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Abstract— This paper presents a novel approach to design
interval estimators for uncertain linear impulsive systems.
We consider situations where model disturbances and mea-
surement noises are unknown but lie in given intervals. We
propose a new architecture providing more degrees of freedom
than standard interval observer structures for linear impulsive
systems. We test the efficiency of the proposed methodology
through numerical simulations.

I. INTRODUCTION

State estimation is critically important in numerous con-
trol applications, as measurements of all state variables
are often costly and difficult to obtain. Accordingly, mul-
tifarious approaches have been proposed to design state
observers [1]. Frequently, these methodologies focus on
the design of point-wise observers, e.g., Luenberger ob-
servers, which provide estimates converging to the state’s
true values, when possible. Stochastic observers such as
Kalman filters also provide a confidence measure around
the point estimates, but require that the statistical properties
of the systems’ disturbances are known [2]. However, for
industrial systems, the state disturbances and measurement
noises can often be modeled as bounded signals, whereas
their statistical properties are harder to estimate. Interval
estimators [3], [4] are then advantageous, as they can handle
the presence of disturbances whose values are only known
to belong to given intervals or polytopes, and many types
of bounded uncertainties more generally.
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Impulsive systems form an important class of hybrid
systems that includes both discrete and continuous event
dynamics. Interval observers have been proposed for lin-
ear impulsive systems in [5]–[7]. The approach in [7]
requires the estimation error dynamics to be stable and
cooperative, which may be restrictive since it may not be
possible to determine an observer gain that ensures these
properties. To address this issue, coordinate transformations
are commonly used, when the system is observable [5],
[6]. Although such methods achieve reasonable accuracy, a
drawback of interval observer design based on coordinate
transformation is that such estimators can provide con-
servative bounds since the transformations have a strong
impact on performance. Another drawback of such methods
is that there is no constructive approach to compute the
coordinate transformations and the interval observer gain
simultaneously, in order to satisfy the cooperative prop-
erty and disturbance rejection constraints [8]. Among re-
cently proposed alternative methods, [9] presents a two-step
approach that integrates reachability analysis and robust
observer design, and [8] includes an additional degree of
freedom into the design of an interval observer. However,
these two approaches have been proposed only for discrete-
time linear systems, while impulsive systems, which can be
used to model a wide variety of real-world processes, e.g.,
systems with impacts [10], have not been considered.

The contribution of this paper consists in designing a new
interval observer for uncertain linear impulsive systems.
Motivated by [8], we develop a novel observer structure
whose design conditions are less conservative than those of
standard interval observers, since it provides two additional
degrees of freedom. These degrees of freedom improve the
accuracy of interval estimation. The structure of our interval
observer circumvents the issue of coordinate transforma-
tion and provides more accurate estimates than interval
observers based on such transformations. Furthermore, we
prove the input-to-state stability (ISS) property of linear
impulsive systems under minimum dwell-time constraints1

when some linear matrix inequalities (LMIs) are satisfied.
Section II presents the problem statement. Section

III recalls some well-known nonnegativity conditions for
continuous-time and discrete-time systems and some basic

1Dwell-times are times between two consecutive impulses.



facts about interval observer design as well as the stability
analysis of impulsive systems under minimum dwell-time
constraints. The stability conditions are used in Section III
to design the novel interval observer. Finally, we illustrate
the performance of the methodology through numerical
simulations in Section IV.

Notation. We denote the real numbers by R, the integers
by Z, R≥0 = {τ ∈ R : τ ≥ 0} and Z≥0 = Z ∩ R≥0.
We denote the cones of vectors of dimension n with
positive and nonnegative components by Rn>0 and Rn≥0
respectively. We denote the p-norm of a vector x ∈ Rn
by |x|p := (

∑k
i=1 |xi|p)1/p, for p ∈ [1,∞), and |x|∞ :=

maxi∈{1,...,n} |xi|. For a measurable vector-valued signal
u : R≥0 → Rn, we denote its L∞-norm as ‖u‖L∞ :=
ess supt≥0 |u(t)|2. We denote by Ln∞ the set of signals u
with the property ‖u‖L∞ <∞. The n× n identity matrix
is denoted In. For two vectors x1, x2 ∈ Rn or matrices
A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤ A2 are
understood element-wise. A matrix A ∈ Rn×n is Hurwitz
if all its eigenvalues have negative real parts; it is called
Schur stable if all its eigenvalues have absolute value less
than one; it is called Metzler if all its elements outside of the
main diagonal are nonnegative and it is called nonnegative
if A ≥ 0. The notation P � 0 (P � 0) for a symmetric
matrix P ∈ Rn×n means that it is positive (nonnegative)
definite. We denote the set of n×n positive definite matrices
by Sn�0. In a symmetric block matrix, the symbol ∗ denotes
a term that can be deduced by symmetry.

II. PROBLEM STATEMENT

Consider the following continuous-time hybrid (impul-
sive) linear system

ẋ(t) = Ax(t) + w(t), ∀t ∈ [ti, ti+1), i ∈ Z≥0,
x(ti+1) = Gx(t−i+1) + g(ti+1), ∀i ∈ Z≥0, (1)

y(t) = Cx(t) + v(t), ∀t ≥ t0,

where x(t) ∈ Rn represents the state vector and x(t−i+1)
stands for the left-sided limit of x(t) for t→ ti+1; A,G ∈
Rn×n; w ∈ Ln∞ represents the input for t ∈ [ti, ti+1);
a continuous signal g ∈ Ln∞ stands for the input at time
instants ti+1 for i ≥ 1; y(t) ∈ Rp represents the output
signal available for measurements; v ∈ Lp∞ represents
the measurement noise; C ∈ Rp×n. We assume that the
sequence of impulse events ti with i ∈ Z≥0 is positively
incremental, i.e., θi = ti+1−ti > 0 and t0 = 0. In addition,
we assume that the matrices A, C and G are given. We do
not impose any stability condition on the matrices A and G.
We assume that the system (1) evolves under predetermined
mode transitions, i.e., the impulse instants ti are given, and
moreover θi ∈ [Tmin,+∞) for all i ∈ Z≥0, where Tmin is
a given positive constant.

Throughout this paper, we assume that initial conditions
for x(0), instantaneous values of time-varying inputs w and
g in the continuous and discrete dynamics, and instanta-
neous values of the measurement noise v are uncertain but
belong to given intervals. Namely, four bounds v, v ∈ Rp
and x(0), x(0) ∈ Rn are given such that

v ≤ v(t) ≤ v,∀t ≥ 0, and x(0) ≤ x(0) ≤ x(0). (2)

Furthermore, two functions w, w ∈ Ln∞ are given such that

w(t) ≤ w(t) ≤ w(t), ∀t ∈ R≥0,

and two functions g, g ∈ Ln∞ are given such that

g(t) ≤ g(t) ≤ g(t), ∀t ∈ R≥0.

The goal of this paper is to design an interval observer,
i.e., we want compute at each time t ≥ 0 lower and
upper bounds for the state x(t) such that x(t) ≤ x(t) ≤
x(t). In particular, we aim to circumvent the coordinate
transformation issue of [5], [6] by designing an interval
observer with more degrees of freedom.

III. INTERVAL OBSERVER DESIGN

In this section, we design an interval observer for the
system (1). First, we review some basic facts from interval
estimation, impulsive systems and positive linear systems,
which are needed in the sequel.

A. Preliminaries on interval analysis

Given a matrix A ∈ Rm×n, define A+ = max{0, A},
A− = A+ − A (we use the same notation for vectors)
and denote the matrix of absolute values of all elements by
|A| = A+ +A−.

Lemma 1. [11] Let x ∈ Rn be a vector variable with
x ≤ x ≤ x for some given vectors x, x ∈ Rn. If A ∈ Rm×n
is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (3)

B. Nonnegative linear systems

1) Nonnegative continuous-time linear systems: Next,
consider the following LTI system

ẋ(t) = Ax(t) +Bω(t), ω : R≥0 → Rq≥0, ∀t ∈ R≥0 (4)

y(t) = Cx(t) +Dω(t),

with x ∈ Rn, y ∈ Rp and A ∈ Rn×n is a Metzler matrix.

Lemma 2. [12] If x(0) ≥ 0 and B ∈ Rn×q≥0 , any
solution of the LTI system (4) is element-wise nonnegative.
Furthermore, the output solution y(t) is nonnegative if
C ∈ Rp×n≥0 and D ∈ Rp×q≥0 . A dynamical system that
satisfies all these restrictions is called cooperative.



2) Nonnegative discrete-time linear systems: Consider
the system

xt+1 = Axt +Bωt, ω : Z≥0 → Rm≥0, t ∈ Z≥0 (5)

with xt ∈ Rn, A ∈ Rn×n≥0 and B ∈ Rn×m≥0 .

Lemma 3. [12] If x(0) ≥ 0, then any solution of (5) is
element-wise nonnegative for all t ∈ Z≥0.

C. Stability of linear impulsive systems under minimum
dwell-time constraints

The next theorem recalls a result about stability of linear
impulsive systems under minimum dwell-time constraints.

Theorem 1. [13, Lemma 2.2] Consider the system (1)
with w ≡ 0, g ≡ 0 and dwell-times θi ∈ [Tmin,+∞) for
all i ∈ Z≥0, where Tmin is a given constant. If there exists
a matrix P ∈ Sn�0 such that

ATP + PA ≺ 0,

GTeA
TTminPeATminG− P ≺ 0,

(6)

then the system (1) is asymptotically stable.

In the context of interval estimation, in addition to the
global asymptotic stability (GAS) property, one needs to
prove the input-to-state stability (ISS) property (see the
definition of ISS in [14]) of the estimation errors’ dynamics.
This motivates the results of the following section.

D. Robust stability of linear impulsive systems under min-
imum dwell-time

Next, we prove a new result to guarantee the ISS property
with respect to the inputs w and g, under a dwell-time
constraint.

Theorem 2. Let all conditions of Theorem 1 be satisfied,
w ∈ Ln∞, and g ∈ Ln∞ be continuous. Then the system (1)
is ISS with respect to the inputs w and g.

Proof. Consider for the system (1) a Lyapunov function
candidate V (x) = xTPx (denote V (t) = x(t)TPx(t)) with
P ∈ Sn�0. We have

V̇ (t) = xT(t)
(
ATP + PA

)
x(t) + 2xT(t)Pw(t)

=

[
x(t)
w(t)

]T

Q1

[
x(t)
w(t)

]
− α1V (t) + γ1|w(t)|22,

Q1 =

[
ATP + PA+ α1P P

P −γ1In

]
, α1, γ1 > 0,

for all t ∈ [ti, ti+1) and for any i ∈ Z≥0. Moreover,
by taking α1 small and γ1 large enough, the following
inequality is satisfied

ATP + PA+ α1P +
1

γ1
PP ≺ 0,

since the first LMI in (6) is satisfied and P is a symmetric
matrix. Consequently, if the strict LMIs in (6) are satisfied,
by using a Schur complement, there exist values for α1

small and γ1 such that Q1 � 0. Then,

V̇ (t) ≤ −α1V (t) + γ1‖w‖2∞, ∀t ∈ [ti, ti+1), i ∈ Z≥0.
(7)

Define

θi = t−i+1 − ti, Ji =

∫ θi

0

eAτw(t−i+1 − τ)dτ,

Φi = eAθi , Φmin = eATmin .

We deduce from (1) that

x(t−i+1) = eAθix(ti) +

∫ t−i+1

ti

eA(t−i+1−s)w(s)ds,

= eAθix(ti) +

∫ θi

0

eAτw(t−i+1 − τ)dτ,

= Φi(Gx(t−i ) + g(ti)) + Ji,

= ΦiGx(t−i ) + Φig(ti) + Ji.

Then, we get

V (t−i+1) = (x(t−i ))TGTΦT
i PΦiGx(t−i )+

2(x(t−i ))TGTΦT
i P (Φig(ti) + Ji)+

(Φig(ti) + Ji)
TP (Φig(ti) + Ji). (8)

If the first LMI in (6) is satisfied, the function V(t) =
eA

TtPeAt is decreasing. So in particular, under minimum
dwell-time constraints, i.e., when θi ≥ Tmin, we get

eA
TθiPeAθi � eA

TTminPeATmin ,

⇒ GTeA
TθiPeAθiG � GTeA

TTminPeATminG. (9)

It can be inferred from (8) and (9) that

V (t−i+1) ≤ (x(t−i ))T(GTΦT
minPΦminG− α2P )x(t−i )+

2(x(t−i ))TGTΦT
i P (Φig(ti) + Ji)+

(Φig(ti) + Ji)
TP (Φig(ti) + Ji)

+ α2(x(t−i ))TPx(t−i ),

for any 0 ≤ α2 < 1, independent of ti. When (6) is
satisfied, GTΦT

minPΦminG − α2P � 0 for some value of
α2. Consequently, we get

V (t−i+1) ≤ α2(x(t−i ))TPx(t−i ) + ϕ‖Φig(ti) + Ji‖22

+

[
x(t−i )

Φig(ti) + Ji

]T

Q2

[
x(t−i )

Φig(ti) + Ji

]
,

Q2 =

[
GTΦT

minPΦminG− α2P ∗
PΦiG P − ϕIn

]
,

for any scalar ϕ. If the first LMI in (6) is satisfied, A is
stable and so Φi is bounded. Therefore, when ϕ is large



enough, by using a Schur complement of Q2, we deduce
that Q2 � 0 for all i. Furthermore, if the first LMI in (6)
is satisfied,

∣∣∣∫ θi0
eAτw(t−i+1 − τ)dτ

∣∣∣
2
≤ ρ||w||∞ for some

ρ > 0 and for all i, again because A is stable. Consequently,
we get

V (t−i+1) ≤ α2V (t−i ) + γ2 ρ
2 ‖w‖2∞ + γ3‖g‖2∞, ∀i, (10)

for some positive constants γ2 and γ3. The inequalities (7)
and (10) imply that the system (1) is ISS [14].

E. Interval observer design under minimum dwell-time
constraints

We propose a new interval estimator in the form:

χ̇(t) = (TA− LC)η(t) + Ly(t) + T+w − T−w−
L+v + L−v − ((TA− LC)N)+v

+ ((TA− LC)N)−v, ∀t ∈ [ti, ti+1),

χ(0) = T+x(0)− T−x(0),

η(t) = χ(t) +Ny(t), ∀t ∈ [ti, ti+1),

x(t) = η(t)−N+v +N−v, ∀t ∈ [ti, ti+1),

χ(ti+1) = (RG−MC)η(t−i+1) +My(ti+1) +R+g

−R−g −M+v +M−v − ((RG−MC)J)+v

+ ((RG−MC)J)−v, (11)
η(ti+1) = χ(ti+1) + Jy(ti+1),

x(ti+1) = η(ti+1)− J+v + J−v,

χ̇(t) = (TA− LC)η(t) + Ly(t) + T+w − T−w
+ L−v − L+v + ((TA− LC)N)−v

− ((TA− LC)N)+v, ∀t ∈ [ti, ti+1),

χ(0) = T+x(0)− T−x(0),

η(t) = χ(t) +Ny(t), ∀t ∈ [ti, ti+1),

x(t) = η(t) +N−v −N+v, ∀t ∈ [ti, ti+1),

χ(ti+1) = (RG−MC)η(t−i+1) +My(ti+1) +R+g

−R−g +M−v −M+v + ((RG−MC)J)−v

− ((RG−MC)J)+v,

η(ti+1) = χ(ti+1) + Jy(ti+1),

x(ti+1) = η(ti+1) + J−v − J+v,

for all i ∈ Z≥0, where x ∈ Rn and x ∈ Rn stand,
respectively, for the lower and the upper interval estimates
for the state x. In (11), we have to design the matrices
T,R ∈ Rn×n, N, J ∈ Rn×p and L,M ∈ Rn×p. Inspired
by the structure of a point-wise observer that is proposed
in [15], we select the matrices T , N , R and J such that

T +NC =In, (12)
and R+ JC =In. (13)

Denote the estimation errors as follows

e(t) = x(t)− x(t), e(t) = x(t)− x(t), ∀t ∈ R≥0,
eη(t) = x(t)− η(t), eη(t) = η(t)− x(t), ∀t ∈ R≥0,

and for all i ∈ Z≥0

eχ(t) = Tx(t)− χ(t), ∀t ∈ (ti, ti+1),

eχ(t) = χ(t)− Tx(t), ∀t ∈ (ti, ti+1),

eχ(ti+1) = Rx(ti+1)− χ(ti+1),

eχ(ti+1) = χ(ti+1)−Rx(ti+1).

We need the following assumptions.

Assumption 1. There exist matrices L ∈ Rn×p, M ∈
Rn×p, T ∈ Rn×n, R ∈ Rn×n and P ∈ Sn�0 such that

(i) the following LMIs hold

(TA− LC)TP + P (TA− LC) ≺ 0

(RG−MC)Te(TA−LC)TTminPe(TA−LC)Tmin(RG−MC)

− P ≺ 0 (14)

(ii) the matrix (TA− LC) is Metzler;
(iii) the matrix (RG−MC) is nonnegative.

Theorem 3. Let Assumption 1 be satisfied. Then the
estimates x(t) and x(t) given by (11) yield the relations

x(t) ≤ x(t) ≤ x(t), ∀t ∈ R≥0, (15)

and we get e, e ∈ Ln∞.

Proof. The dynamics of the errors eχ, eχ can be written as
follows for all i ∈ Z≥0

ėχ(t) = (TA− LC)eη(t) +

j=3∑
j=1

αj(t), ∀t ∈ [ti, ti+1),

ėχ(t) = (TA− LC)eη(t) +

j=3∑
j=1

αj(t), ∀t ∈ [ti, ti+1),

(16)

with

α1(t) = (L+v − L−v)− Lv(t),

α2(t) = Tw(t)− (T+w − T−w),

α3(t) = ((TA− LC)N)+v − ((TA− LC)N)−v,

α1(t) = Lv(t)− (L+v − L−v),

α2(t) = (T+w − T−w)− Tw(t),

α3(t) = −(((TA− LC)N)+v − ((TA− LC)N)−v).



Furthermore, we get

eη(t) = x(t)− χ(t)−NCx(t)−Nv(t), ∀t ∈ [ti, ti+1),

= eχ(t)−Nv(t), ∀t ∈ [ti, ti+1),

eη(t) = χ(t)− x(t) +NCx(t) +Nv(t), ∀t ∈ [ti, ti+1),

= eχ(t) +Nv(t), ∀t ∈ [ti, ti+1). (17)

Consequently, the errors’ dynamics (16) can be rewritten
as follows ∀i ∈ Z≥0

ėχ(t) = (TA− LC)eχ(t) +

j=3∑
j=1

β
j
(t), ∀t ∈ [ti, ti+1),

ėχ(t) = (TA− LC)eχ(t) +

j=3∑
j=1

βj(t), ∀t ∈ [ti, ti+1),

(18)

with

β
1
(t) = α1(t), β

2
(t) = α2(t)

β
3
(t) = α3(t)− ((TA− LC)N)v(t),

β1(t) = α1(t), β2(t) = α2(t),

β3(t) = α3(t) + ((TA− LC)N)v(t).

By using a similar argumentation, we get

ėχ(ti+1) = (RG−MC)eχ(t−i+1) +

j=3∑
j=1

hj(ti+1),

ėχ(ti+1) = (RG−MC)eχ(t−i+1) +

j=3∑
j=1

hj(ti+1), (19)

with

h1(ti+1) = (M+v −M−v)−Mv(ti+1),

h2(ti+1) = Rg(ti+1)− (R+g −R−g),

h3(ti+1) = ((RG−MC)J)+v − ((RG−MC)J)−v

− ((RG−MC)J)v(ti+1),

h1(ti+1) = Mv(ti+1)− (M+v −M−v),

h2(ti+1) = (R+g −R−g)−Rg(ti+1),

h3(ti+1) = −(((RG−MC)J)+v − ((RG−MC)J)−v)

+ ((RG−MC)N)v(ti+1).

It can be inferred by applying Lemma 1 that the signals
{β

i
(t), βi, 1 ≤ i ≤ 3} are nonnegative for all t ∈ [ti, ti+1)

and the signals {hj(ti+1), hj(ti+1), 1 ≤ j ≤ 3} are
nonnegative ∀i ∈ Z≥0. Consequently, we deduce by using
Lemma 2 and Lemma 3 that eχ(t) ≥ 0, eχ(t) ≥ 0 since
eχ(0) ≥ 0, eχ(0) ≥ 0, the matrix TA − LC is Metzler
by using Assumption 1.ii and the matrix RG − MC is
nonnegative by using Assumption 1.iii (the systems (18)

and (19) are cooperative). Accordingly, the order relation
χ(t) ≤ Tx(t) ≤ χ(t) is satisfied for all t ∈ [ti, ti+1) and
the order relation χ(ti+1) ≤ Rx(ti+1) ≤ χ(ti+1) holds.

Moreover, the inequalities χ(t) ≤ Tx(t) for all t ∈
[ti, ti+1) and χ(ti+1) ≤ Rx(ti+1) are equivalent to

x(t) ≤ x(t) +Nv(t)− (N+v −N−v), t ∈ [ti, ti+1),

x(ti+1) ≤ x(ti+1) + Jv(ti+1)− (J+v − J−v).

By applying Lemma 1, we deduce that x(t) ≤ x(t) for all
t ∈ R≥0. On the other hand, one can rewrite the inequality
Tx(t) ≤ χ(t) for all t ∈ [ti, ti+1) and the inequality
Rx(ti+1) ≤ χ(ti+1) as follows

Tx(t) ≤x(t)−NCx(t)−Nv(t)−N−v +N+v,

Rx(ti+1) ≤x(ti+1)− JCx(ti+1)− Jv(ti+1)−
J−v + J+v,

which is equivalent to

x(t) ≤ x(t) + (N+v −N−v)−Nv(t), t ∈ [ti, ti+1),

x(ti+1) ≤ x(ti+1) + (J+v − J−v)− Jv(ti+1).

It can be inferred by using Lemma 1 that x(t) ≤ x(t) for
all t ∈ R≥0.

Furthermore, we conclude from Theorem 1 that the
errors’ systems (17) and (19) are asymptotically stable
when Assumption 1.i holds. We deduce from Theorem 2
that eη, eη ∈ Ln∞. From (11), we get

e(t) = eη(t) +N+v −N−v, ∀t ∈ [ti, ti+1),

e(ti+1) = eη(ti+1) + J+v − J−v,
e(t) = eη(t) +N−v −N+v, ∀t ∈ [ti, ti+1),

e(ti+1) = eη(ti+1) + J−v − J+v,

Hence, we get e, e ∈ Ln∞.

IV. NUMERICAL SIMULATIONS

In this section, we compare the results of this work to
those of the existing literature. Consider an abstract model,
where the matrices of the system (1) are defined as follows

A =

[
−1 −3
2 −1

]
; G =

[
2 −1
1 0.6

]
; C =

[
1 0

]
.

For the simulations, we select v(t) = 0.1 sin
(

1
2π t
)
, and

w(t) = g(t) =
[
0.1 sin

(
1
2π t
)
, 0.1 sin

(
1
2π t
)]T

. Impulses
occur in the system (1) at t = 2.5 and t = 5. The unknown
initial condition and its bounds are

x(0) =

[
1.5
1.5

]
; x(0) =

[
1.3
1.3

]
; x(0) =

[
1.7
1.7

]
.

Notice that there exists no gain L such that the matrix
(A−LC) is Metzler. Consequently, methodologies such as



Fig. 1. Evolution of x1 and the observed bounds x1 and x1
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Fig. 2. Evolution of x2 and the observed bounds x2 and x2

those that have been proposed in [7], [6, Theorem 3] cannot
be applied to construct an interval estimator. Assumption
1.ii holds when we select L =

[
5 0

]T
and T =[

0 0
2 1

]
: the matrix TA−LC =

[
−5 0
0 −7

]
is Metzler.

Assumption 1.iii is satisfied with M =
[
−0.5 0

]T
and

R =

[
0 0
−0.5 1

]
: the matrix RG−MC =

[
0.5 0
0 1.1

]
is nonnegative. The matrix N =

[
1 −2

]T
and the

matrix J =
[

1 0.5
]T

. By using Matlab YALMIP
toolbox [16] with SeDuMi to solve the LMIs, one can find
that Assumption 1.i holds for Tmin = 0.22.

We compare on Fig. 1 and Fig. 2 the estimates given
by the interval observer (11) with those given by using
the coordinate transformation methodology proposed in [6,
Theorem 4]. We remark that the interval observer (11)
provides the most accurate interval estimates.

V. CONCLUSION

We have considered the problem of interval observer
design for uncertain linear impulsive systems. The model
uncertainties are assumed to be unknown with given
bounds. We have proposed a new structure to circumvent
the issues of transformation of coordinates by designing an
interval observer with more degrees of freedom. We have
illustrated the performance of the proposed methodology
through numerical simulations. Future research can extend
the methodology to nonlinear systems.
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