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Although adherence to project schedule is the most critical performance metric among project owners, still 53 % of
typical construction projects exhibit schedule delays. While construction progress monitoring is key to allow effective
project management, it is still a largely manual, error prone and inefficient process. To contribute to more efficient
construction progress monitoring, this research proposes a method to automatically detect the most common
temporary object classes in large-scale laser scanner point clouds of construction sites. Finding the position of
these objects in the point cloud can help determine the current state of construction progress and verify compliance
with safety regulations. The proposed workflow includes a combination of several techniques: image processing over
vertical projections of point clouds, finding patterns in 3D detected contours, and performing checks over vertical
cross-sections with deep learning methods. After applying and testing the method on three real-world point clouds
and testing with three object categories (cranes, scaffolds, and formwork), the results reveal that our technique
achieves rates above 88 % for precision and recall and outstanding computational performance. These metrics
demonstrate the method’s capability to support the automatic 3D object detection in point clouds of construction
sites.

1. Introduction1

Nowadays, inefficiencies, such as cost and time overruns, occur2

regularly within the construction industry. According to Mace and3

Jones (2016) 53% and 66% of typical construction projects record4

schedule delays and cost overruns, respectively. Moreover, KPMG5

revealed in its Global Construction Survey that adherence to the6

project schedule is not only the most essential performance measure7

in construction industry contracts but also the central issue in the8

execution of projects (Armstrong and Gilge, 2017).9

One of the root causes of these issues is that the monitoring process10

is still mostly performed manually in the construction industry. This11

practice is expensive, labor-intensive, and not comprehensive (Lin 12

and Golparvar-Fard, 2020). 13

Many approaches have emerged to address this problem. Recent 14

research proposes to compare a 4D building information model 15

with a point cloud of a construction site, allowing to track progress 16

(Braun et al., 2020; Bosché, 2012). This tracking is possible 17

because in a 4D BIM model, all construction elements, besides 18

having 3D geometry, are linked with process information, enabling 19

them to report the planned state of construction at any given time. 20

However, one of the preeminent challenges with this approach is 21

the presence of temporary construction elements in the as-built 22

point cloud. Some of the most common temporary elements are: 23
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scaffolds, formwork, cranes and reinforcement (Schach and Otto,24

2017).25

While recently there has been some effort to incorporate temporal26

structures into building information models (Jin and Gambatese,27

2019; Pham et al., 2020; Rodrigues et al., 2021), usually these28

elements are not present in the model (Kim and Cho, 2015).29

Additionally, these temporary elements may occlude large portions30

of the permanent structures in the point cloud since they are31

adjacent to them. Notably, formwork and scaffolding occlude32

the direct view on permanent walls or slabs, making a reliable33

comparison with the 3D geometry of the model more challenging34

and hindering the detection of the current state of construction35

progress (Braun et al., 2020).36

To overcome this challenge, this study proposes a method to37

automatically detect cranes, scaffolds, and formwork in laser-38

scanned point clouds of construction sites. More specifically, this39

study tries to find an answer to the following research question:40

How is it possible to detect those three classes of objects efficiently,41

and accurately in large and complex point clouds?42

Besides the fact that these objects are prevalent on a construction43

site, detecting them is useful for the following reasons:44

Since the number of cranes and their height varies depending45

on the construction phase, this information gives a rough idea46

about the state of the construction progress. Moreover, knowing the47

exact position of cranes would allow the verification of compliance48

with safety regulations, like the distance from the crane to the49

building or to other cranes. Furthermore, the crane and its exact50

relative position to the building can support other methods that51

use cameras mounted on crane to track the construction progress52

(Braun et al., 2015) or construction workers, such as the methods 53

proposed by Neuhausen et al. (2020, 2018). One of the main ways 54

this knowledge can be exploited is to enable automatic alignment of 55

the point cloud with a reference BIM model, an issue that has been 56

addressed by Masood et al. (2020). 57

Detecting scaffolding components is useful to track the construction 58

site’s progress and perform precise safety regulation checks 59

regarding the minimum requirements that scaffold should fulfill, 60

such as the presence of toe-boards and guard-rails in the 61

right position. These verifications can be done by implementing 62

corroborated methods such as those introduced by Wang (2019). 63

This last step is crucial because, as Wang identified, falling 64

from scaffolds is one of the leading causes of fatal accidents on 65

construction sites. 66

Identifying the location of the formwork gives crucial information 67

about the exact current state of construction progress. A placed 68

formwork does not exclusively represent a building element that 69

is currently under construction, it also indirectly gives vital 70

information about other completed tasks on the construction site. 71

For example, the previous construction of a concrete slab on 72

which the formwork is placed, or the placed rebars inside two 73

wall formworks. After the detection of formwork elements, the 74

quality of the construction can also be evaluated. Beyond the correct 75

position of the formwork itself (relative to the corresponding wall), 76

the presence of openings and special elements can automatically be 77

verified. Moreover, an automated dimensional quality assessment 78

can also be performed as done by Kim et al. (2020), in which 79

compliance with the structural plans can be ensured before pouring 80

concrete. 81
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After identifying the potential benefits of detecting temporary82

elements in point clouds of construction sites, this paper proposes83

an efficient method to automate this detection. The developed84

approach first rotates the point cloud to align it to the building85

axes; then, it locates crane masts and scaffolds in the point cloud.86

Subsequently, axis-aligned formwork elements are detected.87

This paper is structured as follows. Section 2 reviews recent88

literature on construction progress monitoring and object detection89

in point clouds of construction sites, and identifies the research90

gaps. Then, the geometry of the target objects is described in detail91

according with the respective regulations in Section 3, which serve92

as a base for the developed object detection technique. Section 493

explains the proposed approach in this research. It illustrates the94

workflow of the implemented vertical object detection method.95

Section 5 reports results, analysis and validations of the proposed96

method. On top of that, computational performance analyses are97

presented. Section 6 drives the conclusions of this study and98

suggests possible future research directions.99

2. Related Research100

There has been a lot of improvement in automatic construction101

progress monitoring in the past decade. While some researchers102

based their methods on photogrammetric point clouds (Golparvar-103

Fard et al., 2011, 2015; Braun et al., 2020; Braun and Borrmann,104

2019; Braun et al., 2016; Amer and Golparvar-Fard, 2018), others105

use laser scanner point clouds (Bosché and Haas, 2008; Bosché,106

2012; Turkan et al., 2012; Kim et al., 2013; Bosché et al., 2015;107

Han et al., 2018; Son et al., 2017). Additionally there have been108

techniques developed that only use image information (Kropp et al.,109

2018; Acharya et al., 2019; Asadi et al., 2019; Álvares and Costa,110

2019).111

To compare the acquired sensor information and the the prior 112

BIM Model (also called Scan-vs-BIM), the existence of a 3D/4D 113

building information model is a requirement. With a 4D model 114

(in which every element has time information when it should be 115

built) and a point cloud, an as-built vs. as-planned comparison is 116

possible, allowing the automatic monitoring of the progress (Braun 117

et al., 2020). However, the presence of temporary building elements 118

hinders automatic progress tracking. Besides that, these temporary 119

elements should be detectable, even without having a BIM model. 120

Turkan (2014) made initial proposals to track temporary elements. 121

However, their method is based on a Scan-vs-BIM approach that 122

requires a BIM model and does not detect different temporary 123

elements separately. Only using point clouds, most of the related 124

work focuses on the reconstruction of a building information model 125

from scans (Maalek et al., 2019; Nikoohemat et al., 2020; Armeni 126

et al., 2016; Fichtner, 2016; Macher et al., 2017) (also call Scan-to- 127

BIM). These methods focus mainly on the detection of floors, walls, 128

ceilings, doors and windows in a point cloud. However, there is only 129

limited research on the detection of cranes, scaffold or formwork 130

elements in point clouds of construction sites. 131

While deep learning approaches for point cloud semantic 132

segmentation seem to be very promising (Guo et al., 2019), 133

they still have three critical shortcomings. One limitation is 134

the maximum number of points that an algorithm can process 135

simultaneously (e.g., 1m×1m with 4096 points) (Guo et al., 2019), 136

making the method not very suitable to detect large objects in large- 137

scale point clouds directly. A second drawback is the non-rotational 138

invariant constraint of some techniques, like the one implemented 139

by Zeng et al. (2020), which restricts the practice to only find items 140

with known XYZ-orientation. A third and final drawback is that 141

extracting the deep point features is usually very time-consuming 142
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and memory-costly (Zeng et al., 2020; Landrieu and Simonovsky,143

2018; Hu et al., 2020). Besides that, the successful implementation144

of a deep learning algorithm requires a large database of real labeled145

data to train the algorithms. Such a database is at this moment not146

available for temporary objects on construction sites.147

Other state-of-the-art methods that do not require labeled data,148

like the ones proposed by Xu et al. (2018) or Wang (2019),149

take advantage of the verticality of the objects to detect scaffold150

elements, as well as prior knowledge of the underlying geometry151

of the objects, like dimensions of the uprights or possible bay152

width distances. While still having some drawbacks, these methods153

showed promising results for the specific case of scaffold detection154

in point clouds of construction sites.155

This paper has two main differences in comparison with the156

methods proposed by Xu et al. (2018) and Wang (2019) to detect157

scaffold elements. First, it is applicable in large scale dense point158

clouds. That is because it filters the point cloud in regions of159

interest with image processing techniques in an efficient manner.160

Second, it is not restricted to a specific bay width distance (as the161

method proposed by Xu et al. (2018)) or specific geometric scaffold162

configuration (as the method proposed by Wang (2019)). Uniquely,163

our process allows the detection of almost all types of scaffolds164

that have a geometry following the corresponding regulations (as165

explain in 3).166

Furthermore, in this paper, we focus not only on the detection167

of scaffold elements but also on a generalized method that can168

serve to efficiently detect the majority of vertical elements in point169

clouds. Our case studies focus on detecting cranes and formwork170

elements, but the the main steps of our pipeline can be used with171

slight modifications or extensions to detect for example walls, 172

reinforcement, containers, fences, shoring and stacking pallets. 173

3. Geometry of Target Objects 174

This section summarizes necessary specifications about the target 175

objects’ usual geometry, which is crucial to detect these objects in 176

a point cloud. Additional justification for the selection of certain 177

types of target objects is also given. 178

3.1. Cranes 179

Some of the most common types of cranes in the construction 180

industry are the crawler crane, self-erecting crane, telescopic crane, 181

and tower crane. This paper focuses mainly on tower cranes 182

because they are the most commonly used in the construction of 183

tall buildings (Böttcher and Neuenhagen, 1997, p. 58). The main 184

components of a tower crane are the base, mast, slewing unit, 185

operating cabin, jib, and counter-jib. The mast is generally made 186

of individual steel trussed sections that are connected. The number 187

of sections will determine the overall height of the crane. While a 188

mast section is always square, its width can vary between 1.2m and 189

2.5m depending on the crane’s type (see Figure 1). To allow the 190

detection of self-erecting cranes that usually have a smaller mast 191

width than tower cranes, we use a minimum mast width of 1m 192

instead of 1.2m for crane detection.

Block foundation

Tower crane mast 
(ca. 1.2 m x 1.2 m to
2.5 m x 2.5 m, depending on the type)

Required space 

Figure 1. Top view of a tower crane mast with dimensions
(Schach and Otto, 2017, p. 28).

193
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3.2. Scaffold194

Opposite to sections of a tower cranes mast, scaffold elements195

consist of different smaller pieces that are usually manually196

assembled on the construction site. These are mainly: uprights,197

guard-rails, toe-boards, and work platforms. Additionally, there198

are special sections of the scaffold system with diagonal braces,199

stairs, or additional accessories that enable the scaffold to adapt to200

different needs, such as bridges or extensions, to make the scaffold201

wider. This paper will focus on detecting faced scaffold elements.202

Depending on the manufacturer, a scaffold’s exact geometry can203

vary, but standardized norms establish some minimum dimensions.204

Following DIN EN 12 811-1, the minimum scaffold bay width205

is 0.6 m, and while there could be a scaffold bay width of more206

than 2.4m, in this paper, only scaffold with a maximum width of207

1.2m will be considered. This consideration is based on the fact208

that cost-effective scaffold systems are mainly made in the width209

classes W06 and W09 (Schach and Otto, 2017, p. 240), which have210

a width between the selected range (0.6m to 1.20m) in accordance211

with Table 1 of DIN EN 12 811-1. Similarly, the scaffold bay212

length could vary between 1.5m to 3m in line with DIN 4420-213

4. Figure 2 presents the main components of a scaffold, together214

with its standardized minimum and maximum dimensions.215

3.3. Formwork216

Among the many types of formwork, the most common are wall,217

column, and slab formwork. Similar to scaffold elements, there218

could be specialized types of formwork, and they could also have219

additional accessories, for example, working platforms. However,220

this paper will concentrate on standard wall formwork.221

Whereas the exact geometry of a formwork element depends on222

the manufacturer, the basic idea of vertical studs and horizontal223

Uprights

Bay length 
(1,5 to 3 m)

Bay width 
(0,6 to 1,2 m)

Guard-rails

Work platform

Toe-board

Figure 2. Main scaffold components and dimension ranges

walings in front of an interior wall panel always remains constant. 224

The orthogonality between studs and walings (see red elements in 225

Figure 3b) together with the wall panel will be exploited to detect 226

formwork elements. 227

(a)

0

12

6

(b)

Figure 3. Front view of a point cloud with formwork elements:
(a) with the original RGB colors; (b) the color is in accordance
with the depth of the points: red are the closest, blue the farthest
from a front view perspective (units in centimeters)

4. Methodology 228

4.1. Overview 229

The workflow of the object detection method introduced in this 230

paper is illustrated in Figure 4. 231

Prepared using PICEAuth.cls 5



Smart Infrastructure and Construction Recognition of Temporary Vertical

Objects in Large Point Clouds of

Construction Sites

Vega Torres et al.

Laser scanner 
point cloud

Segmented 
point cloud 

1. Preprocess

2. Crane detection

3. Scaffold detection

ROIs Separation

3D Contour detection

4. Formwork detection

Cross-section generation

2D DL classification

Downsampling

Point cloud rotation

Figure 4. Workflow overview.

The first step is a preprocessing of the raw laser-scanned point232

cloud, in which down-sampling is applied, followed by a rotation233

of the point cloud that will align it to the building axes.234

The second step is the detection of cranes, in which ROIs (Regions235

of interest) that may contain cranes are separated using image236

processing techniques over a vertical projection of the point cloud237

in the XY plane. Subsequently, an algorithm will search a pattern238

characteristic of a tower crane in detected 3D vertical lines (in the239

Z direction), which will reveal the cranes’ possible positions. Then,240

the final location of cranes is determined by applying checks over241

vertical cross-section projections. Subsequently, scaffold elements242

are detected with a very similar procedure as with cranes (see243

Scaffold detection).244

As the last step, formwork elements are detected. Here again, the245

ROIs that might contain formwork elements are prefiltered, vertical246

cross-sections projections are generated, and a machine learning247

algorithm is leveraged to determine the presence of formwork248

elements (see Formwork detection). It is worth mentioning that 249

steps 2, 3, and 4 (i.e., crane, scaffold, and formwork detection) 250

are independent of each other and the order does not influence the 251

result. While they are execute one after each other in our pipeline, 252

they could be executed in parallel. 253

4.2. Preprocessing 254

4.2.1. Downsampling 255

Filtering or downsampling the point cloud with the voxel grid 256

method is vital for two reasons: First, it allows the method to take 257

advantage of the fact that the point cloud has a relatively uniform 258

density by assuring a certain average data spacing; and second, it 259

is the first contribution to reducing the computational cost as the 260

number of points is reduced substantially, in all cases where the 261

original resolution is higher than the used leaf size. 262

To fast sub-sample the point cloud, it is first organized into an 263

octree with a resolution of 5 m. The creation of this octree allows 264

the implementation of the PCL (Point Cloud Library) voxel grid 265

method with a leaf size (V Gls) of 5 mm in every leaf voxel of 266

the octree. The VG method approximates the point cloud with 267

the centroid in every voxel, it might not accurately represent the 268

underlying surface in cases where there is a lot of noise in the data 269

or the leaf size is large and the objects present curved surfaces. 270

4.2.2. Point cloud rotation 271

This step rotates the point cloud so that it is aligned with 272

the building’s principal axes. This alignment will allow taking 273

advantage of the rectangular grid that usually the building’s floor 274

plans follow (also known as Manhattan World (Coughlan and 275

Yuille, 1999)). 276

This rotation is done in two main steps (which will be explained 277

more in detail later): First, Walls ROIs Separation with image 278

6 Prepared using PICEAuth.cls



Smart Infrastructure and Construction Recognition of Temporary Vertical

Objects in Large Point Clouds of

Construction Sites

Vega Torres et al.

Smart Infrastructure and Construction Temporary Object Detection in Point

Clouds of Construction Sites

Vega et al.

Table 1. Parameter Summary

Parameter Description Wall Crane Scaffold Formwork

hmin [m] Minimum object height 1.2 0.7 0.2 0.075
S Structural element with its size R10x10 R10x10 E5x5 R10x10
Di Number of dilation iterations 5 3 6 6
Amin [m2] Minimum blob area 1.5 0.0075 0.002 0.25
Amax [m2] Maximum blob area MAX 0.3 0.075 MAX
lmin [m] Minimum merged lines length N/A 1.5 0.4 N/A

processing techniques over a vertical projection of the point174

cloud. Later, an algorithm will search a pattern characteristic of175

a tower crane in detected 3D vertical lines, which will reveal176

the cranes’ possible positions. Then, the final location of cranes177

is determined by applying checks over vertical cross-section178

projections. Subsequently, scaffold elements are detected with a179

very similar procedure as with cranes (see Scaffold detection).180

As the last step, formwork elements are detected. Here again, the181

ROIs that might contain formwork elements are prefiltered, vertical182

cross-sections projections are generated, and a machine learning183

algorithm is leveraged to determine the presence of formwork184

elements (see Formwork detection).185

4.2. Preprocessing186

4.2.1. Downsampling187

Filtering or downsampling the point cloud is vital for two reasons:188

First, it will allow the method to take advantage of the fact that189

the point cloud has a relatively uniform density by assuring a190

certain average data spacing; and second, it is the first step that will191

reduce the computational cost as the number of points is reduced192

substantially, always when the original resolution is higher than the193

used leaf size.194

To fast sub-sample the point cloud, it is first organized into an195

octree with a resolution of 5 m. The creation of this octree allows196

the implementation of the PCL voxel grid method with a leaf size197

(V Gls) of 5 mm in every leaf voxel of the octree.198

4.2.2. Point cloud rotation199

This step aims to rotate the point cloud so that it is aligned with200

the building’s principal axes. This alignment will allow taking201

advantage of the rectangular grid that usually the building’s floor202

plans follow (also known as Manhattan World).203

This rotation is done in two main steps: First, Walls ROIs 204

Separation with image processing in a vertical projection, and 205

second, determination of the final angle of rotation with 2D detected 206

lines. 207

Before applying this method, the point cloud has to be divided into 208

different building floors, for this, the user has to enter manually 209

the minimum and maximum Z values of the corresponding floor to 210

be analyzed. This separation is a requirement for the process to be 211

able to filter objects by their minimum height. Figure 4 illustrates a 212

building’s first floor. 213

Figure 4. Clipped first floor of the Test dataset Nr. 2.

4.2.3. Walls ROIs separation 214

As usually all large load-bearing walls are aligned with the 215

building’s structural axes, they are first separated from the rest of 216

the point cloud. 217
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Table 1. Parameter Summary. Here R stands for rectangular structuring element and E for elliptical, MAX means that there is no
upper limit for the blob area.

processing in a vertical projection, and second, determination of279

the final angle of rotation with 2D detected lines.280

Before applying this method, the point cloud has to be divided281

into different building floors. While for now this process is done282

manually, this could be automated by detecting the peaks of283

the histogram of the points projected in the Z-axes, as done by284

(Fichtner et al., 2018; Turner and Zakhor, 2014; Oesau et al.,285

2014). This separation is a requirement for the process to be able286

to filter objects by their minimum height. Figure 6 illustrates a287

building’s first floor.288

289

4.2.3. Walls ROIs separation290

To find the building’s structural axes, we first separate large load-291

bearing walls from the rest of the point cloud. The rationale for that292

is based on the assumption that large load-bearing walls are aligned293

with the building’s structural axes, as it is usually the case.294

To filter load-bearing walls from the rest of the point cloud a vertical295

projection is generated in a gray scale image. As the point cloud296

was already downsampled, it is known that the minimum distance297

between two points is 5mm (considering the usage of the voxel298

grid method with a (V Gls) of 5mm).299

Therefore, a point cloud vertical projection in a 2D grayscale 300

accumulation image, which stores the number of points projected 301

on each pixel, allows the differentiation of the objects by their 302

minimum height. 303

For example, considering the presence of occlusions in the point 304

cloud (e.g., possible presence of formwork covering the walls), it 305

is assumed that vertical walls may have at least 1.2m (hmin) of 306

projected vertical height, which is around half of the height of an 307

average wall. 308

To make this point clear, consider a vertical line of 1m length. If 309

the line is formed by points every 5mm, it implies that the line 310

is actually a column of 200 points. If these points are projected 311

in the XY plane in a grayscale accumulation image, they will be 312

represented as a pixel with value 200. In this way, it is possible to 313

separate objects of different heights using a vertical projection, as 314

long as they have a vertical non-occluded surface 315

Certainly, it would not be reliable to estimate the height of the 316

wall without having a point could with a low resolution (i.e., very 317

dense point cloud in which the minimum distance between two 318

points is less than 5mm), this assumption is justified, considering 319

that the sensor used for scan acquisition can scan up to 350m 320

with a ranging error of 1mm and an accuracy of 19 arcsec 321
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(a) (b) (c)

Figure 5. Wall ROIs in a vertical projection: (a) original vertical projection (for better visibility, the inverted binary version is shown
here); (b) binary image after threshold and dilation, notice here that the two surfaces of the walls now form one single large blob; (c)
final Wall ROIs (Wregions) after separation by blob size. Test dataset: Nr. 2.

8 Prepared using PICEAuth.cls

Figure 5. Wall ROIs in a vertical projection: (a) original vertical projection (for better visibility, the inverted binary version is shown
here); (b) binary image after threshold and dilation, notice here that the two surfaces of the walls now from one single large blob; (c)
final Wall ROIs (Wregions) after separation by blob size. Test dataset: Nr. 2.

Figure 6. Clipped first floor of the test dataset Nr. 2.

for vertical/horizontal angles. In the case of point clouds with322

lower quality (e.g., photogrammetric or captured with mobile laser323

scanner) the presence of noise may not allow to have perfectly324

aligned points over a vertical surface.325

Subsequently, to join small groups of connected white pixels (also326

called blobs) that are close to each other and may constitute more327

oversized objects, ten iterations of a morphological dilation with328

a structural element (S) with a rectangular shape of size 10 x 10329

(SR10) are applied giving the result illustrated in Figure 5b. Later330

the blobs can be separated by its number of white pixels, which is331

equivalent to its area.332

For example, for walls, a minimum area of Amin = 1.5m2 was 333

considered more appropriate, assuming that the minimum length 334

of all walls is 5m and its width is 0.3m. Figure 5c shows the 335

final wall ROIs, which are the result of filtering the blobs by size 336

in a dilated vertical projection after passing a height threshold of 337

1.2m.(as stated in Table 1). 338

4.2.4. Angle of rotation with 2D lines 339

Once the ROIs of large walls are isolated in Wregions, this image 340

is used as a mask to filter the original vertical projection. Using 341

the probabilistic Hough transform algorithm (Mukhopadhyay and 342

Chaudhuri, 2015), with an angular resolution of π/(180 · 100) (i.e., 343

two decimal precision in degrees), 2D lines are fitted in this filtered 344

vertical projection. Finally, the angle of rotation is determined using 345

the k-means algorithm (Ahmed et al., 2020) over a 1D histogram of 346

the slopes of the previously detected 2D lines. 347

After point cloud downsampling and alignment with the axes of 348

the coordinate system, the next step is the detection of the target 349

objects, which is described in the following section. 350
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(a) (b) (c) (d)

Figure 7. Detection of possible crane lines: (a) original point cloud with a red ellipse indicating the location of the crane; (b) Crane
ROIs in (a), notice the presence of other thin and tall objects in addition to the crane; (c) detected 3D contours in (d) ;(d) filtered
merged vertical lines from (c). Test dataset: Nr. 1.

4.3. Crane detection351

The detection of cranes starts with a similar step as the one used352

to separate the wall ROIs but with adapted parameters of minimum353

height, dilation, and blob size (see Table 1). This step contributes to354

efficiently filter out points that are more likely to belong to a crane355

from the rest of the point cloud. In Figure 7b, all the elements that356

pass the filter are shown.357

Since the detection of cranes is based on the search of the358

characteristic pattern of the four vertical steel profiles of a crane,359

the point cloud is reduced one more time to straight edges detected360

and then the pattern is searched on them.361

Therefore, in the next step, 3D contours are efficiently detected362

with the algorithm provided by Lu et al. (2019). In this algorithm363

the process is divided into three main steps: First, the point cloud364

is segmented in regions based on the previous calculation of the365

Principal Component Analysis (PCA) information of every point;366

second, 3D planes are fitted in every region and lines are detected367

over a 2D projection of this planes which are then projected back368

to the 3D space; and finally, in a post-processing step, the detected369

3D lines are passed through an outlier removal and a horizontal370

merging process.371

The implementation of the algorithm of Lu et al. (2019) plays a 372

crucial role in the proposed object recognition method, not only 373

because it allows translating from unorganized points to 3D lines 374

that delineate the objects, but also because it is fast. Therefore its 375

implementation in large point clouds is very convenient. Figure 7c 376

illustrates the 3D line detection results in a point cloud with the 377

crane ROIs. 378

Subsequently, the center of the vertical lines are projected as points 379

in the XY-plane and then merged in single lines if there is a 380

maximum distance of 20 cm between them, considering that the 381

detected lines could be in any of the four borders of the steel 382

profiles, which have a width of around 12.5 cm (Yasmin, 2019). 383

These merged lines are then also filtered by their minimum length 384

(see lmin in Table 1), resulting in the final long merged lines 385

presented in Figure 7d. 386

Now that the vertical lines are detected, the pattern that 387

characterizes a crane will be searched in these vertical lines. 388

As explained in Section 3.1, the mast of a tower crane always has 389

a characteristic square section, with a lateral size between 1m and 390

2.5m. Therefore, the main goal of this step is to find four vertical 391
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lines, which follow this geometric pattern. Figure 8a illustrates the392

possible regions where the steel profiles could be present.393

As shown in Algorithm 1, the method will first search for pairs of394

vertical lines that are between 0.8m and 2.7m apart (± 0.2m of395

the original range). Then, to ensure that the selected lines are in396

similar height ranges, we verify the presence of an overlap of the Z397

value ranges.398

0.9 m
r = 0.3 m

1.2 m
0.6 m

0.9 m

1.5 m - 3 m
0.8 m - 2.7 m

r = 0.2 m

d

d d

d

(a)

0.9 m
r = 0.3 m

1.2 m
0.6 m

0.9 m

1.5 m - 3 m
0.8 m - 2.7 m

r = 0.2 m

d

d d

d

(b)

Figure 8. Location of possible lines: top view of the vertical
lines (a) in green the crane lines, (b) in red scaffold lines. A pair
of vertical lines are indicated with a dashed line. The other pair
could be in the blue regions. These regions result from an offset
to the left and the right from the first detected pair in the middle.
In both examples, the other couples were successfully found,
since they are in the blue regions.

Afterwards, to determine whether the four lines indeed represent399

a crane or not, three examinations are carried out. First, if there400

is a crane, points should be present between every two continuous401

vertical lines. Secondly, the presence of a horizontal line between402

these vertical lines, with a length of at least 80% of the distance403

between them is corroborated. The reason not to select 100% of the404

total distance is to take into consideration the presence of possible405

occlusions in the scan. Finally, and exclusively for cranes, a total406

height check reveals the ultimate location of the detected cranes.407

As cranes are usually the highest objects in a construction site,408

their height should not be less than 10m below the point cloud’s409

maximum Z value. Objects with a similar pattern in vertical lines410

and cross-section but lower than this height are disregarded as411

Algorithm 1: Find pattern in vertical lines
Input : A vector with the merged vertical lines

M = {L0, L1, ..., Ln}
Output: Vector of vectors of line indices P ← ∅ revealing

possible crane locations

1 for ∀(Li, Lj) ∈M : i < j do
2 pi ← L0

i , pj ← L0
j

3 d← ∥pi − pj∥
4 u← (pj − pi)/d

5 u⊥ ← (−uy, ux)

6 if 0.8 < d < 2.7 and overlap(Li, Lj) then
7 C ← {pi + du⊥, pj + du⊥, pi − du⊥,

pj − du⊥}
8 R← ∅
9 for ∀c ∈ C do

10 for ∀Lk ∈M : i < k and k ̸= j do
11 pk ← L0

k

12 t← ∥pk − c∥
13 if t < 0.2 and overlap(Li, Lk) then
14 R← R ∪ k

15 else
16 R← R ∪ 0

17 end
18 end
19 end
20 saveLineIndices(i, j, R0, R1)

21 saveLineIndices(i, j, R2, R3)

22 end
23 end

cranes. This last test serves to differentiate the cranes from similar 412

but lower elements such as shoring. 413

4.4. Scaffold detection 414

The scaffold detection process follows very similar steps as the 415

crane detection, with two main differences: Firstly, the threshold 416

values of the ROIs separation phase are different (see Table 1). 417

Secondly, detecting the pattern on vertical lines is also adjusted 418

to detect not only square but also rectangular patterns that are 419

characteristic for a scaffold. This adjustment is accomplished with 420

the distances shown in Figure 8b, in accordance to the regulations 421

regarding scaffold dimensions, as shown in Figure 2. 422

10 Prepared using PICEAuth.cls



Smart Infrastructure and Construction Recognition of Temporary Vertical

Objects in Large Point Clouds of

Construction Sites

Vega Torres et al.

4.5. Formwork detection423

The formwork detection procedure differs from the other two424

presented detection processes in two aspects: Firstly, while the425

threshold values are very similar to those used for wall ROIs426

separation, once the ROIs with formwork are separated from the427

whole point cloud, they are filtered in blobs that are aligned to the428

X and Y-axes. Secondly, in every aligned blob point cloud, vertical429

cross-sections are generated from the downsampled point cloud430

and subsequently classified with a Deep Learning (DL) algorithm,431

revealing the location of the formwork elements.432

As the point cloud is already rotated, it is possible to filter out433

formwork elements that are aligned to the building axes in an434

efficient manner. To do so, a morphological dilation operation with435

custom vertical and horizontal kernels is applied over the formwork436

ROIs. This operation results in two separate binary masks with437

vertical and horizontal blobs, which are shown in the left of Figure438

9.439

Subsequently, vertical cross-sections or facade view projections440

will be generated. To find the right location where these cross-441

sections must be created, 2D lines are detected in a vertical442

projection of the point cloud in every blob. For horizontal blobs,443

the algorithm search for the horizontal 2D lines with the maximum444

distance in between,445

If the difference between them is larger than 11 cm (the minimum446

width of industry standard formwork (PERI, 2014, p. 42)), then447

there might be a formwork element. To allow processing of vertical448

blobs without major changes to the algorithm, these are rotated by449

90° to treat them like the horizontal ones. To finally identify which450

blobs contain formwork elements, two vertical cross-sections are451

generated for every blob, one from the top and another from the 452

bottom of the point cloud that is inside the blob. 453

Subsequently, a DL algorithm classifies these cross-sections as 454

formwork or non-formwork. Compared to object detection in large 455

point clouds, image classification with DL is a research area that 456

has been studied for longer time (Qi et al., 2017; Dai et al., 2021) 457

and which has demonstrated to over-perform even human experts 458

in certain fields (Buetti-Dinh et al., 2019). In contrast to cranes 459

and scaffold’s cross-sections, these cross-sections contain depth 460

information; this enables the DL algorithm to consider the exterior 461

studs and walings as well as the interior wall plane surface. 462

The PyTorch C++ frontend was used to train and test the 463

implemented DL algorithm. For the network the AlexNet 464

architecture (Krizhevsky et al., 2012) was used. The training set 465

consists of 244 depth images generated automatically from the 466

point cloud in dataset number 1 and 3 (which will be described 467

in more detail in Section 5). These datasets contain diverse types of 468

formwork elements positioned in different configurations. Figure 469

10 shows a subset of these images. The data set was augmented 470

with mirror flips over the x, y axes. The dataset was divided into 471

60% training set and 40% testing set. Two Dropouts were used to 472

prevent overfitting, one located after the convolutional layers and 473

the other after the first fully connected layer. Within 90 epochs, the 474

algorithm achieved a maximum accuracy of 93.3% over the testing 475

set, demonstrating to be suitable for this classification task. 476

5. Results and Discussion 477

The proposed method’s performance was validated on five different 478

point clouds from construction sites in Germany acquired at 479

different stages of the construction progress with a terrestrial laser 480

scanner. 481
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(a) (b)

Figure 9. Formwork regions of interest (ROIs): (a) original ROIs, (b) ROIs separated into horizontal and vertical formwork blobs.

(a) (b)

Figure 10. Subset of vertical cross-section used to train a CNN to classify formwork: (a) formwork; (b) non-formwork examples.

Table 2 enumerates the different datasets, providing additional482

information about their aligned dimensions, the area they cover,483

and the number of points they contain. Figure 11 presents the484

segmentation results of the five data sets. While datasets Nr. 1, 2,485

and 3 belong to the same construction site, datasets Nr. 4 and 5 486

come from two different construction sites. Dataset Nr. 4 originates 487

form the open-source dataset provided by Eickeler et al. (2021). 488
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(a) (b)

(c)

(d) (e)

Figure 11. Automatically segmented point clouds: (a) dataset Nr. 1; (b) dataset Nr. 2 (as it is originally colorless, it is shown here
with height ramp gray-scale colors); (c) dataset Nr. 3; (d) dataset Nr. 4 (as it is originally colorless, it is shown here with height ramp
gray-scale colors); (d) dataset Nr. 5;. In green detected cranes masts, in blue detected scaffolds, and in red detected formwork
elements.
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Table 3 shows the validation results for every dataset, giving every489

target object precision and recall. These were calculated based on490

the number of points on the respective segmented point cloud for491

formwork elements, and based on the number of detected instances492

for crane masts and scaffold elements.493

Table 2. Point cloud Datasets.

Nr. ∆x, ∆y, ∆z
[m]

Area
[m2]

Nr. of points

1 71, 58, 46 4,118 127,121,272
2 53, 60, 46 3,180 223,272,813
3 39, 78, 25 3,042 67,213,140
4 52, 70, 18 3,640 81,774,908
5 69, 38, 38 2,622 132,353,940

Table 3. Validation Results for each dataset.

Dataset Nr. Object Precision [%] Recall [%]

1
Crane Mast 100.0 100.0
Scaffold 100.0 100.0
Formwork 85.1 68.1

2
Crane Mast 100.0 100.0
Scaffold 89.1 95.1
Formwork 36.4 90.3

3
Crane Mast 100.0 100.0
Scaffold 100.0 82.6
Formwork 85.1 100.0

4
Crane Mast - -
Scaffold 92.9 43.3
Formwork - -

5
Crane Mast 100.0 100.0
Scaffold 100.0 92.6
Formwork - -

Overall 90.7 89.3

The proposed algorithms were all developed in C++ and tested on494

a laptop with a 2.80 GHz CPU with 4 Cores and GTX 1050 GPU.495

Table 4 presents the times in seconds of the main steps for each496

dataset.497

Table 4. Computational time in seconds for each dataset.

Step
Dataset Number

1 2 3 4 5

Preprocessing 67 103 34 35 96
Crane detection 51 381 95 22 79
Scaffold det. 168 2245 726 82 266
Formwork det. 153 148 72 50 62

Total
time

[s] 439 2877 927 189 503

[min] 7.3 48.0 15.5 3.2 8.4

(a) (b)

Figure 12. False negative scaffolds: (a) non-detected scaffold in
dataset Nr. 2; (b) one instances of a non-detected scaffold in
dataset Nr. 3. The colors in this figure are according to the
height of the points.

5.1. Discussion 498

The results produced by the proposed technique are promising. 499

While cranes and scaffold detection achieve precision and recall 500

above 89.1%, there is more room for improvement regarding 501

formwork detection, where the minimum rates were 36.4% and 502

68.1%. There are two main reasons for these low metrics: Firstly, 503

the method classifies sections of point clouds as formwork or non- 504

formwork. This fact result in low precision in cases when, e.g., 505

only half of a large wall is covered by formwork. Secondly, the 506

low recall in dataset Nr. 1 is due to the presence of occlusion 507

in foundation formwork. This dataset was acquired with only 508
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11 scans, leaving several foundation formworks, located in their509

respective excavation pits, very occluded.510

(a) (b)

Figure 13. Similar objects (a) cross-sections of scaffold (left)
stacking pallets (right), the latter are wrongly classified as
scaffolds; (b) cross-sections of cranes (up) shoring (down), the
latter have similar cross-sections as cranes.

The precision of scaffold detection was affected by stacking pallets511

for props, which were wrongly classified as scaffold elements. This512

misclassification is caused by the fact that those elements show four513

vertical lines in the scaffold ranges and their cross-section also has a514

horizontal line, as illustrated in Figure 13a. Occlusions were again515

the main cause why not all scaffolds were detected. As shown in516

Figure 12, even if only one up-right was occluded, the method is517

not able to detect the scaffold.518

In dataset Nr. 4 the recall of 43.3% corresponds to the high number519

of false-negative scaffold elements caused by the small distance520

between the scaffold and the building, which is less than 200mm.521

The fact that the scaffold is too close to the building does not allow522

the algorithm to filter the scaffold ROIs cleanly since the dilation523

operation joins the projected uprights blobs with the near walls524

blobs. Subsequently the blob size separation step leaves behind525

these large blobs, while looking for small uprights projections.526

While the crane detection results are impressive, there are cases527

when the method will not work, in particular when the underlying528

assumptions are violated. For example, when banners are hanging 529

on the side of the tower crane. With these elements, the proposed 530

technique will prefilter the crane as a wall in the ROIs separation 531

step. This issue is also present in the case of scaffolds covered with 532

safety screens, which is a very similar case to when the scaffold 533

is too close to the building. Another interesting finding in this 534

research is that shoring elements and cranes have very similar cross- 535

sections, as shown in Figure 13b. To avoid this problem, the total 536

height of the elements relative to the maximum point cloud height 537

is compared. However, this solution implies the manual deletion of 538

the jib of the crane. A possible solution to delete the jib of the crane 539

might be deleting the points that are 3 m below the maximum z 540

value, this will delete also the jib, assuming the crane is the highest 541

object in the point cloud. 542

The technique proposed by Wang (2019) relies on a first manual 543

point cloud clipping of a small region where scaffolds are present. 544

Since it takes the convex hull of the detected uprights in a 2D 545

projection, it will not filter successfully only scaffold elements in 546

cases when many of them are present, like in the Test dataset Nr. 3 547

or Nr. 5 of this paper. On the contrary, the technique proposed here 548

can be applied directly on large datasets, without restrictions on the 549

amount or position of the scaffold instances. 550

Xu et al. (2018) limited their approach to detecting scaffolds next 551

to a facade and with a particular bay width of 0.8m. Considering 552

more possible scaffold dimensions makes the technique proposed 553

here more robust. However, it will give lower performance than Xu 554

et al. (2018) in low-quality point clouds. 555

Regarding the computational time, the method requires in average 556

1 s to process 105 points. However, it takes much more time in 557

dataset Nr. 2 compared to the other two datasets. The reason for that 558
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(a) (b)

Figure 14. Detected groups of vertical elements for cranes only
using the vertical lines: (a) detected vertical lines; (b) the
corresponding point cloud inside the regions delimited from the
groups of vertical lines. Note that even when there is only a
single crane, the code detected more elements with the same
pattern in vertical lines. Most of them are props (in the middle of
the image b) and shoring (in the right).

is the presence of shoring and props that support slab formwork. As559

illustrated in Figure 14, these elements have the same pattern in560

vertical lines as cranes. Therefore the method has to generate many561

cross-sections and perform the occupancy and the horizontal line562

check, demanding more computation time.563

Nonetheless, in comparison with Wang (2019), the technique does564

not generate horizontal slices every 0.05m and fits circles in each565

of them, which requires more time. Additionally, in comparison566

with the deep learning method proposed by Zeng et al. (2020),567

their approach would require 15 s only to extract the deep features568

from a point cloud with 105 points. This is 15 times more than the569

average time that the proposed technique requires to detect the three570

target objects. In turn, their technique would be more appropriate to571

recognize objects with more complex geometries.572

6. Conclusions573

This paper investigated the detection of temporary elements in574

a construction site’s point cloud, without the need of a previous575

integration with a BIM model and taking advantage mainly of the576

objects’ verticality to achieve a fast detection. In a preprocessing577

step, a downsampling method was proposed applicable to large- 578

scale dense point clouds. Then a method that takes the raw points 579

and finds the principal axes of the building is implemented. These 580

axes enable the rotation of the point cloud and alignment with the 581

XY axes. 582

Cranes and scaffold elements are then detected after efficiently 583

filtering the point cloud vertical elements and transforming them 584

into a 3D delineated representation. These features allow the 585

search of high-level patterns characteristic in temporary elements 586

on construction sites (such as cranes, scaffold, and shoring). 587

Once this pattern is found in vertical lines, specific features in its 588

vertical cross-section reveal the final position of the target objects. 589

Subsequently, The Manhattan Wold assumption in an aligned point 590

cloud in conjunction with image processing techniques is leveraged 591

to efficiently extract wall and formwork instances. Finally, the 592

unique pattern in the depth of its vertical cross-section allows a 593

deep learning classifier to distinguish between formwork and not- 594

formwork elements. 595

Our main contributions are: 596

1. A detailed description of the geometry of the target objects 597

(cranes, scaffold, and formwork) as they are defined by the 598

corresponding regulations, norms, or manufacturers. 599

2. A method that uses domain knowledge to accurately, 600

reliably, and understandably detect an extensive range of 601

types of specific target objects in large-scale point clouds 602

of construction sites. The method handles target objects 603

with different dimensions (according to domain knowledge). 604

Additionally, the technique is independent of the spatial 605
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configuration of the target objects (for example, scaffolds do606

not need to be isolated or next to a facade).607

3. An efficient technique to filter vertical objects in large-608

scale point clouds and classify them using deep learning609

techniques applied to vertical cross-sections. A similar610

approach can be leveraged to filter Manhattan-World wall611

instances (as demonstrated by Collins et al. (2021)) or to612

detect, for example, doors and windows in a point cloud of613

an interior of a facility; in a similar way as done by Quintana614

et al. (2018).615

In conclusion, the authors argue that as long as there is a way to616

infer geometrical constraints on the target objects, it is possible to617

achieve outstanding performance on a 3D object detection problem.618

This achievement is not only in terms of accuracy but also in619

computational time.620

In this research, the target objects’ vertical orientation and their621

minimum height, and other geometrical features play a crucial622

role in detecting them. Like genetic algorithms, the successful623

implementation of such a method requires careful engineering624

of the objects’ representation. In this case, it means a precise625

knowledge of the target objects’ geometry. Such a technique would626

not apply to all objects. Nonetheless, the process is not limited to a627

few given examples or object size restrictions.628

The domain knowledge compiled in this paper regarding the629

geometry of the target objects might be leveraged as input for the630

novel rule supported deep learning algorithms, such as Deep Neural631

Network with Controllable Rule Representations (DEEPCTRL)632

(Seo et al., 2021) or Deep Learning Inspired Belief Rule-Based633

Expert System (BRB-DL) (Islam et al., 2020). These algorithms634

have demonstrated to be more accurate, understandable and reliable635

than traditional deep learning algorithms which only learn from 636

labeled data without considering domain knowledge. 637

Furthermore, using 2D and 2.5D projections allows the imple- 638

mentation of a very efficient method to filter and detect objects 639

on massive point clouds. Finally, implementing a deep learning 640

algorithm to classify 2.5D vertical cross-section projections proved 641

to be very suitable for formwork classification, facilitating also a 642

future possible extension of the method to detect other elements, 643

e.g., reinforcement, containers, fences, etc. 644

7. Future work 645

Additional validation on more datasets, with temporary objects 646

from different manufacturers will serve to test and improve the 647

robustness of the method. Moreover, the detection of placed 648

reinforcement would complete the primary set of nonpermanently- 649

visible objects that determine the current state of the construction 650

progress. 651

Later, to achieve a fully automated construction monitoring, the 652

integration with a detailed 4D building information model con- 653

taining the permanent structures’ geometry and time information 654

is required, as done by Braun et al. (2020). This integration should 655

be easier after the detection of the temporary objects and would also 656

enable identifying and verifying openings and essential building 657

elements in the right location on the construction site. 658

Subsequently, and as done by Kim et al. (2020), an automated 659

dimensional quality assessment can also be performed to ensure 660

compliance with the structural plans. 661

Safety regulations can also be verified in cranes and scaffold 662

elements, for the latter Wang (2019) already proposed a method that 663
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requires the detection of every component of the scaffolds, such as664

guard-rails, toe-boars, and working platforms.665
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