The algorithm is summarized in Algorithm 5.
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Algorithm 6 Monte Carlo LBCS

Require: training data {h;} 7", validation data {ht}?;all

Require: evaluation parameters par, number m of rows to select, iterations I

1: Ay < 0, erroryic < o0

2: forv=1to I do

3 draw a random unitary matrix V' € CV*¥
4:  divide all entries of V' by their absolute values
5:  normalize the rows of V'

6: A< LBCS({h}[*,V,m)

7:  error « Evaluation(A, {ht}tT;“ll,par)

8 if error < errory;c then

9 erroryc < error, Ayic + A

10:  end if

11: end for

12: return Ayc

4.3.1 Modified LBCS Algorithm

Since Algorithm 5 selects rows of a given matrix V. € CV*V we get a constant
modulus matrix whenever V' is a constant modulus matrix. Thus, the first modification
is to initialize Algorithm 5 with a constant modulus matrix. The second modification
is due to the fact that the algorithm was derived for noiseless observations whereas
we work with the signal model (4.1). The main idea is to run Algorithm 5 multiple
times (I times in Algorithm 6) for multiple random initializations, to then evaluate
all the obtained matrices on a held out set {ht}tT;"‘ll of samples, and to return the best
performing matrix. The modified algorithm is outlined in Algorithm 6. An algorithm
for generating random unitary matrices (cf. Line 3) can be found, e.g., in [63].
The evaluation (cf. Line 7) depends on the desired goal. Since we are ultimately
interested in channel estimation, in Section 4.6, we evaluate the current observation
matrix by running a channel estimation algorithm on the data set and by returning
the corresponding mean square error (MSE). In this case, we have error = MSE.
Generally, the evaluation needs to return an error and the matrix which achieves the
smallest error is returned by Algorithm 6. An example of this part of the algorithm is
explained in Section 4.6.
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Algorithm 7 PGDM [53]
Require: initial A©) ¢ C"™*V with |[[A©)]; | = 1, dictionary ¥ € CN*L
Require: « > 1, step size (, iterations [
L—
LB\ iy
2: fort=1to I do
3 Q<+ Al=Dp
. 1 1 . .
4. D <« diag (m, een IIqLII) /1 q; is column j of Q
ss E+«DQUQD -1
6 compute E with elements

~ 0, ’[E]k,l’ < 04,3
(Bl < [Ek,1

1@y ([Elkl —aB),  otherwise

7. C + 2EDQ"QD?
8:  compute the gradient

g < 4QDED®" — 240D ® diag(C)®!

9. A<« AUY _¢g /l gradient descent

10:  compute A with elements [A®)];, ; + H[g}]k’l' I/ projection
k1|
11: end for
. 1 I
12: return Tm (1)

4.4 Projected Gradient Descent Method

In [53], the setting of this chapter is studied and the goal is to obtain a constant modulus
matrix. A dictionary ¥ € CN*! for the data of interest is assumed to be given. Using
the abbreviation ® = AW, the authors want to minimize the mutual coherence

i ey
kAL || drllllll

where ¢y, is column k of ®. Since the corresponding optimization problem is difficult,

1(®) = (4.17)

the authors instead solve

min _||®"® — I3 st [¢x| =1 and |Ag|=1 (4.18)
AeCmxN
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4.5 Comparison

’ Algorithm ‘ Goal Method Data Dependency
Alg. 4 (MMD) spherical uniform | distribution match- | via training data
distribution ing with maximum

mean discrepancy

Alg. 6 (LBCS) maximize average | selecting rows via training data
captured energy

Alg. 7 (PGDM) minimize coher- | projected gradient | via dictionary
ence descent on surro-
gate objective

Table 4.1: Three algorithms to obtain a constant modulus matrix. Algorithm 4 is
proposed in this chapter, Algorithm 6 is our modification of [54], and Algorithm 7 is
from [53].

via a projected gradient descent method (PGDM), where || - || 7 is the Frobenius norm.

The details of PGDM are summarized in Algorithm 7. The algorithm’s hyperpa-
rameters «, ¢, I need to be determined via a grid or a random search (cf. Section 2.7).
The hyperparameters which lead to the smallest coherence are considered to be the best.
The initialization of A(©) is another hyperparameter. In [53], the m leading eigenvalues
and corresponding eigenvectors of the eigenvalue decomposition UAUY = W W are
used to compute A= A,}l/ 2UE which is then projected as in Line 10 of Algorithm 7.
However, since A can contain zeros, the projection and therefore this initialization
is not always possible. In that case, we initialize A(®) with independent random
elements of the form €/ ¢ with ¢ uniformly drawn in the interval [0, 27] in the numerical
experiments.

Comparison

With Algorithm 4, Algorithm 6, and Algorithm 7, we have three different methods
to obtain a constant modulus matrix. Table 4.1 briefly summarizes the different
approaches.

All algorithms share a grid search or a random search aspect: Algorithms 4 and 7
depend on a good choice of their hyperparameters (e.g., learning rate) which are found
by running the algorithms multiple times with different hyperparameter values, and
Algorithm 6 searches over multiple random matrix initializations. Another similarity
of the algorithms is data dependency: Algorithms 4 and 6 require training data and
Algorithm 7 requires a dictionary which is typically tailored for a particular data set.
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The necessity of a dictionary can be viewed as an advantage and as a disadvantage. On
the one hand, if the obtained matrix is used in conjunction with a recovery algorithm
which also requires a dictionary, then the matrix and the recovery algorithm might
harmonize well. On the other hand, if the recovery algorithm does not need a dictionary
or if no dictionary for a given data set is known, it might not be beneficial or it might
be difficult to employ Algorithm 7.

A difference between Algorithms 4 and 7 and Algorithm 6 is that the latter requires
an evaluation function to decide for the best matrix (Line 7 in Algorithm 6). In
the following numerical simulations, we evaluate the current matrix via a channel
estimation algorithm. As such, the obtained matrix depends on this algorithm (and
on the signal-to-noise ratio (SNR)) which might not be desirable. We discuss the
dependency of Algorithm 6 on the evaluation function in more detail in Chapter 5
where we combine the matrix design algorithms with the channel estimation algorithm
from Chapter 3. In the remainder of this chapter, we compare the three algorithms in
Table 4.1 in compressive sensing recovery tasks.

Numerical Evaluation

We investigate three data models which have an (approximate) sparsity in common
and are thus typical for compressive sensing applications. We continue to use
the nomenclature established in the dissertation so far. Only the third data model
can be considered a channel model but we speak of channel models and channel
estimation nonetheless. We are interested in assessing how well-suited the matrices
determined via Algorithm 4, Algorithm 6, or Algorithm 7 are for the problem of
channel estimation from observations of the form (4.1). To this end, we employ the
well-known compressive sensing algorithm orthogonal matching pursuit (OMP) (see
Algorithm 1 in Section 2.3) to perform channel estimation using different matrices
and evaluate the corresponding MSE as the figure of merit. Ultimately, the choice to
use OMP as a channel estimation algorithm is arbitrary. It is, however, a widely used
and fast algorithm. Our main interest lies in observing the effect of different matrices
on the channel estimation performance. In Chapter 5, we discuss the performance of
the Gaussian mixture model (GMM) estimator from Chapter 3 when it is used with
matrices learned via the algorithms in this chapter.

Channel Models and Estimation

The first channel model is
h=s 4.19)
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where s € C is a sparse vector with p nonzero entries. Second, we consider channels
h=Fs (4.20)

which are p-sparse in the discrete Fourier transform (DFT) basis F' € CN*N_In both

cases, the nonzero entries are drawn independently from N (0, %) Third, channels

p
h=> spa(t) (4.21)
k=1

are modeled as a weighted sum of steering vectors
a(0) = [1,el ™0 (VL) sin@)T, (4.22)

The path angles 6}, are drawn uniformly in [0, 27] and the path gains s, are drawn
from N¢ (0, %)

As explained in Section 2.3, OMP makes use of a dictionary for channel estimation.
For the channel models (4.19) and (4.20), we can use the dictionaries ¥ = I and
W = F', respectively, to express the channel as h = Ws. For the channel model (4.21),
we define a dictionary

U, = |a(d) ... a(fy)| € CN*L (4.23)

of L steering vectors which correspond to L equidistantly sampled angles 0, in [0, 27].
We can then approximate a channel by means of a linear combination of the steering
vectors in ¥y: h ~ ;s where s € Clisa p-sparse vector, cf., e.g., [44]. In all
three cases, we write

y=A¥Ys+n 4.24)

with either W = Iy, ¥ = F, or ¥ = ¥, and we use OMP from Algorithm 1 with
C = AW to recover a p-sparse estimate § of s so that the channel estimate is given
by h = W3, see also Section 2.3. In summary, the three channel models represent:
(i) sparse vectors, (ii) vectors which are sparse in a nontrivial basis, and (iii) vectors
which are approximately sparse.

Simulation Setup

The noise in (4.1) is Gaussian: 1 ~ N¢(0,,,5%1,,,). We define the SNR as

|ARE [ ARJ?
NR = = 4.2
SNR = Glnl2] = mo? R
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where o2 is adjusted for every pair (A, h) to achieve the desired SNR. To measure
the channel estimation performance, we generate Tis; = 10* test channel samples
{ht}tT;S{, generate corresponding observations according to (4.1), and compute channel
estimates {fzt}&{ using OMP. While the channel estimation algorithm is always
OMP, there is a difference in the matrix A that is used to obtain the observations. We
distinguish five cases for a given channel model:

* MMD: A single observation matrix is learned via Algorithm 4 and all observa-
tions at all SNRs are computed using this one matrix.

* PGDM: A single observation matrix is obtained via Algorithm 7 and all
observations at all SNRs are computed using this one matrix.

* MMD with PGDM init.: Algorithm 4 is initialized with the matrix obtained via
Algorithm 7 and all observations at all SNRs are computed using the resulting
matrix.

* LBCS: For every SNR, a matrix is obtained via Algorithm 6 and all observations
at a given SNR are computed using the corresponding matrix.

* random: For every SNR and every channel h;, a new random constant mod-
ulus matrix with entries according to (2.9) is drawn and used to compute a
corresponding observation.

The channel estimation performance is always measured in terms of relative MSE:
SoTet [y — b2/ S5t || By |2 The whole procedure is summarized in Algorithm 8
for a given SNR. For the random case, a new random constant modulus matrix is
drawn between Line 2 and Line 3 in Algorithm 8. It is worth pointing out that the
random case has a higher computational complexity because the product AW has to be
computed for every channel, see Line 5 in Algorithm 8, whereas it can be precomputed
in all other cases.

Simulation Parameters

When OMP is used in conjunction with the channel model in (4.21), we use the
dictionary ¥ = ¥, from (4.23) with L = 16N.

Algorithm 6 is used with T3, = 10° and Ty, = 103. The OMP algorithm is used
for the evaluation in Line 7. The evaluation parameters par are the SNR, the sparsity
p, and the OMP dictionary ¥. We always run I = 100 iterations.
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Algorithm 8 Evaluation

Require: observation matrix A, data {h;}
Require: SNR, sparsity p, dictionary ¥
e+ 0,A«0
2: fort = 1 to Tig do
3. using (SNR, A, h;), get o via (4.25), draw n ~ N¢(0,,, 0%1,,,)
4:  y <+ Ahy+n [/l compute the observation
55 h+ WOMP(AW,y,p) [/l estimate the channel hy using OMP
6 e e+ ||h A A+ ||h—h|? 1 square error
7: end for

8: return %

/I relative mean square error

Algorithm 7 is used with the OMP dictionary ¥ and with an initial A a5
described in Section 4.4. The number of iterations is always / = 500 and the remaining
hyperparameters o and ¢ are determined as follows. First, we run Algorithm 7 with all
combinations of

ae{l.0+i-01:i€e{0,1,...,10}} U {5.0,10.0,50.0,100.0} (4.26)

and ¢ € {10° : i € {—7,...,1}} and determine the best (smallest coherence, see
Section 4.4) combination (a*,(*). Then, we run Algorithm 7 another 10 times
with o € [0.9a*, 1.1a*] and ¢ € [0.9C*, 1.1¢*] chosen randomly (random search, cf.
Section 2.7). Among all these 145 evaluations of Algorithm 7, the matrix which leads
to the smallest coherence is used for the numerical experiments.

For Algorithm 4, we use MMDy, in (2.16) with the kernel

kR X R, (m,y) o k(,y) = Y ko(2,y) (4.27)
geS

where k, is the Gaussian kernel from (2.15). The kernel parameter o > 0 is difficult
to choose optimally [20]. However, a mixture of kernels [20] can lead to a satisfying
performance. Here, we use S = {2, 5, 10, 20, 40, 80}.

We make use of Pytorch [64] to implement the stochastic gradient optimization
in Algorithm 4. The employed optimizer is Adam [65]. The stochastic gradient
algorithm has three hyperparameters: batch size T, learning rate (gradient step size)
lr, and exponential learning rate decay 3. We determine these hyperparameters via
random search [24]. As explained in Section 2.7, the strategy is to draw (7, 1., 8) €
[150,1500] x [1075,5 - 1073] x [0.94, 1] randomly and run Algorithm 4. In our case,
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i m = 16, random
100 | m =16,1/] - ||
i ——m =16,1/\/E[| - [|?]
L m = 96, random
o m=96.1/]- |
2 -+ m = 96,1/ /B[]
g0 ]
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5\..
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Figure 4.2: We have A € M™ X128 Dashed curves show evaluation with model (4.21)
for m = 96 and p = 10, solid curves for m = 16 and p = 1. Evaluation with
random matrices is displayed in dark gray (“random”). Blue curves refer to learning a
matrix with training data normalization h/||k||, orange curves refer to normalization

h//E[||h]]?].

this is repeated 100 times and validation data is then used to pick the best of the 100
so-obtained matrices. The termination criterion for Algorithm 4 is early stopping [66]
with a patience of 150. We always have T, = 5 - 10* training data in all cases and
settings. However, instead of normalizing the data such that we work with {”Z—zu}fgl

we normalize the training data as follows:

_ h
h; = ¢ . fort=1,2,.... T (4.28)

Ty
Tltr Zi;rl HhZHQ

The reason for this is explained in Section 4.6.4.

Training Data Normalization

The motivation to propose Algorithm 4 is to write the RIP condition as

2

(1-06) < HA”ZH < (1+96) (4.29)
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for all h € H. The proposed optimization problem

min  MMDZ(pu, ¢ 47) (4.30)
AEMmXN

const

aims to match the distributions g 47 to py, Where p,, denotes the uniform distribution
on the unit hypersphere in C™ and where h = h/||h|. We can generally not expect to
achieve a minimum of zero. This is because both ||h|| = 1 and ||u|| = 1 hold so that a
minimum of zero implies || Ah|| = 1 which corresponds to a matrix with restricted
isometry constant § = 0. However, in particular, when the number m of rows is small,
we can expect to require a larger 6 > 0.

It might now be beneficial to introduce some variation in the norm of h to allow
| AR/|| to be closer to one. Since the optimization problem not only aims to match
the norm but also aims for isotropy, varying the norm may allow for a better isotropy.
These considerations lead us to compare the training of Algorithm 4 (MMD) using
two different training data normalizations: (i) all training channels h; are normalized
as h;/| h¢||, and (ii) all training channels are normalized as described in (4.28). In the
latter case, the training data only has “on average” a norm equal to one.

Figure 4.2 displays the result of running Algorithm 4 (MMD) with the two different
normalizations. We consider two edge cases: (i) a small number m of rows and only
one path, and (ii) a large number m of rows and many paths. In both cases, the channel
model from (4.21) is used. We observe that the training data normalization (4.28)
is at least as good as or better than the normalization h;/||h:||. The difference is
particularly pronounced when the number of rows is small. This suits the intuition
that the restricted isometry constant § is potentially larger for smaller m. In these
cases, alleviating the norm one constraint can be beneficial. On the other hand, as m
increases, the matrix A gets closer to a square matrix where an isometry with § = 0 is
possible. Due to the observed effect, in all other experiments involving Algorithm 4
(MMD), the training data normalization (4.28) is employed.

Simulation Results

In all simulations, we consider constant modulus matrices A € M™XN with m ¢

{16,32,64,96} and N = 128 and we vary the number of paths (i.e., the sparsity
value) p € {1,5,10}. First, results with the channel models (4.19) and (4.20) are
discussed, where the channels have a sparse representation. Thereafter, we discuss the
case of approximate sparsity with channel model (4.21).
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101 =E E 101 F ] ] ] E
:3\\_ p= i ‘jtt::k p=10 |
R g * T *
[ ot L Yo \ SO m i
100 NN, TEEEE W0, Thay E
s i LW N 5 1
[ \‘ Ty i [ ¥ TS |
S, N ¥, o =="9
% “*.7_~¢__.__: I ‘:\\ iy
7 LU e S N 1107 £
E = . p=5 B r "“ p=5 R
I \ ] 5 oS 1

) \ -
2 i *\ p=1 | I %% p=1 |
E1072F Ny 4 1072} A0y E
L F N\ 8 F 5 ]
L Y | § » |

N\, \s
1073 | N 11077} N E
i RN E N
L ) N L \.\ 1
1 —4 = \St 1 —4 = '\‘E
0 £ | | | Y 0 = | | | Yy
0 10 20 30 0 10 20 30
SNR [dB] SNR [dB]

Figure 4.3: Evaluation with channel models (4.19) (left) and (4.20) (right). We have
A € M2 and p € {1,5,10}. The legend is explained in Section 4.6.2.

const

Sparse channels

The left plot in Figure 4.3 shows evaluation with the channel model from (4.19) and
the right plot shows evaluation with the channel model from (4.20). In both cases, the
number of rows is m = 16. Already p = 5 seems to be a difficult setting and for p = 10,
the relative MSE is above 1.0 which means that channel estimation is not possible. The
channel models in Figure 4.3 have true sparsity with respect to an orthonormal basis
(P =TI and ¥ = F, respectively) in common so that the performance of random
matrices should be similar in both cases. This is because Subgaussian random matrices
(and constant modulus matrices are Subgaussian) are universal which means that they
can be used for sparse recovery in an arbitrary orthonormal basis [10]. However, in
particular, the case p = 1 behaves very differently in the two plots. One reason might
be that both the random observation matrix as well as the basis ¥ = F' have entries of
the form e} ¢ which can lead to a too large coherence between A and W. Interestingly,
all non-random algorithms are able to find matrices which do not suffer from this
effect. This emphasizes that universality can be traded for a performance improvement.
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Figure 4.4: Evaluation with channel models (4.19) (left) and (4.20) (right). We have
A e M32X12 and p € {1,5,10}. The legend is explained in Section 4.6.2.

const

For p = 5, all algorithms in Figure 4.3 outperform random matrices. Algorithm 7
(PGDM) is particularly strong.

Figure 4.4 considers the same setting as Figure 4.3 but with m = 32. The number
m of rows appears to be large enough to facilitate channel estimation also for p = 10.
Furthermore, the non-random algorithms yield good matrices for the cases p = 1 and
p = b where for higher SNRs the remaining estimation error seems to be due to the
presence of noise only. However, random matrices do not quite show this behavior in
the case where p = 5 and the coherence problem seemingly still exists. In almost all
cases, Algorithm 4 (MMD) and Algorithm 7 (PGDM) achieve a similar performance
with Algorithm 7 (PGDM) in a slight advantage in some settings. Interestingly, the
combination of using Algorithm 7 (PGDM) as an initialization of Algorithm 4 (MMD)
can lead to a performance which is superior to the one which is obtained if both
algorithms are used independently, see p = 10 in the left and right plot of Figure 4.4.
Unfortunately, as the case p = 5 in the right plot of Figure 4.4 highlights for high
SNRs, the combination is not guaranteed to yield the best matrix but it is at least as
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Figure 4.5: Evaluation with channel model (4.21). We have A € M8 for

const

m € {16,32,64,96} and p = 5. The legend is explained in Section 4.6.2.

good as the result of initializing Algorithm 4 (MMD) randomly.

The cases m = 64 and m = 96 lead to overlapping curves for all algorithms
and for both channel models, and all three settings p € {1, 5,10} show straight lines.
These results are not visualized.

Approximately sparse channels

Figures 4.5 and 4.6 focus on the channel model in (4.21). A first observation is that
in all of the considered settings, the curves saturate even at high SNRs. This is a
result of the approximate sparsity: Whenever one of the steering vectors a () in the
channel (4.21) corresponds to an angle 6, ¢ {él, ..,0 .} which is not present in the
dictionary ¥, from (4.23), then this channel cannot be estimated perfectly. There
exist algorithms which focus on grid-less channel estimation (see, e.g., [67, Chapter
11] for an overview). However, since we are only interested in the behavior of
different observation matrices, working with the on-grid OMP algorithm suffices for
our purpose.
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Figure 4.6: Evaluation with channel model (4.21). We have A € M7.X1% for
m € {32,64,96} and p = 10. The legend is explained in Section 4.6.2.

It is interesting to see how large the gap between the random matrices approach
and all non-random algorithms is. For example, a comparison of the left and right
plot in Figure 4.5 reveals that the best matrix with m = 32 rows (right plot) performs
almost as well as random matrices with m = 64 rows (left plot). What is more, the
best matrix with m = 64 rows (left plot) outperforms random matrices with m = 96
rows (right plot). In that sense, computing non-random matrices can save 32 rows
(32 receiver chains) in both cases. Figure 4.6 displays a similar effect (random with
m = 96 rows vs. non-random with m = 64 rows). In Figure 4.6, the combination
of Algorithm 4 (MMD) and Algorithm 7 (PGDM) can improve upon the individual
algorithms.

Conclusion

Generally, in all considered experiments, Algorithm 4 (MMD) and, in particular, the
recently introduced Algorithm 7 (PGDM) show a strong performance. It seems to be
a good strategy to initialize Algorithm 4 (MMD) with Algorithm 7 (PGDM) in the
random search training procedure: In one half of the random searches, the initialization
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would be random, in the other half, the initialization would be based on Algorithm 7
(PGDM). It is worth pointing out that Algorithm 7 (PGDM) makes use of a dictionary
for the considered channels whereas this is not required for the training of Algorithm 4
(MMD). Thus, in contrast to Algorithm 7 (PGDM), in cases where no dictionary is
available, Algorithm 4 (MMD) can still be used.

In all experiments, also Algorithm 6 (LBCS) improves upon random matrices. It
lags behind the other non-random approaches. However, one advantage of the method
is that it does not explicitly require a dictionary for the training procedure as well. Of
course, this is only true if the evaluation algorithm used in Algorithm 6 (LBCS) does
not require a dictionary. We consider such a setting in Chapter 5. As a consequence, if
Algorithm 7 (PGDM) cannot be employed, it is interesting to initialize Algorithm 4
(MMD) with Algorithm 6 (LBCS) in one half of the random searches.
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[LLearned Observation Matrix and
the Gaussian Mixture Estimator

One motivation to prefer a deterministic observation matrix over random matrices is to
save computational complexity during the channel estimation. For example, as already
pointed out in Chapter 4, if the orthogonal matching pursuit (OMP) algorithm is used,
employing random matrices requires the computation of the product AP between a
random observation matrix A and the dictionary W for every channel estimate, see
Line 5 in Algorithm 8. In contrast, this product can be precomputed if a matrix from
one of the three algorithms in Chapter 4 is used to learn an observation matrix.

Being able to precompute quantities involving A is also interesting if the Gaussian
mixture model (GMM) estimator from Chapter 3 is used. The GMM estimator
computes a weighted sum of linear minimum mean square error (LMMSE) channel
estimates (cf. (3.22)), and to compute an LMMSE channel estimate, the matrices
C’k = AC, A" + X from (3.16) need to be inverted, cf. (3.21b). Further, to compute
the weights (or responsibilities), the determinants of all C’k are necessary, too, cf. (3.20).
The inverses and determinants have to be computed for every channel estimate if
random matrices are used. Again, in contrast, these quantities can be precomputed if
A is not a random matrix.

In Section 5.3, we combine the GMM estimator from Chapter 3 with the matrices
obtained via the algorithms from Chapter 4. Further, we study what influence the
evaluation function which is employed during the iterations of Algorithm 6 (LBCS)
(see Line 7) has on the resulting observation matrix. To this end, we run Algorithm 6
(LBCS) using three different evaluation functions, cf. Section 5.4.

Simulation Setup

It seems natural to also study the matrices obtained via one of the algorithms from
Chapter 4 in the context of a channel model which does not admit a sparse representation
by construction. One such setting is presented in Figure 3.3 in Chapter 3 where we
evaluate various channel estimators with a 3GPP channel model with one propagation
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cluster and where we have A = I. In this setting, (i) the displayed compressive
sensing algorithms show a considerable gap to the genie lower bound and (ii) the GMM
estimator comes close to the genie lower bound. It is now interesting to investigate
what happens if A = I is replaced with a constant modulus observation matrix. In
particular, it is interesting to see whether (i) the gap between the estimators remains
when a constant modulus observation matrix is present, (ii) the GMM estimator still
comes close to the genie lower bound, and (iii) we can again improve upon random
matrices.

In the following simulations, the signal model is y = Ah + n with a constant
modulus matrix A € M™XN with N = 128 and the channels are generated with
one propagation cluster as explained in Section 3.4.1. We work with three channel
estimation algorithms: the genie LMMSE estimator from (3.32), the genie OMP
estimator (Algorithm 3), and the GMM estimator from (3.22). The GMM estimator
always uses K = 128 components and 19 - 10* training data. The channel estimators
are evaluated as described in Algorithm 8. The only difference is that the OMP
algorithm in Line 5 is replaced with one of the three mentioned estimators. The
algorithms from Chapter 4 are used as explained in Section 4.6.3. As in Chapter 4,
when random observation matrices are used, a new random constant modulus matrix
is drawn for every channel.

Algorithm 6 (LBCS) evaluates the current observation matrix on a validation set
of channel samples, see Line 7. In Chapter 4, OMP (Algorithm 1) is used for channel
estimation during the evaluation of Algorithm 6 (LBCS). In this chapter, we instead
employ either the genie OMP estimator, the genie LMMSE estimator, or the GMM
estimator during the evaluation in Line 7 in order to gauge the estimators’ effect on the
resulting observation matrix. We indicate this as follows:

* LBCS(algo): Algorithm 6 (LBCS) uses the estimator

algo € {gen. OMP, gen. LMMSE, GMM}

for the evaluation in Line 7 of its iterations.

Random Matrices

Figure 5.1 shows the behavior of the three channel estimators genie OMP, genie
LMMSE, and GMM estimator if random constant modulus matrices with m €
{16,32,64,96} rows are used. All cases display a considerable gap between genie
OMP and the other two estimators. Further, with m = 32 or more rows, the GMM

62



53

5.3 Learned Matrices

gen. OMP - - GMM —— gen. LMMSE

0 0
10 m=16 | 10 N |
E L ‘\ m = 32 E
107 ¢ 1 107t £
m i 1 i ]
m | |- -
p=
21072} 1072 E
s § B .
8 | | B
1073 F 1073 |
—4 | | | —4 | | |
10 0 10 20 30 10 0 10 20 30
SNR [dB] SNR [dB]

Figure 5.1: Channel estimation with the genie OMP, the genie LMMSE, and the GMM
estimator. In all cases, random observation matrices A € M;ﬁ;stl?g withm € {16,64}
(left) and m € {32,96} (right) are used.

estimator starts to come close to the genie LMMSE estimator. This re-emphasizes
the strength of the GMM estimator even for cases where the observation matrix is not
invertible. Note, of the three algorithms, only the GMM estimator can be implemented
in practice as is whereas the other two require genie knowledge.

Learned Matrices

Figure 5.2 compares channel estimation using the GMM estimator when different
observation matrices designed according to one of the algorithms from Chapter 4
are used, cf. Section 4.6.2. As another reference curve, the genie LMMSE estimator
in conjunction with random observation matrices is displayed as well. As a first
observation, only in the cases m = 16 and m = 32 there is a noteworthy gap between
genie LMMSE estimation and GMM estimation. Further, for m = 64 and m = 96,
the GMM estimator with learned matrices can slightly outperform the genie LMMSE
estimator with random matrices. In all cases, (slight) improvements upon random
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Figure 5.2: Channel estimation using the GMM estimator. In all cases, observation
matrices A € MTX128 with m € {16,64} (left) and m € {32,96} (right) are
used. “random” refers to employing random observation matrices with either the
GMM estimator (“random, GMM”) or the genie LMMSE estimator (“random, gen.

LMMSE”). The rest of the legend is explained in Section 4.6.2.

matrices are visible with only a little difference between the matrix design algorithms.

In Figure 5.3, we see the same experiment but with the genie OMP estimator instead
of the GMM estimator. Generally, there is a significant gap between the genie OMP
estimator and the genie LMMSE estimator. Further, learning an observation matrix
can considerably improve the estimation performance in comparison to employing
random matrices. Interestingly, for m = 64 and m = 96, the genie OMP does not
yet show a saturation effect in the high signal-to-noise ratio (SNR) region if learned
matrices are used. Figure 5.4 shows the same experiment but with the genie LMMSE
estimator. In this case, there is not much difference between all methods but minor
improvements can still be seen compared to random matrices.

Lastly, as a summary, Figure 5.5 is similar to Figure 5.1 in that it compares the
three different estimators. In Figure 5.1, the observation matrices are always random
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Figure 5.3: Channel estimation using the genie OMP estimator. In all cases, observation
matrices A € MTX128 with m € {16, 64} (left) and m € {32,96} (right) are used.
“random” refers to employing random observation matrices with either the genie OMP
estimator (“random, gen. OMP”) or the genie LMMSE estimator (‘“random, gen.
LMMSE”). The rest of the legend is explained in Section 4.6.2.

whereas in Figure 5.5, the observation matrices are always determined via Algorithm 4
(MMD) initialized with Algorithm 7 (PGDM). The red curves in both figures are
identical: the genie LMMSE estimator is employed with random observation matrices.
It is interesting to see that essentially all curves improve from Figure 5.1 to Figure 5.5
and they come closer to the “random, gen. LMMSE” baseline, which highlights the
importance of a good observation matrix.

Overall, the difference between the performance of random matrices and the
learned matrices seems to be smaller for better estimators. In the shown plots, the genie
LMMSE estimator is as good as or better than the GMM estimator which, in turn, is
as good as or better than the genie OMP estimator. At the same time, the gap between
random matrices and learned matrices increases from genie LMMSE estimation
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Figure 5.4: Channel estimation using the genie LMMSE estimator. In all cases,
observation matrices A € M™*1% with m € {16,64} (left) and m € {32,96}
(right) are used. “random, gen. LMMSE” refers to employing random observation
matrices with the genie LMMSE estimator. The rest of the legend is explained in
Section 4.6.2.

through GMM estimation to genie OMP estimation. Nonetheless, all estimators
benefit from learned matrices. The recently introduced projected gradient descent
method (PGDM) (Algorithm 7) from [53] is strong, indicating that the codebook ¥,
from (4.23) is well-suited for the considered data set and problem setting. Generally,
a sensible strategy seems to be to initialize Algorithm 4 (MMD) with Algorithm 7
(PGDM) in half of the random searches as long as a dictionary for the considered data
is available. If this is not the case, Algorithm 5 (LBCS) should serve as an initializer.

Different Evaluation Functions for Algorithm 6

Lastly, we look at the influence of the evaluation function on the final result of
Algorithm 6 (LBCS). We use the notation described in Section 5.1. The left plot of
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Figure 5.5: Channel estimation with the genie OMP, the genie LMMSE, and the GMM
estimator. In all cases, observation matrices A € M™X12® with m € {16,64} (left)
and m € {32,96} (right) are used. “random, gen. LMMSE” refers to employing
random observation matrices with the genie LMMSE estimator. In the remaining cases,
the observation matrices are determined via MMD with PGDM init., cf. Section 4.6.2.

Figure 5.6 shows the channel estimation with the genie OMP estimator. While the
difference between the three options LBCS (gen. OMP), LBCS (gen. LMMSE), and
LBCS (GMM) is small, LBCS (gen. OMP) tends to perform best. In the right plot
of Figure 5.6, the channel estimation is performed with the genie LMMSE estimator.
In this case, the difference between the three options is even smaller but LBCS (gen.
LMMSE) tends to perform best. Finally, Figure 5.7 shows the channel estimation
with the GMM estimator. Here, for m = 16, no clear preference can be seen, and
in the other cases, the three options hardly differ. In summary, we can observe the
tendency that it is beneficial to use the same channel estimator during the iterations
of Algorithm 6 (LBCS) as is applied afterwards when the resulting matrix is used
for channel estimation. Hence, the appropriate version of Algorithm 6 (LBCS) is
displayed in Figures 5.1 to 5.4. Howeyver, the differences in the experiments are minute.
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Figure 5.6: Algorithm 6 (LBCS) uses the channel estimator shown in brackets during
its iterations. Thereafter, for the evaluation in the plots, channels are estimated with
genie OMP (left plot) or genie LMMSE (right plot).
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Figure 5.7: Algorithm 6 (LBCS) uses the channel estimator shown in brackets during
its iterations. Thereafter, for the evaluation in the plot, channels are estimated with the
GMM estimator.
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6.1

Outlook

The following topics related to Chapters 3 and 4 might be worth studying in the future.

Asymptotically Optimal Channel Estimation

The approach in Chapter 3 is to approximate the channel probability density function
(PDF) by means of a uniformly convergent sequence of PDFs. Thereafter, for every
sequence element, a conditional mean estimator (CME) is defined, which yields a
sequence of CMEs. Theorem 2 then shows under which conditions the sequence of
CMEs converges to the optimal CME.

Interestingly, in Theorem 2, there are no further conditions on the sequence of
PDFs. One example of such a sequence is given by Gaussian mixture models (GMMs).
However, no properties specific to GMMs are used in the proof. Thus, it is possible and
interesting to investigate other universal approximators. This could potentially lead to
estimators with, e.g., a lower computational complexity or with a better performance or
which require a smaller amount of channel training data. Other universal approximators
are mentioned in [1]. The challenge lies in fitting the corresponding PDF based on
channel training data or in computing the corresponding CME R in closed form.

If the computation of the CME h) is based on GMMs, a weighted sum of K
linear minimum mean square error (LMMSE) estimators is computed (cf. (3.22)):

K

R sy s B (y) = " p(k |y = y)hiwmsex(y)- (6.1)
k=1

Here, the responsibility p(k | y) = g) (cf. (3.20)) is the probability that the
current observation y was sampled from the kth GMM component. In view of
the computational complexity, we could compute only the sum of those K/ < K
summands in (6.1) which correspond to the K’ largest probabilities. It is, in particular,
interesting to investigate the estimator’s behavior when K’ € {1,2,..., K} is varied.
Another question in this context is how sensitive the estimator (6.1) is with respect to
the responsibilities. For instance, in order to avoid evaluating K Gaussian PDFs to
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compute the exact responsibilities (cf. (3.20)), we could try to find a classifier which
aims to compute
p(1]y") =y)
T : (6.2)
p(K |y =y)

with less complexity. For example, using a neural network-based classifier, all
responsibilities could be computed simultaneously in a single forward pass. This
might save computation time while hardly affecting the sum in (6.1).

Abstractly, in Chapter 3, we study a function h whose computation requires an
analytic expression of a PDF. Since this PDF is not given, we approximate it by means
of a uniformly convergent sequence and compute the corresponding appr0x1mat10n—
based functions A ). Then we ask whether the sequence (h(K )) %—1 converges to h.
This approach could work with other functions (not necessarily channel estimators) as
well. It is particularly interesting when GMMs are used as approximating sequence. In
the case of computing the CME, we can directly make use of the well-known LMMSE
formula because conditioned on a GMM component, we are in a Gaussian setting.
More generally, the conditional Gaussianity of GMMs can make it possible to use
available closed-form solutions in order to obtain a practically useful approximation
of the function h of interest.

Learning a Compressive Sensing Matrix

In Chapter 4, we study a distribution matching problem which yields a constant
modulus observation matrix. For an arbitrary (not necessarily constant modulus)
matrix A € C™*" the optimization problem reads

 min MMD; ({btk(ut) Tir {stk(Ahy)}Tn ) (6.3)
Using
_ [ran)]  [ra) —s)] [r()
k(AR =15 am) | = |3(a) »ea) | |s) 64
A

it can again be expressed by means of real quantities. Interestingly, structural constraints
like, e.g., a Toeplitz structure, a circulant structure, or a block diagonal structure can
easily be incorporated into the learning algorithm which solves (6.3). To this end, the
number of optimization variables in A is reduced by forcing certain elements to be
equal, as dictated by the sought structure. This technique is known as weight tying
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in machine learning, see, e.g., [66]. A motivation for doing this is, for example, [68]
where Toeplitz matrices are used in the context of channel estimation and where it is
shown that randomly drawing such matrices can lead to matrices with the restricted
isometry property (RIP). Here, we might again be interested in obtaining one fixed
matrix instead of drawing random ones.

More generally, the idea in Chapter 4 is to match the distribution of Ah to
the distribution of u where h = h/||h|| are normalized channels and where w is
uniformly distributed on the m-dimensional unit hypersphere. It might be interesting to
investigate other distribution matching methods as well. One example is the generative
adversarial network (GAN) [69]. In the context of Chapter 4, the normalized channel
samples h; are the GAN’s noise samples and the observation matrix A is the generator.
The GAN’s discriminator then aims to distinguish between fake samples Ah; and real
samples ;.
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Proof of Theorem 2

The proof of Theorem 2 makes use of and is presented after the following lemma and
can also be found in [26].

Lemma 1. For an arbitrary y € RY, it holds

/ k|| fn(y — Ah)dh < \/det(A_lA_T)\/HA_l’yH2 + trace(A-1XA-T).

Proof. Recall that f, = N(0,X) denotes a Gaussian probability density function
(PDF). We have

exp(—5(y — Ah)TS ! (y — Ah))

n(y — Ah) = .
nly = AR) @n) det(Z) (A-D
_ exp(—%(A_ly — h)TATE_lA(A_ly —h)) (A2)
2N det(Z)
_exp(—5(h— Ay (A'SA ) I(h— A ly)) (A3)
B 2m)N det(Z) ' ’
Therefore,
fn(y Ah) ~ N
T ATAT = N(h; 1,%) (A.4)

is a Gaussian PDF with mean vector i = A 'y and covariance matrix ¥ =
A71S AT Let w ~ N(0,I) be a standard Gau551an random variable and let 32
be a square root of the covariance matrix 3 = XD Then, we are interested in
computing

n Ah
sty — anyin = Jaeria-r a7 [ 20T an
~ Jdet(A1A-T) / HhH/\/'(h;ﬂ,E)dh (A6)
det(A~1A-T) B, [|| &+ S2wl] (A7)
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Appendix A. Proof of Theorem 2

where we take the expectation with respect to the standard Gaussian random variable
. &l L&y .

w. To see the last equality, note that (2 + X2 w) ~ N (fz, ) is a Gaussian random

variable with mean & and covariance matrix 3. Jensen’s inequality yields:

~ =L 2 - ~ 1 2
(Bwllli+ Z2wll))” < Bl +Siw|? (A8)
= ||a|% + 2472 Ey[w] + By [trace(w ST Sz w)]
(A9)
= || 2] + trace(Z Ey [ww]) = ||2]|? + trace(X) (A.10)
= ||A  y|> 4 trace(A7'2AT). (A.11)
Lastly, we use the square root of this bound in (A.7). 0

Proof of Theorem 2. First, we show that the uniform convergence of ( f,SK))%Ozl to fp

implies the uniform convergence of ( f}(,K))%O:1 to fy. The PDF of x = Ah s

1 _
Ix(z) = wfh(A 130) (A.12)
because A is invertible. Analogously, we obtain
K 1 K), o
(@) = mf,(, (A ) (A.13)

as the PDF of Ah(X)_ Since the random variable y = x+nis a sum of two stochastically
independent random variables, its PDF can be computed via convolution:

y) = / Fa(8) ey — 8)ds. (A.14)

Similarly, £\ is obtained by replacing fx with £{*” in (A.14). For later reference,
note, because fy, is positive (fp(s) > 0 for all s € RY) and fx as well as f,((K) are
continuous PDFs, the convolution results f}(,K) and f, are positive, too.

We have

| fy(y) — y)| = ‘/fn ) fx(y—s) — f )(y — s)) ds (A.15)
fr(A Yy — ) — [ (A Yy — 5))
S/ fn(S) ]det(A)| dS
(A.16)
_ o= 5 e 1n = 1o
Flacan ] e = it e
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The last integral is equal to one because f,, is a PDF. Since lim g, || fn— f, I(,K ) oo =0
holds by the uniform convergence assumption, we have

: (K _
I}gnoony Iy loo =0 (A.18)

which means that the sequence ( f)(,K) )7%_ converges uniformly to f),.

Let r > 0 be arbitrary. In the following, we show that (3.11) holds uniformly for
all y € B,. But because r is arbitrary, the pointwise convergence in (3.11) follows
immediately.

Lety € B, be arbitrary. With (3.10) and (3.9) in mind, we find the following upper
bound:

fah) £ )
K@) ()

lh(y) — B ()] < / |lllfaly — AR)| dh o (AI19)

fa(h)  £E
(K

y

)
(h)
() /thlfn(y—Ah)dh. (A.20)

The last integral is independent of K and by Lemma 1, it is finite for any y € RV . It
is, in particular, bounded by

\/det(A_lA_T)\/HA_1H2r2 + trace(A-1XA-T) < 0o

for all y € B,, where || A~!|| is the spectral norm of the matrix A~!. Hence, as soon
as

falh) £ ()
) (5 )

lim sup

=0, Vye€B. (A.21)
K—00 pepnN

is shown, (3.11) is confirmed for all y € B,..

To prove (A.21), we write

(A.22)

for an arbitrary h € RY. Now, we add 0 = ;K)(y)f,sK)(h) — fj(,K) (y)f,(,K)(h) in
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Appendix A. Proof of Theorem 2

the numerator on the right-hand side and apply the triangle inequality to get

W) E () = K 1 () (A23)
< > O (y)
() — £59m)) 155 ] (5w = W) 15w
< K) (K)
( ) ( ) fy@)fy ' (y)
< 1n = 5o Iy e + 15" = fy ol F e (A24)
- B 1 ()

The goal is now to find upper bounds for all terms in the numerator and lower bounds
for all terms in the denominator which in the end allow us to see that (A.22) converges
to zero as K approaches infinity.

By the compactness of 5, and the continuity of f, there exists a Yymin € B,
at which f, attains a minimum value fy(Ymin) > 0 over B,. Due to the uniform
convergence (A.18), there exists an index N; € N such that | fy (y) — f)(,K) (y)] <
% fy(Ymin) holds for all X' > N; and for all y € B The reverse triangle inequality

K
then shows that f)(, )(y) > fy(y) = |fy(y) — ( N = fy(Ymin) — %fy(ymin) =
%fy(ymin) is true. Hence, with M = ny(ymm) > 0, the inequality

fy(K) (y) > M, (A.25)

holds for all y € B, and for all K > N;. Further, since || fp — f,(,K)HOO — 0 and
| fnlloo < 00, there exist an Ms > 0 and an N3 € N such that

1/ N0 < My forall K > No. (A.26)
Analogously, there exist an M3 > 0 and an N3 € N such that
18 o < My forall K > Nj. (A.27)

Let ¢ > 0 be arbitrary. Due to || fp — f,(rK)Hoo — 0, there exists an index
Ny > max{Nl, Ng} such that

fy(ymin)Ml

I = 151 oo < S

e forall K > Ny (A.28)

Similarly, there exists an index N5 > max{ Ny, N2} with

fy(ymin)Ml

Iy = 55" loe < 250

¢ forall K > Ns. (A.29)
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We can use the last five inequalities to bound (A.24). To this end, fy (Ymin) and (A.25)
provide lower bounds on the terms in the denominator, (A.28) and (A.27) bound the
first summand in the numerator, and (A.29) and (A.26) bound the second summand in
the numerator. In total, this yields an upper bound on (A.22):

(K)

fh(h) o fh (h') < fy(ymin)Mls . M3 fy(ymin)Mlg . My
fy(y) fj(,K) (y) o 2M3 fy(ymin)Ml 2M> fy(ymin)Ml
(A.30)

for all K > max{Ny, N5} and for all y € B,. We conclude

) 1)

) 15y

sup
heRN

<e (A31)

for all K > max{Ny4, N5} and all y € B,, and because ¢ was arbitrary, (A.21) is
confirmed, which concludes the proof. O
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B.1

Discussion for Noninvertible
Matrices

This appendix provides more details for the discussion in Section 3.2.1. As mentioned
there, two problems arise in the proof of Theorem 2 if A is notinvertible. First, Lemma 1
(see Appendix A) might no longer hold. That is, the integral [ k|| fa(y — Ah)dh
might not be finite for all y € R™. This is discussed in Appendix B.1. Second, a
crucial step in the proof of Theorem 2 is showing that ( f)(,K) )%, converges uniformly
to fy, cf. (A.18). This is possible because the sequence ( f,EK))%Ozl of probability
density functions (PDFs) corresponding to the auxiliary variables x(5) = Ah()
converges uniformly to the PDF f, of x = Ah if A is invertible. Unfortunately, if
A is not invertible, this will likely not hold for an arbitrary fj. This is discussed in
Appendix B.2.

Integral in Lemma 1

To see why the integral [ ||h| fn(y — Ah)dh in Lemma 1 might not be finite if
A is not invertible, consider the matrix A = [I,0] € R™*Y with m < N where
I € R™*™ is the identity matrix and the remaining elements of A are zero. Let us
write h = [hL, hY, 1T € R™ x RN=™_ Define the set

D={hecRY :|hyl >1,|hy_m| > 1} (B.1)

where the norm of both subvectors h,,, and h_,, is at least one such that we always
have ||k|| > 1 on D. We can now compute:

/ 1Bllfaly — Ah)dh > / faly — Ah)dh B.2)
RN D

- / / Foly — o) dRondhoy . (B.3)
21 21

Since f, is an m-dimensional Gaussian PDF, the inner integral is equal to some
constant ¢ with 0 < ¢ < 1 and it follows that [ ||h|| fa(y — Ah)dh is not finite.
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B.2

Appendix B. Discussion for Noninvertible Matrices

Uniform Convergence

We want to find an expression for the PDF of x = Ah when A € R™*¥ is a wide
matrix with full rank m < N. We can assume that the first m columns are linearly
independent (otherwise we introduce a permutation matrix for the following argument).
This allows us to partition A = [A;, A,] into an invertible part A; € R™*™
and a noninvertible part A, € R™*N~™_ With a corresponding partitioning of
h = [hF, hI]T € R™ x RV~ we can write

x=Ah=A;h;, + A,h,. (B.4)
Defining a transformation
t:R™ x RN=™ 5 R™ x RN"™ (hy, hy) = (Ajhi + Ayhy,hy)  (B.5)

with the inverse
t7h(z, @) = (A (z — An), T) (B.6)

we can now compute the joint density fy x» via the usual transformation formula:

(z,2) = fex(z,x') = fn(t" (. 21)) : (B.7)

|det (ZE(t Yz, 2)))|

Together with |det (55 (¢t~ (x,2)))| = |det(A;)|, we can express the PDF of
x = Ah via marginalization:

) T It (@)
T fx(z) = /RN_m Jxx(x,x')de' = /RN—m oA

Analogously, we obtain the PDF f,EK) of x(K) = Ah(K)_ Given

dx’. (B.8)

_ ‘IRN—m (f;(,K)(t_l(:c,m’)) — fh(t_l(:n,:c’))> da!

[det(Ay)] (B9)

# (@) = fx(a)|

for x € R™, we can conjecture that due to the integral over RNV~ the uniform

convergence of (f ,(,K))C;(O:l to fp alone is generally not sufficient to infer the uniform

convergence of ( f,EK))%Ozl to fx.
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