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Abstract

Chromosomal instability (CIN), a phenotype describing elevated rates of gaining or losing
whole chromosomes (W-CIN) or of accumulating structurally abnormal chromosomes
(S-CIN), often leads to profound tumour heterogeneity. As a result, CIN enables fast
adaptation to selective pressure imposed by the tumour microenvironment during evolution.
Previous studies have suggested that CIN is associated with cancer progression, treatment
resistance and clinical outcomes. Although W-CIN and S-CIN can co-occur, they have
distinct causes. W-CIN results from chromosome missegregations, S-CIN arises due to
unfixed DNA double-strand breaks errors. A better understanding of the CIN causes
and consequences distinguishing W-CIN versus S-CIN will promote translating the widely
noted CIN clinical and evolutionary impacts to therapy strategies.

The development of CIN is complex involving multi-level regulations. In particular,
the CIN gene alterations give rise to pathway activity and tumour microenvironment
changes, directly or indirectly leading to CIN. In turn, the CIN phenotype together with
selective pressure continuously drives the ongoing changes at genetic, pathway and cellular
levels. To decipher such complexity, large scale multi-omic data have been accumulated.
Integrative predictive models are urgently needed to address the substantial complexity.

If we could gain a better understanding of the CIN process, strategies targeting CIN
could be discovered and validated in preclinical models in an ideal case. However, these
strategies may still not work effectively in the clinics due to the discrepancy of molecular
bases and tumour microenvironment between preclinical models and patients. Predictive
models matching the two may help improve the translational capacity.

This thesis first answers the important research question: What are the commonalities
and differences between W-CIN and S-CIN? This is done by integrating multi-omic data
to characterise the association landscape of W-CIN and S-CIN across 33 cancer types.
Extensive correlation analyses have been performed between W-CIN/S-CIN degrees and
various characteristics including prognosis, drug sensitivities, pathway activities, somatic
point mutations and copy number variations. Our model predicts that the gene GINS1
has a W-CIN promoting role, which has later been experimentally validated. This suggests
the predictive model proposed in this thesis is valuable to understand CIN mechanisms.
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Given that the existing computational CIN studies do not distinguish W-CIN from S-CIN,
this work thus serves as a complement to these studies to advance our understanding of
CIN.

Cancer cell lines are widely used to understand CIN process and to develop new
anti-cancer treatments. Selecting the most appropriate cell lines for a given tumour is
essential to translate promising results from the in vitro experiments to clinical applications.
This thesis thus proposes a semi-supervised generative model, MFmap (model fidelity
map), matching cell lines to tumours and cancer subtypes, intending to maximise the
translational ability of oncological in vitro models. MFmap compresses high-dimensional
multi-omic data into a small set of cancer subtype specific features and predicts the
subtype labels of cell lines, combining very good classification and generative performance.
The MFmap embedded features can be used to calculate the pairwise cell-line-tumour
similarity, with which one can select the best cell lines for a group of tumours or even
individual tumours. By classifying cancer cell lines into subtypes, MFmap allows to predict
the subtype specific effect of therapeutic compounds. Additionally, MFmap can be used to
study tumour evolutionary processes during the disease course. Taken together, MFmap
is useful for a broad range of semi-supervised tasks in the biomedical field where data
labelling is difficult to obtain.
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Zusammenfassung

Chromosomale Instabilität (CIN), ein Phänotyp, der eine erhöhte Rate des Gewinns
oder Verlusts ganzer Chromosomen (W-CIN) oder der Anhäufung strukturell abnormaler
Chromosomen (S-CIN) beschreibt, führt häufig zu einer ausgeprägten Tumorheterogenität.
Infolgedessen ermöglicht CIN eine schnelle Anpassung an den Selektionsdruck, den die
Mikroumgebung des Tumors im Laufe der Evolution ausübt. Frühere Studien haben
gezeigt, dass CIN mit dem Fortschreiten des Krebses, der Therapieresistenz und dem
klinischen Erfolg in Verbindung steht. Obwohl W-CIN und S-CIN gemeinsam auftreten
können, haben sie unterschiedliche Ursachen. W-CIN leitet sich aus fehlerhafter Aufteilung
der Chromosomen ab. S-CIN entsteht durch nicht fixierte DNA-Doppelstrangbrüche.
Ein besseres Verständnis der CIN-Ursachen und -Folgen, bei dem zwischen W-CIN und
S-CIN unterschieden wird, wird dazu beitragen, die häufig beobachteten klinischen und
evolutionären Auswirkungen von CIN in Therapiestrategien zu berücksichtigen.

Die Entwicklung von CIN ist ein komplexer Vorgang, der auf mehreren Ebenen
reguliert wird. Insbesondere die CIN-Genveränderungen führen zu einer Aktivität von
Signalwegen und Veränderungen der Tumormikroumgebung, die direkt oder indirekt zu
CIN führen. Der CIN-Phänotyp treibt zusammen mit dem Selektionsdruck kontinuierlich
die laufenden Veränderungen auf genetischer, pathologischer und zellulärer Ebene voran.
Um diese Komplexität zu entschlüsseln, wurden in großem Umfang Multi-Omics-Daten
zusammengetragen. Integrative Vorhersagemodelle sind dringend erforderlich, um die
erhebliche Komplexität zu bewältigen.

Wenn wir ein besseres Verständnis des CIN-Prozesses erlangen könnten, ließen sich
im Idealfall Strategien zur Bekämpfung von CIN in präklinischen Modellen entdecken
und validieren. Aufgrund der Diskrepanz zwischen den molekularen Grundlagen und der
Mikroumgebung des Tumors in präklinischen Modellen und bei Patienten könnten diese
Strategien in der Klinik dennoch nicht wirksam sein. Prädiktive Modelle, die beides
aufeinander abstimmen, können helfen, das Translationspotential zu verbessern.

In dieser Arbeit wird zunächst die folgende wichtige Forschungsfrage beantwortet: Was
sind die Gemeinsamkeiten und Unterschiede zwischen W-CIN und S-CIN? Dazu werden
Multi-Omics-Daten integriert, um die Assoziationslandschaft von W-CIN und S-CIN in 33
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Krebsarten zu charakterisieren. Es wurden umfangreiche Korrelationsanalysen zwischen
W-CIN/S-CIN und Merkmalen wie Prognose, Empfindlichkeit gegenüber Medikamenten,
Aktivität von Signalwegen, somatischen Punktmutationen und Kopienzahlvariationen
durchgeführt. Unser Modell sagt voraus, dass das Gen GINS1 eine W-CIN fördernde
Rolle spielt, was später experimentell validiert wurde. Dies deutet darauf hin, dass das
in dieser Arbeit vorgeschlagene Prognosemodell wertvoll ist, um CIN-Mechanismen zu
verstehen. Angesichts der Tatsache, dass die bestehenden computerbasierten CIN-Studien
nicht zwischen W-CIN und S-CIN unterscheiden, dient diese Arbeit als Ergänzung, um
unser Verständnis von CIN zu verbessern.

Krebszelllinien werden häufig verwendet, um den CIN-Prozess zu verstehen und neue
Krebsbehandlungen zu entwickeln. Die Auswahl der am besten geeigneten Zelllinien
für einen bestimmten Tumor ist von entscheidender Bedeutung, um vielversprechende
Ergebnisse aus den in vitro Experimenten in klinische Anwendungen umzusetzen. In
dieser Arbeit wird daher ein halbüberwachtes generatives Modell, MFmap (model fidelity
map), vorgeschlagen, das Zelllinien mit Tumoren und Krebssubtypen abgleicht, um die
Translationsfähigkeit onkologischer in vitro Modelle zu maximieren. MFmap komprimiert
hochdimensionale Multi-Omic-Daten in einen kleinen Satz von krebssubtypspezifischen
Merkmalen und sagt den Subtyp von Zelllinien voraus, wobei sehr gute Klassifizierungs-
und generative Genauigkeit kombiniert werden. Die in MFmap eingebetteten Merkmale
können zur Berechnung der paarweisen Zelllinien-Tumor-Ähnlichkeit verwendet werden,
mit der man die besten Zelllinien für eine Gruppe von Tumoren oder sogar einzelne
Tumoren auswählen kann. Durch die Klassifizierung von Krebszelllinien in Subtypen
ermöglicht MFmap die Vorhersage der subtypspezifischen Wirkung von therapeutischen
Substanzen. Darüber hinaus kann MFmap zur Untersuchung der Tumorevolution während
des Krankheitsverlaufs verwendet werden. Insgesamt ist MFmap für ein breites Spektrum
von halbüberwachten Aufgaben im biomedizinischen Bereich nützlich, bei denen die
Zuweisung von Klasseneinteilungen schwierig ist.
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Introduction

1.1 Overview

Cancer is a highly dynamic and complex system, involving diverse elements with different
functions and behaviours, as well as multi-layered regulations. These complex properties
have been summarised as cancer hallmarks [1, 2, 3]. Among these, chromosomal instability
(CIN), a cellular phenotype defined as increased rates of acquiring chromosomal changes
[4, 5, 6], is one of the most common cancer features. CIN can be subdivided into two
categories: (i) Whole chromosome instability (W-CIN) refers to elevated rates of gaining or
losing whole or large parts of chromosomes. (ii) Structual chromosomal instability (S-CIN)
describes rapid accumulation of partial chromosomal changes including amplifications,
deletions or translocations [4, 5, 6].

Increasing studies have linked CIN to drug resistance [7, 8, 9, 5, 10], poor prognosis [11,
12], elevated metastasis potential [13, 14], rapid adaptive evolution [15, 16, 17] and
tumour heterogeneity [15, 18, 19, 20, 21]. Thus targeting CIN may be a promising
avenue to kill cancer cells and a deeper understanding of the causes and consequences
of CIN is critical for this strategy. With the assumption that integrating multiple data
sources allows to construct a complete picture of CIN, a wide range of preclinical CIN
models have been developed [22, 23] and abundant cancer omics data accompanied with
clinical annotations [24, 25, 26, 27, 28, 29, 30, 31, 32] have been accumulated. Now
computational models are urgently needed to complement biological experiments for
better understanding of CIN. Specifically, the computational and experimental studies
could be performed in an iterative manner: (i) Predictive models integrating multiple
layers of information yield quantitative insights on CIN, guiding new experiments in a
predictable way; (ii) New data and questions generated by the new experiments further
offer opportunities for predictive model development and improvement. Hopefully, with
several rounds of iterations, we get not only experientially validated computational models
but also better understanding of the CIN mechanisms and consequences.
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1. Introduction

Previous studies (e.g. [33, 34, 35, 36]) show that computational models are helpful
for CIN biological and clinical studies. However existing computational CIN studies focus
on W-CIN, leaving S-CIN understudied, though it is known that W-CIN and S-CIN differ
in their mechanisms and consequences. Given that we have gained mechanistic insights
from computational models distinguishing W-CIN from S-CIN and further validated on
preclinical models in an ideal case, the next important question is: How to effectively
translate these preclinical findings to clinical targeting. Selecting the most optimal
preclinical models for patients is the key to solve this problem.

This thesis aims to address the following CIN related questions using predictive
modelling techniques: (i) What are the commonalities and differences between W-CIN
and S-CIN? (ii) How to find the best preclinical models that closely mimic the CIN process
in a patient? In practice, we have to address question (ii) for general purpose: How to
find the best preclinical models (e.g. cell lines) matching a specific tumour?

1.2 The complexity of cancer

The complex cancer system is hierarchically organised: Genetic changes activate or
inactivate pathways, leading to cellular process and individual phenotype changes. This
hierarchical structure guides current data collection and analysis strategies to decode
cancer complexity. For example, DNA alterations, gene expressions and protein expressions
are profiled to investigate the cancer complexity at molecular level; pathway activity scores
are computed to reveal the pathway-level cancer complexity; microscopic images are
analysed to study the cellular level complexity; clinical outcomes of individual tumours
are recorded to investigate the phenotype complexity. In literatures cancer complexity
and heterogeneity are interchangeably used. In fact, cancer complexity reflects not only
heterogeneity, but also its non-linear dynamic properties. I herein describe the cancer
complexity from the two aspects.

1.2.1 Cancer genetic heterogeneity

Each cancer cell is theoretically unique because cancers result from combined alterations
of a set of oncogenes or tumour suppressor genes and these combinations grossly differ
among cancer cells. Multiple integrative analysis have revealed considerable genetic
heterogeneity [37, 38, 39, 40, 41, 42, 43, 44]: The alteration distribution is highly skewed
and long-fat-tailed. Although recurrent alterations are considered as candidate cancer
drivers, they are often undrugabble. For example, KRAS mutation rate is 30%− 40%
in colorectal cancer [45], various approaches targeting KRAS do not work effectively
(reviewed in [46]). Consensus cancer stratification based on ensemble models using
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gene expression data has defined subtypes with clinical implications and clear biological
interpretations [47]. Here the biological interpretation is based on the associations between
subtypes and features from somatic mutation, copy number variation and methylation.

For those most frequently altered genes, their alteration rates vary across cancer
types. For example, a pan-cancer study [48] covering more than 40 cancer types reported
that PIK3CA mutation tends to hit HER2 -positive samples and its mutation rate ranges
from 0% (mesothelioma) to 37% (endometrial cancer). The same gene can also have
different variation types. For instance, TP53 mutations distribute in all coding exon
regions, 30% of which locate in multiple hotspot regions [49]. Even though a mutation
is sufficiently frequent so that statistical models have the power to detect it as cancer
driver. Its mutant rates vary across different studies [50], suggesting that other latent
factors like the cohort might be confounding variables for the distribution of the driver
mutations. This striking heterogeneity presents a challenge for cancer driver identification.
The Catalogue of Somatic Mutations in Cancer (COSMIC) discomposes 96 sequence
context dependent single base substitutions (SBSs) into components which are linked to
aetiologies by hypothesizing that different mutagenesis processes induce specific mutation
patterns. Although useful, it has at least two limitations: (i) Mutational signatures with
limited mutation burdens might be under-represented; (ii) and aetiology space is not fully
investigated [51].

1.2.2 Cancer pathway heterogeneity

Molecules including DNA, RNA and proteins are important elements of biological pathways.
The molecular heterogeneity naturally provides material for the pathway heterogeneity.
Additionally, mutual exclusivity and co-occurrence are two common mutational patterns
in the cancer genome. While the former indicates a negative epistatic or synthetic
lethal interaction of two pathways, the latter activates two collaborating pathways [52].
Pathways involve a handful of regulations. As a result, the same mutation could have
distinct pathway signalling outcomes, or vice versa, different mutations may lead to the
same pathway readout.

In general, many causal oncogenic proteins are the network hubs connecting multiple
upstream regulation signalling and downstream effectors. These effector proteins selectively
bind to binding site of the hub, activating the respective effector subpathway at a given
time. Numerous factors like post-translational modifications, effector concentrations,
plasma membrane organisations determine which effectors interact with the hub [53].
These effector pathways may function in a competing manner. The RAS pathway provides
a good example of how a complex signalling regulation can substantially contribute to
the cancer pathway heterogeneity. First, there are many RAS activation mechanisms

3



1. Introduction

including growth factors, chemokines, Ca2+ or receptor tyrosine kinase (RTK) and a wide
range of downstream effector pathways like RAF–MEK–ERK and PI3K–AKT–MTOR
signalling [54]. Second, the RAS has different isoforms of which activation depends on
the upstream signalling strength and the activation of effector pathways shows isoform
specificities [55]. Finally, the RAS has several complex downstream subpathways. The
PI3K–AKT–MTOR pathway is one example. PI3K can be directly activated by RTK and
involve many modes of regulations, ranging from multiple negative and positive feedback
loops to crosstalk with other signalling pathways [56].

1.2.3 Tumour microenvironment heterogeneity

The tumour microenvironment (TME) contains not only tumour cells but also stromal cells
and immune cells. The different cellular components consist of different sub-populations.
The malignant component can be remarkably heterogeneous due to the underlying
diverse genetic make-up and pathway activities as mentioned in Subsections 1.2.1 and
1.2.2. Stromal and immune components are constituted by various cell types such as
carcinoma associated fibroblasts (CAFs), tumor-associated macrophages (TAMs) and T
cells. Three major types of CAF can be distinguished: tumor-suppressive myofibroblastic
CAFs (myCAFs) [57] , tumor-promoting inflammatory CAFs (iCAFs) [57] and MHC class
II+ antigen presenting CAFs (apCAFs) [58]. TAMs include pro-inflammatory M1-TAM
and pro-tumoral M2-TAM [59]. T cell populations are also heterogeneous: CD8+ T cells,
CD4+ T cells and δγ T cells belong to tumor-suppressive subsets; Tregs, TH2 and TH17
cells are pro-tumoural subsets (reviewed in [60]).

Beyond the cell type abundance complexity, spatial heterogeneity represents another
characteristics of TME. Tumor-infiltrating lymphocyte (TIL) structural patterns are
associated with molecular and clinical readouts [61]. Immune cell distribution together
with functional activities defines three immunophenotypes: immune-inflamed (high intra-
tumour T cell infiltration), immune-excluded (T cell infiltration located in the invasive
margin) and immune-desert (absent T cell infiltration) [62]. The extracellular matrix
(ECM) that provides structural and mechanical integrity [63] is associated with the TME
cellular compositions and their spatial distributions. Excessive dense ECM acts as a physical
barrier to TILs, thereby being linked to immune-excluded phenotype [64, 65]. CAFs,
TAMs and tumour cells secrete ECM-modifying related enzymes, proteases, cytokines,
chemokines and growth factors, directly or indirectly contribute to ECM remodelling [66].

The cancer cell intrinsic properties (genetic and pathway profiles) contribute to TME
heterogeneity. The interaction between MYC signalling and immune cells provides such a
good example (see Fig 1.1). MYC signalling is regulated by multiple oncogenic signalling
in transcription, translation and post-translation stages [67]. These regulations involve
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complex signalling networks. MYC activated cells can induce cytokines and chemokines
to change the immune cell population [68], resulting in a TME that maximises the cellular
fitness.
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Figure 1.1: MYC signalling and TME heterogeneity. At genetic and pathway level:
MYC transcription is regulated by Hedgehog, WNT, Notch, JAK–STAT3 and TGFβ
signalling; MYC translation is mediated byMAPK–HNRNPK signalling; MYC stabilisation
is affected by the Ras–Raf and PI3K–AKT signalling. At the cellular level: activated
MYC signalling promotes pro-tumoural immune cell sub-population but inhibiting the
tumour-suppressive immune cells by cytokine secretion. The signalling relationship in the
nucleus is annotated from [67] and MYC -immune relationship is annotated from [68].
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1. Introduction

1.2.4 Cancer dynamics

Advanced sequencing technologies and software allow to obtain a complete picture of the
molecular, pathway and cellular heterogeneity of cancer, thereby improving the disease
interventions in an ideal case. But the picture is temporary and the curative results may
not last long since the multi-factor cancer system is evolving over time. This evolution
proceeds through mutation, selection and adaptation. As a result, cancer cells can adapt
to the TME, maximising fitness. The newly acquired mutations may act together with
constitutive ones or alone to yield fitness advantage, propagated into the divided daughter
cells. Accordingly, other TME parameters including ECM stiffness, within-tumour nutrient
concentration, vasculature morphology, TILs, stromal component and spatial distribution
may change. These changes serve as the consequences and causes of cancer evolution.

Cancer progression is a good example of the above described dynamics where het-
erogeneity and evolution are mutually causative. Heterogeneity fosters evolution [69]
since tumour cells require heterogeneity to respond to selection pressure imposed by
therapies [70, 71, 72] and immune system [73]. The ongoing clonal evolution contributes
to clinical and genetic heterogeneity, for example by providing multiple mechanisms to
resist interventions [74, 75, 76]. Additionally, the plasticity of tumour cells and immune
cells also facilitates such heterogeneity and dynamics [77, 78, 79].

In summary, multiple malignant and non-malignant cellular components coexist in
the same complex and dynamic system. They interact with each other and response
to the secreted signals, further shaping the system. In turn, tumour cells acquire multi-
level changes conferring fitness advantages and thus rapidly adapt to selective pressure
exerted by the new environment. In the mutation-selection-adaptation cycle, cancer
cells together with their TME continuously evolve. The evolutionary dynamics may
yield several problematic scenarios: cancer cells derived from the same patient vary in
different cell culture conditions; TME diverges significantly before and after treatment;
primary cancer cells differ from recurrent ones in the same location of the same patient;
potent drugs in primary tumours do not work for metastatic tumours of the same patient;
treatable tumours may become irremediable due to delayed treatment. A large part of this
complexity stems from CIN. In the following section, I review the potential mechanisms
and impacts of CIN. I discuss methods and data used to measure CIN. I point out that
existing computational CIN studies mainly focus on W-CIN, leaving S-CIN understudied.

1.3 Chromosomal instability

CIN substantially contributes to cancer complexity. On one hand, CIN affects a plethora
of genes from one cell division, providing genetic materials for selection and adaptation
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[4, 80, 81]. On the other hand, the dynamic nature of CIN makes it the major mediator
of cancer heterogeneity [5]. The association between CIN and cancer heterogeneity might
explain why CIN is a prognostic marker. It is also important to note that there might
exist an optimal CIN level for cellular fitness: while intermediate CIN promotes cancer
progression, severe CIN is lethal [82, 83]. This concept is consistent with the paradoxical
relationship between CIN and clinical outcomes [84]. Although elevated CIN is harmful
for cellular fitness, it is often associated with poor prognosis in clinics. This paradox
raises two major problems in clinical utility of CIN: (i) How to quantify CIN? (ii) How to
define a CIN threshold that is predictive for prognosis? Here, I provide an overview of
CIN mechanisms, CIN heterogeneity and its contribution to cancer complexity, discussing
the limitations of the current CIN quantification approach.

1.3.1 Chromosomal instability classification

Chromosomal instability (CIN), defined as an increased rate of acquiring numerical and
structural chromosome changes, is frequently observed in many cancer types [4, 85, 86,
87]. CIN has two major forms (Fig 1.2): whole chromosome instability (W-CIN) and
structual chromosomal instability (S-CIN). W-CIN refers to elevated rates of gaining or
losing whole or large parts of chromosomes [4, 5, 6] and often leads to aneuploidy [86,
82, 88]. Aneuploidy that refers to the number of imbalanced chromosomes [88, 82], can
reversely induce CIN [89] or occur independently [90]. S-CIN is defined as an elevated rate
of accumulating structural chromosomal changes, resulting in segmental amplifications
and deletions, balanced and unbalanced translocations, inversions [4, 5, 6]. W-CIN and
S-CIN have different origins. Erroneous DNA double-stranded breaks (DSBs) are major
causes of S-CIN [6]. W-CIN mainly arises through chromosome missegregations [91].
They can co-occur and are reciprocally connected [92, 93, 94] (see the Subsection 1.3.2
for detailed explanations). It is also interesting to note that the frequency of arm level
somatic copy number alterations (SCNAs) is higher than those of focal level [95] in most
cancer types, suggesting that W-CIN and S-CIN are differentially selected.

1.3.2 Chromosomal instability mechanisms

In a normal mitotic process, the full chromosome sets of one cell are replicated and equally
divided, generating two identical daughter cells (Fig 1.3(A)). Errors in mitotic chromosome
segregation cause W-CIN due to mitotic checkpoint defects (Fig 1.3(B)), cohesion defects
(Fig 1.3(C)), centrosome amplification (Fig 1.3(D)) and merotelic attachment (Fig 1.3(E))
(all the mechanisms are reviewed in [5, 96]). Merotelic attachments could arise through
several paths including aberrant spindle morphology, increased kinetochore microtubule
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Figure 1.2: Chromosomal instability (CIN) classification. Whole chromosome
instability (W-CIN) is characterised by ongoing losing or gaining whole or large parts
of chromosomes, leading to aneuploidy. Structual chromosomal instability (S-CIN) is
characterised by a tendency to accumulate changes of smaller parts of chromosomes.

stability and multiple microtubule attachment sites (reviewed in [96]). S-CIN arises through
erroneous DSBs [96, 6] and breakage-fusion-bridge (BFB) cycles [96, 5]. Replication
stress is defined as slowing or stalling of replication fork progression during DNA synthesis
[97]. It is a shared way to induce W-CIN and S-CIN and provides a way linking the
two types of CIN. Specifically, replication stress generates dicentric chromosomes and
acentric chromosomes, leading to chromosome missegregations [94]. The formed dicentric
chromosomes can enter into BFB cycles [98] that trigger S-CIN. Alternatively, replication
stress directly causes DNA damage [97, 99] or indirectly causes DNA damage via trapped
and damaged chromosomes in the cytokinesis cleavage furrow [92, 100] and fragmentation
of micronuclei which might trigger S-CIN (Fig 1.3(E)) [101, 100]. In turn, the resulting
S-CIN leads to chromosome missegregations [94, 102].

8



1.3. Chromosomal instability

2n-1 2n+1

2n-1 2n+1

2n-1 2n+1

2n 2n

(1)

2n 2n

2n-1 2n+1

B. Mitotic checkpoint defects

Metaphase Anaphase Daughter cells
A. Normal chromosome segregation

S-CIN

DNA damage

E. Merotelic attachment

C. Cohesion defects

Key

Chromosome with
kinetochores

Spindle pole 
with
microtubules

Cell membrane

Nucleus

Micronucleus

Damaged
chromosome

Cleavage 
furrow

D. Centrosome amplification

(2)
(3)

1.3.3 Chromosomal instability heterogeneity

Although W-CIN and S-CIN occur frequently in most common cancer types, the W-
CIN and S-CIN levels vary across cancer types or even cancer subtypes [103]. Most
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Figure 1.3 (previous page): Chromosome missegregation mechanisms. (A)
Normal chromosome segregation. Two kinetochores are attached to microtubules arising
from both spindle poles, chromosomes are equally divided into two euploid daughter
cells. (B) Defective spindle assembly checkpoint (SAC). With defective SAC signalling,
anaphase starts with unattached kinetochores. Two copies of one chromosome are moved
towards the same spindle pole. (C) Cohesion defects. Both kinetochores are attached to
the microtubules arising from the same centrosome. Two copies of one chromosome are
divided into only one daughter cell in (B) and (C), resulting in aneuploid daughter cells.
(D) Centrosome amplification. Centrosome amplification leads to an extra centrosome
in one spindle side, resulting in one kinetochore being attached to microtubules arising
from two centrosomes in one spindle pole, inducing chromosome missegregations. (E)
Merotelic attachment. Merotelic attachment is defined as one kinetochore being attached
to microtubules arising from both spindle poles. Merotelic attachment causes lagging
chromosomes in anaphase, generating euploid (3) or aneuploid (1, 2) daughter cells.
The lagging chromosome can either be trapped and damaged in the cleavage furrow in
cytokines (1) or form micronucleus (2, 3). In all three scenarios, DNA is damaged and
replication is stalled, leading to structurally abnormal chromosomes.

breast and ovarian cancer patients harbouring defective homologous recombination, an
important CIN mechanism, tend to have the CIN phenotype. ER− breast cancers have
higher CIN levels compared to ER+ samples [104]. Colorectal cancer CMS2 and CMS4
subtypes belong to CIN+ samples. However, CMS2 samples have higher CIN levels
and worse prognosis compared to CMS4 [47]. This might suggest that the CIN levels
in CMS2 subtype cancer cells surpass the optimal threshold, thereby being negatively
selected. Furthermore, CIN is strongly associated with many phenotype transforming
courses including drug resistance, metastasis, disease progression, tumour recurrence and
intra-tumour heterogeneity, indicating that CIN status also evolves over time. A recent
multi-sample phasing SCNA analysis directly points out that continuous CIN causes SCNA
heterogeneity [105]. Taken together, these data reflect the dynamic and heterogeneous
nature of CIN.

1.3.4 Chromosomal instability has impacts on cancer complexity

Thanks to its dynamic and heterogeneous attributes, CIN could affect a large part of a
cell’s cancer genome, yielding complex karyotypes that are continuously evolving. It is
apparent that heterogeneous genotypes generated by CIN provide substrates and diversity
for selection and adaptation [4, 80, 81]. However, the proportion of affected genome
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and the degree of consequent karyotype complexity do not necessarily determine the
cellular fitness. A number of copy number alterations caused by CIN may only cover non-
functional non-coding genes. Conversely, one single chromosome arm change can allow
substantial cellular function change [106, 107]. Even though multiple causal oncogenes
are located in CIN affected genome regions thereby being activated simultaneously, CIN
can serve as fitness penalty. This could happen if these concurrently activated signalling
induces oncogenic stress or they function in divergent and antagonizing manner [52].
Similarly, if the CIN affected genes act in a collaborating manner, CIN is considered as
promoting fitness advantage. This idea provides an explanation for mechanisms enabling
CIN propagation including aneuploidy tolerance and CIN attenuation [4]. Since the
aneuploidy tolerance and CIN attenuation procedures separately cover a wide range of
mechanisms that allow cancer cells to cope with ongoing inner molecular and pathway
changes, as well as external TME changes, the phenotype implications of CIN remain
elusive. It is important to note that the aneuploidy tolerance and other changes acquired
by evolved CIN cells should be distinguished from acute response to aneuploidy and
CIN [108]. In conclusion, CIN is a context-dependent process. The context mentioned
here includes cancer stage, cell types, genotypes, TME, species and cell culture conditions
[106, 80, 109].

1.3.5 Quantification of chromosomal instability

The dynamic and heterogeneous nature of CIN poses a challenge to quantitatively
assess CIN status. Detailed techniques applied on CIN measurement and their advan-
tages/limitations are reviewed in [5, 110]. In principle, these techniques belong to two
broad categories: (i) direct monitoring and (ii) surrogate measures. To capture the CIN dy-
namic nature, tracking and calculating mitotic error rates or chromosomal aberration rates
within a live cell over time is required. However, the involved experimental approaches
are complex, rendering it difficult to execute in routine experimental and clinical settings.
With the assumption that the CIN degree reflects the cell-to-cell heterogeneity within a
cell population, chromosomal structural and numerical changes are measured at single-cell
level and intra-tumour variation of these changes are used to infer CIN degrees. In cell
population based approaches, averaged intra-tumour heterogeneity, karyotype complexity
and SCNA burdens are used as surrogate of CIN measurement. One caveat for using a
bulk tumour genomic approach is that the inferred copy number or structural changes
can be diluted by the non-neoplastic cells [111], therefore tumour purity effects must
be corrected. Similarly, it is difficult to deconvolute the effects of CIN from those of
proliferation [36] or non-tumour cell contamination [112, 113] using CIN scores that are
derived from the CIN gene signatures of which expressions are highly correlated with CIN
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status or aneuploidy (e.g. [34]). It is also important to note that these surrogates just
capture a static picture of the complexity at cellular, karyotypic and transcriptomic level,
shaped by ongoing CIN and its interaction with selection pressure [103].

1.3.6 Computational models of chromosomal instability

No matter which approach is used for CIN evaluation, computational models could
complement experiments to deepen our understanding of CIN. These computational tools
are widely used in the following CIN related studies: image processing based karyotype
analysis [114, 115, 116], copy number segment based CIN metrics calculation [94, 117],
pan-cancer CIN landscape characterisation [107, 33, 118, 119, 120], CIN evolutionary
dynamics modelling [120, 121, 122], predicting CIN using hematoxylin and eosin (H &
E) images [123, 124]. Although it is widely appreciated that W-CIN and S-CIN differ
in their origins and consequences, the above mentioned studies consider only W-CIN or
CIN/aneuploidy in general, leaving S-CIN understudied. Structural complexity score (SCS)
which counts the number of structurally aberrant regions in the genome of a sample has
been proposed to be a good proxy measure of CIN in previous work [94], thereby providing
a feasible approach to complement the current CIN computational studies.

1.3.7 Discrepancies between preclinical models and clinical
applications

Considering the clinical implications of CIN, targeting CIN might be a promising strategy
to kill cancer cells. However, cancer chromosomal instability complexity not only presents a
substantial problem for effective interventions but also remains a challenge of translational
medicine. In general, significant treatment response differences exist among different types
of preclincial models [125]. Promising biomarkers and treatments discovered and validated
in preclinical model systems are hardly translated into clinical applications [126, 127]. On
the other hand, cancer researches often lack for preclinical model systems that closely
mimic the tumour ecosystem of a patient or a group of patients. Although a number of
differences like the TME and DNA damage response are proposed to explain the response
discrepancy, these factors may interplay to shape the phenotype of individual tumour
samples (as underscored in Subsection 1.3.4). Therefore a holistic approach taking into
account these factors together with their interactions is needed to match the preclinical
models to patients.
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1.4 Summary of contributions

Two major challenges for understanding and targeting CIN are highlighted in Section
1.3: (i) The commonalities and differences between W-CIN and S-CIN remain poorly
understood. (ii) The discrepancy between preclinical models and patients limits the
translational ability of promising in vitro experimental results. This thesis presents two
predictive modelling based frameworks in Chapter 3 and Chapter 4 to resolve challenges
(i) and (ii) respectively. I herein summarise the rationale and contributions of each work.

Chapter 3: Distinct and common features of numerical and
structural chromosomal instability across different cancer types

One can distinguish two types of CIN: W-CIN and S-CIN. While W-CIN describes elevated
rates of acquiring whole or large parts of chromosome changes, which are caused by
persistent chromosome missegregations. S-CIN samples tend to accumulate changes on
focal chromosome segments due to DNA damage repair deficiency. Although W-CIN and
S-CIN arise through different molecular characteristics, currently available computational
CIN studies only focus on W-CIN or CIN in general but leaving S-CIN understudied.
Here we analyse cancer genomic data to complement the existing cancer CIN studies,
intending to provide comprehensive characterizations of commonalities and differences
between W-CIN and S-CIN. In particular, our analysis reveals an almost universal bi-modal
pattern in the distribution of W-CIN that are absent in S-CIN. We then show that whole
genome doubling is uniformally strongly correlated with W-CIN, but in S-CIN, homologous
recombination deficiency shows the strongest consistent association. We demonstrate that
prognostic values of W-CIN and S-CIN are cancer type dependent. We identify compounds
that selectively target high CIN and reveal that currently available compounds are biased
to targeting low CIN tumours. We propose CKS1B as potential candidate S-CIN target,
its high activity is significantly correlated with S-CIN at the pathway and gene expression
levels. We show that high S-CIN is associated with copy number variations rather than
somatic mutations in several important cancer driver genes. Finally we propose a copy
number based mechanism to promote PI3K signalling in high S-CIN tumours.

Chapter 4: MFmap: A semi-supervised generative model
matching cell lines to tumours and cancer subtypes

Cell lines are the most commonly used model system to understand mechanisms underlying
cancer chromosomal instability and more. Even if promising strategies for targeting CIN
could be found in cancer cell lines in an ideal case, fidelitious in vitro models that
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closely mimic a specific tumour are still needed to maximise the translational capacity.
Here we developed model fidelity map (MFmap): a semi-supervised generative neural
network integrating copy number, somatic mutation and gene expression data with cancer
subtypes to simultaneously predict the cancer subtype labels of a cell line and its similarity
to individual tumours. MFmap is a new variant of semi-supervised variational auto-
encoder (VAE) which can achieve very good classification accuracy and good generative
performance simultaneously. The high accuracy (F1 score > 90%) of MFmap subtype
prediction can be seen in ten studied cancer types. With MFmap, one can select the
best cell lines for a specific cancer subtype or even an individual tumour. The pair-wise
cell-line-tumour similarity is evaluated on the MFmap embedded latent representations,
which are invariant between the tumour samples and cell lines. This allows to translate
subtype specific drug response to individual tumours. We further demonstrate that the
MFmap learned representations are clinically and biologically meaningful and can explain
cancer subtype specific features. Furthermore, the generative nature of MFmap allows us
to model cellular state transformation during disease course.

1.5 Organization

This paper-based thesis is organised as follows:

Chapter 1 gives the motivation to predictive modelling of cancer chromosomal in-
stability by describing their complexity and relationships. The currently available data
collection and analysis strategies to understand the cancer complexity reflect how ge-
netic alterations propagate throughout the biological systems: genetic alterations lead to
pathway dysfunctions that give rise to tumour microenvironment and clinical phenotype
changes. Section 1.2 is organised according to such a hierarchy, introducing each layer
of complexity and discussing their relationships. Section 1.3 briefly introduces the CIN
classification, CIN mechanisms, CIN heterogeneity and its clinical/molecular implications
on cancer complexity, CIN evaluation and translational gaps between preclinical models
and patients. Finally I outline the major contributions of the thesis in Section 1.4.

Chapter 2 summarises the predictive models used to study cancer chromosomal
instability complexity. The principles underlying linear regression and stochastic gradient
variational Bayes are introduced as the theoretical foundations of Chapter 3 and Chapter
4.

Chapter 3 and Chapter 4 are based on two of my first-author peer-reviewed journal
papers in their original forms. Licence notice, simple summary and author contribution
corresponding to the paper are presented at the beginning of each chapter, followed by
the full-text article.
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1.5. Organization

Chapter 5 briefly summarises the findings and contributions of my research and links
them to related works in literatures, pointing out next steps to improve and extend my
work. Appendix A contains a list of peer-reviewed journal articles published during my
time as a Phd student.
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Background

Underscoring the previously mentioned inherent complexity of cancer and chromosomal
instability, there is now a strong need to collect and analyse a wide variety of datasets
covering all facets of the two systems. For this reason, next generation sequencing (NGS)
techniques have been broadly used to generate enormous multi-omic data. As noted in
Subsection 1.3.7, there are enormously multi-scale discrepancies between in vitro model
systems and cancer patients, leading to most of the failures in translational medicine.
Statistical and machine learning (including deep learning) are vital for integrating these
data to (i) uncover the underlying biology of cancer chromosomal instability, (ii) and
prioritise the best in vitro models for experimental validation. The core computational
tools used in this thesis include linear regression model and semi-supervised generative
model. The semi-supervised generative model utilises a variational Bayesian (VB) method.
To integrate multi-omic data, these models are designed for multi-view learning. I herein
give an overview of the key concepts and underlying principles of these models. Please
note, the mathematical notations here are specific to genomic data and concepts are
introduced briefly. For more broad and detailed discussions on these topics, I recommend
[128, 129]. For tutorials focusing on VB inference I recommend [130, 131, 132]

2.1 Supervised learning

In supervised settings, a model is trained to predict the discrete label (classification) or
continuous target variable (regression) of a sample given its associated inputs. The inputs
could be taken from single or multiple data sources. If a model allows to integrate different
data modalities such as copy number variations, mutations and gene expressions, it is
named as multi-view learning, otherwise is referred as single-view learning. Compared to
single-view learning which only provides one aspect of the cancer chromosomal instability,
multi-view learning enables to capture the association within single-omic data type, as well
as the association between different data types, thereby providing a more comprehensive
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picture. Here I discuss single-view learning versus multi-view learning in the supervised
learning framework, nevertheless one can easily extend this to other types of machine
learning (e.g. unsupervised learning). Depending on the data type of the labels, supervised
learning solves two classes of problems: classification (categorical labels) and regression
(continuous target variables), necessitating different types of loss functions. I show two
exemplary loss functions, cross entropy loss and residual sum of squared error (RSS) that
are equivalent to the criterion of maximum likelihood estimation (MLE).

2.1.1 Single-view learning

The base case of supervised learning is single-view learning, suppose we have an inde-
pendent and identically distributed (i.i.d.) training set comprising n labelled samples
Dtrain = {(xtrain,(i), ytrain,(i))}ni=1, x

train,(i) ∈ X ⊆ Rd, ytrain,(i) ∈ {1, · · · , K} (for K-
class classification) or Dtrain = {(xtrain,(i), ytrain,(i))}ni=1, x

train,(i) ∈ X ⊆ Rd, ytrain,(i) ∈
Y ⊆ R (for regression), where xtrain,(i) and ytrain,(i) denote the feature vector and label
of sample i respectively. A predictive model is trained to learn a function f : X → Y
using Dtrain such that f(x; θ) could make accurate predictions on an unseen test dataset
Dtest = {(xtest,(i), ytest,(i))}mi=1, where θ ∈ Θ (parameter space) is the parameter of f ∈ F
(hypothesis space). The model performance is quantified by evaluation metrics. The
predictive model training process attempts to find optimal values for θ, minimising the
defined objective:

L(θ) = 1

n

n∑
i=1

l(ytrain,(i), f(xtrain,(i); θ)). (2.1)

Here l(ytrain,(i), f(xtrain,(i); θ)) is a differentiable loss function.
To avoid overfitting, a complexity penalty Ω : F → R+ is added to the objective

function, then the optimal θ∗ can be expressed as:

θ∗ = argmin
θ∈Θ

L(θ) + λΩ(θ). (2.2)

The regularization coefficient λ is a hyperparameter, which can be tuned using grid search,
randomised search [133] or Bayesian optimization [134], yielding the best evaluation
metric on the validation dataset. Additionally cross validation can be used.

2.1.2 Multi-view learning

The single-view setting can be easily extended to the multi-view case. To avoid notational
clutter, I hide the data dimensions, data ranges and dataset types from now on. Given a
training set with n labelled samples having v views. The j-th view is an i.i.d. dataset,
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written as Dj = {(x(i,j), y(i))}ni=1, where x(i,j) ∈ X j and y(i) ∈ Y denote the feature
vector from the j-th view and label of sample i respectively and j ∈ {1, · · · , v}. For
a given sample feature (x(i,1), · · · ,x(i,j), · · · ,x(i,v)) ∈ X 1 × · · · × X j × · · · × X v, v
functions {f 1, · · · , f j, · · · , f v} ∈ F1×· · ·×F j ×· · ·×Fv are trained to make accurate
predictions, where f j : X j → Y. The training is achieved by minimizing the overall
objective summing up v single-view objectives:

L(θ1, · · · , θj, · · · , θv) =
v∑

j=1

Lj(y, f(xj; θj)). (2.3)

Here Lj(y, f(xj; θj)) is the j-th view objective function parametrised by θj ∈ Θj, where
{θ1, · · · , θj, · · · , θv} ∈ Θ1×· · ·×Θj ×· · ·×Θv. Taking into account the regularisation
Ω and co-regularisation Ωco terms [135], we can resolve the optimal parameters by:

θ1∗, · · · , θv∗ = argmin
θ1,··· ,θv

v∑
j=1

Lj(θj) + λ
v∑

j=1

Ω(θj) + λco

∑
i,j∈{1,··· ,v}

i ̸=j

Ωco(θ
i, θj). (2.4)

It is apparent that the major difference between single-view learning and multi-view
learning is the co-regularisation term, which can be explicitly defined or implicitly modelled
by the neural network architecture.

2.1.3 Loss function for classification

Let p(y|x) be the true conditional distribution over the label y given the input x, p(y|x)
is usually unknown. Supervised learning aims to estimate a distribution qθ(y|x) that
approximates p(y|x), parametrised by θ, such that for any (x(i), y(i)):

p(y(i)|x(i)) ≈ qθ(y
(i)|x(i)). (2.5)

The Kullback-Leibler divergence (KL divergence) DKL (p||qθ) measures the dissimilarity
between p and qθ. In classification problems, we minimise the KL divergence loss to
find optimal model parameters. In fact, minimising KL divergence loss is equivalent to
minimising cross entropy loss.

Given a training set D = {(x(i), y(i))}ni=1, where y(i) ∈ {1, · · · , K} is the label, the
categorical cross entropy loss is defined as:

LCE = − 1

n

n∑
i=1

log qθ(y = y(i)|x(i)). (2.6)
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2.1.4 Linear regression

In a regression model, the target variable is continuous. Given a training dataset Dtrain =
{(xtrain,(i), ytrain,(i))}ni=1, xtrain,(i) ∈ X ⊆ Rd, ytrain,(i) ∈ Y ⊆ R, we aim to find a
relationship between x and y. In a Gaussian setting, we assume:

qθ(y
(i)|x(i)) = N (y(i);µθ(x

(i)), σ2). (2.7)

If the expectation µθ is a linear function of x: µθ(x
(i)) = wTx(i) + ϵ(i), where ϵ(i) denotes

the residual error between the prediction and the target and ϵ(i) ∼ N (0, σ2). The MLE
estimator of θ = (µθ, σ

2) is:

θ̂MLE = argmax
θ∈Θ

n∑
i=1

log qθ(y
(i)|x(i))

= argmax
θ∈Θ

−
n∑

i=1

1

2σ2
(y(i) − µθ(x

(i)))2 − log(
√
2πσ2)

= argmin
θ∈Θ

n∑
i=1

1

2σ2
(y(i) − µθ(x

(i)))2 + log(
√
2πσ2)

= argmin
θ∈Θ

n∑
i=1

(y(i) − µθ(x
(i)))2

= argmin
w∈Rd

n∑
i=1

(y(i) −wTx(i))2.

(2.8)

Eq (2.8) is known as the residual sum of squared error (RSS). Minimising the RRS with
respect to w is equivalent to MLE. Let X be the n× d data matrix:

X =


x(1,1) x(1,2) · · · x(1,d)

x(2,1) x(2,2) · · · x(2,d)

...
...

. . .
...

x(n,1) x(n,2) · · · x(n,d)

 ,

and the gradient of RRS equate to 0. Given XTX is invertible, we can get ŵMLE =
(XTX)−1XTy. This estimation method is called ordinary least square.

2.2 Deep neural networks

As noted for the linear regression problem presented in Subsection 2.1.4, the expectation
of the conditional distribution p(y|x) is modelled as a linear function of x. A neural
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network allows to model the non-linear relationship between the inputs and outputs. Let’s
consider the base case: The multilayer perceptron (MLP) is a type of feedforward neural
networks. The basic components of MLP are: input layer, output layer and hidden layers
that are denoted by l ∈ {1, · · · , L}. The number of neurons in layer l is nl, and nl can
be specified according to the purpose, the number of neurons in the input or the output
layer equates to the dimensions of input or output data respectively. Each neuron in layer
l is connected to all neurons in layer l − 1, i.e. fully connected. The layer l computes a
function:

al+1 = σl(Wla
l + bl). (2.9)

Here σl is the activation function of layer l. The weight matrix Wl ∈ Rnl×nl−1 and the
bias vector bl ∈ Rnl×1 are the trainable parameters of the network. The MLP can thus
be expressed as:

MLP(x) = σL(WL−1(· · ·σ2(W2 σ1(W1 x+ b1) + b2) · · · ) + bL−1) (2.10)

Below is a list of commonly used activation function:

• Sigmoid:

σ(x) =
1

1 + e−x
. (2.11)

• Tanh:

σ(x) =
ex − e−x

ex + e−x
. (2.12)

• Rectified Linear Unit (ReLU):

σ(x) = max(0, x). (2.13)

• Softmax:

σ(xi) =
exi∑K
j=1 e

xj

, for i = 1, 2, . . . , K. (2.14)

2.3 Variational Bayesian learning

2.3.1 Variational Bayes

A Bayesian network (BN) represents a probabilistic model as a directed acyclic graph (DAG),
of which nodes are random variables, edges linking nodes represent the direct influence
between them. If there is no edge between two nodes, we say the two corresponding
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variables are conditionally independent. BN corresponds to the factorisation of the joint
probability distribution p(x1, · · · ,xm):

p(x1, · · · ,xm) =
m∏
i=1

p(xi|πi), (2.15)

where πi is the set of variables corresponding to the parent nodes of xi in the graph.

Let us consider a DAG where x and z represent a set of observed variables and latent
variables respectively, with joint distribution pθ(x, z) = pθ(z)pθ(x|z). We are interested
in the posterior distribution:

pθ(z|x) =
pθ(x, z)

pθ(x)
. (2.16)

The marginal distribution pθ(x) in the denominator of Eq (2.16) requires the integral over
z:

pθ(x) =

∫
pθ(x, z)dz; (2.17)

The variational Bayesian (VB) learning aims to approximate the posterior distribution
pθ(z|x) (with parameter θ) through optimisation. That is, given a family of tractable
candidate distributions qϕ(z|x) (ϕ is known as variational parameter), the optimisation
finds the variational parameters such that qϕ(z|x) is closest in the KL divergence to
pθ(z|x) [131]. In fact, the general VB approaches do not minimise the KL divergence,
but rather maximise an evidence lower bound (ELBO) to find variational parameters that
provide a bound on the marginal likelihood as tight as possible [130, 131, 132]. To see
the rationale, we need to look how to derive the ELBO and the KL divergence. Taking
the logarithm of Eq (2.17), we have:

log pθ(x) = log

∫
pθ(x, z)

qϕ(z|x)
qϕ(z|x)

dz (2.18a)

≥
∫

qϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] dz (Jensen’s inequality) (2.18b)

=Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] ∆
= Lθ,ϕ(x), (2.18c)
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2.3. Variational Bayesian learning

here Lθ,ϕ(x) denotes the ELBO. Now we derive the KL divergence:

DKL (qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) [log qϕ(z|x)− log pθ(z|x)] dz

=

∫
qϕ(z|x)

[
log qϕ(z|x)− log

pθ(x, z)

pθ(x)

]
dz

=−
∫

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
dz+

∫
qϕ(z|x) log pθ(x)dz

=−
∫

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
dz︸ ︷︷ ︸

∆
= Lθ,ϕ(x)

+ log pθ(x)

∫
qϕ(z|x)dz︸ ︷︷ ︸

= 1

=− Lθ,ϕ(x) + log pθ(x)

(2.19)

From Eq (2.19) it’s apparent that maximising the ELBO is the same as minimising the KL di-
vergence of qϕ(z|x) from pθ(z|x). It is also interesting to note that DKL (qϕ(z|x)||pθ(z|x))
measures the gap between the ELBO and the log marginal likelihood, which is known as
the tightness of the bound [132].

2.3.2 Stochastic gradient estimation for variational Bayes

We can optimise the ELBO via stochastic gradient descent (SGD), where differentiation the
ELBO with respect to both ϕ and θ is needed. To resolve the problem that differentiating
the ELBO with respect to ϕ is problematic and the Monte Carlo estimation is highly
variable [130], the following reparameterisation is performed:

ϵ ∼ p(ϵ); z̃ = gϕ(ϵ,x). (2.20)

Here gϕ(ϵ,x) is a differentiable transformation of an axillary noise variable ϵ and z̃ ∼
qϕ(z|x). Replacing the expectation with respect to qϕ(z|x) with that with respect to p(ϵ)
in Eq (2.18c), the ELBO is:

Lθ,ϕ(x) = Ep(ϵ) [log pθ(x, z)− log qϕ(z|x)] (2.21)

The Monte Carlo estimate of the ELBO for the i-th data point is thus:

L̃θ,ϕ(x
(i)) =

1

L

L∑
l=1

log pθ(x
(i)|z(i,l))︸ ︷︷ ︸

negative reconstruction error

−DKL

(
qϕ(z

(i)|x(i))||pθ(z(i)|x(i))
)
,

where z(i,l) = gϕ(ϵ
(l),x(i)) and ϵ(l) ∼ p(ϵ).

(2.22)
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As a result, the gradient of the ELBO, ∇θ,ϕL̃θ,ϕ(x
M, ϵ) on a mini-bach XM = {x(i)}Mi=1,

can be computed for the SGD based auto-encoding variational Bayes (AEVB) algorithm.
The resulting ELBO estimate is named as the stochastic gradient variational Bayes (SGVB)
estimator [130, 132].

2.3.3 Variational auto-encoder

The variational auto-encoder (VAE) allows for efficient approximate inference, by combing
a deep neural network with the above described SGVB estimation approach. Given
a feature vector x with corresponding latent variables z, we introduce the variational
distribution qϕ(z|x) that approximates the posterior distribution pθ(z|x). The distributions
of the generative and inference models for a VAE are:

pθ(x, z) = pθ(x|z)pθ(z)
pθ(x|z) = fθ(x; z)

pθ(z) = N (z;0, I)

qϕ(z|x) = N (z;µ,σ2I)

(2.23)

Here fθ(x; z) is a suitable distribution (Normal distribution for continuous data; Bernoulli
distribution for binary data) with learnable parameter θ. The decoder network pθ(x|z)
is a sequence of fully connected neural network layers modelling a non-linear function
dNNθ : z → x. And qϕ(z|x) is the inference network (encoder) with learnable parameter ϕ,
µ and σ2 form the outputs of the encoding network. The non-linear function eNNϕ : x → z
is modelled by a neural network. The structure of the encoder network mirrors that of the
decoding network. The reparameterisation trick (Eq (2.20)) is applied in the sampling
step:

z(i,l) = gϕ(ϵ
(l),x(i)),

where gϕ(x
(i), ϵ(l)) = µ(i) + σ2(i) ⊙ ϵ(l)and ϵ(l) ∼ N (0, I)

(2.24)

In Eq (2.24), ⊙ denotes the elementwise product, i and l represent data point index and
Monte Carlo sampling index respectively.

Let us denote the observation data and corresponding latent variables pair as {(x(i), z(i))}ni=1,
x(i) ∈ X ⊆ Rd, z(i) ⊆ RJ . Plugging the detailed formulas for the distributions into Eq
(2.22), the gradient of the ELBO ∇θ,ϕL̃θ,ϕ(x

M, ϵ) on a mini-bach XM = {x(i)}Mi=1, can
be computed for the AEVB algorithm as:
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2.3. Variational Bayesian learning

1. When fθ(x
(i); z(i)) is a Normal distribution:

∇θLθ,ϕ(x
M, ϵ) ≃∇θ

1

L

M∑
i=1

L∑
l=1

log pθ(x
(i)|z(i,l))−DKL

(
qϕ(z

(i)|x(i))||N (0, I)
)

=∇θ
1

L

M∑
i=1

L∑
l=1

log e
−
1

2
∥x(i)−dNNθ(z

(i,l))∥2

=−∇θ
1

2L

M∑
i=1

L∑
l=1

∥x(i) − dNNθ(z
(i,l))∥2︸ ︷︷ ︸

∆
= Lreconstruction

.

(2.25)

Here ≃ denotes estimation.

∇ϕLθ,ϕ(x
M, ϵ) ≃∇ϕ

M∑
i=1

L∑
l=1

Eϵ(l)∼N (0,I)[log pθ(x
(i)|z(i,l))]

∣∣
z(i,l)=µ

(i)
ϕ +σ2

ϕ
(i)⊙ϵ(l)

−∇ϕ

M∑
i=1

DKL

(
qϕ(z

(i)|x(i))||N (0, I)
)

=∇ϕ

M∑
i=1

L∑
l=1

Eϵ(l)∼N (0,I)[log pθ(x
(i)|µ(i)

ϕ + σ2
ϕ
(i) ⊙ ϵ(l))]

−∇ϕ
1

2

M∑
i=1

J∑
j=1

(1 + log σ2
j
(i) − µ2

j
(i) − σ2

j
(i)
)︸ ︷︷ ︸

∆
= LKL

=∇ϕ −
1

2L

M∑
i=1

L∑
l=1

∥x(i) − dNNθ(z
(i,l))∥2

∣∣∣
z(i,l)=µ

(i)
ϕ +σ2

ϕ
(i)⊙ϵ(l)

−∇ϕLKL

=−∇ϕ(Lreconstruction + LKL).

(2.26)

2. When fθ(x
(i); z(i)) is a Bernoulli distribution:

∇θLθ,ϕ(x
M, ϵ) ≃∇θ

1

L

M∑
i=1

L∑
l=1

log pθ(x
(i)|z(i,l))−DKL

(
qϕ(z

(i)|x(i))||N (0, I)
)

=∇θ
1

L

M∑
i=1

d∑
v=1

L∑
l=1

x(i,v) log x̂(i,v,l) + (1− x(i,v)) log(1− x̂(i,v,l))
∣∣
x̂(i,l)=dNNθ(z(i,l))︸ ︷︷ ︸

∆
= −Lreconstruction

;
(2.27)
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∇ϕLθ,ϕ(x
M, ϵ) ≃∇ϕ

M∑
i=1

L∑
l=1

Eϵ(l)∼N (0,I)[log pθ(x
(i)|z(i,l))]

∣∣
z(i,l)=µ

(i)
ϕ +σ2

ϕ
(i)⊙ϵ(l)

−∇ϕ

M∑
i=1

DKL

(
qϕ(z

(i)|x(i))||N (0, I)
)

=∇ϕ

M∑
i=1

L∑
l=1

Eϵ(l)∼N (0,I)[log pθ(x
(i)|µ(i)

ϕ + σ2
ϕ
(i) ⊙ ϵ(l))]

−∇ϕ
1

2

M∑
i=1

J∑
j=1

(1 + log σ2
j
(i) − µ2

j
(i) − σ2

j
(i)
)︸ ︷︷ ︸

LKL

=∇ϕ
1

L

M∑
i=1

d∑
v=1

L∑
l=1

x(i,v) log x̂(i,v,l) + (1− x(i,v)) log(1− x̂(i,v,l))
∣∣
x̂(i,l)=dNNθ(µ

(i)
ϕ +σ2

ϕ
(i)⊙ϵ(l))

−∇ϕLKL

=−∇ϕ(Lreconstruction + LKL).
(2.28)

2.4 Deep generative models for semi-supervised
learning

Semi-supervised learning is strongly needed in cancer research where only a small proportion
of datasets have label annotations and data labelling for large scale data is impractical
due to high costs or possible ethical issues. The generative nature of VAE makes
it suitable for semi-supervised learning where the learning tasks involve labelled data
Dl = {(xl,(i), yl,(i))}ni=1, xl,(i) ∈ X ⊆ Rd, yl,(i) ∈ {1, · · · , K} with joint probability
distribution pl(x, y) and unlabelled data Du = {xu,(i)}mi=1, x

u,(i) ∈ X ⊆ Rd that are drawn
from probability distribution pu(x). Depending on the assumed graphical probabilistic
model (i.e. the DAG) that represents the joint distribution, one can derive a range of
generative models. This enables jointly optimising the semi-supervised classifier and
variational approximation parameters.

The M1 and M2 models are among the earliest work extending the VAE to semi-
supervised learning [136]. Inspired by this, other new variants of semi-supervised VAE
are proposed [137, 138]. Chapter 4 which contains our recent work [139] presents a new
variant VAE based on the DAG shown in Fig 2.1(C). Here I shortly introduce the idea of
extending the VAE to semi-supervised generative model using the M1 and M2 models as
examples. The M1 model is based on a standard VAE (the corresponding DAG is shown
in Fig 2.1(A)) that embeds high-dimensional features of both labelled and unlabelled
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Figure 2.1: Graphical models for joint distributions. (A) Graphical model for
standard VAE (M1 model). (B) Graphical model for M2 model. (C) Graphical model for
MFmap [139].

samples into low-dimensional latent space. The embedded features of labelled data are
then used to train a classier (e.g. SVM), which also predicts the labels of unlabelled
samples.

The M2 model is based on the DAG shown in Fig 2.1(B), where the features x are
generated from latent variables y and z for unlabelled data. For the labelled data, y
is observed, we only have latent variables z. Following the principle of VAE, the joint
distribution and marginal distribution are:

pθ(x, y) =

∫
pθ(x|y, z)pθ(y)pθ(z)dz (2.29a)

pθ(x) =
∑
y

pθ(x, y), (2.29b)

The approximate variational inference networks qϕ(z|y,x) and qϕ(z, y|x) are introduced
for labelled and unlabelled data respectively. The authors assumed that the conditional
independence z ⊥ y|x in Eq (2.29b) holds in the inference network qϕ(z, y|x), that is,
qϕ(z, y|x) = qϕ(z|x)qϕ(y|x) [136].

The probabilistic model of the generative and inference processes for a semi-supervised
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VAE are specified as:

pθ(x, y, z) = pθ(x|y, z)pθ(y)pθ(z) (2.30a)

pθ(x|y, z) = fθ(x; y, z) (2.30b)

pθ(y) = Cat(y|πy) (2.30c)

pθ(z) = N (z;0, I) (2.30d)

qϕ(z, y|x) = qϕ(z|x)qϕ(y|x) (2.30e)

= qϕ(z|y,x)qϕ(y|x) (2.30f)

qϕ(z|y,x) = N (z|µϕ(x),σ
2
ϕ(x)) (2.30g)

qϕ(y|x) = Cat(y|πϕ(x)) (2.30h)

Here fθ(x; y, z) is a suitable distribution represented as the deep decoder network y, z 7→
fθ(·; y, z); πy are the probabilities of one-hot encoded class labels; πϕ(x) is the categorical
parameter of the classifier network qϕ(y|x); µϕ(x) and σ2

ϕ(x) are the outputs of the
encoder network. The ELBO of labelled data is expressed as:

Ll
θ,ϕ(x, y) =Eqϕ(z|y,x) [log pθ(x|y, z)]−DKL (qϕ(z|y,x)||pθ(z)) , (2.31)

and the ELBO of unlabelled data is

Lu
θ,ϕ(x) =

∑
y

qϕ(y|x)Ll
θ,ϕ(x, y) +H (qϕ(y|x))︸ ︷︷ ︸

entropy

.
(2.32)

To make label prediction qϕ(y|x) to be trained on both labelled and unlabelled data, the
cross entropy loss LCE is added to the negative ELBO of the labelled data to form the
final loss function of the M2 model:

Lθ,ϕ(x, y) = −
∑

(x,y)∼pl(x,y)

Ll
θ,ϕ(x, y)−

∑
(x)∼pu(x)

Lu
θ,ϕ(x)−α·Epl(x,y) [log qϕ(y|x)]︸ ︷︷ ︸

∆
= LCE

. (2.33)

Here α is a tunable hyperparameter controlling the relative weight between the generative
model and the classifier. With the defined objective of semi-supervised VAE, the stochastic
backpropagation strategies and reparametrisation trick discussed in Section 2.3 can be
applied to optimise the parameters.
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Distinct and common features of
numerical and structural chromosomal
instability across different cancer types

This chapter has been published as peer-reviewed journal paper:
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X. Zhang and M. Kschischo. “Distinct and Common Features of Numerical and Structural
Chromosomal Instability across Different Cancer Types.” In: Cancers 14.6 (2022). doi:
10.3390/cancers14061424

Synopsis: Most cancer cells display chromosomal instability (CIN) phenotype, defined
as elevated rates of accumulating whole chromosome changes (W-CIN) or structurally
abnormal chromosomes (S-CIN). Both W-CIN and S-CIN have broad clinical implications.
While W-CIN could coexist with S-CIN in one cell, they arise through different mechanisms.
For better understanding of the commonalities and difference between W-CIN and S-CIN
across 33 cancer types, we performed extensive association analyses between W-CIN/S-
CIN and various features including prognosis, drug sensitivity, pathway activity, somatic
mutation and copy number variation. We found that whole genome doubling is universally
strongly associated with high W-CIN, homologous recombination deficiency is strongly
associated with high S-CIN in almost all studied cancer types. We show prognostic values
of W-CIN and S-CIN are cancer type specific. We report currently available drugs hardly
kill high CIN cancer cells. We propose CKS1B as a potential candidate S-CIN target. We
suggest a copy number dependent mechanism to promote PI3K signalling in high S-CIN
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Distinct and Common Features of Numerical and Structural
Chromosomal Instability across Different Cancer Types
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* Correspondence: kschischo@rheinahrcampus.de; Tel.: +49-2642932330

Simple Summary: Many cancer cells are chromosomally unstable, a phenotype describing a tendency
for accumulating chromosomal aberrations. Entire chromosomes tend to be gained or lost, which is
called whole chromosome instability (W-CIN). Structural chromosomal instability (S-CIN) describes
an increased rate of gaining, losing or translocating smaller parts of chromosomes. Here, we analyse
data from 33 cancer types to find differences and commonalities between W-CIN and S-CIN. We find
that W-CIN is strongly linked to whole genome doubling (WGD), whereas S-CIN is associated with a
specific DNA damage repair pathway. Both W-CIN and S-CIN are difficult to target using currently
available compounds and have distinct prognostic values. The activity of the drug resistance gene
CKS1B is associated with S-CIN, which merits further investigation. In addition, we identify a
potential copy number-based mechanism promoting signalling of the important PI3K cancer pathway
in high-S-CIN tumours.

Abstract: A large proportion of tumours is characterised by numerical or structural chromosomal
instability (CIN), defined as an increased rate of gaining or losing whole chromosomes (W-CIN)
or of accumulating structural aberrations (S-CIN). Both W-CIN and S-CIN are associated with
tumourigenesis, cancer progression, treatment resistance and clinical outcome. Although W-CIN
and S-CIN can co-occur, they are initiated by different molecular events. By analysing tumour
genomic data from 33 cancer types, we show that the majority of tumours with high levels of W-CIN
underwent whole genome doubling, whereas S-CIN levels are strongly associated with homologous
recombination deficiency. Both CIN phenotypes are prognostic in several cancer types. Most drugs
are less efficient in high-CIN cell lines, but we also report compounds and drugs which should be
investigated as targets for W-CIN or S-CIN. By analysing associations between CIN and bio-molecular
entities with pathway and gene expression levels, we complement gene signatures of CIN and report
that the drug resistance gene CKS1B is strongly associated with S-CIN. Finally, we propose a potential
copy number-dependent mechanism to activate the PI3K pathway in high-S-CIN tumours.

Keywords: whole chromosomal instability; structural chromosomal instability; whole genome
doubling; integrative analysis; PI3K oncogenic activation

1. Introduction

A large proportion of human tumours exhibits abnormal karyotypes with gains and
losses of whole chromosomes or structural aberrations of parts of chromosomes [1–3]. In
many cases, these karyotypic changes are the result of ongoing chromosomal instability
(CIN), which is defined as an increased rate of chromosomal changes. Accordingly, two
major forms of CIN can be distinguished: Whole chromosome instability (W-CIN), which
is also called numerical CIN, refers to the ongoing acquisition of gains and losses of whole
chromosomes. Structural CIN (S-CIN) is characterised by an increased rate of acquiring
structural changes in chromosomes including, amongst other things, amplifications and
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deletions, inversions, duplications and balanced or unbalanced translocations [1–4]. CIN
is to be distinguished from polyploidy, where the whole set of chromosomes is increased.
In cross-sectional tumour samples, W-CIN manifests itself by an abnormal and unequal
number of chromosomes, whereas the S-CIN phenotype is characterised by segmental
aneuploidy, i.e., gains and losses of chromosome segments.

Although W-CIN can induce S-CIN and vice versa, both types of CIN arise through
distinct molecular characteristics. Whilst W-CIN is caused by chromosome missegregation
during mitosis, S-CIN is commonly attributed to errors in the repair of DNA double-strand
breaks [5,6]. Both types of CIN are intimately related to DNA replication stress [7,8],
which not only induces CIN [9,10], but also occurs as an immediate short-term response to
aneuploidy and CIN [11].

Aneuploidy and CIN have typically detrimental effects on cell fitness and prolifer-
ation [5,11,12]. Therefore, it was unclear why CIN is often associated with poor patient
survival and more aggressive disease progression [1,13,14]. Stratification of breast cancer
patient samples into low, intermediate and high CIN groups revealed that patients with
intermediate levels of CIN had the worst survival, whereas the low and high CIN groups
had a better prognosis [15,16]. These results hinted at mechanisms for tolerating CIN in
order to survive the stresses provoked by chromosomal aberrations. The CIN tolerance
mechanisms are currently not completely understood [17], but one important recurring
event is a loss of TP53 function, which otherwise prevents the propagation of CIN cells [18].

The CIN 70 signature is a set of genes whose expression is correlated with functional
segmental aneuploidy [1]. It was one of the first CIN signatures and it is enriched by
genes involved in cell cycle regulation and mitosis. CIN 70 was later criticised for rather
being a marker for cell proliferation than for CIN, because it reflects evolved aneuploid
cancer cell populations which have adapted their genome instead of a primary response to
CIN [19]. These studies highlighted that we have to distinguish between acute responses
to aneuploidy and CIN [11], mechanisms for tolerating CIN [17] and the cellular pro-
gramme [20,21] and genetic alterations [22] acquired by evolved CIN cells. These cellular
programmes might differ between cancer cell lines and tumours, partially as a result of
treatment effects or as a result of interactions with the tumour microenvironment. Recently,
it was discovered that chromosome segregation errors as well as replication stress activate
the anti-viral immune cGAS-STING pathway, which responds to genomic double-stranded
DNA in the cytosol [2,23]. This interesting research links cancer cell intrinsic processes with
cell to cell communication and immune response in the tumour microenvironment.

The phenotypic plasticity in combination with tumour heterogeneity enables CIN
tumours to rapidly adapt to diverse stress conditions. It has been shown that CIN permits
and accelerates the acquisition of resistance against anti-cancer therapies by acquiring
recurrent copy number changes [24,25]. This acquired drug resistance could potentially
exacerbate the intrinsic drug resistance [26] of many CIN cells, which highlights the need to
better understand genomic changes of CIN tumours in the context of anti-cancer treatment.

Computational studies of cancer genomic data have provided valuable insights into
CIN [1,19–22] and aneuploidy [27] and guided experimental and clinical testing. However,
most of these studies did not differentiate between W-CIN and S-CIN. Here, we analyse
cancer genomic data to better understand commonalities and differences between both
types of CIN. In particular, we analyse, across multiple cancer types, the genomic landscape
of S-CIN and W-CIN, their relationship to prognosis and drug sensitivity, the relationship
between CIN, somatic point mutations and specific copy number variations and propose a
new link between S-CIN and the PI3K oncogenic pathway.

2. Materials and Methods
2.1. TCGA Pan-Cancer Clinical and Molecular Data

We analysed chromosome instability of 33 primary tumour types from The Cancer
Genome Atlas (TCGA): Adrenocortical carcinoma (ACC, n = 89); bladder urothelial car-
cinoma (BLCA, n = 399); breast invasive carcinoma (BRCA, n = 1039); cervical and
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endocervical cancers (CESC, n = 294); cholangiocarcinoma (CHOL, n = 36); colon adeno-
carcinoma (COAD, n = 420); lymphoid neoplasm diffuse large B-cell lymphoma (DLBC,
n = 47); esophageal carcinoma (ESCA, n = 162); glioblastoma multiforme (GBM, n = 556);
head and neck squamous cell carcinoma (HNSC, n = 510); kidney chromophobe (KICH,
n = 65); kidney renal clear cell carcinoma (KIRC, n = 480); kidney renal papillary cell
carcinoma (KIRP, n = 280); acute myeloid leukaemia (LAML, n = 124); brain lower grade
glioma (LGG, n = 506); liver hepatocellular carcinoma (LIHC, n = 361); lung adenocarci-
noma (LUAD, n = 490); lung squamous cell carcinoma (LUSC, n = 482); mesothelioma
(MESO, n = 81); ovarian serous cystadenocarcinoma (OV, n = 550); pancreatic adenocarci-
noma (PAAD, n = 165); pheochromocytoma and paraganglioma (PCPG, n = 160); prostate
adenocarcinoma (PRAD, n = 471); rectum adenocarcinoma (READ, n = 154); sarcoma
(SARC, n = 244); skin cutaneous melanoma (SKCM, n = 104); stomach adenocarcinoma
(STAD, n = 427); testicular germ cell tumours (TGCT, n = 133); thyroid carcinoma (THCA,
n = 463); thymoma (THYM, n = 106); uterine corpus endometrial carcinoma (UCEC,
n = 512); uterine carcinosarcoma (UCS, n = 56); uveal melanoma (UVM, n = 80).

We also calculated karyotypic complexity scores as surrogate measures for CIN (see
Section 2.4) for 391 metastatic tumour tissues, 8719 blood-derived normal tissues and
2207 solid normal tissues.

The TCGA pan-cancer molecular and clinical data were downloaded from the Pan-
Cancer Atlas [28]. The file names for different data modalities are: Copy number seg-
ment data from broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.seg; ABSO-
LUTE [29] inferred ploidy data from TCGA_mastercalls.abs_tables_JSedit.fixed.txt; nor-
malised and batch effect-corrected gene expression profile from EBPlusPlusAdjustPANCAN_
IlluminaHiSeq_RNASeqV2.geneExp.tsv; clinical data from TCGA-CDR-SupplementalTableS1
.xlsx; PARADIGM [30] inferred pathway activity data from merge_merged_reals.tar.gz.

2.2. CCLE Molecular and Sample Annotation Data

Cell line multiomics data were downloaded from the Broad-Novartis Cancer Cell Line
Encyclopedia (CCLE) [31]. In particular, the copy number segment data are located in CCLE_
copynumber_2013-12-03.seg.txt. Gene expression profiles and sample annotations are
located in CCLE_RNAseq_genes_rpkm_20180929.gct.gz and Cell_lines_annotations_
20181226.txt. The binary alteration matrix is located in CCLE_MUT_CNA_AMP_DEL_binary_
Revealer.gct. Sample ploidy data estimated using the ABSOLUTE algorithm [29] are
located in CCLE_ABSOLUTE_combined_20181227.xlsx.

2.3. CTRP Drug Screening Data

We collected cell line pharmacological profiling data from the Cancer Therapeutics Re-
sponse Portal (CTRP [32], CTRPv2.0_2015_ctd2_ExpandedDataset.zip). The drug resis-
tance quantified by the area under the dose–response curve (AUC) was min–max nor-
malised, i.e., the minimum value was subtracted and the resulting values were rescaled by
the original range of the AUC. These min–max normalised AUC values have a range between
zero and one. From this, we computed the drug sensitivity index as 1 − normalised AUC
with values in the range between 0 (highest resistance) and 1 (most sensitive).

2.4. Karyotypic Complexity Scores (CIN Scores)

We implemented three different karyotypic complexity scores [7] as surrogate mea-
sures for CIN in both TCGA bulk tumours and CCLE cell lines: The numerical complexity
score (NCS), the structural complexity score (SCS) and the weighted genome instability
index (WGII). For brevity, we will refer to these karyotypic complexity scores as CIN scores.
Here, we detail the procedures for computing each score.

The NCS is calculated by the following steps:

Step 1: Inferring sample ploidy using the ABSOLUTE algorithm [29].
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Step 2: Rounding the ploidy and segment-wise copy numbers of each sample to the
nearest integer.

Step 3: Identifying whole chromosomal changes in each chromosome. For each chromo-
some in a sample, this chromosome is counted as a whole chromosomal change
if at least 75% of the chromosome has integer copy numbers greater or less than
the sample integer ploidy.

Step 4: Summing up the whole chromosome changes across all 22 autosomes yields the
sample NCS.

The SCS is calculated by the following steps:

Step 1: Rounding the segment-wise copy numbers of each sample to the nearest integer.
Step 2: Computing the modal copy number for each chromosome in each sample.
Step 3: Identifying intra-chromosomal changes for each chromosome. Given a chro-

mosome segment of a sample, this segment (with length ≥1 Mb) is counted as
changed if its integer copy number is greater or less than the modal copy number
of this chromosome.

Step 4: Summing up all intra-chromosomal changes across all 22 autosomes yields the
sample SCS.

The WGII is calculated by the following steps:

Step 1: Inferring sample ploidy using the ABSOLUTE algorithm [29].
Step 2: Rounding the ploidy and segment-wise copy numbers of each sample to the

nearest integer.
Step 3: Identifying chromosome changes for each chromosome. Given a chromosome

segment of a sample, this segment is counted as changed if the integer copy
number of this segment is greater or less than the sample integer ploidy.

Step 4: Calculating the percentage of the chromosome change for each chromosome.
Step 5: Calculating the mean percentage of the chromosome change of all 22 autosomes,

resulting in sample WGII.

2.5. Association Analysis between CIN and Genome Instability

Aneuploidy scores (ASs) of samples are taken from [27], Supplementary Table S2,
tumour characteristics including homologous recombination deficiency (HRD), silent mu-
tation rate (SMR), non-silent mutation rate (NSMR), proliferation and intra-tumour hetero-
geneity (ITH) were collected from [33], Supplementary Table S1. Microsatellite instability
(MIN) scores are collected from [34], Supplementary Table S5. The correlations of these
genome instability scores and NCS or SCS were quantified by Spearman correlation coefficients.

2.6. Survival Analysis

We performed survival analysis using the survival R package [35]. Patients were
stratified according to their median CIN score of all patients from the same cohort. A
univariate Cox proportional hazards model was fitted to evaluate the association between
patient survival and CIN and the log rank test was applied to calculate the p-value for
the survival difference between high-CIN and low-CIN groups. Survival curves were
visualised using ggsurvplot implemented in the survminer R package [36].

2.7. Treatment Response Analysis

We labelled patients with complete/partial response to chemotherapy or radiation
therapy as responders and the other patients as non-responders. A Wilcoxon rank sum
test was used to evaluate the differences of the NCS and SCS in the responder and non-
responder groups.
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2.8. Identification of Candidate Compounds Selectively Targeting CIN

Spearman correlation coefficients between drug sensitivity (defined in Section 2.3) and
CIN were computed for 545 CTRP compounds. Compounds with multiple testing adjusted
p ≤ 0.05 and median drug sensitivity >0.5 were considered as candidate compounds selec-
tively targeting low-CIN cancer cells (compounds with negative correlation coefficients) or
high-CIN cancer cells (compounds with positive correlation coefficients).

2.9. Association Analysis between CIN and PARADIGM Pathway Activities

We collected the sample-wise PARADIGM pathway activity matrix from the Pan-
Cancer Atlas [28] with the file name merge_merged_reals.tar.gz. For each cancer type
we computed the Spearman correlation coefficient between CIN score (NCS or SCS) and
PARADIGM pathway activity and selected the top pathways corresponding to significant
protein coding genes. We filtered genes/proteins whose PARADIGM pathway activities
are strongly positively correlated with NCS or SCS (correlation coefficient ≥0.3) in more
than seven cancer types.

2.10. Association Analysis between Somatic Alterations and CIN

We used the limma R package [37] for multiple linear regression analysis on CIN scores,
using alteration status (mutation, copy number amplification or copy number deletion
versus wild type) and cohort as predictor variables. To achieve sufficient statistical power,
only alterations which occurred in more than 20 samples were included as predictors.

3. Results
3.1. Karyotypic Complexity Scores as Surrogate Measures for CIN

CIN is a dynamic feature of abnormal chromosomes, rendering its assessment in
routine experimental settings difficult [38,39]. Assessing the degree of ongoing W-CIN or S-
CIN requires time-resolved data to monitor the rate of mitotic errors or the rate of segmental
gains or losses, respectively. An alternative is to use single cell analysis to quantify cell to
cell karyotype heterogeneity within a population of cells. The latter approach is based on
the assumption that the degree of CIN is reflected by the degree of karyotype heterogeneity.

Although these and other approaches have made considerable progress in recent years
(see, e.g., [40] for a recent review), the number of patient-derived tumour samples across
different cancer types providing such information is not sufficient for a statistically mean-
ingful comparison across different cancer types. Instead, we use established karyotypic
complexity scores which have been evaluated as good markers for the CIN phenotype [7,26].
Please note, however, that these scores derived from cross-sectional tumour data quantify
the degree of aneuploidy or segmental aneuploidy, which is the result of both CIN and
the selective pressures shaping the karyotype. As such, the karyotypic complexity scores
cannot quantify ongoing CIN, but only reflect the chromosomal changes resulting from CIN
and evolutionary adaptation and selection. Nevertheless, based on previous evidence [26]
we assume here that these karyotypic complexity scores reflect features of the evolved CIN
phenotype and refer to them as CIN scores.

As a surrogate score for the degree of W-CIN of a given tumour sample, we used the
numerical complexity score (NCS) [7], which counts the number of whole chromosome
gains/losses (defined as chromosomes with more than 75% of integer copy numbers higher
or lower than the sample integer ploidy). The exact computation is given in Section 2.4. The
degree of S-CIN was assessed by the structural complexity score (SCS), which is the number
of structurally aberrant regions in the genome of a sample. A region in a chromosome is
defined as structurally aberrant if it is longer than 1 Mb and its copy number deviates from
the modal copy number of the chromosome (Section 2.4).

The weighted genome instability index (WGII) was previously used as a measure
integrating both numerical and structural complexity (e.g., [7,12]). The WGII is the average
percentage of changed genome relative to the sample ploidy [7], see again Section 2.4. We
found that the WGII is highly correlated to the NCS (Pearson correlation coefficient: 0.99)
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and we also provide the pan-cancer analysis results using the WGII for comparison in
PDF S1.

Please note one important difference between our work and previous analysis (e.g., [7,12])
of karyotypic complexity scores: We used the ABSOLUTE algorithm for estimating the ploidy
of the sample, whereas most previous work used the median copy number weighted by seg-
ment length across all segments [7]. The ABSOLUTE inferred ploidy has been validated using
fluorescence-activated cell sorting, spectral karyotyping and DNA-mixing experiments [29].

3.2. Landscape of W-CIN and S-CIN across Human Cancers

In total, we calculated NCS and SCS for 21,633 samples including 10,308 primary
tumours, 391 metastatic tumours and 10,934 normal tissues derived from 33 cancer types.
The distribution of NCS varies drastically across cancer types (Figure 1A), but shows a
characteristic bimodal pattern, see also the pan-cancer histogram on the right hand side.
The colour coding of the whole genome doubling (WGD) status indicates that tumour
samples with high levels of NCS are often characterised by a WGD event. Please note that
this is not an artefact of the NCS, which is measured relative to the sample ploidy. This
suggests that WGD is an important mechanism inducing W-CIN in many cancer types.
However, the exception is kidney chromophobe (KICH), where WGD events seem to be
rare, but high levels of the NCS can still be observed. In this cancer type, there is also no
clear bimodal pattern, suggesting that mechanisms other than WGD drive W-CIN in KICH.
Even in cancers where the bimodal pattern suggests a clear separation between numerically
unstable and numerically stable tumours, it is difficult to define a universal NCS threshold
distinguishing numerically stable from W-CIN tumours across cancer types. For example,
in ovarian serous cystadenocarcinoma (OV), one can distinguish low- and high-NCS groups
with WGD, but the overall level of the NCS is much higher than that in other cancer types.
Similarly, for adrenocortical carcinoma (ACC), there are many patients with high levels
of NCS even in the group of samples which did not undergo WGD. This suggests that
processes other than WGD can drive a certain degree of W-CIN in these tumours.

In contrast to the NCS distribution, the pan-cancer distribution of SCS peaks at low
values and is right skewed (Figure 1B). This indicates that most tumours are structurally
chromosomally stable, but some can exhibit extreme levels of S-CIN. Overall, there is no
functional relationship between NCS and SCS (Figure A1).

The distribution of SCS indicates a high degree of tumour heterogeneity within the
same cancer type and across cancer types. Ovarian serous cystadenocarcinoma (OV), uter-
ine carcinosarcoma (UCS) and sarcoma (SARC) show the highest SCS (Figure 1B) and many
samples within these tumours also exhibit high NCS (compare Figure 1A). Both types of
CIN occur in many OV, esophageal carcinoma (ESCA) and BRCA samples, whereas thyroid
carcinoma (THCA), thymoma (THYM) and acute myeloid leukaemia (LAML) samples are
typically both structurally and numerically stable. Cancer types previously recognised as
those dominated by the CIN phenotype [41], including stomach adenocarcinoma (STAD),
colon adenocarcinoma (COAD), uterine corpus endometrial carcinoma (UCEC), OV, UCS
and prostate adenocarcinoma (PRAD) have extremely heterogeneous SCS.

We also checked for associations of CIN with other types of genetic instability by
correlating the NCS and SCS with different features: Aneuploidy score (AS), homologous
recombination deficiency (HRD), silent mutation rate (SMR), non-silent mutation rate
(NSMR) and intra-tumour heterogeneity (ITH). The NCS is positively associated with
the aneuploidy score (Figure 1C) across cancer types [42]. HRD is consistently positively
associated with the SCS (Figure 1D), suggesting that impaired repair of double-strand DNA
breaks might be a key driver of S-CIN.

CIN and microsatellite instability (MIN) are usually considered mutually exclusive [38].
Indeed, most MIN tumours have low NCS and SCS, but some MIN samples which under-
went WGD can also exhibit signs of W-CIN and S-CIN (Figure A2A).
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Figure 1. Distribution of CIN scores and their association with genetic instability. (A) Left: NCS for
TCGA tumour samples (dots) from different cancer types, sorted according to median NCS. The
colour coding indicates the WGD status and the number below each beeswarm plot is the proportion
of samples which underwent WGD. Right: Pan-cancer histogram of NCS. (B) SCS for tumour samples
from different cancer types, ordered by their median SCS. Right: Pan-cancer histogram of SCS with
colours indicating WGD status. (C,D) Correlation between NCS (C) or SCS (D) with different indices
for genetic instability, intra-tumour heterogeneity and proliferation: MKI67 expression, proliferation
rates (PROLIF), intra-tumour heterogeneity (ITH), non-silent mutation rate (NSMR), silent mutation
rate (SMR), homologous recombination deficiency (HRD) and aneuploidy score (AS). Data for these
indices were collected from [27,33].

To check for a potential link between CIN and proliferation, we used a proliferation in-
dex [33] and the expression of the MKI67 marker for proliferation. In many cancers, including
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BRCA, SARC, STAD and PRAD, increasing levels of NCS go along with increasing levels of
these proliferation markers (Figure 1C). Proliferation markers are also associated with SCS
in some cancers, including BRCA and LUSC. However, this is not the case for many other
cancers, reflecting again the complex relationship between CIN and proliferation [43–45].
The balance between the proliferation-promoting effect of CIN as a template for Darwinian
selection and the cellular burden of chromosomal aberrations accompanied by CIN might be
highly cancer type dependent.

Both NCS and SCS tend to be higher in primary tumours than in normal samples
(Figure A2B). Previous findings linked CIN and metastasis [23]. We find that metastatic
tumours tend to have higher levels of the SCS. For the NCS, this relationship is unclear.
The average NCS is higher in metastatic tumours, but there are many primary tumours
with high levels of NCS. The small sample size for metastatic tumours prevents a cancer
type-specific analysis of the relationship between CIN and metastatic disease.

These results highlight that W-CIN and S-CIN are two related but distinct pheno-
types with different distributions across cancer types. Whole genome doubling is often
accompanied by W-CIN, but this does not completely explain the elevated levels of NCS in
some cancer types or individual tumours. The bimodal distribution of the NCS in most
cancer types separates high-W-CIN from low-W-CIN samples, but does not provide a
universal threshold valid across cancer types. However, in some cancers such as OV, even
the non-WGD samples can exhibit substantial levels of W-CIN. In contrast, S-CIN is a
continuous trait which is strongly associated with HRD, but not with WGD. Please note
that these patterns are also observed in cell lines (Figure A2C,D).

3.3. Clinical Significance of CIN in Different Cancer Types

To analyse the relationship between W-CIN and prognosis, we divided the tumour
samples in each individual cancer type into disjoint NCShigh and NCSlow groups using
the median as a threshold. For seven of the 33 cancer types, we found that NCShigh

patients had a significantly shorter overall survival than patients in the NCSlow group
(Figure 2A, Table A1, log rank test, p < 0.05). This includes BRCA, LGG, LIHC, OV, STAD,
UCEC and UVM. Disease-free survival is lower in the NCShigh group for LGG, OV, PRAD
and UCEC patients (Figure A3A, Table A3, log rank test, p < 0.05) and progression-free
survival is negatively associated with high NCS in KIRC, LGG, OV, PRAD, UCEC and
UVM (Figure A4A, Table A5, log rank test, p < 0.05).

Using an analogous separation of the tumour samples into SCSlow and SCShigh groups
using the median SCS in each tumour type, we found that the overall survival of patients in
11 out of 33 cancers is negatively associated with S-CIN (Figure 2B, Table A2, log rank test,
p < 0.05). High SCS is linked to impaired disease-free survival in adrenocortical carcinoma
(ACC), KIRC, kidney renal papillary cell carcinoma (KIRP), lung squamous cell carcinoma
(LUSC), PRAD, THCA and UCEC (Figure A3B, Table A4, log rank test, p < 0.05). For OV,
patients with high SCS tend to have slightly better overall survival (Figure 2B, Table A2).
However, the effect is very small and at the edge of statistical significance. In addition,
the analysis of disease-free survival (Figure A3, Tables A3 and A4) and progression-free
survival (Figure A4, Tables A5 and A6) does not provide any evidence for an effect of S-CIN
on the prognosis of OV patients.

To further explore the clinical relevance of both types of CIN in therapy, we studied
the association between CIN and response to radiotherapy or chemotherapy. Radiotherapy
responders tend to have lower NCSs than radiotherapy non-responders (Wilcoxon rank
test, p = 0.0007), whereas SCS is not significantly associated with radiotherapy response
(Figure 2C). On a pan-cancer level, we did not find a significant difference between NCSs
in the group of chemotherapy responders versus non-responders (Figure 2D). The median
SCS of chemotherapy responders is slightly higher. One possible explanation is that high
S-CIN samples tend to have defective homologous recombination repair (see Figure 1B),
which renders them slightly more sensitive to chemotherapy [46,47].
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Figure 2. Clinical significance of CIN in different cancer types. (A) For seven cancer types there are
significant differences in overall survival between patient samples with low NCS (blue) and high NCS
(red). Dashed lines indicate the five-year overall survival probability of the two groups. (B) The SCS is
associated with overall survival in 11 cancer types (low-SCS group in blue and high-SCS group in red).
(C) Comparison of the NCS and SCS between radiotherapy responders and non-responders using a
Wilcoxon rank sum test. (D) Comparison of the NCS and SCS between chemotherapy responders
and non-responders using a Wilcoxon rank sum test. (E) The median drug sensitivity of a compound
plotted against the correlation coefficient between drug sensitivity and NCS. Drugs with significant
positive and negative correlations between their sensitivity and NCS are highlighted in red and
blue, respectively. (F) The median drug sensitivity of a compound plotted against the correlation
coefficient between drug sensitivity and SCS. Compounds whose sensitivity is significantly negatively
or positively correlated with SCS are highlighted in blue and red, respectively.

Next, we asked whether there are drugs suitable for targeting CIN [48]. To this end,
we combined data from the Cancer Therapeutics Response Portal (CTRP) and the Cancer
Cell Line Encyclopedia (CCLE). We normalised the area under the dose–response curve
(AUC) values of 545 compounds and small molecules in all cell lines to values between zero
and one and defined drug sensitivity as one minus the normalised AUC. Values of zero
indicate the highest resistance level, whereas values of one indicate the highest possible
sensitivity. We then computed Spearman rank correlation coefficients between the drug
sensitivity of each compound with the NCS or SCS. To analyse the typical drug sensitivity
as a function of CIN, we plotted the median drug sensitivity of each compound or small
molecule across cell lines against their correlation coefficients with NCS (Figure 2E) or SCS
(Figure 2F).

For the majority of compounds, we found negative correlations between their sensitiv-
ity and both types of CIN (Figure 2E,F), highlighting that for many compounds CIN confers
an intrinsic drug resistance [26]. Only a few compounds are more potent in high-CIN cell
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lines than in low-CIN cell lines. However, their overall levels of sensitivity are typically
low in comparison to drugs more efficient in low-CIN cell lines.

The strongest positive correlations between drug sensitivity and NCS (Figure 2E) were
found for the compounds PLX-4032 and BCL-LZH-4 (median drug sensitivity >0.5 and
FDR-adjusted p < 5%). PLX-4032 targets BRAF and has been approved by the FDA for
clinical use. The BCL2/BCL-xL/MCL1 inhibitor BCL-LZH-4 is a probe.

Drugs showing increasing sensitivity with the SCS (Figure 2F) include afatinib and lapatinib
(median drug sensitivity >0.5 and FDR-adjusted p < 5%). Lapatinib targets HER2/neu and
is used in combination treatment of HER2-positive breast cancer. Afatinib is used to treat
non-small lung cancers with EGFR mutations [49]. Austocystin D is a natural cytotoxic agent
and also more efficient in high-S-CIN tumours. Further details about the correlations between
CIN scores and drug sensitivity can be found in the Supplementary Tables (NCS: Table S1; SCS:
Table S2; WGII: Table S3).

Overall, the analysis shows that the prognostic value of CIN scores depends on cancer
types and that S-CIN and W-CIN provide distinct prognostic information. The prognosis
for many cancer types worsens with increased levels of CIN scores. Only for OV did
we find a slightly better overall survival for patients with high SCS. It is possible that
a stratification of patients according to cancer subtypes might reveal more fine-grained
insights regarding the prognostic value of CIN [15,16]. Our drug sensitivity analysis reveals
that most compounds are less efficient in high-CIN tumours than in low-CIN tumours.
There are a few drugs to which high-CIN cells are more sensitive than low-CIN cells. In
particular, we suggest that afatinib, lapatinib and austocystin D merit further investigation
for targeting S-CIN tumours. However, current drug sensitivity screens do not include
many highly potent drugs specifically targeting CIN.

3.4. PARADIGM Pathway Activity and CIN

To identify pathways with altered activity in W-CIN or S-CIN tumours, we used the
PARADIGM framework [30]. PARADIGM is a computational model which represents inter-
actions between biological entities as a factor graph. PARADIGM integrates copy number
and gene expression data and computes activities for each PARADIGM pathway feature
in an individual tumour sample. These features refer to protein-coding genes, protein
complexes, abstract processes and gene families. We focused on the PARADIGM features
for protein-coding genes, because these are easier to interpret and can be used to generate
experimentally testable predictions. We correlated the PARADIGM pathway features with
the NCS or SCS and filtered features with a significant (FDR-adjusted p < 5%) Spearman
correlation coefficient ≥ 0.3 in at least seven of the 32 cancer types (NCS: Figure 3A, SCS:
Figure 3C).

PARADIGM pathway features corresponding to the mitotic genes TPX2, RAE1, UBE2C,
AURKA (see Figure 3A) show increased activity in tumours with high NCS, consistent
with the known role of chromosome segregation errors in W-CIN [1,20]. Additionally, the
PARADIGM features corresponding to the genes CDC25B and DSN1 have higher activity
in tumours with high NCS across many cancers. CDC25B regulates cell cycle progression
and unregulated CDC25B induces replication stress, leading to CIN [50]. DSN1 is required
for kinetochore assembly.

The STX1 (SYNTAXIN 1A) pathway shows increased activity in W-CIN tumours. This
finding is surprising, because the STX1 gene is normally expressed in brain cells and is a
key molecule in synaptic exocytosis and ion channel regulation. The reason why STX1 is
upregulated in W-CIN tumours needs further investigation.

It is interesting to note the positive association of the PARADIGM feature for GINS1
with NCS [10]. The GINS1 protein is essential for the formation of the Cdc45–MCM–GINS
(CMG) complex which functions to unwind DNA ahead of the replication fork [51]. As
detailed in [10], overexpression of GINS in vitro increases replication origin firing and
triggers whole chromosome missegregation and W-CIN. Indeed, when we complement
our PARADIGM pathway analysis with simple gene-wise correlation of the NCS and gene
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expression, we find many genes involved in DNA replication and replication origin firing
(see Figure 3A,B).

Paradigm feature
replication factor

gene type
not significant
significant

significant (FDR<0.05)

Figure 3. PARADIGM pathway activity and gene expression associated with CIN. (A) The PARADIGM
pathway-level activities corresponding to protein-coding genes (rows) were correlated with the NCS.
Only pathways with a significant correlation (FDR-adjusted p < 5%) larger than 0.3 in at least seven
cancer types were included. The heatmap shows the normalised PARADIGM pathway activity (0–1
from low to high). Cancer types were ordered according to their median NCS, see top panel. (B) Volcano
plot for the correlation between gene expression and NCS. (C) Analogous to (A), but for the SCS instead
of the NCS. (D) Correlation of SCS and gene expression, analogous to (B).

The analysis of the SCS-associated PARADIGM features (Figure 3C) again revealed pro-
teins involved in kinetochore function, mitotic progression and spindle assembly and chro-
mosome segregation (AURKA, UBE2C NEK2, TBCE) or cell cycle progression (CDK4, E2F1).

The activity of the cyclin-dependent kinase regulatory subunit 1B (CKS1B) pathway is
positively associated with the SCS. CKS1B has recently been linked to cancer drug resistance
and was discussed as a new therapeutic target [52]. Our results suggest that the CKS1B
activity is closely linked to S-CIN, which needs to be considered when studying CKS1B as
a new target gene or as a marker of drug resistance.

To check for the robustness of these findings, we also performed a gene-wise corre-
lation of the SCS and gene expression (Figures 3C and A5C). We also highlighted genes
involved in DNA replication. Gene set enrichment analysis indicates that the top high-S-
CIN-associated genes are enriched with replication origin factors (Figure A5A,B).

Please note that the analysis of genes and PARADIGM pathways negatively associated
with CIN did not reveal a similarly consistent pattern across cancer types (see Figure A6).

Taken together, our analysis of PARADIGM pathway activity and gene expression
in the context of CIN not only recovered known CIN genes involved in mitotic processes
and spindle assembly, but highlighted, amongst others, the replication factor GINS1 to be
associated with W-CIN [10] and the CDK regulator and drug resistance protein CKS1B as
strongly associated with S-CIN. In addition, we observed that the over-expression of genes
involved in DNA replication is positively associated with high CIN.
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3.5. Somatic Point Mutation Frequencies in High-CIN Tumours

To investigate the relationship between somatic point mutations and CIN, we identi-
fied genes that are more frequently or less frequently mutated in high-CIN tumours. From
the 19,171 gene mutations, we included only those occurring in more than 19 samples in
the wild type or mutant group across different cancer types. We fitted a linear regression
model using NCS or SCS as response and somatic point mutation status (present or absent)
and cancer type as predictors. The estimated regression coefficient for mutation status was
used to measure its association with CIN, adjusted for tumour type.

As expected, at the pan-cancer level, TP53 mutation shows the strongest association
with CIN. Tumours harbouring a TP53 mutation have on average more than four more
whole chromosome gains or losses (ANOVA p-value < 2.2 × 10−16) than tumours with
wild type TP53 (Figure 4A). The mean difference in the SCS in a tumour sample with
a TP53 mutation compared to wild type samples is approximately 11 structural aberra-
tions (Figure 4B). In line with this, TP53 mutation is positively associated with high CIN
in many individual cancer types (Figure A7A). In fact, even after removing MIN samples,
this correlation still holds (Figure A7B), corroborating the well-known role of TP53 as a
gatekeeper of genome stability (see e.g., [53]).

Contrary to the enrichment of TP53 mutation in both types of CIN, we find that the
presence of mutations in 5807 different genes is negatively associated with both NCS and SCS
(Figure 4A). A similar negative correlation between the frequencies of recurrent copy number
alterations and somatic mutations has previously been reported [54]. Later, it was realised
that this negative relationship can be reversed, when the confounding effect of MIN [21,27] is
removed. When we exclude these hypermutated samples, we observe a more even distribution
between genes more or less frequently mutated in high-CIN compared to low-CIN tumours
(Figure 4B). This is also consistent with Figure 1C,D, where we found that neither the silent
mutation rate nor the non-silent mutation rate is associated with NCS and SCS.

A B

Figure 4. Pan-cancer somatic mutations and CIN. (A) The volcano plots show the association between
somatic mutations and the NCS (left) or the SCS (right). The linear model coefficient indicates the
mean difference of the respective CIN score when the mutation is present in a tumour sample relative
to the wild type. Genes with lowest p-values, well-known CIN genes and cancer driver genes are
highlighted. The analysis was performed on genes for which samples sizes for both wild type group
and mutated group are larger than 19. Mutations significantly associated (FDR < 5%) with higher or
lower CIN score are highlighted in blue and red, respectively. (B) The same as (A), but hypermutated
MIN samples are excluded.

Intriguingly, even after excluding hypermutated samples, we find somatic point muta-
tions of important cancer genes including PI3KCA, PTEN and ARID1A to be under-represented
in high-CIN bulk tumours (Figure 4B) and high-CIN cancer cell lines (Figure A7D). HRAS
and JAK1 mutations are less frequent in tumours with high NCS and KRAS mutations are
under-represented in samples with high SCS. More remarkably, when only considering vali-
dated cancer driver somatic mutations [55], the above observed relationship between PI3KCA
mutation, PTEN mutation and CIN still holds (Figure A7C). The under-representation of
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somatic mutations in these key cancer genes in high-CIN tumours cannot be explained by
differences in the overall mutation rates of these samples.

3.6. Copy Number Gains and Losses Associated with CIN

Given that somatic mutations of many genes are under-represented in high-CIN
tumours, we next investigated copy number alterations which are specifically linked to
CIN (Figure 5A). One of the strongest associations between a copy number gain and SCS
was found for the MYC proto-oncogene. The candidate oncogene PVT1 is also specifically
gained in tumours with high SCS. PVT1 is involved in the regulation of MYC [56] and
carries a TP53-binding site. In addition, we found high NCS is associated with copy number
gains for genes encoding members of the WFDC-EPPIN family, which have been linked to
proliferation, metastasis, apoptosis and invasion in ovarian cancer (reviewed in [57]).

Genes specifically lost in tumour samples with high NCS include KIAA1644, TAMM41,
GRM7, TTC39B and FREM1 (Figure 5B). The top genes whose copy number loss is strongly
associated with SCS are PDE40, RB1 and PTEN (Figure 5C). The tumour suppressor RB1 is
a key regulator of the G1/S transition of the cell cycle and is required for the stabilisation
of heterochromatin.

A B

Figure 5. Copy number amplifications and deletions enriched in high-CIN samples. (A) The volcano
plots show the gene-wise associations between copy number amplification status and NCS (left)
and SCS (right), obtained from a regression model adjusted by cancer type. The linear model
coefficient indicates the mean difference in the respective CIN score when the alteration is present
in a tumour sample relative to the wild type. Genes with the lowest p-values and well-known CIN
genes are highlighted. Blue and red colours encode genes with a significantly higher alteration
frequency (FDR < 5%) in samples with low and high CIN scores, respectively. The analysis was
performed on 16,922 genes with sample sizes greater than 19 for both wild type and amplified groups.
(B) Pan-cancer copy number deletions associated with SCS are displayed in an analogous way to (A).

3.7. PI3KCA Copy Number Gains in High-S-CIN Tumours Suggest a Gene Dosage-Dependent
Mechanism for PI3K Pathway Activation

In Section 3.5, we observed that somatic point mutations of PTEN and PIK3CA were
scarce in high-CIN tumours. In addition, copy number amplification of PIK3CA and copy
number loss of PTEN are very frequent in tumour samples with high SCS. This led us to ask
whether there is a link between S-CIN and specific gene copy number alterations in these
two genes to activate the PI3K oncogenic pathway. The PIK3CA gene encodes the catalytic
subunit of phosphatidylinositol 3-kinase and the PI3K oncogenic pathway is frequently
deregulated in many cancers. PTEN is a tumour suppressor gene and negatively regulates
the growth-promoting PI3K/AKT/mTOR signal transduction pathway.

The oncoprint in Figure 6A displays tumour samples from all 33 TCGA cancer types in
our investigation, which harbour at least one of the following genetic alterations: Somatic
mutation of PIK3CA or PTEN, copy number amplification of PIK3CA, deletion of PTEN. It
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is apparent that there is only a small number of cancers with an amplification of PKI3CA or
a deletion of PTEN, which simultaneously harbour somatic mutations in any of these genes.
The copy number of both genes is also strongly associated with their gene expression. In
particular, amplification and simultaneous over-expression of PIK3CA are associated with
higher levels of SCS.

To check whether this effect is preserved in pure cancer cells, we used cell line data
from CCLE and found a very similar pattern. Copy number gains of PIK3CA are linked
to high levels of its gene expression, and rarely co-occur with somatic mutations, but are
associated with high SCS.

Taken together, we suggest a gene dosage effect on PI3K pathway activity, which is
facilitated in high-S-CIN tumours. This effect is cancer cell intrinsic, because it can also be
observed in cancer cell lines.
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Figure 6. Oncoprint for PIK3CA and PTEN in relation to CIN. (A) The bottom panel depicts the
presence or absence of somatic mutations, copy number amplifications of PIK3CA and deletions of
PTEN in TCGA tumour samples (columns). Alterations are sorted by their frequency. The upper
panel shows the NCS, SCS, PI3KCA and PTEN gene expression. Different levels of CIN scores
and gene expression are encoded by colours. (B) The corresponding oncoprint for cell line data
from CCLE.

4. Discussion

W-CIN and S-CIN are two distinct but related phenotypes triggered by different
biological mechanisms and leading to diverse consequences. A large majority of pan-cancer
association studies has focused on CIN in general or exclusively on W-CIN. Here, we
present an integrative statistical analysis for 33 cancer types distinguishing between W-CIN
and S-CIN. We used the NCS as a proxy measure for W-CIN and the SCS to quantify the
degree of S-CIN and associated these karyotypic complexity scores with various molecular
and clinical features.

Our analysis reveals that the majority of tumours with high levels of NCS underwent
whole genome doubling. Whole genome doubling is an early event in tumourigenesis and
has been discussed as a way to rapidly accumulate numerical and structural chromosomal
abnormalities and to buffer against negative effects of mutations and aneuploidy [12,58,59].
The results of our analysis suggest that whole genome doubling is typically accompanied
by W-CIN, but not S-CIN. Instead, we find that high SCS is linked to homologous recombi-
nation deficiency, highlighting the different processes involved in these two different CIN
phenotypes [6].



Cancers 2022, 14, 1424 15 of 30

Although whole genome doubling is observed in many tumour samples with high
levels of W-CIN, it is not sufficient to explain the elevated NCS in many tumour samples
which did not undergo whole genome doubling, as most prominently observed in KICH,
ACC and OV. We speculate that replication stress is an alternative mechanism for these
elevated levels of W-CIN. This is based on ample evidence that replication stress can induce
CIN [7,60] and our observation that replication factors are over-expressed in tumours with
high levels of W-CIN and that over-expression of the replication genes GINS1 and CDC45
can induce W-CIN [10].

We find that NCS and SCS are associated with poor prognosis in different cancer
types. Only in the case of ovarian cancer did we find that high-S-CIN patients have
a slightly longer overall survival, but the difference is very small and at the edge of
statistical significance. In addition, we observe slightly higher NCS in patients resistant
to radiotherapy. However, the relationship between CIN and prognosis is multifaceted
and depends on details of the cellular physiology [3]. For instance, extreme levels of CIN
in breast cancer subtypes [15,16] were associated with better prognosis. This indicates
that a subtype-specific analysis of W-CIN and S-CIN and prognosis might potentially be
an interesting future project. This might also apply for the response to radiotherapy, as
improved sensitivity against radiotherapy in transplanted human glioblastoma tumours
has been reported [61].

From the association of NCS and SCS with in vitro drug sensitivity, it is apparent
that both types of CIN are linked to intrinsic drug resistance, corroborating earlier results
in colon cancer [3,26]. However, as a new contribution we filtered small molecules and
compounds for which drug sensitivity is positively associated with S-CIN or W-CIN. The
drug sensitivity of a BRAF inhibitor, PLX-4032, is higher in cells with higher NCS. For
S-CIN, this includes the approved drugs afatinib and lapatinib and the natural cytotoxic
agent austocystin D. It remains to be tested whether these drugs or compounds are indeed
efficient against high-CIN tumours in vivo.

In addition to well-known CIN genes including TPX2, UBE2C and AURKA, we iden-
tified a number of new candidate CIN genes and corresponding PARADIGM pathway
features [30]. One interesting new finding is the chemotherapeutic drug resistance-inducing
gene CKS1B [52], which is strongly associated with S-CIN. CKS1B is a cell cycle progression
gene, which is discussed as a new drug target. Here, we show that CKS1B is over-expressed
in S-CIN tumours, which might be important for the stratification of patients. We also note
that the activity of the replication origin firing factor GINS1 is linked to W-CIN, which was
mechanistically verified in a recent collaboration [10]. In this context, we also found many
genes involved in DNA replication to be over-expressed in tumours with high levels of
W-CIN and S-CIN.

Both W-CIN and S-CIN are strongly correlated with somatic point mutation of TP53.
We find that many copy number gains of important onogenes and loss of tumour suppressor
genes [62] are strongly associated with W-CIN and S-CIN. Most strikingly, copy number
gains of the oncogene PIK3CA and deletion of the tumour suppressor gene PTEN rarely
occur in combination with somatic mutations in these genes. In addition, copy number
gain of PIK3CA is linked to increased gene expression and strongly associated with S-CIN.
Intriguingly, it has recently been reported that mutations in PIK3CA increased in vitro
cellular tolerance to spontaneous genome doubling [63]. Our results, however, suggest
a gene dosage effect for the activation of the PI3K pathway in the context of high S-CIN.
This copy number-dependent activation of PI3K signalling was observed in both bulk
tumours and cancer cell lines, indicating that it is an intrinsic property of S-CIN cells. We
suggest that copy number gains of PIK3CA should be further investigated for both their
mechanistic role in S-CIN and for their clinical implications regarding treatment strategies
and patient stratification.

As a final remark, we emphasise again that our analysis is based on the karyotypic
complexity scores NCS and SCS, which are averaged measures over a population of cancer
cells and reflect features of the evolved W-CIN or S-CIN phenotype. As such, our analysis can
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stimulate new experimental work, but it cannot cover the spatio-temporal dynamics [62,64] of
tumour heterogeneity. In particular, individual chromosome changes in single cells, which still
might be important drivers of cancer progression, cannot be detected by bulk data analysis [65].
We believe that the accumulation of single cell-based data from different cancer types will be
essential to better understand the effect of ongoing CIN on cancer progression in the future.
This will also include the testing of concepts such as karyotype coding [66], the relationship
between different karyotypic states within a cellular population and the evolutionary forces
shaping cancer evolution at the level of chromosome organisation.

5. Conclusions

In summary, our pan-cancer analysis provides insights into the distinct and common
molecular, prognostic and therapeutic characteristics of W-CIN and S-CIN. Our results
suggest that whole genome doubling and homologous recombination deficiency might be
the most important drivers for W-CIN and S-CIN, respectively. The predictive value of W-
CIN and S-CIN depends on the cancer type. We report that most of the existing compounds
preferably kill low-CIN cells, but we also suggest a few compounds with increased efficiency
in high-CIN cells. High activity of CKS1B might be a promising S-CIN target, because its
expression is linked high S-CIN. We propose a new copy number-dependent mechanism
for an increased activity of the oncogenic PI3K pathway in high-S-CIN cancer cells, which
merits experimental investigation.
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Appendix A

Table A1. Association between W-CIN and overall survival across cancer types.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

UCEC 518 0.00 0.85 0.63 76.00 31.00
LGG 509 0.00 0.74 0.49 38.00 27.00
OV 558 0.00 0.40 0.28 65.00 51.00

UVM * 80 0.00 0.97 0.89 33.00 31.00
LIHC 366 0.01 0.52 0.45 23.00 18.00
BRCA 1066 0.03 0.86 0.78 139.00 110.00
STAD 433 0.05 0.45 0.30 14.00 4.00
THYM 122 0.08 0.96 0.81 28.00 5.00
SARC 252 0.08 0.59 0.49 33.00 23.00
HNSC 516 0.10 0.55 0.41 24.00 28.00

LAML * 179 0.13 0.57 0.44 68.00 20.00
GBM 571 0.14 0.07 0.05 12.00 7.00
DLBC 48 0.16 0.73 0.94 6.00 3.00
CESC 294 0.17 0.73 0.59 26.00 15.00
TGCT 133 0.17 0.99 0.95 32.00 19.00
ACC 89 0.30 0.67 0.57 14.00 14.00
KIRP 282 0.31 0.82 0.69 34.00 19.00

ESCA * 182 0.32 0.82 0.70 66.00 49.00
KIRC 506 0.40 0.62 0.63 69.00 78.00
PCPG 161 0.41 0.97 0.96 16.00 12.00
PAAD 183 0.46 0.18 0.40 3.00 5.00
PRAD 489 0.62 0.99 0.96 54.00 30.00

CHOL * 36 0.64 0.75 0.86 15.00 12.00
READ * 154 0.65 0.94 0.96 52.00 63.00
MESO * 86 0.72 0.66 0.70 29.00 27.00
KICH 65 0.77 0.86 0.85 17.00 20.00
BLCA 405 0.78 0.44 0.40 26.00 21.00
LUAD 491 0.81 0.41 0.41 28.00 25.00
THCA 497 0.84 0.93 0.94 80.00 16.00
UCS * 56 0.88 0.76 0.84 22.00 20.00
COAD 425 0.89 0.64 0.57 25.00 15.00
LUSC 481 0.90 0.51 0.44 39.00 41.00

SKCM * 104 0.93 0.84 0.91 33.00 37.00
a Five-year overall survival probability in low-W-CIN group. b Five-year overall survival probability in high-
W-CIN group. c Number of samples at risk in low-W-CIN group by 5th year. d Number of samples at risk in
high-W-CIN group by 5th year. * One-year overall survival statistics were reported in these cancer types due to
short survival.

Table A2. Association between S-CIN and overall survival across cancer types.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

UCEC 518 0.00 0.90 0.60 69.00 38.00
ACC 89 0.00 0.81 0.39 21.00 7.00

THCA 497 0.00 0.96 0.72 86.00 10.00
SARC 252 0.00 0.62 0.47 31.00 25.00
KIRP 282 0.00 0.86 0.65 30.00 23.00
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Table A2. Cont.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

THYM 122 0.01 0.98 0.76 29.00 4.00
PCPG 161 0.01 1.00 0.92 15.00 13.00
LGG 509 0.01 0.73 0.52 32.00 33.00
KICH 65 0.02 0.97 0.70 23.00 14.00
COAD 425 0.02 0.71 0.52 23.00 17.00

OV 558 0.04 0.32 0.37 58.00 58.00
ESCA * 182 0.06 0.81 0.72 60.00 55.00
LUAD 491 0.08 0.48 0.35 28.00 25.00
TGCT 133 0.09 0.95 1.00 25.00 26.00
UCS * 56 0.09 0.75 0.85 20.00 22.00

READ * 154 0.10 0.96 0.93 64.00 51.00
LAML * 179 0.10 0.58 0.45 66.00 22.00
PAAD 183 0.11 0.25 0.26 5.00 3.00
KIRC 506 0.17 0.65 0.59 83.00 64.00
BRCA 1066 0.22 0.83 0.81 129.00 120.00
GBM 571 0.23 0.05 0.08 7.00 12.00

CHOL * 36 0.39 0.76 0.83 13.00 14.00
PRAD 489 0.45 0.99 0.97 40.00 44.00
BLCA 405 0.46 0.40 0.44 21.00 26.00
UVM * 80 0.50 0.93 0.93 38.00 26.00
HNSC 516 0.56 0.51 0.44 27.00 25.00
LUSC 481 0.57 0.46 0.49 36.00 44.00

SKCM * 104 0.63 0.84 0.93 36.00 34.00
MESO * 86 0.64 0.62 0.75 28.00 28.00

LIHC 366 0.73 0.48 0.50 23.00 18.00
CESC 294 0.77 0.68 0.66 20.00 21.00
STAD 433 0.90 0.35 0.43 11.00 7.00

DLBC * 48 0.93 0.96 0.89 23.00 15.00
a Five-year overall survival probability in low-S-CIN group. b Five-year overall survival probability in high-S-CIN
group. c Number of samples at risk in low-S-CIN group by 5th year. d Number of samples at risk in high-S-CIN
group by 5th year. * One-year overall survival statistics were reported in these cancer types due to short survival.

Table A3. Association between W-CIN and disease-free survival across cancer types.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

OV 279 0.00 0.24 0.11 17.00 8.00
UCEC 406 0.00 0.87 0.72 60.00 23.00
LGG * 130 0.03 0.97 0.98 65.00 37.00
PRAD 332 0.03 0.85 0.74 36.00 15.00
THCA 352 0.06 0.92 0.84 56.00 13.00
COAD 175 0.07 0.82 0.63 11.00 3.00
LUSC 295 0.07 0.74 0.62 25.00 23.00

CHOL * 24 0.10 0.73 0.43 11.00 3.00
KICH 29 0.16 0.91 1.00 5.00 12.00
CESC 170 0.17 0.83 0.76 18.00 8.00
SARC 148 0.18 0.58 0.41 17.00 10.00
KIRP 180 0.19 0.73 0.91 17.00 14.00
DLBC 28 0.23 1.00 0.90 5.00 3.00
UCS * 26 0.28 1.00 0.77 11.00 9.00
LIHC 315 0.29 0.36 0.28 12.00 6.00

PAAD * 68 0.36 0.85 0.81 28.00 14.00
BLCA 187 0.37 0.69 0.73 13.00 13.00
PCPG 144 0.40 0.95 0.97 12.00 10.00
TGCT 104 0.47 0.70 0.82 10.00 14.00
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Table A3. Cont.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

MESO * 15 0.48 0.67 1.00 6.00 2.00
GBM * 3 0.48 1.00 1.00 1.00 2.00

READ * 42 0.53 0.90 1.00 15.00 20.00
KIRC 107 0.60 0.90 0.76 19.00 19.00

ESCA * 87 0.80 0.75 0.82 28.00 22.00
ACC 52 0.83 0.68 0.72 11.00 10.00

LUAD 291 0.85 0.62 0.56 19.00 18.00
HNSC 130 0.85 0.69 0.55 7.00 4.00
BRCA 927 0.87 0.85 0.84 107.00 83.00
STAD 255 0.96 0.62 0.69 9.00 4.00

a Five-year disease-free survival probability in low-W-CIN group. b Five-year disease-free survival probability in
high-W-CIN group. c Number of samples at risk in low-W-CIN group by 5th year. d Number of samples at risk in
high-W-CIN group by 5th year. * One-year disease-free survival statistics were reported in these cancer types due
to short survival.

Table A4. Association between S-CIN and disease-free survival across cancer types.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

UCEC 406 0.00 0.92 0.65 61.00 22.00
ACC 52 0.00 0.81 0.48 16.00 5.00

PRAD 332 0.00 0.88 0.75 27.00 24.00
KIRP 180 0.02 0.88 0.72 18.00 13.00
LUSC 295 0.03 0.71 0.64 25.00 23.00
THCA 352 0.03 0.92 0.81 64.00 5.00
KIRC 107 0.04 0.94 0.70 24.00 14.00

READ * 42 0.09 1.00 0.89 20.00 15.00
BRCA 927 0.10 0.88 0.80 100.00 90.00

PAAD * 68 0.14 0.91 0.74 23.00 19.00
LIHC 315 0.15 0.33 0.31 12.00 6.00
GBM * 3 0.16 1.00 1.00 1.00 2.00
KICH 29 0.18 0.94 1.00 11.00 6.00
COAD 175 0.27 0.79 0.71 9.00 5.00
CESC 170 0.30 0.86 0.75 15.00 11.00
HNSC 130 0.31 0.66 0.59 8.00 3.00
LUAD 291 0.37 0.63 0.54 19.00 18.00
DLBC * 28 0.45 1.00 1.00 14.00 11.00
MESO * 15 0.46 0.69 1.00 6.00 2.00
ESCA * 87 0.49 0.80 0.76 26.00 24.00
PCPG 144 0.49 0.93 1.00 12.00 10.00
LGG 130 0.61 0.76 0.65 3.00 3.00
OV 279 0.64 0.22 0.14 17.00 8.00

CHOL * 24 0.65 0.67 0.57 10.00 4.00
BLCA 187 0.69 0.73 0.69 14.00 12.00
TGCT 104 0.70 0.75 0.75 14.00 10.00
STAD 255 0.76 0.67 0.64 8.00 5.00
UCS * 26 0.76 0.92 0.83 10.00 10.00
SARC 148 0.79 0.53 0.48 14.00 13.00

a Five-year disease-free survival probability in low-S-CIN group. b Five-year disease-free survival probability in
high-S-CIN group. c Number of samples at risk in low-S-CIN group by 5th year. d Number of samples at risk in
high-S-CIN group by 5th year. * One-year disease-free survival statistics were reported in these cancer types due
to short survival.
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Table A5. Association between W-CIN and progression-free survival across cancer types.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

UCEC 518 0.00 0.80 0.56 67.00 27.00
LGG 509 0.00 0.53 0.29 26.00 10.00

PRAD 489 0.00 0.75 0.60 43.00 20.00
UVM * 79 0.00 0.94 0.69 31.00 24.00

OV 558 0.00 0.17 0.09 24.00 11.00
KIRC 504 0.04 0.69 0.58 60.00 58.00

ESCA * 182 0.07 0.66 0.57 48.00 36.00
THYM 122 0.08 0.83 0.63 24.00 5.00
CESC 294 0.11 0.69 0.63 23.00 13.00
ACC 89 0.13 0.49 0.40 11.00 10.00

SKCM * 104 0.15 0.74 0.68 27.00 25.00
DLBC 48 0.18 0.67 0.93 6.00 3.00
SARC 252 0.20 0.45 0.32 22.00 13.00
LIHC 366 0.23 0.29 0.25 11.00 7.00
GBM * 571 0.27 0.30 0.30 85.00 58.00
LUSC 482 0.31 0.56 0.53 32.00 33.00
HNSC 516 0.32 0.51 0.47 20.00 24.00

CHOL * 36 0.33 0.53 0.41 10.00 5.00
THCA 497 0.33 0.84 0.83 68.00 14.00

READ * 154 0.34 0.90 0.88 48.00 56.00
PCPG 161 0.40 0.80 0.88 11.00 11.00

MESO * 84 0.41 0.57 0.54 22.00 19.00
BLCA 406 0.42 0.39 0.42 21.00 15.00
COAD 425 0.45 0.62 0.56 21.00 9.00
TGCT 133 0.53 0.71 0.80 20.00 17.00
STAD 435 0.68 0.43 0.47 14.00 4.00
KICH 65 0.75 0.87 0.87 17.00 20.00
BRCA 1066 0.76 0.79 0.78 122.00 99.00
UCS * 56 0.79 0.48 0.60 14.00 14.00
KIRP 281 0.96 0.71 0.80 28.00 17.00

LUAD 491 0.99 0.38 0.40 20.00 18.00
PAAD * 183 1.00 0.64 0.61 60.00 32.00

a Five-year progression-free survival probability in low-W-CIN group. b Five-year progression-free survival
probability in high-W-CIN group. c Number of samples at risk in low-W-CIN group by 5th year. d Number of
samples at risk in high-W-CIN group by 5th year. * One-year progression-free survival statistics were reported in
these cancer types due to short survival.

Table A6. Association between S-CIN and progression-free survival across cancer type.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

UCEC 518 0.00 0.86 0.50 65.00 29.00
ACC 89 0.00 0.66 0.22 16.00 5.00
KIRP 281 0.00 0.86 0.61 27.00 18.00

THCA 497 0.00 0.87 0.64 75.00 7.00
PRAD 489 0.00 0.76 0.65 32.00 31.00
LGG 509 0.00 0.50 0.33 18.00 18.00

CHOL * 36 0.02 0.69 0.27 11.00 4.00
THYM 122 0.03 0.85 0.60 26.00 3.00
GBM * 571 0.06 0.29 0.32 73.00 70.00
COAD 425 0.07 0.65 0.53 19.00 11.00
SARC 252 0.08 0.44 0.34 19.00 16.00

PAAD * 183 0.09 0.67 0.59 46.00 46.00
KICH 65 0.09 0.97 0.72 23.00 14.00
KIRC 504 0.11 0.66 0.60 67.00 51.00

ESCA * 182 0.12 0.61 0.63 41.00 43.00
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Table A6. Cont.

Cohort Sample_Number p-Value Low_surv5 a High_surv5 b Low_surv5_n c High_surv5_n d

LIHC 366 0.12 0.26 0.27 11.00 7.00
BRCA 1066 0.12 0.81 0.75 118.00 103.00

READ * 154 0.12 0.93 0.84 59.00 45.00
UVM * 79 0.21 0.82 0.80 32.00 23.00

OV 558 0.25 0.14 0.13 22.00 13.00
BLCA 406 0.31 0.44 0.39 16.00 20.00

SKCM * 104 0.31 0.74 0.67 28.00 24.00
LUAD 491 0.35 0.40 0.38 19.00 19.00
UCS * 56 0.41 0.54 0.54 14.00 14.00
CESC 294 0.41 0.70 0.63 19.00 17.00
STAD 435 0.41 0.45 0.44 11.00 7.00
PCPG 161 0.45 0.84 0.84 13.00 9.00

DLBC * 48 0.51 0.83 0.84 19.00 15.00
MESO * 84 0.73 0.63 0.47 24.00 17.00
TGCT 133 0.77 0.72 0.77 19.00 18.00
LUSC 482 0.79 0.51 0.57 29.00 36.00
HNSC 516 0.93 0.49 0.49 23.00 21.00

a Five-year progression-free survival probability in low-S-CIN group. b Five-year progression-free survival
probability in high-S-CIN group. c Number of samples at risk in low-S-CIN group by 5th year. d Number of
samples at risk in high-S-CIN group by 5th year. * One-year progression-free survival statistics were reported in
these cancer types due to short survival.
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Figure A1. The NCS versus the SCS in TCGA tumours from 33 different cancer types.
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A B

Figure A2. (A) The relationship between microsatellite instability (MIN) scores and the NCS and the
SCS. (B) Comparison of the NCS and the SCS between normal samples with primary and metastatic
tumour samples. (C) Cancer type-wise NCS distribution in CCLE cell lines, cancer types are ordered
by the median NCS; whole genome doubling (WGD) status is encoded by colours. The number
reported on x axis is the proportion of samples that underwent WGD. (D) SCS distribution in CCLE
cell lines, cancer types are ordered by their median SCS.
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Figure A3. (A) Disease-free survival in four cancer types where significant differences between high-
and low-NCS groups were observed. (B) Disease-free survival in seven cancer types where significant
differences between high- and low-SCS group were observed.
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Figure A4. (A) Progression-free survival in six cancer types where significant differences between
high- and low-NCS groups were observed. (B) Progression-free survival in eight cancer types where
significant differences between high- and low-SCS groups were observed.
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A B

C

Figure A5. (A) Gene set enrichment analysis (GSEA) [67] for KEGG [68] DNA replication gene set.
All genes are ordered according to the correlation of their expression with the SCS and enrichment
significance is evaluated using permutation test. (B) GSEA analysis for manually curated origin
firing factor gene set (curated in [10]). (C) Gene expression of many origin firing factors is positively
correlated with SCS in many cancer types. Rows and columns of the heatmap represent cancer types
and origin firing factor genes, respectively. Cancer types are clustered based on their correlation
coefficients with origin firing factors. Genes are ordered based on the median correlation coefficient.
Colour and values encoded in the heatmap represent the Spearman correlation coefficient.
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not significant
significant

significant (FDR<0.05)

Figure A6. Paradigm pathway activity and gene expression negatively associated with CIN.
(A) The PARADIGM pathway-level activities corresponding to protein-coding genes (rows) were cor-
related with the NCS. Only pathways with a significant negative correlation (FAD-adjusted p < 5%)
less than −0.3 in at least seven cancer types were included. The heatmap shows the normalised
PARADIGM pathway activity (0–1 from low to high). Cancer types are ordered according to their
median NCS, see top panel. (B) Volcano plot for the correlation between gene expression and NCS,
highlighting gene names corresponding to PARADIGM features that are significantly negatively
associated with NCS. (C) Analogous to (A), but for the SCS instead of the NCS. (D) Correlation of
SCS and gene expression, analogous to (B).
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A B

C D

Figure A7. (A) TP53 mutation is positively associated with high W-CIN in multiple cancer types.
The bar shows the linear regression model coefficient using NCS as dependent variable and TP53
mutation as explanatory variable. Only cancer types with both TP53 mutant and TP53 wild type in
≥20 samples are considered. (B) TP53 mutation is positively associated with SCS, the association
analysis is performed as in (A), except excluding MIN samples. (C) The volcano plot shows the
association between CIN and validated driver mutations, association analysis is performed using
non-MIN samples only. (D) The volcano plot shows the correlation between CIN score and somatic
mutations in CCLE cell line samples. For all associations in (A–D), red, grey and blue encode positive,
insignificant and negative associations. FAD-adjusted p ≤ 0.05 is considered as significant. Gene
names of known important oncogenes and CIN driver genes are annotated in the volcano plot, if
significantly associated with CIN.
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MFmap: A semi-supervised generative
model matching cell lines to tumours

and cancer subtypes

This chapter has been published as peer-reviewed journal paper:
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X. Zhang and M. Kschischo. “MFmap: A semi-supervised generative model matching
cell lines to tumours and cancer subtypes.” In: PLOS ONE 16.12 (2021), pp. 1–21. doi:
10.1371/journal.pone.0261183

Synopsis: Cell lines are the most commonly used model systems for better understanding
of cancer biology (e.g. chromosomal instability process) and for developing new anti-cancer
treatments. Selecting the best cell lines that closely mimic a given tumour or a cancer
subtype is critical to translate the promising in vitro experiments to clinical treatment. We
develop MFmap (model fidelity map), a semi-supervised generative model that combines
very good generative and classification performance to integrate multi-omic data of
cell lines and bulk tumours. MFmap embeds high dimensional features from somatic
mutations, copy number variations and gene expressions into cancer subtype specific latent
representations and predicts cancer subtype labels for cell lines. Pairwise cell-line-tumour
similarity can be calculated based on the MFmap embedded latent representations, with
which one can select the best cell lines for a cancer subtype or even individual tumours.
We show that the MFmap embedded latent representations capture the known and novel
features of cancer subtypes. We demonstrate the usefulness of MFmap by two cases:
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(i) Translating the in vitro drug screening results to individual tumours. (ii) In silico
modelling the cell state transformation during cancer progression.

Contributions of thesis author: conceptualization, data curation, formal analysis,
investigation, methodology, software, visualization, writing.
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Abstract

Translating in vitro results from experiments with cancer cell lines to clinical applications

requires the selection of appropriate cell line models. Here we present MFmap (model

fidelity map), a machine learning model to simultaneously predict the cancer subtype of a

cell line and its similarity to an individual tumour sample. The MFmap is a semi-supervised

generative model, which compresses high dimensional gene expression, copy number

variation and mutation data into cancer subtype informed low dimensional latent represen-

tations. The accuracy (test set F1 score >90%) of the MFmap subtype prediction is vali-

dated in ten different cancer datasets. We use breast cancer and glioblastoma cohorts as

examples to show how subtype specific drug sensitivity can be translated to individual

tumour samples. The low dimensional latent representations extracted by MFmap explain

known and novel subtype specific features and enable the analysis of cell-state transfor-

mations between different subtypes. From a methodological perspective, we report that

MFmap is a semi-supervised method which simultaneously achieves good generative and

predictive performance and thus opens opportunities in other areas of computational

biology.

Introduction

Tumour-derived cell lines are important model systems for developing new anti-cancer treat-

ments and for understanding cancer biology [1–3]. They are comparably cost efficient, easy to

handle under laboratory conditions and do not inflict ethical issues arising in research involv-

ing human or animal subjects. Yet, promising cell line experiments are rarely translated to

clinical applications. In some cases, there are remarkable differences between cell lines and the

primary tumours they were derived from [2–4]. This is also the reason why the assignment of

clinically informative tumour subtypes to cell line models [3–5] is not a straightforward task.

To narrow the gap between preclinical findings and tumour treatment, it is necessary to

select appropriate cell line models for a given tumour sample or a given cancer subtype. Several

attempts to evaluate similarities and differences between cell lines and bulk tumours have
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focused on associations between corresponding data modalities including mutation, copy

number, gene expression and methylation [6–12]. An important data resource comes from

collaborative projects like NCI-60 [13] and the Cancer Cell Line Encyclopaedia (CCLE) [5,

14], who have generated large-scale pharmacogenomics data from patient-derived cell lines

across organs. Other efforts like Sanger Genomics of Drug Sensitivity in Cancer (GDSC) [15],

Connectivity Map (CMAP) [16], the Cancer Therapeutics Response Portal (CTRP v1 and

CTRP v2) [17, 18] further expanded the datasets. On the other hand, The Cancer Genome

Atlas (TCGA) [19] and the International Cancer Genome Consortium (ICGC) [20] systemati-

cally characterised molecular profiles of thousands of tumours. These complementary data

resources are valuable for understanding the complexity of cancer biology and connecting in
vitro pharmacogenomic profiles to patient molecular characteristics, potentially informing

anti-cancer treatment strategies.

Integrative analyses considering multiple data types of both cell lines and bulk tumours are

still challenging and new analysis concepts tailored towards specific questions are an ongoing

research topic. For instance, Cellector [21] preselects the most frequent genomic alterations

and defines cancer subtypes based on a sequence of these alterations. Although such a preselec-

tion of genomic alterations integrates prior knowledge about cancer mutational patterns, it

neglects complementary information contained in other data types. Furthermore, Cellector

relies on a binary matrix of genomic alterations. This matrix is very sparse, since samples har-

bouring the same alterations are very rare. Therefore, the statistical power to detect appropri-

ate cell lines for tumours might be limited.

A recent study [22] highlighted that independent classifiers based on different data types

to predict cell line identity often yield inconsistent results. For example, predictions based

on the mutation spectrum and oncogenic mutations can be contradictory, although both

features are derived from mutation data. Complementary information from different data

sources is integrated by the MAGNETIC-framework [23] into gene modules. Gene set

enrichment analysis (GSEA) is then used to interpret these modules as pathways. MAG-

NETIC is indeed a powerful technique for integrating multiple molecular datasets and prior

knowledge, but it does not conclude to what extent a cell line is suitable as a tumour model.

The maui framework assigns cancer subtype labels to cell lines by extracting relevant fea-

tures from multiple data types using a variational autoencoder (VAE) [24]. However, most

of the maui embedded features are weakly associated with subtype labels and are therefore

difficult to interpret.

Here, we propose MFmap, a new semi-supervised VAE architecture and objective func-

tion which combines good classification accuracy with good generative performance. We

exploit these properties to derive subtype informed low dimensional representations for

both cell lines and bulk tumours from high dimensional multi-omics data including gene

expression, mutation and copy number variation. The latent representations can then be

used to assess the similarity between a cell line and a tumour. We provide cell line by tumour

dissimilarity matrices for CCLE and TCGA for the ten different cancer types listed in

Table 1. In addition, MFmap predicts cancer subtype labels for cell lines. We demonstrate,

how these predicted cancer subtypes can be used to transfer information from cell-line-

based drug sensitivity screens to patient cohorts. We also show, that the latent representa-

tions learnt by MFmap are biologically interpretable. Finally, we illustrate how the genera-

tive nature of the MFmap model can be exploited for studying subtype transformations

during cancer progression. At http://h2926513.stratoserver.net:3838/MFmap_shiny/ we

provide a resource enabling researchers to select the most relevant cell line for a cancer

patient.
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Materials and methods

Matching cell lines and tumours as a semi-supervised learning problem

MFmap is a semi-supervised deep neural network which integrates gene expression, copy

number variation (CNV) and somatic mutation data with subtype classification. Each

tumour sample t consists of a pair of (xt, yt), where xt 2 R
D denotes the high dimensional

molecular features and yt 2 {1, . . ., h} is the cancer subtype label. For a cell line c, the cancer

subtype is unknown and only the molecular features xc are available. The index c or t will be

suppressed, whenever we refer to a single observation. The MFmap neural network is

trained in a semi-supervised manner using both cell line data Dtrain
cl ¼ fxcg

Ctrain
c¼1

and tumour

data Dtrain
tu ¼ fðxt; ytÞg

Ttrain
t¼1

. Here, we used cell line data from CCLE and tumour data from

TCGA.

One aim of MFmap is to use semi-supervised classification to infer the cancer subtype yc of

a cell line c. A second aim is to assess the similarity between a cell line and a tumour. Instead of

comparing the high dimensional molecular features xt and xc directly, we first encode them

into low dimensional latent representations z (see next section for details). Then, the similarity

of a tumour sample t and a cell line c is measured as the cosine coefficient between the corre-

sponding latent representation vectors zt and zc. We will also show that these latent representa-

tions z carry interpretable biological information.

The molecular data x = (xDNA, xRNA) consist of gene expression profiles xRNA and net-

work smoothed mutation and CNV profiles xDNA. We will refer to these two parts as RNA

and DNA view, respectively. The DNA view is obtained from the original binary mutation

and CNV matrices (Fig 1(A)), which indicate the occurrence of a mutation or CNV event

targeting a gene in a given tumour sample or cell line. These very sparse matrices are first

projected onto an annotated cancer network [25]. By using a network diffusion algorithm

[26], a mutation or CNV signal hitting a single gene is propagated to neighbouring nodes

in the network, thereby enriching the mutation or CNV data by cancer network informa-

tion. All molecular features were translated and scaled to the interval between zero and

one.

Specification of MFmap as a semi-supervised generative model

The MFmap neural network (Fig 1(B)) is a new variant of a semi-supervised VAE [27]. The

observable data are considered to be drawn from the probability distributions p(x, y) for

tumour samples and p(x) for cell lines. These distributions are modelled as marginals over the

Table 1. The sample size of TCGA and CCLE data used for training and testing MFmap.

TCGA code study name number of subtypes TCGA sample size CCLE sample size

BRCA Breast invasive carcinoma 4 484 51

COADREAD Colon adenocarcinoma 4 414 54

ESCA Esophageal carcinoma 2 169 27

HNSC Head and neck squamous cell carcinoma 4 278 29

LUAD Lung adenocarcinoma 3 227 70

LUSC Lung squamous cell carcinoma 4 178 22

PAAD Pancreatic adenocarcinoma 2 149 40

SKCM Skin cutaneous melanoma 3 260 49

UCEC Uterine corpus endometrial carcinoma 3 234 28

GBMLGG Glioblastoma multiforme and lower grade glioma 7 621 55

https://doi.org/10.1371/journal.pone.0261183.t001
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Fig 1. Overview of MFmap. (A) In a preprocessing step, mutation and CNV profiles are transformed to network smoothed DNA profiles. The original

mutation and CNV data are represented as a binary matrix indicating the presence/absence of a DNA alteration in a given tumour sample or cell line.

This sparse matrix is projected onto a cancer reference network (CRN) [25] and a network diffusion algorithm propagates this information to network

neighbours, resulting in a dense DNA mutation or CNV matrix (DNA features). (B) The smoothed DNA features (DNA view) combined with gene

expression data (RNA view) form the input of MFmap. The neural network architecture of MFmap has three components: encoder, decoder and

classifier, encoded by different colours. The encoder maps sample features to a distribution q(z|x) for the latent representation z with mean value μ(x)

and covariance σ2(x). The classifier outputs a molecular subtype probability p(y|z) and the decoder models a density p(x|z) for the reconstruction of the

DNA and RNA views. During semi-supervised training, the molecular subtypes of tumour samples are used. (C) For visualisation, the latent

representations of bulk tumour samples are used to generate a reference map. Cell lines are then projected to the reference map. The colour coding of

individual samples or cell lines (dots) indicates the tumour subtype or the predicted subtype, respectively. The density of the tumour samples is

indicated by background contour lines coloured according to the subtypes.

https://doi.org/10.1371/journal.pone.0261183.g001
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latent variable z ¼ ðz1; . . . ; zdÞ
T
2 Rh

, such that

pðx; yÞ ¼
Z

pðx; y; zÞ dz; pðxÞ ¼
Xh

y¼1

pðx; yÞ: ð1Þ

To facilitate biological interpretation of the latent representations, we set the dimension d
of the latent space equal to the number of cancer subtypes h. In other applications of the

MFmap model, one could also consider d as a tuneable hyper-parameter.

For the generative model, we assume x and y to be conditionally independent given the

latent variable z. Accordingly, the joint distribution can be factorised as

pðx; y; zÞ ¼ pðxjzÞ pðyjzÞ pðzÞ: ð2Þ

These distributions are specified as

pðzÞ ¼ N ðzj0; IÞ ð3aÞ

pðyjzÞ ¼ CatðyjπθðzÞÞ ð3bÞ

pðxjzÞ ¼ f θðxjzÞ: ð3cÞ

Here, p(z) is the prior distribution for the latent representation vector. We denote the

Gaussian distribution with mean vector μ and covariance matrix S by N ð�jμ;SÞ. The

parameter πθ(z) of the categorial distribution p(y|z) depends on the latent representation z.

For the decoder p(x|z) one can chose a suitable distribution fθ with parameters depending

on the latent representations z [27]. The functions z 7! πθ(z) and z 7! fθ(�|z) are represented

as neural networks. The parameters of these decoder networks are jointly denoted as θ.

For the mfMAP model we initially used a Gaussian distribution fθ(x|z) to model the out-

puts. However, we found that rescaling the molecular features x to the interval [0, 1] and using

a Bernoulli distribution for fθ improved the semi-supervised classification accuracy (see

Results section). Then, each single output of the decoder neural network z 7! fθ(�|z) can be

interpreted as the probability, that the corresponding molecular feature is active or not. For

instance, for the i−th component (xRNA)i of the RNA-view, the corresponding output can be

regarded as the probability that the i-th gene is expressed.

Posterior inference, i.e. the evaluation of p(y, z|x) using Bayes theorem, is often intractable,

because the marginal likelihood p(x) in Eq (1) requires integrating over z. Therefore, a varia-

tional distribution q(y, z|x) is introduced to approximate the true posterior [24, 27]. We

assume that the variational distribution reflects the conditional independence x? y|z of the

generative model in Eq (2). This implies

qðx; yjzÞ ¼ qðxjzÞ qðyjzÞ: ð4Þ

For consistency we assume that q(y|z) in Eq (4) is identical to p(y|z) in Eq (3b) and is repre-

sented by the same neural network mapping z to the categorial parameter πθ(z). For the varia-

tional distribution q(z|x) we choose a Gaussian

qϕðzjxÞ ¼ N ðzjμ; diagðσÞÞ with ðμðxÞ; logσðxÞÞ ¼ gϕðxÞ ð5Þ

with parameters μ(x) and σ(x). The parameters are represented by the encoder neural net-

work gϕ, which is itself parametrised by ϕ. The overall architecture of MFmap (Fig 1(B)) is

thus formed by three neural networks, the encoder Eq (5), the classifier Eq (3b) and the

decoder Eq (3c).
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Training of MFmap using a semi-supervised loss function

Variational inference involves maximising an evidence lower bound (ELBO) to the log-likeli-

hood of the observational data [24, 27]. For a single cell line sample xc 2 Dcl one can derive a

lower bound to the log-likelihood

log pðxcÞ ¼ log
X

y

Z

pðxc; y; zÞdz

 !

� LðxcÞ; ð6Þ

which is identical to the ELBO of the basic VAE [24] for unsupervised learning

LðxÞ ¼ EqðzjxÞ½log pðxjzÞ� � DKLðqðzjxÞjjpðzÞÞ; ð7Þ

consisting of a reconstruction loss term and a Kullback-Leibler (KL) divergence term. For a

single labelled tumour sample ðxt; ytÞ 2 Dtu we have for the log-likelihood

log pðxt; ytÞ ¼ log
Z

pðxt; yt; zÞdz
� �

� Ltuðxt; ytÞ; ð8Þ

where the ELBO for labelled examples reads

Ltuðx; yÞ ¼ LðxÞ þ EqðzjxÞ½log pðyjzÞ�: ð9Þ

To derive this ELBO (see S1 File), we exploited the conditional independence assumption x
? y|z for both the generative model (Eq (2)) and the inference model (Eq (4)). The additional

term in Eq (9) in comparison to Eq (7) can be interpreted as a classification loss. Given a

tumour sample (xt, yt), the probability for the cancer subtype label p(yt|z) is a function of z,
which is inferred from q(z|xt). This distribution is in turn determined by the molecular feature

vector xt.

We found empirically that the semi-supervised classification accuracy during training was

relatively poor when using these exact negative ELBOs as loss functions. This is in line with

previous findings that achieving both good semi-supervised classification accuracy and good

generative performance is often difficult in VAEs [28] or other generative models [29]. Moti-

vated by the work from [30], we added the negative entropy H½pðyjzÞ� of the distribution p(y|

z) to the unsupervised ELBO L in Eq (7) and to the supervised ELBO Ltu in Eq (9). In sum-

mary, the MFmap loss functions for the unlabelled cell line and the labelled tumour data are

respectively given by

UðxÞ ¼ � LðxÞ þH½pðyjzÞ�

¼ � EqðzjxÞ½pðxjzÞ� þ DKLðqðzjxÞjjpðzÞÞ þH½pðyjzÞ� ð10aÞ

Sðx; yÞ ¼ � LtuðxÞ þH½pðyjzÞ�

¼ � EqðzjxÞ½pðxjzÞ� þ DKLðqðzjxÞjjpðzÞÞ þH½pðyjzÞ� � EqðzjxÞ½log pðyjzÞ�: ð10bÞ

This entropy regularisation encourages the classification boundaries to be located in low

sample density regions [30] in the latent space, which improves the generalisation perfor-

mance of the model. As shown below (see Results section), the semi-supervised classification

accuracy was very convincing, when using this entropy regularisation.

During training, mini-batches b = 1, . . ., B from the cell line DðbÞcl � DTrain
cl and tumour data

DðbÞtu � DTrain
tu are used to minimise

X

xc2D
ðbÞ
cl

UðxcÞ þ
X

ðxt ;ytÞ2D
ðbÞ
tu

Sðxt; ytÞ ð11Þ
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over different epochs. To check whether all terms in the MFmap loss function in Eq (10) can

be jointly optimised, we recorded the values of each term in each training epoch and calculated

their pair-wise correlations. The reconstruction loss -Eq(z|x)[p(x|z)], the KL-divergence DKL(q
(y|x)||p(z)), the entropy H½pðyjzÞ� and the classification loss -Eq(z|x)[log p(x|z)] are highly cor-

related (Fig 2), what suggests that they are optimised simultaneously.

Fig 2. Joint optimisation of the reconstruction loss, the KL divergence, entropy and the classification loss with the MFmap loss function. The plot

shows the pairwise correlation of different terms in the MFmap loss function Eq (10) during different training epochs.

https://doi.org/10.1371/journal.pone.0261183.g002
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Visualisation of individual samples

The MFmap latent representation z can be used to visualise and organise the associations of

individual tumour samples and cell lines (Fig 1(C)). Inspired by the visualisation concept of

Onco-GPS (OncoGenic Positioning System) [31], we used the tumour samples with known

subtypes to generate a reference map for the cancer subtypes. In this reference map, the com-

ponents z1, . . ., zh of the latent representation are presented as a graph with h corner points in

a plane. The location of these corner points is determined by multidimensional scaling and is

chosen so as to reflect the distances in the h-dimensional latent space as good as possible (see

S1 File for details). An individual tumour sample can now be visualised as a point located in

the area between the corner points. The location of such a point is given by a superposition of

the corner positions weighted by the latent representation magnitudes of individual samples.

In addition, the subtypes of the tumour samples are colour coded. The contour lines and the

background colour shading represent the sample density in the region.

Once the reference map is established, individual cell lines can be projected to this map,

where the colour of each dot encodes the subtype predicted by the MFmap classifier. This pro-

jection is based on the latent representation values of the cell line samples. Since our aim is to

analyse the fidelity of a cell line as an oncological model for a given tumour or a cancer sub-

type, we name our framework the model fidelity map (MFmap).

Results

Evaluating the MFmap classification and generative performance

A direct evaluation of the MFmap subtype prediction for cell lines is impossible because there

are no ground truth labels available. However, the classification accuracy on an unseen test

dataset of bulk tumours provides an indirect evaluation of the subtype prediction perfor-

mance. In Table 2 we used 20% of the tumour samples as independent test set and evaluated

the classification performance using four multi-class classification metrics: overall accuracy,

weighted precision, weighted recall, and weighted F1 score. Similar results can be obtained,

when 10% of the tumour samples are used for testing (see Table 1 in the S2 File). We also tested

the effect of increasing the latent space dimension d and found that the classification accuracy

was typically not higher, indicating that our choice of setting d equal to the number of cancer

subtypes did not impair the classification accuracy (see Table 2 in the S2 File).

The good classification results for GBMLGG are intriguing, because the G-CIMP-High,

G-CIMP-Low and LGm6-GBM subtypes were derived from methylation data [32], which

Table 2. MFmap subtype classification performance estimated for unseen tumour samples. Here, 20% of the bulk tumour data were randomly selected as an indepen-

dent test set.

accuracy precision recall F1 score organ

0.97 0.97 0.97 0.97 BRCA

0.96 0.96 0.96 0.96 COADREAD

1.00 1.00 1.00 1.00 ESCA

0.99 0.99 0.99 0.99 GBMLGG

0.91 0.92 0.91 0.91 HNSC

0.96 0.96 0.96 0.96 LUAD

0.94 0.95 0.94 0.94 LUSC

0.97 0.97 0.97 0.97 PAAD

1.00 1.00 1.00 1.00 SKCM

0.96 0.96 0.96 0.96 UCEC

https://doi.org/10.1371/journal.pone.0261183.t002
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were not used to train MFmap. This indicates that MFmap is able to extract DNA and RNA

patterns reflecting features originally derived from different methylation status.

In addition, we tested how well the MFmap autoencoder part reconstructs the molecular

features x. To this end, we first sampled a latent representations from the encoder q(z|x) for a

given input x from the real data. Then, we correlated these original molecular features with the

output sampled from the decoder distribution p(x|z). The histogram of Pearson correlation

coefficients in Fig 3 shows a high input-output correlation for most molecular features for

three exemplary cancer types: breast invasive carcinoma (BRCA), colorectal adenocarcinoma

(COADREAD) and glioblastoma multiforme and lower grade glioma (GBMLGG). Taken

together, MFmap can combine very good classification accuracy with good generative

performance.

Future applications of MFmap will include the analysis of query samples input to a refer-

ence model trained on a large data set. To check how well MFmap can perform in such a set-

ting, we checked various measures for the quality of integrating these data from different

sources [33–35]. Since this is not the focus of this paper, we have relegated the very promising

results to the Supporting Information (see S2 File).

Selecting the optimal cell line for a given tumour

The heatmaps in Fig 4 represent pairwise cell line by tumour dissimilarity matrices for three

exemplary cancer types BRCA, COADREAD and GBMLGG. In addition, the subtypes of bulk

tumours annotated from [32, 36, 37] and the subtypes of cell lines predicted by the MFmap

Fig 3. The generative performance of MFmap. The histogram shows sample-wise correlation coefficients between input features (DNA and RNA

views) and reconstructed features output by the MFmap decoder.

https://doi.org/10.1371/journal.pone.0261183.g003
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Fig 4. Pairwise dissimilarity between CCLE cell lines and TCGA bulk tumours. The colour coding in the heatmaps

indicates the pairwise dissimilarity which was obtained from the latent representations of cell lines and tumours for the

three exemplary cancer types (A) breast invasive carcinoma (BRCA), (B) colorectal adenocarcinoma (COADREAD)

and (C) glioblastoma multiforme and lower grade glioma (GBMLGG). Tumours (columns) and cell lines (rows) were

clustered according to the dissimilarity score, which ranges from 0 (very similar) to 2 (very dissimilar). The subtype

classification of each cell line was predicted from the classification layer of the MFmap neural network. The tables

display the sample size for the different subtypes or predicted subtypes.

https://doi.org/10.1371/journal.pone.0261183.g004
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classifier are displayed. For a better visualisation, cell lines and tumours are clustered based on

their pairwise cosine dissimilarity scores. The similarity of a cell line c to a tumour t is defined

as the cosine of the angle between their latent representations zc and zt. Accordingly, the dis-

similarity between c and t is defined as dðc; tÞ ¼ 1� zc�zt=k zc kk zt k. A dissimilarity of d(c, t) =

0 indicates perfect alignment between the latent representations of the cell line and the

tumour, whereas a dissimilarity d(c, t) = 1 indicates orthogonal latent representations. The

highest dissimilarity of d(c, t) = 2 would be achieved for antipodal latent vectors. Based on this

dissimilarity matrix, researchers can select the best cell lines for a given tumour or a given

tumour subtype. And, vice versa, the relevance of promising experimental results observed in
vitro can be checked by selecting a subset of tumours most likely resembling the cell line char-

acteristics. The pairwise dissimilarity matrices between TCGA bulk tumours and CCLE cell

lines and cell line subtype predictions for all tumour types listed in Table 1 are provided on

our website (http://h2926513.stratoserver.net:3838/MFmap_shiny/).

These results also indicate, for which subtypes suitable cell line models exist and for which

subtypes cell lines should be prioritised for future in vitro model development [21]. Each

BRCA subtype is represented by at least three cell lines (Fig 4(A)) and the heatmap shows that

these cell lines are very similar to the corresponding tumours of the same subtype. However,

only three cell lines represents the HER2-enriched subtype. The four subtypes of COADREAD

tumours are also well represented by at least six highly similar cell lines in CCLE (Fig 4(B)).

For GBMLGG, the Mesenchymal-like tumour subtype is represented by 31 cell lines with

high similarity scores. Many TCGA tumour samples have the molecular subtype Codel and

G-CIMP-high, but they are only represented by seven and nine cell lines, respectively. Only

two cell lines were classified as Classic-like and a single cell line has the predicted subtype

LGm6-GBM. The PA-like tumour subtype is not represented by any cell line.

Predicting drug sensitivity in cancer patient sub-cohorts using MFmap and

in vitro drug screens

Predicting patient therapeutic response is one important goal of subtype stratification. To

explore the translational potential of the subtypes predicted by MFmap we estimated the asso-

ciation between predicted subtypes and drug sensitivity of all compounds available in the

CTRP dataset [18]. For each cancer type listed in Table 1 and each compound, we compared

the drug sensitivity among different cell line subtypes predicted by the MFmap classifier. Drug

sensitivity is quantified in CTRP by the area under the dose response curve (AUC). We used

an ANOVA to test for differences in the mean AUC among the predicted subtypes. At a false

discovery rate (FDR) cutoff of 25%, we found 18, six and 16 compounds in BRCA, GBMLGG

and UCEC to show significant subtype specificity, respectively. For the other seven cancer

types in Table 1, there are no significant AUC differences across the different subtypes. Note

that the sample size per subtype is very small, which might explain why statistically significant

results can only be obtained for three cancer types.

For BRCA, the compound with the strongest association between subtype and drug sensi-

tivity is Lapatinib (ANOVA p-value = 2.95e-05). Lapatinib is a tyrosine kinase inhibitor used

in combination therapy for HER2-positive breast cancer [38]. Our results suggest that cell

lines of molecular subtype HER2-enriched are more sensitive to Lapatinib treatment (Fig 5

(A)) in comparison to other three subtypes. Although there are only three cell lines represent-

ing the HER2-enriched subtype, this finding is in line with the known inhibitive mechanism of

Lapatinib on the HER2/neu and epidermal growth factor receptor (EGFR) pathways. This

result highlights the potential of MFmap as a tool for translating in vitro drug screening results

to patient sub-cohorts. Our analysis also suggests that larger sample sizes and a better coverage
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of underrepresented subtypes are essential to increase the statistical power for detecting sub-

type specificity from cell line drug screens.

Another drug with significant variations of the AUC values across the different BRCA sub-

types is Oligomycin A (ANOVA p-value = 1.39e-4), a compound targeting oxidative

Fig 5. Cancer subtype specific drug sensitivity of CCLE cell lines. The subtypes of breast invasive carcinoma (BRCA) cell lines respond differentially

to the compounds Lapatinib and Olygomycin A. Treatment response to the compounds KHS101 and Bortezomib in of glioblastoma multiforme and

lower grade glioma (GBMLGG) cell lines is subtype specific. The drug sensitivity is summarised by the area under the dose response curve (AUC) and

p-values refer to an ANOVA of the AUC differences among different subtypes.

https://doi.org/10.1371/journal.pone.0261183.g005
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phosphorylation via an inhibition of the ATP synthase. The potential of Oligomycin A as a

therapeutic compound to prevent metastatic spread in breast cancer has recently been

highlighted [39]. The results in Fig 5(B) suggest that treatment with Oligomycin A might be

most efficient for the HER2-enriched and Luminal A or Luminal B subtypes.

The drug sensitivities of KHS101 and Bortezomib are significantly associated with

GBMLGG subtypes (KHS101: ANOVA p-value = 2.3e-04; Bortezomib: ANOVA p-

value = 2.3e-04). The synthetic small molecule KHS101 was shown to promote tumour cell

death in diverse glioblastoma multiforme cell line models [40]. Our analysis suggests that the

G-CIMP-low subtype is more sensitive to KSH101 treatment (Fig 5(C)) compared to the other

six GBMLGG subtypes. G-CIMP-low is an IDH mutant glioma subtype with poor clinical out-

come in recurrent glioma [32].

Bortezomib targets the ubiquitin-proteasome pathway and is used for the treatment of mul-

tiple myeloma, but has also been discussed as treatment for glioma [41]. Our results in Fig 5

(D) show that the Codel and G-CIMP-high subtypes have larger AUCs. The results for

LGm6-GBM and Classic-like are not conclusive because there are not enough cell lines repre-

senting these subtypes.

Biological characterisation of latent representations learnt by MFmap

The pattern of MFmap learnt latent representations z can be used as a signature for cancer sub-

types. For example, in BRCA, the basal-like subtype is characterised by a pattern of low values

of components z1 and z4 and high values of z2 and z3 (Fig 6(A)). HER2-enriched tumours are

characterised by high values of z1 and z3 and z4. Luminal A and B subtypes can be distin-

guished by z4. Similarly, cancer subtypes in COADREAD and GBMLGG are highly associated

with their latent representations learnt by MFmap (Fig 6(B) and 6(C)).

To further investigate the biological meaning of the latent representations we analysed the

association between z and pathway activities in TCGA reference datasets. We used single sam-

ple gene set enrichment analysis (ssGSEA) [42] to assess sample-wise pathway activities. The

pathway signatures were compiled from several sources including 10 curated oncogenic signal-

ling pathways [43], 19 curated specific DNA damage repair (DDR) pathways [44], 14 expert-

curated specific DDR processes and DDR associated processes [45]. This collection was com-

bined with MsigDB (v7.0) [46] chemical and genetic perturbations (CGP) and canonical path-

ways (CP) collections (MsigDB C2 collection) and MsigDB (v7.0) hallmark gene sets (MsigDB

H collection). The degree of associations was quantified by the information coefficient and the

Pearson correlation coefficient and the statistical significance was assessed by permutation

tests. To tackle class imbalance in the different subtypes, we applied SMOTE upsampling [47].

We used COADREAD as a proof of concept, because it has four well characterised molecu-

lar subtypes CMS1-CMS4 [37]. The CMS1 subtype is characterised by micro-satellite instabil-

ity (MSI), whereas CMS4 tumours are micro-satellite stable. The CMS4 subtype is also

distinguished from CMS1 by epithelial mesenchymal transformation (EMT) characteristics,

accompanied by prominent stromal invasion and angiogenesis. These mutually exclusive char-

acteristics are clearly reflected in the magnitudes of the latent representation components. The

top gene sets associated with component z2 are “WATANABE COLON CANCER MSI VS

MSS UP” and “KOINUMA COLON CANCER MSI UP”, whereas z4 is associated with the

activity of gene sets annotated as “HALLMARK ANGIOGENESIS” and “HALLMARK EPI-

THELIAL MESENCHYMAL TRANSITION”. Clearly, high values of z2 are a characteristics of

the CMS1 subtype, whereas high values of z4 are a distinctive feature of CMS4 tumours. This

example illustrates that a meaningful way to guide biological interpretation of the latent repre-

sentations is to associate them to single sample pathway activity.
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The same method was applied to annotate latent representations of GBMLGG (Fig 7(A)),

which has seven subtypes [32]. The Mesenchymal-like and PA-like are stratified by gene

expression profiles and the G-CIMP-high, G-CIMP-low and LGm6-GBM are methylation

based. The Codel subtype describes IDH-mutant samples harbouring a co-deletion of chromo-

some arm 1p and 19q. Many pathways associated with latent representation z1 are related to

the neurotransmitter release cycle, which is also a characteristics of the Verhaak proneuronal

Fig 6. Association of MFmap latent representations and cancer subtypes. The dimension of the latent representation h is set to the number of cancer

subtypes. The boxplots display latent representations of different subtypes of TCGA samples in the three exemplary cancer types (A) breast invasive

carcinoma (BRCA), (B) colorectal adenocarcinoma (COADREAD) and (C) glioblastoma multiforme and lower grade glioma (GBMLGG). Cancer

subtypes are colour encoded and sorted by their median latent representations.

https://doi.org/10.1371/journal.pone.0261183.g006
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subtype [48]. Pathways correlated to latent representation z2 are related to the mesenchymal

cell type, hypoxia and angiogenesis, which characterises the Verhaak mesenchymal subtype.

The activity of the Fanconi Anemia (FA) DNA repair pathway is highly correlated with latent

representation z3. DNA damage response deficiency and amplified oncogenic MYC signalling

characterises tumours with large values of latent representation z4. Latent representation z5 is

related to the neurotransmitter release cycle and dysfunctional metabolism; latent representa-

tion z6 to mitotic checkpoint deficiency. Many pathways associated with latent representation

z7 are involved in mismatch repair deficiency, replication stress and cell cycle disregulation

and also related to the classical subtype in the earlier classification of Verhaak [48].

Individual samples and their relationships can be displayed in the MFmap reference map

(Fig 7(B)), a visualisation tool adapted from OncoGPS [31]. Here, the seven corners of the

map correspond to the respective latent representations z1, . . ., z7 in GBMLGG. The corner

locations are determined by multidimensional scaling on the latent representations of bulk

Fig 7. Characterising the MFmap learnt latent representations in glioblastoma multiforme and lower grade glioma (GBMLGG). (A) The top

heatmap shows the latent representation z of TCGA tumour samples (columns). The tumour samples are ordered based on a hierarchical clustering of z
and their subtypes are colour encoded. The heatmap at the bottom displays sample-wise pathway activities that are significantly associated with the

latent representations z1, . . ., z7. Pathway activities were computed using the ssGSEA algorithm [42]. For better visualisation, we upsampled the input

data of MFmap and ssGSEA to get a balanced sample size in each subtype. (B) The MFmap reference map is formed by projecting the latent

representations z of bulk tumours into two dimensions using multidimensional scaling. It consists of seven dominant components represented by black

nodes. The length of their connections is given by the Euclidean distance of the dominant components in the latent space. The annotation of the seven

dominant nodes is based on the correlation between z and pathway activity scores (see A). The background colour encodes sample subtypes, and the

background contour encodes sample density. Individual bulk tumours are displayed as dots on the MFmap reference map. (C) Cell line samples are

projected to the MFmap reference map. In both (B) and (C), the subtype of bulk tumours and predicted subtype of cell lines are colour coded. Subtype

specific sample size for bulk tumours and cell lines is reported in the legend table.

https://doi.org/10.1371/journal.pone.0261183.g007
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tumours. Individual bulk tumour samples are displayed as dots in the regions between the cor-

ner points with locations determined by a weighted vector sum of the seven corner locations

(see S1 File for details). The subtype of each tumour sample is indicated by colours. The den-

sity of the tumour samples of a given subtype is depicted by the contour lines and the corre-

sponding colour shading. Fig 7(B)) shows that samples of the same subtype clustered together

and the inter-cluster distance is large. Projecting cell lines to the MFmap reference map (Fig 7

(C)) helps to visualise the relationship between their predicted subtypes and their latent

representations.

Modelling cellular state transformations using latent space arithmetics

Cancerous neoplasms undergo various biochemical changes during cancer evolution and in

response to selective pressure. One example is the transition from a proneural to a mesenchy-

mal phenotype in glioblastoma, which is characterised by acquired therapeutic resistance and

more aggressive potential [49]. In the DNA methylation based subtype classification of [32],

the G-CIMP-high methylation phenotype tends to have the proneural molecular subtype [48]

(see Fig 7(B)). Given that the latent representations learnt by MFmap clearly distinguish these

different subtypes, we asked, whether the generative nature of the semi-supervised VAE can

also be exploited to study such cancer subtype transformations.

To this end, we used the latent representations of the G-CIMP-high tumours and the Mes-

enchymal-like tumours (see Fig 7(B)) and computed the centroid vectors �zG� CIMP� high and

�zMesenchymal� like for the corresponding tumour samples. The difference δ ¼ �zMesenchymal� like �

�zG� CIMP� high was used as a latent perturbation vector. By adding δ to the latent representation of

each G-CIMP-high tumour (Fig 8(A)) we obtained the latent representation of in silico sam-

ples (Fig 8(B)), which are located in the “Mesenchymal-like region” of the reference map. We

used these latent representation vectors of the in silico samples as input to the decoder of the

MFmap network. We then checked, whether key molecular features of real Mesenchymal-like

samples are reflected by these generated samples. Based on the available biological knowledge,

we focussed on the most prominent onco-markers of the G-CIMP-high subtype: mutation sta-

tus of the alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehy-

drogenase (IDH) and TP53 genes. The original G-CIMP-high tumours show a high

propensity towards mutations in these genes, indicated by relatively higher network smoothed

mutation scores (Fig 8(C)), although not all samples are necessarily harbouring these muta-

tions. In contrast, the predicted mutation scores for the perturbed in silico samples in Fig 8(B)

are much lower, indicating a lower propensity to IDH1, ATRX or TP53 mutations. This is in

agreement with the observed tendency of Mesenchymal-like tumours for these mutations [49].

This example not only highlights the good generative performance of MFmap but also hints at

potential applications on integrative analysis of cancer evolution dynamics.

Discussion

Limited success in translating in vitro therapeutic markers to clinical applications highlights

that not all cell lines are good models for a given cancer subtype. Selecting the most appropri-

ate cell line for a given tumour or a set of tumours is crucial for understanding cancer biology

and developing new anti-cancer treatments. Here, we provide a computational framework and

a resource for cancer researchers to select the best cell lines for a TCGA tumour or a cancer

subtype from ten different cancer types (http://h2926513.stratoserver.net:3838/MFmap_shiny/

). The quantitative similarity score enables researchers to judge, whether a given tumour or a

subtype of tumours is well represented by a cell line.
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The assignment of cancer subtype labels to cell lines enables cell biologists to optimise

experimental planning and to focus their research on clinically relevant model systems. We

found that our semi-supervised MFmap model can classify tumours with a very high accuracy.

Further analysis of drug sensitivity profiles supports that the subtype prediction for cell lines is

biologically meaningful. Our analysis shows that HER2-enriched cell lines are most sensitive

to Lapatinib, in agreement with prior knowledge about drug efficiency of this compound. As

an example for the translation of in vitro pharmacogenomic data, we predict that the G-CIMP-

low subtype is more sensitive to the new synthetic compound KHS101 compared to other

GBMLGG subtypes.

Our finding that only BRCA, GBMLGG and UCEC show significant subtype specific drug

sensitivity variation merits further investigation. One important reason is the small number of

cell lines representing some cancer subtypes, which prevents us from finding statistically sig-

nificant variations of drug sensitivity across the different subtypes. This highlights the need to

prioritise cell line development for underrepresented disease variants [21]. However, it can not

be ruled out that for some cancers the known subtype classifications are not predictive of drug

Fig 8. In-silico perturbation analysis of cellular state changes during disease transformation from the G-CIMP-high to the Mesenchymal-like

subtype in glioblastoma multiforme and lower grade glioma (GBMLGG). (A) The G-CIMP-high tumours from TCGA are projected to the MFmap

reference map. (B) By perturbing the latent representation vectors of these G-CIMP-high tumours we generate artificial tumour samples located in the

Mesenchymal-like region of the MFmap reference map (compare Fig 7(B)). (C) Boxplots of the sample mutation status (network smoothed mutation

scores) of marker genes IDH1, ATRX1 and TP53 before and after perturbation.

https://doi.org/10.1371/journal.pone.0261183.g008
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sensitivity. This suggests that clinically relevant subtype stratification should take into account

drug sensitivity.

By embedding the original gene expression space, somatic mutation space and copy

number space of bulk tumours and cell lines into a lower dimensional latent space, MFmap

extracts latent features that are strongly associated with cancer subtypes. For COADREAD

and GLMBGG, we have illustrated that the abstract latent representations can be annotated

biologically using their associations with pathway activities. This makes the latent represen-

tations interpretable and allows to study the molecular and clinical heterogeneity of this dis-

ease. In principle, MFmap can be complemented by other modalities such as methylation or

proteomics data. However, for our purpose we found that gene expression and DNA fea-

tures in combination with the prior knowledge about tumour subtypes contains sufficient

information.

Our proof of principle analysis of the transformation between two different tumour sub-

types presents a new approach for studying tumour evolutionary processes in a more integra-

tive way [50]. The small sample size of some multi-region sequencing or single-cell sequencing

studies limits the ability to infer robust evolutionary patterns. By projecting these data to the

MFmap reference map obtained from training on large sets of bulk tumour data one could

deduce useful phenotypic information for individual patients. We believe that this can leverage

information gathered in large cancer genomic studies like TCGA to guide personalised clinical

decision making.

The MFmap is based on a new semi-supervised neural network architecture combining a

basic VAE with an additional classifier. Such semi-supervised learning tasks are very common

in the biomedical research field, because it is often easier to acquire a large number of mea-

surements than to obtain the corresponding labels. Based on the good predictive and genera-

tive performance of MFmap together with the evidence provided here, that MFmap can learn

biologically and clinically meaningful information, we are convinced that the MFmap model

can be adapted to other semi-supervised tasks in oncology and beyond.
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5

Concluding remarks

Predictive modelling is helpful for better understanding of cancer chromosomal instability
(CIN) complexity, by yielding quantitative insights on CIN mechanisms and consequences,
and by suggesting new experiments. Conversely, such multi-scale complexity provides
opportunities for integrative predictive model development. This thesis first reviews how
complex the cancer CIN system is, thereby providing the rationale to address it using
predictive modelling techniques. This thesis then answers one important question: What
are the commonalities and differences between W-CIN and S-CIN? It thus serves as a
complementary to the current CIN computational studies that only focus on W-CIN. This
thesis then proposes a novel semi-supervised generative model matching cell lines to
tumours, which has broader applications beyond cancer CIN. Here I shortly summarise
the significance of the work presented in Chapters 3 and 4 and outlook future directions.

5.1 Conclusion

In Chapter 3, we implemented three types of karyotypic complexity scores as a proxy
measurement of CIN: The numerical complexity score (NCS) measuring W-CIN, the
structural complexity score (SCS) measuring S-CIN and the weighted genome instability
index (WGII) measuring the overall CIN levels. We then performed extensive association
analysis between these karyotypic complexity scores and molecular and clinical features for
33 cancer types from Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas
(TCGA) datasets, intending to provide a better understanding of the commonalities and
differences between W-CIN and S-CIN. The analysed features include genomic landscape,
clinical outcomes, drug sensitivity, somatic mutations and somatic copy numbers. We
found that whole genome doubling (WGD) is uniformly associated with high W-CIN but
homologous recombination deficiency (HRD) is associated with high S-CIN in most cancer
types. We report W-CIN and S-CIN have cancer type specific prognostic values and are
hard to target using currently available drugs. We propose CKS1B as a potential S-CIN
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target. We suggest a copy number based mechanism to promote PI3K signalling in high
S-CIN cancer cells. Additionally, our model predicted GINS1 as a W-CIN promoting gene,
which has subsequentially been experimentally validated [140]. In summary, our predictive
model is valuable for understanding the mechanisms of CIN.

In Chapter 4, we developed a semi-supervised generative model named as model
fidelity map (MFmap) matching cell lines to tumours. MFmap embeds high-dimensional
gene expression, copy number and somatic mutation features into cancer subtype specific
representations and predicts the subtypes of cell lines. The MFmap embedded represen-
tations are invariant between tumours and cell lines and can be used to quantify the
pair-wise cell-line-tumour similarity. MFmap can achieve good generative and classification
performance simultaneously, making it useful in several scenarios: selecting the best cell
lines for a specific cancer subtype or an individual tumour; revealing novel cancer subtype
specific features; translating in vitro drug screening to patients; modelling cancer disease
transformation course.

5.2 Outlook

5.2.1 Interpretable deep learning to understand CIN mechanisms

Deep learning has been criticized as a class of “black box” approach, which hinders its
wide application on cancer medicine where interpretability and trust are most essential.
Appreciating that the cancer complex system is hierarchically organised (see Section 1.2),
one possible interpretable solution is embedding the biological hierarchical structure to the
feedforward neural network. Gene ontology (GO) represents such hierarchical structure as
a DAG where nodes are GO terms and directed edges are parent-child relationships. A
child term connects to one or more parent terms and represents more specific meanings
than its parent terms in three forms of ontologies (biological process, molecular function,
and cellular component). For CIN mechanisms analysis, a neural network mirroring GO
substructures that are relevant to cell division (to avoid large neural network) receives
genetic measurements as input and outputs the CIN status. I name it as CINgo (gene
ontology guided neural network for CIN analysis). A conceptual design of CINgo is shown
in Fig 5.1, each neuron of CINgo encodes a GO term and only receives the outputs
from its children nodes. This is analogous to the CIN causal genetic alteration flow as
previously described in Chapter 1. The CINgo will allow to nominate the potential CIN
driver pathways based on the node relative predictability metrics such as relative local
improvement in predictive power (RLIPP) score [141, 142], which can be further tested
in the lab. We previously proposed a potential copy number dependent mechanism to
promote S-CIN in PI3K pathway in Chapter 3, CINgo could improve our understanding
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on this aspect by checking the high weight genes corresponding to the leaf nodes of the
PI3K pathway ontology.

Figure 5.1: The design of CINgo architecture. CINgo is a feedforward neural network
of which architecture mirrors the cell division related GO substructure. Pink dots represent
pathways, green dots represent genes. Dot size encodes out degree, only representative
pathways with large out-degrees are annotated.
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5.2.2 Self-supervised and semi-supervised learning on tabular
data

In spite of the lack of interpretability, deep learning has the strength in integrating
multi-level heterogeneous data. Additionally, a variety of self-supervised learning and
semi-supervised learning frameworks have achieved great advances in computer vision
and nature language processing, some are even superior to supervised learning [143,
144]. Given the large amount of unlabelled datasets generated by big cancer genome
projects, self-supervised and semi-supervised learning are urgently needed. The MFmap
presented in Chapter 4 is a semi-supervised deep generative model for multi-modal cancer
genome where the majority of the data are tabular data. For this type of data, most
successful self-supervised and semi-supervised learning algorithms that make use of the
semantic or spatial structures presented in languages or images do not work effectively
[145, 146, 147]. A future direction would be how to extend the general self-supervised or
semi-supervised model to tabular data? Since this question is understudied, we may face
a lot of challenges on experiment setup, evaluation and visualisation. For resolving these
challenges, we need to answer several important questions: How to preprocess the sparse
and unbalanced categorical data (e.g. binary somatic mutation matrix)? How to design
sufficiently difficult pretext tasks for tabular data? How to design appropriate evaluation
metrics? How to display and interpret the learned representations? How to judge whether
a learned representation is clinically and biologically meaningful?

5.2.3 Extending MFmap to regression

Recall that the MFmap presented in Chapter 4 is a new variant of VAE extending to
semi-supervised learning. We have demonstrated that MFmap is able to learn cancer
subtype specific features using in silico perturbation analysis and association analysis
between latent representations and pathway activities as well as drug sensitivities. All of
these good results could benefit from (i) large inter-class distance and small intra-class
distance in the latent representation space; (ii) MFmap learned latent representations that
are invariant between the labelled tumour samples and unlabelled cell line samples. These
two aspects could also explain why MFmap achieves high data-integration performance
(see https://doi.org/10.1371/journal.pone.0261183.s002). However, a large
number of target variables in cancer genome research are continuous numbers (e.g. drug
sensitivities or gene dependencies), the next interesting question would be how to extend
the MFmap for regression problems? For this, the evaluation designation is challenging
because we lack for validated biology experimental data. Using drug sensitivity prediction
as example, we could design an in silico experiment by perturbing the latent representations
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of a sample with low area under the dose–response curve (AUC) values to ones with
other AUC values and reconstruct the gene profile of these generated artificial samples.
We can select the genes with greater fold changes using differential gene profile analysis
and compare it to experimental validation results which are often not available and are
expensive to obtain. Altogether, extending MFmap to regression is useful, but the latent
representation interpretaton and evaluation require new biological experimental data.

5.2.4 Extending MFmap to multi-task learning

Considering the substantial complexity of cancer CIN, a practical way to target CIN might
be to stratify patients into subtypes and cure each subtype based on their clinical and
genetic characteristics. This is known as precision oncology, accurate and trustworthy
treatment response prediction is essential to maximise the benefit of precision medicine. For
this purpose, a number of pre-clinical pharmacogenomics datasets have been generated [26,
27, 28, 29, 30, 31, 32]. And various computational models have been developed to predict
treatment responses using these pharmacogenomics data (reviewed in [148]). Even though
such concept and execution of precision medicine sound rationale, many clinical trails fail to
develop effective drugs. Although many factors contribute to the failure, a drug response
predictive model could significantly improve the translational capability between preclinical
models and patient treatments by taking into account the following input and output
distribution differences between them. The input distribution difference can be addressed
by out-of-distribution (OOD) generalization methodologies such as representation learning
[149] and invariant risk minimization [150]. The output discrepancies: the AUC values
for cell lines versus binary response readouts for patients can be addressed by multi-
task learning. MFmap as a representation learning tool is able to extract clinically and
biologically meaningful latent representations that are invariant between patients and
cell lines. One more step is to extend MFmap for multi-task learning by incorporating
a regression subnetwork predicting treatment response of cell lines and a classification
subnetwork predicting patient treatment response. Again we also need to solve the the
evaluation problem discussed in Subsection 5.2.3.
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