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Abstract

Symmetries are essential to classify equilibrium phases of matter and to explain how such
global thermal equilibrium is attained. In this thesis, we explore the role that certain
unconventional symmetries play in the dynamics of classical and quantum many-body
systems. To begin with, we show that the conservation of a charge and its associated
dipole moment leads to a provable fragmentation of the Hilbert space into exponentially
many disconnected sectors. In turn, this can translate into non-vanishing bulk correlators
and the existence of localized modes at the boundaries of the system among other possible
unexpected phenomena. In general, we find that this conservation leads to novel universal
hydrodynamic behavior, which can coexist with initial states that avoid thermalization,
hence providing examples of weak ergodicity breaking. We achieve this by combining
simple minimal models of interacting degrees of freedom compatible with these symmetries,
and extensive numerical methods.

We then explore the experimental realization of these models, and investigate the far-
from-equilibrium behavior of certain closed quantum many-body systems where such mod-
els become a good approximation. This happens in the presence of a strong tilted field
that couples to the center of mass coordinate. We use our previous insights to interpret
the experimental results, where the system is observed to remain localized at the accessi-
ble time scales. This is possible due to the flourishing development of new experimental
platforms, which thanks to an extraordinary level of control over the system, allow us to
address fundamental questions in the realms of statistical and quantum mechanics.

Encouraged by these results, we conclude by revisiting the notion of symmetry, ap-
proaching it from a broader perspective. In particular, we inquire about what spatially-
modulated symmetries a system can have, providing a novel approach to constructing
some of them. These appear as non-trivial solutions of linear recurrence relations, in-
cluding multipole and subsystem symmetries, but also new types of unconventional ones.
We show that these can take the form of lines and surfaces of conserved momenta, or be
localized at the edges of the system.






Kurzfassung

Symmetrien sind essenziell, um Gleichgewichtsphasen der Materie zu klassifizieren und
zu erklaren, wie sich ein solches globales thermisches Gleichgewicht einstellt. In dieser
Arbeit wird untersucht, welche Rolle bestimmte unkonventionelle Symmetrien fiir die
Dynamik klassischer und quantenmechanischer Vielteilchensysteme spielen. Zunéachst
wird aufgezeigt, wie die Erhaltung des Dipolmoments zu einer nachweislichen Fragmen-
tierung des Hilbert-Raumes in exponentiell viele nicht zusammenhéngende Sektoren fiihrt.
Dies wiederum kann zu nicht verschwindenden Bulk-Korrelatoren und der Existenz von
lokalisierten Moden an den Réndern des Systems fithren, neben anderen moglichen uner-
warteten Phéanomenen. Im Allgemeinen stellt sich heraus, dass diese Erhaltungsgrofie zu
einem neuartigen universellen hydrodynamischen Verhalten fithrt, das mit Anfangszustdnden
koexistieren kann, die eine Thermalisierung vermeiden und somit Beispiele fiir ein schwaches
Brechen von Ergodizitét liefern. Dies wird erreicht durch die Kombination von einfachen
Minimalmodellen wechselwirkender Freiheitsgrade, die mit diesen Symmetrien kompatibel
sind, mit umfangreichen numerischen Methoden.

Anschlielend werden experimentelle Realisierungen dieser Modelle erforscht, indem des
Verhaltens fern vom Gleichgewicht bestimmter geschlossener Quanten-Vielteilchensysteme
untersucht wird, fiir die solche Modelle eine gute Naherung darstellen. Dies geschieht
durch ein starkes, lineares Potential, das an den Massenmittelpunkt koppelt. Mithilfe der
bisherigen Erkenntnisse konnen die experimentellen Ergebnisse interpretiert werden, wobei
beobachtet wurde, dass das System auf den erreichbaren Zeitskalen lokalisiert bleibt. Dies
ist durch die florierende Entwicklung neuer experimenteller Plattformen moglich, die es
dank eines aulergewShnlichen Mafles an Kontrolle iiber das System erlauben, grundlegende
Fragen im Bereich der statistischen Physik und Quantenmechanik zu beantworten.

Ermutigt durch diese Ergebnisse, wird abschliefend der Begriff der Symmetrie neu aufge-
griffen und aus einer breiteren Perspektive betrachtet. Insbesondere wird untersucht,
welche rdumlich modulierten Symmetrien ein System haben kann, wobei ein neuartiger
Ansatz fiir die Konstruktion einiger dieser Symmetrien dargelegt wird. Diese erscheinen als
nicht-triviale Losungen linearer Rekursionsgleichung, einschliellich Multipol- und Subsys-
temsymmetrien, aber auch neuer Arten unkonventioneller Symmetrien. Es wird gezeigt,
dass diese die Form von Linien und Flachen mit konservierten Impulsen annehmen kénnen
oder am Rand des Systems lokalisiert sind.
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Publications

Most parts of this thesis have been published in a peer-reviewed journal or uploaded to
the open access repository arXiv. The corresponding chapters are extended versions of
these publications, which include a discussion of relevant previous and contemporaneous
works by other authors. Chapter 1 gives a brief review of the underlying concepts used in
the writing of this thesis. Chapter 2 is based on

e Pablo Sala, Tibor Rakovszky, Ruben Verresen, Michael Knap and Frank Pollmann:
“Ergodicity breaking arising from Hilbert Space Fragmentation in dipole-conserving
Hamiltonians”

Physical Review X, 10(1), 2020 [1].

Chapter 3 is based on

e Tibor Rakovszky*, Pablo Sala*, Ruben Verresen, Michael Knap and Frank Poll-
mann: “Statistical localization: From strong fragmentation to strong edge modes”
Physical Review B, 101(12), 2020 [Editor’s suggestion] [2].

Chapter 4 is mainly based on

e Sebastian Scherg, Thomas Kohlert, Pablo Sala, Frank Pollmann, Bharath Hebbe
Madhusudhana, Immanuel Bloch and Monika Aidelsburger: “Observing non-ergodicity
due to kinetic constraints in tilted Fermi-Hubbard chains”

Nature Communications, 12(1), 2021 [3],

and on

e Thomas Kohlert, Sebastian Scherg, Pablo Sala, Frank Pollmann, Bharath Hebbe
Madhusudhana, Immanuel Bloch and Monika Aidelsburger: “Experimental realiza-
tion of fragmented models in tilted Fermi-Hubbard chains”
arXiv:2106.15586 [Submitted to Physical Review Letters] [4].

Chapter 5 discusses the one-dimensional systems introduced in

¢ Pablo Sala*, Julius Lehmann*, Tibor Rakovszky and Frank Pollmann: “Dynamics
in systems with modulated symmetries”
arXiv:2110.08302 [Submitted to Physical Review Letters| [5],

and in

e Johannes Feldmeier, Pablo Sala, Giuseppe De Tomasi, Frank Pollmann and Michael
Knap: “Anomalous diffusion in dipole- and higher-moment-conserving systems”
Physical Review Letters, 125(24), 2020 [6],

the latter appearing as a particular case of the first. For this reference, the author in-
troduced the higher-moment conserving models and contributed to derive the analytical
results presented in the publication, apart from actively contributing to the writing of the
manuscript.

“indicates equal contribution.
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Chapter 6 is partly based on Ref. [5] and also presents new unpublished results for con-
served quantities that are localized at the boundary of two (or higher) -dimensional sys-
tems.

The author has also worked on lattice gauge theories and on many-body localization
(MBL). The content of these works have not been included in the thesis, but their main
results are summarized here. In

e Pablo Sala*, Tao Shi*, Stefan Kiihn, Mari Carmen Bafuls, Eugene Demler and
Ignacio Cirac: “Variational study of U(1) and SU(2) lattice gauge theories with
Gaussian states in 1 + 1 dimensions”

Physical Review D, 98(3), 2018,

we introduced a method that allows to efficiently investigate the static and dynamic prop-
erties of both Abelian (e.g., quantum electrodynamics) and non-Abelian (e.g., quantum
chromodynamics) lattice gauge models in 1+ 1 dimensions. The main idea is to first apply
transformations that disentangle the bosonic and fermionic degrees of freedom, followed
by transformations that convert Gaussian states in suitable ansétze for variational calcu-
lations. Moreover, we proposed a Hamiltonian formulation suitable for both the design of
future quantum simulators as well as for other numerical methods.

In

e Giuseppe De Tomasi, Daniel Hetterich, Pablo Sala and Frank Pollmann: “Dynam-
ics of strongly interacting systems: From Fock-space fragmentation to many-body
localization”

Physical Review B, 100(21), 2019 [7],

we studied the effect of Hilbert space fragmentation on the many-body-localization (MBL)
transition. We identified sectors that can be mapped to the single-particle Anderson lo-
calization problem on the Fock-space with correlated disorder, and provide evidence for
an MBL transition between states that can be considered thermal within the block and
localized ones. On the one hand, we show that such constraints reduce the amount of
disorder required to localize the system and on the other, shed light into the transport
properties when approaching the transition point from the ergodic side at strong disorder.

In addition, the author started working on two research projects that are still ongoing.
The first of those addresses the role of modulated symmetries (as introduced in Chapter 5)
at low-temperature, considering for that a generalization of the well-studied Bose-Hubbard
model in one dimension. The second, aims to shed light on the low-temperature physics
of certain magnetic systems for which there is no consensus on the nature of its ground
state. We are formulating an effective description where the role of quantum fluctuations
is encoded in external charges on a lattice gauge theory description.

The author has made significant contributions to all of these works, including the devel-

opment of ideas, analytical calculations, the implementation of numerical algorithms and
data acquisition, the interpretation of results and an active writing of the manuscripts.
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Introduction

Recent and present-day experimental developments in the coherent control and manipu-
lation of quantum many-body systems are enabling physicists to explore their far-from-
equilibrium dynamics [8-10]. The possibility of manipulating these systems directly in
the lab has attracted the attention of researchers working on many different areas. These
include physicists working on condensed matter, quantum information, and statistical
physics, but also on high energy physics [11, 12] and quantum gravity [13, 14]. In par-
ticular, a long-standing question that can benefit from these achievements is when and
how a statistical description can emerge from the evolution of an isolated quantum sys-
tem [15-23]. This physical process is known as quantum thermalization and our experience
tells us that it generally occurs. In fact, rather than resorting to the memory-consuming
many-body wave function, we often can understand our observations in terms of few ther-
modynamic quantities.

This fundamental question that was already addressed in the early days of quantum
mechanics [24] (see Ref. [25] for an English translation), has now regained great interest
driven not only by the thriving experimental advances in the recent years, but also due to
a better understanding of the role of quantum entanglement [26-28] and the concomitant
development of analytical and numerical methods. To this day, a widespread, though
not unanimously accepted explanation is known by the eigenstate thermalization hypoth-
esis (ETH) [21, 29-31]. According to this, every energy eigenstate of a Hamiltonian that
exhibits thermalization essentially behaves like a thermal Gibbs ensemble [32] as far as
the expectation values of physical observables are concerned. Nevertheless, the ETH is a
conjecture that to this day lacks a rigorous proof and in general, a proper understanding
that can be applied to any physical system. Although guided by pioneering analytical
works [29, 30], we so far mostly rely on a great body of numerical evidence [21, 31, 33].

Given the generality of quantum thermalization and the apparent success of the ETH,
looking for systems that defy them has the potential to give us important insights on how
to move forward. Imagine discovering a scenario where, after piercing an inflated balloon
(say one isolated from its environment by a vacuum chamber) [31] the air molecules do
not uniformly distribute across the chamber, but rather remain localized at their initial
locations. The most prominent example of such non-thermal behavior that violates the
ETH is known as a many-body localized phase (MBL). It appears in the presence of a
strong disorder potential, even for an interacting system [34-37]. This direct challenge to
our understanding of the applicability of statistical physics has since then inspired many
basic questions: How relevant is disorder to avoid quantum thermalization? Under what
general conditions can a system fail to thermalize? Can we identify mechanisms leading
neither to complete localization nor to full thermal behavior? The attempt to answer these
has driven the search for MBL-like physics in disorder-free models [38, 39], the study of
slow thermalization in systems with glassy behavior [40, 41], and the appearance of quan-
tum many-body scars [42-48], namely, non-thermal eigenstates in otherwise thermalizing
systems. Overall, the lesson to be learned is that symmetries — and their associated
conserved quantities [49]— together with kinetic constraints, play a fundamental role in
searching for behaviors that departs from standard quantum thermalization. In fact, this
is also the case in the MBL phase, characterized by the existence of extensively many local



Contents

conserved quantities, which retain memory of the initial conditions [50, 51].

Concurrently to these recent discoveries and partly motivated by the same goals [52],
the search for more robust quantum memories even at room temperature [53], led to the
theoretical discovery of so-called fractonic systems (see reviews Refs. [54, 55]). These are
characterized by their large ground-state degeneracy, but more relevant to us, by the re-
stricted mobility of their fundamental excitations, so-called fractons [53, 56]. Only when
bringing many of these excitations together, the resulting compound object is able to
freely move, hence the name fracton. This suggests that it might be possible to prepare
certain initial configurations for which the system evades thermalization. The key reason
underlying this unusual property is once again symmetries, and in particular, the conser-
vation of unconventional quantities which exhibit non-trivial spatial dependence. On the
one hand, early works [52, 56-59] considered models with discrete subsystem symmetries,
which would act along planes of a three-dimensional system. However, it was later realized
that such mobility constraints can be also linked to the conservation of the center of mass
(or equivalently, the dipole moment) of an already conserved quantity, which results in
the localization of isolated charged excitations [60-66]. In view of these discoveries, and
ailming to obtain new insights about quantum thermalization, the constrained behavior of
fractonic systems provides a promising playground to elucidate the role of symmetries in
the non-equilibrium dynamics [52, 67, 67-69].

However, how can we experimentally realize these systems? and if so, what is their fate
at long times? It turns out that some of these quantities, like the dipole moment, are
approximately conserved in certain scenarios. These include the quantum Hall effect in
the Tao-Thouless limit, namely in the thin torus limit [70-74]; and, more experimentally
relevant, interacting systems that are confined in an optical lattice and subject to a linear
potential or tilt. This scenario is shown in the following figure:

ATk

When the energy difference between two consecutive wells of the lattice is very large,
tunneling either up or down the tilt requires too much energy. Hence, a single particle
remains localized around its initial location [75]. However, in the presence of interactions,
two particles can coordinate themselves to simultaneously hop down and up the tilt, then
preserving the center of mass of the system. Hence, while formerly appearing as of merely
academic interest, understanding the behavior of systems which exactly realize such sym-
metries is important to address experimentally accessible scenarios. In fact, this directly
relates to the suggestion that an interacting system in the presence of such a strong tilt
and a weak harmonic potential, will give rise to a localized interacting phase reminiscent

of MBL, which has been dubbed Stark MBL [76, 77).

The main goal of this thesis is to address these questions, understand the role that
unconventional symmetries and kinetic constraints play on the dynamics of many-body
systems, and provide a generalization of such symmetries to even richer spatial structures.
The thesis is organized as follows:
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In Chapter 1 we introduce the main concepts that are used throughout the thesis. The
main focus is discussing what it means for an isolated quantum many-body system to
thermalize and when it happens. We introduce the eigenstate thermalization hypothesis
(ETH) as a plausible explanation, paying special attention to the role of initial states,
observables and conservation laws. As exceptions to the general thermalizing rule, we
discuss many-body localization, integrable systems and quantum many-body scars, and
conclude the chapter with a short introduction to numerical methods, as well as to the
use of ultracold atoms as a perfect arena to simulate isolated quantum many-body systems.

The rest of the thesis is then divided into three main parts. In Part I we consider simple
one-dimensional toy models to investigate the phenomenon of Hilbert space fragmentation
and its consequences. In Chapter 2, we first show that dipole-moment conservation alone is
not sufficient to yield spatial localization, and that while any finite-range dipole-conserving
system with a finite local Hilbert space dimension is exponentially fragmented, localization
only occurs together with strong fragmentation. Then in Chapter 3, we introduce the sta-
tistically localized integrals of motion (SLIOM). We use them to prove several properties
of the system, which include observable fluctuations on eigenstates, finite boundary mag-
netization at infinite times and string-order at finite energy density, among other results.
In particular, we use them to completely label the fragmented structure of the strongly
fragmented model discussed in Chapter 2.

Part II, which contains Chapter 4, deals with the experimental relevance of these results
in actual physical scenarios. We start by introducing the tilted one-dimensional Fermi-
Hubbard model in the strong tilt regime as a suitable platform to realize dipole-conserving
and other kinetically constrained models. We derive several effective Hamiltonians, includ-
ing a dipole-conserving one, and study their dynamics when preparing specific initial states
that can be experimentally prepared. We then use this understanding to develop a per-
turbative explanation of the localized behavior that is observed, and which connects to
the physics of Stark many-body localization.

In Part III, we extend the notions of dipole and subsystem symmetries to more gen-
eral spatially-modulated ones, interpreting their spatial modulations as solutions of linear
recurrence relations. We then study their effect on the late-time dynamics, providing a
general analytical prediction for the decay of certain correlation functions, which we con-
firm using a stochastic block cellular automaton evolution. We first study one-dimensional
systems in Chapter 5, and later on extend our results to higher dimensions in Chapter 6.

Finally in Chapter 7, we summarize the main results of this thesis, highlighting open
questions and unsettled debates, as well as pointing towards interesting research direc-
tions.






1.

Dynamics of closed quantum many-body
systems

There is no line of argument proceeding from the laws of
microscopic mechanics to macroscopic phenomena that is
generally regarded by physicists as convincing in all
respects.

Edwin Thompson Jaynes from Information theory and
statistical mechanics [78].

In this chapter we focus on the dynamics of closed quantum systems — those that
are isolated from their environment to a high degree — and the emergence of thermal
behavior. Providing a complete review of the current knowledge (which includes extensive
literature on many related topics, unsettled discussions and developments in the field) is
certainly a daunting task. Hence, we focus only on those concepts directly related to the
ideas that are discussed in this thesis, and refer the reader to the excellent reviews that
already exist for a broader and more detailed presentation. Apart from specific references
that will be provided along the way, I found particularly useful the following reviews, as
an introduction to the field of quantum thermalization:

(i)

(iii)

The review by Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov and Marcos Rigol [21]
is a good starting point. It starts discussing “classical’ thermalization, reviewing the
ergodic hypothesis, typicality arguments and classical chaos; and states the main ob-
stacles that one already encounters there and the main differences when investigating
quantum systems. It also briefly motivates the eigenstate thermalization hypothesis
(ETH) using random matrix theory (RMT) and von Neumann’s quantum ergodic
theorem [24], and states the main existing conjectures in the realm of quantum ther-
malization. Moreover, it collects an extensive survey of numerical results which helps
to understand the key concepts but also show our current limitations.

Ref. [79] by the authors Takashi Mori, Tatsuhiko N. Ikeda, Eriko Kaminishi and
Masahito Ueda, is also a detailed review. Its historical introduction dating back to
Boltzmann and his H-theorem to current experimental advances in isolated quan-
tum systems, complements the former review. It provides a more theoretical analysis
which gives additional insights spelling out certain assumptions and details. It dis-
tinguishes between microscopic (sometimes called subspace) and macroscopic ther-
malization, reviewing von Neumann’s ergodic theorem on the way and introducing
the concepts of (canonical) typicality and effective dimension when discussing equili-
bration. Moreover, it briefly discusses existing approaches to estimate equilibration
time scales as well as the quantum recurrence theorem, and it also covers in detail
the concept of prethermalization.

The review by Christian Gogolin and Jens Eisert [22] focuses on mathematical rig-
orous results including: equilibration time scales (providing an extended discussion
which partially covers that in Ref. [79]), a brief discussion of the role of Lieb-Robinson
bounds and a quantum maximum entropy principle which relates to the classical for-
mulation by Jaynes [78]. This reference also provides an alternative approach to the
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problem of quantum thermalization, which restricts the family of initial states con-
sidered and is independent of the ETH. This rather long reference was preceded by
Ref. [80] by the same authors together with Mathis Friesdorf. This is a short review
summarizing the main accomplishments and open questions, which gives a general
motivation and overview before reading Ref. [22].

(iv) Moreover, I was also really fortunate to attend the 2019 Les Houches summer school
on “Dynamics and disorder in quantum many body systems far from equilibrium”,
whose lectures I used to write this introduction.

We remark that we do not attempt to provide a rigorous presentation of the results,
but rather a physical intuition of the physics at hand, explicitly stating which questions
remain to be answered.

1.1. Thermalization in closed quantum systems

In particular, our concern are isolated quantum many-body systems initially prepared in
a highly-excited state. Isolated means that our system does not interact with its envi-
ronment, as if it was placed in a vacuum chamber and isolated from all possible forms of
background radiation. Hence “probability is conserved”. It is also many-body, meaning
that the system is formed by a large number N of interacting degrees of freedom, whose
state is described by the many-body pure state [¢)g). These could be of fermionic or bosonic
nature, or (artificial) spin degrees of freedom where the local Hilbert space is isomorphic
to C25*! with S either a half- or an integer. Moreover, although not strictly necessary,
we assume these particles lie on the nodes of a lattice (of volume V') in one or higher
spatial dimensions. Such models are motivated by experimental setups and extremely
amenable for theoretical studies. Being quantum (and isolated), its evolution is governed
by a time-independent Hamiltonian H via the Schrédinger equation ih%]zﬁ(t)) = HJy(1)),

namely [¢(t)) = e /M) 1 (in the following we set & = 1). In this section we want
to understand under which circumstances a (generic) quantum system can thermalize,
that is: “relax to states in which the values of macroscopic quantities are stationary,
universal with respect widely different initial conditions, and predictable using statistical
mechanics” [31].

At first glance, this is clearly at odds with the unitary dynamics and hence with the
time-reversibiliy of the dynamics (see discussions in the previously mentioned reviews for a
discussion about this topic, which dates back to the foundations of statistical mechanics).
Let us assume H has a discrete spectrum H|E,) = E,|E,) with the eigenevalue E,
corresponding to the eigenstate |E),). Then, the time-evolved state

[W(t) = cae T E,) (1.1)

n

is completely specified by the dynamical phases e =" and the overlaps ¢, = (n|¢y), whose

distribution is preserved under time evolution. Notice that as |1)), the time-evolving state
also remains a pure state at all times. Hence, the global state of the system [ (¢))(1(¢)]
(with a finite energy density (1(t)|H|1(t))/V) will never agree with an equilibrium thermal
density matrix defined as

pen(Byphy ) = Z(/B;)GXP (—5(ﬁ—zukék+--~)> ) (1.2)
Sy k

! Assuming the fact that the many-body wave function is pure is a theoretical idealization, since no
experiments nowadays can prepare a state with full fidelity. Hence, in general the system will be in a
mixed state, evolving under the von Neumann’s equation ihd:p = [H, p].
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with 8 = 1/(kgT) the inverse temperature and Z(5, u,...), an ensemble partition func-
tion. This thermal state includes all extensive conserved quantities O meaning those
which can be written as an extensive sum of local terms: Qy = > jev 4j- These include
the total energy and particle number. However, it does not include the (exponentially
many in N) non-local conserved quantities given by projections on energy eigenstates
|Eyn)(Ey|. This condition ensures the equivalence among different ensembles (in the ter-
modynamic limit), since the relative fluctuations in Q). are sub-extensive, that is scaling
as NV, with v < 1. Therefore, unlike |tg), pyn is completely specified by a finite number
of intensive parameters corresponding to the inverse temperature 5 and other possible
Lagrange multipliers pu.

However, quantum thermalization rather refers to the “success of the system acting as
its own bath, that is, as a bath for its subsystems, bringing them to a thermal state” [81]
effectively forgetting about the initial state. The key role of this bath is to become max-
imally entangled to the subsystem, with which it can then interchange some conserved
quantities. Given a global Hilbert space H, quantum thermalization deals with the long-
time behavior of observables on subsystems H 4, which only involve a subextensive number
of degrees of freedom, i.e., dim(#H4)/dim(He) — 0 where A€ is its orthogonal comple-
ment. These for example, include spatially local subsystems with subextensive volume
Vy, ie., V4/V — 0 in the thermodynamic limit, but also observables that are local
in some other basis, like e.g., momenta distributions; or correlations among two spa-
tially distant locations; or simply extensive conserved quantities which involve the linear
combinations of spatially localized observables. In the literature, such observables are
sometimes dubbed few-body. Hence, when restricting to few-body observables, the expec-
tation value (¢(£)|O)1h(t)) = tr[pa(t)O] can be evaluated on the reduced density matrix
pa(t) =trac[|t(t))(1(t)]] on region A, which generically will no longer be a pure state.

A system is said to have thermalized if for all such subsystems A it holds that

lim lim tr[pa(t)0] = tr[pm (B, ...)0] = (O, (1.3)

t—o0 V—o00

for all observables O with support on A on any compatible ensemble. We highlight that
the order of limits is important, as thermalization can only be sharply defined in the
thermodynamic limit. As it will become clear later on, for a finite system there will
always be finite-size effects and hence the system will not be close to a thermal density
matrix. Here the intensive parameters associated to the conserved quantities are fixed by
the initial state [1g) via

(ol Hltwo ) = trpm (B, ) H] fixes 3,

A ) (1.4)

(ol Qulvro ) = trlpun(B, ) Qi) fixes pug V.
This definition of thermalization implies that the system was indeed successful acting
as its own bath, spreading the information about [i) (whose conditions need to be yet
specified) and “hiding” it in long-range correlations that are unreachable via the few-body
observables. In fact, everything we need in order to predict the long-time value of local
observables is a finite number of intensive parameters, instead of the exponentially many
complex coefficients ¢,! Notice that defining thermalization via Eq. (1.3) is saying that
we demand p4(t) to converge to the thermal density matrix

lim lim pa(t) — trac[pn(B,...)] (1.5)

t—o0 V—oo

in the weak-sense, hence capturing many different physical scenarios which assume nothing
about the strength of interactions among degrees of freedom in A and A€. In particular,
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decomposing H = Ha+H e+ H A|Ae, we are not assuming that H AAe 1s in some sense small
when compared to H4, Hae, which would imply that trac[pe,(8)] ~ exp(—BHA)/Z(8).
Nevertheless, we still need to understand whether this definition makes physical sense and
discuss the difficulties that arise.

Let us consider the time evolution of one of these few-body observables O

O(t) = (v(IOf(1)) = Zc eme BB, .

= Z|cn| Onn + Z c’ cme i(En—Em)t Oy, (1.6)
n,m#n
—Oose(t)

where Opm = (n|O|m). Notice that if O is a conserved quantity, i.c., [0, H] = 0, then
Oosc(t) = 0. Its time-average value is given by

OET@;O;/ dto(t Z|cn| Onn; (1.7)
assuming the generic situation of no (extensive) degeneracies of the many-body spectrum,
i.e., that E, = E,, only when n = m (more comments about this later on). Equivalently,
the saturation value O can be understood as the expectation value of O evaluated on the
time-average density matrix ppg = Y., |cn|?|En)(Ey| which is known as diagonal ensemble
density matrix.

We say that an observable O has equilibrated if after some finite relaxation time 75, the
instantaneous value O(t) coincides with the time-average value O for almost all times. If
in addition the system thermalizes, then by Eq. (1.3), the stationary value agrees with
the thermal prediction O = (O)y,. Comparing this with Eqs. (1.6) and (1.7), some clear
difficulties arise: (i) Thermalization requires that temporal fluctuations around O are
small and in particular, suppressed in system size; (ii) Eq. (1.6) suggests that the system
can only relax after all dynamical phases ‘! have dephased, i.e., the possibly fine-
tuned configuration of phases in the initial state |¢)g) becomes completely erased. Naively,
this would occur at the Heisenberg time 7y ~ 27wh/d where § is the minimum energy
difference 6 = min,, ,, |Ey, — Ej,| between the involved energy eigenvalues. However, since
the dimension of the Hilbert space scales exponentially with N, and the width of the
spectrum of H only linearly, this implies that § ~ e~>N and hence 7p5 ~ etV
Nevertheless, this predicts an extremely long time for the system to relax, which matches
neither with experimental nor numerical observations. (iii) We need to explain how O =
(O)4n can hold even though the conserved probabilities |¢, |? are fixed by a particular initial
state. Finally, we notice that genuine equilibration is impossible in finite systems due to
the (quantum) recurrence theorem — the fact that for sufficiently long-times the system
will end up being extremely close to the initial condition |1 (t)) ~ |¢)o) —that holds for our
isolated quantum system 2. However, such recurrence times scale as a double exponential
in N3, ie, ~ eeconStXN, which is an extraordinarily long time which can quickly (in N)
surpass the age of the universe.

1.1.1. The eigenstate thermalization hypothesis

So far we have described what thermalization means, but we did not discuss any mech-
anism that could possibly resolve our previous objections. First hints were provided in

2In fact, Poincare recurrence theorem, the classical analogue, already appeared as an objection to the
early works by Boltzmann about the time-reversibility of the fundamental equations.

3In fact, it scales with the effective dimension of the initial state |o). However, we are preparing
a “physical” initial state which has overlap with exponentially many energy eigenstates. See details in
Ref. [79].
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1985 by the numerical work of Jensen and Shankar [82] which already highlighted the
important roles of the initial state, the observable and the Hamiltonian, and in 1991 by
J.M. Deutsch [29], which used random matrix theory to introduce a tractable model to
prove the emergence of microcanonical averages. Later on in 1994 M. Srednicki [30], as-
suming Berry’s conjecture [83] — saying that energy eigenfunctions behave as if they were
Gaussian random variables— proved for a gas of hardcore particles, that one would re-
cover thermal (Maxwell, Dirac-Fermi and Bose-Einstein) distributions from single energy
eigenstates and hence for certain families of initial states with sufficiently small energy
fluctuations. Finally, in 1998 he also conjectured [84] an ansatz for the matrix elements
of an observable O,,,, = (n|O|m) evaluated on the energy eigenstates of a generic quan-
tum many-body Hamiltonian. This ansatz received the name of eigenstate thermalization
hypothesis (ETH) and takes the form

Onm = O(E)bpm +e 3 BV2f5(E, w) R, (1.8)
Diagonal ETH Off-diagonal ETH

where E = (E, + E;,)/2, w = E, — En, {Rum} are random variables with zero mean
and unit variance, and S(E) > 0 is the thermodynamic entropy at energy F, which is
an extensive quantity (S(E) ~ V). Notice that e3(¥) is proportional to the density of
states: e(F) oc 3> §(E — E,) at energy E. Importantly, O(E) and fo(F,w) are smooth
functions of their arguments, and often O(E) is directly assumed to coincide with the
expectation value on the microcanonical ensemble on an energy window centered at F
(unlike in the original Ref. [84] where such an assumption was not taken). Additional
properties of the function fo(E,w) can be found in Section 4.3 of Ref. [21]. Finally, we
notice that the ETH ansatz is preserved under sum and multiplication, e.g., if it holds
for O it also holds for (O)" [84]. Let us now see how this ansatz can resolve some of the
difficulties we encountered in the previous section.

e Diagonal-ETH. The diagonal contribution implies that quantum thermalization
takes place already at the level of energy eigenstates with O(E,) agreeing with its
thermal value. This already suggests the different nature of quantum and classical
thermalization, the latter being understood to rely on dynamical chaos [85]. This
contribution helps to explain the agreement between time-average and thermal values
discussed in difficulty (iii) of the previous section. Our aim is to show the equivalence
between the diagonal ppg and a thermal py, ensemble (in particular we could consider
the microcanonical one). The latter, is defined as the equal probability over all energy
eigenvalues within a small energy window A: pyc = ZEne[ _a pyd) |En)(Ey|. The

former is fixed by the probabilities |c,|? specifying the initial state. From here, it is
clear that the only way such equivalence can hold is by restricting the possible family
of initial states and in particular the distribution |c,|?. Let us assume that [1)p) has
a small energy uncertainty (AE)? =" |c,|?(E, — E)? around the average energy
E =3 |cu|?E,. In particular, we need (AE)?|0”(E)/O(E)| < 1, where O"(E) is
the second derivate of O(E) with respect its argument. From here one finds

0= Y leaPO(EL) = O(E) + L A°0"(B) (1.9)

Using again the ETH in the expression for (O);, in some thermal ensemble leads to
the agreement between the time-average value O and the thermal value (O),

0 = (O)in +0(A%) + 0 <;]> (1.10)
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The ability to satisfy (AE)?|0”(E)/O(E)| < 1 can be understood as a definition
of what we mean by a physical state [1)p). Given an extensive quantity H = > il

with each ﬁj having support on a finite number of lattice sites around site j, Ref. [31]
showed (see Supplementary Material) that it is sufficient to prove that AE/N — 0
as N — oo to show the equivalence between diagonal and microcanonical ensembles
(similarly to classical statistical mechanics). This is the case in the absence of long-
range correlations in [¢g) 4, such that

AByy = | [<¢0|Bj1i1j2|¢0> - <¢O|i1j1|¢0> <¢O|ﬁj2|¢0>} ~ N (1.11)

J1.J2

with v < 1. This implies that |1g) has only subextensive fluctuations of the energy
E. Tt is common to choose |¢g) to be a simple product state, or more generally
the ground state of a gapped Hamiltonian Hy different from the one governing the
dynamics, which has exponentially decaying correlations [86]. On the other hand,
Eq. (1.11) will not be satisfied for (macroscopic) cat states, which combined two
configurations corresponding to different energy densities and hence the fluctuations
won’t be small. See Ref. [87] for a discussion of this topic.

Finally, using that O(F) is a smooth function of E, together with the fact that
the typical energy difference between consecutive energy levels inversely scales with
the density of states at energy E (~ e~%"'*N) one can show that the eigenstate-
to-eigenstate fluctuations of O, evaluated on two close-in-energy eigenstates, are
exponentially suppressed in N: O — Opn = O'(Ey,) - e "N In fact, looking
at the distribution of O, as a function of E,, provides a standard way to diagnose
whether a system satisfies the ETH. If so, one expects that O,,,, becomes a smooth
function of F,, with fluctuations exponentially decreasing with increasing system size.
Nevertheless, it is important to highlight that this is the case when looking at the
distribution of O, on energy eigenstates sharing all other quantum numbers (at least
same density in the thermodynamic limit) which are associated to extensive global
conserved quantities {Qk} Otherwise, Oy, is not only a function of the energy but
also of the Lagrange multipliers Ay, (or equivalently the quantum numbers) associated
to them, and hence, one could find two eigenstates which being close in energy,
correspond to distant values of A\, leading to discontinuities in O(E, A;). It is always
assumed that these conserved quantities have to be extensive and local. Recall that in
general, any system has exponentially many conserved quantities |E,,)(E,|. However
fixing all of them will make the statement of the ETH completely trivial. In Chapters
2 and 3 we will explicitly address the question of which conserved quantities should
be resolved when checking the ETH in a quantum system. Finally, we notice that
quite generally and without invoking the ETH, one can still show that fluctuations of
intensive observables will decay polynomially with system size (see Supplementary
Material of Ref. [88]).

e Off-diagonal-ETH. We can also explain objections (i) and (ii) noticing that the off-
diagonal contributions O, in Eq. (1.8), are proportional to e=9(F)/2 ~, g=constxN,
First, one can argue that Ousc(t) ~ e~5(F)/2 [31] which could explain the finite equi-
libration times usually observed in experiments, instead of the long time scales we
naively predicted. However, for the small system sizes that can be numerically sim-
ulated Ogsc(t) will still show strong fluctuations. Hence it is important to perform

4This roughly means that <1/;0|fzjlfzj2|1/;o> has only non-vanishing contributions when j1 =~ j2, i.e.,
<"/’0|hjl hj2|'¢)0> X 0jy,j2-
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a proper finite-size scaling of the results. On the other hand, Ref. [89] has proven
equilibration for generic initial states and Hamiltonians without requiring this contri-
bution. There, the authors showed that it is sufficient to consider an initial state that
has overlap over sufficiently many energy eigenstates, and not necessarily satisfying
AE}y, /N — 0.

Finally, one can show that the time-fluctuations around the time average value are
also exponentially suppressed with the number of degrees of freedom

T—oo T

I —
i 7 [ 40002 = Y [ len 10w ~ Ol N), (L12)
0 n,m#n
which ensures that once the system has equilibrated, it will acquire that value for

almost all times. Nevertheless, quantum fluctuations of the observable O can be
shown to decay only polynomially in NV

T
lim 1/ dt (OO = 02| (1)) = (0%) = O° ~ O <]1V> . (1.13)
0

Therefore, the eigenstate thermalization hypothesis, provides a sufficient condition for
thermalization, which is supported by a large body of numerical evidence (see review [21]).
Particularly relevant was Ref. [31], which performed a very detailed numerical study of
quantum thermalization, bringing up the ETH as a correct ansatz. Currently, there is no
rigorous understanding of which observables and systems satisfy ETH or which do not °,
although some rigorous results exist [29, 30]. As we previously discussed, the expectation
is that it applies to those which only involve a small number of degrees of freedom. A
more detail discussion about this question can be found in Ref. [91]. In particular, the
authors argue that the ETH can also hold for observables with support on up to a half of
the system size.

Important remarks. The ETH is expected to be satisfied by eigenstates in the bulk of
the spectrum, i.e., excluding its edges [33]. With this restriction in mind, a generic system
is believed to satisfy the strong version of the ETH (strong-ETH), which includes all
eigenstates in the bulk. Alternatively, if certain outlying non-thermal — meaning not
fulfilling ETH— eigenstates exist and as long as their ratio (with respect the full Hilbert
space dimension) is vanishingly small at any given energy, the system satisfies the weak
formulation of the ETH (known as weak-ETH) [42, 88, 92]. Equivalently, one says that
the system weakly breaks ETH if almost all eigenstates of the system are thermal. In this
situation, we can always find initial conditions which have narrow energy distributions
but nevertheless fail to thermalize. Examples of this case will be discussed later in this
thesis. It is often the case that a system satisfying the ETH is called ergodic, hence
referring to systems being either strongly- or weakly-ergodic respectively. In this thesis,
we will find examples of both. In addition, while ETH provides a sufficient condition for
thermalization, it is often used as a synonym of the system being thermal. In fact, a recent
work has argued that in fact ETH is not only sufficient but also a necessary condition [93].
As it might become apparent, many questions still remain unanswered.

1.1.2. Random matrix theory

Most of the motivation behind the ETH comes from random matrix theory (RMT) [94],
which allows to make general statements about the eigenvalues and eigenvectors of Her-
mitian random matrices (see an introduction to the topic in the review [21], or a more in

5In fact, there is a recent work showing that whether a given system thermalizes or not is undecid-
able [90].

10



1.1. Thermalization in closed quantum systems

detail discussion in Ref. [94]). When addressing the daunting task of understanding the
spectra of complex atomic nuclei, Eugene Wigner came up with the insight of rather focus-
ing on its statistical properties. He realized that if one looks into a small energy window
where the density of states is constant, then the Hamiltonian in a generic non fine-tuned
basis (in particular different to its eigenbasis), will pretty much look like as a random ma-
trix, subjected to the symmetries of interest. From here one can deduce the distribution
of energy separations, i.e., P(s = Fp+1 — Ey,) with E,1 > E,, known as Wigner-Dyson
distribution or Wigner Surmise 5. These take the general form Ps(s) = Ags? e~ 855" with
B =1 for systems with time-reversal symmetry (and after resolving other unitary symme-
tries like e.g., particle number or translations). In this case matrices are drawn from the
Gaussian Orthogonal Ensemble (GOE). These distributions exhibit a generic level repul-
sion, namely vanishing probability when s — 0. Extending these ideas to other quantum
systems, the authors of Ref. [95] conjectured that the level statistics of quantum systems
with a classical chaotic analog are described by RMT, hence providing yet another poten-
tial insight into the thermalization of quantum many-body systems. See Ref. [96] for an
interesting discussion about chaos and semiclassical limits.

It turns out that the ETH reduces to the RMT prediction when restricted to a very
narrow energy window [21]. For a random Hamiltonian ( e.g., drawn from the Gaussian
orthogonal ensemble) with eigenstates {|E),)} spanning a Hilbert space of dimension D,
the matrix elements of any operator O are given by

1
VD
up to 1/D corrections, where R, is a random variable with zero mean and finite variance,
and O = tr(O)/D is the infinite-temperature equilibrium value of O. From this point of
view, the ETH can be understood as saying that eigenstates of thermal Hamiltonians
basically behave as random states. Moreover, this connection suggests that the level
statistics of systems satisfying the ETH should follow the Wigner-Dyson distributions
Pg(s) when considering sufficiently small energy windows. In fact, this is the case for
generic systems and it has become a standard numerical approach to study the level
spacing distribution, and referred to the system as chaotic, if it is of the Wigner-Dyson
type. If so, one then expects the ETH to be satisfied, at least in the weak sense. Hence,
it is also common to find chaotic as a synonym of ergodic, and also as a synonym of
non-integrable as we will discuss in a later section.

Onm =~ O, + —=Rpm, (1.14)

1.1.3. Emerging classical hydrodynamics

The problem we are concerned is a complex one because of two reasons: (1) We are
dealing with systems that involved many interacting degrees of freedom, which leads to an
exponential growth of the Hilbert space with system size; and (2) we want to understand
the emergence (or absence) of thermalization, which potentially requires tracking those
exponentially many parameters for long times. These two difficulties strongly limit the
numerical methods we can use [97] and makes difficult to apply analytical techniques.
Nevertheless, there exist certain situations for which a universal answer can be predicted.
That is the case of systems with continuous symmetries [98-102]. As they will play
a crucial role in this thesis, let me recall before continuing that for every continuous
symmetry — that is, a transformation U = exp(i@@) of the system that acts at all
times, — there exists an associated conserved quantity 0 usually written as a sum of
local densities, that is independent of time and that in fact, generates the symmetry

5The former refers to the exact result, which lacking a closed analytic form can be to a good degree
approximated by the latter.
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transformation’. The symmetry (and hence the conserved quantity) is called global, if

it acts on the whole system. For physical systems, these generally include energy and
particle number. However, in this thesis we will extend such conservation laws to less
conventional ones.

Let us now consider a thermalizing system which only conserves the total particle num-
ber, and prepare a finite-energy density initial state with a local excess of this quantity
somewhere in the system. At short times — at reach using several numerical and analyti-
cal techniques— interactions among the particles quickly entangle the degrees of freedom
on local sub-regions, maximizing the local entropy and the subsystem reduced density
matrix becoming thermal. At this time, the system has reached local equilibrium with
the chemical potential, or equivalently the particle density, slowly varying in space. In
fact, in the absence of conserved quantities, one expects this to decay exponentially in
time: Such a finite-energy initial configuration has a large number of available physical
processes, usually called channels, into which decay [98]. However, particle number is con-
served, and this excess cannot simply disappear locally, but has to spread over the system.
This is governed by the continuity equation Oyn(x,t) = —Vgj(x,t), where n(x,t),j(x,t)
are coarse-grained expectation values of the particle density and current operators. Since
at equilibrium the density distribution is homogeneous, a gradient of density creates a
current flow § = —f(Vn,Vn?,...) which can be expanded in powers of density gradients
allowed by the symmetries of the system. Assuming that n(z,t) only varies at long length
scales, we find Fick’s law 7 o« —Vn and hence charge is diffusively transported through-
out the system. Thus, a classical hydrodynamic description can capture the relaxation
of an isolated quantum many body system to the global equilibrium state with quantum
properties merely entering the effective diffusion constant. Alternatively, one can probe
such slow modes by studying the evolution of density-density correlators (f(x,t)n(0,1))eq
evaluated on a thermal equilibrium state (see e.g., Ref. [98]). These relax according to
same diffusion equation as do induced non-equilibrium fluctuations. In the presence of
additional conserved quantities, one will generically find a set of coupled differential equa-
tions. E.g., a gradient of density can cause an energy flow or viceversa. In any case,
the resulting hydrodynamic equation defines a “scaling fixed point” [99] solution relative
to which one should investigate the relevance of other contributions that are allowed by
symmetry. If all those are indeed irrelevant, the resulting equation contains the leading
order contributions describing how the system relaxes. Moreover, while we have discussed
diffusive transport, other universal hydrodynamic classes exist ranging from sub- to super-
diffusive transport. In fact, understanding and validating this physical picture is an active
area of research with theoretical [99, 103-110] and experimental [111-113] contributions.
Specially relevant for us are the experimental results in Ref. [113] when discussing the
late-time dynamics of systems with dipole conservation in Chapter 5. An introduction to
classical hydrodynamics can be found in Refs. [100, 101, 114].

1.2. Dynamical probes of interest

Apart from tracking the evolution of local observables and their expectation value on en-
ergy eigenstates as probes of thermalization, we will also consider the evolution of unequal-
time correlation functions and the growth and saturation of the half-chain entanglement
entropy. Moreover, out-of-time-ordered correlators, so-called OTOCs, have also been used
as signatures of chaos in quantum systems [115].

"This was the content of Noether’s theorem linking symmetries and conservation laws [49)].
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1.2. Dynamical probes of interest

1.2.1. Thermal correlations and Mazur’s bound

In the following chapters we will study how local-perturbations propagate throughout
the system via unequal-time correlation functions (60;(¢)60;(0))n where we have defined
00; = O; — (Oj)4n for some local observable O; evaluated for a thermal density matrix.

Here i, are two different sites of the lattice and O;(t) = €™ O;e~* is Heisenberg’s
time evolution. Such correlations probe the off-diagonal contribution of the ETH, where
fluctuation-dissipation relations at the level of a single eigenstate can be derived (see
Section 6.8 of Ref. [21]). In particular, we will focus on infinite-temperature correlations

() = %tr[-} where D is the dimension of the Hilbert space on which the trace is evaluated.

In general, we can use Mazur’s bound [116] (see also Refs. [117]) to lower bound its
long-time average. While for ergodic systems this bound vanishes in the thermodynamic
limit, there exist certain circumstances, as the ones we will find in Chapter 2 of this thesis,
where this bound (and its scale with system size) becomes finite. Given a set of conserved
quantities {Qa}, Magzur’s bound Méj is given by

T
lim /0 4t(50;(1)50;(0)) = 3005, Qu) (K™ )as(Qs.60;) = My, (1.15)
o,

where K is the the matrix with elements K,z = <Qa, Q5> In particular, this formula
simplifies whenever {Q,} form an orthogonal set with respect to the inner product (-) such
that K, p = <Qa, Qa>5a’5. This bound can be proven quite generically for both classical
and quantum systems as long as the infinite-time average value of (Oj(t)Oj (0)) is non-
negative [116]. Indeed, this is the case for the unitary evolution of closed quantum systems
we investigate in Chapters 2 and 3, as well as for the classical dynamics we consider in

Chapters 5 and 6. The proof of the latter is given in Appendix D.

1.2.2. Bipartite entanglement entropy

Complementary information to that provided by two-point correlation functions can be
obtained from tracking the evolution of the bipartite entanglement entropy when starting
from a low-entangled initial state |1p). Let us consider a 1D system with L sites and let’s
split it into a region A and its complement A°¢. Then, the bipartite entanglement entropy
is given by the von Neumann entropy of any of its reduced density matrices S(pa) =
—tr(palog(pa)) = S(pac), which is a measured of quantum entanglement between the
two subsystems. As we already explained, a closed quantum system will thermalize, if it
is efficient in maximally entangling its degrees of freedom. In particular, most of the time
we will be interested in the half-chain entanglement entropy which we write S, /5(t). Let’s
moreover assume the initial state has energy F (with subextensive fluctuations) and that
the system eventually thermalizes with inverse temperature 5. Then, pa(t) — trac[pin,
and hence we find that S(pa)(t) — seq()Va converges to the (extensive) thermal entropy
at inverse temperature 8. The scaling of the entanglement entropy with the volume of the
region is known as volume law scaling, in comparison to the area law of ground states of
gapped Hamiltonians [86]. If in particular we choose an initial state in the middle of the
spectrum (i.e., § = 0), canonical typicality (introduced in Section 1.4.1) will tell us that
the late-time-evolved state behaves as a random state. Don Page [118] showed that the
average entanglement entropy of a random state is given by

dim(H 4)

SPage ~ log(dlm(HA)) — m,

(1.16)
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Chapter 1. Dynamics of closed quantum many-body systems

with 1 < dim(#H4) < dim(#H4c). In particular, for a half partition, i.e., dim(H4) = d%/?
for a system with local Hilbert space dimension d, this becomes

SPoe glog(d) _ % (1.17)
Notice the finite deviation from the largest possible bipartite entanglement entropy. Re-
cently, this result has been extended to other families of random states. Ref. [119] showed
that a larger deviation than the one computed by Page can appear as a consequence of a
constrained Hilbert space, of special interest for us. This could be interpreted as saying
that a subsystem has more information regarding the global state than in an unconstrained
system. On the other hand, Ref. [120] considered sparse random states, which while not
assuming a specific constrained, have non-zero elements on a fractal size of the full Hilbert
space, i.e., (dim(H))® for 0 < o < 1. When « = 1 these correspond to the random states
considered by Page, but when o < 1 these are “non-ergodic” states which have support
only on a vanishing fraction of the Hilbert space. The authors showed that even when
a < 1, their bipartite entanglement entropy can still be given by Eq. (1.17). Consequently,
the entanglement entropy takes a thermal value even though the wave function is not
spread over the whole Hilbert space. Hence, using this quantity to probe thermalization
could be misleading and complementary analysis is required.

The approach to this extensive scaling of S(pa)(t) from a low-entangled initial state
is generally believed to be linear in time S(pa)(t) ~ t for non-integrable systems [121],
even while energy is diffusively transported. While this expectation is mostly based on
numerical evidence, a more rigorous proof of this fact has been shown for integrable
systems [122-125]. Here, the physical interpretation is that entangled quasi-particles pairs
forming the highly excited initial state, ballistically propagate throughout the system
entangling further and further spatial regions.

Finally, since diagonal-ETH implies that energy eigenstates are thermal, their bipartite
entanglement entropy coincides with the equilibrium entropy, i.e., they have volume law
entanglement. Specifically, Sy, /2(|En)) = st (T - .. )%, where s (8, ... ) is the thermody-
namic entropy density at inverse temperature § fixed by the eigenvalue E,,. In particular,
for an infinite temperature state, Sy, /o(|Ey)) is given by the average entropy of a random
pure state [118]. This provides an additional diagnostic of the ETH that we use in this
thesis.

1.3. Many body localization and weak-ergodicity breaking

While the ETH and quantum thermalization appear to hold for a large class of quantum
systems, not all systems thermalize. One class of systems that avoid thermalization are
integrable systems (see Ref. [126] for a discussion of the notion of quantum integrability),
which possess infinitely many extensive conserved quantities. Nonetheless, they have been
argued to thermalize to a Generalized Gibbs ensemble that includes extensively many
(but not all) (quasi-)local conserved quantities [127]. However, these are fine-tuned (ex-
actly solvable) models [128] which thermalize, as defined above, in the presence of small
perturbations which break integrability.

The other class of systems that avoid thermalization and do not fulfill the ETH (in
any useful formulation) are systems that localize in the presence of sufficiently strong
spatial disorder. The phenomenon of localization in quantum systems was realized by
P.W. Anderson [129] when dealing with the behavior of a non-interacting system in the
presence of a disorder potential. It turns out that in one-dimension —our main focus
on most of the subsequent chapters — energy-eigenstates are exponentially localized at a
particular site of the lattice, and the system does not transport neither energy nor charge.
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1.3. Many body localization and weak-ergodicity breaking

However, it was not clear how robust localization is to the presence of interactions. Many
years later Refs.[34, 130] showed that the localized phase survives to the presence of weak
interactions and the existence of a new type of quantum phase transition. This takes
place when varying the disorder strength or the energy density, separating a thermal
phase, in which all eigenstates obey ETH and the system thermalizes; and the many-body
localized (MBL) phase, where all eigenstates do not obey ETH and the system does not
thermalize. Hence this quantum phase transition takes place even at the level of many-
body eigenstates, with equilibrium quantum thermodynamics breaking down on one of
the sides. Importantly, while there is also no transport of energy and charge, the bipartite
entanglement entropy now grows in the MBL phase, although logarithmically in time for
short-range models [131]. This saturates to a volume law value which does not correspond
to a thermal entropy density at the corresponding temperature. This behavior is usually
taken as a defining property, and will be important in the dicussion of the results in
Chapter 4.

In this thesis, we are particularly interested in the characterization of the MBL phase
in terms of local integrals of motion (lioms [51] or l-bits [50]), that will be confronted
to the statistical localized integrals of motion that we will uncover in Chapter 3. In the
strong disorder regime and for weak tunneling rates, the MBL system can be diagonalized
by the action of a quasi-local — unlike for ergodic systems— unitary which brings the
Hamiltonian to the form

Hvpr =Y hiff + 3 Jyfiti+ Y Syt (1.18)
7

1<j 1<j<k

where the coefficients decay exponentially with the distance (J;; o Joe~li=il/s ), and
the operators {77} are the lioms, whose eigenstates completely specified a single eigenstate
of I:[MBL. Moreover, from this construction one can deduce that a MBL system preserves
an infinitely-long lived memory of the initial state which explicitly shows that indeed the
system avoids thermalization. Refs. [132-134] are reviews that provide a more extended
discussion of the MBL phase as well as the MBL-to-ergodic phase transition. Moreover,
we notice that there is currently an ongoing debate about the MBL phase being a truly
robust phase of matter in the thermodynamic limit [135, 136].

Encouraged by this exception to quantum thermalization, there has been an increasing
interest to understand whether localization can appear in the absence of disorder, as well
as to find scenarios which not being completely localized, do also fail to thermalize for
certain initial states. While different scenarios have been discussed in the literature, here
we focus on quantum many-body scars as these will be related to the systems we study in
Chapter 3. There already exist two available review articles on the topic [137, 138], the
first of which we followed in this brief presentation.

The experimental results for a 1D array of interacting Rydberg atoms presented in
Ref. [43], showed significant differences in the dynamics depending on the choice of the
initial state. While certain initial states relaxed to thermal ensembles, others exhibited
periodic revivals. Such revivals were unexpected given that the system did not have any
conserved quantities other than total energy and it was free of disorder. To understand the
underlying reason explaining such experimental observations it is necessary to first explain
the experimental setup. Each individual Rydberg atom can be in the ground state |o) or in
the so-called Rydberg state ). When subject to a microwave field, each atom undergoes
Rabi oscillations, |o) < |e), freely flipping between the two states. However, when assem-
bled in an array, nearby atoms in the Rydberg state interact via repulsive van der Waals
interactions whose strength strongly depends on the distance between atoms. By tuning
the inter-atom distance, one can achieve the regime of the so-called Rydberg blockade [139]
where Rydberg excitations of neighboring atoms are energetically prohibited. Such kinetic
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Chapter 1. Dynamics of closed quantum many-body systems

constraints can be captured by the idealized “PXP” model, which approximately describes
the experimental findings in the regime of strong Rydberg blockade. This is given by

Hpxp = Zpi—lXiPi—i-la (1.19)

)

where P; = |o){(o|; and X; = |e)(o| + |o)(e|. The analysis of its spectrum provided the
key insight to understand the cause of the revivals. This was rooted to the presence of a
vanishing fraction of non-thermal eigenstates in the highly excited energy spectrum, hence
providing an example of weak ergodicity breaking. In fact, it is worth mentioning that this
Hamiltonian is an instance of the general construction introduced in Ref. [42] for examples
of weak-ergodicity breaking. Such eigenstates were dubbed quantum many-body scars in
analogy to the quantum scars found in the quantization of classical periodic orbits [140].
In Chapter 3 we will find that precisely the same dynamics emerges in a rather different
context. This will explicitly connect the phenomenon of quantum many-body scars to
Hilbert space fragmentation.

Finally, as we address in the concluding Chapter 7, the physics we uncover in Chapter 2
appear to be related to the disorder free localization phenomenon appearing in lattice
gauge theories [38, 39, 141].

1.4. Simulating quantum many-body dynamics

1.4.1. Numerical methods and canonical typicality

Classical numerical simulations of quantum interacting many-body systems are limited to
rather small system sizes when aiming to simulate the system exactly, or to short time
scales when certain approximations, as it is the case for the use of tensor networks, are
performed [97, 142]. The main approach that we use in this thesis is exact diagonalization
(ED). This simply means that we construct the full Hamiltonian matrix representation in
the appropriate Hilbert space. When our goal is to access the whole energy spectrum, as
to e.g., validate the ETH, this requires us to store the whole matrix elements in memory,
which limits the system sizes we can simulate. This depends on the local Hilbert space
dimension. For example, for models with spin—% degrees of freedom one can simulate
system sizes as large as L ~ 16 sites. Alternatively, if we are only interested in probing the
system dynamics, and since the Hamiltonians we are interested are local, i.e., have sparse
matrix representations, we can use efficient Krylov space based numerical methods [143]

to compute e~*H*[s)g) via vector multiplication, reaching L = 28 sites [144]. Both of
these approaches substantially benefit from the use of conserved quantities, that will play
a special role in this thesis. It is relevant to notice that most of the evidence we have
about thermalization of quantum many-body systems and the validity of ETH is based
on numerical results using ED.

As we said, in this thesis we will make use of the rich structure that the conserved
quantities we investigate yield. Then, instead of constructing the full Hilbert space as
a tensor product of local ones, we will directly obtain the matrix representation of H
restricted to a given symmetry subspace. Moreover, we will simulate the evolution of the
two-point correlation functions <50j (t)é@i(0)>eq at infinite temperature. At first glance
this requires to evolve the observable Oj in the Heisenberg picture and then compute
exponentially many overlaps <60j (t)60;(0)) in some given basis. Instead, we will use the
fact that the reduced density matrix of the overwhelming majority of pure states, drawn
according to the uniform measure on the appropriate Hilbert space (which is induced by
the Haar measure [145]), agrees with the canonical thermal matrix. In Chapter 3 we will
call such pure states Haar random states (see Appendix B.2). This result is known as
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1.4. Simulating quantum many-body dynamics

canonical typicality [146, 147], and can also be used to compute other properties of the
system [148, 149]. The main ingredient is that the subsystem of interest is much smaller
than its orthogonal complement. If so, fluctuations among different random states are
exponentially small in the system size. In particular, sampling a random state in the
full Hilbert space approximates the infinite temperature ensemble that we will study in
Chapter 2. For additional details about the numerical implementation see Ref. [149], and
Appendix B.2 for relevant analytic formulae.

We note that typicality arguments date back to Schrodinger and von Neumann when
trying to justify the methods of statistical mechanics (see review [22] for an extended
discussion). From this point of view, quantum equilibration appears as the overwhelming
likelihood that an initial atypical — although physical — state moves towards typical
configurations and almost never comes back.

1.4.2. Experiments with ultracold atoms

An alternative and perhaps more promising approach is to directly simulate these systems
in the lab. The experimental revolution of the recent years has given rise to new platforms
that allow for a great level of tunability of the system parameters, which to a high degree
can be regarded isolated from its environment. This provides a new arena to study the
physics of many body interacting systems, going beyond observing existing materials and
pure academic curiosity. In particular, we focus on ultracold atoms in optical lattices,
where some of the theoretical results we report in Chapters 2 and 3 can be investigated. In
the following we provide a brief description of the main physical principles and techniques
underlying this experimental platform, which is mostly based on review Refs. [8, 150, 151].

Ultracold atoms in optical lattices offer a way to design artificial materials. The crystal
structure and the electronic cloud of the conventional material are now replaced by a
crystal structure made of light and a confined gas of neutral alkali atoms, respectively. The
latter are atoms with a single valence electron and hence with total spin angular momenta
S = 1/2 in its ground state. The former is synthesized via two counter-propagating laser
beams which couple to the induced dipole moment of the atoms shifting their energy
AE o |E(z)? = Vpsin?(kx) (the so-called AC Stark shift), where |£(x)|? is the intensity
of the laser beam and the lattice depth Vj is usually given in units of the so-called recoil
energy F,.. This denotes the change in kinetic energy associated with the emission or
absorption of a photon with momentum k: E, = % Hence, the depth Vf of the
potential and the lattice spacing can be freely tuned, the latter by interfering laser beams
at different relative angles. This gives rise to lattice spacings that are of the order of 10
times larger than in real materials (of the order of the angstrom), and a number of different
techniques can be used to characterize them [152, 153]. This also translates into a much
smaller density of particles n: 10'cm™3 versus 1023cm ™3 in conventional materials. Being
80, one might worry that we are far from being able to probe purely quantum phenomena,
like Bose-Einstein condensation, which requires the average interparticle distance n~1/3
to be of the size of the thermal de-Broglie wavelength n)\f‘iB 2 1. However, exceptional
cooling techniques in combination from an almost perfect isolation via a vacuum chamber,
permit to reach really low temperatures on the order of the nano Kelvin, allowing us to
investigate this quantum regime. The experimental results discussed in Chapter 4 are for
a degenerate Fermi gas of °K atoms, where the relevant energy scale is instead T/Tr ~
0.15 [3, 154], where TF is the Fermi temperature. Finally, interactions between atoms
remarkably simplify at such low temperatures and particle densities, and are extremely
sensitive of the spin state of the valence electrons. This can be used to widely tune
the interaction strength via a Feshbach resonance by tuning an external magnetic field.
In conclusion, we have now a highly tunable and rather isolated system, hosting of the
order of 10% interacting atoms which are confined in a periodic lattice potential. As
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Chapter 1. Dynamics of closed quantum many-body systems

such, we can also apply the same tools as in standard solid systems and obtain a tight-
binding Hamiltonian in terms of localized Wannier functions. Here the strength of the
hopping amplitude is controlled by the lattice depth V. This yields lattice models that
are amenable to numerical and analytical studies. The measurement protocols for the
experimental results presented in Chapter 4 are described in detail in Refs. [3, 4].
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2. Ergodicity breaking arising from Hilbert
space fragmentation in dipole-conserving
Hamiltonians

Ezxperience teaches that we will be led to new discoveries
almost exclusively by means of special mechanical
systems.

Ludwig Boltzmann from Lectures on gas theory [155].

In this chapter, we study the consequences of dipole conservation associated with a
global U(1) charge (i.e., the conservation of total spin S%) in one-dimensional (1D) spin
systems, for which a numerical study is feasible. Apart from fracton systems, such charge
and dipole conserving Hamiltonians also occur naturally in other contexts, for example in
the quantum Hall effect [70, 71, 73, 74, 156] and in systems of charged particles exposed to
a strong electric field [76, 157]. Interestingly, Ref. [158] argued that random local unitary
dynamics with such symmetries fails to thermalize. We find the same non-ergodic behavior
in a minimal Hamiltonian that contains only three-site interactions. We discover that
the source of this non-ergodicity is an extensive fragmentation of the Hilbert space into
exponentially many disconnected sectors in the local z-basis. In particular, based on the
Hilbert space structure, we obtain a lower bound for the long-time auto-correlation, which
remains finite in the thermodynamic limit. This is a novel type of non-ergodic behavior,
arising in a translation invariant system, but nevertheless sharing certain features of MBL,
which we denote by strong fragmentation of the Hilbert space.

However, we find that this strongly non-ergodic behavior disappears once we add longer-
range interactions, such as a four-site term. In this case, the dipole constraint is no longer
sufficient to violate ergodicity, and the infinite temperature autocorrelator decays to zero.
Nevertheless, the model still violates the strong version of ETH and exhibits exponen-
tially many non-thermal eigenstates, disconnected from the bulk of the spectrum, and
co-existing with thermal eigenstates at the same energies. We term this behavior, which
is reminiscent to quantum many-body scars, weak fragmentation and give an analytical
lower bound on the number of product eigenstates for arbitrary finite range of dipole-
conserving interactions. We compare our results to random unitary circuit dynamics, and
find the same behavior: while circuits constructed from three-site gates fail to thermalize,
adding four-site gates is sufficient to delocalize the system and lead to thermalization for
typical initial states. We numerically verify that the invariant subspaces for Hamiltonian
and random circuit dynamics coincide exactly.

This chapter is organized as follows. In Section 2.1 we introduce the Hamiltonians we
study, and describe their relevant symmetries. In Section 2.2 we investigate the minimal
model containing only three-site interactions and show that it fails to thermalize. We
prove that the Hilbert space fragments into exponentially many invariant subspaces, some
of which we construct analytically, and connect these to the finite saturation value of
the auto-correlation function. In Section 2.3 we extend the model by adding four-site
interactions and show that while these are sufficient to make the majority of eigenstates
thermal—leading to ergodic behavior for typical initial states—the system still violates
strong ETH. In Section 2.4 we compare our results to random unitary circuit dynamics
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and find similar behavior. We conclude in Section 2.5 with a summary and discussion of
the results which takes into account recent developments of the field.

2.1. Model and symmetries

We consider two spin-1 Hamiltonians on a chain of length N of the form

Hy = =3 |85 (S700) Stz + e (2.1)

n

and

Hy= =Y |85 SmSmaSig + Hel, (2.2)

n

acting on three and four consecutive sites, respectively. Here S* are raising and lowering
spin operators. Apart from being translation and inversion symmetric, both Hamiltonians
share two additional global symmetries: they conserve a U(1) charge @ and its associated
dipole moment P,:

Q=) _S: and Ppy =) (n—ng)S;, (2.3)

n

with respective eigenvalues ¢ and p defining the symmetry sector H,,, [159]. The definition
of the dipole symmetry P,, depends on the reference position ng, except when @) = 0.
Since [@, P,,] = 0, the local S*-basis, denoted by |+),]0),|—), is a common eigenbasis
of @ and P,,. Unless specified otherwise, we choose open boundary conditions and take
N =2m + 1 odd, labeling sites n = —m,...,0,...,m. For periodic boundary conditions,
the discussion would be similar to that of the position operator on a ring [160], and
one would have to define the dipole moment through the unitary operator exp (ZQW”P)
However, the choice of boundary conditions does not affect the dynamics at finite times
in the thermodynamic limit. We choose the reference site ng to be the center site, ng = 0,
and denote P = P, ,—p. The operator P does not commute with spatial translations and
changes sign under inversion; thus, it is not an internal symmetry [66]. Dipole conservation
is the relevant global symmetry appearing in the description of fracton phases of matter
with U(1) symmetry group [60-66]. Motivated by this, we use the following notations: we
call the states |+) on a given site a fracton with charge ¢ = £1, and a two-site configuration
| + =) (| — +)) a dipole with zero charge and dipole moment p = —1 (+1). Notice that
the dipole moment of a (£)-fracton on a site n is p = £n. Thus, in order to conserve the
total dipole moment, a fracton can only move by emitting dipoles [60, 158].

Moreover, there are symmetries which are specific for Hamiltonians H3 and Hj4 sep-
arately. In particular, the former is invariant under the sublattice parity symmetry
I7 4 = exp (iﬂ' > nodd S’fl), which is fixed by the dipole moment IIZ;; = exp (i7rP) 1 From
this it is clear that the total parity II* = exp (i Y., S7) is obtained as I1* = IIZ  IIZ .,
and is related to the total charge as II* = exp (m@). In general, the terms in Hj
are also invariant under the parity transformations given by II* = exp (ir )., S¥) and
IIY = exp (iw Y, S), which map

St Sy Sy St N Sy St St e (2.4)

for all ny,n9,ns,ng. However, both II* and IIY anticommute with Q or P. Finally,
the unitary C = exp [im Y., (Si, + Si,,1)] anti-commutes with Hs, but commutes with

Lwe have used the fact that for spin-1 a 27-rotation is equal to the identity.
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both @ and P. Consequently, the spectrum of Hj3 is symmetric around zero in every
(g, p)-sector. The same holds true when Hj is considered separately (in this case the
unitary is given by C4 = expim ), Si,), but not for the combined Hamiltonian Hs + Hy.
These anti-commuting symmetries can also be broken by adding terms diagonal in the
S% basis, which would not change any of the physics, in terms of non-ergodicity, we will
describe in the following. There is also at least one additional anti-commuting operator

C= IL, e (SZ"+2+S z"+3) but since CC = II#, they are not independent.

We note in passing that similar charge and dipole-conserving Hamiltonians can be writ-
ten for any spin representation, in any spatial dimension, as well as for fermionic and
bosonic systems. For the latter, the dipole symmetry becomes the center of mass of the
particle number operator and the corresponding Hamiltonian consists of a symmetric re-
distribution of charges with respect to the center sites. A similar fermionic Hamiltonian
appears in the study of fractional quantum Hall on a torus in the Tao-Thouless limit
[70, 71, 73, 74, 156]. In addition, such dipole-conserving chains naturally arise in the
presence of strong electric fields, as we will be discussed in Chapter 4.

2.2. Hamiltonian H;

We start by investigating the three-site Hamiltonian Hs in Eq. (2.1), as a minimal model
that conserves both the total charge @ and the dipole moment P. We detail its unusual
non-ergodic dynamics and identify it as a consequence of extensive fragmentation of the
Hilbert space into invariant subspaces. In Section 2.3 we will add longer-range terms to
this minimal model and describe their effect on the dynamics.

2.2.1. Lack of thermalization

We first investigate the behavior of the auto-correlation function C§(t) = (S§(¢)S§(0)) at
infinite temperature, namely () = mu”. Relying on quantum typicality [148, 161,
162], we compute C§(t) for a random state on the full Hilbert space. For thermalizing and
translational invariant spin-1 systems, C§(t) is expected to decay to 2/(3N) for a chain of
length N, up to potential boundary contributions [163]. In Figure 2.1(a) we show C§(t),
obtained via an iterative Krylov space based algorithm [143], for system sizes N = 13, 15.
Instead of relaxing to the thermal expectation value, the auto-correlation saturates to
a finite value C§(t) —2/(3N) ~ 0.2 at long times. In Appendix A we also analyze the
behavior of the auto-correlation function within the largest charge and dipole sector (given
by (¢,p) = (0,0)) showing the same qualitative behavior. Moreover, the long-time values
appear to be largely independent of NV, indicating truly localized behavior that persists
even in the thermodynamic limit. Figure 2.1(b) shows the spatially resolved correlation
function (S7(¢)S5(0)), which exhibits a peak in the center site at all times.

We complement our analysis on auto-correlations with a different measure of thermal-
ization: the evolution and scaling of the saturation value of the bipartite entanglement
entropy S0 We generate initial states Haar randomly generated on each site, i.e., a
random product state but not necessarily in the local z-basis, and average over several
realizations. For an ergodic system, the long-time state will resemble a global random
state in the entire Hilbert space and thus, the bipartite entanglement entropy is expected
to agree with the Page value, which in our case (maximal bi-partition of a spin-1 chain
with odd lengths) reads [118] Spage = 252 log 3 — . We evaluate the time evolution start-
ing from the aforementioned random product states exactly for the minimal Hamiltonian
Hs. As shown in Fig. 2.2(a), we find that while the entanglement quickly saturates to a
volume law Sy, /5 = s%, the associated entropy density is smaller than the expected Page
value (s < log(3)/2). This is consistent with our results on auto-correlation functions in
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Figure 2.1.: Thermalization and its absence in the auto-correlation function.
Panel (a) shows the auto-correlation function C§(t) = (S§(t)S§(0)) in the
full Hilbert space at infinite temperature for N = 13 (transparent curves)
and N = 15 (opaque curves) spins. For Hamiltonian Hs in Eq. (2.1), C§(t)
saturates to a finite value at long times, closely matching the lower bound in
Eq. (2.5) (dashed line). The auto-correlation function of the combined Hamil-
tonian Hs + Hy decays to zero at long times. Panels (b) and (c) show the
spatially resolved correlator (S7(t)S§(0)) for Hz and H3 + Hy respectively.

Fig. 2.1, signaling non-ergodic behavior. In the following we explain the origin of this
behavior.

2.2.2. Hilbert space fragmentation

In this section, we demonstrate that the constrained dynamics of Hs leads to a fragmenta-
tion of the many-body Hilbert space: Most (g, p) symmetry sectors split into many smaller
invariant subspaces in the local S?-basis, such that the total number of such subspaces
grows exponentially with system size. These disconnected sectors come in a variety of dif-
ferent sizes; they include ‘frozen’ states (product eigenstates of H3) and finite dimensional
subspaces, where the chain splits into spatially disconnected regions. In chapter 3, the
cause of this fragmentation will be explained and a complete labeling of all these invariant
subspaces will be provided. But before that let us get some intuition about their existence.

Frozen states

We begin by constructing a family of exponentially many (in the size of the system) exact
eigenstates of the Hamiltonian, which are all product states in the local z-basis. We
will refer to these as frozen states. What is shocking is not the fact that these many-
body eigenstates exist, but rather that their number scales exponentially with system
size. In fact, any Hamiltonian with an extensive U(1) symmetry, for example generated
by particle number or total magnetization, will at least have two of them corresponding
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Figure 2.2.: Evolution of the bipartite entanglement entropy. Half-chain entangle-
ment entropy (EE) for an initial random product state for different system
sizes. The dashed line signals the Page value [118] numerically computed using
random pure states. Panel (a) shows the behavior of the EE for the minimal
model H3. The entanglement reaches a volume-law saturation value below the
Page value. When the combined Hamiltonian Hs + H, is considered in panel
(b), the EE almost reaches the Page value. (c) Scaling of the time-averaged
saturation value for EE reached at long times.

to the largest and smallest eigenvalues of the associated conserved quantities. For Hj,
the simplest example is the vacuum state |0) = |---0000---), which is annihilated by
all terms in H3, due to (ST)2[0) = 0. We can easily construct other frozen states by
adding blocks of at least two contiguous charges of equal sign on top of the vacuum, e.g.,
0---04++0---0———0---). These are annihilated by all terms, since S;f S, ;| £+) = 0.
We conclude that any configuration where charges always occur in blocks of at least two
consecutive sites are zero energy (mid-spectrum) eigenstates of Hs. It is clear from the
construction that their number is exponentially large in system size.

We can follow Pauling [164, 165] to estimate the total number of frozen states. To do
this, we map the spin chain of length N to a triangular ladder with spins placed on the
vertices as shown in the inset of Fig. 2.3(a). Treating the constraints on each triangle as
independent, and using that there are N — 2 triangles and 19 frozen states per triangle,
we estimate their total number to be 3% x (19/27)N~2 ~ 2.02 x 2.11". In Fig. 2.3(a), we
numerically verify that the estimate is quite close to the actual number of frozen states,
as obtained by exact diagonalization. The numerical results together with an explicit
computation for small system sizes, suggest that this estimate gives a lower bound of the
actual number of frozen states. However, we do not have a proof of this general statement.
Nevertheless, in Section 2.3.2 we provide an analytical lower bound for arbitrary finite-
range dipole-conserving Hamiltonians.

Larger dimensional sectors

Above we saw that blocks of two or more consecutive charges of equal sign are annihilated
by the local terms in H3 that act on them. Let us now consider the empty region (|00 - --0))
between two such frozen blocks and fill it with a random configuration of charges. These
charges can now move around and potentially destroy the blocks on the two sides. However,
we now argue that there are initial configurations where this cannot happen: when the
sign of the rightmost charge within the region matches the charge of the frozen block to
its right, then this block remains inert at all times. The same holds for the frozen block
on the left when its charge is of the same sign as the leftmost charge within the region.
When the charges match on both sides, then both blocks are stable and the charges in
the middle bounce back-and-forth between them, disconnected from the rest of the chain.
This appears as a direct consequence of the general rule: For a region surrounded by
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Figure 2.3.: Fragmentation of the Hilbert space into smaller subspaces. (a) Ex-
ponential scaling of frozen states, which correspond to invariant subspaces of
dimension D = 1, and comparison to the Pauling estimate, (b) example of
higher dimensional sectors, in the form of spatially separated 2-level ‘bubbles’.
(c-d) Time evolved charge density (SZ(t)) for the two initial states indicated
under each figure. (c) The ++ block in the middle cuts the system in half
when (+)-fractons are placed on each side. (d) When they are replaced by
(—)-fractons, the block melts and the two halves become connected.

empty sites, the signs of the left- and rightmost charges are invariant under the dynamics
generated by H3. Notice that this rule is broken by Hy.

The simplest example where we can observe this behavior is as a 2-level system shown in
Fig. 2.3(b), defined by the states |+ 40+ 0+ +) and | +++4 — +++). We can check that
these two states can only evolve to each other under Hs, defining a 2-dimensional invariant
subspace. More generally we can consider states of the form |+ +0---04+0---04+): An
isolated fracton surrounded by two ‘walls’ of positive charge. Acting on this state with Hs,
maps the configuration 00+00 in the middle to 0+ — +0, showing that the (+)-fracton
can move by emitting a dipole +— (or —+) in the opposite direction [60, 158]. The
fracton can then move forward by emitting further dipoles, until it reaches one of the
walls. However, when it eventually hits the wall, we end up with the configuration + + +,
which is annihilated by Hs; the wall therefore remains intact and the fracton bounces back
harmlessly. Consequently, if the fractons on both sides of a ++ block have positive charge,
the chain is cut into two disconnected halves, as shown in Fig. 2.3(c). To destroy the wall,
we would need to flip the charge of the isolated fracton to get a (—)-fracton: the resulting
— + + configuration can then peel off a freely-moving —+ dipole, eventually melting the
walls that surround it as shown in Fig. 2.3(d).

A similar situation occurs for the initial configuration |— —0---0—+0---0++). In this
case the walls on the two sides have opposite charges and a single dipole is placed between
them. For a single dipole surrounded by empty sites, the Hamiltonian Hs acts as a free
hopping term H3 — — )" |n)(n+ 1|+ |n)(n+ 1|, moving the dipole from sites n to n+ 1.
Eventually it reaches one of the surrounding walls, but since the charges in the dipole
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Figure 2.4.: Sector size and weight distributions. (a) Distribution of invariant sub-
spaces of size D and (b) operator weight Wp (see text for its definition) of the
operator S§ in each invariant subspace H; of dimension D in the full Hilbert
space. The vertical dashed lines indicate the averaged sector size of the dis-
tribution, which is exponentially smaller than the largest sector.

are aligned with those of the walls, it always bounces back, effectively defining a single
particle hopping problem on a finite region. If, on the other hand, the initial dipole in the
middle was of the form +— it could again peel off charges from the two walls, eventually
melting them.

The previously stated general rule, together with the fact that blocks with a given charge
are frozen, allow us to construct more general spatially disconnected regions in the chain:
take an arbitrary configuration in some finite interval and surround it with walls that have
the same charge as the one closest to them on the inside. One can then cover the entire
chain with such regions, each of which has its own conserved charge and dipole moment,
giving rise to many invariant subspaces within each global (¢, p) symmetry sector. In the
following we will indistinctly refer to them as fragments, Krylov subspaces or sectors, or
simply as invariant subspaces when the context is clear. After the dipole quantum number
is fixed, translation/inversion symmetry is generically broken (as the dipole moment does
not commute with neither of those symmetry transformations), which allows us to derive
conservation laws within different spatially disconnected regions. In fact, this intuitive idea
would be the key to completely identify and label the fragments in the following chapter.
The resulting eigenstates clearly break translation invariance and have small amounts of
entanglement, limited by the size of the largest connected spatial region.

These constructions highlight the intertwined relation between dipole conservation, spa-
tial translations, and locality. Our construction also shows that in order to determine
which invariant subspace a given initial configuration belongs to, one has to consider it on
the entire chain: even if a certain region looks initially frozen, it can eventually be melted
by additional charges coming from the outside. This indicates that it might not be pos-
sible to systematically label all invariant subspaces in terms of quantum numbers of local
conserved quantities, as it would be the case for a lattice gauge theory (see chapter 3).

Distribution of dimensions of invariant subspaces

Above we explicitly constructed invariant subspaces of Hj3 of various dimensions within
given (g, p) symmetry sectors. The distribution of these invariant subspaces can be studied
by numerically identifying the connected components of the Hamiltonian written in the S*
basis. In particular, given a Hamiltonian H , we want to get the block-diagonal structure of
its matrix representation H in some particular basis {|e>i}?§m) of the many-body Hilbert
(Fock) space H. To do so, we can view H as the adjacency matrix of a graph and use a

standard algorithm to find its connected components. The resulting distribution is plotted
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in Fig. 2.4(a), showing exponentially many sectors with a broad distribution. In fact, the
number of sectors has been recently proved to scale as %(\@ +1)E+1 [166]. We point out
that since the sectors are obtained in the local z-basis, they remain invariant under any
perturbation that is diagonal in this basis. However, such diagonal perturbations would
have the effect of changing the energy of the different frozen states, moving them away
from zero energy, and distributing them throughout the entire spectrum.

Based on the constructions in the previous section, we infer that the existence of these
invariant subspaces is a consequence of the interplay between the conservation of dipole
moment (which fails to commute with translation and inversion) and the locality of interac-
tions. In particular, in Section 2.3.2 we prove that exponentially many invariant subspaces
exist for any extension of the model that only involves dipole-conserving interactions with
finite range.

We close this section by noting that, apart from the overall fragmented structure of the
Hilbert space, which is our main concern in this chapter, there is also the possibility of
interesting dynamics within certain connected components. For example, as we will show
in the next chapter, there are particular subspaces where the Hamiltonian Hs maps exactly
to the so-called PXP Hamiltonian [167], studied in the context of quantum many-body
scars [44, 168]. A similar mapping has been uncovered in a spin-1/2 version of this model
in a related work [169].

2.2.3. Saturation value of C{(t)

Equipped with the knowledge of the fragmented Hilbert space structure, we are now able
to explain the long-time value of the auto-correlation function observed in Fig. 2.1(a). To
this end, let us define P; as the projection onto the Krylov subspace H;. These projectors
form an orthogonal set of conserved quantities (P;P; = 0;;P;), such that one can use
Mazur’s inequality [116, 126, 170] to lower bound the infinite time average of the charge
auto-correlator as

1 [T tr(Z:)]?
Jm L [ (550850 2 3 WAL oo (25)
where Z; = P;S§P; = P;S§ is the projection of S§ onto H;, and D; = tr(P;) is the
dimension of the Krylov subspace.

The bound Cf§(oc0) is shown in Figure 2.1(a) for N = 15 by the dashed horizontal line;
we observe that it is close to being tight, indicating that the main cause of the lack of
ergodicity is indeed the fragmentation of the Hilbert space. We computed the estimated
value for C§(oc0) —2/(3N) for a variety of different system sizes, and found that the result
appears to remain finite in the thermodynamic limit, even increasing slightly with N for
the system sizes available in our numerics (blue dots in Fig. 2.5).

Since the H;’s are invariant and disjoint subspaces, the weight of the operator S§ within
a given Krylov subspace, tr(ZiQ), remains constant under time evolution. Therefore, we

introduce the operator weight Wp =3, _p tr(Zf)/tr[(SS)Q] as a function of the sector
size D for all invariant subspaces H;. This defines a probability distribution, shown in
Fig. 2.4(b). We find a wide distribution with significant weight on small sectors, in sharp
contrast to for example, systems with whose global symmetry sectors are fully connected.
While the number of frozen states scales as ~ 2.2V, the size of the largest sector in
the entire Hilbert space scales as ~ 1.9V, both much smaller than the total dimension
3N, This suggests that sectors of all sizes have significant contributions to the evolution
of S§(t), even in the thermodynamic limit. We also confirm the same behavior when
considering only the largest symmetry sector (¢, p) = (0,0) (see Appendices A.1 and A.2);
this emphasizes the relevance of the fragmentation within each (g, p)-sector.
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Figure 2.5.: Saturation value of the autocorrelator. Finite-size study of the lower
bound in Eq. (2.5) for the time-averaged correlation function C§(t) as a

function of system size. We have substracted the thermal value Cf =

%tr[(Sg)Q] /(28 +1)N) for a general spin S and a chain of length N. For the
minimal spin-1 model Hs (blue dots) the lower bound is slightly increasing
with system size. On the other hand, it decays to zero exponentially for the
combined Hamiltonian Hs+ Hy (blue squares). For comparison, we also show
results for other local spin S: the larger the on-site Hilbert space dimension,
the easier it is for the system to thermalize [171].

2.3. Combined Hamiltonian H; + H,

So far we have only considered the ‘minimal model’, defined by the Hamiltonian Hs in
Eq. (2.1). We will now investigate to which extent the features found above are robust
against local perturbations that preserve the symmetries () and P.

2.3.1. Thermalization for H; + H,

In the following, we add the four-site terms defined in Eq. (2.2) and consider the com-
bined Hamiltonian Hs + H4. We find that, while this Hamiltonian shares certain features
with Hs3—in particular, it has exponentially many invariant subspaces—it nevertheless
thermalizes at infinite temperature. Indeed, the auto-correlation function C§(t) for the
Hamiltonian H3 + Hy decays to zero at long times, in contrast to the dynamics governed
by Hs alone; see Fig. 2.1 for a comparison. This is accompanied by the spatially resolved
correlation function, (S7Z(¢)S§(0)), becoming approximately homogeneous at long times,
as shown in Fig. 2.1(c). The remaining small peak is due to finite size effects, as we show
in Appendix A.2. Moreover, as shown in Fig. 2.2.(b), an initial random product state
evolving under Hs + Hy leads to the thermal (Page) value of the half-chain entanglement
entropy at long times, providing an additional indication that the system thermalizes.
There is still a constant offset, which we associate to the influence of the remaining non-
thermal eigenstates whose fraction vanishes in the thermodynamic limit, but this does not
affect the entropy density in the thermodynamic limit. This qualitative difference suggests
that the Hilbert space structure uncovered in Section 2.2.2 is affected by adding Hy to the
Hamiltonian. Figure 2.6(a) compares the distribution of sector sizes D for Hs + Hy4 (blue
stars) with the minimal Hamiltonian Hs (red dots). While exponentially many invariant
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Figure 2.6.: Comparison of the Hilbert space connectivity. (a) Sector size distribu-
tion for Hs (red dots) and Hs+ H4 (blue stars). (b) The operator weight Wp
distribution for S§ is qualitatively different, dominated by large sectors in the
latter case.

subspaces still exist, their total number is drastically reduced, as many previously discon-
nected sectors are coupled to each other by the perturbation H4. Thus the number of
sectors of small dimension D decreases and there are new larger blocks appearing; in fact,
the largest global symmetry sector, ¢ = p = 0, becomes almost (but not exactly) fully con-
nected, as we discuss in Section 2.3.3. This effect is even more apparent in the distribution
of the operator weight Wp (defined in Section 2.2.3) for the operator S§, which we show in
Fig. 2.6(b). Most of the weight is now concentrated around the largest sector, similarly to
the case of a single global U(1) symmetry. Thus, even though invariant subspaces within
symmetry sectors still exist, they do not appear to be sufficiently relevant to make the
system non-ergodic. This is also reflected in the long-time value of the auto-correlation
function as predicted in Eq. (2.5): plugging in the invariant subspaces of Hs + H,y we find
that C§(co) approaches the thermal value, 2/(3NN), exponentially fast in the size of the
system, as shown in Fig. 2.5.

From these results we infer that including longer-range interactions makes the system
sufficiently ergodic to thermalize. One possible reason for this qualitative difference is
that the 4-site terms break the rule stated at the beginning of Section 2.2.2: For a region
surrounded by empty sites, the signs of the left- and rightmost charges are invariant under
the dynamics. A clear counter-example to this rule is the fact that the state [0000) can be
mapped via Hy to both the | + — — +) and | — + + —) configurations. This then allows
for the destruction of blocks of charges that would be inert under the dynamics of Hs.
A different path to break the non-ergodicity of Hs would be to increase the local Hilbert
space dimension, making the dynamics less constrained. Consequently, we expect that for
larger spin, even a three-site Hamiltonian of the form (2.1) would lead to thermalization.
Indeed, computing the lower bound C§(oco) for the charge autocorrelator using Eq. (2.5)
for Hs acting on a spin-2 chain, we find that it decays to zero in the thermodynamic
limit, as shown in Fig. 2.5. Similarly, if we consider spin-1/2 chains, the shortest range
non-trivial model is Hy, which appears to be non-ergodic, while adding 5-site interactions
restores ergodicity. In fact, the Hilbert space structure of this system for spin-1/2 has
been analyzed in detail in Ref. [172].

2.3.2. Constructing frozen states

While the combined Hamiltonian Hs+ H4 appears thermalizing at infinite temperature, it
nonetheless violates the strong version of the Eigenstate Thermalization Hypothesis [29—
31, 33]. In particular, certain frozen states continue to exist not only for Hs + Hy, but

30



2.3. Combined Hamiltonian H3 + Hy

(a) e t-1 (b)
| 0i- - - i+++igi+++i

Figure 2.7.: Constructing frozen states for arbitrary finite-range interactions.
For interactions of maximal range ¢, one can create frozen patches of 2¢ — 1
sites with a flippable spin surrounded by domains of (a) opposite or (b) the
same charges (shown here for ¢ = 4, relevant for Hs + Hy). These can then
be combined to cover the entire chain, resulting in exponentially many frozen
states, such as the one in panel (c).

even in the presence of longer finite-range interactions. In fact, as we now prove, for a
spin-1 chain that conserves charge and dipole, and involves only local terms with range at
most ¢, there exist at least 2 - 5/ frozen states. While for ¢ = 3 this lower bound is not
as tight as the Pauling estimate discussed in Section 2.2.2, it provides useful insight into
generic longer-range Hamiltonians and can be generalized to any spin representation.

We begin our construction by considering the configuration shown in Fig. 2.7(a) for
S = 1, with a center site surrounded by a block of ¢ — 1 (4)-fractons on one side and
¢ — 1 (—)-fractons on the other. We now prove that this configuration is an eigenstate
of any dipole-conserving term with range at most ¢, where without loss of generality we
can measure the dipole moment relative to the center site. It is sufficient to consider
off-diagonal terms (in the z basis), consisting of spin raising and lowering operators. Due
to the way we constructed the state, the only such terms that do not annihilate it are
those that have only S~ on one side and S on the other. However, any such term would
lead to a change in the dipole moment and is thus prohibited. Terms only acting on the
center site do not change P but they are also excluded due to charge-conservation. We
conclude that this configuration is frozen, independently of the state of the center spin, as
promised.

Next, we consider a similar configuration, but one where the center spin is surrounded
by blocks of the same, rather than opposite, charges, as shown in Fig. 2.7(b). Let these
blocks be made out of (4)-fractons. Then the only off-diagonal operators that can act on
them are powers of S, decreasing the total charge ). One has to compensate for these
charges by adding additional charges on the center site. Therefore the only allowed terms
that could change this configuration are of the form (S=,,)?(Sg)%4(S,, )¢ for some ¢ € N.
For S = 1, only terms with ¢ = 1 2 can update the state and only when the central spin
is occupied by a (—)-fracton. When it is either 0 or +, the state is frozen.

One can combine these two types of ‘frozen patches’ we constructed above to cover the
entire 1D chain, resulting in a globally frozen state. These states are made up by blocks
of + or — charges, with a single site between any two consecutive blocks, as shown in
Fig. 2.7(c). As we showed above, these sites host “flippable” spins: the ones separating
blocks of equal charge can take two values (e.g + or 0 between blocks of + charge), while
those that separate blocks of opposite charge can be in any of the 3 possible spin states.
This construction then results in exponentially many frozen states, coming from both the
possible arrangements of + blocks and from flipping the spins between blocks within a
given arrangement.

We can count the total number of frozen states resulting from this construction iter-

2Notice that terms with ¢ > 1 only reduce the number of “flippable” configurations of the central spin.

31



Chapter 2. Ergodicity breaking arising from Hilbert space fragmentation in
dipole-conserving Hamiltonians

321 @ (=3 1.74 x 10.73V/"
W (=4 2.65 x 9.94N/¢
% A (=5: 3.54 x 10.79N/!
10 |
=3
+
wn
g o8
3 %
3
Ik 36_

15 25 35 45 55
N/t

Figure 2.8.: Scaling of the number of frozen states for Hamiltonians with at most
range £ terms. We consider Hamiltonians with all possible combinations of
charge and dipole conserving terms, quartic in spin operators of range at
most £, for £ = 3,4,5. The number of frozen states grows exponentially with
system size N, with an exponent that decreases with ¢, but is larger than the
analytical lower bound 2 - 5™V/!,

atively, starting from the left edge of the system (assuming open boundaries). We cut
the systems into blocks of ¢ sites, consisting of a wall of ¢ — 1 positive/negative charges,
followed by a flippable spin. Let F] ,;t denote the number of different such configurations to
the left of the k-th wall (but before the flippable spin), ending in a (4)-block. Then the
considerations outlined above lead to the following recursion formula:

()-GO -G) (-0 oo

where we have used that F1Jr = F| =1, i.e., there is only one possible configuration of
each type to start with. Since each step kK — k + 1 corresponds to a shift by £ sites, we
conclude that the number of frozen states we constructed scales as 2 - 5V/¢. This is only a
lower bound on the total number of frozen states, which can include other configurations
not captured by this construction. In particular one could systematically improve the
bound by allowing blocks to be separated by more then one site.

We compare the lower bound ~ 5V/¢ to the numerical results on the number of frozen
states for Hamiltonians with interactions of range at most ¢ = 3,4,5 in Fig. 2.8, where
we extract the asymptotic scaling. The comparison to numerical data in Fig. 2.8 shows
that the scaling is relatively close to ~ 10V/¢ [173]: 10.73N/3 (¢ = 3), 9.94V/* (¢ = 4) and
10.79N/5 (¢ = 5). Thus, the lower bound is not tight but it proves the exponential scaling
of frozen states.

We conclude this section with some comments about the construction we presented.
First, while above we did not distinguish between different overall (g, p)-sectors, one could
similarly construct frozen states with a given ¢ and p. For example one can apply the
construction on only the left half of the chain and for each state repeat the same config-
uration on the right half to obtain a state with p = 0. Second, the bound can be easily
extended to chains with local spin .S > 1. For example one can consider blocks that have
maximal positive/negative charge; repeating the same arguments then gives a scaling 3

3Note that the ratio of the estimated number of frozen states, (25 4 3)"/*, and the total Hilbert space
dimension (25 + 1)", decreases with S for £ > 1.
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Figure 2.9.: Ergodicity breaking due to strong and weak fragmentation. Expecta-
tion value of the local operator (S§)? for eigenstates within the (¢, p) = (0,0)
sector as a function of energy for different system sizes. (a) Strong fragmen-
tation: for the minimal Hamiltonian Hs, the width of the distribution does
not decrease with IV, violating the Eigenstate Thermalization Hypothesis. (b)
Weak fragmentation: for Hs + H4 most eigenstates appear thermal, and the
bulk of the distribution narrows with NV, but outlyers remain, showing that the
system obeys weak, but not strong ETH. (c¢) Half-chain entanglement entropy
of the eigenstates for Hs (red dots) and Hz + Hy (blue stars), for N = 13,
leads to the same conclusion. The black dashed line shows the entanglement
entropy of a random state in the (g,p) = (0,0) sector.

(2S + 3)N/¢. We note that in the limit £ — oo the lower bound tends to one, consistent
with the fact that for all possible charge and dipole conserving infinite-range interactions
every (g,p) sector becomes completely connected.

A natural extension of this construction is to consider dipole-conserving systems with
semi-infinite or infinite local Hilbert spaces, as for example bosonic local degrees of freedom
( Bi(i)zﬂ)%i” + H.c.) and rotor models ( e®ie=2¥it1¢i+2 1 H.c.) respectively. In the
former case one would expect that the fragmented structure, and thus the number of
frozen states, depends on the average filling of particles becoming more fragmented at low
fillings. On the other hand, the latter is expected to realize no fragmentation and thus
having no frozen states.

2.3.3. Strong versus weak fragmentation

As the previous section shows, the combination of dipole conservation and strictly local
interactions is sufficient to lead to an emergence of exponentially many dynamically dis-
connected sectors in the many-body Hilbert space, even after fixing @) and P. While we
only showed this rigorously for the case of one-dimensional sectors, we find numerically
that others with larger dimension also exist (see Fig 2.6). While both Hs and Hs + Hy
share this feature, their behavior with respect to thermalization appears to be quite differ-
ent, as we already observed in Fig 2.1. This motivates us to distinguish two cases, dubbed
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weak and strong fragmentation, which violate strong and weak ETH, respectively.

Let us first make precise what we mean by violation of ETH. In particular we only
analyze the diagonal contribution of ETH, evaluating the expectation value of few-body
observables for all eigentates of the Hamiltonian within a fixed global (g, p) symmetry sec-
tor. As explained in Chapter 1, by strong ETH we mean the statement that the expectation
values are the same for all eigenstates at the same energy density in the thermodynamic
limit. Weak ETH, on the other hand, means that this statement only holds up to a small
number of outlying states, where ‘small’ means here measure zero in the thermodynamic
limit. Here we follow the approach of only fixing (extensive) local symmetries, namely
those corresponding to the extensive sum of local contributions, as non-local ones usually
do not lead to distinct distributions for the diagonal matrix elements [174-176]. In our
case, this means fixing ) and P, but not the additional symmetries that correspond to
the invariant subspaces, since we expect these to be non-local. In the next chapters, and
after having a deeper understanding of strongly fragmented systems, we will contrast and
justify why we follow this approach, instead of for example considering a particular Krylov
sector.

Our construction in the previous section then proves that any dipole-conserving strictly
local Hamiltonian, has weak fragmentation in the above sense, leading to the existence of
non-thermal eigenstates in the middle of the spectrum. Apart from frozen states, these
also include other low-entangled eigenstates, stemming from small invariant subspaces,
analogous to the ones discussed in Section 2.2.2. Generically, however, their ratio compared
to thermal ones is vanishingly small within any energy shell in the thermodynamic limit;
this is the case of H3 + Hy as we argue below. Thus the weak version of ETH [42, 88, 92]
is still obeyed, and the system thermalizes for typical initial states, provided they have
narrow energy distributions. On the other hand, we argue that the Hamiltonian Hs,
discussed in Section 2.2, has strong fragmentation in the sense that at least a finite fraction
of the eigenstates is non-thermal, leading to the manifestly non-thermalizing behavior we
observed.

The difference is illustrated in Figs. 2.9(a,b), which shows the expectation value of a
simple observable ((SZ)2, where 0 is the central spin) for all energy eigenstates within the
(largest) ¢ = p = 0 symmetry sector, for Hs and Hs+ H4. For the combined Hamiltonian,
Hs 4+ Hy, the majority of eigenstates, which all belong to the same invariant subspace,
behave as predicted by ETH: ((S§)?) takes similar values for states within a narrow energy
shell, with the width of its distribution decreasing with system size. Nevertheless, we
also observe outlying eigenstates, stemming from small invariant subspaces, that do not
approach this line, violating strong ETH. The minimal Hamiltonian, Hj3, on the other
hand, violates even the weak version of ETH: the distribution of ((S§)?) does not become
narrower with increasing N, as shown in Fig. 2.9(a). This is in contradiction with ETH,
which predicts a vanishing width in the thermodynamic limit. Similar behavior occurs
in the half-chain entanglement entropy of the eigenstates, shown in Fig. 2.9(c): the non-
thermalizing nature of Hj is reflected by the fact that the entropies of its eigenstates do not
fall on a line (in the thermodynamic limit) when plotted as a function of the energy, instead
being distributed over values much smaller than what is predicted at infinite temperature
(maximum density of states attained in the middle of the spectrum), as realized by a
random state in the (0,0) sector.

The above discussion suggests that the difference between strong and weak fragmenta-
tion can be diagnosed by considering the sizes of the connected subspaces, in comparison
with the size of the global (q,p) symmetry sector they belong to. In the strongly frag-
mented case of Hs studied above, for a typical (q,p) symmetry sector — those with
q ~ 0,p =~ 0 — the dimension of the largest connected subspace is exponentially smaller
than the dimension of the full symmetry sector, i.e., max[qujp)] /D(qp) X exp(—aN) for
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Figure 2.10.: Diagnosing strong and weak fragmentation. Ratio between the dimen-
sion of the largest invariant subspace H! within the (0,0) symmetry sector,
and the total dimension of the (0,0) sector Dgqy. For Hj (red dots), this
ratio vanishes exponentially fast with system size while it approaches one for
Hs + Hy (blue stars).

some « > (. Notice that this does not rule out that maX[DEq p)} scales exponentially with

the volume of the system, but just implies that its associated fractal dimension (see e.g.,
Ref. [120]), defined via log{max[qu’p)]} /10g[D(g )], is strictly smaller than one in the
thermodynamic limit. In Fig. 2.10 we verify that this is indeed the case for the largest
symmetry sector (0,0) of Hs. We propose that this decay indicates strong fragmentation,
naturally leading to the absence of thermalization for physical observables such as the

auto-correlation function considered above.

In the weakly fragmented case, the symmetry sectors can still split into many sub-
spaces. However, the largest of these spans almost the entire (g, p)-sector hosting it up
to polynomial corrections in the volume of the system: max[Déq’p)] ~ D(q,p)' Equiva-
lently, the associated fractal dimension log{maX[qu,p)]} /1og[D(4 )] tends to one in the
thermodynamic limit. Figure 2.10 shows that this is the case for H3 + H,4 for the largest
symmetry sector (0,0). Consequently, the vast majority of eigenstates within any energy
shell in that sector belong to the same large invariant subspace, and look thermal as a
consequence. Thus, while weakly fragmented systems violate strong ETH—due to outly-
ing non-thermal eigenstates—they nevertheless thermalize for typical (but not all) initial
states. This weak fragmentation is reminiscent to what has been observed in other models
in the context of many-body quantum scars: although the majority of the eigenstates obey
ETH, non-thermal eigenstates exist even in the bulk of the spectrum [42, 44, 48, 168, 177].
However, while the number of these ‘scarred’ states is usually O(N), in our case we find
exponentially many such states. Note that the non-thermal eigenstates belonging to low-
dimensional invariant sectors in our system have finite overlap with simple product states
which can potentially be prepared in experimental settings. This implies that a lack of
thermalization up to infinite times could be observed, even in the weakly fragmented case,
for appropriately chosen initial states.

The main features characterizing strong and weak fragmentation for a symmetry sector
(or the relevant Hilbert space) of dimension DV are summarized in the following table.
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Fragmentation Strong Weak
# of sectors ~ exp(N) ~ exp(N)
Size of largest sector || ~ d¥ with d < D ~ DN
Violates* weak ETH strong ETH

where ~ indicates the scaling up to logarithmic corrections in the
size of the system N, and * refers to the formulations of weak and
strong ETH as defined in the text.

In the above we observed that the ratio max[D’(i%p)] /Dqp) either decays (exponentially)
to zero or approaches unity. It is an interesting question, whether systems with inter-
mediate behavior—with either slower than exponential decay or convergence to a finite
fraction—can exist, and whether they exhibit strong or weak fragmentation. Moreover,
a typical symmetry sector being weakly fragmented does not rule out the possibility for
some symmetry sectors to be strongly fragmented. In fact, Ref. [178] showed a phase
transition between weak and strong fragmentation for H3 + Hy as a function of the charge

density ¢/N for fixed dipole moment p = 0.

2.4. Comparison to random unitary circuits

We now show that our findings are not specific to the Hamiltonians we considered so
far, and generalize to arbitrary systems with the same global symmetries and a fixed
range of interactions. In particular, we compare with random unitary circuits of the form
originally introduced in Ref. [158]. These define a discrete time evolution, the building
blocks of which are unitary gates U acting on ¢ sites, each of which is required to be block
diagonal in ) and P, but is otherwise chosen randomly. In particular, these gates are
represented by (25 + 1)¢ x (25 + 1)* dimensional matrices

U= @ Uyps (2.7)
q,p

where every block U, corresponding to a given charge ¢ and dipole moment p on /-sites
is independently Haar random. In particular, for £ = 3 and S = 1, the local gates U split
up into four 2-dimensional blocks and nineteen one-dimensional ones (i.e., local frozen
configurations).

In Ref. [158] it was argued that such circuits always lead to localized behavior. Here
we argue that this is in fact only the case for gates with £ = 3 (and S = 1), where the
circuit exhibits exactly the same Hilbert space structure as the Hamiltonian Hs above,
and is therefore indeed localized. When introducing larger gates of size £ = 4, we find that
the system thermalizes, also in complete agreement with our results on the Hamiltonian
Hs; + Hy.

The two circuit geometries, with gates of size £ = 3 and 4, are shown in Fig. 2.11. In both
cases we compute the connectivity of the Hilbert space. Instead of the Hamiltonian, we
consider the unitary operator defined by the first ¢ layers of the circuit. This is a matrix
with random entries, but its connected components are independent of the particular
realizations. We find numerically that the connected components for ¢ = 3 (¢ = 4) coincide
exactly with those of the Hamiltonians Hs (Hs + Hy), shown previously in Fig. 2.6. This
follows from the fact that the allowed local transitions are the same in the Hamiltonian
and the random unitary circuit. The fact that the invariant subspaces coincide supports
the idea that the additional invariant subspaces are a consequence of dipole conservation
and locality alone, and do not depend on any additional structure that might be present
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Figure 2.11.: Thermalization in charge and dipole conserving random circuit
models. The two versions of the circuit, with (a) three-site (b) four-site
gates resemble the Hamiltonians Hs and Hs+ Hy respectively. Consequently,
(c) the auto-correlator obtained for the three-site circuit has a finite long-time
value, while (d) in the four-site circuit it slowly decays to zero. The curves
correspond to the infinite temperature correlator, averaged over 50 random
states and circuit realizations for N < 13 and 20 realizations of N = 15.

in the Hamiltonian case. Based on our previous analysis, we therefore expect that the
three-site circuit does not thermalize, but the four-site circuit does. This is confirmed by
calculating the autocorrelator C§(t), which (after subtracting its thermal value) goes to a
constant in the former case, while it decays to zero in the latter, as shown in Fig. 2.11. In
Appendix A.3 we also consider the spatial spreading of an initial S7? operator and similarly
find that for £ = 4 the operator is delocalized at long times. We therefore conclude that
the localized behavior observed in Ref. [158] is particular to the case of the circuit with
three-site gates, contrary to what was suggested there.

The fact that the Hilbert space fragmentation coincides exactly between the random
circuit and Hamiltonian cases also means that the conclusions we drew regarding non-
thermal eigenstates in Section 2.3.3 also generalize to time-periodic (Floquet) models built
out of similar local gates. In particular this implies the presence of exponentially many
frozen eigenstates for such models, especially for the £ = 3 case where we predict that the
majority of eigenstates should be nonthermal.

2.5. Summary and discussion

We have studied the out-of-equilibrium dynamics of spin chains conserving a charge and
its associated dipole moment. For the minimal spin-1 Hamiltonian which is restricted to
only three-site interactions, we found a non-vanishing value of the charge-charge auto-
correlation function. We explained this finding in terms of a strong fragmentation of the
Hilbert space into exponentially many disconnected sectors which all contribute signifi-
cantly to the dynamics even at infinite temperature. We found that a weaker form of frag-
mentation survives for more general, longer-range Hamiltonians, and while it is no longer
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sufficient to make the infinite-temperature dynamics non-ergodic, it nevertheless results
in exponentially many non-thermal eigenstates. Furthermore, we showed numerically that
the fragmentation of the Hilbert space exactly matches that of random circuit dynamics
with the same range of interactions, giving rise to similar dynamical behavior. In fact, the
fragmented structure we studied applies not just to a given k-local Hamiltonian (with a
particular choice of HllCI‘OSCOplC parameters) but rather to the family of Hamiltonians with
the same local terms H = Y onIn hn. To be specific: While we focused on Hamiltonian Hg
(Eq. (2.1)), the family of Hamiltonians (up to arbitrary diagonal contributions in S#)

Hy({J,}) = ZJ (S (S1) S + e (2.8)

for a generic choice of couplings J,, realize the same fragmented structure as Hs. This
implies that the Hilbert space fragmentation we discussed in this chapter, is completely
determined by local terms of the Hamiltonian [166] and thus, whatever underlying (non-
local) conserved quantities do not depend on the particular choice of {.J,}, unlike for
integrable systems [179]. Nevertheless, the specific choice of couplings {.J,} can lead to
additional structure and will certainly become relevant when studying the system dy-
namics. E.g., while a uniform distribution leads to the saturation of Mazur bound (see
Fig. 2.1), a random distribution could lead to even more localized dynamics while their
fragmented structure match.

The observed fragmentation lies in-between the known cases of systems with a few
global symmetries and that of systems with extensively many, like integrable and many-
body localized systems. The former have at most polynomially many symmetry sectors
in the volume of the system —most of which are exponentially large—while the latter
have ~ N independent conserved quantities which are sufficient to identify a many-body
energy eigenstate. In our case, however, sectors of all sizes co-exist and in the case of
strong fragmentation they all are relevant for the dynamics, even at infinite temperature.
Thus, the underlying structure appears more reminiscent to that of super-selection sectors
in lattice gauge theories (with finite local Hilbert space dimension for the gauge degrees
of freedom). However, unlike for lattice gauge theories, fragments are labeled by the
eigenvalues of non-local conserved quantities as we will find in the following chapter.
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3. Statistical localization: From strong
fragmentation to strong edge modes

... the unfortunate victim collapses spontaneously, with
the spontaneous emission of an antitachyon. Happening
to be passing, I catch the antitachyon into the barrel of my
gun, and so prevent possible injury to other passers-by.

John Stewart Bell from The nouvelle cuisine [180].

We have identified the (extensive) fragmentation of the Hilbert space — naturally ap-
pearing in dipole-conserving systems with finite-range interactions and finite local Hilbert
space dimensions— as a mechanism which leads to non-ergodic behavior even at infinite
temperatures. Especially interesting is the case of strong fragmentation, where the size
of the largest connected sector is exponentially smaller than the total number of states.
In the particular example discussed in the previous chapter (Ref. [1]), it was found that
this can lead to not only a complete breakdown of ETH, but also to effectively localized
behavior in the form of infinitely long-lived autocorrelations, similar to true localization.
However, establishing a clear connection between such localization and the structure of
the Hilbert space has not yet been addressed.

While Refs. [1, 181] provided a general mechanism for Hilbert space fragmentation and
uncovered many of the intriguing features resulting from it, understanding the nature
of the corresponding integrals of motion was left as an open question. In the present
chapter we uncover these conserved quantities in two illustrative cases, focusing on strongly
fragmented Hilbert spaces. We also formulate the general principle behind such conserved
quantities and discuss both their similarities and their differences compared to the localized
integrals of motion (LIOMs) characterizing MBL systems [50, 51, 182, 183] that we
briefly introduced in Section 1.3. We first consider a simple example that exhibits strong
fragmentation (without conserving dipole moment), where we can illustrate the nature of
the integrals of motion in an intuitive and straightforward manner. Later we return to the
dipole-conserving minimal model of the previous chapter and identify all the conserved
quantities that label the components of its strongly fragmented Hilbert space. This is
achieved via a non-local mapping to a different model with explicit local constraints.
We analytically show that these conservation laws lead to spatial localization and finite
autocorrelations in the thermodynamic limit.

A unifying feature of the conserved quantities we uncover is what we name statistical
localization. These are non-local operators, whose expectation values in typical states pick
up contributions primarily from specific spatial regions that are sub-extensive in their
size. Unlike the case of LIOMs, this region depends on properties of the quantum state in
question; in particular, the models we consider possess a conserved U(1) charge and the
localization properties of the new integrals of motion turn out to depend on the overall
filling fraction. Moreover, while some of these integrals of motion are effectively localized
to finite regions in the dipole-conserving case (much like LIOMs), others are only ‘partially
localized’, i.e. they correspond to regions that grow sub-linearly with system size.

Having identified the new conserved quantities, we show that they give rise to another
exciting possibility: statistically localized strong zero modes localized at the boundaries of
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

a finite system. These are analogous to the strong boundary zero modes (SZM) discussed
in the literature [184—189], but unlike previous instances, they occur in non-integrable
systems, co-existing with a completely thermalizing bulk. We explicitly construct such
zero modes (which commute exactly with the Hamiltonian even for finite systems), by
perturbing the strongly fragmented Hamiltonians in specific ways, destroying the integrals
of motion in the bulk, while leaving them intact at the boundaries. The resulting models
exhibit similar phenomenology as previously studied cases of SZM, with infinite edge
coherence times, as well as exact degeneracies throughout the spectrum. Our construction
provides an example of eract strong zero modes in a non-integrable system, stabilized
by the dynamical constraints. We also propose an experimental setup for realizing such
models with Rydberg atoms in an optical lattice.

Finally, we discuss how in cases with strong Hilbert space fragmentation, the edge
modes can lead to the appearance of highly excited states with non-trivial topological
string order. This further reinforces the analogy between strong fragmentation and many-
body localization, as the latter can also lead to excited states exhibiting forms of order
that are not otherwise allowed at finite temperature [190, 191].

To summarize, our main results are the following.

e We introduce the concept of SLIOMs and illustrate their usefulness for two separate
models.

e Using this concept, we construct experimentally relevant non-integrable models with
exact strong zero modes at their edges.

e We construct all the SLIOMs for a 3-site dipole-conserving model, and show explic-
itly that they lead to localized dynamics.

e We show that the same conservation laws protect topological string order in a subset
of excited states at finite energy densities.

The remainder of this chapter is organized as follows. In Section 3.1 we provide a detailed
discussion of a simple model that exhibits strong fragmentation. We introduce the model
in Section 3.1.1 and then construct the full set of conserved quantities that characterize
the connected subspaces, using them to illustrate the concept of SLIOMs, which we define
in Section 3.1.2. We describe the effect of SLIOMs on thermalization in the bulk and at
the boundary in Section 3.1.3, constructing a perturbed model with strong zero modes and
a thermalizing bulk. In Section 2.2 we extend our discussion to the strongly fragmented,
dipole-conserving Hamiltonian introduced in the previous chapter. We use a non-local
mapping to analytically construct the complete set of conserved quantities that describe
its fragmentation, and discuss both the similarities and differences compared to the model
of Section 3.1. We discuss how the SLIOMs in this case lead to localized dynamics, and
discuss the implications for entanglement growth in Section 3.2.3. We comment on the
appearance of string order in excited states in Section 3.2.4, and the relation to quantum
many-body scars in Section 3.3, before concluding in Section 3.5.

3.1. lllustrative example of SLIOMs: ¢t — J, model

Here we introduce the main concept of this chapter, that of statistically localized integrals
of motion (SLIOM), which are non-conventional integrals of motion responsible for the
lack of thermalization in the systems we consider. It will be useful to contrast these with
the well known case of LIOMs [50, 51, 182], which play a similar role in MBL systems.
Such a LIOM 77 is localized around some given site m in an operator sense: when
written as a sum of “physical” operators, 7; = > . OF, the spectral norm of O} —
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3.1. Tlustrative example of SLIOMs: ¢t — J, model

that is the norm induced by the L?-norm || - ||2 on linear operators and is given by
O] = supy,ollOF¥l2/||¥|la— that have support on sites far from n is exponentially
suppressed !. The operators we consider are not localized in this sense: they are equal
weight superpositions of operators with supports of all sizes, and then ||O}|| ~ const.
However, when the expectation values are taken in ‘typical states’ (to be specified below),
these values (O?T(’)ﬁ only pick up contributions from a region that consists of a vanish-
ingly small fraction of the whole system (and whose precise location and width depends
on the state in question): hence the term statistically localized.

3.1.1. Definition of the model

This general concept is best illustrated through a simple example. We consider a one-
dimensional Fermi-Hubbard model under the assumption that the Hubbard on-site repul-
sion is sufficiently strong as to prohibit double occupancy of sites. In this limit, and after
replacing Heisenberg by Ising interactions, one obtains the so-called ¢t—.J, model [192, 193].
In this work we consider the following simplified version of it:

N—-1 N-—1

Hy_jo=—t Y (Giollyy, +He)+J. > SiS7,, (3.1)
=1 =1
o="1

where the dressed fermionic operators ¢ o = ¢; (1 — cl

i Jci’,g) incorporate the hard-core
constraint. ¢ =7,| is a spin index, and the on-site constrained Hilbert space consists
of only three states: 0,7,), with 0 denoting an empty site. The first term in Eq. (3.1)
describes the constrained hopping of fermions and the second term is a nearest neighbor

Ising-type interaction with spin operators defined as
St = (5;[,T7 5}7000‘(6@% a)’ with a = z,y, z; (3.2)

where we omit a factor of 1/2 for later convenience. In our numerics we fix ¢ = 1 and take
J. = 1/4, avoiding the integrable point J, = 0 [194]. This Hamiltonian conserves both the
fermion number, Np = >, (724 +7;|), and the total spin, S5, = >, (7i;+ — 715,), with
the number operator defined as n;, = éj’oéw.

The constrained hopping implies that the dynamics of the model consists entirely of a ‘re-
shuffling’ of the hole positions, with the direction of each individual spin always remaining
unchanged [195, 196]. Thus, for fixed particle number N, any product state in the 0,1, |
basis is characterized by a pattern of Ng spins, each pointing either up or down. This
pattern is a conserved quantity: only states with the same spin pattern are connected by
the dynamics®. Therefore, the 3V dimensional many-body Hilbert space fragments into
exponentially many (in the size of the system) disconnected sectors completely labeled by
the different spin patterns. This provides an (trivial) example of strong fragmentation.
Moreover, as pointed out in the previous chapter, these conservation laws are shared
among the family of Hamiltonians

N-1 N-1
H({ti}) == Y tilGiotlyy o +He) + 0. Y 8287, (3.3)

=1 =1

o=tl

! One usually chooses a complete set of basis operators, for example direct products (‘strings’) S of local
Pauli operators in the case of a spin-1/2 chain as we did in Chapter 2. One can then write 7, = > 5 c5S;
the Pauli strings all have unit spectral norm, so the exponential (in the spatial support of §) decay is
carried entirely by the coefficients c%.

2The definition of the ¢t — J. model usually includes an additional density-density interaction [192]. We
drop that term for simplicity, but keeping it would not change the following discussion.

3A classical, discrete time model with the same symmetries was considered in Refs. [197, 198].
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Figure 3.1.: Statistical locality of SLIOMs. Expectation value <1JJ|(9§T(9£“|2/)) for the
string operators appearing in the definition of SLIOMs ¢, = ), Of, see
Eq. (3.6). The averages are performed over: a Haar random state [¢) in
the full Hilbert space with average filling fraction » = 2/3 in panels (a,b), and
a random state with a fixed filling fraction v = Np/N = 1/2 in panels (c,d),
evaluated analytically via Egs. (3.7) and (3.9) respectively. (a,c): In both
cases, the k-th particle, is statistically localized around the average position
i = k/v. Inset: the statistical localization of the boundary SLIOMs gy, G
(defined in Egs. (3.12) and (3.13)), with at least exponential decay towards
the bulk. (b,d): When considering SLIOMs in the bulk, ¥ x N (k = N/2 for
(c) and k = Np/2 = N/4 for (d)), the width of the distribution scales as v/ N,
and the height as 1/v/N.
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3.1. Tlustrative example of SLIOMs: ¢t — J, model

rather than being a property of a particular microscopic model.

In the following we focus on a chain with open boundaries, where the fermions can be
labeled by a number k, starting from either the left or the right edge of the system (we
discuss periodic boundary conditions in Appendix B.5). In this case, the dimension of a
given sector, regardless of the spin pattern, is ( N _NNF) = ( ]\J,\; ), which counts the number of
ways to re-shuffle the N — N holes. Note that the largest connected sectors are attained
for Np = N/2 and there exist 2VF of those corresponding to different choices of spin
pattern. Their dimension scales asymptotically as 2V (up to logarithmic corrections), and
thus it is a vanishing fraction of the full Hilbert space dimension. This is also applies when
comparing with the dimension of the (typical) global symmetry sectors (Nyp = N/2,5Z,)

they are contained in. Their dimension is then given by ( ]\J,VF ) ((Sz tf]f,F) /2) which scales
to

as dV with 2 < d < 23?2 for values of SZ, far from the fully-polarized regimes, i.e.,
Sz .~ +Np. The size of the latter scales as 2V, thus (almost) coinciding with the largest
connected sector. One could easily generalize this model, by allowing for fermions with a
larger spin S [199] or any other local degree of freedom not mixed by the hopping term.
This would not change the size of the sectors, but increase their number to (25 + 1)VF,
thus increasing the fragmentation (decreasing the ratio of the largest component to the
whole Hilbert space).

While here we focus on a version of the model where no double occupancy is allowed,
in fact, the spin pattern is also conserved in the presence of doublons, as long as their
total number, together with the total spin, is conserved and spin exchange interactions are
replaced by Ising interactions. Such terms appear in the limit of strong onsite interactions
n;4ni,| [196], taking the form

N-1
HNdoub = —1 Z PLchingLLU + H.c., (34)

i=1
o=m{

with the projector P11 =1 — (- — Nit1—0)>

3.1.2. Statistically localized integrals of motion

Fixing the complete spin pattern is analogous to fixing the eigenvalues of all LIOMs
in a many-body localized system, which determines a single eigenstate of the many-body
localized Hamiltonian [50, 51]. The difference is that the spin pattern only fixes a particular
Krylov sector, rather than a single many-body state, due to the fact that the holes are
free to move. Therefore the analogue of a single LIOM is the operator which measures
the spin of the k-th fermion. This is our first example of a statistically localized integral
of motion.

N

Definition (SLIOM). A statistically localized integral of motion (SLIOM) is an
operator § = Efi 1 O; satistying the following two properties:

1. § is a conserved quantity, [I;T , 4] = 0;

2. For almost all states |¢), the expectation value <7,b\(’);r(9i\w) = [|O;]w) ||, when
treated as a probability distribution over sites 7, is localized to a sub-extensive
region in space

2
Jiwiolom # - (Siwiolomw i) |
- 220, (3.5)

Az
N
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For example, the average global magnetization in a spin-1/2 chain, % >, 07, is not a
SLIOM since it has Az/N = 1/4/12. In Appendix B.1 we give a slightly different and more
refined version of the definition, which captures more of the structure of the conserved
quantities we discuss in the following (see also Section 3.2.2).

Some comments are in order. i) In the definition almost all is meant in the sense
that states |¢) violating this condition are of measure zero with respect to some uniform
measure over the relevant Hilbert space in the thermodynamic limit. ii) In the definition
we did not specify the form of the operators O;, except that there is one for each site in
the chain and that their sum gives a conserved quantity. In the examples below they will
turn out to be string-like objects, extending from one end of an open chain up to site i.
Moreover, in these cases Oj O; is a projector, such that treating <1/)|(9;.T O;|¢) as a probability
distribution is quite natural. In general, one might need to normalize the distribution to
sum up to 1. We also ignore the trivial cases when all (O;r O;) = 0. iii) In the definition,
we have characterized localization in a rather weak sense: instead of requiring that the
distribution is localized to a finite region, we only required that its width is sub-extensive.
In the following we will distinguish two cases: the fully localized one, where Az ~ O(1)
(which is most similar to MBL) and the partially localized one, where Az ~ N* for some
0 < k < 1. In fact, we will see that for the ¢t — J, model, the SLIOMs that are relevant for
the bulk are all partially localized with x = 1/2. This localization is therefore much weaker
than the case of MBL, but still has non-trivial consequences for the dynamics, as we will
show in Section 3.1.3. On the other hand, a subset of the conserved quantities, are in
fact localized near the boundaries, and behave very similarly to so-called strong boundary
zero modes. The dipole-conserving Hamiltonian considered in Section 2.2, however, has
fully localized SLIOMs also in the bulk (along with partially localized ones) as we show
in Section 3.2.

Example: Spin configurations in the ¢ — J, model

We now illustrate how the above definition applies to the ¢ — J, Hamiltonian introduced
in Section 3.1.1. Taking open boundary conditions (OBC), we can define an operator that
measures the spin of the k-th fermion from the left edge of the chain:

N N
Q=) OF=> Prs;, (3.6)
=1 =1

where 7%"3 is a projection operator, diagonal in the computational basis, that projects onto
those configurations where the k-th charge is exactly on site ¢. The operators g form
a set of extensively many conserved quantities for H;_;, with OBC #, whose combined
eigenvalues label all the different possible spin patterns, such that >, ¢ = Sg;. Each
Gr has three eigenvalues, v, = +1, —1,0, the latter corresponding to configurations with
k > Np (consequently, cj]% is a projection onto configurations with k& < Np). However,
not all possible combinations are allowed: if v = 0 for some k then ~g~p = 0 as well.
The total number of possible configurations is therefore Z%F:O Nk = 9N+l _ 1 each
corresponding to one of the connected sectors in the theory. Note that the definition of g
explicitly breaks spatial parity. One could alternatively define a set of operators starting
from the right edge; these encode the same information regarding the block structure of
the Hamiltonian.

As we now argue, the operator ¢ falls under the above notion of a statistically localized
integral of motion, with the role of O; in the definition played by the operator 75fo The
reason for the statistical localization in this case can be seen intuitively: For a random

4See discussion in Appendix B.5 for the case of periodic boundary conditions.
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3.1. Tlustrative example of SLIOMs: ¢t — J, model

state with some fixed average filling v = (Np) /N, the k-th charge is most likely to be
found in the vicinity of position ¢ = k/v. The width of the distribution should also depend
on v, going to zero in the limit ¥ — 1. On the other hand, one can always find atypical
states with the same filling where the k-th charge is localized at some different position,
or not localized at all. To better understand the nature of the conserved quantities g,
we now consider their expectation values for two different ensembles of randomly chosen
pure states.

Global Haar random states. Let us first consider the case when [¢) is chosen Haar
randomly from the entire Hilbert space [148, 161]. This is a state with a fermion density
v = 2/3 on average: As [¢) is a random state, its single-site reduced density matrix
is proportional to the identity matrix and thus every local spin is equally likely. Thus,
v = prob(?) + prob(]) = 2/3 (see also Appendix B.2 for a rigorous computation). We are

interested in the average and variance of the expectation value of the operator OfTOf =
75ik, which is a projector onto configurations where site ¢ is occupied and the leftmost
i — 1 sites host a total of kK — 1 fermions. When averaged over the Haar ensemble, the
expectation value is the same as in an infinite temperature ensemble, simply given by the

relative number of such configurations

PHaar (4 k) = EHaaer‘OfTOZI‘CW” = Vk(l - V)i_k <;: 11>’ (3.7)

vanishing for ¢ < k and with v = 2/3. Y. pHaar(4; k) is the probability of having at least k
charges in the system, i.e., pgaar(Nr > k). As the probability of having at least k particles
decays with k for k > v N, we focus on k/N < v, in which case we have numerically verified
that this probability is exponentially close to 1.

The distribution ppaar is peaked around the position ¢ = k/v. For the leftmost charge
(k = 1), it simply decays exponentially into the bulk as ~ 37*. In general, for a fixed
finite value of k, praar(7; k) is independent of the system size N and has some finite width.
However, to probe the bulk of the system, one should choose k = aN for some constant
0 < a < v. In this case, the distribution has a standard deviation that scales with system
size as ~ v/ N. Nevertheless, it is still ‘partially localized’ in the sense defined previously,
such that the width relative to the system size vanishes as 1/ VN in the thermodynamic
limit. This is shown in Figs. 3.1(a-b). Outside of the O(v/N) region, the distribution has
a tail that falls off asymptotically faster than exponentially. To leading order in the ther-
modynamic limit, N — oo and for x = i/N > «, the distribution becomes ppaar(z; )
exp [—N (zlog3 — alog 2 — zha(a/x))], where ho(A) = —Alog A — (1 — A)log(1 — A) is the
binary entropy function. Note that the exponent vanishes when z = a/v = 3a/2, i.e., it
attains a maximum, and is negative otherwise.

Similarly, one can calculate the variance over a set of Haar random states (see Ap-
pendix B.2 for details). This gives

2 1

Ettanr [| (0] OF OF[)12] — [Egaar[(|OF OF ]2 = N1

[pHaar(i; k) - pHaar(i; k)ﬂ s
(3.9)

which is exponentially suppressed compared to the average °, indicating that indeed the
vast majority of states in the Hilbert space gives rise to very similar distributions for

(o oh).

5Notice that PHaar (3; k) < 1.
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

Random states with fixed particle number. While the above calculation shows that
most states lead to a sharply peaked distribution, it is also natural to consider states
that are randomly chosen within a sector with fixed total fermion number Np. As we now
show, the distributions in this case are still (partially) localized in space, but their location
and width now depends explicitly on the filling fraction » = Np/N. One can perform the
averaging over the restricted Haar ensemble (see Appendix B.2) to obtain

N N
(1) ()
N )
(v7)
with ¢ > k. The interpretation of this result is straightforward: The probability for the k-th

particle being located at site 7, is given by the number of ways to place k—1 particles on the
previous ¢ — 1 sites, namely (,2:11), times the number of possible locations of the remainder

P (i k) = En [(]OF OF )] = (3.9)

Np —k, ( N]\; __ik); divided by the total number of ways to locate Ng particles on a chain of
length N. This distribution differs from the previous one in several aspects. First, py, is
invariant under the change of variables i — N —i+1 together with ¥ — Np —k+ 1, which
implies that the distribution for g, can be obtained from §¢x,_r+1 via a spatial reflection
around the center of the chain, as shown in Figs. 3.1(c). Moreover, unlike Eq. (3.7), this
distribution depends explicitly on N; however, for a fixed finite k£ it still approaches a
well-defined finite distribution in the limit N — co. For k oc IV, it once again has a width
~ v/N, as shown in Figs. 3.1(c-d). Both the position of the peak and the width of the
distribution are now functions of the filling fraction v = Ng/N. The position is i = k/v,
while the width goes to zero as v — 1. In the thermodynamic limit, to leading order in

N, one finds p,n(zN;aN) x exp [—N (hg(l/) —xha(%) — (1 - x)hg(l{:g‘)ﬂ, where the
exponent is zero if x = /v and negative otherwise. One can also calculate the variance
(see Appendix B.2), which has the same form as Eq. (3.8), with paar replaced by py,
and 3V replaced by ( ]\],\; ), the dimension of the symmetry sector.

In principle, we could fix not only the particle number, but also the total magnetization
SZ... However, since the string operators 7511‘7 do not depend on the local magnetization,
the probability distribution py, (i; k) remains the same for any SZ,. For the same reason,
one also finds the same distribution for a random state within a sector with a fixed spin
pattern, i.e., labeled by the eigenvalues of {Qk}gj 1

Although jumping a bit ahead of our current discussion, one might already wonder
what these distributions look like for specific eigenstates of the Hamiltonian H;_j . As
we saw in Chapter 1, one expects that in a sector where ETH is fulfilled, highly-excited
energy eigenstates [1) in the middle of the spectrum look like random states, and thus
the spatial distribution of <1/1|(9£“T(’)f|@[)> is expected to agree with py, (7; k) in Eq. 3.9. In
particular, we fix a global symmetry sector with half filling (Np = N/2) and vanishing
total magnetization SZ; = 0. We consider two eigenstates within this sector: i) the ground
state |G.S.), that has the lowest energy within this symmetry sector; and ii) a randomly
chosen, highly excited eigenstate |E) within the fixed spin pattern sector corresponding
to v, = 1 (spins pointing up) for & < Np/2 and v, = —1 (spins pointing down) for
k> Np/2. As shown in Fig. 3.2(b), we find that the distribution of (E](’)f%’)f]E} is well
approximated by Eq. (3.9), up to finite size corrections. The ground state, on the other
hand, is a highly atypical state. For this reason, the distribution is noticeably different
from the Haar average. Nevertheless, we find that it is in fact more tightly localized, as
one can observe from Fig. 3.2(a). In the following, we will continue this discussion and
investigate the consequences of a fragmented Hilbert space on the many-body spectrum.

We end this section showing the conceptual comparison between LIOMs and SLIOMs
in Table. 3.1. We emphasize that, although the two concepts play a similar role (providing
labels for eigenstates and connected subspaces, respectively), there is also an important

46
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Figure 3.2.: Spatial distribution of SLIOMsSs for energy eigenstates. Spatial distri-

bution of the expectation value <¢|(’)£“TC’)§|1/J>, for the ground state (left) and
an excited state (right) within the sector Np = N/2, SZ, = 0 for a system
size N = 16. The excited state is randomly picked from within a sector with
a fixed spin pattern (see main text). Both states correspond to (partially)
localized distributions. For the excited state, this is close to the Haar aver-
age (dashed lines), while for the ground state the distribution is more tightly

localized.

difference: LIOMs exist throughout the entire MBL phase and are only slightly modified
by perturbations. SLIOMs, on the other hand, are destroyed by generic perturbations
(i.e., those not diagonal in the S* basis).

A similar comparison could be made between SLIOMs and conserved quantities of inte-
grable models. We highlight that the two are rather different: SLIOMs can not be written
as sums of (quasi)-local densities, unlike the conserved quantities in (Bethe ansatz) inte-
grable models (see e.g., Ref. [200]). Another difference is that SLIOMs can be used to
block-diagonalize the Hamiltonian, while in interacting integrable systems, most conserved
quantities have non-degenerate spectra, so diagonalizing them would be equivalent to fully
diagonalizing the Hamiltonian [127].

Moreover, a structure similar to the SLIOMs defined above also arises for the strongly-
fragmented system we studied in the previous chapter (Hamiltonian H3 in Section 2.2 for
S = 1), where the conserved quantities are harder to identify, as we shall see below in
Section 3.2.

3.1.3. Bulk vs boundary SLIOMs and their relationship to thermalization

Having defined the conserved quantities that characterize the t — J, model and its frag-
mented Hilbert space, we now turn to the question of how these affect the dynamics. As we
shall see, the effect of SLIOMs is strongest near the boundary, where they lead to infinitely
long coherence times, in complete analogy with the case of strong zero modes [184-189]. In
the bulk, we find that coherence times are finite in the thermodynamic limit, despite the
presence of infinitely many conservation laws. Nevertheless, even in the bulk, the SLIOMs
lead to a weaker form of non-equilibration, wherein correlations remain trapped in a sub-
extensive region, as well as to a violation of the eigenstate thermalization hypothesis within
global symmetry sectors.

Bulk behavior

A natural question to ask regarding thermalization is whether the presence of an extensive
number of SLIOMs manifests itself in infinite autocorrelation times, as is the case in MBL.
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

LIOMs SLIOMs
Gt site kP charge
TV =07 +Y s Gk =3, OF
with CES) ~ o= d(Si) /€ <OZ’?T(9£“> sub-extensive in typical states
(77, H] =0 [Gx, H =0
{7 = il}JNﬂH eigenstates of H|{G = £1,0}€—» connected subspaces

Table 3.1.: Comparison between LIOMs and SLIOMs in the ¢t — J, model. While
LIOMs label many-body eigenstates, SLIOMs label larger dimensional con-
nected subspaces. LIOMs are localized around a given position in a state-
independent way (operator strings S with support far from i are exponentially
suppressed). SLIOMs, on the other hand, are restricted to regions that depend
on the state considered (e.g. its filling fraction for the ¢t — J, model). Unlike
LIOMs, which are always exponentially localized, the SLIOMs in the t — J,
model are only partially localized with a width that is sub-extensive but infi-
nite in the thermodynamic limit.

A way to gain insight into this question is by considering Mazur’s inequality [116, 126, 170],
which as we found in Chapter 1, provides a lower bound on the time-averaged autocor-
relation of an observable based on its overlap with the conserved quantities. Focusing on
a single-site S5 operator, and considering only the SLIOMs g, the inequality in our case
reads

SZ
lim /dt (S3(1)S2(0 Z dr)s=ol”
T—oo T’ A qk B8=0
2
372k(J ]
—Z { (k 1)} = (5 (00), (3.10)
1—-3-L3 N 2N ()

where (A)s—o = tr(A)/3" is the infinite temperature average, and the denominator in the
last expression is the probability of having at least k particles in the system. Here we have
used that (§2)s—0 = >, tr(OkT(’)k)/?)N i PHaar (i3 k) since tr(S7S7) = 5Utr[(5’z) .

If the expression on the right hand side of this inequality was finite in the limit N — oo, it
would imply infinitely long-coherence times. However, evaluating it for a bulk observable,
j o< N, one finds that it decays with system size as N~/2 as shown by Fig. 3.3(a). This
implies that the conservation laws {{x} are not sufficient to prevent the autocorrelation
from decaying to zero at long times.

Even though the bound vanishes in the thermodynamic limit, it nevertheless leads to
anomalous behavior. For a conserved density like S7, i.e., Zj\[:l(S]Z (t)S7(0)) is constant,
one expects the spatially resolved autocorrelation (S7(t)S7(0)) to eventually spread out
uniformly over the whole system and thus become O(1/N) on every site j (for fixed 7).
However, in our case the lower bound ~ N~%2 > N~! implies that this cannot be the
case, and instead suggests that the charge remains trapped within a much smaller region of
size O(N'/2). This can be understood from the distribution of OfTOf in Fig. 3.1, which we
discussed in the previous section. In particular, note that the infinite temperature overlap

<S§cjk>6:0 — tx(OFTOF) /3" equals the value of the probability distribution piaa (j; k) in
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Figure 3.3.: Autocorrelations for the t—.J, model in the bulk (a) Mazur bound (3.10)
on autocorrelations in the bulk, at j = N/2, decays as x N —1/2 a5 a function
of the system size N. (b) The same bound, shown for a fixed N = 600,
decays as o< j71/2 as a function of the distance j from the boundary. (c) The
long-time average of spatially resolved correlations, computed numerically for
small chains (and averaged between times ¢ = 50 and 100), shows a persistent
peak, instead of the complete spreading expected from thermalization.

Eq. (3.7) and thus

pHaar
3.11
Z pHaar F > k) ( )

As we saw above, the SLIOMs in the bulk, namely ppaar(j; k), are localized around po-
sition j = k/v with a width oc N /2 Therefore, a given S’; overlaps significantly with
only O(N'/2) different conserved quantities ¢y, and these define the region in which the
charge can spread out. This conclusion is supported by numerical results on the spatially
resolved correlator (S%(t)S7(0))s=o at long times for small chains, as shown by Fig. 3.3(c).
These results suggest a scaling (5% (t)S7) =0 ~ \/% f (%) in the limit of large N. While
autocorrelations in the bulk thus decay to zero at long times in the thermodynamic limit,
they do it in an anomalous manner. Indeed, an initial product state in the fermion oc-
cupation basis would clearly not relax to a thermal state solely specified by the global
conserved quantities Hy;_j , Np and S{;. In particular, since each sector with a fixed
pattern of spins is effectively a chain of spinless fermions with 2 possible states per site,
time evolving from such an initial state will result in half-chain entanglement entropies at
most % In 2, much smaller than the entropy of a chain with 3-dimensional local Hilbert
space at (or close to) infinite temperature (% In3). It is also true that each of these initial
states thermalizes with respect to the associated effective spinless fermion Hamiltonian,
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

i.e. the t — J, Hamiltonian projected to a given connected sector with a fixed value of the
SLIOMs. Note, however, that this effective Hamiltonian is non-local: to know the sign of
the interaction between a given pair of (spinless) fermions, one in principle has to know
the entire spin pattern in the original variables.

This sensitivity to initial conditions, due to the presence of bulk SLIOMs, is also reflected
in the properties of the eigenstates of H;_; . As the above explanation shows, they have at
most % In 2 entanglement (for a half chain), much smaller than a generic Hamiltonian with
3 states per site would have in the middle of the spectrum. Moreover, due to the strong
fragmentation of the Hilbert space, different eigenstates at the same energy density, and
with the same global quantum numbers Np and SZ;, can have very different expectation
values for simple local observables. This is trivially true for the symmetry sectors with
Np = NL, where all states are completely frozen, but it in fact holds more generally. To
confirm this, we consider the global symmetry sector with Np = N/2 and SZ, = 0, and
numerically evaluate the eigenstate expectation values of the observable S3, /QSJZV o1 We
find (see Fig. 3.4) that the expectation values of this operator have a wide distribution
over different eigenstates. Approximating the eigenstates by an equal weight superposition
of all possible hole positions with a given spin pattern, on the other hand, suggests that
in fact there is a very slow narrowing of this distribution, with the width scaling as N—/4
in the thermodynamic limit as obtained from Monte Carlo simulation (see Appendix 3).
This slow algebraic narrowing should be contrasted with the ETH ansatz, which as we
found in Chapter 1 predicts an exponentially narrowing distribution. In fact, the N—1/4
scaling is even slower than the case of integrable systems, which typically have a width ~
N2 [201-203]. In general, even in the absence of the ETH, the eigenstate-to-eigenstate
fluctuations of a local observable in any generic translation invariant system should decay
at least as fast as ~ N~1/2 [88, 92]. This difference is consistent with our picture of
SLIOMs wherein the local observable only ‘sees’ an O(v/N) part of the system.

From these results, we conclude that if one considers only the global (Np, SZ;) sym-
metry sector, without resolving the additional non-local symmetries, then the diagonal
matrix elements of local observables violate ETH. This can be understood as follows: each
connected sector has a different ‘embedded’ Hamiltonian, depending on the spin pattern,
and the properties of the associated eigenstates can therefore differ from sector to sector.
Note that this situation is different from the case of more commonly occurring non-local
symmetries, such as spin-flips or lattice translations, which do not lead to distinct dis-
tributions of diagonal matrix elements [175, 176, 204, 205] Of course one can instead
consider only eigenstates within a given sector, in which case ETH is fulfilled for typical
spin patterns (with the exception of a few integrable sectors, which we discuss below).
Note, however, that this requires fixing an extensively large number of non-local symme-
tries (the SLIOMs)%, making difficult to meaningfully take the thermodynamic limit. In
this sense, our case is similar to that of integrable models, where one usually considers
matrix elements without resolving all the extensively many conserved quantities, and finds
a similarly slow, algebraic decay of their fluctuations with system size [201-203].

So far we discussed the non-ergodicity originating from the fragmented Hilbert space,
whose components are labelled by the SLIOMs. Our conclusions about the lack of thermal-
ization when not resolving the SLIOMs symmetry sectors therefore apply independently
of the structure of the Hamiltonian inside the connected blocks. For the ¢ — J, Hamilto-
nian (3.1) it turns out that there is some additional structure for sectors with a completely
ferromagnetic or completely antiferromagnetic spin pattern. These can be mapped [192]
onto a spin-1/2 XXZ Heisenberg chain (with anisotropy A > 0 and A < 0, respectively),

5We note here that not all different spin patterns give rise to distinct distributions of diagonal matrix
elements. We leave it as an open question to identify exactly which combinations of the SLIOMs would
need to be fixed to obtain a set of eigenstates that obey ETH.

50



3.1. Tlustrative example of SLIOMs: ¢t — J, model

e N=16 e N=12 e N=38

/255\-'/2+1>

Sy,

—0.6 —0.4 —0.2 0.0 0.2 04 0.6
Energy density E/N

Figure 3.4.: Diagonal matrix elements in the ¢ — J, model. Expectation value of
the average nearest neighbor antiferromagnetic correlations in eigenstates of
H;_j, with global quantum numbers Np = N/2 and }_;S7 = 0, and open
boundary conditions. For the system sizes shown (N = 8,12,16), the distri-
bution becomes wider with increasing system size, while asymptotically it is
expected to narrow as ~ N~Y4, This is a consequence of the strong fragmen-
tation labeled by the SLIOMs, and is in contrast with ETH, which predicts
an exponentially narrow distribution.

which is quantum integrable. However, most of the other sectors are not. The integrability
of the FM and AFM sectors could also be broken by additional perturbations that are
diagonal in the S* basis (e.g. a staggered field). These commute with all the SLIOMs, and
therefore do not change our conclusions about the overall non-ergodicity of the model.

Statistically localized strong zero modes

It is worthwhile to consider separately those constants of motion ¢ that are localized at the
boundary of an open chain. In this case k does not scale with the system size and therefore
its distribution pgaar(i; k) remains finite in the thermodynamic limit. Consequently, one
expects that an observable near the boundary has finite overlap with these SLIOMs and,
under time evolution, a non-vanishing fraction of it would remain localized in a finite region
near the boundary. Indeed, computing the lower bound from Eq. (3.10) for a position j
that does not scale with N, one finds that it remains finite in the limit N — oco. The
bound is largest at the boundary, j = 1, where it takes the value 4/9, and decays away
from the boundary as j~/2. This is shown in Fig. 3.3(b). Obviously, the same holds near
the right edge, when j is replaced by N + 1 — j. Therefore, at the boundaries the SLIOMs
lead to infinite coherence times. In fact, in order to derive infinite coherence times at the
edge, one does not need infinitely many SLIOMs, it is sufficient to consider just ome. In
particular let us take the spin of the leftmost fermion,

= (H(1 - @))Sf, (3.12)

7 7<i
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

Ht—Jz + Hpert
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Figure 3.5.: Bulk vs edge autocorrelations. Connected infinite temperature autocor-
relation function for the center site i = N/2 and at the left boundary i = 1
for system sizes N = 11,13,15. (a) In the ¢t — J, model (Eq. (3.1)), which
conserves both bulk and boundary SLIOMs ¢, the edge autocorrelator shows
infinite coherence times while in the bulk it decays to a value o« N~%/2, which
is anomalously large but vanishing in the thermodynamic limit. (b) Once the
perturbation Eq. (3.15) is added, SLIOMs in the bulk are broken and the bulk
autocorrelations decay to the value oc 1/N expected for thermalizing systems.
The boundary SLIOMs gy, ¢, on the other hand, are still conserved, leading
to a finite long-time value for autocorrelations at the edge, well approximated
by the analytical lower bound (dashed horizontal line).

which is equivalent to §p—1 in the above definition, with the projection taking a particularly

simple form P! = [1;<;(1 — 72;)7t;, using the local constrained fermion density 7i; =

nj+ + nj . There is another similar operator localized near the right edge
4 EZSf(H(1—ﬁj)). (3.13)
i §>i
We will make use of Mazur’s inequality once again. The conservation law [G,, H] = 0
implies that

[(Sidr)s=ol®  4/97 L4
(@)oo 13N g

1
lim ~ / dt (S(1)57) 50 >

3.14
T—oo T ( )

in the thermodynamic limit. In evaluating the right hand side we used the fact that
(S%G0)p=0 = PHaar(J31) = 2/37 as given by Eq. (3.7), and that ¢ = 1 — Pempty, where
Pempty is a rank 1 projector onto the completely empty state. One can do the same
calculation near the right boundary, for 5%, ;_ i using the conservation of §,., which leads
to the lower bound 4/9V+1-J.

While this result is weaker than the one taking all the ¢ into account — it decays expo-
nentially, rather than algebraically j~1/2 towards the bulk —, it follows from much weaker
conditions. This implies that it is possible to add perturbations to the Hamiltonian that
destroy the strong fragmentation in the bulk, but nevertheless lead to non-thermalizing
dynamics at the edge. A simple example of such a perturbation is

N-2
Hypery = Z i1 (57 f+1 + SfoH)ﬁHg, (3.15)
i=2

which allows a spin exchange, but only if both neighboring sites are occupied by a fermion.
Therefore, this perturbation no longer conserves the spin pattern, but it still commutes
with the two boundary SLIOMS, g .
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SZMs Boundary SLIOMs
U — Zn e—n/§ §(n) Ge = Zz O;
(0;10;) < e~/¢ for typical states

[0, H] = e with |e| <e Y |[g, H] =0
U2 =1 (ﬁ:l_Pempty

{R,, ¥} = 0 — degeneracies |{R.,q;} = 0 — degeneracies

Table 3.2.: Comparison between boundary SLIOMs and strong zero modes
(SZM). The SZM is a sum of string operators S (e.g. Jordan-Wigner strings),
ending at distance n from the edge, with coefficient decaying exponentially
with n. For the boundary SLIOMs, on the other hand, localization appears
upon taking the expectation value in typical states with finite particles den-
sity. While SZM are usually only conserved in the thermodynamic limit, the
SLIOMs are exact integrals of motion at any finite sizze N. The existence of an

. S5 . . .
additional symmetry, in this case R, = [] ; €Xp (ZWTJ), anti-commuting with
the SLIOMs or edge modes, implies degeneracies throughout the many-body
spectrum. SZM square to 1, while in our case (j?r is 1 everywhere except in a

particular one-dimensional subspace (i.e., a state with no particles).

As a consequence, the bound (3.14), evaluated at the boundaries, applies to the per-
turbed Hamiltonian H;_ j, + AHpert, despite that it is now completely thermalizing in the
bulk. As shown in Fig. 3.5, the lower bound derived from Mazur’s inequality appears to
be tight for the boundary autocorrelation, while the bulk autocorrelation in the perturbed
system now decays to an O(1/N) value, as expected for a thermalizing system.

The appearance of infinitely long coherence times at the boundaries is strongly remi-
niscent to the case of strong edge modes previously discussed in the literature [184-189].
The operators gy, play the same role as the strong zero modes (SZM), whose presence
prevents boundary operators with a finite overlap with those from spreading into the bulk.
The differences are twofold: i) Our boundary modes are only statistically localized, in the
sense defined above, unlike the usual SZM which are localized in the operator norm. ii)
On the other hand, in our case ¢,, commute exactly with the Hamiltonian for arbitrary
system sizes, unlike the strong zero modes which only commute up to O(e~) corrections.
One can find a comparison between SZMs and boundary SLIOMs in Table. 3.2.

The fact that H = H;_j, + AHper, commutes with the two edge mode operators means
that it admits a block diagonal form according to the spin of the left- and rightmost
fermions, written formally as H = Hy @ Hy| & Hy @ H )4 (excluding the empty state on
which it acts trivially). Eigenstates can therefore be labeled by the left- and rightmost
spins. In the presence of additional symmetries, not commuting with ¢, and §., this
implies degeneracies in the energy spectrum at all energies, just as in the case of usual
strong edge modes. In particular, H;_; and Hpe are both invariant under flipping all

53
spins simultaneously i.e., R, =[], exp (m%) (recall the unusual factor of 1/2 that we

omitted in the definition of spin operators in Eq. (3.2)). This operator flips the eigenvalues
of both ¢, and ¢, (since {R,ge,} = 0), and therefore interchanges the blocks Hy <+ H |
and Hy| <+ H)y. This implies that the spectrum is at least 2-fold degenerate everywhere;
since the Hamiltonian commutes with gy, ¢, R; at any finite size, this degeneracy is exact:
Given an eigenstate |E) with energy E, then R,|FE) is an eigenstate with the same energy
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

but it is different than |E). Indeed, assuming gy ,|E) = ¢, E) with ~,, # 0 which holds
for all eigenstates excluding the empty state, then ¢, R;|E) = —v¢,R;|E), which implies
(E|R.|E) = 0.

Given the presence of such edge modes throughout the entire spectrum, it is natural to
ask whether the ground state of H;_; is in a topological phase. This is in fact not as
obvious as it might seem, for two reasons: firstly, the type of edge mode operators we have
discussed will also emerge in symmetry-breaking phases — one can think of the edge mode
as measuring a spontaneous boundary magnetization. If the bulk is magnetized, the edge
magnetization is simply picking this up. This happens in the large J, limit. Secondly, we
have already noted that we can essentially trivialize the bulk whilst preserving the edge
mode (with perturbations of the type in Eq. (3.15)), in which case the ground state can
be trivial in the bulk’.

Nevertheless, it turns out that the ground state of the ¢ — J, model can be in a topo-
logically non-trivial phase. This is all the more intriguing when one observes that this
model, as defined in Eq. (3.1), is gapless for 0 < J, < t [206] (notice that we have con-
sidered J, = t/4), whereas (symmetry-protected) topological phases are usually gapped.
Recently, frameworks for gapless topological phases have been introduced [207, 208]. In
fact, the ground state of the ¢ — J, model appeared as a particular example of a (topolog-
ically non-trivial) symmetry-enriched critical point in Section VIL.A of Ref. [208]; there it
was discussed in the formulation as a spin-1 chain, with the Hamiltonian arising as the
simplified version of the gapless Haldane phase first introduced in Ref. [206] protected by
the Zo x Zy group of 7 rotations R*, RY and R?. Interestingly, the topologically non-trivial
nature of the gapless ¢ — J, model was noted over two decades ago in Ref. [192] in terms
of a hidden antiferromagnetic order, although the twofold ground state degeneracy was
not observed. As we have noted above, this twofold degeneracy is ezact in this case. The
Zgy X Zy symmetry group of the spin-1 chain studied in Ref. [208], maps to the fermionic
parity R* — (—1)NF and to R® — U = [[, U; with U; = [0)(0] — | 1)(} | — | $){(1 | in the
fermionic formulation [206]. Our above definition of R, in terms of the fermionic variables,
replaces the second Zy by a Z4 symmetry group instead 8.

If we add an arbitrary® perturbation (breaking the bulk and edge SLIOMs) that pre-
serves either of the above symmetry groups, then this twofold degeneracy would only
persist at low energies and would acquire an exponentially small finite-size splitting, per
the arguments in Refs. [207, 208].

3.1.4. Experimental realization

Ultracold atoms in a shallow optical lattice that are optically dressed with a Rydberg
state, realize a variant of the ¢t — J, model of Eq. (3.1) [210, 211]. The Hamiltonian of the
Rydberg system is given by

U Up/8
HRydberg =—1 Z(ci,acg_’_lﬂ + HC) + Z W’ TZT]><TZT] ’

io i#]
Here, the first term describes the hopping of the atoms, which possess two internal states,
| }) and | 1), in a one-dimensional optical lattice. The atoms can have either fermionic
or bosonic statistics, as for the latter a hard-core constraint is typically enforced due to
the strong Rydberg interactions. The interaction potential is of strength Uy = Q*/8|A|?

"This would mean that the edge mode is not stabilized by symmetry alone but requires the boundary
SLIOM.

8This unusual symmetry protection was later investigated in Ref. [209]. The authors found that the
ground state is in fact topologically non-trivial with respect to this Z, symmetry and constitutes an example
of a intrinsically gapless topological state.

9We note that the edge mode is stable against opening up a bulk gap, as discussed in Ref. [208]
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3.2. Dipole-conserving Hamiltonian Hg

and has a cutoff at R, = 2A, where (2 is the Rabi frequency and A the detuning from the
Rydberg sate [212]. This potential can be adjusted such that it effectively acts only on
nearest-neighbor sites with some strength J, [211]. Since the two Hamiltonians only differ
by diagonal terms, our results for SLIOMs in the ¢ — J, model Eq. (3.1) carry directly over
to the Rydberg system.

Moreover, we can partially break the structure of the SLIOMs in the bulk by engineering
for the Rydberg system a perturbation in the spirit of the one in Eq. (3.15). In particular,
when coupling the two internal states, | ) and | 1), with a global microwave of strength
Qmw < J, that is blue detuned by 2J, from the atomic transition, an effective coupling
of the form > (| T)(T [)i—157(] T)(T |)i+1 is generated in the rotating frame of the Ryd-
berg interaction [213, 214]. One can realize this perturbation in addition to the Rydberg
interaction, for example by pulsing the microwave drive. This perturbation does not pre-
serve the total charge but nevertheless has an effect similar to Eq. (3.15), destroying the
SLIOMs in the bulk while maintaining them at the boundary.

Note that the systems considered in this section are different from those in Egs. (3.1)
and (3.15), in that they are not invariant under the symmetry transformation R, =

[1,exp (m%) Therefore, these models do not show the exact twofold degeneracy of the

spectrum previously discussed. Nevertheless, they exhibit the same physical phenomena
with respect to thermalization as the ones discussed above.

3.2. Dipole-conserving Hamiltonian H;

In the previous chapter we showed that infinite temperature correlations evolving under
Hamiltonian Hs Eq. (2.1), fail to thermalize due to the strong fragmentation of the Hilbert
space (in the local S* basis) into exponentially many invariant subspaces. In fact, this also
had a strong effect on the distribution of expectation values of local observables on energy
eigenstates which led to the breaking of the weak formulation of ETH. We developed some
intuition about the underlying reason for this fragmentation which allowed us to construct
exponentially many frozen states as well as other higher-dimensional sectors. However,
a complete understanding of the underlying structure was not fully addressed. Here we
remedy this, constructing a full set of non-local conserved quantities which completely
characterize the block structure of Hs.

While the previous example of the ¢t — J, model may have seemed somewhat trivial, the
same general concept of statistically localized integrals of motion applies to the more com-
plicated dipole-conserving Hamiltonian Hs3 for spin-1 local degrees of freedom. However,
the latter has a much richer structure. This additional structure accounts for the fact
that H3 has a much broader distribution of the sizes of connected sectors and a localized
behavior in the bulk in the form of infinite autocorrelation times, a feature not present in
H,_ ;.. This appears as a consequence of SLIOMs that are statistically localized on finite
regions. In particular, while in the ¢ — J, model the starting point of the identification of
sectors was related to the number of fermions, a usual U(1) symmetry, and the explicit
local kinetic constraint of no spin-exchange; in the case discussed below the analogous
quantity — the number of objects whose pattern is conserved— is already non-local in
terms of the physical degrees of freedom.

Before embarking on this construction, let us briefly recall the form of Hamiltonian Hj

N—2
Hy=—Y Sf(S,)°Sh,+He, (3.16)
i=1
which we take on a chain j € {1,..., N} with open boundary conditions, and as before

denote the three on-site eigenstates of S? by |+),|—),|0) corresponding to eigenvalues
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Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

+1, —1, 0 respectively, and refer to them as + and — charges and empty site respectively.
As we already pointed out before, SLIOMs are completely determined by local terms of
the Hamiltonian and in particular, are shared among the family of Hamiltonians Hs({.J;})
introduced in Eq. (2.8) as well as the associated circuit dynamics of dipole-conserving size
3 gates.

3.2.1. Mapping to bond spins and defects

In order to identify the structure of connected sectors, it is useful to rewrite the dynamics
in terms of a new set of variables. These new variables consist of two different types of
degrees of freedom:

1. spin-1/2 variables associated to the bonds of the original chain, with corresponding
Pauli operators denoted by J‘;fﬁ on the bond (7,7 + 1);
2. and hard-core particles living on the sites, which we will refer to as defects e.

To get a one-to-one mapping between basis states in the original S7? basis and the new
variables, we require the spins on the two bonds surrounding a defect to be aligned. Intro-
ducing the defect occupation number operator nld on site ¢, we can write this requirement
formally as af_17in§l|¢> = aii+1nf]¢> for any physical state |¢)). With this constraint, the
two Hilbert spaces match up and we get a mapping between basis states in the original
S7 basis and the new variables, as we now explain.

In order to understand how the mapping works, let us start considering those configura-
tions of the original variables, which obey the following rule: subsequent charges—ignoring
empty sites in-between—have alternating signs. In other words, these are the set of states
that have perfect antiferromagnetic ordering after eliminating the intermediate empty
sites.

We can map a configuration of charges satisfying this rule to a configuration of bond
spins with the following convention: we represent eigenstates of the local o7, ; as pointing
left («) or right (—), with corresponding eigenvalues —1 (+1) respectively; and map each
(+)-charge to a domain wall of type <——, and each (—)-charge to a domain wall of type
—<—, as shown in the example of Fig. 3.6(a). To account for all configurations, we need to
include two additional auxiliary bonds (N + 1 bonds in total), at the left and right ends of
the chain, whose spin configuration is fixed by the sign of the left- and rightmost charges
respectively. A way of visualizing the mapping is to think of the bond spins as an electric
field, emanating from positive charges and ending at negative charges, satisfying Gauss’s

law
1

2
where the operator S7 measures the on-site charge in the original (spin-1) variables. The
rule of alternating signs ensures that this prescription is consistent within the spin-1/2
representation on the bonds. In fact, one can understand this mapping as a restriction
on the values of standard height field constructions appearing in the context of quantum
dimers (see e.g., Ref. [215] and Ref. [216] for a generalization applied to systems with
multipole moment conservation in one and two dimensions.)

The mapping to bond spins runs into a problem when there are two subsequent charges
with the same sign. To generalize the mapping to these cases, we introduce extra defect
degrees of freedom on the sites, which keep track of those charges that do not conform to
the rule of alternating signs. To do this, we sweep through the chain from left to right,
putting spins on the bonds in accordance with the previous rule. When, at some position
1, we encounter a charge that has the same sign as the one preceding it, we fix the spin
of the bond (i,7 + 1) to coincide with preceding one, O it1 = 01, At the same time,

(0741 —0i1) = S5, (3.17)
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Figure 3.6.: Mapping from spin-1 chain to bond spins and defects. (a) A charge
configuration with alternating signs can be mapped to spin-1/2 variables on
the bonds. (b) For a generic configuration, one also has to introduce defects,
living on sites, whenever a charge would violate the rule of alternating signs.
Note that defects with neighboring bond spins pointing to the right (left)
correspond to positive (negative) charges in the original.

in order to keep track of the charge, we place a defect on the site . This way we end up
with a model with two types of degrees of freedom: spins on the bonds and defects on
the sites. The resulting Hilbert space is 3V dimensional'®, since a site combined with the
bond on its right only have together three possible configurations: either (1) (o —), (2)
(o <) or (3) (e o) where o is specified by the spin on the previous bond. An example of
this mapping with four defects is shown in Fig. 3.6(b).

It is important to note that while defects themselves do not carry a sign, we can still
distinguish whether they correspond to positive or negative charges in the original variables
by looking at the spins surrounding them: a defect with neighboring spins pointing right is
mapped to a positive charge, while a defect with neighboring spins pointing left is mapped
to a negative charge. We refer to these as (+)- and (—)-defects, and they correspond to

eigenvalues +1 of the operator n;-i 2 . n% The old and new degrees of freedom

i—1,"%
are related to each other by the generalized Gauss’s law

z J—
Oii+1 = O

1 d
Q(Uz‘z,z‘ﬂ —0f 1) =57 —of 1 mnf, (3.18)
such that the right hand side vanishes in the presence of a defect. This allows us to write

the global charge and dipole moment in terms of the new variables as

N
1
Q= ) (U]ZV,NH - ‘76,1) + Z Ufﬂﬁ'nga (3.19)
i=1
1 N-—1 N
P =23 (ofin — ki) T iofy mf. (3.20)
1=0 i=1

Notice that in the absence of defects, @) is set entirely by the configuration of the bond
spins on the boundaries, while P maps onto the total magnetization (up to a constant),
i.e., a usual global U(1) internal symmetry.

The mapping we defined is a non-local one. For example, to identify a defect (nf =1)
on a given site i, one needs to measure the sign of the closest charge to the left (or right)
of 7, which requires non-local string operators analogous to the ones we introduced for
the ¢t — J, model. A natural question to ask is: when does there exist a Hamiltonian in

10T here is some ambiguity regarding the completely empty state which can be mapped to two different
states: by convention we choose it to correspond to a state with all bond spins pointing right and no
defects.

o7



Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

the new bond variables and when is this a local one? Let us assume for a moment that
there are no defects, such that the mapping simplifies to Eq. (3.17). In this situation one
finds 07,1 = 0§51+ %Ejgi S%. One is then tempted to conclude that any local range-/
charge-conserving process only involves the intermediate (¢ — 1) bond variables, such that
this process is mapped to a local one in terms of bond variables. However, the constraint
0% = %1, rules out those which do not preserve the sign of the left- and rightmost charges,
as otherwise this leads to |0#| > 1 on some bonds or equivalently, require to update all
bonds to the right (left) of the given site. Thus, the relevant property of H that ensures
this is the same as the one encountered above as a necessary condition for statistically
localized strong boundary modes. Namely, we require the following condition: terms of
the Hamiltonian acting on a given region of space can not change the sign of the left- and
rightmost charges within this region. In fact, we already noticed in the previous chapter
that Hj satisfies this property. Consequently, H3 also conserves gy, and therefore exhibits
strong boundary modes. We return to this point in the following section.

Before proceeding we notice that the mapping we just presented also holds in the pres-
ence of diagonal interactions expressed as sums of products of local S* operators. For
example, the term m _,(S7)? counting the number of non-zero spins becomes 2 3~ (1 —
07 1,07 :+1) leading to the XXZ model within the sector with N? = 0. Moreover, this same
mapping also applies to the ¢ — J, Hamiltonian in Eq. (3.1), which for J, = 0 becomes

N—-1 x VA xT z
Ht_Jz‘NdZO X Zj:l (Ui,i+1 —0i-1,9,i+19j+1,j+2 -

3.2.2. Labeling of connected sectors: Non-local conserved quantities

Armed with this mapping, we can now identify the integrals of motion that label the
fragmented Hilbert space, and show how they fit into the general notion of statistically
localized operators discussed above.

Pattern of defects

We start by noting that Hs Eq. (3.16) does not contain any terms that could create or de-
stroy defects: the number of defects, N¢ = > ngl, is conserved (1). This can be confirmed
explicitly by considering the effect of local terms in Hj3 acting on charge configurations.
The possible non-trivial transitions of a 3-site chare configuration are given by

’ Spin-1 ‘ Bond variables
N fect: ( ) —
04 0em 4 — & odefect: + 0« + =0 9o+ = — «— + —
Defect: S0 e300 — — ¢ + —
No defect: <0+ + = — —emi— + = — 0
O+ —evw+ -0
Defect: 00— — Sew— e — 0«

as well as those obtained by exchanging + > —, and < with —. In particular, if the
left-most charge were a defect (highlighted in red), it remains being a defect and by the
action of Hs, only an alternating pattern of charges is created after it conserving the sign
of the left- and rightmost charges on those 3 sites and thus the number of defects.

Thus the number of defects acts as an emergent U(1) symmetry (different from the
original U(1) symmetry of charge conservation), emergent in the sense that it is non-local
in the original variables and only becomes local after the mapping outlined above. One
can use the operators g, defined for the physical variables in Eq. (3.6), to express the

number of defects as

1 N

N% = 3 Z (Qk+1)2(1 + QkGrt1), (3.21)
k=1
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3.2. Dipole-conserving Hamiltonian Hg

which further emphasizes the non-local nature of the defects.

In fact, the Hamiltonian Hj3 conserves not only the total number of defects, but also
(2) the pattern of their signs (similarly to how H;_ ;. conserved not just the number of
fermions, but also the spin orientation of each fermion). For example, the state shown in
Fig. 3.6(b), with (from left to right) a (—)-defect followed by three (+)-defects, can only
go to configurations with the same pattern. Thus we see that the mechanism behind the
fragmented Hilbert space is analogous in the two cases, except that for Hs it originates
from a ‘hidden’, rather than explicit, U(1) symmetry.

The pattern of defects can be characterized by eigenvalues of statistically localized
operators, similar to the ones discussed above in the case of the ¢t — J, model. In fact,
after mapping to bond spins and defects, one can directly use the same set of operators
to label the defect patterns, as defined in Eq (3. 6) by replacing S7 for the ¢t — J, model
with the local defect charge operator o;_; i 4 and Pk with a prOJector onto configurations
with k& — 1 defects to the left of site i, i.e., ZJQ =k—1, and n = 1. In the original
variables, these are rather complicated non-local operators Nevertheless a Haar random
state in the thermodynamic limit will have a finite density of defects, vy = (N /N = %
(see Appendix B.2). Indeed, since for large N the variance is once again exponentially
suppressed (Egaar[(nd)?] — Epaar[(n?)]? o 377), almost all states have a similar defect
density. For such states, one could repeat the argument in Section 3.1.2 to argue that the
probablhty distribution of finding the k-th defect on site i is peaked around a position
1 = k/vg, with a width that scales as vk ™. Similarly, a random state with a fixed total
charge () will also have a finite vy and therefore leads to a partially localized probability
distribution. Thus the operators that label the defect patterns and the corresponding
Hilbert space sectors of Hs are at least statistically localized in the sense we previously
defined.

We conclude this paragraph by noting that apart from the charges of each defect, Hj
also conserves the sign of the leftmost and rightmost physical charges, as measured by the
operator gy and ¢, defined in Egs. (3.12) and (3.13) respectively (as mentioned above, this
condition is in fact necessary to ensure that the Hamiltonian remains local after mapping
to the new variables). This implies that our conclusions about the lack of thermalization
at the boundary, and about exact degeneracies in the spectrum, discussed in Section 3.1.3
for the ¢t — J, model, apply also to Hs. However, H3 is different from H;_; , in that it
shows fully localized behavior also in the bulk. To understand the reason for this, we now
turn to a further set of conserved quantities possessed by Hs.

Dipole moment of dynamical disconnected regions

While the conservation of the pattern of defect charges is sufficient to fragment the Hilbert
space into exponentially many disconnected sectors, it does not account for all the sectors
of Hs. The conservation of the signs of defects (which are in fact a subset of the conserved
quantities exhibited by Hy_z,) is also insufficient to explain the localized behavior (i.e.,
infinitely long-lived autocorrelations) occuring in the bulk that we uncovered in the previ-
ous chapter. As we now argue, this rich non-ergodic dynamics originates from an interplay
between the SLIOMs discussed in the previous section (that is, the pattern of defects),
and the conservation of the total dipole moment. Thus, while on their own neither of
those ingredients leads to fully localized behavior, their combination is sufficient to make
Hj localized.

The zero defect sector N¢ = 0 with a given boundary condition (corresponding to a fixed
total charge @ = 0, 41) further splits up into sectors, as seen from Eqs. (3.19) and (3.20),
according to the total magnetization of the bond spins, >, afﬂ- 41, which in this case is

"Notice that k ~ O(1) at the boundary, but k ~ O(N) at the bulk for a finite density of particles.
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Figure 3.7.: Hopping of defects. To maintain the constraints, when a defect hops it has
to flip a bond spin to its right, making its dynamics asymmetrical. In the
original variables, this process is equivalent to emitting/absorbing a dipole
from the right.

equal to the dipole moment P up to a constant shift.

When defects are present, they also carry a dipole moment, as shown by Eq. (3.20). The
asymmetric definition of the defect—same charge as the nearest on its left— makes that
its hopping only modifies the configuration on bonds that are to its right (see for example
Fig. 3.7). This is the same as saying that defects can only emit (absorb) dipoles to (from)
their right and never from their left. Thus, for every defect the total dipole moment of
charges to its right (including the defect itself) is conserved. This implies that the dipole
to the left of the defect (not counting the defect) is also separately conserved.

We thus find that each defect gives rise to an additional conserved quantity. Equiv-
alently, we could take a configuration with N¢ defects, which separate the chain into
N¢ 4+ 1 regions, and associate a conserved dipole moment to each of these regions. In
assigning the dipole moment ]3[;{7“1) to the region between defects k and k+ 1, one should
include the k-th defect (at the left boundary) but not the (k + 1)-th on its right (e.g.

|---[®— - ¢)[® < ---)). The total dipole moment then becomes'? P = ch\io P[k,k+1)7
where k labels the region between the kth and (k4 1)th defect, each with its own conserved
dipole moment P[k’kﬂ). Moreover, we notice that while the total charge Qy in each of
these regions is also conserved, this does not give rise to new independent constants of
motion, since the value of these charges are already fixed by the pattern of defects. More

explicitly, the total charge between two equally signed defects, e.g., ... eis given by the
charge of any of the defects (in this case Qk = +1); and equals to zero otherwise. This is
shown in Fig. 3.8 in terms of the original spin-1 degrees of freedom.

Note that, while the position of the k-th defect in the bulk has fluctuations that grow
with system size as oc v/N (much like the case of the k-th charge in the t—.J, model before),
the average distance between neighboring defects remains finite in the thermodynamic
limit for states with a finite defect density vy. This implies that the dipole moment
]5[,{7“1) within a region of two consecutive defects, is a conserved quantity that is more
localized than the previously introduced SLIOMs. We can make this point more explicit,
by defining the operator that measures P[k7k+1) as

Pyokrn) = Z Q% Py, (3.22)
ij

where Qf] is a projector onto configurations where the k-th defect sits on site ¢ and the
(k + 1)-th defect is on site j, while P;; measures the dipole moment in the region [i, j — 1]
(including the former but not the latter defect). Given Eq. (3.22), we can go to center
of mass and relative coordinates: while the expectation value <QZ), as a probability

12By definition, 13[0,1) corresponds to the dipole moment between the left boundary of the chain and
the first defect; while 15[ ~Nd Ndi1) corresponds to the dipole moment between the last defect (including it)
and the right boundary.
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Pio1),. Pa.2) Pagsy P P Pi7.8)
PEe Y BRE Y -E R
Figure 3.8.: Labeling of connected sectors in the original variables. Charges that
have the same sign as the ones to their left (circled) correspond to defects,
whose total number (N?) and pattern is conserved by the Hamiltonian Hs.
Moreover, the dipole moment P, within each region between two subsequent

defects (including the defect on the left but not the one on the right, as
indicated by the brackets) is also independently conserved, such that the total

Py 5) 6) Pie,7

dipole becomes P = Z]kvjo p[k7k+1).

distribution, is only partially localized in —7 it is exponentmlly localized in the relative
coordinate, decaying as (1 — Vd)(j*i).ln this sense, P[k7k+1) is statistically localized to
a finite region of length ~ 1/|log(1 — v4)| (see Appendix B.1 for more details on the
definition of SLIOMs appropriate to this case). As we show in the next section, the
existence of these additional conserved quantities lead to additional dynamical constraints
on the mobility of defect configurations. These constraints, together with the statistical
localization of ]5[,“ k+1), account for the fact that H3 has infinite coherence times for charge
autocorrelations in the bulk, (as well as a broad distribution of entanglement in energy
eigenstates, which we discuss in Section 3.2.3).

To summarize, let us compare the conservation laws of Hg with those of the t — J, model
discussed above. In the latter case, we had a conserved number of fermions, each of which
carries a spin-1/2 whose S* components are all separately conserved — defining what
we have named the pattern of spins. Hs is different for two reasons. First, the objects,
whose pattern is conserved are the defects, which are non-local in the original variables.
Furthermore, H3 has an additional set of conserved quantities {Jf’[k,kﬂ)}gim arising due
to the interplay between dipole conservation and the defect pattern: all the spatial regions
separated by defects have separately conserved dipole moments. Altogether, we have
identified the following set of conserved quantities for Hs: the total charge ) and dipole
P, the left- and rightmost charges gy ,, the number of defects N 4 the charge of each defect
{Qr = il}{j:dl (or charge pattern) and the dipole moment of regions between defects,
{P[k7k+1)}ivjo. We have numerically confirmed that these integrals of motion together
uniquely label all the connected sectors of Hjs in the local S* basis, i.e., two different
sectors correspond to two different sets of values of the conserved quantities. Moreover,
since a dipole-conserving random circuit of 3-site gates has the same fragmentation of the
Hilbert space as Hs, it consequently also conserves all of the quantities identified above.

3.2.3. Implications for dynamics

We have seen how the conserved quantities of Hs fit into the scheme of SLIOMs (see also
Appendix B.1). However, their precise nature is different from the simpler case of the
t — J, model discussed in Section 3.1. As mentioned above, this difference is responsible
for the fact that, despite both being strongly fragmented, the two models exhibit rather
different dynamics in their bulk: Hj3 has infinite correlation times when evaluated on
infinite temperature states, unlike H;_; . Here we explain how the SLIOMs constructed
in the previous section bring about localized dynamics, highlighting the role played by the
dipole moments P[k:,k-s—l)-
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Charge localization

To see how the conservation laws lead to localized behavior, consider a configuration where

there are two subsequent defects with a + charge, at sites ¢ and j > : Jorz[ . ]Jorj By the
definition of defects, the region [i + 1, j — 1] between them has 0 total charge and a dipole
moment p > 0, namely, every + charge is paired with a — one to its left within the region.
As long as the position ¢ is fixed, p is conserved, as the sum ¢ 4 p is a conserved quantity.
This dipole p cannot be compressed to a region of less than p+ 1 sites by dipole-conserving
processes, forcing the position of the second defect to obey j > i+ p + 1. But the right
hand side of this inequality is in fact one of the conserved quantities Py, and therefore
time-independent!'3. Therefore, the position j of the second defect can never cross this
particular location and remains restricted to half of the chain. Similarly, since p > 0 at
all times, and % + p is conserved, we have that the left defect can move at most p sites to
the right. Clearly, the same argument applies to a pair of (—)-defects. On the other hand,
for two defects with opposite signs, one gets a weaker constraint j — i > |Pg|, i.e., a lower
bound on their distance.

Let us now consider a defect somewhere in the bulk of the chain for a typical con-
figuration in the z-basis. How far can it travel to the left? If the nearest defect to its
left is of the same sign, it constrains its motion by the above argument. More generally,
consider the closest pair of subsequent equal sign defects on the left; due to the hard-core
constraint, these restrict the motion of all defects to their right, including the original one.
Therefore, the only way for a given defect to travel a distance ¢ to the left is if all the
defects originally within this region have an exactly alternating sign pattern. However,
the relative number of such configurations scales as e~ for some constant 0 < v < 1, and
therefore a defect will typically travel a finite distance in the thermodynamic limit. The
same argument applies to travelling to the right, which shows that almost all defects are
localized to finite regions!4.

Consider now the infinite temperature charge autocorrelator. We can expand it in terms
of product states [s) = ), |s;) in the original variables (i.e., s; = 4+, —,0) as

(S7(8)S7)p=0 = 3% Y (s@)IS7Is(®) — Y (s)ISIs(1)) | - (3.23)

S S
8=+ Si=—

In half of the cases, the initial + charge on site 7 is a defect. In that case, as the above
argument shows, it is almost surely restricted to live in a final spatial region with an
overall charge of +1, thus yielding a positive contribution to the autocorrelator. If the
size of the region is ¢, the infinite-time contribution is expected to be O(1/¢), and in the
thermodynamic limit, their sum gives > 32, e~ 7 /¢ = —In(1 — e~7) > 0. There is another
equal contribution stemming from the (—)-defects. This shows that the SLIOMs lead to
charge localization even at infinite temperature.

Entanglement growth

Another signature of localized behavior in Hjs is the fact that the entanglement entropy of
the long-time steady state is sub-thermal (see Fig. 2.2), even for an initial random product
state that is not in the z-basis and therefore has weight in all the connected sectors. In
Ref. [181] it was argued that this saturation value is determined by the size of the largest

3Note that the condition of having zero total charge in the middle region is important, as it allows us
to always shift the reference frame and measure p from the position i.

One could also define defects starting from the right, rather than the left, edge of the chain. These
could be used to further constrain the possible transitions.
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Figure 3.9.: Entanglement growth for Hs. The saturation value of the half-chain entan-
glement at long times for the dipole-conserving Hamiltonian Hz (Eq. (3.16))
for initial product states in the S* basis can be understood from the emergent
conservation of the number of defects N, along with the SLIOMs P, intro-
duced in Section 3.2.2. The former implies a block-diagonal structure of the
reduced density matrix p4 on region A (chosen to be half the chain), of the

form pa = @%Z P A(ij{). However, due to the kinetic constraints on the mo-
d—

bility of defects (see main text), only a few of these blocks are non-vanishing,
those where Nﬁ is close to its value in the initial state. The additional conser-
vation of dipole moment within a region between defects {pk} further block
diagonalizes p4(N4), most of which are again zero.

sector (~ 2V), and therefore the half-chain entanglement entropy should scale as 4 In(2)
for Hs, which is consistent with the numerical results.

However, the block structure of the Hamiltonian itself does not put any constraints on
the amount of entanglement it can generate. In particular, even a unitary made up entirely
by random diagonal phases in the z-basis can generate the same amount of entanglement
as a Haar random unitary, when applied to a state that is an equal weight superposition
of all basis states. This point is also illustrated by considering the ¢ — J, model. In that
case, even though the dimension of the largest connected component is only 2V, for an
initial (Haar) random product state, the von Neumann entropy saturates to a value much
larger than % In(2), as we show in Appendix B.6.

These examples show that, in order to explain the sub-thermal entropy exhibited by Hs,
one has to combine the knowledge of the conserved quantities with considerations of spatial
locality. Indeed, going back to the completely diagonal case, if we restrict ourselves to
local terms of range at most ¢, the amount of entropy they can produce is upper bounded
by (¢ — 1)logd (where d is the on-site Hilbert space dimension). In a similar manner,
it appears that combining all the conservation laws of Hs with the restriction of spatial
locality is sufficient to prevent the state from reaching maximal entropy density. Since we
saw that the conserved dipole moments P[k,k+1)} are largely responsible for the localization
of the charge degrees of freedom, it is expected that they are responsible for constraining
entanglement growth.

The fact that the conservation laws severely restrict entanglement can be easily seen in
the case of evolving from an initial product state in the z-basis with Hs. Such a state has
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well defined quantum numbers for all SLIOMs. Consequently, the reduced density matrix
of a bi-partition p4 can be block diagonalized by e.g., the number of defects on one side.
As noted in Section 3.2.2, for a randomly chosen z-product state, which has a finite density
of defects, the movement of almost all defects will be restricted to O(1) regions due to
the conservation laws. Therefore, a particular entanglement cut can only be crossed by a
small subset of defects, and consequently many of the blocks of p 4, will be identically zero.
Furthermore, each block with k defects to the left of the cut can be further decomposed
into smaller blocks using the conserved dipole moment P[k,k +1)] (see Fig. 3.9). Since the
k-th defect can only travel a finite distance to the left, it can only emit a finite number of
dipoles, such that the reduced density matrix for most initial configurations is restricted
to a few blocks of size O(1). Consequently, it only has a finite number of non-vanishing
eigenvalues, limiting its entanglement to an area law, i.e., constant for one-dimensional
systems. The same argument explains the broad distribution of entanglement entropies
observed for the eigenstates of Hs in Fig. 2.9.

The above discussion shows that the structure of SLIOMs we uncovered gives clear re-
strictions for the entanglement growth of initial states in the z bases. While we expect
that the same underlying mechanism is responsible for the sub-thermal saturation value
for completely random product initial states, a complete explanation of this fact has not
yet been accomplished. Recently, two different groups have generalized Page’s seminal
work on the mean entanglement entropy of pure random states [118] to sparse random
pure states [120] and systems with local constraints [119]. The former work showed that
the (half chain) entanglement entropy of certain states can saturate its Page value even
though their fractal dimensions, defined via the inverse participation ratio and measuring
their spreading on Hilbert space, are strictly smaller than one. However, this work dealt
with a random partition of the chain and thus spatial locality arguments were not con-
sidered. On the other hand the latter work took into account local constraints and, e.g.,
explicitly computed the modification of Page’s correction value (—1/2) for the Rydberg
chain. I believe that the combination of these two approaches is a promising route to
better understand the dynamics of the half-chain entanglement entropy in systems with
dipole conservation.

3.2.4. Largest sectors and SPT order

A particular corollary of the discussion in Section 3.2.2 is that increasing the number of
defects decreases the connectivity of the Hilbert space, since each new defect leads to a
further conservation law (the associated dipole moment), which one needs to fix in order
to specify a sector. Indeed, one can check numerically that the largest connected sectors
all have zero defects. Moreover, we confirm numerically that the overall ground state of
Hs (which is 4-fold degenerate, as we discuss below) also belongs to these four largest
sectors. Motivated by this, we now turn our attention to the subspace with no defects.

In fact, Hs takes a particularly simple form within this subspace. Since there are
no defects, the only degrees of freedom are the bond spin-1/2’s, which can take any
configuration. Let us consider a local term of the Hamiltonian hs = S;"(S;;,)?S;,, + H.c.
acting on the set of consecutive sites {i,7 + 1,7 + 2}. From Eq. (3.18) we get that the
state of a given bond is given by the total charge on sites preceding that bond, i.e.,
Opnt1 =001+ % ngn Z. Thus, the configuration of bonds with n < ¢—1 remains intact
under the action of h3. Similarly happens for n > i+ 2, since hg locally conserves the total
charge. Thus, the Hamiltonian in terms of bond variables only has a non-trivial action on
the bonds (i + 1,7+ 2) and (i + 2,7 + 3), and we recover that in fact the Hamiltonian is

given by the sum of local terms. In particular, the possible local processes are shown in
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Table 3.3 and lead to the local Hamiltonian

N—
_ x T Y Yy
Hj|ya_g = —2 (Ui—l,iai,i+1 + UFLZ'UMH) ; (3.24)

Jj=2

[y

i.e. a spin-1/2 XY model on a chain of length N — 1 (note that the two auxiliary spins,
oj1 and ONN+1 do not appear in the Hamiltonian), exactly solvable via a Jordan-Wigner
transformation to free fermions. Considering the spin-1/2 variables as the original physical
degrees of freedom, one can interpret Hg restricted to the zero-defects sector, as governing
the dynamics of kink (| <)) / anti-kink (] —+—)) configurations of the XY model, with
|0) representing an empty site. This Hamiltonian conserves Zyot = ), 07,1, equal to the
dipole moment in the original model, with the largest symmetry sector being the one with
half-filling (Ziot = 0)!5. The ground state of this model is gapless due to the presence
of Fermi points and has an effective low energy Luttinger liquid description. We confirm
that this is also the ground state of Hs overall, by finding the ground state in DMRG and
comparing its energy with that of the ground state of the XY chain at half filling, finding
perfect agreement.

| Spin-1: {i,i+1,i+ 2} | Bond variables: (i,i+1) (i+1,i+2) |
0+ 0) e [+ —+)
0+ =) e[+ —0)
0+ 0) ]~ 1)
|+ —0) e |0 + —)

| =) e | =4)

| =¢) o | =)

Table 3.3.: Action of local terms in Hamiltonian Hj in the spin-1/2 variables.

However, this is not the full story. As mentioned above, the ground state has a 4-
fold degeneracy. In fact, this is true for all eigenstates within the zero defect sector:
as seen above, this sector consists of 4 equivalent XY chains with 4 different boundary
conditions. These correspond to the four possible choices of the leftmost and rightmost
charge in the system, which are conserved under Hsz. Moreover, we find numerically that
even eigenstates with defects are 4-fold degenerate throughout the entire spectrum. This
degeneracy is due to zero modes at the boundaries of an open chain, and is not present
with periodic boundary conditions'. Nevertheless, the exact 4-fold degeneracy is specific
to Hs and can be lifted to a 2-fold degeneracy by adding perturbations, diagonal in the
S%-basis, which preserve the block structure of Hs. The 2-fold degeneracy, on the other
hand, is robust as long as we preserve the spin rotation symmetry R, = €257 and
the signs of the left- and rightmost charges, analogously to the case of the ¢t — J, model
discussed before.

The (strong) zero modes at the boundary appear concurrently with symmetry protected
topological (SPT) order in the bulk. Consider the string order parameter (SZe™™ S St g ).
This measures the ‘hidden antiferromagnetic order’ of the Haldane phase [217-219], which
becomes apparent after dropping all the empty sites. States with no defects have such
a hidden AFM order by construction. More formally, acting on states without defects,
the string factorizes due to the Gauss’s law (3.18) as e Sl St — 0;i110;_1, an ex-
plicit example of symmetry fractionalization. Consequently, the string order parameter

5 The dimension of the largest connected sector is therefore (assuming an odd number of sites) ((NN_E )1/2),
scaling asymptotically as oc 2V up to logarithmic corrections. This confirms earlier numerical results 1,
181].

16 H3 still has a significant amount of degeneracies with PBC, but it also has non-degenerate eigenvalues.

65



Chapter 3. Statistical localization: From strong fragmentation to strong edge modes

simplifies to

<Sizei7rzg:i1“ SfS;> = %«1 — 07 1,0,i41)(05-1;05 541 — 1)). (3.25)

In the limit |j — i| — oo this factorizes into the product of local expectation values 7.
Now, the expectation value (1 — o7 ; ;07; 1) is non-zero for any translation invariant state,
except for a completely spin polarized one (i.e. the empty state in the original variables).
In principle the non-vanishing string order parameter is also compatible with the symmetry
R, being spontaneously broken. However, R, becomes the parity transformation [, orit1
within the zero defect sector, which is unbroken in the ground state of the XY chain (3.24).
We hence associate the presence of string order with a symmetry protected topological

state. In fact, as (S7e'™ Sl 57 S%) is non-zero for every eigenstate of the zero defect
sector, this is suggestive of there being a non-trivial SPT order for the whole spectrum,
which is reminiscent to the appearance of topological order in excited states of MBL
systems [190, 191].

3.3. Embedded PXP dynamics: Relation to quantum
many-body scars

The realization of Hilbert space fragmentation in dipole-conserving systems and the study
of fractonic dynamics, were almost concurrent to the experimental observation and later
theoretical characterization of quantum many-body scars with Rydberg atoms [43, 44].
Both phenomena appear as a consequence of kinetically constraints in the action of the
Hamiltonian, although appearing only implicitly in the former case. Thus, it is natural to
compare these two systems and wonder whether there exist some more explicit relation
among the two.

In Chapter 1, we already explained that in the strong interacting regime the system
can be approximately described by the so-called PXP model which corresponds to the
spin-1/2 Hamiltonian [44]

N
Hoxp =Y Po105Poy1, (3.26)
n=1
where the projectors P, = (1 — 0?)/2, ensure that not two adjacent Rydberg atoms (with
J and 1 representing the ground and excited states of isolated atoms respectively) become
simultaneously excited, a phenomenon known as Rydberg blockade. Thus, different num-
ber of adjacent excited states correspond to distinct disconnected components, as any two
local adjacent excited states ... 11 ... are completely frozen, i.e., the system is fragmented.
Restricted to the lowest energy subspace with no adjacent excited states, the dimension of
the constrained Hilbert space can be shown to be [168] dy = F 2 for open (OBC) —in
the presence of additional boundary terms [220]— and dy = Fn_1 + Fy41 for periodic
boundary conditions (PBC), where F), is the nth Fibonacci number. Note that in particu-
lar, this subspace contains the Néel states |Za) = | {11 ---) and |Z) = | 111 - - ), whose
atypical real-time dynamics has been experimentally realized [43] and has been identified
as a probe of the existence of quantum many-body scars [168].

In the following we show that the dynamics of certain fragments of the Hs Hamiltonian
for S = 1, are governed by the PXP dynamics (3.26) and identify the analogs to the
Néel states in the fractonic language [167]. In fact, such relation was already obtained in
Ref. [169] for Hamiltonian Hy with S = 1/2. Let us consider states of the form

2(k=1) o 2(k+1)
Fo) =|..[-+-]-[-+-]-[-+-]-[-+-] ) (3.27)

This is the case quite generally as long as the state on which we evaluate it is not a cat state.

66



3.3. Embedded PXP dynamics: Relation to quantum many-body scars

with a |[+) state on every fourth site separated by three |—)’s. In the following we fix
the length of the chain to be a multiple of four, such that we contain an integer number
of unit cells. For OBC the dipole moment of this configuration is given by p(n4) =
N/2(1 — N/2 + ny), where n is the location of the first |[4) state starting from the left
boundary. Thus, the location n, labels different symmetry sectors containing the same
spin pattern. However, due to the periodicity of the configuration, there only exist four
different dipole moments p(n.) containing such types of configurations. When considering
PBC, the dipole is defined modulo N.
Recalling that every local term h,, in the Hamiltonian H3 =) h,, takes the form

ho = 87 1(S7)%SE, + Hee,, (3.28)

it is clear that the only non-trivial local actions of Hs on the state |Fy), are those contained
within the blocks shown in Eq. (3.27) which are centered around even sites. After applying
two local terms h,, centered around the location of |+) states at sites n = 2(k £ 1), |Fa)
becomes

1) 2k 2(k
F2) — byl ) = (329)

Now the action on the intermediate site 2k becomes non-trivial
hok—1)Po(ks1) [ F2)

— hagho—1)hos1)|F2) = - 0

— 2(k+D)

0—[—+-]...).

(3.30)

One can then realize that only terms hoj centered around even sites generate non-
trivial dynamics conditioned to the states on odd near sites, such that the only allowed
local transition is | — +—) <+ |0 — 0). Then, the restriction of the Hamiltonian H3 to
subspaces containing configurations of the form given by Eq. (3.27) becomes

N/2 N/2
Hyloip = D hor =4 | = +21—){(0 —2 0| + Hee.. (3.31)

Note also that there are never two |+) states in adjacent even sites, i.e., the local
configuration [+)ak|+)2(k+1) 18 not generated under the evolution of Hj. ThlS effectively
implements the Rydberg blockade as imposed by the projectors in Eq. (3.26). With these
observations in mind, we can construct a reversible map relating local spin-1 configurations
centered around even sites {2k — 1,2k, 2k + 1}, to spin-1/2 configurations on even sites
{2(k —1),2k,2(k + 1)} in the PXP model via

0=0) < | L), | —+-) < [N, 0—=) < [ 1),
| ——=0) & [T, | ——=) & [T, (3.32)

such that Eq. (3.31) becomes

N/2
Hslpp = 42 [T [+ Hee
=1
N/2
=1 |1 DU -1y @ | D |2k ® [ D lagers) + Hoc. = 4Hpxp, (3.33)
=1
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i.e., the restriction of Hj3 into this family of connected subspaces becomes equivalent to a
PXP model on a chain of length N/2 up to a factor of 4. Thus, there exist eight different
symmetry sectors (the other four subspaces are obtained applying the II* parity symmetry
to the configuration |F3)), whose evolution is governed by the PXP Hamiltonian. This
explicitly shows that quantum many-body scars phenomenology appears in the dipole
conserving Hamiltonian H3, similarly to Ref. [169].

3.4. Summary of results

We have explicitly constructed integrals of motion for two models that exhibit the phe-
nomenon of strong Hilbert space fragmentation, including a complete characterization of
the fragmented structure of the family of Hamiltonians H3({.J;}) and the associated 3-local
circuit dynamics we studied in the previous chapter. These extensively many non-local in-
tegrals of motion label the different disconnected sectors of the many-body Hilbert space,
playing a role analogous to local integrals of motion in many-body localized systems. They
are dominated by contributions from a sub-extensive region in space, but in such a way
that the location and width of this region can be tuned by, for example, changing the
average filling fraction in the system. This lead us to term these observables statistically
localized.

In the t — J, model (which we argued can be realized in Rydberg atom experiments),
all SLIOMs in the bulk are localized to regions of size O(v/N). As a result, autocorre-
lations evaluated on an infinite temperature states (after fixing the number of up- and
down-pointing spins) saturate to values O(1/y/N), which are anomalously large compared
to generic thermalizing systems, but nevertheless vanish as N — oo. For the dipole-
conserving Hamiltonian Hs, on the other hand, we have shown that some of the bulk
conserved quantities are effectively localized to O(1) regions and lead to finite autocorre-
lations even in the thermodynamic limit.

SLIOMs near the boundary, on the other hand, are localized to finite regions and lead to
infinitely long coherence times for both models. We showed that these boundary SLIOMs
can survive certain perturbations that destroy the strong fragmentation in the bulk, defin-
ing a statistically localized analogue of strong zero modes, where a thermalizing bulk
co-exists with an explicitly non-ergodic boundary. We also analyzed the relationship be-
tween these zero modes and the ground states of the two models, which exhibit symmetry
protected topological order, despite being gapless.

3.5. Discussion and outlook

3.5.1. Hilbert space fragmentation and commutant algebras

In this chapter we understood that a sufficient condition for fragmentation is the exis-
tence of extensively many SLIOMs. However, it is not clear how generic this construction
is and whether it could be applied to other systems exhibiting fragmentation, like for
example weakly fragmented or even two-dimensional systems. Building on this result,
Ref. [166] introduced a formalism that allows to resolve some of these questions, by study-
ing fragmentation in terms of the commutant algebm C, defined as the algebra of conserved
quantities associated to a family of Hamiltonians H = Z J; h More formally, C is the

associative algebra formed by operators O which commute with every local term of H ,

e., [@, iz]] = 0V j. For example, for a system with no symmetries, C is just the identity
operator and is thus one-dimensional, similarly to the case of systems with discrete global
symmetries for which dim(C) ~O(1). Generically, systems with Abelian continuous global
symmetries instead have a commutant whose dimension grows polynomially with system
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size, as an extensive quantity have polynomially different eigenvalues, each of them corre-
sponding to degenerate symmetry sectors. We will suggest possible counter examples at
the end of Chapter 5. Using this approach, one then defines a system as fragmented if
the dimension of the commutant algebra grows exponentially in system size, which corre-
sponds to the number of different sectors labeled by eigenvalues of the SLIOMs. In fact,
SLIOMs turned out to be a generating set (together with the identity operator) of the
commutant algebra for the two cases studied in this chapter. This means that any of the
exponentially many elements of C, can be constructed as a linear combinations of product
of SLIOMs.

An additional insight coming from this construction is the possibility to explore sys-
tems which are fragmented in an entangled basis — unlike the previous examples of frag-
mentation in the local z-basis— denoted as quantum fragmentation in Ref. [166]. This
corresponds to a non-Abelian commutant algebra which leads to degenerate Krylov sub-
spaces and richer structure in the Mazur bound. Moreover, while this formulation makes
a first step into formalizing the concept of Hilbert space fragmentation, certain unresolved
issues still remain. By this definition, systems with local conservation laws, like lattice
gauge theories and related systems (e.g., height field or dimer models), are also examples
of fragmentation, although the spatial locality properties of the underlying generating set
(or elements of the commutant) are quite different. Thus, it would be desirable to include
locality on this analysis to be able to distinguish these in principle two distinct systems.
A conjecture is whether it is true that certain fragmented systems can be understood as
“linear combinations” of lattice gauge theory models (with truncated gauge degrees of free-
dom) where gauge invariance is broken, and instead, only certain non-local combinations
of local Gauss laws are preserved. We discuss this problem in more detail in Chapter 7.

3.5.2. Reducibility in classical kinetically constrained systems

The concept of fragmentation is reminiscent to that of reducibility in the context of stochas-
tic processes and kinetically constrained systems [221, 222] for example appearing in the
study of glasses. Consider a classical stochastic system evolving under a discrete or contin-
uous Markov evolution. Then the probability for the system being in a given configuration
at time ¢, namely P(C,t), follows the master equation 0;|P(t)) = W|P(t)). Here |P(t)) is
the probability vector |P(t)) = >~ P(C,t)|C), and W is the stochastic generator whose
matrix elements in the basis {|C)} give the transition rates from one to another configura-
tion [222]. A necessary condition, apart from detailed balance, for such equation to have
a unique stationary state is that the dynamics is irreducible, i.e., “that the system can
pass from any to any other configuration by some number of allowed transitions” [221].
This translates into the requirement for the matrix We ¢ not being able to become block-
diagonal by reordering the configurations in the basis. Therefore, both fragmentation
and reducibility refer to the same splitting of Hilbert or configuration space into different
disconnected partitions.

Apart from the different realms on which the consequences of fragmentation are studied,
taking into account the additional insights gained in the context of quantum many-body
systems as e.g., with respect to the ETH, the novelty of the systems we studied is the
lack of explicit constraints in local terms of the Hamiltonian. In the study of glassy
behavior [221], e.g., via the use of spin-facilitated models, one imposes specific kinetic
constraints that have to be fulfilled in order to apply a certain update. These constrain
the transition rates or the analogous local terms in the Hamiltonian [222]. This is also the
case for the Shiraishi-Mori construction of models leading to weak ergodicity-breaking [42].
However, when aiming to generalize it to longer ranges or larger onsite occupations, there
is not a unique unambiguous way to do so in general. Instead, the construction of dipole-
(and higher-moment) conserving systems is based on a symmetry principle, permitting all
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possible terms that are compatible with the global symmetry. Using this, we managed
to prove that any dipole-conserving system with any finite spin representation and finite-
range interactions is always fragmented.

3.5.3. Non-local conserved quantities and ETH

In the study of kinetically constrained systems [221, 222], particular emphasis is made on
the distinction between reducibility and ergodicity. The latter is defined to mean that
“any two configurations — with the exception of possibly a vanishingly small fraction
of configuration space — remain mutually accessible on timescales that remain finite in
the thermodynamic limit” [221]. From there the following conclusion follows: “Of course,
reducibility implies non-ergodicity, but the reverse is not true.” [221]. However, by this
definition of irreducibility a system with a global conserved quantity is always reducible,
unless a given symmetry sector is fixed, and then is also non-ergodic.

In the study of quantum many-body systems, on the other hand, a system is said to
be ergodic if either satisfies ETH or thermalizes, after fixing all, usually global, conserved
quantities (recall the discussion in Chapter 1 about the meaning of these terms). Other-
wise, random matrix theory would not hold in a narrow energy window and the expectation
value of local observables evaluated on energy eigenstates, could not only depend on the
energy but also on other quantum numbers. This suggests — after having identified the
non-local SLIOMs as the cause for the strong fragmentation of the Hilbert space— that
one should study thermalization properties within each of the disconnected subspaces in-
dependently after fixing the associated quantum numbers. In fact, this appears a natural
thing to do, since the formulation in terms of commutant algebras treats “on equal footing
conventional and non-local conserved quantities” [166], only distinguished by the size of
the commutant. When doing so, one finds subspaces on which the system either thermal-
izes or not, a phenomenon that has been coined Krylov restricted-thermalization [172].
For example, we have found subspaces within which the dynamics can be governed by
non-interacting, integrable, non-integrable, as well as the PXP Hamiltonian, as if differ-
ent types of behaviors were embedded in the same system. Instead in this chapter, we
only resolved the conventional global conserved quantities, e.g., charge and dipole, and
concluded that systems with Hilbert space fragmentation provide examples of ergodicity-
breaking violating the diagonal contribution of ETH. Following Ref. [42] and the discussion
in Refs. [204, 205], this approach appears to be meaningful: Generically, one does not ex-
pect symmetry sectors associated to different eigenvalues of non-local charges to lead to
distinct distributions for the expectation values of local observables [204, 205]. Moreover,
one could advocate for this approach arguing that if non-local symmetries have to be fixed,
projectors on energy eigenstates should also be included, which would make the statement
of ETH trivial. A possible way out would be to realize that projectors on energy eigen-
states depend, unlike SLIOMS, on the microscopic parameters of the system and thus
cannot be defined for a family of systems.

Nevertheless, the root and resolution of this conflict lies on specifying what entitles
a conserved quantity to be fixed when studying thermalization and agree on a precise,
perhaps experimentally oriented, definition of what is meant by ergodicity breaking.

3.5.4. Future directions

Several questions remain to be explored. First of all it is unclear whether the construc-
tion presented in this chapter could be used to find the relevant conserved quantities in
the case of longer-range generalizations of Hs (which exhibit weak fragmentation). Even
within the subset of strongly fragmented models (i.e., with the largest symmetry sector
being a vanishing fraction of the full Hilbert space), qualitatively very different behaviors
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can arise, as the two examples in this chapter demonstrate. Hence, it would be interest-
ing to understand whether other “degrees” of fragmentation can exist, providing a full
classification. The structure of conservation laws we uncovered could also be useful for
understanding the dynamics of entanglement and out-of-time-ordered correlators in these
systems [223].

Another direction is to explore the stability of the boundary SLIOMs to additional
perturbations, i.e., whether they can still lead to unusually long coherence times even
when they are not explicitly conserved. It would also be interesting to use the formalism
of commutant algebras to look for other models featuring quantum fragmentation, both in
the strong and weak sense, and extend them to higher dimensions. Finally, understanding
the robustness of fragmentation to open quantum dynamics is a question worth exploring.
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Part II.

Experimental realization in tilted
interacting systems






4. The tilted Fermi-Hubbard model: An
experimental platform for constrained
systems

The ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws
and reconstruct the universe.

Philip Warren Anderson from More is different [224].

Is there a system where the dipole moment of some global U(1) charge is conserved or
is this just a theory model? It turns out this symmetry is approximately conserved and
becomes important to understand certain experimentally accessible physics scenarios. In
particular, this is the case for a system of interacting particles (or rather atoms) hopping
on a one-dimensional chain with tunneling amplitude .J in the presence of a tilted field
setting an energy difference A between consecutive sites (see Fig. 4.1). For the moment,
we just think about this tilt as coupled to the center of mass of the particles ) xn,, but
we will provide the actual experimental realization in Section 4.5.

When A > J, a single particle hopping up or down the tilt is energetically suppressed
due to the large energy difference between the initial and final configurations. In fact, a
single particle in the presence of a tilt is known to be Wannier-Stark localized and the
dynamics to be trapped in a finite region of size ~ J/A leading to Bloch oscillations
(Section 4.1). However, in the presence of interactions, a simultaneous pairwise hop of
two (or more) particles in opposite directions can balance this cost leading to a much
smaller energy difference and eventually avoiding localization. Hence the dynamics can be
approximated by an effective Hamiltonian which conserves the center of mass location, or
equivalently, the dipole moment associated to the total particle number. In such scenario,
the real-time dynamics will strongly depend on the particular initial state one prepares,
as a consequence of the approximate Hilbert space fragmentation which emerges at short
to intermediate time scales. However, in the presence of additional weak disorder [157] or
a harmonic confinement potential [225], theoretical studies have found characteristic MBL
phenomenology, since then dubbed Stark MBL.

In this chapter we study the (non-ergodic) behavior in the tilted one-dimensional (1D)
Fermi-Hubbard model (Fig. 4.1a) which hence lies at the interface of Stark MBL and
Hilbert space fragmentation. Starting from an initial charge-density wave (CDW) of sin-
glons (singly-occupied site), we study (including numerical and experimental simulations)
relaxation dynamics for a large range of interaction strengths and moderate values of the
tilt (A < 4J) (Section 4.5 ), where none of the two mechanisms described above would
in principle apply and where naively one may expect the system to thermalize. At short
times we experimentally observe coherent dynamics due to Bloch oscillations, whose am-
plitude strongly depends on the Hubbard interactions (Section 4.5.2). Surprisingly we find
that after intermediate times and even close to resonance between the tilt and interaction
strengths, the evolution converges to a non-thermal steady-state, that persists for long
evolution times up to 700 tunneling times, signaling a robust memory of the initial CDW
throughout (Section 4.5.3). Using numerical calculations we show that the observed non-
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4.1. Single particle dynamics in a tilted field

b VAT
Q
Ux~A
U ~2A
@
U/J

SA; /T

Figure 4.1.: Tilted one-dimensional lattice. a) Schematic of a tilted 1D model (with
odd o and even e sites) with tunneling .J, on-site interaction U and tilt A. b)
Regimes of interest where an effective constrained Hamiltonian can be derived.
The green area corresponds to a dipole-conserving regime. dA; represents a
slightly non-uniform or random field. Figure in panel a has been taken from
Ref. [3].

ergodicity cannot be explained by the phenomenon of Stark-MBL, i.e., the robust memory
is not due to experimental imperfections, such as residual harmonic confinement or disor-
der, and the bipartite entanglement entropy does not exhibit the characteristic behavior of
MBL systems [76] (see Fig. 4.8). Hence, nonergodicity appears to have a different origin,
despite similar experimental signatures. This raises the question about the origin of the
observed non-ergodicity. We construct effective Hamiltonians in two distinct regimes ((1)
and (2), Fig. 4.1b) by taking the large tilt limit and find fragmented Hamiltonians in both
cases (Section 4.3). While these models are only expected to describe the dynamics at
large tilt values and for intermediate times (on the order of a few tens of tunneling times),
they allow us to identify the microscopic processes that initiate dynamics at short times.
In both regimes these are correlated tunneling processes, which result in the formation of
doublons (doubly-occupied sites), either resonantly (regime (1)) or detuned by the Hubbard
interaction energy U (regime (2)). Higher-order terms are expected to eventually drive the
system towards thermalization. However, we are able to show that energy penalties for the
second- or higher-order tunneling processes, which occur naturally in the model, render
these dynamics inefficient. This results in extremely slow relaxation (Section 4.4.1), which
appears stable for long times (> 104 tunneling times) in exact diagonalization studies of
small systems, in agreement with the experimental observations (Fig. 4.14).

We conclude the chapter suggesting future research directions to study the phenomenol-
ogy of Hilbert space fragmentation in the lab as well as possible ways to understand the
role of the harmonic confinement (Section 4.6).

4.1. Single particle dynamics in a tilted field

Let us place a single particle on a discrete lattice in the presence of a tilt
H=—JY [i)(i+1]+He + A i), (4.1)
i€Z i€Z
where |i) corresponds to the Wannier orbitial localized at site ¢, and A sets the energy

difference between consecutive sites. Its eigenstates, usually called Wannier-Stark orbitals,
can be expressed in terms of the Wannier orbitals via the orthogonal transformation

) =3 T () 10 (4.2

1€EZ
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where J,, is the nth order Bessel function of the first kind [226]. These are spatially
localized on a region of size % in units of the lattice spacing, centered around site m for
any non—zero value of the tilt, and decay (at least) exponentially fast outside that region
Ti-m(&) ~ ~Ali=ml for any finite tilt A( see review Ref. [75]). In this basis, Hamiltonian

Eq. (4. 1) takes the diagonal form
Hws = A Z m‘5m></8m‘7 (4‘3)

meZ

whose spectrum, with a constant energy gap A between consecutive eigenvalues, is usu-
ally denoted as Wannier-Stark ladder. Such commensurate spectrum translates into long-
coherent oscillations in observable quantities, known as Bloch oscillations, which in fact
have been experimentally observeda [227]. Bearing in mind the limitations of the exper-
imental setup used to investigate this system, we use the local imbalance to probe its
dynamics, which is defined as the difference of probabilities to occupy even and odd sites

I(t) = (—1)'ni(t). (4.4)
1EZ
In particular, this quantity becomes useful to study localization (delocalization) phe-
nomena when considering specific initial configurations which break the symmetry between
even and odd sites. For example, consider an initial state |ig) with a particle sitting on an
even site ¢g. Then, the probability to occupy any other site ¢ evolves in time as

4] At
2 .
ni(t) = Ji_s, [A sin <2>] ; (4.5)
which using Graf’s identity theorem [228] leads to an imbalance
8J At

This leads to a non-vanishing signal which coherently oscillates with period T = 2m/A
around a potentially non-zero mean value given by

- .. 1T o (4
I—zlgr;oT/() dtZ(t) = J; (A) . (4.7)

This is for example the case in the limit A/J > 1, where the Wannier-Stark eigen-
states are (super-)exponentially localized and approximate the completely localized Wan-
nier states |(3,,) — |m). However, the imbalance can still vanish even if the system has a
finite localization length when Jy(4J/A) = 0. This happens for infinitely many values of
A/J < 2 as shown in Fig. 4.2. Therefore, the imbalance is only a good measure to check
for localization, since it can vanish for both localized and non-localized systems.

This vanishing value of the imbalance —even when the system is fully localized— can
be understood as follows. In the absence of extensive degeneracy in the spectrum the time
average imbalance is given by the diagonal ensemble prediction

Tlg{;;/ dtZ(t) =Y [Bmlio)* D (=D [(Buld)* = D [(Bmlno)*Lm,  (4.8)

meZ €L mEeZ

where Z,, is the value of the imbalance evaluated on an eigenstate |3,,). However, all
eigenstates, while localized at different sites, have the same spatial structure and then
acquires the same value of the imbalance

1, = Y0 (X)) = coma ().

ne”L

1Use the relation Jn(—2z) = J-n(z) = (=1)"Tn(x).
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Figure 4.2.: Time-average value of the imbalance as a function of A/J. The
curve shows the non-monotonic dependence of the time-average value of the
imbalance on the ratio A/J as obtained in Eq. (4.7). It also exemplifies that
the imbalance can vanish even though the system is localized.

up to an overall phase. All together this leads to Z = (—1)%©Z2,, which vanishes if and
only if Z,,, = 0, i.e., if every eigenstate has the same probability weight on even and odd
sites.

In general, a realistic experiment will be exposed to all sorts of noise and experimental
imperfections that differ from the ideal theory model. As a result, the coherent dynamics
will be dephased leading to a damping of Bloch oscillations towards a constant steady-
state imbalance. It can then be that, e.g., in the absence of atom loses in the relevant time
scales or similar technical limitations, this value can be related with the mean imbalance
Z. However, fully characterizing such sources of error and their effects the dynamics is a
hard question that is not addressed in this thesis. Nevertheless, an analysis of the effect
of certain experimental imperfections can be found in Section 3 of the Supplementary
Material of Ref. [4]. Moreover, we also notice that while we solved the (non-interacting)
problem in an infinitely long chain, finite size effects are negligeable for the system sizes
considered in the experiment Lgy, ~ 200 and even for numerical results with smaller
system sizes.

4.2. Tilted Fermi-Hubbard model

We just found that the tilted non-interacting system leads to localized eigenfunctions for
any non-zero value of the tilt with a constant gap between consecutive energy levels. This
turns into coherent Bloch oscillations which are confined on a spatial region determined
by the tilt strength. However, the presence of interactions can delocalize the system.
For example, while a non-interacting 1D system is Anderson localized in the presence of
a (even infinitesimal) random potential [129], this localization disappears for sufficiently
strong interactions among the particles, which in turn leads to the ergodic-to-MBL phase
transition [34] that we discussed in Chapter 1. Influenced by this long-standing problem,
it is then a natural question to wonder what the fate of Wannier-Stark localization is
in the presence of interactions. In fact, two independent works [76, 157] studied this
scenario although in the presence of an additional (small) disorder [157] and harmonic [76]
potentials.

The reason for this apparently arbitrary potential will become clear once we understand
the underlying mechanisms by which such interacting tilted system may avoid localization.
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As a matter of fact, both of these potentials naturally appear in experimental realizations,
and thus it is a relevant question to understand their effect on the observed phenomena.

In an effort to explain the experimental observations, we consider the 1D tilted Fermi-
Hubbard model

:—JZZ (Zacz+1g+hc>—|—Uannw—|—ZZAUMZU, (4.9)

i=1 o=1,] i=1 o=1,]

on a finite chain of length L with open boundary conditions. This describes a 1D chain
of fermionic atoms with a internal spin degree of freedom ¢ =7,] hopping on a lattice
with tunneling amplitude J and a contact on-site interaction of strength U. Moreover,
these couple to a priori spin-dependent tilt A, that unless otherwise stated we assume
to be uniform A = Ay = A|. As we will find in Section 4.5, this system can be naturally
realized with ultracold atoms.

Hamiltonian Eq. (4.9) conserves the total particle number for each spin degree of freedom
independently, namely NT = ZL 1 Mg, N L= ZL:1 ;1. Equivalently, these correspond
to the conservation of total particle number N = NT + N 1 and the global magnetization
along z direction S7 ., = (NT — N}). In fact, when Ay = Ay, this second continuous U(1)
symmetry becomes a complete SU(2) internal symmetry given by spin rotations generated
by Stotal 5 Zz 1 c;r aaa Cip With o = z,y, z for 0% the Pauli matrices.

Moreover, both the hoppmg and interaction terms are invariant under lattice transla-
tions, but the tilted energy contribution is not. This in particular implies that at finite
temperature, the thermal expectation value of a local quantity is necessarily not spatially
homogeneous. More striking is the fact that this term scales faster than extensively with

the total particle number, as expected for an energy contribution (in particular <ZiL:1 zm>

scales as O(L?)). This leads to difficulties, as the inability to meaningfully — or at least
unambiguously— take the thermodynamic limit; or the need to re-scale the tilted energy
when considering the canonical thermal density matrix, to, e.g., meaningfully associate
an effective temperature to a given initial state?. However, this problem can be circum-
vented for certain initial configurations when taking into account the symmetries of the
system. In particular, let us project onto a sector with fixed particle number and rewrite
the Hamiltonian as follows

L
ﬁ:—JZZ<wcz+1g+hc>+Uan—n N —n) +ZAZ nw,
i=1 o=1,] =1 o=1{
(4.10)

with 7 = 1/2. This agrees with Hamiltonian Eq. (4.9) up to an overall constant and thus
it does not change the physics of the problem. However, with this choice we now find that
tr(H) = 0, since tr(f;, —n) = 0 and 3.2 tr((i — L) (Ait + 7)) = 0. Consider now an
initial product state |t¢9) with a charge density wave pattern where even sites are occupied
(ni4++mni = 1) and odd sites are empty. This state generically overlaps with exponentially

many different eigenstates of the Hamiltonian and satisfies <1j}0|ﬁ |1j)0> = 0, and because

tr(H) = 0, it has an associated infinite effective temperature. Thus, its (reduced) thermal
density matrices are translational invariant, and we then expect an homogeneous distribu-
tion of spin and charge at sufficiently long times. Notice this would also hold for Ay # A
for particular spin configurations. However, a proper “stat-mech-like” formulation of the
problem which addresses the super-extensive scaling of the tilted energy contribution is

2In fact, a similar problem arises in the realm of systems with long-range interactions which requires
a normalization of the interaction term to turn it extensive [229].
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4.2. Tilted Fermi-Hubbard model

yet to be addressed?. In the following we provide an alternative presentation of the Hamil-
tonian which makes use of the gauge covariance of the Schrédinger equation — namely,
the equivalency of different pictures with Heisenberg and the interaction one being two
particular instances—, transforming Eq. (4.9) into a time-dependent translation invariant
Hamiltonian with no super-extensive energetic contributions. In fact, this was already
realized for this particular system in Refs. [157, 230, 231].

4.2.1. Choice of gauge: From a tilted to a driven lattice

To do so we apply a unitary time-dependent transformation T(t) = ¢itho with Hy =
Y o As >, M which maps the Hamiltonian in Eq. (4.9) to the time-dependent Hamilto-
nian [157, 231, 232]

Hi(t) =T@HT(t) — T ()0, (¢), (4.11)
with
Hi(t)=—JY (e7®e] éit1o+he)+UY iy, (4.12)

which now allows to impose periodic boundary conditions in space. Notice that for incom-
mensurate Ay # A gives rise to a quasi-periodic Hamiltonian [233]. This is the lattice
analog of (1D) Maxwell electromagnetism where a constant electric field E(z,t) can be
realized either by a time dependent “vector” A(z,t) potential (and V' = 0) or a linearly
increasing V' (z,t) «x z scalar potential (and A = 0). Hence we find that the Hamiltonian
Eq. (4.12) in this picture, in the following called “rotated frame” explicitly commutes with
lattice translations, is well-defined in the thermodynamic limit [157, 231, 232] and avoids
the superextensive-scaling contribution of the potential energy to the total energy of the
system. Together with the Hamiltonian, we also need to rotate the states as well as the
observables we use to probe the dynamics of the system. In particular, for initial prod-
uct states in the local particle number basis (which are our main focus in this chapter)
this transformation results into an overall time dependent phase. Moreover, local density
operators are gauge invariant 7 7(t) = T'(t)7;TT(t) = f;, and then we can study the evo-
lution and long-time value of the imbalance directly in this picture without requiring an
additional change of frames.

4.2.2. Dynamical symmetry: Attractive versus repulsive interactions

According to the theorem proven in Ref. [234] (Supplementary material section SD), the
Fermi-Hubbard model exhibits, apart from the previously discussed internal symmetries, a
dynamical symmetry between repulsive and attractive interactions for any observable that
is invariant under both time-reversal and the m-boost BQ =" Xio mi*", when considering
initial states, that are time reversal invariant and only acquire a global phase under the
m-boost transformation. While these conditions do not hold in the presence of a tilt, we
can extend this result by including additional restrictions. Under a spatial inversion P,
which sends ¢ — —i with respect to the center of the chain, the confining linear potential
changes sign

HU A A S BHU -A, —-A)). (4.13)
Using the m-boost BQ together with the inversion P

PBQH (U, Ay, A)BLP! = —H(-U, Ay, A)) (4.14)

31 thank Anushya Chandran for a really useful discussion we had about this topic when attending the
American March Meeting 2022.
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an equation similar to Eq. (S11) in [234] can be obtained. As an observable, we consider the

. L ,
spin-resolved imbalance Z7 = Z:, . (=1)'7; » (which should be normalized by particle
=-3

number N, fixed by the initial state), which is invariant under inversion 7o B 77 and

the 7-boost 29 liQ) 77, but breaks time-reversal symmetry 7. This symmetry is violated,
because the spin degrees of freedom of the density operator 7; , are exchanged: 7; 1 <+ 7; .

Assuming that Ay = A}, the Hamiltonian Eq. (4.9) is invariant under 7 and has
the additional SU(2) spin symmetry we already encountered before, which includes the
invariance under spin-rotations around S% = 257"/=T7 11 / 2620&@. The local observable

N is invariant under the product of time reversal 7" and m-rotations around x, and thus
we obtain for the time-evolved imbalance operator I(“U ALAL)

PBoe ™S TG o a T 1™ BLPY =27 ) o A (). (4.15)

Therefore, as long as |A| — A4| is sufficiently small, an approximate dynamical symmetry
between repulsive and attractive interactions is present for our observable.

We next focus on the required symmetries of the initial state. For all experiments, we
consider initial states that are an incoherent sum within the zero magnetization sector
(thus Ny = N) with density matrix p = 3 Z{U}IZZ- oi=0 [Po({a}))(¥o({c})], where each
product state |1o({c})), is given by a CDW of singlons where | 1) and | |) states are
randomly distributed on even lattice sites. The sum runs over all possible permutations
{o} of the spins within the zero magnetization sector. Under the combined action of time
reversal and 7-rotation around x, this state is left invariant up to a global phase. This is
also the case for the m-boost BQ. Moreover under spatial inversion P a configuration {c;}
is mapped onto another one {o}} appearing in the mixed state p with equal weight. Thus,
the mixed state is also invariant under P. In conclusion, we find for our initial states

Loana) () =T paa,)®)- (4.16)

Note that this dynamical symmetry will be broken when A4+ # A, as well as by other
experimental imperfections such as the harmonic confinement (see Section 4.5.1) and the
non-zero variation of the onsite-interaction strength (see supplementary information in
Ref. [3])

4.3. Perturbative construction of effective constrained
Hamiltonians

Our goal in this chapter is two-fold: (i) Understanding whether localization persists in the
presence of interactions, and (ii) experimentally realized systems that (approximately)
feature the phenomenon of Hilbert space fragmentation. In this section we analytically
derive several effective Hamiltonians, starting from the clean tilted Fermi-Hubbard model
(without harmonic confinement) and without spin-dependent tilt, described by the Hamil-
tonian

g == I (& o +0e) U fugivgy + A i (4.17)
0,0 A ©,0

Given a general static Hamiltonian H = glﬁfo + V and Hy having integer spectrum,

there are different approaches to perturbatively obtain an effective Hamiltonian in the

limit ¢ — oo. The general idea is to find a unitary transformation, that brings H close

to a block-diagonal form in the basis of ﬁo, order-by-order in 1/g. However, due to the
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many-body nature of the system this series won’t ever converge: While the spectral gap of
gro is large, the norm of V at finite energy-density grows with the volume of the system,
and hence it will eventually hybridize the different subspaces of Hy. Nevertheless, the rate
at which this will happen can still slow for sufficiently large g. Ref. [235] proved that in
this regime there exists a quasi-local unitary transformation Y, i.e., one that maps a local
operator to a local operator under its conjugate action, such that the original Hamiltonian
is mapped to

Y (gHy+ VYT = gHy + Heg + R, (4.18)

where (i) [Heg, Ho] = 0, and (i) || R|| is exponentially small in g. From here they deduced
that in the limit ¢ — oo, the dynamics will be governed by the effective Hamiltonian gﬁo—l—
H.g for exponentially long times in g, when truncating the expansion at an optimal order
that scales linearly in g. This then implies that the original Hamiltonian, approximately
conserves YTH)Y and YT H.gY for exponentially long times in g. After that time, different
subspaces of Hy will be resonantly connected by the perturbation V.

Hamiltonian (4.9), including the spin-dependent tilt, offers several energetic regimes
where effective constrained Hamiltonians can be realized. When A+ = A, such constraints
involve only the charge, i.e., whether a site is occupied or not, rather than the spin
degrees of freedom. In particular, we will derive effective Hamiltonians corresponding
to: (1) the resonant |U| ~ 2A, and (2) large tilt regime A > J,|U|; although another
natural resonance appears at |[U| ~ A. Effective descriptions at other resonant points
|U| ~ nA for n € N follow an analogous derivation. When Ay # A and the tilts strengths
A, can be independently tuned, one can then realized analogous constrained systems
explicitly involving the spin degrees of freedom. For example, the average occupation is
(niq) + (ni,) = 1, one can realize a spin-1/2 dipole conserving, where the dipole moment
corresponds to ), 2S'f

4.3.1. Resonant regime |U| ~ 2A

The reason we focus on this particular resonance comes from the spatial structure of the
initial states considered in the experiment. Such singlon CDW configuration makes the
resonance |U| ~ 2A more prominent in the dynamics than the one at |U| = A, where any
hopping process from the initial state would require an energy A. Nevertheless, if other
family of initial states are considered, as e.g., with double-occupied sites, one can find rich
dynamics featuring quantum many-body [236]. In fact, these resonant regimes U ~ nA
have already been considered in the literature, when studying the response of a bosonic
Mott-phase to a resonant tilt field [237], which later on open the possibility of simulating
an antiferromagnetic spin chain with ultracold atoms, as well as to investigate a quantum
phase transition between a paramagnetic and the antiferromagnetic phase [238-240].
Consider the family of states for which Hy = Azw o + 20, NN, | takes the

same value. This defines a subspace, within which an effective Hamiltonian H. with
[Ho, Heg] = 0 can be obtained as an expansion in A = .J/A. Such Hamiltonian can either
independently conserve the dipole moment and the number of doublons or the sum of
the two. Using a Schrieffer-Wolff (SW) unitary transformation e [235 241, 242] with
non-Hermitian generator S = Yoo A" S, up to an optimal order n*, we can generate
order-by-order an effective local Hamiltonian that is “close” to a block dlagonal form with
respect to lEIO

6/\Sn§n* f[e—)‘sngn* = }:’e(g*) + Vnzn*, (419)

where [Ho, Vpsn+] # 0 with Vy,>,,+ exponentially small in 1/ [235, 243, 244]. In particular,

81



Chapter 4. The tilted Fermi-Hubbard model: An experimental platform for constrained
systems

we can obtain the explicit form of the effective Hamiltonian to second order in A 4:

4J2A 4J2A J2A 2J2A 2J2

res =H, T o S 2 T

o+3Aanm,¢ 3A XY‘|‘3A D+A 1 A 2+3A 3, (4‘20)

with

T = Z(l —Nit25)(1 — 20441,6)Ni 5C ZU@ 2.0+ hc.,

2,0
TQ = Z(l — fli+2,o‘)nz o‘CT *Cerl ch-i-l o‘clJrQ . + H. c.,

S (4.21)

TP = (g — nip2) (1= 2(Mis2s — 1i0))Ciolly 500 oCita0 + He,

1,0

Hp =-2 § M 47 | (i1 — M) — E N, ot 1,55
- ,

where & refers to the opp051te spin: 1 =| and | =1. The first term in the expansion of
the SW generator S = 3 A"S), takes the form

. . 2. 8. . . .

So = Z (1 — 2n¢’5 — §n¢+175 + gniﬁnwl,a)czﬂ_l’ac@g —H.c.. (4.22)
1,0

Hamiltonian H ' includes the term T;? term which conserves both the dipole moment

and the number of doublons independently, giving rise to doublon-assisted dipole conserv-

ing processes. This is the diagonal part of dipole-conserving term

Ty = Z é’?‘_’éLl,&éLl,aéiJr?,a +H.c., (4.23)

1,0

commuting with Nyou, = Do Mg .

However, a perfect agreement between interaction and tilt strengths is not necessary
but just that § = |2A — |U|| <« J as long as A,|U| > J. In this case, an additional
diagonal term appears (U — 2A) Y. n;sn; | and modifies the amplitude of every second
order process appearing in Eq.(4.20). In the following, we show that just keeping the
diagonal contribution is sufficient at second order of perturbation theory. Once again
we can use degenerate perturbation theory, with well-defined degenerate subspaces of
the Hamiltonian Hy = U Y ngysng | + AY , xn,. We will follow [245] in the following
derivation and assume without loss of generality that U > 0. In particular let us focus
on the off-diagonal second order contributions in comparison to the detuning term which
scales as O(¢), although the discussion applies to all terms. These are

1 1 . J?2 /1 1 . 2J2 .
— 2 JR— —_— —_—
! <U+A U A> Dot <A+U—A>T1 U—A
1 1 1 1 . .
2 - 2 TE —2A§ hiaf; |+ Hy, (4.24
7 <U—A+A> -7 (A U+ A) 5 ¥ (U-24) it o 424)

where we used the notation

. . .
Iy = Z Mo (1 — Nit25)Ci s j+1 G j+1 sCit2,0 +hc.,

AR T TN S
T3 = Z(l - ni,U)ni+2,5'ci,a'Ci+1’aci+1,aci+27g’ + h.c..

i,0

4This computation took me several pages of algebra which are not included in this thesis.
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Figure 4.3.: Identification of the resonance |U| ~ 2A. ED calculation of the time-

averaged imbalance T = 1/T fOT Zdt for system sizes L = 9,11,13,15 with
increasing opacity and 7' = 10007. We use Ay = A;. The horizontal dashed
line shows the analytical value Jy(4.J/A)? in the non-interacting case (U = 0)
in the limit 7' — oo. The vertical black dashed line indicates the resonant
point, including the second order correction Uyes = 2A — 8J2/(3A). a Time-
averaged imbalance for A = 3J. We use a uniform grid of U = 0.25J and
identify the lowest point in the resonance window at U = 4.75J (blue dashed
line). b Time-averaged imbalance for A = 10J. Close to the minimum we
use a grid with steps 6U = 0.01J, allowing us to locate the minimum at
U = 19.85J (blue dashed line).

It is important to notice that all coefficients match with those in Eq. (4.20) in the limit
U — 2A. In fact, let us write U = 2A + ¢ with 0| < J. Then any coefficient Jog in
Eq. (4.24) can be expressed as

1 J? 1 J? ) 52 J?
_ 7 _ s po))~ L
Jet = S RS T AT L6/ (ch) cA< chAJrO(A?)) A

for some order one number c. Therefore, we conclude that to second order, these correc-
tions can be neglected whenever |U — 2A| < J, though we should still keep the correction
term 0 ), ;47 | .

Renormalized Fermi-Hubbard interaction

The diagonal terms of the effective Hamiltonian in Eq. (4.20) add long-range interactions
and renormalize the Fermi-Hubbard interaction such that the resonant point is shifted for
finite A according to U + % + O(JKQ) = 2A and the overall resonance is broadened. We
numerically identify the resonance for large tilt A = 10J (Fig. 4.3a) and intermediate tilt
A = 3J (Fig. 4.3b) using different system sizes L = 9,11, 13, 15 probing the time-averaged
imbalance Z(T) = + OT dtZ(t). Fig. 4.3 depicts a sharp resonance at strong tilt, while
a rather broad feature is present at intermediate tilt. Away from |U| ~ 2A in the large
U regime, we find that the system is Wannier-Stark localized. For both regimes, the
numerical results are consistent with the analytic prediction for the shifted resonance to
second order even after 10007.

Fragmentation of the effective Hamiltonian

The off-diagonal terms of the effective Hamiltonian in Eq. (4.20) consist of three different
kinds of correlated hoppings Tl,TQ,T?)D (see Fig. 4.4a) with all hopping rates scaling as
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Figure 4.4.: Effective description at resonance and long-time value of the imbal-
ance. a Schematic of the correlated hopping processes obtained in Eq. (4.21).
b Finite size scaling of the long-time value of the imbalance calculated with
the effective Hamiltonian in Eq.(4.20) using a time-averaged imbalance with
T = 30007 (Zeg), a diagonal ensemble ansatz (fqiag) and an infinite tempera-
ture prediction (8 = 0). Additionally, the original Hamiltonian in Eq. (4.17)
is used to compare to the time-averaged imbalance calculated with T = 10007
(Z). All ED calculations were done with a Néel-ordered CDW initial state.

J?/A. Since [ﬁ;ffs,ffo] = 0, Hy becomes a new global quantum number fixed by the
initial configuration, i.e. the linear combination of the dipole moment and the number
of doublons is perturbatively conserved. After fixing this new global quantum number,
the corresponding symmetry sector S is generically fully connected by the action of the
effective Hamiltonian and the Krylov subspace K, hosting the initial state, agrees with S
(see Fig. 4.6). In contrast, the effective Hamiltonian in Eq. (4.20) is fragmented. Fig. 4.5a
shows that S splits up into exponentially many (in system size) disconnected sectors and
the initial state remains trapped within a fragment whose relative size Dy with respect
that of S, appears to become irrelevant with increasing system sizes (see Fig. 4.5a right
y-axis). In particular, Fig. 4.5b shows the connectivity of the fragment K containing the
Néel-ordered CDW state. Vertices in the graph correspond to product states spanning /.

For the subsequent numerical analysis, we use this Néel-ordered CDW initial state
(|o) = 10,1 0,4 0,1, 0, ,...)), expected to show the strongest interaction effects and
fastest dynamics. The correlated hoppings Ty, T, j}? of the effective Hamiltonian connect
the initial state with a set of states defining the fragment . Experimentally, we do not
realize Néel-ordered CDW states, but the connectivity of our initial state with random
CDW spin-sector (with zero magnetization) is the same as for the Néel-ordered CDW state.
In Fig. 4.4b we analyze the system size scaling of both the infinite temperature (within the
fragment containing the initial state) and diagonal ensemble predictions for the imbalance,
obtaining a positive result in both cases for system sizes L = 9,11,13,15,17,19 with
no clear convergence towards zero imbalance in the thermodynamic limit. The scaling
of the infinite temperature prediction suggests a finite value even in this limit. This
apparent finite imbalance for ﬁé%s could be interpreted as follows: Given an initial state
that breaks even-odd sublattice symmetry, most dynamical processes in Eq.(4.20), except
those generated by T}P , do only transport particles in one of the sublattices. Thus, most
states within the fragment have positive imbalance in agreement with the positive infinite
temperature value. This explanation is reminiscent of the observed ergodicity-breaking in
dipole-conserving systems. Nevertheless, a more careful and detailed analysis should be
performed, which could in particular address the temperature associated to the specific
initial state and study thermalization within the fragment is contained in.

We also include simulations with the exact Hamiltonian Hipp [Eq. (4.17)] for A =10J,
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Figure 4.5.: Hilbert space fragmentation at resonance. a) Exponential system-size
scaling of the number of fragments within the symmetry sector with fixed
(N4, Ny, > in; + 2Ngoun). b) Connectivity of the subspace containing the
Néel-ordered CDW state for system size L = 11. This state corresponds to
the red vertex. Calculations were done using ED.

U = 19.85J. These agree well with the results of the effective Hamiltonian even up to
remarkably long times 7' ~ 1037 and without including the SW transformation. As we
found, the exact and effective Hamiltonians are related by the conjugate action of a unitary
transformation e° that should then act on the observable and the initial state. However,
such rotation tends to the identity in the limit A — 0. Consistent with a perturbative
expansion in A\, which neglects higher order terms in the effective Hamiltonian, it yields a
systematically larger imbalance compared to the original Hamiltonian. Since the conser-
vation law, i.e. the linear combination of the dipole moment and the number of doublons,
only holds perturbatively, one would expect that it is valid only up to a certain finite
timescale as we discuss in Section 4.3.3.

4.3.2. Strong tilt regime: dipole conservation

Here, we focus on the parameter regime A > |U|,J and derive an effective Hamiltonian
using the high-frequency expansion (HFE) in the rotated frame. The Hamiltonian in
the rotated frame Eq. (4.12) is time-periodic Hy(t + %r) = H(t). According to Floquet
theory [246, 247] the unitary evolution generated by Hj(t) can then be written as

UI (t, tO) — efif(eﬂr(t)efi(tfto)f{egeif(eg(to)7 (425)

with a time-independent Floquet-gauge invariant Hamiltonian H.g and a gauge-dependent
and time-periodic kick operator Keg(t). It has been noticed that the first orders in the
perturbative SW transformation approach for static Hamiltonians (see e.g., [241]), coincide
with those in the HFE in the rotated frame (which provides the gauge-invariant effective
Hamiltonian) [247, 248], with the SW generator given by the kick operators. Following
this approach, we obtain the effective Hamiltonian as a Floquet expansion in powers of
1/A with Heg = Yon f]gg) and Keg(t) = don Kég) (t). Up to third order the effective
Hamiltonian is [246, 247, 249, 250]:

. . . 4J?
HE =Ty 4 27O Txy + U(l - %) D highig +2JE N highiiie,  (4.26)
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or equivalently,

A di N A 4.J? o o
HGP =0Ty + 47O Z S-S+ U(l . F) Z Aigigy + J Z Aifin,  (4.27)

up to constant terms, where ¢ = {{, 1} indicates the respective opposite spin of o = {1, ]},

J®) = LU and

Ty = Z éi’gél':rl,o‘él':rl,&éprz& +h.c., (4.28)
2,0
Txy =3, éj,aéiﬂ,&éjﬂ,aéi,m (4.29)
0,0

The kick-operator to third order is expressed as

N J .
Keﬁ(t) - ZE Z (éj’ge_ZtAéi+1yg — h.C.)
1,0
JU — . e
—i%g 2 (e = fig) (€] e " e o — huc) (4.30)

0,0
and the time-evolution operator is approximated as

~

Us(t,to) ~ o~ iKeit(t) ,—i(t—to) Hesr piKer(to) (4.31)

Rotating back to the Schrodinger picture, we find

Ut t0) e~ 007, (¢, t)e 100 o ¢S =it=t0) (Her+1i0) o (4.32)
where we have used the fact that [Heg, Ho] = 0 and that e‘itﬁokeﬁ(t)eitﬁo = Keq(0)
[248], namely the product on the left hand side does not depend on time. Therefore, the
Hamiltonian in the large-tilt limit can be approximated (up to higher-order terms) via

H~ e_g(f{eff + ﬁo)eg, (4.33)

taking the form of a perturbative SW transformation at third order in J/A, with the
SW generator given by S = iKQH(O). We have thus obtained an effective Hamiltonian
which conserves the dipole moment (or center of mass ), in;q), with T3 in Eq. (4.28)
resembling the strongly-fragmented dipole-conserving Hamiltonian we studied in previous
chapters, up to additional spin degrees of freedom (see Fig. 4.4a). In particular, we can
identify a double occupied site | 1)) with a (+)-fracton |+) and an empty site with a
(=)-fracton (|=)). Then, it is clear that the Txy term (or the spin exchange term in
Eq. (4.27)) only act on single occupied (i.e., spin degrees of freedom), while the term Ty
lead to local processes likee.g., | T — ), [l = 1) < |—+—) aswellas | T +—) < | —+1).

The fact that the hopping rate J®) is proportional to the interaction strength highlights
that interactions are necessary to generate dipole-conserving processes [251] (pure off-
diagonal non-interacting contributions destructively interfere at any order). Moreover, J (3)
agrees with the two particle picture provided in Ref. [251] yielding Jeg o % with |U] <«
A. For CDW initial states of singlons, the connected dynamical sector IC only represents a
vanishing fraction of the whole (effective) symmetry sector S, thus severely restricting the
dynamics of the system. The dipole-conserving processes in general involve the generation
of doublons. This is, however, penalized by the Fermi-Hubbard on-site interaction in
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Eq. (4.26) and therefore, we expect a slowing down of the dipole-conserving dynamics (see
Section 4.4.1). The additional spin-exchange Txy increases the connectivity, but cannot
fully connect the whole dipole symmetry sector and the system remains fragmented.
Before closing this section it is interesting to point out that as the original tilted Fermi-
Hubbard Hamiltonian in Eq.(4.17), the resulting effective one is also SU(2) invariant.
From the presentation in Eq.(4.27) this implies that the term T is U(1)xSU(2) invariant
on its own. This additional non-Abelian symmetry could provide an example of a quantum
fragmented model in the nomenclature of Ref. [166] as we discuss at the end of this chapter.

Effective Hamiltonian with tilt difference

The effective Hamiltonian in Eq. (4.26) was obtained under the assumption of a spin-
independent tilt A = A| = Ay, together with A > J, |U|. Nevertheless, the experimental
setup we will investigate has a small but finite detuning between the two and in fact,
this could be intentionally tuned as in Ref. [4]. As long as 6 = A} — Ay > 0 is small
compared to the hopping rate J (§ < J) our perturbative expansion also works up to
some additional contribution. To see how this happens let us write Eq. (4.9) as follows

H=—JY & tino+he +UD nigigg + A ing +3Y iy, (4.34)
io i i i
Since Ay > J > 0, we just keep the small contribution in ¢ and follow the same expan-
sion in J/A4 as for a spin-independent tilt. Since [Y,in; |, Y, in;] = 0, this contribution
appears already at first order. Thus, the resulting effective Hamiltonian becomes

HP = JO(Ty + 2Txy ) + 20OV + U ivggiiy + Ay Y idg+6 » ingy.  (4.35)

To understand the effect of the additional term in §, we consider the following family

n
of states {|n)} = {|]... ™13 0 1 ...)} with a doublon § at lattice site n on the chain
surrounded by a polarized background. This background acquires a uniform polarization.
This family defines a Krylov subspace left invariant under the action of flggfp. In particular,
the term T'xy has a trivial action and every diagonal contribution, except the term in 9,
is proportional to the identity in this subspace. Thus, we project Eq. (4.35) into this
subspace leading to the single-particle Hamiltonian

Hf| == Imn+ 1+ he.+3 3 nin)nl,

that describes a doublon-hole pair surrounded by a uniform polarized background and
that propagates as a single-particle with hopping amplitude J®) in the presence of a tilt
J, similarly to Eq. (4.1). Therefore, when quenching the system from an initial state |n)
this leads to Bloch oscillations with the doublon localized in a region of size o J/J.

However, when J > ¢ and for generic tilts such that A+/A| ¢ Q the previous per-
turbative expansion is not valid. This requires a different approach and it is in fact a
direct application of the theory developed in [252] (see in particular Section VIIL.B and
Appendix A) for quasiperiodically driven systems. Let us write Eq. (4.9) in the rotated
frame where it becomes a quasiperiodic Hamiltonian

H(t)=—-J) el eip10e ™" +hie. + U iypingy, (4.36)
1,0 %
with periods T, = 27/A, for 0 =1,]. Then we can decompose
A= 3 e,

ni,n2
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Figure 4.6.: Illustration of the structure of the Hilbert space. Fragmentation of
the approximate symmetry sectors S of the Hilbert space H of an effective
Hamiltonian Heg, derived perturbatively in the small parameter A (black),
into dynamically disconnected fragments K. Higher-order terms O(A") (green)
soften the block-diagonal structure. Figure adapted from Ref. [3].

~ A A~

in terms of a Fourier series with the only non-vanishing terms H g o), H+1,0), H(o+1)-
Following Appendix A in [252], we can obtain an effective static Hamiltonian as a
perturbative expansion in J/A,. The Oth order contribution is given by the diagonal term
H 00 =U > ;s and the first order contribution vanishes up to boundary terms, in
both cases agreeing with the result for a spin-independent tilt. Using [252], we explicitly

obtain the second order contribution

1 S 1 3 : :
2o\ i o el O gy Mo o il

~ ~

where we have used the notation n = (n1,n2) and w = (A4, A}). Since [H 41,0y, H(o,+1)] =
0 as well as [.FAI(H’O), fI(,l’O)] = 0 (up to boundary terms), the only non-trivial contribution
is given by >, (7414 —7i 1) (g1, —N4, ), namely a diagonal contribution but no correlated
hopping process. This is in line with the fact that dipole-conserving processes require
the presence of interactions among the involved degrees of freedom [253]. For a spin-
independent tilt, the Hubbard interaction mediates these hoppings involving the two spin
species and leading to the conservation of the dipole moment ), i7;. On the other hand,
when the tilts are different and incommensurate, the dipole moment for each spin is
independently conserved. However, these processes require interactions involving the same
spin species (e.g., Y, , MioNit1,0). Thus, unless such interactions can be generated at
higher orders (or app7ear in the particular experimental implementation), the effective
Hamiltonian for J,U < A, with J > 6 and Ay/A| € Q obtained from Eq. (4.9), will lead

to frozen dynamics for initial product states in the local number occupation basis.

4.3.3. Role of the Schrieffer-Wolff transformation

In the two previous regimes the resulting effective Hamiltonians were fragmented. There-
fore, in addition to the emergent symmetry [Hg, Heg] = 0, the effective Hamiltonian Heg
at that finite order m, which includes terms whose coefficients scale as A" (denoted as

H e(g)), is fragmented in the local number basis |n) = |[{n;,}) for the regimes of interest
see Fig. 4.6). Each of these fragments delines a subspace = {|n); to which we can
Fig. 4.6). Each of these f defi b K hich

associate a projector Py such that [Py, H e(g)] = 0. Thus, in the limit A — 0, we find that

[ﬁ, ISIC] ~ O()\”‘H) with P = e_SP;CeS. This means that fragmentation physics of the

88



4.4. Numerical results and perturbative picture

(n)

nth-order effective Hamiltonian H eg is expected to survive to times scaling only polyno-

mially tA"*! ~ 1, unlike the quasi-exponential scaling that applies to e ﬁoe*S [254].
This implies that fragmentation physics is a transient phenomenon when realized pertur-
batively - with the fragment spanned by the states K = {¢~*|n)}. This is not a fragment

A

in the number basis but some locally dressed version of it since S is quasi-local and A < 1.

However, since ¢S 230 1, this means K — K. Notice that in this limit the coefficients in
front of the correlated hopping terms for the previous effective Hamiltonians also vanish
in this limit.

4.4. Numerical results and perturbative picture

In the previous section we focused on regimes where effective microscopic Hamiltonians
could be derived. However, such descriptions are only valid for strong tilts (A > J)
and at short to intermediate time scales. Thus, we cannot derive any conclusions about
the dynamics of the full interacting system (Eq.(4.9)) from the non-ergodic behavior that
appears as a result of the approximate fragmentation of the Hilbert space. However,
these constructions can still be useful to understand the relevant microscopic processes
that activate the dynamics (for a given family of initial states) and what can prevent the
system to thermalize.

4.4.1. Higher order contributions and relevant on-site interactions in the
dipole-conserving regime

Dynamics caused by fragmentation is captured by effective Hamiltonians and is therefore
a transient phenomenon. The perturbative derivation of the effective Hamiltonian ne-
glects higher-order terms which will eventually couple different fragments, such that the
dynamics no longer solely occur within a certain fragment. While we know that the dipole
moment will be conserved for exponentially long times in the tilt strength, estimating the
time scales, which capture the dynamics caused due to fragmentation, requires a detailed
analysis of both the diagonal and off-diagonal terms of the effective Hamiltonian. Note
that the off-diagonal term ey occurring at a rate J® = JZ—QU in the dipole conserving
limit (A/J — oo, Eq. (4.26)), requires the production of doublons when starting from
an initial CDW of singlons. Creating a doublon is, however, penalized by the diago-
nal Fermi-Hubbard interaction with strength ~ U that is much larger than J®), since
U/J®) = (A/J)?. Therefore, such an initial state remains frozen for exponentially long
times ¢t > (/7 )2, analogously to the stability of doublons in the repulsive Fermi-Hubbard
model in the U > J regime [255, 256]. This effectively gives rise to a fragmentation not
only due to the conservation law of the respective effective Hamiltonian, but additionally
due to the conservation of the doublon number [4]. A similar argument can be made for the
time scale on which higher-order off-diagonal terms, coupling different fragments, become
effective and eventually destroy fragmentation. We will give a brief outline here for the
dipole conserving limit, where higher order terms are easier to capture. These terms add
longer-range processes to the effective Hamiltonian and in general order-n terms generate
longer range-n processes whose effective hopping rate scales as J( ~ J2kyn—2k /AL for
some k. Any even order vanishes due to destructive interference: For every process started
by a particle hopping to the left, there exists another process with a particle hopping to the
right, thus contributing with opposite signs. The hopping rate of the next non-vanishing
fifth-order scales as J(®) ~ J4U /A%,

Using a qualitative Kato-Bloch perturbative approach [257, 258], which is easier to
handle than a Schrieffer-Wolff transformation or a Floquet expansion [259] for higher-
order terms, two terms emerge at fifth order in the dipole conserving limit: a 5-local
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Figure 4.7.: Role of higher-order diagonal and off-diagonal terms. ED calculation
of the imbalance for the Hamiltonian H = J®) (Tg + Txy) + J®) (T4 + T5) +
UNaoub. a Imbalance for J® = JB) U =0 (blue), JO = JO), U = 9JO)
(red), and J©O) = JB) /9 U = 9J( ) (green) for system size I = 15. b Finite
size scaling of the 1mbalance for J©O) = JB3) U =0 (left) and for J®) = J©),
U=9J® (right). In both cases, we use L = 11,13, 15 and increasing opacity
corresponds to increasing system size. All calculations were done using ED.

Hamiltonian
T5 = Z (éizaéj+2,o@z+2,aéz‘+4,6 + h-C-) ; (4.37)
©,0
with two opposite spins hopping to an intermediate site, requiring the creation of a doublon

in the central site; and a 4-local term T4 similar to the H4 Hamiltonian we studied in
Chapter 2

Ty= Z (éivﬂéj+1,aéj+27a—éi+3,a + h-C-> ; (4.38)
0,0
which populates nearby sites with opposite spin, thus interacting via the nearest-neighbor

interaction appearing at third order. We now consider the time-evolution of a Néel-ordered
CDW initial state for system size L = 15 with the toy model Hamiltonian

H= J(s) (Tg + Txy) + J(5) (T4 + Tg,) + UNdouba (4.39)
using J () = 1 as unit of energy. Here, Ndoub measures the number of doublons in

the system. In Fig. 4.7a we clearly observe an exponential decay of the imbalance for
J®3) g6~ O(1) and U = 0 in agreement with our results in Chapter 2. The decay time
scale steeply increases when adding on-site interactions such that J& = J®) =1, U =9
corresponding to a ratio U/J (3) = 9 in the perturbative expansion, which is consistent
with A = 3. although the higher-order term is still unrealistically large (J©®) = J®)).

A more realistic regime is captured with J® = j©) /9 and U = 9 from the appropriate
perturbative scalings. Here, the imbalance clearly stays finite on the observed time scales.
Thus, the energy penalty given by the on-site interaction has a drastic effect on the decay
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of the imbalance caused by higher order terms, slowing down the dynamics tremendously.
Fig. 4.7b and Fig. 4.7c show a finite-size scaling in the regimes J® = J®) with U = 0 and
JB) = JO) with U = 9, clearly indicating that large system sizes are necessary to capture
the correct steady-state imbalance. In general, we expect such energy mismatches among
diagonal and off-diagonal contributions to occur at higher-orders in perturbation theory.

Does this mean that the system will remain localized to infinite long times? What is
then the role of the harmonic or disorder potentials considered in Refs. [76, 157] assumed
to be required to stabilize Stark MBL? First of all notice that such arguments do only
apply to certain families of initial states. For example, considering an initial finite density
of doublons will allow certain resonant processes (as e.g., TgD in Eq. (4.21)) to activate
the dynamics. Secondly, as discussed in Ref. [253], the standard signatures of MBL,
as for example a logarithmic — instead of a fast linear— growth of entanglement, only
appear in the presence of a finite harmonic potential. However, the actual fate of the
clean system at long times is still a matter of debate as we review in Section 4.6. My
current understanding is that due to the existence of these many-body dipole-conserving
processes, which in many circumstances lead to resonances, there is no reason to think
that the system will remain localized to infinite times, although the scaling of such time
scale with the system size is still an open question whose answer appears complicated. On
the one hand, numerical methods can only simulate small system sizes (L ~O(10)), while
experimental results might not be able to coherently reach sufficiently long-times.

Finally, let us address the role of the harmonic or disorder potentials (>, A;n;). As
we just said, in the regime where A > J, dipole-conserving processes will be appear
whose coupling decay exponentially with its range ~ (J/A)®. When a disorder potential
is added, this has to compete with these processes which can give rise to conventional
disorder-induced MBL [260] (at least in the perturbative picture). Similarly, the addition
of a harmonic trap will make processes with a range larger than a critical one ineffective
to delocalize the system. In that circumstance, localization might survive (see discussion
in Section 4.6).

4.4.2. Real-time evolution of the imbalance and the entanglement entropy at
resonance

In this section, we study the long-time dynamics of the clean system without spin-
dependent tilt and harmonic confinement for a large range of tilts and different system
sizes: We choose a weak A = 1.J, an intermediate A = 3J and a large tilt A = 10J.
We focus on the dynamics close to the resonant point |U| ~ 2A, and consider an initial
Néel-ordered CDW state. This state has a symmetric charge distribution with respect to
the center site and thus its dipole moment coincides with that of a homogeneous charge
distribution. In Fig. 4.8a we show numerical simulations of the imbalance Z up to late
times for different system sizes. In the large tilt regime, we find a stable imbalance for
all system sizes, whereas the intermediate and weak tilt regime show an imbalance de-
cay. This decay is very weak in the intermediate tilt regime and a conclusive answer on
whether and at what timescale the imbalance decays to zero cannot be given. In contrast,
the imbalance calculated with the effective Hamiltonian ﬁégs [Eq.(4.20)], without includ-
ing the SW rotation, is stable (grey shaded trace in Fig. 4.8a), as expected due to the
absence of higher-order terms in the perturbative construction. Additionally, we find that
the imbalance weakly scales down with system size. For small tilts, we clearly observe a
decay of the imbalance to zero for large enough system sizes.

Note that, while we used L = 13,15,17 for the intermediate and large tilt regime to
minimize edge effects with an unoccupied odd site at the left and the right end of the
system, we choose L = 12,14,16 for the weak tilt regime. In this regime, the initial
CDW relaxes to a potentially thermal density distribution and such a distribution only
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Figure 4.8.: Finite-size scaling analysis of imbalance, entanglement entropy and
occupancy. a Long-time behavior of imbalance Z for system sizes L =
13,15,17 and (A = 10J,U = 19.85J) (blue), (A = 3J,U = 4.75J) (red)
and system sizes L = 12,14,16 for (A = 1J,U = 4.75J) (green). The grey
line corresponds to a simulation of the imbalance according to the effective
Hamiltonian H' [Eq.(4.20), Eq. (4.32)] for L = 15 and A = 3.J up to 30007
Fluctuations in the data are reduced by using a running average with a time-
window of 107. b ,c Time-averaged on-site occupancy n; = 10/T foj.ﬂ9T n;dt for
system sizes L = 15,17 and b (A = 1J,U = 4.75J) and ¢ (A = 3J,U = 4.75J)
. The time average was performed with T' = 126007 for L = 15 and T' = 12607

for L = 17. d Long-time behavior of the half-chain entanglement entropy Sy,
o
of a random state (see Section 1.2), within the symmetry sector (N4, N) for
the same parameters as in (a) and system sizes L = 13,15,17. The dashed
horizontal lines shows the entanglement entropy of a random state within
the fragment K containing the Néel-ordered CDW initial state. Increasing
opacity corresponds to increasing system size. All calculations were done us-

ing ED.

normalized to the Page value S i.e., the half-chain entanglement entropy

has zero imbalance for an equal number of even and odd sites. Additionally, the breathing
amplitude of the dynamics for A = 1.J is four sites and boundary effects cannot be easily
prevented by including an empty site at the edges. We confirm in Fig. 4.8b that the
on-site occupancy shows no more memory of the initial CDW order in the regime of weak
tilt, consistent with a zero imbalance. For the intermediate tilt in Fig. 4.8¢c, we find a
remaining CDW order.

In Fig. 4.8d we show numerical simulations of the half-chain entanglement entropy Sy, /2,

normalized to the Page value SE?%Q [118, 120, 261] (see also the definition provided in
Section 1.2.). This corresponds to the half-chain entanglement entropy of a pure random
state within the symmetry sector fixed by particle numbers Ny, Nj. In the weak tilt
regime, the half-chain entanglement entropy converges towards the thermal Page value for
large enough system sizes, which is consistent with a lack of memory of the initial state
as observed with the imbalance and the on-site occupancy. For an intermediate tilt, we
observe a sub-thermal entanglement entropy, growing only very slowly at late times, which
is consistent with the finite imbalance up to the latest times accessible in the simulations.
For large tilt, the entanglement entropy reaches a plateau, which slightly depends on the
system size. This saturation value of the entanglement entropy is slightly smaller then the
entanglement entropy of a random state within the fragment K (blue dashed lines for
the different system sizes) in which the initial state is contained.
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Unlike the dipole-conserving regime, at perfect resonance Ues = 2A > J, neither the
lowest-order dynamical processes generated by H o in Eq. (4.20) nor in general higher-
order terms, are energetically suppressed. Thus, at a time scale given by the fourth-order
term ¢ oc A3/J*, fragmentation phenomena are expected to breakdown with the result
that imbalance decays. Note that the third-order and in general any odd-order term van-
ishes due to the CDW initial state, requiring an even number of hoppings for a resonant
exchange between tilt and interaction energy. However, locating such a resonant point (at
finite A) requires fine-tuning: every order in perturbation theory gives a diagonal contri-
bution renormalizing the Fermi-Hubbard interaction. As numerically shown in Fig. 4.3a,
this is even more subtle at lower values of the tilt. In general, we expect a finite detuning
from the resonance, which can be comparable to higher-order contributions, thus ’shield-
ing’ the fragmentation of the lowest order Hamiltonian and slowing down the dynamics.
Nevertheless, and as we already emphasized, we cannot use this perturbative result to
draw any conclusion about the system long time dynamics.

4.5. Experimental results

A systematic presentation and discussion of the experimental setup, measurement tech-
niques and data acquisition of the experimental results we discuss in the following section,
have been the topic of two different experimental dissertations [262, 263] which extend the
content published in Refs. [3, 4]. Moreover, Ref. [263] discusses the effect of experimental
imperfections which depart from the ideal tilted Fermi-Hubbard model Eq. (4.9). Hence,
we will focus on the main experimental observations that provide evidence about the be-
havior of the system at long-times as well as the effect of interactions referring the reader
to Refs.[262, 263] for additional details.

The experimental setup consists of a degenerate Fermi gas of 50(5) x 103 4°K atoms
that is prepared in an equal mixture of two spin components | 1) = |mp = —7/2) and
| ) = |mp = —9/2) in the F = 9/2 ground-state hyperfine manifold. The atoms are
loaded into a 3D optical lattice with lattice constant ds = 266 nm along the x direction
and deep transverse lattices, with constant d; = 369 nm, to isolate the 1D chains along
x. The residual coupling along the transverse directions is less than 3 x 107%J. The
dynamics along z is described by the tilted 1D Fermi-Hubbard model in Eq. (4.9). The
on-site interaction strength U is controlled by a Feshbach resonance [8] centered at 202.1 G
and a magnetic field gradient is used to create the tilt A,, with Ay ~ 0.9A. The weak
spin-dependence arises due to the different mp quantum numbers. Moreover, one can tune
this spin-dependence using the technique of radio-frequency dressing [4, 264], realizing
dressed states that see a weighted average of A+ and A|. A general description of the
experimental sequence as well as additional details on the experimental setup can be found
in the Supplementary Material of Ref.[4].

The initial state for all subsequent measurements is an incoherent mixture of site-
localized singlons with random local spin configuration and zero total magnetization
(Ny = N}). The fraction of residual holes on even lattice sites, due to imperfections
in the loading sequence and due to removed doublons is expected to be about 10% [265].

In the experiment, the subsequent evolution of the spin-resolved imbalance is tracked

77 = (N9 — N%)/N°, (4.40)

where Ng‘(o) denotes the total number of spin-o atoms on even (odd) sites and N7 =
NZ+NJ . In the non-interacting limit we already obtained its time-dependence analytically
(Eq.(4.6)) leading to Bloch oscillations with a characteristic period T, = h/A,, set by the
spin-dependent tilt. This enables a precise calibration of the model parameters A, and
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Figure 4.9.: Spin-resolved Bloch oscillations. a Typical calibration measurement of
the tilt A, for both spin-components using the spin-resolved imbalance Z°.
Here, J = 540Hz, A| = 2.96(3)J and we extract a frequency difference of
(A} — A4)/h = 170(2) Hz, which is in reasonable agreement with the calcu-
lated difference. Each data point is averaged four times and error bars denote
the standard deviation of the mean (SEM). b Imbalance difference between
| ) and | 1). The resulting pattern exhibits a beat note similar to the trigono-
metric identity cos(wit) — cos(wet) = —2sin((w1 + wo)t/2) sin((w1 — w2)t/2).
Solid lines in all panels are numerical simulations using TEBD algorithm per-
formed by Bharath Hebbe Madhusudhana [3].

J at short times. A typical calibration measurement is illustrated in Fig. 4.9 for a spin-
mixture at A} = 2.96(3).J. We clearly see the different tilts in the oscillation frequency of
the respective spin component. We observe that the signal includes a decaying envelope
function thus departing from the analytical result in Eq.(4.6). Notice that observing
perfect revivals with period 7, in the imbalance, requires no spatial inhomogeneities within
the system, as coming from disorder or spatial dependent tunneling J and tilt A,. In fact,
this experimental setup includes a residual harmonic confinement that results in a weak
local variation 07T, of the Bloch oscillation period T, between adjacent sites.

4.5.1. Harmonic confinement

Any correction to the linear on-site potential leads to a spectrum of Bloch oscillation
frequencies in the system that are averaged over in the imbalance measurement. A relevant
such correction is caused by the residual harmonic confinement, modelled as a quadratic
contribution to the linear potential, Aji+ (i — ig)?, where ig is the center of the lattice.
Equivalently, we can think of a locally varying tilt strength given by A + 2«a(i — ig). The
observed Bloch oscillation is then a sum of Bloch oscillations with frequencies ranging
between A — 2aL/2 and A + 2aL/2 with a step of 2« for a system size of L sites. In
order to understand the result of such a sum, consider, for instance, a sum of sinusoidal
oscillations

L/2 .
f£(t) = i_;/z cos(2m(A, + ai)it) = cos(2r A1) Sm(:;(éwt;))o‘t) (4.41)

This is an oscillation at frequency A together with a “beat note” envelope at a frequency
(L + 1)a = La and nodes located at 1/(2La). The Bessel-type Bloch oscillations would
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Figure 4.10.: Calibration of the harmonic confinement. Imbalance 7+ for a spin-
polarized gas at A| = 1.8J and J = h - 540 Hz. Each data point is averaged
twice and error bars denote the SEM. The solid line is a fit to the data using
an ED calculation, which includes the harmonic confinement. The resulting
collapse time is T, = 8 ms. The dashed line corresponds to the time-average
value of the imbalance Z as obtained in Eq.(4.7). Solid lines in all panels are
numerical simulations using TEBD algorithm performed by Bharath Hebbe
Madhusudhana [3].

behave in a qualitatively, and also quantitatively for A| > J, similar manner. Therefore,
we expect a collapse at time T, =~ 1/(2La), before the imbalance revives. Even for a
weak harmonic potential, its effect on the imbalance can be observed at short times for
sufficiently large system sizes. We use numerical calculations of the imbalance time trace
for a non-interacting system in a lattice of size L = 290(20)ds to determine the value
of a, as a fit parameter. Corresponding to an experimentally measured imbalance time
trace Ii(tj) :j5=1,2,---,n, where n is the number of data points in time, we compute,
numerically, the trace I}mm(tj; J, A}, ) and then minimize |ZH(t;) —Irimm(tj; J AL Q)2
over « to determine the fit value. The harmonic confinement is extracted in Fig. 4.10. We
find a collapse time of T, = 8 ms (for J = h-540 Hz), corresponding to « = h-0.216 Hz. Due
to the local nature of the dynamics in the Stark Hamiltonian, « is the important energy
scale for the dynamics, characterizing the amount of curvature, experienced by every single
atom. In this system, the tilt is on the order of A| ~ h-1000Hz and the curvature is very
weak (a/A; =~ 107%). Theoretically, the imbalance oscillations should revive partially
(as it happens in numerical simulations only including the harmonic trap), but due to
anharmonic confinement, residual onsite disorder and other dephasing mechanisms such
revivals are not seen and instead the imbalance saturates to a stationary value. All these
artifacts can affect the envelope of the Bloch oscillations in addition to the dephasing of
the harmonic confinement and are also included in the extracted collapse time. Hence,
extracting the harmonic confinement from the collapse time yields an overestimation of
the true harmonic confinement.

4.5.2. Many-body dynamics at short time scales

In a first set of measurements the effect of interactions on the coherent short-time dy-
namics are studied. In the presence of interactions, Bloch oscillations persist, showing a
rich variety of dynamics, such as interaction-induced dephasing and amplitude modula-
tion [232, 266, 267]. Generically, interactions lead to a hybridization of the non-interacting
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multi-particle Wannier-Stark orbitals, lifting the degeneracy of the equispaced spectrum,
resulting in GOE level statistics for sufficiently small tilts [232]. For weak tilt values,
A, = 1.2J, we find that the dynamics of the interacting spin-mixture (U = 3J) exhibits
the same dominant frequency components as the non-interacting Bloch oscillations, while
the dephasing — refering to the damping of the oscillations— is strongly enhanced (see
Fig. 4.11a). This can be seen more directly by calculating the power spectral density
(PSD) |Z°(v)|?, which corresponds to the Fourier transform of the time-dependent imbal-
ance (inset of Fig. 4.11a). Time traces up to the collapse time at 8 ms have been used,
which correspond to a frequency resolution of 125 Hz in [Z°(v)|?.
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Figure 4.11.: Short-time interacting Bloch oscillations. a Imbalance Z+ for U = 0.J
(spin-polarized gas, light blue) and U = 3.J (spin-resolved measurement,
dark blue) with J/h = 0.88(2) kHz and A| = 1.22(1)J. Inset: Power spectral
density (PSD) |Z(v)|? of the time traces shown in the main panel, normalized
to the maximum of the non-interacting spectrum; vy = 2A | /h indicates the
dominant frequency component. b PSD |Z(v)|? for U = 3.J (spin-resolved
measurement, dark blue), normalized to the maximum of the non-interacting
spectrum; J/h = 0.54(1) kHz and A = 2.96(3)J. The data was obtained
from time-traces as in (a). Inset: PSD as in the main panel and for U = 0J
(spin-polarized gas, light blue). vo = A /h indicates the dominant frequency.
Each data point in (a),(b) consists of four independent measurements and
the error bars denote the standard error of the mean (SEM). Solid lines in
all panels are numerical simulations using TEBD algorithm performed by
Bharath Hebbe Madhusudhana [3].

We find three distinct peaks in the spectrum, the Bloch frequency A| and an admixture
of two higher harmonics with the largest spectral weight in the second harmonic at vy, =
2A/h. For U = 3J its weight is decreased by 70% compared to the non-interacting case.
The higher-order harmonics originate from the real-space evolution within one Bloch cycle
and are determined by the Bloch oscillation amplitude A,/ds = 4J/A,. Recall that the
non-interacting Wannier-Stark orbitals are localized around sites of the chain extending
over a region of size 4J/A, (in units of the lattice constant ds) with energy given by the
site coordinate (on the Wannier-Stark ladder) times the tilt [75]. We thus can anticipate
frequency components at integer multiples of A,, with an upper bound determined by
Ay /ds, in agreement with our data.

Interaction effects are expected to be less relevant once the Bloch oscillation amplitude
is smaller than one site, resulting in negligible overlap between neighboring particles for
our CDW initial state. In Fig. 4.11b we show the PSD of the coherent short-time dynamics
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Figure 4.12.: Short-time interacting Bloch oscillations. Interaction scan of the peak
power spectral density |f(1/j)\2 evaluated by summing the PSD in a win-
dow of +3 data points around the dominant frequency v;, j = {1,2}
at (a)A) = 1.22(1)J and (b) A} = 2.96(3)J obtained from traces as in
Fig. 4.11a. Solid lines in all panels are numerical simulations using TEBD
performed by Bharath Hebbe Madhusudhana. The experimental and numer-

ical data in this plot were published in Ref. [3].

for Ay = 3J. While the largest spectral weight of the PSD is now contained in the Bloch
frequency v = A /h, the reduction is still about 50% compared to the non-interacting
case. Indeed, the spectral weight is a sensitive measure of the interaction-induced de-
phasing. Moreover, the on-site interactions lift the degeneracy of the energy levels in the
Wannier-Stark spectrum, which results in additional frequency components in the PSD. In
particular, for the parameters used in the data of Fig. 4.11b, these lead to particularly clear
signals at ~ v, £0.5A /h in the time-evolving block decimation (TEBD) simulations [268—
271], which is consistent with the experimental data. A recent work [272] has found that
these additional frequency contributions can be explained using the two-particle picture
in the presence of a tilt [253] leading to a shift vy & Jeg with Jeg o< J2U/(A2% — U?).

The sensitivity of the coherent short-time dynamics on the interaction strength is fur-
ther highlighted by the strong interaction-dependence of the peak power spectral density
(PPSD) |Z(v)|? of the respective dominant frequency components vj, j = {1,2} in each
regime with A = 1.2J and A| = 3.0J respectively (Fig. 4.12). We find a sharp decrease of
the PPSD by about 40% already for small interaction strength U = +0.5.J for A, = 1.2J.
After reaching a global minimum at intermediate interaction strength, it slowly recovers
to the non-interacting value in the limit of large interactions as long as |A4 — A || < J.

From this analysis we conclude that interactions do have an effect on the system dy-
namics for the range of parameters considered in the experiment. However, what happens
at long times?

4.5.3. Non-ergodic behavior at late times

In this section we measure time in units of tunneling times 7 = f/J, which is given by
the inverse of the hopping amplitude J. For large enough evolution times, the coherent
Bloch oscillations are dephased and a finite steady-state imbalance develops in the non-
interacting limit (see light-blue time trace in Fig. 4.13a). The observed finite steady-state
imbalance is caused by Wannier-Stark localization and agrees with the analytical predic-
tion for the time-average value of the imbalance obtained in Eq. (4.7) (black dashed line).
The excellent agreement between experimental data and the analytical result provides
strong evidence that the effect of the harmonic confinement is negligible for the late-time
steady-state imbalance value (while relevant for the damping of Bloch oscillations). This
is further supported by the data in Fig. 4.14a, where the steady-state value is probed for a
larger range of tilt values, even reproducing the non-monotonous behavior that we found
in Fig. 4.2, including values at which the imbalance vanishes.
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Figure 4.13.: Long-time dynamics. a Imbalance time traces at A} = 3.30(3)J and
J/h = 0.54(1) kHz for U = 0J (spin-polarized, light blue) and U = 5.J (spin-
resolved measurement, dark blue). The shaded trace is an ED calculation for
L = 16. Inset: ED calculation for L = 16 in a clean system with A| = Ay =
3J, wp, =0 and U = 5J using a Néel-ordered initial CDW. The dashed lines
show the analytic prediction for the non-interacting steady-state imbalance
[Eq. (4.7)]. Error bars denote the SEM. Numerical simulations in this plot
were performed by Bharath Hebbe Madhusudhana. b Long-time behavior
of imbalance Z for system sizes L = 13,15,17 and (A = 10J,U = 19.85J)
(blue), (A =3J,U = 4.75J) (red) and system sizes L = 12,14,16 for (A =
1J,U = 4.75J) (green). The dashed lines show the analytic prediction for
the non-interacting steady-state imbalance Eq. (4.7). Same numerical data
as shown in panel (a) of Fig. 4.8.

In the presence of weak interactions localization has been predicted to survive in the
presence of small additional disorder or harmonic confinement due to Stark MBL, leading
to a finite steady-state imbalance [76, 157, 253|. Here, we find that after an initial decay at
intermediate times a plateau of the imbalance develops, which persists for long evolution
times up to 7007 (Fig. 4.14a) in the strongly-interacting regime. A comparison with
ED simulations (inset Fig. 4.13a) in a clean system, i.e., without spin-dependent tilt and
harmonic confinement, with the same tilt and interaction strengths and for a Néel-ordered
initial CDW (as opposed to the random-spin initial state realized in the experiment)
further highlights that the non-vanishing imbalance appears not as a result of experimental
imperfections at least for the experimentally relevant observation times.

Moreover, this robust steady-state value survives over a wide range of parameters
(Fig. 4.14b). As a function of the tilt it qualitatively follows the behavior of the non-
interacting system, but shows consistently lower steady-state values.

For very small values of the tilt, one expects the interactions between particles result
in a dephasing of the local coherent dynamics that give rise to Wannier-Stark localization
in the non-interacting limit and hence lead to vanishing imbalances. Instead, Fig. 4.14c
shows a finite steady-state value for A = 1.1J that it is largely independent of the
interaction strength. Nevertheless, we numerically found that the imbalance decays to
zero for evolution times on the order of 10* 7 when considering a Néel-ordered singlon
CDW initial state for a clean system, which we reproduce in Fig. 4.13c. This trace further
agrees with the finite imbalance measured at ~ 200 7. Moreover, the observed inversion
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of the spin-resolved imbalance for the experimental results Z+ < Z' (although A| > Ay)
is explained by the non-monotonic dependence of the stationary imbalance on the tilt for
A, < 2J as shown in Fig. 4.14a.

For intermediate values of the tilt A/J ~ 3 we find a clear interaction dependence of
the stationary value (Fig. 4.14b), which is similar for both spins and is well reproduced by
numerical simulations. The imbalance is symmetric around U = 0 due to the dynamical
symmetry between attractive and repulsive interactions (Section 4.2.2) when (A} —Ay) <
J. The global minimum appearing at intermediate interactions corresponds to the resonant
regime |U| ~ 2A, which dominates over the |U| ~ A due to the CDW structure of the
initial states. The precise value of the resonance is slightly shifted (see Fig. 4.14d), in
agreement with our perturbative computation in Section 4.3.1 (dashed line in fig3d). For
large interactions and weak spin-dependence (A} — Ay) < J, we expect the system to
then recover the non-interacting regime (see Appendix C).
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Figure 4.14.: Long-time dynamics close to resonance U ~ 2A. a Imbalance versus
A| measured at U = 0J (spin-polarized, light blue) and U = 5J (spin-
resolved measurement, dark blue). Each data point is averaged over ten
equally spaced times in a time window between 707 and 1007 (U = 0J) and
3407 and 3707 (U = 5J). The solid line shows the analytic prediction for
T+ [Eq. (4.7)] and the dashed line indicates the first root of the Bessel func-
tion at Ay ~ 1.5J. b Spin-resolved imbalance versus interaction strength
for A} = 3.30(3)J. The shaded trace is an ED simulation and the width
indicates the 1o standard deviation. Each numerical and experimental point
is averaged over ten time steps equally spaced between 1707 and 2007. c
Spin-resolved imbalance versus interaction strength at A; = 1.10(1)J. Each
point is averaged over the same time steps as in (b). d Resonances extracted
from interaction scans for U > 0 as in (d) for different tilt values (see Sup-
plementary Material in Ref. [3]). The color plot shows ED calculations for
the same parameters as in the experiment, but with wy, = 0, for L = 13
sites. The dashed line indicates the analytic prediction for the resonance
Ures ~ 2A | — 8J2/(3A}). The grey shaded area in (a),(c) indicates the cal-
ibrated detection resolution. In all panels error bars denote the SEM. This
figure has been taken from Ref. [3].

While the experimentally investigated regimes are far from the range of applicability
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of our perturbative arguments, the experimental results are consistent with them and
quantitatively agree with the numerical results for the tilted 1D Fermi-Hubbard model,
including neither a spin-dependent tilt nor a harmonic trap. In fact, such irregularities
are expected to contribute to prevent the system from thermalizing at the observational
times.

In the limit of large tilts A > J, |U|, we found an approximate dipole-conserving Hamil-
tonian HS&p which to third order in perturbation theory on A = J/A, is strongly frag-
mented. This is seemingly consistent with the observed non-ergodic behavior. Yet, higher-
order processes O(A\?), relevant for A ~ 3.J, are expected to melt the CDW within the
experimentally studied timescales. These higher-order processes as well as the dominant
off-diagonal contribution, however, require the production of doublons, which is penalized
by the on-site interaction U which we found leads to a significant slowdown of the dynam-
ics (see Fig. 4.7). This could explain the robustness of the steady-state value observed in
the experiment.

On resonance, |Uyes| = 2A, we derived an effective Hamiltonian Aél?fs conserving the
dipole moment, the doublon number or the sum of the two. This Hamiltonian is frag-
mented which leads to a finite steady-state value within the relevant fragment. However,
unlike in the previous regime, doublons can be formed without energy penalties, leading
to a faster initial decay of the imbalance and a lower steady-state value. For finite A or
longer evolution times, higher-order hopping processes will mix different fragments hence
enabling additional dynamics. These processes are expected to eventually melt the CDW
completely, although the required timescales may be very large. Locating such a resonant
point (at finite A) requires fine-tuning which translates to the generic presence of a finite
off-resonant diagonal contribution comparable to higher-order contributions that could
potentially “shield” this non-ergodic behavior. While in the experiment we find robust
steady-state values even for rather low values of the tilt (A ~ 3.J) up to evolution times of
about 7007 (Fig. 4.13a), our numerical results Fig. 4.13b suggest that the imbalance will
eventually vanish at longer times.

Finally, we emphasize that in none of our numerical simulations for the clean system,
a finite value of the imbalance goes along with a logarithmic growth of the half-chain
entanglement entropy (see Fig. 4.8c). Even for large U ~ 2A = 20.J, the entropy quickly
reaches the Page value within the relevant Krylov sector whose size grows exponentially
with system size, hence leading to a volume law scaling. Therefore, the observed phenom-
ena cannot be explained by the phenomenon of Stark MBL.

4.6. Conclusions and discussion

In this chapter, we have explained how the phenomenon of Hilbert space fragmentation can
be explored in current experimental setups, identifying ultracold atoms in optical lattices
as a powerful tool to realized different regimes. While we entirely focused on dynamics
constrained by the coupling of an external field to the charge degrees of freedom, the
possibility of tuning a spin-dependent tilt allows to explore many other scenarios, which
combine charge and spin dynamics. Moreover, we have demonstrated both experimentally
and numerically non-ergodic behavior in the tilted 1D Fermi-Hubbard model over a wide
range of parameters at the relevant observation times. We have found numerical evidence
that at least in certain regimes this non-ergodic behavior is explained by an emergent
Hilbert-space fragmentation, where higher-order terms become ineffective to spread cor-
relations. Concurrently and after the publication of these results, several works studied
the phenomenology of Stark MBL including two experimental studies based on trapped
ions [273] and superconducting circuits [274]. Relevant to our previous discussion is the
construction of dynamical l-bits [275], and hence of l-bits, in the large tilt regime. Un-
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derstanding their existence and consequences derived from those at the resonant regimes,
is a question worth exploring. Nevertheless, many other questions related to the current
chapter still remain unanswered.

For future studies it would be interesting to systematically investigate the initial-state
dependence of the dynamics. This is a characteristic feature of Hilbert-space fragmenta-
tion that could also shed light to the difference between the standard disorder-induced and
Stark MBL. A first step on this direction has been already taken in Ref. [4], which studied
the evolution of different families of initial states in the presence of stronger tilts than
the ones considered in this chapter. In fact, it would be conceptually interesting to rec-
oncile the phenomenon of Stark MBL and Hilbert-space fragmentation, by systematically
studying the impact of weak disorder or residual harmonic confinement on the long-time
dynamics. This is expected to be dominated by a competition with the higher-order
perturbative processes that drive thermalization in the clean limit. This question would
benefit from recent experimental developments as the quantum gas microscope [152, 153],
which performing on-site measurements and manipulations allows to investigate the evo-
lution of other local observables from specific initial states; and the possibility to perform
randomized measurements, to study the evolution of the nth-order Renyi entropies [276]
in the regimes of interest. The combination of these two developments would let us ex-
plore the rich dynamics of fragmented models, which include fragments with integrable,
non-integrable as well as other constrained behavior, answering e.g., questions about their
transport properties.

Moreover, adding periodic modulation as an additional ingredient, other strongly-fragmented
models, scarred models and time crystals could be engineered [277-279] or drive-induced
localization could be investigated [280, 281] as well as the robustness of Stark MBL.
Furthermore, an extension to 2D could serve as benchmark for the robustness of Hilbert-
space fragmentation in the presence of multipolar conservation laws [6, 181, 282] or bath-
coupling [283]. Finally, it will be also interesting to further explore the connection between
lattice gauge theories and the phenomenon of Hilbert-space fragmentation which could be
addressed experimentally in a similar model [284]. We comment more on this in Chapter 7.
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Spatially-modulated symmetries
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5. New families of modulated symmetries in
1D

Unconventional symmetries, like for example multiple-moment conservation and contin-
uous as well as discrete subsystem symmetries, are gaining a lot of attention due to
the unexpected and rich phenomena they can lead to. These include new equilibrium
phases of matter with novel low-energy features like for example fracton phases [52, 54—
57, 60], subsystem SPTs [285], fractal symmetries and criticality [286, 287], fractal spin
liquids [288] etc, as well as unusual non-equilibrium properties such as sub-diffusive trans-
port [6, 178, 289-293] and Hilbert space fragmentation [1, 181]. And while a priori artifi-
cial, we just found out that for example the dipole moment is approximately conserved in
experimentally accessible setups and relevant physical scenarios.

The common underlying idea is the non-trivial spatial modulation of the corresponding
conserved quantities, namely Q. } = > Qrgr, Where ¢, is some local charge at location
r. Similarly, in the case of discrete symmetries that can be expressed as tensor product
of local unitaries S = ®,U where a, = 0,1. As such, they fail to commute with spatial
translations. For example, in the case of multipole conservation ay is a polynomial of the
spatial coordinates r; = x, ¥, z, while for subsystem symmetries o, takes non-zero values
only on a spatial submanifold.

In this and in the following chapter, we inquire about the possible modulated continuous
symmetries a (local) Hamiltonian can have, and extend the notion of spatially modulation
to more general cases of a,. We show that such symmetries appear in some simple, locally
interacting systems, and give various examples in both one (1D), two (2D) and three
(3D) dimensions. The symmetries we identify come in two main flavors that can occur
simultaneously. One type is exponentially-modulated and leads to localized modes at the
boundaries of the system and to infinitely long-lived boundary correlations, resembling
the physics of strong zero modes [184]. The other type corresponds to the conservation
of certain momentum-components of a local observable. Interestingly, in 2D and 3D
we find various models where long-lived modes exist along some closed hypersurfaces in
momentum-space; resembling systems with Bose surfaces [294-298] and the UV /IR-mixing
phenomenon [299-301]. We will discuss the effect of these symmetries on the system’s
dynamics and show that they lead to unusual features in correlations functions, such as
long-lived spatial oscillations on microscopic scales.

5.1. Cellular automaton dynamics

We will consider stochastic block cellular automaton dynamics, which allow for large-scale
numerical simulations, although all of our models can be mapped to quantum models that
realize the same set of symmetries. We consider a chain of classical discrete spins that take
values s, € {—S,...,S} on each site z = 0,..., N — 1. Equivalently we could consider
local positive values n, € {0,...,2S5 + 1} representing the occupation number of a site.
The dynamics is generated by local gates G, acting in a finite neighbourhood of site x,
mimicking finite-range interactions. The effect of a gate of range £+ 1 is described by a set
of integers n; such that when applying G, = {n;}, the spins are updated as s, +; — Sy4i£tn;
with ¢ € {0,...,¢—1}, which can be understood as mimicking spin ladder operators. These
updates are randomly applied among those configurations for which |s,4; +n;| < S, such
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5.2. Models and symmetries

that the corresponding transition rates between two different local configurations s, s’ are
symmetric, i.e., Yss = 7Ys¢'—s ©. This ensures that detailed balance is satisfied with
respect to the “infinite temperature” (uniformly random) ensemble, which is therefore a
stationary state of this stochastic process. At each application either (i) Sy4; — Sgti+n; is
applied or (ii) its inverse, Sy+; — Sz4i — nj, or (iii) no update is made. For each time step,
we randomly pick a non-overlapping complete covering of the (1D or 2D) lattice by the
gates Gx. For a model in 1D with gates acting on 2¢ sites, we pick randomly an integer
m € {0,...,¢ — 1} and apply all other non-overlapping gates on sites x = m (mod /).
Similarly, in 2D with gates of size ¢ x £ we pick two integers m,,m, € {0,...,¢ — 1}
and shift the gates accordingly. A (discrete) evolution till time ¢ then consists on the
application of ¢ consecutive layers of gates.

5.2. Models and symmetries

To classify the families of all possible continuous global conserved quantities a system can
have is certainly a hard problem. Instead, we first consider a family of 1D models to
introduce the notion of modulated symmetries and only later on, we will briefly revisit the
more general question. Without lost of generality we consider a family of models labeled
by positive integers ¢ > 1,p > 0, defined by the gates

GPD = {ng,n1,n2} = {q, —p,q}, (5.1)

acting on a three-site block centered around x. This particular choice of family of systems
will allow us to “factorize” and separate different families of symmetries, but our results
will apply to more general systems. We first notice that for 2q # p, these models do not
conserve the total charge Q = Zj sj or any of its higher moments. Nevertheless, there
still exist some global conserved quantities, which we now construct.

Consider the general ansatz Q) = > ;@85 Then Q{a,} Is a conserved quantity for

the evolution generated by G(@P) if and only if {o;} fulfills the recurrence relation
qojyo — pa1 + qoy = 0. (5.2)

As a linear recurrence, Eq. (5.2) equation admits a general solution in terms of the
roots 11,72 of the associated characteristic equation ( obtained by substituting a, = r*
into Eq. (5.2))

2
r2 — Ly 41 = 0 with solutions T2 = Ly <p> —1. (5.3)
q 2q 2q

A general solution of Eq. (5.2) can then be written as a; = a(r1)? + b(r)? if the roots
are not degenerate (r1 # r2) or a; = a(r1)? + bj(re)? if 11 = ro. Moreover, these can be
parametrized by the initial conditions «g, a1, or equivalently, one can fix the boundary
conditions g, any_1, which implies that the model Eq. (5.1) has at most two linearly-
independent conserved quantities of this kind. Note that if ¢ divides p then Q{aj} has an
integer spectrum and thus generates a representation of U(1). Otherwise Q{aj} will pick up
sums of powers of p/q and the symmetry transformation is then a unitary representation?
of the additive group R. As the second order polynomial in Eq. (5.3) is palindromic (self-
reciprocal) [302], its two roots ri,ry are inverses of each other, ro = 1/r;. Thus, three
different scenarios can occur, depending on the ratio p/q:

'Note that this implementation differs from that used in previous works [6, 178, 291, 292], where
all local updates consistent with symmetry requirements were allowed. However, the conclusions do not
depend on this choice.

2Imposing integer spectrum requires a system size dependent normalization of the conserved quantity

L
Qia;} = 4 Loy
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Chapter 5. New families of modulated symmetries in 1D

5.2.1. Dipole conservation

If 2¢ = p then 7o = r; = 1, which leads to a general solution of the form a; = ag + a17;
this reproduces the conservation of charge and dipole moment. Although we will explicitly
construct models conserving higher m-moments of the charge (Q(”) = Zj J"s;. with
n < m), which require longer-range gates, it is worth to already mention that in those
cases, one will find that » = 1 is a (m + 1)-fold degenerate root. Then, a; will include
the contribution )" janj™. In fact, r = 1 will be the only root for the shortest-range
gates compatible with conserving the first m moments of the charge: The characteristic
polynomial is given by (r — 1)™*! which corresponds to the linear recurrence relation
E?:Bl(—l)j (mjl)ozj = 0 that at least requires local terms of size m + 2. The associated
gates are then given by {n; = £(—1)/ (m;rl) ;”;61, which correspond to the coefficients of
a finite difference A™*! of order m + 1, a relation we will make use of in the following
section.

5.2.2. Quasi-periodic modulation

HE with k* = arccos(3;) 3. A general
solution of Eq. (5.2) then takes the form a; = ae* 7 + be "7 = Acos(k*j + ¢) with
constants a, b (equivalently, A, ¢) fixed by ag,a; 4. Thus, although the total charge is not
conserved, some finite momentum component of it is. However, while the recursion relation
can always be solved in a system with open boundary conditions (OBC), the corresponding
momentum mode might not exist in a finite system with periodic boundaries (PBC).

Indeed, we could search directly for a conserved quantity of the form 4, = > j elkd sj,

If 2¢ > p, then Eq. (5.3) has two complex solutions e

by plugging the ansatz a; = e into Eq. (5.2), which then becomes x(k) = cos(k) —
2% = 0. Notice that the discrete Fourier transform of the recurrence relation is given
by eikx(k)dk = 0. However, we should also require that o; = a4y for all sites j, i.e.,
that k is a multiple of %" Thus, a necessary condition for a solution k = k* to exist
is that k* is at least a rational multiple of m. According to Niven’s theorem [304], this
is the case if and only if 2% € {0,3,1} or equivalently k* € {0,£%,+%}. In this case,
the modulation k* is commensurate, having a finite periodicity on the lattice, and the
symmetry is exact for some finite system sizes that are integer multiples of its period (,2?”)
For example, when k* = &% and for any choice ag, a1, the general solution takes the form
ay = {a, a1, a1 — ag, —ap, —a, ap — a1 fmod(6) which repeats with period six. Thus the
choices g = 1, = 0 and ag = 0,1 = 1 correspond to staggered sublattice symmetries.
The case k* = £7 leads to a similar structure.

In the more general case, however, k* is not a rational multiple of 7, the modulation is
quasi-periodic, and the conserved quantity does not exist for any finite system with PBC.
Nevertheless, for sufficiently large systems the distance between momenta in the reciprocal
lattice goes as 27 /N, and there will be momentum modes that are almost conserved, and
the symmetry re-emerges in the thermodynamic limit.

5.2.3. Exponentially localized

The final scenario is 2¢ < p for which r; o are real, positive and non-degenerate. This
implies 1 > 1 and 7o = 1/r; < 1, leading to two conserved quantities exponentially
localized at the two boundaries of the system (for OBC). Thus, it is more appropriate to
instead label solutions by the two endpoints, oy and apn_1, rather than ag and «;. Let

3This can be generalized to longer-range gates using results from Ref. [303].
“Notice that because of the spatial inversion symmetric gate G, in Eq. (5.1), if a momentum k* of the
spin is conserved, so is —k™.
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5.3. General construction and analogous quantum models

us denote by Qy (Q,) the charge localized at the left (right) boundary of the system with
boundary conditions afy = 1,af | =0 (af = 0,a%_; = 1). Their exact form is given by

1
k=l _ k k. —(N—1 k, N—1 k -
ab " = gy [(eh = b YT 4 (@ =k )] (5
with » > 1 the largest root of the associated characteristic equation. In the limit of large
N, this takes the asymptotic form

{ o ..—T

T
o, ~r ", and o ~

Tx—(N—l)’
decaying exponentially towards the bulk. Note that in this case, it is not possible to satisfy
the recursion relation with PBC.

The form of these exponential symmetries might suggest that the number of symmetry
sectors scales exponentially with system size, and thus that the presence of a single ex-
ponential symmetry can lead to (an exponential) fragmentation. However, this is not the
case for the symmetries we just constructed as we know there is an extensive number of
gates preserving this symmetry which connect many different configurations with the same
total charge. In particular, given an exponential symmetry of the form Q = Zjvz Bl risj,
two configurations {s;} and {s}} belong to the same symmetry sector if and only if r. is
a solution of the polynomial equation Eéy:_ol ri(sj— s7) = 0. From here one can infer that
the number of configurations {s;} with the same charge as {s;} is given by the number of
polynomials of degree N — 1 with integer coefficients s; — 33- which have r, as a root.

Hence, the construction we just presented is restricted to spatial modulations that can
appear as solutions of the recurrence relation Eq. (5.2), and therefore to those whose
associated roots are algebraic numbers ®. This in particular implies that we will not
obtain conserved quantities like for example a, = e*, 7%, since e and 7 are both tran-
scendental. In fact, it is not at all clear whether one can construct a local Hamiltonian
with these transcendental modulations: Being r transcendental implies that no polyno-
mial Zj-vz_ol ! (sj — s}) exists which has 7 as a root, and therefore that not two distinct
configurations can have the same value of this modulated charge. In this situation, the
spectrum of @ would be exponentially large providing an example of fragmentation with a
single global conserved quantity, although the associated bond algebra (in the formulation
of Ref. [166]) might be completely trivial .

5.3. General construction and analogous quantum models

5.3.1. General parametrization of size-3 gates

The family of gates introduced in Eq. (5.1) led to particular useful properties when clas-
sifying the possible modulated symmetries. First of all, we considered a particular sign
structure of the gates with both ¢, p being positive. Allowing for p to become negative
such that

GPD = {ng,n1,n2} = {q,p, 4}, (5.5)

translates into ri,79 < 0 (where still 71 - 7 = 1). This simply leads to an additional
staggering of the associated charges. In particular: For |p/(2¢)] = 1 one finds a; =
(ap + a15)(=1)7 and a; = (—1)7(a(r1)? + b(r2)?) in the other two scenarios. For example,
in the case of commensurate modulation this corresponds to the additional solutions with
e {0,£1,£1}.

5A number is said to be algebraic if there exists a polynomial equation with integer coefficients for
which this is a solution.
I thank Sanjay Moudgalya for an interesting discussion about these ideas.
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Chapter 5. New families of modulated symmetries in 1D

In general, a gate acting on three consecutive sites can be parametrized as
Géb,p,q) = {no, ni, TLQ} . (56)

Its associated recurrence relation takes the form

N2y + niajy1 + noay = 0, (5.7)
with roots 1
niy 2
=—— 4 — —4 , 5.8
71,2 oy 2ng ni non2 (5.8)

for no # 0 of the corresponding characteristic equation. Since the equation is no longer
palindromic, 71,72 won’t in general be the inverse of each other and can take the general
form Re', thus combining exponential and quasi-periodic symmetries. For non-degenerate
roots this leads to aj = (R1)e1J + (Ry)7e®d, while if n? = 4ngny a double degenerate
root exists with 719 = —ny1/(2n2) such that o; = (—Q”Tlo)j(a + bj). For example, for
ng = 4,n1 = —4,no = 1 this leads to the conservation of the first moment of an exponential
localized symmetry Qa; = > ;(a + bj)2/s; at the right boundary (note that this choice
does not correspond to a inversion symmetric gate).

The previous construction can be extended to longer-range gates which will lead to
higher-order recurrence relations with associated characteristic polynomials of higher de-
gree. This can help to avoid possible non-generic results for particular models and also
get rid of strong Hilbert space fragmentation even for small spin representations S.

5.3.2. Longer-range gates

The two previous sections introduced some specific 3-local gates which apart from fulfilling
the goal of introducing these new families of modulated symmetries, can be used as building
blocks to construct longer-range gates, although such longer-range models are perfectly
valid on its own and do not need to follow the construction presented here.

Consider the family of size-3 gates, G(o:m1:72) in Eq. (5.6), determined by the strings of
numbers {n;} = (ng,n1,n2) acting on sites (z,x + 1, x 4+ 2) with associated characteristic
equation ng+nir+ngr? = 0. Let us start constructing range-4 gates from range-3 ones and
address the general case afterwards. Adding up strings corresponding to two overlapping
range-3 gates we find

(TLO, niy,na, 0)
+(0,n0,n1,12) | (5.9)
(no, ni + no, N2 + ni, :|:n2)

such that the resulting gate G, = {n;} = {ng, n1 £ ng,na £ n1, £na} acts on sites (z,z +
1,z + 2,2+ 3). The associated recurrence relation takes the form

noa; + (n1 + no)aj+1 + (712 + nl)aj+2 + N2Qlj4+3 = 0, (5.10)
with characteristic equation
no + (n1 £ no)r + (ng £ nl)r2 + ngrd = 0. (5.11)

Generically, such a combination results in a characteristic equation which contains ad-
ditional roots to those we started from. Indeed, due to the linearity of Eq. (5.10), these
include the roots of ng + nqr + nar?, i.e., independent solutions corresponding to each of
the original gates, as can be clearly seen by factorizing Eq. (5.10) in the form

(no +n1r + nor?)(r £ 1) = 0. (5.12)
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5.3. General construction and analogous quantum models
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Figure 5.1.: Modulated symmetries in 1D. A possible distribution of roots {r; f;(l) of

the characteristic equation Zf;l n;r’ = 0 associated to a set of local gates

GY = {n;}'Z} of size £. Red (green) dots correspond to single (double) degen-
erate roots and the circumference has radius equals to one.

In this case, we find the additional solution r = 1. However, a cellular automaton
(or quantum Hamiltonian) evolution including range-3 but also range-4 gates, will only
host those symmetries corresponding to the common set of solutions, i.e. those for which
b+pr+qr?=0.

In general, given two gates {n, }, {n}, } with a common conserved quantity @ =3, ris;,
their element-wise combination, {n,} = {n, £+ n!'}, also features the same symmetry.
Indeed, the resulting recurrence equation Y .(n} £ n)oy = 0 is satisfied if both Y njay
and ). n;a, vanish. This translates into the characteristic polynomial associated to {n,}
being factorized as (x — r)P(z), where P(z) can have additional roots. Nevertheless,
additional solutions might arise from a cancellation between the two terms, as it was the
case of our previous example.

In general, given a system specified by a set of gates G, = {ni}f;é of size ¢, we find
the associated conserved quantities Q.3 = Zj a;s;, by solving the linear recurrence

equation Zf;é n;a; = 0 for every site j compatible with the boundary conditions. A
general solution can be written in terms of the roots {ri}f:ll of the associated characteristic
equation Ef;ol nir' = 0, as o = Zf:(l) a;(j)(r;)? where a;(j) will be a power of the
coordinate j for degenerate roots. Moreover, since the characteristic polynomial has real
coefficients, every complex root r; appears together with its complex conjugate 7;. In
particular, if r; is not imaginary and it is degenerate, then so is its complex conjugate.

Fig. 5.1 shows a possible distribution of roots {r;}.

5.3.3. Quantum Hamiltonians and strong zero modes

Although we focused on classical cellular automata, each of our models can be easily
related to a corresponding quantum Hamiltonian, by mapping a gate G, characterized
by integers {na}, to a local Hamiltonian

Ao, =" |1, Q (S50l y Hee. | + vV ({57)), (5.13)

J

with sgn[-] € {4+, —} the sign function, S* the spin ladder operators acting on a local
Hilbert space with dimension 25 > max({n.}) and V({S7}) is a general term diagonal
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Chapter 5. New families of modulated symmetries in 1D

in the local z-basis. These quantum Hamiltonians possess the same set of symmetries as
their classical counterparts which are generated by

Q{aj} = Za]’g]‘f’ s.t. ewg{(‘j}gfe_wg{af} = eFifaigE, (5.14)
J

These can also include additional Zy symmetries like R, =[] j &S5 (depending on the

choice of V) and Ry = []; ¢S] (depending on the particular gate G and V). Indeed,

RIS’ *R, = S¥F and then the Hamiltonian is invariant under R, if V is built up from even
products in S# operators.

In particular, these conservation laws anticommute with the exponentially localized
symmetries Q%" leading to a degenerate many-body spectrum and thus featuring the
same phenomenology as the strong zero modes introduced by Paul Fendley [184] (leading
to finite boundary autocorrelations as we find at the end of this chapter). The defining
properties of a strong zero mode (SZM) U were already discussed in Table 3.2 in Chapter 3.
First of all, such modes are localized near an edge of the system. Moreover, SZM become
exact symmetries in the limit of infinite chains, unlike Q%" which are exact for any finite
system. Apart from this, the other major differences to standard SZM are: Firstly, the
lack of a normalization condition similar to WTW = 1 for fermionic SZM (and gn =1
for some n in the case of spin systems), which ensures the SZM is well-defined within a
given phase. This condition appears to be “highly non-trivial and fundamental” [185] to
ensure a non-zero radius of convergence in the perturbative construction of such modes.
However, as stated in Ref. [185] this condition could be relaxed in the definition, although
it holds for all previous constructions of SZM. In fact, unlike 0, the ‘strong zero modes’ we
constructed are continuous symmetries with an extensive spectrum. Thus the fact that Q%"
anticommutes with R, only leads to a pairing among two symmetry sectors of Q%" with
opposite charges. Nonetheless, the charges we constructed yield the same phenomenology
of standard SZM, but for interacting non-integrable systems, unlike most of the previous
literature on the topic. The price is dealing with rather less natural Hamiltonians, which
however, allows for generalizations to higher dimensions as we will find in the following
chapter. 7

Analogously, we can introduce bosonic systems (or fermionic as long as we consider
sufficiently large local Hilbert space dimension) with the same family of modulated sym-
metries, where a modulation of the local density 7n; is conserved instead of that for the
total magnetization. These are given by

Z Jj ® (BTN e, |+ V({a)), (5.15)

attaching a creation operator when n, > 0, i.e., #(n,) = t, and annihilation operator oth-
erwise ( #(ng) = 1). In this case, the conserved quantity reads Q{aj} = >_; a;n; which
generates the phase transformations Bj — e7Py b; and I;; — €% b}. The low-temperature
behavior of such systems is related to the recently introduced Bosonic-Luttinger lig-
uids [298], which admits a quasi-long range order phase characterized by two-coupled
Luttinger liquids. The results will be published elsewhere.

5.3.4. Dipole and higher-moment conserving systems

In Section 5.2.1 we already found how to obtain the shortest range models conserving
the first m moments of the charge. Here we provide an alternative recursive construction

I thank Paul Fendley and Fabian Essler for very insightful discussions about strong zero modes during
my visit in November 2021.
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5.3. General construction and analogous quantum models

to generate longer-range terms, applicable to both gates and local Hamiltonian terms,
which give us additional insights into the dynamics of such systems. Although for con-
venience we formulate it in terms of quantum Hamiltonians, the analogous construction
directly translates into the gate formulation using the inverse of the mapping introduced
in Eq. (5.13).

We start from a simple Hamiltonian of the form H = H éi)z + H,, with H (2)2 =
Zx(g;g;rl + H.c.) hosting local XY-type terms of range ¢ = 2 that conserve the total

charge Q0 = Yo S‘;:i, and H, containing arbitrary local terms diagonal in the S basis. 8

The 5’;'[, SZ are spin operators in a given representation S. Here, an elementary term

héo) (x) = S’j S’; 1 can be interpreted as the creation of a dipole against some background.

A new term that additionally conserves the dipole moment Q") = Yo S; can then be
obtained by simply multiplying this operator with its hermitian conjugate at some shifted

~ ~

t . A 2
position, e.g. hgl)(:p) = (héo) (a:)) héo) (x+1), yielding Hél) =>.5 (S;H) S, o t+H.c.,
T
the model we already encountered in Chapter 2. Then, we can interpret (hgo) (x)) , héo) (x)

as raising/lowering operators for dipoles, in a similar manner as ladder operators for Sz,
The above recursion can be iterated to obtain models conserving arbitrary moments of
the charge

QUM =3 "amS;. (5.16)

Formally, we consider a m!* moment conserving Hamiltonian of range ¢ in the form

H é(m) =3, hém) () + h.c., whose local terms can be expanded as

~

-1
Asgnlom (a \om(a)| .
R (z) = (Siii m( ”) ,with o (a) € Z, (5.17)

a

i
=)

where by definition 0,,,(0) # 0, 6,,,(¢ — 1) # 0. For the XY-terms, 00(0) = —op(1) = 1.
Again, arbitrary terms diagonal in 5% could be added to Eq. (5.17) without affecting
the conservation laws. Analogous to the argument above, given hémfl)(az), we can then
construct a (¢ 4 r)-range term that additionally conserves the m'® moment by imposing
the recursive relation

om(a) = —om—1(a) + om-1(a — 1), (5.18)

on the exponents of the spin ladder operators. Eq. (5.18) reflects the construction of H K(TT)

via shifting an elementary m-pole by r sites. These elementary m-pole configurations
have vanishing lower moments and a spatially independent m!* moment, similar to usual
charges. However, their number is not conserved.

Eq. (5.18) can be rephrased as a discrete lattice derivative of spacing r, o,(a) =
—Ay [om-1] (a), which implies o, (a) = (—Az)"[00](a). Interpreting op-terms, associated
to hgo)(x), as a finite difference with spacing ¢ = 1, (=A,)[f](z) = >, 00(z + a) f(a)
with some lattice function f(a), the exponents o,,(a) effectively correspond to a lattice
discretization of the (m + 1) derivative

(=A™ [fl(@) = Y omla) f(z +a), (5.19)

rediscovering our earlier construction in terms of recurrence relations.
Using the spin commutation relations and Eq. (5.19), we see that [Q(”),h,(ﬂm)(x)] x
S om(a) (z+a)" = (=A)" 1 [z"] = 0 for n < m, i.e. all moments Q=" are indeed

8In particular, this can render the model non-integrable.

111



Chapter 5. New families of modulated symmetries in 1D

conserved. The same holds for longer range Hamiltonians, using alternative discretization
schemes of the involved derivatives. We note that this is a discretized version of the field
theory construction in Ref.[305].

5.4. Hydrodynamics for multipole-conserving systems

In Section 1.1.3 we argued that in the presence of conserved quantities, the dynamics
leading to the global equilibrium state are dominated by the transport of the corresponding
densities, smoothing out inhomogeneities of the initial state [98, 101, 102]. In general,
continuous symmetries provide long-lived modes that dominate the dynamics at long times.
Recent works investigated how hydrodynamics applies in the presence of less conventional
symmetries like multipole and subsystem symmetries [178, 289-292] (including Ref. [6]
which we present in this section) providing different derivations of the hydrodynamic
behavior of such systems and leading to sub-diffusive transport. Particularly relevant is
the experimental work of Ref. [113] for a two-dimensional Fermi-Hubbard model tilted
along one of the lattice directions. Here, an initial density wave of interacting fermions
along the tilted direction with wavelength A, was observed to exponentially decay as
~ exp(—k*t) in the presence of a strong tilt, and was understood in terms of a classical
hydrodynamic model (see Fig. 5.2) whose predictions for the decay of charge correlations
agree with dipole-moment conservation in 1D. The linear potential couples directly to the
center of mass ), 7, (see also [306]) and can thus be thought of as inducing an effective
dipole conservation on long length scales.

In this section, we revisit this behavior focusing on the late-time transport of dipole-
and higher-moment conserving 1D systems in the absence of strong Hilbert space frag-
mentation by including longer-range interactions and higher spin representations. We find
anomalously slow, subdiffusive transport of the underlying charges, described by a cascade
of exponents depending on the highest conserved moment. We further develop a general
analytic hydrodynamic approach, valid for arbitrary conserved multipole moments that
is in full agreement with our numerical results using cellular automaton dynamics and
consistent to our findings with the quantum Hamiltonian evolution. Finally, we discuss
experimental characteristics of higher-moment conservation, consistency of the results with
exact quantum Hamiltonian evolution for dipole-conserving spin chains, and the relevance
of energy and momentum conservation.

5.4.1. Generalized Fick's law

To understand how this slow anomalous diffusion can emerge as a classical hydrodynamic
description of the late-times quantum evolution, we consider the Heisenberg evolution
equation of the charge density SZ for the previously introduced models. This yields

d . .
Loz ° m) z1 — m+10y(m)
dtsx h[ S E om(a x+a = (—Ay) Q" (5.20)

(m)

with the operator Q' = — (h,(ﬂm) (z) — H.c.), which takes the form of a generalized

‘multipole current’ of m-poles. Qg(cm) corresponds to the one-dimensional version of the
generalized rank-(m + 1) tensor currents appearing in fractonic systems [290, 307]). This
form of the time evolution applies to arbitrary Hamiltonians conserving the m!* moment

(m)

of the charge, with microscopic details only entering 2y

S

. Imposing a continuity equation
for the charge density, 7 S 2= (- Am)Jém), we obtain the form of the charge current Jém) =
(—AI)mQém). In the formulation of Ref. [290] this corresponds to J; = 0}, - 0},, Jiji-jm
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Figure 5.2.: Experimental diffusive-to-subdiffusive crossover. Extracted scaling ex-
ponent « for 7 o< A* from the time-decay of initial density waves n(x,t) =
i+ Ape /7 sin(2x + ¢(t)) with fixed wavelength A as a function of the tilt
(orange circles). As the tilt is increased from Fay/tn = 0 to Fapa/tn, = 6,
the relaxation of initial density waves crosses over from diffusive (o = 2) to
subdiffusive behavior with o = 4. The shaded curve is a prediction from the
hydrodynamic model presented in the supplementary material of Ref. [113]
from where this figure has also been taken. Here t; is the hopping energy and
a1att 1S the lattice spacing.
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Figure 5.3.: Hydrodynamics. a) Return probability C(™(0,t) for dipole- and

quadrupole conservation. The long time behavior approaches an m-dependent
algebraic decay ~ ¢t~%/2(m+1) " The numerical values of the exponents where
extracted from fits over the latter three time decades (dashed lines). b)+-c)
Scaling collapse for m = 1 and m = 2 according to the long wave-length
description Eq. (5.24). In addition to the numerical data, the fundamental
solution of Eq. (5.24) (dashed line) is shown. The system size is L = 10* and
correlations were averaged over at least 10% random initial states in all panels.
The numerical results were obtained by Johannes Feldmeier as published in
Ref. [6].
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Chapter 5. New families of modulated symmetries in 1D

relating the conventional charge current J; to the multipole one J;j,...;,., which ensures
the conservation of the multipole moment [293]. Hence, it is the latter which appears to
be relevant to understand the transport properties of the system [290]. This e.g., results

in the familiar J;,(;O) = Q&,O) in the case of only-charge conserving systems, leading to the
diffusive case.

To arrive at a closed equation, we consider a sufficiently coarse grained version of the
expectation value of the charge density s(z,t), in the limit of long wavelengths (A, — 9y)
assuming large enough variation lengths in space, such that %s(w, t) = (—ﬁx)mH(Qng)}.
To obtain a closed equation for s(z,t), we follow the hydrodynamic paradigm and assume
that we can relate the multipole current to the derivatives of the charge density via a
gradient expansion, keeping only the lowest term allowed (see e.g. Ref. [102]). We therefore
expand

QY = —D (8,)™ (. 1), (5.21)

and our task is to find the lowest, meaning most relevant in the renormalization group
sense as detailed in Appendix D.2; possible I(m) € N such that D # 0 is consistent with
the conservation of all moments Q("="™).

For charge-conserving interacting quantum systems (m = 0), known to generically ex-
hibit diffusive transport at late times in the absence of momentum conservation [99, 103—
110], we should obtain Fick’s law (Q;@) = <J£0)> = —D 0,s(x,t), i.e. 1(0) = 1, resulting in
the usual diffusion equation for s(z,t). However, general solutions of the diffusion equa-
tion break higher-moment conservation (see Ref.[308] for an extended discussion and the
role of boundary conditions). This is seen most easy for the example of a melting domain
wall, which exhibits a net current of charge, violating dipole conservation.

To generalize Fick’s law when higher moments of the charge are conserved, we notice
that in a closed system (in the absence of sinks or sources) with open boundary conditions,
the m-pole current <Q;(Em)>e,q, = <Q§cm)>(t — 00) = 0 vanishes at equilibrium, which implies
that the equilibrium charge distribution is given by

I(m)—1
5(z,t)eq. = ap + a1 @ + ... + aymy—1 gHm—1 = Z ay, zF. (5.22)
k=0

On the other hand, since all first m moments of the charge Q"=™) are conserved,

the equilibrium configuration is completely characterized by the first m moments of the
initial configuration, which corresponds to m 4+ 1 quantities. Moreover, any non-vanishing
initial higher moment Q™>™*1) will decay in time hence inducing a non-zero current.
E.g., if only total charge is conserved, a local gradient of charge induces a current that
compensates it. Hence {(m) > m+1. All together, this implies that [(m) = m+1, and the
natural generalization of Fick’s law is then given by <Q:(Em)> = —D (8,)™"s(z,t), namely,
the dynamics balances out inhomogeneities of the m!* derivative of the charge density. A
way to interpret this result is as follows: A uniform shift s(z,t) — s(z,t) + ppa® for any
choice of up’s, maps one equilibrium configuration to another that has different moments
of the charge, and thus (Qém)> should remain unchanged. For example, uniformly tuning
the chemical potential, does not lead to local charge gradients, then keeping the current
unchanged. This in particular implies that <Q§;m)> needs to be at least proportional to
(0x)™FLs(z, 1)

Inserting this relation back into the evolution equation for the charge density, we finally
arrive at the generalized hydrodynamic equation

Ays(x,t) + D(—1)"1(8,) 2 Vs (a, 1) = 0, (5.23)
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5.4. Hydrodynamics for multipole-conserving systems

valid for systems conserving all multipole moments up to and including m. In Ap-
pendix D.2 we show that this equation captures the relevant contributions at long dis-
tances and late times. Within linear response, the spin-spin correlator C(™) (x,t) =
(s(z,t)s(0,0)),. behaves as the Green’s function of this equation of motion [98] and takes

the scaling form
2(m+1)

1
C (g, t) = ——_p(m) [%

COIEE | (5.24)

where the position z only enters through the ratio z2(m+1) /t, the function F (M) can be
written in terms of generalized hypergeometric functions (see e.g., Ref. [309]) and the
dynamical exponent is 2(m + 1).

Alternative derivations of Eq. (5.23) were presented in Ref. [290] and also in Ref. [178] for
the specific case of dipole conservation. The latter provided the following reasoning: The
fundamental process that moves charges is the one that displaces equal amount of charge
from location = to x &+ dx, as this conserves the dipole moment. It is the gradient in the
density of these processes, call it p(z,t), that will induce a local charge current j < —Vp.
In fact, p is our coarse grained multipole current <Q(1)>. To relate it with the density
of charges s, one assumes that the system evolves driven by the maximization of local
entropy such that p oc §S. Assuming now that the local entropy density only depends on
s(x,t) at that position, such that one can expand in orders of the local charge density; and
that the global equilibrium state corresponds to a uniform density distribution s(z,t) ~ 3,
one then finds p(x,t) o« —V?s(z,t). All together, one finds j o« V3s, which plugging
into the continuity equation for s, gives Eq. (5.23) with m = 1. This derivation could
then be generalized to the conservation of higher moments, which requires: expanding the
local entropy &S to higher orders in the density, and identify the relevant fundamental
process. For example, when m = 2 (see construction in Section 5.3.4), this is given by the
displacement of charge from = — 2dx and z to « — dz, and from x + dz to x and x + 2dx °.

5.4.2. Quantum model with dipole conservation

As a consistency check of the hydrodynamic theory we just derived for the evolution of
the charge density, we simulate the dynamics of a specific quantum model featuring dipole
conservation. We choose the smallest local Hilbert space dimension S = 1/2 such that we
can reach as large system sizes as possible using exact diagonalization. In particular, we
consider the charge and dipole-conserving Hamiltonian given by

a=a"+a", (5.25)

with open boundary conditions, where

N-3

A = - "[8557,,85,,58 5 + heel, (5.26)
j=1
and
A 1) L_4 A A A A
AV =~ 3185 57,,57, 585, + heel, (5.27)
j=1

where N indicates the length of the chain and we fix the largest symmetry sector with
(222 52) = (32;757) = 0. Within this sector, Hamiltonian H in Eq. 5.25 has been shown
to be ergodic and only weakly fragmented [253].

°T thank Alan Morningstar author of Ref. [178] for explaining me in detail the reasoning and assump-
tions of their derivation.
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-0.25

time t

Figure 5.4.: Spin autocorrelation C'")(¢) in the center of the chain, defined in Eq. 5.28, for
several N € {16,20,24,28}. CM(t) decays to zero algebraically C(M (t) ~ ¢t~
with a consistent with a subdiffusive relaxation o ~ 1/4. The dashed-lines
~ t79% and ~ t7925 are guides for the eye. The numerical results were
obtained by Giuseppe De Tomasi as published in Ref. [6].

We study the evolution of the spin-spin correlator
CO(t) = (S32(t)S32(0))es (5.28)

where (-) = ﬁTr[-] is the normalized infinite-temperature trace, with N the dimension of
the Hilbert space sector (3_; gj) = (X jS;) = 0. Figure 5.4 shows C)(t) for several
system sizes N € {16, 20, 24, 28}.

For small system sizes N € {16,20}, C")(t) has been computed using exact diagonal-
ization, and for N € {24,28} using Chebyshev polynomials !© techniques for the time
evolution where the trace has been evaluated stochastically [311, 312]. As expected, after
a short time propagation (¢ ~ O(1)) at which local degrees of freedom become entangled,
CM(t) relaxes to zero algebraically CM) (t) ~ =, This relaxation, in contrast to ordinary
diffusive systems, where C'©)(0,t) ~ t~/2 [101], to the equilibrium value is subdiffusive
with a < 1/2 and it is in agreement with our hydrodynamic description, although in the
presence of energy conservation. The observed decay appears to be consistent with the
subdiffusive exponent o = 1/4 for ergodic dipole conserving Hamiltonians (blue dash-line
in Fig. 5.4).

However, observing the scaling collapse of the spatial correlation function and obtaining
a better fit of the algebraic decay for such small system sizes is out of reach. Alternative
approaches could be simulating the system using: the time evolving block decimation
(TEBD) or time-dependent variational principle (TDVP) algorithms for matrix product
states, which however are limited to short times [313]; or perhaps using the dissipation-
assisted operator evolution (DAOE) method introduced in Ref. [314].

Nevertheless, after the completion of this work, a non-equilibrium field theory approach
was pursued [315] to approximate the quantum dynamics of a specific bosonic dipole-
conserving model ', which confirmed subdiffusive decay of spin correlations and the scal-
ing form of spatial correlations within the 2-particle irreducible effective action approach,

10This numerical simulations were performed by Giuseppe De Tomasi and published in Ref. [6]. The
method of Chebyshev polynomials is explained in Ref. [310].

1 Although particle statistics are not expected to play a role in the long-time dynamics for sufficiently
generic dipole-conserving system, this choice facilitates the field theory formulation.
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5.4. Hydrodynamics for multipole-conserving systems

and approximation of the full quantum dynamics. In fact, the authors of this work gen-
eralized the hydrodynamic formulation we discuss before, to include energy conservation.
This results in a coupled hydrodynamic theory with crossed terms appearing in the gra-
dient expansion of the dipole and energy currents leading to two independent modes: (i)
the subdiffusive energy-charge mode we already encounter, and (ii) a diffusive energy-only
mode which can be probed for initial configurations with homogeneous filling fractions
and highly localized energy inhomogeneities.

5.4.3. Numerical results with cellular automaton dynamics

In this section we further, and more systematically, validate our hydrodynamic theory for
an already classical system, using the block cellular automaton dynamics introduced in
Section 5.1. In particular, we numerically compute the connected '? spin-spin correlator
CM(j,t) = sj(t)so(0) where site 0 is placed at the central site. Here, (---) denotes
the average over a uniform distribution of initial configurations and (m-pole conserving)
circuit realizations, thus probing the propagation of spontaneous fluctuations on top of an
“infinite temperature” equilibrium state. Using this formulation, the correlation function
acquires the simple expression

€™ 1) = 505000) = 17 3 50(0)5 0" (5.29)

where N is the total number of allowed configurations and Wr't' denotes the average
over random trajectories starting from the initial configuration s(0). Notice that this is a
classical (stochastic) evolution, which does not conserve the total energy.

In Fig. Fig.5.3 (a) we observe that the late time dynamics follows an algebraic decay
which we numerically estimate to be C)(0,¢) ~ t=0248 ~ ¢t~1/4 in the dipole-conserving
model, and C?)(0,t) ~ t~9170 x~ ¢t~1/6 for the conservation of quadrupole moment. In
general, Eq. 5.24 predicts C(™)(0,t) ~ t~1/20m+1),

Moreover, figure 5.3 (b,c) shows full agreement between analytical and numerical results
of the spatial correlation function for m = 1,2 upon fitting the only free parameter D,
i.e., the generalized diffusion constant. In particular, as demonstrated in Fig.5.3 (b,c),
C™)(j,t) accurately follows the scaling collapse predicted by Eq.(5.24). For m = 0,
Eq. (5.23) reduces to the usual diffusion equation and C(%)(z, ) is a Gaussian probability
distribution describing the movement of an initially localized excitation through the sys-
tem [101, 316]. For m > 1, as shown in Fig. 5.3 and more generally clear from a vanishing
second moment (22) o = [ dzx?CU™ (z,t) = 013, C™(2,t) cannot be interpreted as
a probability distribution. Instead, the associated oscillations in the profile of C("™ (z, )
form a characteristic signature of higher-moment conservation that can potentially also be
observed in quench experiments of domain wall initial states, see Fig. 5.5 (b). In addition,
we notice that the central peak of C’(m)(:c,t) in Fig.5.3 (b,c) is well approximated by a
Gaussian exp (—a%/02(t)) /\/7c?(t) with o(t) = (Dt)1/2(m+1) " The additional dressing
density modulations can be understood heuristically if we interpret this Gaussian distri-
bution as describing the movement of an excitation through the system which is part of
a m-pole. Conservation of Q(™>% implies that a surrounding cloud of opposite charge
has to be dragged along: E.g., when m = 1 a moving (4)-charge will have (—)-charge
attached, leading to a negative contribution into the correlation.

Moreover, our derivation also predicts the expected equilibrium distribution Eq. (5.22)
in closed systems, where the corresponding constants a; = ak(Q("gm)) are uniquely fixed

12Notice that so(0) = 0 and thus the disconnected part vanishes.
ISThis_ can be proven by writing [dz 220 (z,t) = Jdk e~ DR Jd=x z2e”™** and using
[ dzz?e™* oc 5" (k).
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Figure 5.5.: Implications of higher moment conservation. a) In a finite size system
with open boundary conditions (gray dashed lines), the charge density relaxes
to an equilibrium distribution that is a polynomial of order m (here: S = 3).
The black dashed lines are the analytical predictions from Eq.(5.22). b)
The melting of a domain wall in a dipole conserving system for sufficiently
large spin (here: S = 2) appears as the cummulative distribution function
of CM(x,t), with characteristic charge density oscillations. The numerical
results were obtained by Johannes Feldmeier as published in Ref. [6].

by the charge moments Q=™ of the initial state. In particular we need to require

QM =31 ay, Z;VZI 4™k for all m = 0,...,m. On the one hand, we know that the sum
Z;V:l §7Hk scales as O(N™HF+1) while on the other, Q™ can take values that scale as
O(N™1) with system size N. Thus, the coefficients a;, should grow as |az| ~ O(N~F).
Because of the system size scaling, the non-uniformity of the equilibrium distribution
becomes only manifest in observables that involve macroscopic distances like for example
(S%) — (S%) ~ agN + a1 + O(1/N). The prediction Eq. (5.22) can be verified numerically
in small systems by monitoring the charge distribution resulting from a fixed inital state
at very late times. Fig.5.5 (a) shows a chosen initial charge distribution (black line) in a
system of size N = 20, as well as the late time distributions obtained from evolving the
system using both dipole- (red line) and quadrupole-conserving (blue line) automata. The
resulting distributions are in very good agreement with the predicted polynomials (shown
with dashed lines) of Eq. (5.22), validating our approach. Therefore we conclude that our
hydrodynamic theory correctly captures the long-time dynamics of systems with charge
and dipole conservation, although in the absence of energy conservation.

Before closing this section, we notice that while usually, the hydrodynamic description
of a system conserving m + 1 quantities is given by a set of m + 1 coupled equations
for the associated densities and currents [98, 101, 114], the present systems are described
by a single equation Eq. (5.23) for the charge density constrained by the conservation of
its higher moments. This is due to the hierarchical structure of the conservation laws
Eq. (5.16) that specify all Q) in terms of the fundamental charges of the theory.
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5.5. General “hydrodynamic” approach with modulated
symmetries: Quasi-periodic symmetries

Not all models we have introduced conserved the total charge (and then neither of its
higher-moments) and thus the spin density is not the relevant long-wavelength degree of
freedom for which a hydrodynamic theory should be written. Nevertheless, these modes
can still be probed via the physically relevant and accessible “infinite temperature” spin-
spin correlations C(r,t) = sy(t)so(0) that we considered in the previous sections. This
approach has the advantage of capturing the behavior of the three types of models we
discussed (including dipole and higher-moment conservation) and being easily generalized
to higher dimensions.

Consider the periodically modulated symmetries corresponding to conserved momentum
components of the total spin. These can be identified by the vanishing of some charac-
teristic function, x(k) = 0. To understand the dynamical consequences, we will assume
a description in the spirit of linear hydrodynamics, which provides a closed linear equa-
tion of motion for the relevant slow degrees of freedom. In momentum space, this can be
written as

Adic(t) = —w(k)dk(t), (5.30)

where 4y (t) is the Fourier transform of some coarse grained version of the local spin density.
The key difference from more usual hydrodynamic descriptions is that we cannot simply
expand the “imaginary frequency” w(k) near k ~ 0. Instead, we have to take into account
the slow modes at finite momenta originating from the modulated symmetries.

To obtain w(k), we require that: (i) w(k) > 0 leading to physically meaningful solutions,
(ii) w(k) = 0 < x(k) = 0 to exactly capture the conserved momenta modes corresponding
to the relevant slow degrees of freedom, and (iii) w(k) is analytic around these points. This
latter condition rules out w(k) being an odd power of |y (k)|. A natural approximation that
satisfies all these requirements and should correctly capture the leading order behavior in
the regimes where w(k) ~ 0 is w(k) ~ |x(k)|?. Let’s emphasize that this relation only holds
for momenta k close to the conserved modes at which y (k) = 0. In principle, w(k) could
have an imaginary part. However, for the systems we consider this possibility is ruled out
by inversion symmetry: Consider Eq. (5.30). Under spatial inversion dx — 3_j, mapping
Eq. (5.30) to Op_x(t) = —w(k)d_k(t), which is equivalent to 0k (t) = —w(—k)sk(t).
Hence w(k) = w(—k). Moreover, since s, is real, it implies that 3_x = 3. Hence,
taking the conjugate of Eq. (5.30), and comparing with the equation for 3_y leads to
w(k)* = w(—k). From here, we deduce that that w(k) is real ( w(k)* = w(k)) and
even function of k. Nevertheless, it would be interesting to understand if such terms
can appear in other scenarios. Ome can check that the approximation w(k) ~ |x(k)|?
correctly captures the known behavior in a variety of models, including those with dipole
conservation and subsystem symmetries (see Appendix E.2 for a general discussion).

As we saw before, within linear response, the spin-spin correlator behaves as the Green’s
function of this equation of motion [98], C(r,t) = [ d%ke*™=“&)* When evaluating at
r = 0, we can rewrite this as

C(r=0,t) = /OOO dw p(w)e " (5.31)

The long-time decay (t — o0) is therefore determined by the density of states (DOS),
p(w), near w ~ 0 [317].

Consider G with 2¢ > p. To evaluate the DOS we calculate N(w), the number of
states in the frequency range [0, w] (i. e., N(w) is the area of the region in the Brillouin zone
(BZ) delineated by the condition w(k) < w) and then take a derivative, p(w) = d](\ififf). For

example, if only charge is conserved w(k) = k2 and the DOS scales as p(w) ~ w™'/? leading

119



Chapter 5. New families of modulated symmetries in 1D

\
1053 O st~
— _1— q:,\
=10 S 10% 10*
10724 = 10 =
= 10°
3_ - t_1/2 ) — 10-1
10_ T 1 10_ T
10V 10° 100 1000 2000
Time Step ¢ Time Step ¢
1.0
(c)
0.51
&) =
o 007 =~
< T NS}
+ 10-1
N =4
0.0 — 103
- 107 )
—-1.0 .
—1 1 T

Figure 5.6.: Dynamics in 1D. Evolution of the spin-spin correlator C(z,t) for the 1D
models in Eq. (5.1). (a) C(0,t) for quasi-periodic symmetries with S = 5
and (p,q) = (3,2). (b) exponentially-localized symmetries with S = 10
and (p,q) = (3,1). The inset shows the boundary correlation which is lower
bounded by Mazur’s bound (black dashed line). (c-d) Spatial correlations for
the model in panel (a): “Dressed” scaling collapse of C(z,t) (¢) and its spa-
tial Fourier transform C(k,t), which becomes increasingly peaked at k = +k*
(d). These numerical results were obtained together with Julius Lehman as
published in Ref. [5].

to diffusive behavior. In the case of quasi-periodic symmetries, we have w(k* + dk) ~ 5k?
near the conserved momentum £*, and then N(w) = fkkm‘”‘ dk = f:ﬁ; ddk = 2y/w. This

gives rise to a DOS p(w) ~ w2 which yields a diffusive scaling, C(0,t) ~ t~'/2 upon
inserting in into Eq. (5.31). This is consistent with our numerical results for (p,q) = (3,2)
shown in Fig. 5.6a, and for longer-range gate. Fig. 5.7 shows numerical data for a stochastic
evolution combining layers of range-3 gates with layers of range-4 ones and (p, q) = (3, 2).
In both simulations, we chose S sufficiently large such that the system is not strongly
fragmented (see discussion at the end of the chapter).

Nevertheless, since this choice of p/(2¢) is incommensurate for any system size, this is
not an exact symmetry for PBC, and then C(0,t) is expected to decay exponentially at
sufficiently late times that scale with system size (see data for L = 30 in Fig. 5.6a). The
situation changes for dipole-conservation (2¢ = p). In this case, k* = 0, so the leading
contribution vanishes and we instead have w(k) ~ k*, recovering the known sub-diffusive
scaling C(0,t) ~ ¢t~/ that we found in the previous section [6, 113, 178, 289, 290].

The role of finite-momenta modes becomes much more apparent when we consider the
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Figure 5.7.: Longer-range gates. Evolution of the spin-spin correlator C(z,t) for S = 10
combining size-3 and size-4 gates with (p,q) = (3,2). (a) Evolution of the
auto-correlation function C(0,t). (b) Spatial correlations. These numerical
results were obtained together with Julius Lehmann as published in Ref. [5].

spatial structure of the correlations. Taking into account the slow modes around k ~ +k*,
we obtain

e . . 1 2
Cz,t) =~ R [/ dke'Fre=DHE=F? | cos(k*a:)m/\/' <:nt> , (5.32)

where D is some phenomenological diffusion constant, and A denotes a Gaussian function,
i.e., diffusive behavior modulated by a factor that oscillates at the microscopic scale 1/k*,
This behavior is numerically verified in Fig. 5.6(c,d). Additional details on the numerical
implementation can be found in Appendix D. The influence of finite (lattice-scale) mo-
mentum components in the BZ on long-time / large-distance correlations can be seen as
an infinite temperature manifestation of UV /IR-mixing in these models [299-301]. The
reason for its appearance is precisely the fact that we are not considering the relevant
long-wave length degrees of freedom but rather the microscopic (ultraviolet) ones. A more
standard approach would require expanding s(x) ~ e 35 (z) + e 7*"%5_4. () and con-
struct a hydrodynamic theory for 3z« (z). Nevertheless, at the moment it is not clear how
to generalize this construction to higher dimensions and thus we focus on the behavior of
the infinite-temperature correlations C'(z,t).

5.6. Exponentially-localized symmetries and Mazur’s bound

We can also apply our approximation to models with exponentially localized symmetries.
In this case, w(k) ~ |x(k)|? is finite everywhere, which indicates an exponential decay
of correlations. Nevertheless, there can be a correction coming from the large density of
states near the minimum of w(k). To see this, consider again the model Eq. (5.1), but
this time with 2¢ < p. The dispersion has a minimum at £ = 0 and expanding around
it we find w(k) ~ (3k* — k)%, with k% = 2‘12—;1’ < 0. Integrating over k£ we find the
long-time asymptotic form C(0,t) ~~ e*ot/\/t. The numerical results for (p, q) = (3,1)
with S = 10 shown in Fig.5.6b for t'/2C(0,t) are consistent with this scaling for bulk
correlations. Once again, we chose S sufficiently large to speed up the dynamics and avoid
strong fragmentation of the configuration space. However, the exponentially localized
symmetries have a strong effect on the dynamics near the boundary, leading to infinitely
long-lived correlations. This can be proven using Mazur’s inequality [116] introduced in
Chapter 1 whose value is shown with a dashed line in the inset of Fig. 5.6b.
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We recall from Chapter 1 that the main requirement to use this bound for the time-
average of a correlation function is proving that such value is non-negative. These include
thermal averages for both quantum and classical systems and also, the time-average ex-
pectation value of the spin-spin correlator (sy(t)sy(0)) governed by the cellular automaton
dynamics introduced in this chapter (see proof in Appendix D).

In particular, this means that we can apply Mazur bound to boundary correlators in
the presence of exponentially-localized symmetries. Without lost of generality, we focus
on the left boundary (s¢(t)s¢(0)), since the exact same result applies to the right one via
spatial inversion around the center of the chain:

T
Ci= Jim 7 [ (a0 > 3 (o6 Qeb (K (@500 = M

where () on the right hand side of the inequality corresponds to the uniform distribution
over configuration space, which can be understood as an ’infinite temperature’ ensemble.
In particular, from the equation (s;s;) = S(5+1) 5, - one can compute the remainder aver-
p ) q iSj 3 Oij p
ages. Recall that the bound M, simplifies whenever the set of conserved quantities {Q, }
are orthogonal with respect to (-,-) such that K, 3 x 0. In our case there exists (at
least) two such conserved quantities Qy, Q, localized at the left and right boundaries re-
spectively. Although we can get exact formulas for a finite system of size N using Eq. (5.4),
we are interested in the limit of long chains N — oo, where the conserved quantities take

the asymptotic form

N-1 N-1
—j i—(N—1
Qp =~ E r7sj, and Q,~ E i )sj,
Jj=0 Jj=0

with 7 > 1 the largest root. This simplifies the expression for M, since in the limit N —
0o Qy, @, become orthogonal, (Qy, Q,) — N/rV. Together with (Qy, Q/),(Q,, Q) ~
((s2)?) T{—il, the Mazur bound becomes

~ (se, Q£>2 (805 Qr>2 _ N £\2 m2| _ 2 b
MZ - <Q€7Q€> * <QT7QT> N <(SI) > 7“2 [(QO) + (QO) :| N <(SI) > <1 7"2) ’

with {(s;)?) = S(S + 1)/3 for a given local spin S, and the same value for the boundary
correlations on the right edge. This implies that the presence of exponentially localized
symmetries, leads to infinitely long-lived correlations at the boundaries of a 1D system.
In particular, for the model studied in Fig. 5.6b ¢ = 2,p = 3, whose largest root is
r = (3+/5)/2 leading to My, / {(sz)?) ~ 0.85.

5.7. Discussion and outlook

We have uncovered new families of spatially modulated symmetries in one spatial dimen-
sion with quasi-periodic and exponentially localized charges as well as re-discovered dipole
and higher-moment conservation from a different perspective. While the parametrization
introduced in Section 5.2 splits these symmetries apart, they can be simultaneously present
in the same local model. The derivation in terms of recurrence relations also provides a
reverse-engineering approach where one can obtain the (classical or quantum) model as-
sociated to a given spatial modulation, defined as the (potentially degenerate) root of a
characteristic polynomial with associated recurrence relation. Then the integer coefficients
of this recurrence translate into powers of ladder operators located at the site dictated by
the recurrence.
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Figure 5.8.: Fragmentation of 1D models. Cellular automaton evolution of the frozen
site density pr (panel a) and the autocorrelation function C(0,t) for the 1D
models introduced in Eq. 5.5 with (p,q) = (3,2) with periodic boundary
conditions. The system size in both plots is N = 99999. The quantity pr was
introduced in Ref. [318] and quantifies the number of frozen sites in a typical
evolution, i.e., sites that remain unchanged for all times < t. A non-zero
stationary value of pp is expected to signal strong fragmentation and coincides
with non-vanishing correlations. These numerical results were obtained by
Julius Lehmann and have not been published.

Once these symmetries were presented, we focused on their effect on the long-time behav-
ior of spin correlations, assuming no strong fragmentation of the configuration (or Hilbert)
space which could turn our hydrodynamic theory not valid. While it has been studied in
detailed when strong fragmentation can occur for dipole-conserving systems (see Chapter 2
and Chapter 3), no such analysis has been performed neither for higher-moment conserv-
ing systems nor for systems with quasi-periodic and exponentially-localized symmetries.
In particular, the analysis for the latter could be eased by considering periodic boundary
conditions were neither the exponentially localized nor most quasi-periodic quantities are
exactly conserved. For example, Fig. 5.8 shows not yet published results for the long-time
behavior of the frozen site density pp (defined in the caption) and the auto-correlation
function C(0,t) for (p,q) = (3,2), corresponding to an incommensurate modulation, for
periodic boundary conditions. The numerical results show non-vanishing values of pr and
C(0,t) at the longest times for the smallest compatible S = 3/2, which appears to hold
also for S = 2, although additional analysis is required. This signals non-ergodic behavior
for sufficiently small spin representations S that can be associated to strong fragmentation
of the configuration space even in the absence of exact symmetries.

Analogous to 1D systems with dipole conservation, quasi-periodic symmetries can be
approximately realized in the strong detuning limit of experimental realizations of the
interacting Aubry-André model [37, 319], which will also include particle number con-
servation. An alternative is to consider the Ising chain in the presence of a modulated
transverse field and a uniform longitudinal one. This derivation will published in a future
work.

For dipole and higher-moment conservation we have provided a more detailed construc-
tion of the hydrodynamic theory and validate its consistency with the quantum Hamilto-
nian dynamics. In addition to the subdiffusive decay of autocorrelations, we have identified
oscillations in the spatial density profile both for delta and domain wall initial conditions
as characteristic properties of higher-moment conservation, which could be in principle
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detectable in quantum quench experiments. As in Ref. [113], this scenario could be ex-
perimentally realized in the strong tilt regime of either a 2d system tilted along one of
the coordinate directions and preparing a domain-wall like initial configuration, or a 1D
chain. Nevertheless, this still requires a thorough analysis which considers experimental
details and limitations as well as the fact that dipole moment is not exactly conserved.
In fact, as we already found in the previous chapter, the behavior of tilted systems in
experimentally observable time-scales appear to strongly depend on the dimensionality of
the system as well as on the configuration of the initial state, leading to both non-ergodic
behavior at observable times even for low values of the tilt [3, 273] as well as thermalizing
dynamics [113]. In this context, understanding how the microscopically conserved dipole-
moment [235], granting a meaningful description in terms of dipole-conserving processes
and thus fragmentation, becomes only relevant at long wavelengths, which still leads to
a subdiffusive hydrodynamic mode, is an open interesting question. Moreover, the hy-
drodynamics of dipole-conserving systems in the presence of momentum conservation has
been investigated in Ref. [293]. It has been found that linear hydrodynamics (that we dis-
cussed in this chapter) becomes unstable, leading to an anomalous scaling with dynamical
exponent z = 2.5.
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6. Modulated symmetries in 2D

So far we studied the consequences for the dynamics to conserve certain unconventional
quantities in one-dimensional lattice systems. We found three different behaviors of the
spin-spin correlations depending on the type of spatial modulation: (i) Polynomial, which
corresponds to higher-moment conservation leading to subdiffusion; (ii) quasi-periodic
modulation, which we found to behave diffusively although with additional oscillations at
the scale of the lattice scaling associated to the conservation of finite modes of the spin;
and (iii) exponentially localized charges which while have no effect on the bulk, lead to
finite boundary correlations for open boundary conditions.

Higher dimensions open the door to completely new families of conserved quantities
lying between global, i.e., including an extensive number of sites (on the lattice) and
local symmetries, which only act on a local region. These for example correspond to the
conservation of magnetization along a line or a plane on a 3D lattice, or even to discrete
symmetry transformations supported on a fractal structures, as it is the case for the
Neumann-Moore’s [320] and Haah’s models [53] as well as for related constructions [321].
In fact, previous works have already studied the dynamics of higher-dimensional systems
conserving all multipole-moment components of a certain order [290], and systems hosting
U(1) subsystem symmetries [290-292], including a careful analysis of fragmented structure
in the presence of those [322].

The goal of this chapter is to understand these results from the recurrence relation
approach and identify new spatially modulated symmetries. As in the previous chapter,
we use the formulation in terms of classical block cellular automaton dynamics specified by
a set of local gates G acting on the neighborhood of a given site r. Firstly in Section 6.1,
we consider a specific 2D lattice model for which we are able to construct an extensive
number of conserved quantities which are localized at the boundary of the system. Using
Mazur’s bound, we numerically show that these lead to finite boundary correlations, which
in turn provides a route to construct strong zero modes in higher-dimensional systems.
This is part of an ongoing project whose results be published in the future.

We will then consider systems with quasi-periodic conserved quantities in Section 6.2.
Here a subextensive, and thus infinite in the thermodynamic limit, number of conserved
modes can appear taking the form of lines and surfaces of conserved momenta. These give
rise to exotic forms of sub-diffusive behavior with a rich spatial structure influenced by
lattice-scale features. They include systems with charge and higher-moment conservation
as well as subsystem symmetries, but are not restricted to them.
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Figure 6.1.: Discrete Laplacian model. (a) Schematics of a local gate corresponding to
Eq. (6.1). (b) Evolution of the spin autocorrelation C(0,t) in the bulk shown
for N = 249 and S = 2,5/2,3. The plot also includes a guide-for-the-eye
line with t='/2. C(0,t) decays for S > 2 but it saturates to a finite value
for § = 2. Inset: Spatial correlation C(z;t = 2000) for S = 3 and linear
system size L = 200 (left half Num.) in comparison to the analytic solution in
Eq. (6.3) (right half Ana.). Both plots are normalized to the interval [0, 1]. (c)
Scaling collapse of the spatial profile along the x-axis using the scaling form
Eq.(6.3) (shown in dashed-yellow) for S = 3 and N = 300. The prediction
closely matches the numerical data. (d) Boundary correlations for S = 3 and
N = 300. Numerical simulations are converged in system size at the longest
time. The black dashed line shows Mazur’s bound numerically evaluated using
Eq. (6.26). Inset: Spatial profile of the boundary correlations with respect
to the central boundary site. These numerical results were obtained by Julius
Lehmann and are yet not published.

6.1. The discrete Laplacian model

We start by considering a microscopic model with local gates G, acting on a 3 x 3
block of a 2D square lattice centered around a site with coordinates (z,y). The gate is
again specified by a set of integers and illustrated in Fig. 6.1, such that Gy : sp44,y4+5 —
Sptiy+j T N j, with

G2, ={noo.no1,mo-1,m10,n-10} = {+4,-1,-1,—1,-1} (6.1)

126



6.1. The discrete Laplacian model

for S > 2. This gate symmetrically distributes charges among the four neighboring sites
linked with a central site of coordinates (z,y). This model can be pictured as two copies
of the one-dimensional dipole-conserving gates G21 Eq. (5.1) acting along orthogonal
directions. It has several global U(1) symmetries: It conserves both the total charge 000 =

> sr and its dipole moments le) =), TSy, Qél) = > . Ysr, as well as some quadratic
moments Q;zy) =, TYSp, ¥ | = S (@2 — y?)sy, but not Q 2 = S (@2 + y?)sy.

IQ—yQ :c2+y2

For S = 2, one can show that the spin correlations C(r,t) saturate to a finite value
in the thermodynamic limit due to strong fragmentation. This is numerically shown in
Fig. 6.1(b) where the spin autocorrelation appears to saturate even at times t = 10° with
no observable shift for with system size. The analytical proof of this fact will be published
in a future work. However, for S > 2 correlations decay algebraically as governed by
the slow-modes associated to the previous U(1) charges. In particular, the charge s(r,t)
is transported across the system following the generalized diffusion equation derived in
Ref. [290]

Bys(r,t) + D (92 + 02)° s(r,t) = 0, (6.2)

with D a generalized diffusion constant. Even though some quadratic moments are con-
served, Eq. (6.2) only involves fourth-order spatial derivatives in s(r,t¢), instead of the
naively expected sixth order ones for the maximal quadratic algebra [66] which includes
Qp24y2. From Eq. (6.2) we find that C(r,t) takes the scaling form

O(r,t) = F<;) (6.3)

with F' a function only of the ratio r*/t where r = /22 4 y2. Thus, we expect a rotation-
ally symmetric distribution of C(r,t) as well as a power law decay of bulk autocorrelations
C(0,t) ~ t~/2 at long times.

Fig. 6.1(b) includes numerical results for C(r,t) with S > 2 and system size L =
249. Data is converged in system size at the longest times shown in the plot. After
an initial non-universal transient regime, which becomes shorter for increasing S, the
autocorrelation function approaches C(0,t) o t=1/2 for every S > 2, with microscopic
details only entering the diffusion constant D. Moreover, in Fig.6.1c we study the spatial
correlations C(r,t). We verify the scaling behavior of Eq. (6.3) by performing a scaling
collapse of C(r,t), displaying good quantitative agreement with the analytical prediction.
This displays the characteristic oscillating spatial charge modulation in the presence of
higher-moment conservation, which is analogous to the 1D dipole-conserving systems we
encounter in the previous chapter. This is also clearly shown in the inset, which compares
numerical and analytical results for the spatial distribution after 2000 times steps, C(r,t =
2000), obtained for S = 3 and system size L = 200. This explicitly shows the rotational
symmetry of C(r,t).

Therefore, the global conserved quantities we identified are sufficient to predict the late-
time dynamics of the bulk correlator C(r,t) in the absence of strong fragmentation. Does
it then mean that we can rule out the existence of other spatially-modulated symmetries?
As we find out there exist sub-extensively many other modulated symmetries whose total
number scales with the linear system size N. While they did not play a role in the bulk,
they can lead to infinite long-lived correlations at the boundary.
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Chapter 6. Modulated symmetries in 2D

6.1.1. Solving the recurrence relation

To detect additional modulated conserved quantities Q4. = >, arsy, we look for non-
trivial solutions of the associated two-dimensional recurrence relation

D nijutiyj =0, (6.4)

1,

satisfied at every lattice site with coordinates (z,y). In particular, for the model with
gates G§,y in Eq. (6.1) on a square lattice £L = B U D of size (N +2) x (N 4 2), we want
to solve the following recurrence relation for points in the bulk D = {(i, ) € {1,..., N}?}

doj — Qg1 — i1 — Qi1 — o j1 =0, (6.5)
given a set of boundary values O[?,j) i.e. the 4N values agj, ant1,5, @0, ;N1 With
i,7 = 1,...,N. Notice that degrees of freedom at the corner sites (0,0),(N + 1, N +
1), (0, N +1),(N 4 1,0) are not acted upon by any gate G?yy, and hence are decoupled
from the rest of the system. This precisely corresponds to a solution of the following
discrete problem with Dirichlet boundary conditions

;= 2 (Qip1j+ i1y + a1 +agj1) for (i,5) € D, (6.6)
Q= aE’j for (i,7) € B, ‘

where the value at site (,7) is given by the average value of the (four) neighboring sites.
A function satisfying this property is called discrete harmonic, and in fact our equation is
a discrete version of the Laplace equation with Dirichlet boundary conditions. Hence the
name for the model. This property leads to two important corollaries that become useful
to address the problem analytically [323]:

1. A (discrete) harmonic function defined on £ reaches its maximum M and minimum
m values at the boundary B. In particular, if afj € {0,1} then «;; is bounded and
non-negative 0 < «; ; < 1 for all points in the bulk.

2. Using the previous result, it follows that the solution is unique: given two (discrete)
harmonic functions f, g on £ such that f = g on B, then f(z) = g(x) for all z € L.

The second property is particularly useful as it ensures that for any choice of boundary
conditions a solution «; ; exists and is unique, which translates into a conserved quantity
whose spatial modulation is specified by «; ;. This apparently innocent result allows
us to construct sub-extensively many (scaling with the linear system size N) conserved
quantities for any finite lattice, and study the localization properties of such quantities in
the thermodynamic limit. Otherwise either none or infinitely many solutions can exist,
making difficult to even numerically find solutions to the problem.

Analogously to the continuum case, we can solve Eq. (6.6) via separation of variables,
ie., a;; = F(i)G(j). Let us explicitly follow the main procedure which will teach us
something about the structure of the solutions. Using this ansatz the recurrence relation
becomes

AF(i)G()) = (Fli+ 1)+ F(i—1)GU)+ F)(GH+1)+G(H—1)). (6.7)
After dividing by F'(i)G(j) (assuming ¢y ; does not vanish in the bulk) we find

Fli+)+Fi-1) GG+D+GG—1)

= (i) a)
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6.1. The discrete Laplacian model

This implies that each term on the right hand side is a constant function of its argument
and hence, they satisfy the one-dimensional recurrence relations

F(i+1) = 2F () + F(i — 1) = AF (i),

(6.9)
G(+1)—2G()+ G —1) = =AG()),

along the horizontal and vertical lattice directions respectively, for certain values of A € R
which are fixed by the boundary conditions. To proceed we notice that being Eq. (6.5) lin-
ear, the Dirichlet problem can be solved adding up the solutions of four different Dirichlet
problems with vanishing boundaries conditions except at a given boundary. This means
that a general solution can be written as

Q= a +a —|—a —|—a”, (6.10)

with the different contributions solving the boundary problems

(

#1: G(0) = G(N +1) =0 and F(0) =0, with o}y, ; = fo(j)
#2: G(0)=G(N+1)=0 and F(N +1) =0, with a3 ; = f1(j)
#3: F(0) = F(N+1) =0 and G(0) = 0, with a? v, | = g1(j) (6.11)
#4: G(0)=G(N +1) =0 and G(N +1) =0, with a}y = g2(j).

\

For example, solving problem #1 leads to G, (j) = sin(kyj) and [, (i) = sinh(k}i) with
ky = nm/(N +1) for n € [0, N + 1] N Z. This also restricts the values of 0 < A < 4 to
those satisfying cos(k}) = 1 — \,,/2, and in turn cosh(k}) = 1 + A, /2. Hence, we have
found the fundamental solutions A, sinh(x7}) sin(k;;j), which by linear superposition lead
to the general solution of problem #1

N+1
Z Ap sinh(k}7) sin(ky ), (6.12)

where the coefficients A,, are fixed by

N+1
Z Ay sinh(k(N + 1)) sin(k} ), (6.13)

i.e., proportional to the Fourier coefficients of fa(j).

Solving the three remaining problems, which again involve products of sinusoidal and
hyperbolic functions, one can find a general solution of Eq.(6.6) for any choice of boundary
functions. This implies that the fundamental solutions sinh () sin(kjj), sinh(x} [i — (N +
1)]) sin(ky ), sin(kyi) sin(kyj) , sin(kyi) sinh(ky[j — (N +1)]) withn =0---, N + 1 form
a basis for solutions of Eq. (6.6), showing that the number of independent symmetries
scales with the linear system size. This approach not only gives us the fundamental
solutions from where to obtain any other one, but also allows us to explicitly find particular
spatial modulations that connect to the quasi-periodic and exponential modulations we
encountered in the previous chapter. In general, we can solve Egs. (6.9) finding the roots
of the associated characteristic polynomials 72 — (2 = A)r 4+ 1 = 0 which take the values

(A4

>
N2

2
12 = —"2_ +

I

(6.14)

]w

—A A(A—4
Y12 =5 F R
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Chapter 6. Modulated symmetries in 2D

for the first and second equations respectively. As the characteristic polynomial are palin-
dromic, the two roots are inverse of each other. Whether these are real (7,,) or pure
complex phases (e?*=v) is determined by the sign of the discriminants A, = A(A+4), A, =
AN —4): If Ay, > 0, the corresponding solution can be written in terms of hyperbolic
or exponential functions; while A, , < 0 correspond to sinusoidal or complex exponential
modulations.

We can split the solutions into three main types: (i) A = 0 contains all multipole
conserved quantities we already identified except for the 22 —y? quadratic moment. As this
solution does not factorize in horizontal and vertical directions, but rather as o, , = (z +
y)(z—y), we can only recover it by superposing many fundamental solutions. Alternatively,
these could be explicitly found when writing the recurrence relation in terms of center of
mass s = i+ j and relative r = i — j coordinates, i.e., a; ; = F'(s)G(r). The second case (ii)
corresponds to exponential (hyperbolic) solutions, which are localized near the corners of
the 2D lattice when |A| > 4. These can be directly found solving Eq.(6.5) with the ansatz
@ij = (nz)"(ny)?. Finally, the third case (iii) corresponds to the product of sinusoidal
and hyperbolic solutions along orthogonal directions, like e.g., a;;j = (7;)'e~*¥/. Thus,
while solutions with a finite momentum mode along one of the lattice directions exist
(for |A| < 4), these are exponentially damped along the orthogonal direction and do
not contribute to spin correlations in the bulk, similarly to what happened in 1D (see
Section 5.6). Moreover, we can also rule out solutions of the form «; ; ~ e?*=fe?*vJ which
would have led to conserved finite modes in the bulk correlations !.

Nevertheless, these solutions (or rather linear combinations of) could lead to finite
boundary correlations. To study this possibility, we follow the more direct approach of
Ref. [324] that gives the general solution of Eq. (6.6) explicitly in terms of the boundary
conditions. This reads

N N N N
aij =Y oy Tan(i,5)+ Y ol Tur(i )+ > afyTip(ig) + Y oy, T1s(isd),
a=1 a=1 b=1 b=1
(6.15)
where each sum runs over each of the boundaries with values an. The kernel function
Top(%,7) is given by the double sum
N N _. irmT . jsm : arm : bsm
1 sin sin sin sin
Tosfinf) = iy 3030 DN R (g4
(N +1)? = = 1 — 5 cos(557) — 3 cos(w47)

with a,b,4,7 =1,...,N. In fact, Tg (7, j) solves the linear recurrence equation

LTl 1,9) + Tapli = 1)+ (i 1)+ Tap(i5 — 1) = b ),

(6.17)
and hence corresponds to a fundamental solution of the discrete Laplace operator with
vanishing boundary conditions. In particular, Eq. (6.15) can be understood as the convo-
B

lution between the Green function T (4, j) and the boundary values ;.

Ta,b(iaj) -

6.1.2. Finite boundary correlations and Mazur’s bound

From here we can now construct 4(N + 1) linearly independent conserved quantities

Q7 = "alls;; (6.18)
1,3

! Alternatively, we could have plugged this ansatz into Eq. (6.5) and realize that the resulting equation
2 = cos(kz) + cos(ky), can only be solved for k, = k, = 0.
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6.1. The discrete Laplacian model

labeled by ro = (ig,jo). We order these charges by the location of the site rg, starting
from the lower left corner, corresponding to ro = (0,0), and continuing in clock-wise
direction along the boundary: (0,0) — (0,N +1) — (N +1,N+1) — (N +1,0). These
correspond to solutions afg- with vanishing boundary values everywhere except at the
site with coordinates ro = (ig, jo): ozz ' = 0;,00j,jo- For ro at the corners of the lattice,

ro = 0;,i905,jo, i-€., the charge at the corner is completely decoupled from the rest of the
System and hence it is trivially conserved. In the following, we focus on the remainder
4N conserved quantities. For these, a}° ;; is also bounded in the bulk (as a result of the
second corollary we discussed) 0 < arf} < 1 and coincides with T, (i, ) after taking
(a,b) = (ip, jo). We dubbed these canonical conserved quantities.

Our aim is to investigate whether boundary correlations are finite for any (spin repre-
sentation) S in the thermodynamic limit. In particular whether the time average auto-
correlation is finite

1 T
lim ~ / 0t (50y(1)52.5(0)) > Ms; (6.19)
i |

for sites (x,y) located close to the boundary. To show that autocorrelations are finite one
can use Mazur’s bound, and check whether it is sufficient including the single localized
charge for which ry coincides with the coordinates of the point at which we want to
evaluate it. In fact, this was the procedure we followed in Chapter 3 when we only
needed to use the left- and right-most SLIOMs to prove finite boundary correlations.
Fig. 6.2 shows the spatial dependence of two solutions «;% where (io, jo) = (0, N) (panel

a) and (g, jo) = (0, %) (panel b), corresponding to a point near the corner and at the
central point of the left boundary respectively. The figure shows the spatial decay of
the solutions when moving towards the bulk into different directions. In both cases, we
find that these are not exponentially but rather power-law localized at the boundaries
of the system. In particular, o; ; decays inversely proportional with the distance when
located at the center of the boundary (panel b). Hence, one cannot prove finite-boundary
correlations considering a single canonical charge. Alternatives to this approach require:
Either considering several of the canonical charges in the computation of Mazur’s bound
(potentially a linear in N number of them), or to look for a choice of boundary conditions
which lead to more localized solutions in the bulk. In the following, we pursue the first
strategy and defer the second for a future work [325]. For the latter, we can show that it
is possible to construct solutions that decay with any power of the distance (r_(”+1)) by
combining a finite number (n) of canonical charges.

We notice that while linearly independent, these conserved quantities are not orthogonal
with respect to the uniform distribution in configuration space:

(gro, gty = ST 5= jro (6.20)

3 J g0
2%

and thus, to calculate Mazur’s bound we need to use the general expression we presented
in Chapter 1, namely

Mgz =D (5. Q) (K gy (Q0, 50). (6.21)
ro,r|)

Here K is the (positive definite) non-diagonal 4N x 4N matrix with elements K, . =

(Qro, Qr0> In particular, using the explicit expression a = 0i,iy0j,5o + Ta (%, ) for (a b)
fixed by rg, these are given by

N+1
S(S+1)
Kro,r(’) = 3 § : 0‘:3 :(} - 61‘0 rg + E Tab [ .7 a’ b’(l .7) (622)
1,j=0 t,j=1
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Chapter 6. Modulated symmetries in 2D

where the diagonal entries correspond to the normalization of the conserved quantities.

Finally, using that

<Sx,y7 Qr6> = 3 Oéx,yv (623)
we obtain the general expression for Mazur’s bound
S(S+1) _ /
MSg,y = 3 Z a;?y (K 1)1-0,1-6 : a;?y’ (6.24)
ro,rg

which can be evaluated at any point (z,y) of the lattice. Nevertheless, it simplifies when
evaluated it at a boundary site

S(S+1 _
MSrZO = (?))(K 1)ro,r07 (6.25)
or alternatively, when computing the average boundary auto-correlation
1T S(S+1) 1 .
Jim /0 dt % (50 (s (0)) = = = tr(K 7). (6.26)
0
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Figure 6.2.: Localization properties of the “canonical” conserved quantity. De-
pendence of the coefficients afg. when moving towards the bulk along two dif-
ferent directions marked by the cutting planes in each of the insets: ro = (0,0)
in panel a, and rg = (0,N/2) in b. This figure was obtained by Julius
Lehmann.

Therefore, being able to analytically show that indeed the (time-average) boundary
correlations saturate to a finite value for any S in the thermodynamic limit completely
relies on the structure of T, (¢, j) through the matrix K. A first attempt could be to use
the largest eigenvalue of K, to lower bound M 51532 > 1/Amax. However, one can numerically
find that Ay ax scales with IV and hence this bound goes to zero in the thermodynamic limit.
A second option is to look at the region close to a corner, e.g., the one with coordinates
(0,0). From our solution of the recurrence relation using separation of variables, we know
that solutions of the form «; j = (1,)*(n,)? exist. In particular, there exist solutions with
Nz, |ny| < 1, which then are exponentially localized at this corner. Evaluating Mazur’s
bound at a site with coordinates (z, y) close to the corner and including only this conserved

quantity one finds

Qz,y ° T
My, = 2 el SO e P = ()0 - ()?) (627
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in the limit N — oo. The largest bound can then be found optimizing the expression on
the right hand side over the set of solutions of the equation

(nx)277y +ny + 773:(771/)2 + Nz = 477:67’ya (6'28)

restricted to the domain |7/, |ny| < 1. Therefore as long as the site (z,y) is at finite
distance from the corner, Mazur’s bound will be finite, which in turn shows that the
time-average boundary correlation saturates to a finite value.

Our numerical simulations indeed suggest that boundary auto-correlations are finite in
the thermodynamic limit and at infinite times. Fig. 6.1d shows numerical results (green
continuous line) for the boundary correlations Chound(r,t) evaluated at the central site
r = (0,%) for S = 3. While bulk correlations (Fig. 6.1b) follow the hydrodynamic
prediction given in Eq. (6.3), Chound(r,t) appears to saturate to a finite value at the
longest time scales of our simulations. This coincides with the averaged boundary value
as defined in Eq. (6.26). We also emphasize that these results are converged in system
size and hold for larger S.

Using the explicit expression for the matrix elements of K in Eq. (6.22), we numerically
evaluate Mazur’s bound at the center of the left boundary (Eq. (6.25)). Moreover, since
we are interested in the limit N — oo, we only include those conserved quantities that are
localized at left boundary, then reducing the linear dimension of K from 4N to N. Fig. 6.3
shows the scaling of M S5 with system size for N taking values between 50 and 300,

2
which appears to converge to a finite value just below 0.82. In Fig. 6.1d, we plot the value

of Mazur’s bound for N = 300 (black dashed line), which approximates quantitatively well
the saturation value obtained in numerical simulations. At the moment we are working
out an analytical proof to show that Mazur’s bound is indeed finite for every point at
the boundary (besides the corners), although certain caveats still need to be resolved,
apart from additional subtleties that appeared in the thermodynamic limit. This requires
utilizing the structure of Ky, ./

Moreover, the inset of Fig. 6.1d shows that the spatial correlations at the boundary,
namely, (S(g4) (t)s(o’ N )(0)>, are localized at the central point with no observable drift at
late times. This suggests that one could construct a single conserved quantity that is
responsible for this effect, which should be more sharply localized than the canonical
charges. As we will prove in the future publication [325] together with Julius Lehmann,
Tibor Rakovszky and Frank Pollmann, this is indeed the case.

Before closing this section, we notice that the previous construction can be extended to
other lattices as well as to higher dimensions, as along as the solutions of the corresponding
linear recurrence equation «.., are discrete harmonic functions. This is the case when for
a lattice specified by G = {V, E'} with vertices V' and links E, then the recurrence can be
written as

ay = ! Zavr, (6.29)

|Nv’ v’ eNy

where N, is the set of sites connected to v and |N,| its number. In this case, for a given
choice of boundary conditions, a unique solution exists, which corresponds to a conserved
quantity. See Ref. [325] for additional details.
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Figure 6.3.: Finite-size scaling of Mazur’s bound. Scaling with system size () of
Mazur’s bound in Eq. (6.25) via numerical evaluation.

6.2. Subsystem symmetries in momentum space

In the previous section, we found that while the late-time dynamics of the spin-correlations
in the bulk is governed by the hydrodynamic mode k — 0, which in turn is constrained
by the conservation of its higher-moments, boundary correlations do not decay due to
the presence of extensively many conserved quantities that are localized at the edges of
the system. This generalizes the phenomenology associated to exponentially localized
symmetries that we uncovered in the previous chapter. In this section we explore a new
possibility: The existence of spatially-modulated symmetries which lead to new finite-
mode contributions that govern the late-dynamics of spin correlations. This is the higher-
dimensional analog of the quasi-periodic symmetries we already encountered in 1D, with
the striking possibility that they can now take the form of lines and surfaces of conserved
momenta instead of being isolated points in the Brillouin zone (BZ). This leads to a rich
variety of sub-diffusive behaviour with the spatial structure influenced by lattice-scale
features.

We set the stage by constructing a model which features these symmetries. In this
microscopic model, local gates G, act on a 4 x 4 block of a 2D square lattice in the
vicinity of the site with coordinates x,y, and are specified by a set of integers, such that
Gy Satiy+j — Setiy+j T nij- One can think of it as the expanded version of the model
we analyzed in the previous chapter. These gates are given by

G = {no,0,n0,3,13,0,13,3,N71,1,N1,2,21,n22} = {1,1,1,1,-1, -1, -1, -1}, (6.30)

whose action is illustrated in Fig. 6.4a. This model has the same global U(1) symmetries
as before. Nevertheless, it also conserves the staggered magnetization along all rows and
columns i.e., Sz = 32, (=1)YSz0,y: Syo = D, (—1)"8zy, which are example of subsystem
symmetries. However, these do not exhaust the set of modulated symmetries of the model.
As before, we need to solve the associated recurrence relation

Qij + Qi3+ Qi3 + Q343 — Qigl il — Qa2+ — Qa2 — Giprgee = 0, (6.31)
foralli,j =0,..., N —2 on a square lattice of size (N +2) x (N +2). Once again, one can
try to solve the equation by separation of variables «; j = F(i)G(j). However, this choice

does not simplify the recurrence. Instead, we need to factorize it as a; j = F(s)G(r) with
s =1+ j and r =i — j for a lattice compatible with this parametrization (a rectangular
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lattice rotated 45 degrees.) Doing so one finds

F(s+3)[G(r—3)—G(r—-1)—G(r+1)+G(r+3)]+
[F(s+6)—F(s+4)— F(s+2)+ F(s)]G(r) =0, (6.32)

which simplifies into solving two one-dimensional linear recurrence equations

Gir—=3)—Gir—1)—G((r+1)+G(r+3) = \G(r),

(6.33)
(s+4)—F(s+2)+ F(s) = —AF(s+3),

3
w
4
=
|
s

for A € R. Even then, classifying possible solutions is not as simple as in the previous
section, as now the associated characteristic polynomials 2% — z* F A\z® — 22 + 1 = 0 have
degree six, with no closed formula for its associated roots as a function of A 2. More
importantly, as explicitly shown in expression Eq. (6.31), solutions of this recurrence
equation are not discrete harmonic functions in the bulk, i.e., the value of a; ; on a site is
not the average of values at neighboring sites. This implies that the associated Dirichlet
problem (with sufficiently many fixed boundary values) may have no solution or that this is
not unique. Nevertheless, one can always find boundary values for which a unique solution
exists: First, we can fix the three upper- and left-most rows and columns respectively, and
solve the recurrence (with open boundary conditions) recursively. Then fix the boundary
values according to the obtained solution. Alternatively, we can consider a particular
ansatz for o; ; which solves the recurrence for every gate G, compatible with the lattice
for OBC, and fix the values of «; ; at the sites which do not overlap with any gate. This
will provide an exact solution and give us useful information about its spatial dependence.

We start with a; j = elfeieifyi the 2D analog of the quasi-periodically modulated sym-
metries we encountered in the previous chapter. The recurrence relation Eq. (6.31) then
reduces to finding the (real) roots (k, ky) of

x(k) = Zna7bei(k“+k”) o cos (kz/2) cos (ky/2) x
1,
x [ cos(ky) + cos(ky) — 2 cos(kz) cos(ky)] = 0. (6.34)

The solutions of x(k) = 0 are highlighted in green in Fig. 6.4b. The conservation of
total charge corresponds to the mode 39 at k = (0,0), while the staggered subsystem
symmetries S;, Sy, show up as the lines with k, = 7 and k, = 7 respectively. Moreover,
we find a set of contour lines (forming a closed loop in the Brillouin zone) along which
the second line of Eq. (6.34) vanishes. As we explained in the previous chapter, each of
these corresponds to an exact symmetry for OBC, whose total number scales with the
linear system size O(N) (see Appendix E.3). However, most points along these lines are
not realized exactly in a finite system with PBC, but become exact symmetries only in
the thermodynamic limit, leading to an (infinite dimensional) emergent symmetry group.

Before closing this section, we notice that based on the solution of the discrete Laplacian
model using separation of variables, we also expect to find solutions of the form «;; =
ntelkvd | eik”ni, with 7,7, € R. Plugging these Ansétze in Eq. (6.31) we get

S 3 1
g =k ) cos (G, ) = 2 4 eos (38,) . 63)

o 3 1
Qg = elkzln-; : (772/2 + 'r]y_3/2) CcoSs <2kx> = (7’;/2 —+ 77;1/2) CcoS (ng;) s (636)

2This would enter the arena of Galois theory.
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Figure 6.4.: Finite-momentum modes in 2D. (a) Schematics of a local gate corre-
sponding to Eq. (6.30). (b) Correlation function C(k,t) within the Brilouin
zone at t = 10%. The solution of Eq. (6.34) is shown in a green (dashed)
line. (c) The autocorrelation decays as C(0,t) ~ log(t)/v/t. (d) Correlations
C(x,t) are concentrated along the two axes and show oscillations on lattice
scales that survive for long times. These numerical results were obtained by
Julius Lehmann as published in Ref. [5].

which in fact admit non-trivial solutions. As we already discussed in the previous section,
we expect them to have no effect on bulk correlations, but potentially on the boundary
dynamics. Preliminary numerical results indicate that this is the case. However, we
currently miss a strategy to find a lower bound for those systems whose recurrence relations
are not discrete harmonic functions.

6.2.1. Symmetries in real space
Straight lines in the BZ correspond, upon inverse discrete Fourier transform, to symmetry
operators that act along columns or rows on the lattice. In particular, the staggered

subsystem symmetries S;, S, correspond to the inverse Fourier transform of solutions
lying along the k;, k, = 7 lines in momentum space

Syo Z( TSy = Ze WOkY Y ks (6.37)

D ey =5 Z e RS (6.38)
Yy ks
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Figure 6.5.: Real-space modulations a(r) of conserved quantities from performing the in-
tegral in Eq. (6.44) for different choices of f(t).

These can also be written in the following form
1
Sy = Nz Z a(r;90)Szy, (6.39)
T,y

(and analogous for S,) with the modulation given by the inverse Fourier transform of the
function f(k) = e kv

a(r) =) e*Tf(k), (6.40)

ke{(ke=m,ky)}

taking values along the lines k, = 7 (ky, = 7). Without loss of generality, and evaluating at
yo = 0, this implies that Sy, appears as the “equally weighted” inverse Fourier transform
along the one-dimensional manifold of solutions of x(k) = 0 corresponding to k, = .
This result is quite natural: Along these straight lines, one finds the most localized object
in real space (i.e., a Kronecker delta) via the 1D inverse Fourier transform of the constant
function.

A natural question is whether one could similarly construct a subsystem symmetry from
the inverse Fourier transform of conserved modes along some closed loop in the BZ, such
as the ones we encountered in Fig. 6.4b. Here, we will argue that this is in general not the
case: the quantities that can be constructed in this case decay asymptotically as ||r||~1/2
at large distance along almost all directions in space, implying that they are spread out
around the entire system.

To build some intuition, consider a simple example where the conserved momenta are
along a circle in momentum space. In particular let us consider a continuum model
invariant under the shift symmetry ¢(z) — ¢(z)+a(z) with a(z) satisfying (A+1)a(z) =
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Chapter 6. Modulated symmetries in 2D

0 where A = 92 + 85. In fact, this corresponds to the free part of the 2D UV theory in
Ref. [298], and is invariant under ak(z) = cos(k - x) for any k with unit norm (||k|| =

K2+ k; = 1) and corresponding conserved quantity Nx. Since this set can be easily

parametrized in polar coordinates, one can exactly compute the inverse Fourier transform.
A naive guess to find the most localized quantity in real space is to consider the constant
function f(k) = 1 with support on this set. The result can be obtained via the line integral

a(r) :/ ds €T — 9 7 ([, (6.41)
Sl

where Jy is a zeroth order Bessel function of the first kind. This leads to a conserved
quantity “localized” around r = 0 with asymptotic behavior (i.e., in the limit ||x| > 1)

given by a(r) ~ irll cos(||x[| — %)

In fact, the asymptotic behavior is generic and applies even if we consider the inverse
Fourier transform of some more generic function along the circle. Let us fix a direction
r/|r|| and write k - r = rcosf along the unit circle in k-space. Let us take an arbitrary
function f(0) that we wish to Fourier transform. In the limit » — 0o, we can evaluate this
by a stationary phase approximation, which gives

2
/ do f(e)eir cosf _ ./ 21 (ei(r—%)f(o) 4 e—i(r—%)f(ﬂ-))7 (642)
0 r

where we dropped terms that decay faster than r—/2. The leading term might vanish if
f(0) happens to be zero at both § = 0 and 7; however, for any particular choice of f,
this will only happen for a few specific directions; in almost all directions we have a decay
r~1/2 to leading order.

While the circular shape simplified the calculation, this discussion is quite general. What
we needed is that for any choice of direction, ¥ = r/||r|| there is some isolated points along
the loop of conserved momenta where t is normal to the loop; the integral can then be
evaluated in a stationary phase approximation at these points which lead to the same
=12 decay.

As an example of how this works, let us consider the model in Eq. (6.30) in detail. We
want to evaluate the line integral

/ ds e T f(s) = / ds ™) f(s) (6.43)
C C

for some function f, along the “loop” C within the BZ, defined by the equation cos(k,) +
cos(ky) — 2cos(k,) cos(ky) = 0, and with g(s) = k(s) - . As before, the asymptotics will
be dominated by saddle points of g(s), i.e., points along the loop where - k/(s) = 0 such
that r is normal to the loop. Apart from non-generic behavior along certain directions, in
general, the result decays as r—/2.

Apart from their slow asymptotic decay, the real-space conserved quantities constructed
from the inverse Fourier transform also exhibit a rich spatial structure, involving short-
scale oscillations similar to the circular case considered above. To address this question we
notice that C splits into four arcs C; each of them lying within one of the four quadrants
of the BZ, such that Eq. (6.43) can be written as

4
Seik(s)T S) = S COS S)x ) COS S S).
S [ ase () = [ dscon(hals)a) cos(i (51 ()

In particular, C; lies in the first quadrant with k;,k, > 0, and takes the form of an
hyperbola XY = 1 with X =1—2cos(k;), Y = 1—2cos(ky). We therefore parametrize it
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6.2. Subsystem symmetries in momentum space

via X = e', and Y = e !, with ¢ taking values in |t| < log(3). In this new parametrization
the modulation «a(r) reads

log(3)
/ dt [k (1) cos (k. (£)z) cos(k, () £ (1), (6.44)
—log(3)

where |[k'(¢)]| = \/(/’féc(?f))2 + (K, (1))

In Fig. 6.5, we plot a few different results obtained by numerically evaluating the inte-
gral (6.44) for different choices of f(t).

Finally, we note that even in cases that evade our stationary phase analysis, the spa-

tial decay of the resulting real-space functions still tends to remain slow. In particular,
integrating over a square [—k, k| X [—k, k] in momentum space gives

k k . .
1/ dkm/ e, eilke+hys) sin(kx) cos(ky) N sin(ky) cos(kx)
—k —k z Y

9

so that the decay is merely enhanced to 1.

o)
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Figure 6.6.: Generalizations with (quasi)-periodic symmetries. (a,b) Examples
of 2D systems which do not conserve total charge whose local gates are
given by Eq. (6.50) and Eq. (6.51) respectively. The figures show e~ X,
(¢) Numerical results for C(0,t): Model in panel (a) (red line) decays as
C(0,t) ~ log(t)/vt+O(t'/?), while model in panel (b) follows C(0,t) ~ t=1/2
respectively. Data was computed for S = 10 (green line) and S = 3 (red line)
and system size N = 300. (d) 3D generalization of the 2D model in Eq. (6.30).
The figure shows the solutions of x(k) = 0.
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6.2.2. Hydrodynamic description: Long-time scaling of correlations

As we already saw in Section 5.5 of the previous chapter, the asymptotic decay of corre-
lations

Clr=0,1) = /0 ~ dw plw)et, (6.45)

is governed by the density of states (DOS) p(w) near w ~ 0. For this model, p(w) picks up
contributions from various parts of the BZ: As already noted, it vanishes at the origin as
well as along the lines shown in Fig. 6.4b. Recall that to evaluate the DOS we calculate
N(w), the number of states in the frequency range [0,w] (i.e., N(w) is the area of the
region in the BZ delineated by the condition w(k,,k,) < w) and then take a derivative,

plw) = dV() Ty this case, the dispersion relation reads
dw

w(kg, ky) ~ ‘X(kr,ky)P = cos® (k;/2) COSQ(ky/Q)X
X [cos(kz) + cos(ky) — 2 cos(kz) cos(ky)]2 , (6.46)

valid for (kz, ky) close to the conserved momentum modes. We split up N(w) into a sum
of contributions from different regions of the BZ which we evaluate independently.

1) k ® 0 — Near the origin (a root of the second line of Eq. (6.46)), the dispersion
is dictated by the multipole symmetries alone. It has an expansion w(k) ~ k* + O(k®)

where k = /k2 + k:g This is spherically symmetric and has the sub-diffusive scaling

that one expects based on the fact that the model conserves dipole moments. This gives
1/4

N(w) ~ [ "k~ (w'/*)2 and a DOS p(w) ~ w2,

2) kg, ky =7 — At the corner of the BZ, the two lines of conserved momenta k, = m and
k, = m meet (roots of the first line in Eq. (6.46)). Expanding around this point, we find
w(k) ~ ngz, where k; = m — ¢;. This situation is similar to the case of U(1) subsystem
symmetries that was considered in Ref. [291], which has the same dispersion near the
origin. There the two subsystem symmetries were related to the total magnetization
along every row and column in the 2D lattice. This gives rise to a logarithmic correction
to the DOS. The computation goes as follows: We write

max

qz

N(w):/ dqwdqy:/' dq.qy (4 ), (6.47)
w(k)<w q

min
T

where |¢™i®[, |¢**| are bounded such that the Taylor expansion around k, = m,k, = 7
holds. Thus, ¢;""gn?* = wl/2 and we obtain

N(w) = aw'? + bw™ 2 log(w) ~ w'/?log(w) (6.48)

for small w and for a, b real constants that depend on the cutoff ¢**.

3) ky = m, ky ~ k* — There is another similar point where the k, = 7 line of conserved
momenta crosses the loop of conserved modes; this happens when £, = k* where cos k* =
1/3. In fact, there are four such points in total, (ky, ky) = (7, k%), (7, —=k*), (k*, 7), (—k*, ),
each with identical contributions to the DOS. Expanding around one of these points, we
again find w(k + k) ~ 5!4:%61{:5, so these also lead to the same contribution, N(w) ~
w!/?log(w).
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4) k, =~ 7w, ky % k*,m — Along the line k, = m, but away from the aforemen-
tioned crossing points (call this distance €), we have w(k) ~ ¢2f(k,), where f(k,) =
cos?(ky/2)(3 cos(ky) — 1) depends on k, and is finite everywhere in this regime. N(w) is
therefore
T—€ w1/2
N(w) :/ dqydk, ~/ dky—e— ~ w'/?, (6.49)
w(k)<w [k*|+e f(ky)

which is approximately the area of a rectangle of width O(w'/?) and length O(1). This
gives N(w) ~ w'/? and similarly for the line k, = 7.

5) The loop — Intuitively, the contribution of the loop is similar to the previous case:
N(w) counts the area of a ‘fattened’ loop, extended to a size ~ w'/? in the direction
transverse to it and one expects a contribution of size N(w) ~ w'/2. A more detailed
calculation not included in this thesis, confirms this expectation.

All together — Most of the contributions scale N(w) ~ w!'/? to leading order for small
w. The exception are the five points where different lines of conserved momenta cross,
at which N(w) has an additional logarithmic enhancement. These latter contributions
dominate at the smallest frequencies, leading to N(w) ~ w!'/?log(w) + O(w'/?). Taking
a derivative, we get p(w) ~ w™/?log(w) + O(w~?) and plugging this into Eq. (6.45)
gives an autocorrelation C(0,t) ~ t~/2log(t) + O(t~/?), which we numerically confirm
in Fig. 6.4c.

The finite momentum contributions also lead to spatial oscillations of C(x,t) at short
scales (see Fig. 6.4d), which can be clearly identified in its Fourier transform C(k,t) shown
in Fig. 6.4b, concentrated along the solutions of y(k) = 0. Another consequence is that
C(r,t) does not have full rotational but only the discrete rotational invariance of the gate,
and concentrates around the two coordinate axes.

6.2.3. Generalization and extension to higher dimensions

Many other models which exhibit conserved momenta along various shapes in the BZ
exist, including ones that do not conserve the total charge Q@ = )" sy, and thus none
of its multipole-moments. A couple of examples are shown in Fig. 6.6(a,b) as well as in
Appendix E.1. Fig. 6.6a corresponds to a model with 5 x 5 local gates specified by the
array of integers

-2 0 3 0 =2
0 -2 0 -2 0
nj = 3 0 2 0 3}, (6.50)
0 -2 0 -2 0
-2 0 3 0 =2
while 3 x 3 gates were used to construct the model in Fig. 6.6b
nij = {n0,0,M0,1,M0,-1,M1,0,n-10} = {+3, -1, -1, -1, -1} (6.51)

This can be understood as a deformation of the discrete Laplacian model in Eq. (6.1)
after replacing 4 — 3. Thus solutions of the recurrence relation are not longer in the
kernel of the discrete Laplacian but rather eigenfunctions with non-vanishing eigenvalue,
ie.,

1
ij = 5 (Qirrg + Qimrg + ijn + @ijo1) = S i, (6.52)

resembling the eigenvalue problem (97 + 82)a(z,y) = Aa(x,y) in the continuum. Its
characteristic function reads

x(k) = 2(cos(kz) + cos(ky)) — 3, (6.53)

141



Chapter 6. Modulated symmetries in 2D

whose solutions lie in the single loop that is close to a circle of unit radius, i.e., x(k) =
k24 ks —1.

In general this construction can be reversed to construct models whose conserved mo-
mentum modes lie along particular paths and can be easily extended to higher dimensions.
E.g., we can consider a 3D natural generalization of Eq. (6.30). The corresponding gate
acts on a 4 x 4 X 4 cube, moving charges between the inner 8 sites and the outer 8 cor-
ners. In this case one finds exact conserved quantities lying in intersecting 2D manifolds
in momentum space as we show in Fig. 6.6d.

All these symmetries lead to different late-time scalings of the correlations, depending
on the details of |x(k)|. The decay is at least as slow as C(0,t) ~ t~'/2, coming from
the fact that expanding the dispersion along a co-dimension 1 hypersurface (a line in 2D
or a surface in 3D) is formally similar to an expansion in one dimension. However, the
actual behavior can be much slower than this. While the details of these shapes should
show up in the spatial structure of C(r,t), the decay at r = 0 is dictated by a few relevant
features that enter into the calculation of p(w). Similarly to the previous analysis for model
Eq. (6.30), we can split up the calculation of p(w) into two contributions: continuous lines
and singular points (such as crossing points between two lines).

Along the lines, N(w) is the area of a strip given by broadening the line to include
points with w(k) < w. The width of this strip depends on the expansion of w along the
transverse direction. Taylor expanding around a point k on the contour of this line, we can
write the leading order term as x(k + 0k) =~ (a 0k, + bdk,)™, where a,b € R generically
depend on k. We call m the multiplicity of the line: the simplest possibility, realized
in the model (6.30), is m = 1 which gives N(w) ~ w'/? and thus C(0,t) ~ t~'/2. This
is for example the case for the model specified by Eq. E.7 (see orange line in Fig. 6.6¢).
However, higher multiplicities are possible, as in the model shown on the left of Table 1
in Appendix E.1, where near the k; = 0 axis, we have w(k) ~ k:;l (and vice versa). In
general, we then get N(w) ~ w'/?™ which leads to a contribution C/(0,t) ~ t~1/2™ in the
autocorrelation.

An enhanced contribution to the DOS can arise from singular points, where the leading
order Taylor expansion of x(k) does not have the form (adk, + bdk,)™. This can occur
for various reasons: (i) at isolated points, (ii) at a meeting point of multiple branches of
the curve, or (iii) if the form of the expansion changes at a point along the curve. In our
list of singular points, (iv) we also include points where two or more lines touch: while in
this case we do have an expansion of the above form, with m > 1, the value of m changes
discontinuously as we move away from the touching point.

Without loss of generality, we can write the leading term in the Taylor expansion of the
characteristic function around a point as [326]

X(k + 0k) ~ [ [(ai ks + b; 6k,)™, (6.54)

)

where the coefficients a;, b; might be complex in general. When a;/b; is real, we can picture
the corresponding term as the tangent of the curve at the meeting point k, each appearing
with some multiplicity m;. m; > 1 might occur because the line in question itself has a
non-trivial multiplicity, or because two different lines share the same tangent, i.e. when
they have a touching point at k. Terms where a;/b; is complex are singularities that do
not arise from the meeting of contour lines; an extreme example is an isolated singular
point (such as k = 0 for Eq. (6.34)).

In general, contributions from singular points can lead to three different scalings of N (w)
depending on the ratio between the total multiplicity m = ), m; and the largest m; in
expression (6.54)

e if 2m; < m or k is an isolated point then N(w) ~ w'/™,
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e if 2m; = m then N(w) ~ w'/™log(w),
e if 2m; > m then N(w) ~ w'/2m,

to leading order. Notice that the condition 2m; > m is equivalent to m; > > i M such
that one tangent line dominates over all the others. In this case, the DOS has an entirely
different power law than what the naive dimension counting w ~ k2™ would suggest;
consequently correlations have a slower decay C(0,t) ~ t=1/2mi - A simple situation where
this occurs is a point where two lines have a touching point. The details of this general
analysis and its application to other 2D models are provided in Appendix E.1.

6.3. Conclusions and outlook

In this chapter we have generalized the notion of spatially-modulated symmetries from
1D to higher-dimensions. These include already known examples, like U(1) subsystem
symmetries and the conservation of multipole moments of the charge. On the one hand, the
existence of not only a finite but an infinite number of symmetries, opens the possibility to
construct conserved quantities with intricate spatial structure, which can lead to (provable)
finite boundary correlations. We also found that these can lead to a whole hierarchy of
subdiffusive behavior with complicated spatial correlations.

However, while we uncovered some of the ins and outs and consequences of such a
rich structure, many open questions have appeared on the way. A natural question is
how to construct a complete hydrodynamic description, which could be used to predict
the long-time behavior of the spin-spin correlations, including the spatial structure. One
could decompose the spin density as s(r) ~ >, a0 =0} e'* T3, (r), and construct a hydro-
dynamic theory for the relevant long-wavelength degrees of freedom 4y (r)’s, which could
be further constrained by the conservation of higher-moments of the charge. Although
addressing a different question, this approach is similar to the expansion of the UV bo-
son (fermion) in terms of low-energy degrees of freedom lying close to the Bose (Fermi)
surface (see e.g., Ref. [298]). In fact, this is the reason such lattice-scale oscillations are
observed in the spin correlations. However, the situation can become rather complicated
in two and higher spatial dimensions, where infinitely many momenta lie along different
intricate shapes in the BZ. The derivation of an appropriate hydrodynamic description is
then an interesting challenge that I would like to pursue in a future work. On the same
line of thought, generalizing the analysis of the decay of spin correlations to 3D remains
open. This now requires considering surfaces intersecting with other surfaces as well as
with one-dimensional manifolds.

Moreover, we focused on the effects of such symmetries on classical “infinite tempera-
ture” dynamics. However, the presence of these symmetries can have also strong effects on
the low-temperature physics of the associated quantum models. Analogous to the previous
chapter, a model with local gates G = n;; can be mapped to a local quantum Hamilto-
nian where each integer n; ; is mapped to a raising/ lowering (or creation/ annihilation)
operator depending on the sign of n; ; which acts on a site (4, j), |n; ;| times. Such systems
are related to the previously studied models with Bose surfaces [294-298, 301] and to the
current effort to understand the proper formulation of quantum field theories as appearing
in the continuum limit of systems with unconventional symmetries, which in turn relates
to the phenomenon of ‘UV /IR’-mixing [299, 300, 327]. In fact, motivated by some of these
works, I find interesting the question of how to properly gauging such symmetries.

Our construction of localized symmetries at the boundaries of the system also opens
up a new exciting possibility: Systems with strong zero modes [184] in more than 1D.
In fact these systems can include additional Zs symmetries, which anticommutes with all
the modulated ones [325]. Understanding whether the existing definition of strong zero

143



Chapter 6. Modulated symmetries in 2D

mode [184] is compatible with these charges (which are not exponentially localized at the
boundary of the system), or possible connections to topologically ordered systems, are
also questions worth exploring.
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7. Conclusions and outlook

In this thesis, we discussed several topics ranging from classical to quantum dynamics,
focusing on the role of symmetries and the notion of symmetry itself. To do so we com-
bined two main tools: Simple toy models that allowed us to have a deep understanding of
the system in question, and extensive numerical calculations that allowed us to validate
our understanding and overcome potential analytical limitations. Our main goals were
to elucidate the constraints that assuming an unconventional symmetry enforces on the
system dynamics with special focus on quantum thermalization, and using this knowledge,
explain experimental observations and theoretically explore new scenarios. In the follow-
ing, we summarize the main conclusions reached in this thesis and discuss possible future
research directions. We expand some of those that were already suggested at the end of
each chapter, and provide a bird’s-eye survey of relevant open questions. I believe the
results discussed in this thesis will serve as a solid ground to pursue them and to expand
our understanding on the role of symmetries on the behavior of classical and quantum
systems in- and out-of-equilibrium.

7.1. Part I: Hilbert space fragmentation

Summary. In the first half of Part I, we focused on systems with charge and dipole
conservation. We showed that this combination leads to an extensive fragmentation of
the Hilbert space, which in turn can lead to a breakdown of thermalization. For a one-
dimensional spin-1 minimal model, we found that the infinite temperature auto-correlation
saturated to a finite value, showcasing non-thermal behavior. We identified the absence
of thermalization as a consequence of the strong fragmentation of the Hilbert space into
exponentially many invariant subspaces in the local S* basis, arising from the interplay of
dipole conservation and local interactions. We then extended the model and found that
this perturbation leads to a weak fragmentation: the system still has exponentially many
invariant subspaces, but they are no longer sufficient to avoid thermalization for typical
initial states. More generally, for any finite range of interactions, we showed that the sys-
tem is still fragmented leading to (exponentially many) non-thermal eigenstates appearing
throughout the entire spectrum. We then compared our results to charge and dipole mo-
ment conserving random unitary circuit models. This led us to the conclusion that indeed,
the same fragmented structure is found in other implementations of the dynamics with
the same symmetries, highlighting that the fragmented structure is completely specified
by the local dynamics.

In Chapter 3 we then found the second main conclusion of this part, namely, that the
existence of an extensive number of non-local but yet statistically localized integrals of
motion (SLIOMs) is a sufficient condition for fragmentation to arise. We identified such
conserved quantities in the relevant dipole-conserving model (as well in other related sys-
tems), which allowed us to analytically characterized the complete fragmented structure.
At this stage we found the extremely rich dynamics fragmented models can offer, with
different fragments displaying completely distinct phenomenology including thermalizing
and non-thermalizing behavior. This corresponds to the third important conclusion of
this part. Moreover, armed with the SLIOMs, we were able to show that these systems
host strong zero modes (SZM), leading to finite boundary magnetization and an exact
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degeneracy of the many-body spectrum in the presence of an additional (anticommuting)
symmetry. From here, we also analytically confirmed the finite saturation value of spin
correlations for the strongly-fragmented minimal model with dipole conservation.

Outlook. As we thoroughly discussed in Section 3.5.3, one could argue that SLIOMs
should also be resolved when studying thermalization properties of the system. In this
restricted setting, one can then find (exponentially large) subspaces where ETH holds [2,
260], and even study the MBL phase transition [7, 328]. Nevertheless, one can also find
equally meaningful counter-arguments to avoid resolving such non-local conserved quan-
tities (see Section 3.5.3), as for example, whether then projectors on energy eigenstates
should also be accounted for. Hence, a certain level of ambiguity lies on specifying what
entitles a conserved quantity to be fixed when studying quantum thermalization in a
many-body system. Resolving this could shed some light on previous discussions appear-
ing in the literature [42, 204, 205] and in general on the role of conservation laws when
investigating the ETH and quantum thermalization.

In the following, we discuss other open questions that emerged when studying the phe-
nomenon of Hilbert space fragmentation.

e Lattice gauge theories. On a lattice, gauge invariance translates into the existence
of extensively many local conserved quantities — Gauss law. This splits up the
Hilbert space into (exponentially many) super-selection sectors which correspond to
different physical scenarios. Hence, the system is usually assumed to belong to a
specific super-selection sector. However, recent studies discussed the possibility of
considering initial states which have weight on all possible superselection sectors.
This was shown to lead to localized dynamics where an effective disorder potential
would emerge as a result of combining different background charges [38, 39, 141].

While LGT could be labeled as “locally” fragmented due to the extensive number
of conserved quantities, their local support clearly differs from that of SLIOMs and
hence the structure is rather different. Thus, it would be useful to precisely relate
the fragmentation arising in the models we introduced in Chapter 2 to those for
lattice gauge theories [38, 39]. Can we understand certain lattice gauge theories
as a limiting case of fragmentation? In particular, one could understand certain
fragmented models as a “linear combination” of LGT where the non-local conserved
quantities responsible for fragmentation, are generated via non-local combinations
(and products thereof) of (now broken) localized Gauss laws. Moreover, simple LGT
have been shown [329] to be equivalent to the PXP Hamiltonian which was utilized
to explain the experimental observations in Ref. [43], which we know can be related
to dipole-conserving spin chains (see Section 3.3). Thus, it is a relevant question to
understand how these three different phenomena relate to each other.

e Continuum theories. The phenomenon of fragmentation has been so far addressed
in lattice models with a finite dimensional local Hilbert space (see reviews [221,
330])). However, it is unclear whether this phenomenon can occur for either lattice
models with infinite-dimensional Hilbert spaces, or alternatively, for theories in the
continuum. For the former, we developed the understanding that replacing the local
spin degrees of freedom in the dipole-conserving models considered in Chapter 2,
by an infinite-dimensional local Hilbert space (unbounded from both above and be-
low), would not lead to fragmentation. However, a general statement about this
impossibility is still missing. On the other hand, whether a continuum theory can
showcase fragmentation and how to technically deal with it, could become relevant
when addressing the low-energy physics of fragmented systems, specially those whose
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fragmented structure is not analytically known. This could relate to the ongoing ef-
fort to properly formulate the continuum theory description of certain lattice models
in presence of subsystem symmetries [297, 299-301].

e Quantum correlations. The examples of Hilbert space fragmentation that ap-
peared in this thesis occurred with respect to a many-body basis which involves no
(neither long nor short) quantum entanglement. In particular, that was the reason to
utilize classical cellular automaton in order to study certain features that arise as a
direct consequence of this fragmented structure [6, 291, 292, 331, 332]. However, it is
not clear the role that quantum correlations play in these systems, and whether these
can lead to effects that depart from the “classical” behavior. On the one hand, it
would be interesting to understand whether for example, similarly to Ref. [333], one
can make use of the constraints to prepare highly entangled many-body states from
simple initial product ones. A different approach to understand the role of quantum
correlations was pursued in Ref. [166], which introduced a family of models showcas-
ing strong quantum fragmentation, i.e., strong fragmentation in an entangled basis,
together with a general formalism in terms of commutant algebras (see the more
extended discussion of Section 3.5.1). The authors concluded that quantum frag-
mentation appears when the commutant algebra is non-Abelian, hence providing
a potential — not yet exploited— constructive way to obtain other quantum frag-
mented models. While it is still unclear whether one can extend the construction of
Ref. [166] to weakly quantum fragmented systems, it would be interesting to follow
a similar path that the one taken in Chapter 2, and study the difference between
strong and weak quantum fragmentation. In particular, understand whether quan-
tum correlations can change the universal properties of the freezing transition study
in Ref. [178] for dipole-conserving systems.

7.2. Part Il: Experimental realization in tilted interacting
systems

Summary. In Part II we turned our attention to the experimental realization of frag-
mented Hamiltonians. With this aim and inspired by actual experimental setups, we
considered a one-dimensional system of interacting particles in the presence of a tilted
(i.e., linearly growing) potential that couples to the center of mass of the system. We
found that in the strong tilted regime, the physics can be approximated by an effective
dipole-conserving Hamiltonian that resembles those we encountered in Part I. We also ex-
plored other parameters regimes where the dynamics was governed by a kinetic constrained
Hamiltonian which to a finite-evolution time features the phenomenon of Hilbert space
fragmentation. Hence, it is possible to explore the physics of Hilbert space fragmentation
in the lab, which turns into the first main conclusion of this part. At the same time, this
system has been predicted to be many-body localized for sufficiently strong tilts in the
presence of interactions (Stark MBL [76, 157]) when an additional weak disorder or a resid-
ual harmonic potential is present, hence coexisting with the approximate dipole-conserving
regime. The extraordinary level of control of current experimental setups for which the
system can be assumed to be isolated for really long times (of the order of 700 tunneling
times in units of the hopping rate), permits to address these questions experimentally,
going beyond current computational techniques. In particular, this is achieved by an in-
teracting (degenerate) fermionic gas of ultracold atoms trapped in an optical lattice in the
presence of a gradient magnetic field, which implements the linear potential [3, 4]. The
experimental results show evidence that even for intermediate values of the tilt and close
to a resonance between the tilt and the interaction strength, the system appears to retain
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memory of the initial state. Using the effective dipole-conserving Hamiltonian, together
with energetic and perturbative arguments, we provided a physical argument that would
explain such non-ergodic behavior at finite observational times. However, whether such
non-ergodic behavior corresponds to a transient pre-thermal regime, or indeed lasts to
infinite times still requires additional work. Nonetheless, the second main conclusion of
this part is the use of ultracold atoms as a powerful tool to realize different dynamical
regimes whose dynamics are governed by kinetically constrained systems.

Outlook. These novel theoretical and experimental results could be used to address rel-
evant open questions that remain unanswered.

e Initial state dependence. In this thesis we discussed an experimental feasible ap-
proach to study phenomena that appears as a consequence of a fragmented Hilbert
space. Although a first proof of principle was putting forward in Ref. [4], it would
be interesting to systematically study the dependence on the initial state and the
time scales for which the fragmented effective Hamiltonian is a good approximation.
Moreover, this analysis could shed light on the nature of Stark MBL in comparison
to the standard disorder-induced MBL [34, 130, 132], and the role of additional ex-
perimental contributions that depart from the ideal model. In fact, as we discussed
in Section 4.6, such questions could significantly benefit from recent experimental
developments as the quantum gas microscope [152, 153], which performing on-site
measurements and manipulations allows to investigate the evolution of other local
observables from specific initial states; and the possibility to perform randomized
measurements, to study the evolution of the nth-order Renyi entropies (see review
[276]) in the regimes of interest. The combination of these two developments would
let us explore the rich dynamics of fragmented models, which include fragments with
integrable, non-integrable as well as other constrained behavior, answering questions
regarding their restricted transport and thermalization properties, hence exploring
Krylov-restricted thermalization [260]. These tools would also allow to characterize
the regimes were Stark MBL is expected, by even studying the information propa-
gation using the evolution of the experimentally measurable Renyi entropies.

e 1D to 2D crossover. How does Stark MBL depend on the spatial dimension?
The authors of Ref. [113] studied the time decay of different initial density waves
configurations in a 2D optical lattice (i.e., confined to two spatial dimensions) in the
presence of a tilted potential that was aligned along one of the coordinate directions.
The authors found that the system did thermalize for different initial wavelengths,
although in a subdiffusive manner for sufficiently long ones that could be described
in terms of a classical hydrodynamic theory [98, 102]. This was built from the
assumption that the system has reached local equilibrium, related to the absence of
tilt in the orthogonal direction. Instead, the experimental results of Ref. [3] (and
partially discussed in Chapter 4) for a tilted one-dimensional system showed non-
ergodic behavior for very long times. Therefore, a natural question is how to reconcile
these two results. Among other important points, this requires understanding the
dependence of the observed results on the prepared initial states, e.g., whether the
2D system thermalizes at the observational times when preparing a charge density
wave configuration analogous to the 1D setting of Ref. [3]; and also on the tilt
direction. In particular, certain “misalignment” between the tilt and the lattice has
been argued to induce dipole (and potentially quadrupole) conservation in 2D [181].
Moreover, it would also be interesting to understand the transient regime where the
microscopically dipole-moment, approximately conserved for sufficiently strong tilts,
becomes only “macroscopically” conserved at long distances.
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7.3. Part Ill: Modulated symmetries in 2D

Summary. In Part III we extended the family of spatially-modulated symmetries, which
includes multipole-moment and subsystem symmetries as particular examples. Appearing
as solutions of discrete recurrence relations, we uncovered new instances that in one-
dimension included (quasi)-periodic modulations of a local density, exponentially localized
symmetries at the boundary of the system and combinations thereof. In higher dimensions,
the number of such symmetries can scale with the linear system size and be combined to
give rise to much richer structure. We showed that these can take the form of lines and
surfaces of conserved momenta, extending quasi-periodic symmetries from one to higher
dimensions; or lead to infinitely many charges localized at the boundaries of the system.
In particular, we could exactly obtain the latter by phrasing the problem in terms of
discrete harmonic functions. These novel conserved quantities provide long-lived modes
that govern the late-time dynamics of certain observables. In particular, we developed
a hydrodynamic theory to predict the late-time dynamics of spin-spin correlations. For
charge and multipole-moment conservation, this led to a generalized diffusion equation
where charge is sub-diffusively transported while preserving its higher-moments. Instead,
in the absence of charge conservation or in the presence of finite momentum modes, we
obtained exotic forms of sub-diffusive behavior whose scaling is controlled by the particular
geometry of conserved modes in the Brillouin zone, and a rich spatial structure influenced
by lattice-scale features. On the other hand, symmetries localized at the boundary gave
rise to finite boundary correlations, which instead vanished in the bulk of the system. As
in Part I, we found that in the presence of an additional anti-commuting symmetry, the
quantum many-body spectrum is at least two-fold degenerate, hence providing a novel
approach to construct SZM beyond one dimension.

Outlook. The relative novelty of the new classes of spatially-modulated symmetries pre-
sented in this thesis, leads to many open questions. In this context, the most pressing one
is to understand the level of fine-tuning of the models we discussed. For example, what
minimal mathematical structure we need to impose to realize such symmetries, or whether
to which extend and circumstances they can be approximately conserved to observe sim-
ilar phenomena. In the following, we provide some other future directions that naturally
emerge as a result of this thesis.

e Strong zero modes. In this thesis we discussed two different generalizations of
SZM, which in short are approximately conserved quantities which are localized at
the edges of the system [184, 186]. The first appeared as the boundary SLIOMs
in systems with strong fragmentation (Chapter 3), which pretty much fell under
the existing definition of SZM appearing in Ref. [184, 185], except from the fact
these are exact and are only exponentially localized with respect to the Frobenius
norm. The second appeared as particular instances of spatially-modulated symme-
tries in one (Chapter 5) and higher spatial dimensions (Chapter 6). Moreover, unlike
standard SZM, we already noticed that such conserved quantities have an extensive
spectrum, and are exactly conserved for all system sizes. Hence, while both lead to
finite boundary correlations and an at least, two fold degeneracy of the many-body
spectrum, it is not clear these can be considered the same beast. Reconciling these
apparently similar manifestations by revisiting the existent definition of SZM would
be a fruitful path to deepen our understanding of strongly interacting systems.

e Hydrodynamic theory. In Chapters 5 and 6, we provided a general protocol
to predict the late-time decay of spin auto-correlations. We referred to this as
hydrodynamic description, since it was inspired by linear hydrodynamics, i.e., we
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assumed a close linear equation relating the time derivative of the correlation function
with itself. However, as we also discussed, a proper hydrodynamic formulation of
the theory should have dealt with the relevant long-wave length degrees of freedom
associated to the (potentially infinite) many conserved modes [98, 101]. This would
allow us not only to probe the system, but have a complete understanding of the
underlying physics, including the coupling between different hydrodynamic modes,
possible instabilities of the resulting hydrodynamic theory [293], and perhaps to
realize systems that approximately rather than exactly have the same conserved
modes.

e Bose surfaces. We focus on the role of spatially-modulated symmetries at infinite
temperature, averaging over all compatible configurations. However, such symme-
tries could play even a greater role at low-temperatures. The intricate shapes of
conserved momenta that we found in Chapter 6 reminds of the Bose (and Fermi)
surfaces studied before in the literature [294-298], which even not being exactly
conserved, appear to give a robust phase of matter at low-temperature. Moreover,
the proper effective field theory derivation of these models is a topic of current re-
search [299, 300], which is expected to deepen our understanding of quantum field
theory as well as its potential limitations. On the other hand, models with sym-
metries localized at the boundary of the system reminds of topological phases of
matter where gapless modes circulate along the boundaries in two and higher spa-
tial dimensions. In the line of Ref. [334], which managed to relate certain higher
order topological insulators and fracton systems, it is still an open question to un-
derstand the precise relation between those topological orders and the systems with
localized boundary symmetries we introduced in this thesis.

¢ Experimental realization. We started this thesis noticing that dipole-conservation
was a rather unconventional symmetry, which we would not have expected to find in
Nature. However, in Chapter 4 we found out that these become useful to describe
systems in the presence of a strong tilted field [3, 113, 181, 251, 260]. With a similar
spirit, I wonder whether other spatially-modulated symmetries, a priori unconven-
tional, could become pertinent to understand the physics of other experimentally
relevant regimes. This appears to be the case for 1D systems with quasi-periodic
symmetries of the general form A" j cos(kj + p)n; for any (detuning) strength A
and phase off-set ¢. Such quasi-periodic local potentials can be experimentally re-
alized in ultracold atoms, allowing for a high level of tunability of the parameters
k, A and ¢ [37, 319]. Therefore, analogous to the discussion in Chapter 4 and in
the presence of interactions, the strong detuning regime can be approximately de-
scribed by a system with modulated symmetries !. In fact, these systems have been
already experimentally studied [37, 319] in the context of MBL. In the absence of
interactions, this is known as Aubry-André model [336] and it has been shown to
give rise to a localized-to-delocalized phase transition as a function of A [336-338].
Similarly, it is believed that when interactions are present, the system becomes lo-
calized for sufficiently strong detuning [37, 319, 339-341]. However, our previous
derivation appears to suggest that one can find certain resonant processes that even-
tually can delocalize the system. A more careful analysis is still required to answer
this question.

e The notion of symmetry. In Chapter 5 and Chapter 6, we introduced a way to
construct novel microscopic models with spatially-modulated symmetries. However,

!Notice, that the resulting effective Hamiltonians will also have particle number conservation. Never-
theless, one can avoid this circumstance starting from e.g., the transverse field Ising model [335].
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these were restricted to appear as solutions of linear recurrence relations, and thus
as linear combinations of powers of algebraic numbers. Essentially, these gave rise
to two main classes of modulations: hyperbolic and sinusoidal. For example, this
derivation cannot capture spatial modulations of the form a; = 7/ or a; = log(j).
The ultimate question we would like to address is: What are the possible symme-
tries a system can have? It is clear that answering this question requires imposing
meaningful physical limitations. For example, we should require the system to lead
to non-trivial dynamics as otherwise, such system would trivially conserve any quan-
tity. E.g., can a given symmetry sector for the quantity > ; 7l S7 being non-trivial?
Locality also appears to be relevant in the discussion. Answering this question is an
endeavor worth to follow.

Many interesting ideas are still waiting to be explored. This thesis represents a step
forward in this direction.
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A. Additional results for dipole-conserving
chains

In this appendix we gather additional numerical evidence which support the results pre-
sented in Chapter 2. We start by numerically identifying the largest symmetry sector
((g,p) =~ (0,0) with (g, p) = (0,0) for particular system sizes) in Section A.1 and showing
the distributions of fragments sizes and operators weights when restricted to it. We then
provide additional numerical results for the finite-size scaling of spin auto-correlations, as
well as for the scaling of frozen states, the Mazur bound and the dimension of the largest
fragment within the symmetry sector (g,p) = (0,0) (Section A.2). Finally, we provide in
Section A.3 numerical results for the operator spreading of a local charge density opera-
tor S§(t), which gives another measure of localization. This contributes to showing the
distinction between the strongly- and weakly-fragmented cases.

x 103

50 —25 0 25 50
dipole moment p

Figure A.1.: Distribution of dimensions D, for the H, ) invariant subspaces. Each
curve corresponds to a subspace with fixed charge q.
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Figure A.2.: (a) Distribution of sector sizes D with H; C H ) for the Hamiltonian Hj.
(b) operator weight distribution Wp. Both plots are similar to the full dis-
tributions shown in the main text. The vertical dashed lines in (b) indicates
the average sector size, which grows exponentially in system size, but is nev-
ertheless exponentially smaller than the largest sector.
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A.1. Largest charge and dipole symmetry sector
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Figure A.3.: Finite size scaling for the auto-correlation function (S§(¢)S§) at infinite tem-
perature in the full Hilbert space after substracting the thermal value. Panel
(a) shows a finite value for the auto-correlation under the evolution of Hj
in Eq. (2.1). The dashed lines show the lower bound in Eq. (A.1). (b) The
auto-correlation function decays to zero with system size once the longer
range-interaction Hy in Eq. (2.2) is added to Hs.
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Figure A.4.: (a) Auto-correlation function (upper panel) (S5(t)S55) o) in the symmetry
sector ¢ = p = 0 at infinite temperature for H3 (red curve) and Hz+ Hy (blue

curve) for N = 15. Spatially resolved correlation functions for (b) Hs and
(C)H 3+ Hy.

While analytical formulae for the size of a symmetry sector with a given total charge
g can be obtained for a given spin representation S in terms of binomial coefficients, the
counting becomes quite cumbersome when restricted to a given global dipole moment p.
This counting can be re-formulated as the number of possible restricted compositions (i.e.,
partitions of a number where the order of the summands matters) of length N where each
summand can only take 2541 values, for which I am not aware of an analytical expression.
Instead, we numerically obtain these counting for several system sizes. Fig. A.1(b) shows
the size of the symmetry sectors with different global quantum numbers ¢ and p for spin
representation S = 1 and system size N = 13. Note that this distribution is independent
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Figure A.5.: Evolution of the auto-correlation function (S§ (t)‘%)(o,o) for the Hamiltonian

Hj and system size N = 13, where longer time scales ¢ ~ 10'° can be numer-
ically reached. We observe the same qualitative behavior as in Fig. 2.1.

of the specific Hamiltonian under study. Each curve corresponds to a fixed value of the
charge quantum number g. The dimension D(, ;) decreases with increasing absolute value
of the charge. The distributions for +¢q and —g coincide due to time reversal invariance,
the way we have chosen the reference site ng, and labeling the sites in the chain. A different
labeling of sites, would simply shift the mean value of both distributions symmetrically
with respect p = 0. We also observe that the distribution attains a maximum at the
(0,0)-sector, as claimed in the main text. In addition, we obtain symmetric distributions
because P changes sign under inversion, while @) is invariant.
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Figure A.6.: Scaling within the ¢ = p = 0 sector for Hamiltonian Hs. (a) Scaling of the
lower bound limy_,o 1/T fOT dt (S5(t)55(0)) 9,0y With system size. (b) Scaling
of the number of frozen states. (c) Scaling of the largest sector dimension
(blue dots) in comparison to the dimension of the (0,0) sector (green line).

Finally, we show the sector size and the operator weight distributions with Wp =

Y Di=D tr(Zf)/(ZD >.D.—D tr(Zf)) for invariant subspaces within the largest (q,p)-
sector, i.e., ¢ = p = 0. Fig. A.2(a) shows qualitatively the same sector size distribution
as in Fig. 2.3(c) in the full Hilbert space. Fig. A.2(b) also reflects the main properties of
the operator weight distribution, featuring a wide distribution with significant weight on
small sectors.
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A.2. Finite-size scaling of the autocorrelator
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Figure A.7.: Operator spreading of S§(t) for random circuits with gate sizes [ = 3 and
4. Panels (a) and (d) show the circuit geometries, slightly modified from the
ones in the main text in order to ease numerical calculations. (b) and (e)
show the profile of right endpoint weights pr(n,t) at different times for a
10-site chain, for £ = 3 and ¢ = 4 respectively. Both have a peak near the
origin, but in the former case it is much larger and stops decaying after a few
time steps, while in the latter case it keeps decaying to longer times. Finite
size flow of the size of the peaks as a function of time, shown in (c¢) and (f)
indicates that while for £ = 3 the system saturates to a finite value, this is not
the case for ¢ = 4, where the long-time value scales to zero for large system
sizes.
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Figure A.8.: Height of the peak in pr of S§(t) obtained for Hamiltonians Hs (left) and
Hs + Hfl (right).

A.2. Finite-size scaling of the autocorrelator

In this section we present in more detail the finite size scaling of the auto-correlation
function and its lower bound.

First, we discuss the scaling of the auto-correlation function (S§(t)S§) at infinite tem-
perature in the full Hilbert space in Fig. A.3 for both the minimal model Hs in Eq. (2.1)
and the combined Hamiltonian H3 + H4. On the one hand, the minimal model realizes a
finite saturation value at long times which slightly grows with system size as can be seen
in Fig. A.3(a). On the other hand, when the combined Hamiltonian Hs+ H, is considered,
the auto-correlation decays to zero with system size. This agrees with the discussion in the
main text, where it was argued that for longer range Hamiltonians, the system thermalizes
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and the correlation decays to zero at long times in the thermodynamic limit.

Moreover, as we discussed in the main text, not only the auto-correlation function in the
full Hilbert space shows a non-thermal (thermal) behavior for Hs (H3 + H4). We can also
realize this behavior within a specific restricted symmetry sector. In Figs. A.4(a) we show
the behavior of the auto-correlation function (5§ (¢)S5) o) in the largest (¢, p)-symmetry
sector, ¢ = p = 0, and size N = 15 showing the same qualitative behavior: a finite
saturation value at long times for H3 (panel (a)) and thermalization for the combined
Hamiltonian Hs+ Hy (panel (b)). Note that since charge is conserved and we evaluate the
correlation within the ¢ = 0 sector, Y, (SZ(¢)S5(0)) = 0 at all times and thus the surface
under the peak must add up to zero.

Moreover, in Fig. A.5, we show the persistence of the non-thermalizing behavior for
Hj at longer times t = 10'Y for smaller system size N = 13 and within the (0, 0)-sector.
The space resolved correlation function is also shown in the inset showing the absence of
thermalization even at long time scales.

In Fig. A.6(a) we show the scaling of the lower bound C§(o0) in Eq. (2.5) with system
size N restricted to the (0,0) symmetry sector of Hs. In this case the lower bound takes
the form

1 /7 1
lim L / dt (S5 (0S50 00 > =—
e T 0= Dooy .57,

L (2))2 (A1)

We observe that the value increases with IV and realize an even-odd dependence on
N decreasing with system size. In addition, Figs. A.6(b-c) show, respectively, how the
number of frozen states and the size of the largest invariant subspace within the (0,0)
symmetry sector grow with system size. Since the largest sector does not scale with the
size of the entire Hilbert space, the lower dimensional sectors become thermodynamically
important. Compare for example with a spin 1/2 chain with charge conservation only.
The dimension of the full Hilbert space is 2"V and the largest (zero charge) subspace scales
as \/1/N -2V hence, the exponents are the same up to logarithmic corrections.

A.3. Operator spreading of Sj(?)

Here we consider another measure of localization, that contains complementary informa-
tion about the Heisenberg picture evolution of the charge density operator S§(¢) compared
to its auto-correlation function. In particular we look at how S§ spreads out in the space
of all possible operators, becoming a complicated superposition of many operators, and
how its spatial support grows in time.

In order to do this, we first need to introduce a local basis in the space of operators
acting on a single site of the spin chain. For the spin-1 models we consider, such a
basis constists of 9 linearly independent operators that span the entire space of on-site
operators. A possible choice is given by the 8 Gell-Mann matrices, together with the
identity 1. Let us denote these as A% for a =0, ..., 8, where A\’ = 1. A basis of operators
on the entire chain is then given by products of such local basis elements of the form
A? = ®£L\Z 2, N2 Adn . labeled by a list of N indices {a,}. These operator strings form an
orthonormal basis in the Hilbert space of operators with respect to the Frobenius inner
product (A, B) = tr(A'B)/3" where A and B are two arbitrary operators, and T is the
adjoint operation.

Given such a basis, one can always expand the time evolved operator as

S5(t) =) ca(t)A. (A.2)

158



A.3. Operator spreading of S§(t)

The coefficients ca(t) characterize how S§(t) spreads out in the space of all possible oper-
ators. In particular, focusing on spatial spreading, it is useful to classify the basis strings
A2 according to their right endpoints (assuming open boundary conditions), i.e., the right-
most site n such that A% # 1 but A%»>» = 1. Denoting this site by RHS(a) we can define
the right endpoint density of S§ at time ¢ as [342-344]

prn )= Y el (A.3)

RHS(a)=n

At time ¢ = 0 this is a delta function at the initial position of the operator, pg(n,0) = dno.
During time evolution, as the support of S§(t) increases, pr(n,t) moves to the right,
ballistically for generic clean systems. At the same time, its value near the origin decays
to zero, exponentially when symmetries are not present [343], and as a power law when
the operator is a conserved density [107, 345]. A possible alternative measure of localized
behavior is therefore to look at the spreading of the right endpoint density and look for a
finite weight remaining near the origin at infinite times, even in the thermodynamic limit.

We first consider the evolution of pg(t) in random circuits, first with 3- and then with
4-site gates. In order to evaluate pgr(n,t) we represent S§(t) as a matrix product op-
erator [346] (MPO) and apply the random gates to that to evolve it in time. In order
to simplify the calculations, we consider slightly modified circuit geometries (shown in
Fig. A.7(a),(d)), which allow us to use the well known time-evolving block decimation
(TEBD) algorithm, after blocking pairs of sites together [268].

Our numerics only allow us to access small systems of size N = 6,8,10. To compute
the spreading of pr(n,t), we place an operator S* on the third site from the left end of
the system and calculate pr(n,t) at different positions and times. For a circuit made out
of 3-site gates, we find a persistent peak near the original position, whose size decays only
slightly with system size (Fig. A.7(a)-(c)). For the circuit with gate-size £ = 4 on the other
hand, we observe a much smaller peak, which keeps decreasing until finite size effects kick
in, similar to the behavior observed for the autocorrelator in the main text, and consistent
with the prediction that in the thermodynamic limit the peak would eventually disappear
(Fig. A.7(d)-(f)). We also observe a larger peak at the rightmost site, where most of the
operator weight accumulates at long times.

The same difference in behavior between 3-site and 4-site interactions is also present in
the Hamiltonian case. For Hs we find that the peak in pg(0,t) is almost independent of
system size, in agreement with the non-ergodic behavior observed in the autocorrelator in
the main text. This is shown in the left panel of Fig. A.8. This behavior changes, however,
once we add 4-site terms to the Hamiltonian. In particular we consider the perturbation

Hy= = 3 S5 Smi18ms0Sis + He . (A4)
ne2Z

This is the same as in Eq. (2.2), except that only terms with even n are present. This is
done in order to simplify numerical calculations (making the Hamiltonian nearest neighbor
after blocking pairs of neighboring sites together). We expect that if Hs + H) does not
exhibit a presistent peak in pg, then neither should Hs + Hy, therefore it is enough to
show its absence in the former case. This is indeed what we find as shown in the right
panel of Fig. A.8
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B. More in-depth look into SLIOMs

In this appendix we gather various results, that while we omitted in Chapter 3, contribute
to a deeper understanding of the SLIOMs and their effect on the dynamics. In Section B.1,
we refine our definition of SLIOMs and discuss the construction of related conserved
quantities even for periodic boundary conditions. We then provide several formulae for
the computation of Haar random averages in Section B.2, and include the computation of
the average filling fraction of defects and of the uncertainties for the distributions discussed
in Section 3.1.2. The rest of the sections gather additional numerical results concerning;:
the width of the distribution of diagonal matrix elements S7 /251% /241 (Section B.3), a
lower bound of spatial correlations for the ¢ — J, model with open boundaries using the
Mazur bound (Section B.4), the scaling of these quantities for periodic boundary conditions
(Section B.5), and finally the scaling of the saturation value of the half-chain entanglement
entropy at long times (Section B.6). In this appendix we use L to refer to the size of the
system.

B.1. A more refined definition of SLIOMs

While in Sec. 3.1.2 we gave a definition of SLIOMs, sufficient for the ¢ — .J, Hamiltonian,
it is worthwhile to elaborate further on the structure of the SLIOMs we encountered in
this work and how precisely localization appears for them.

In the case discussed in Sec. 3.1.2, a very useful property was that the terms appearing in

the definitions of the SLIOMs g squared to projectors OfTOf = 7521“ (using the convention
in Eq. (3.2)). These projectors were then used to define the spatial distribution over i that
we analyzed in the main text. However, one could consider a slightly more general version
of the ¢ — J, model, where the fermions carry a higher spin, S > 1/2. In that case, (S7)?
is no longer equal to the projector n;, and the interpretation becomes less clear.

In this more general case, we can still use the definition of §; introduced in the main

text:

dr =Y PFS;. (B.1)

Note that the conserved quantity splits up into a projector (7511“ ) onto certain configurations
and an associated ‘charge’ (S7), and that in our discussion of the statistical localization
it was in fact only the projector part that played a role. Note that this is analogous to
the structure we observed for the local dipole moments defined for the Hamiltonian Hg in
Eq. (3.22), i.e., a sum of projectors multiplied by an associated ‘charge’ (in that case, the
dipole moment between two subsequent defects). In both cases, the statistical localization
is a property of the projectors, rather than the charges.

This suggests the following general definition of SLIOMs that encompasses all the cases
encountered in our manuscript:

qg= Z Qirin.in Cirig. i, (B.2)

11,02,--in

Here, Q;,i,..i, is a projection onto configurations where the sites i1, ...,%, are occupied
by a particular combination of particles, while Cj,;,. i, is some charge (in the cases we
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Figure B.1.:

More in-depth look into SLIOMs

Position 7 — j

Time averaged correlations vs. their conjectured values. The dots
(connected by narrow dashed lines) show the long-time average (averaged
between times ¢ = 50 and ¢ = 100) of the correlator (S7(¢)S7)s=o, while
the solid lines represent Cjj(00), defined by the formula (B.13). This is a
lower bound near the origin, but becomes smaller then the numerical value
in the tails (i.e., the observed distribution is actually narrower than the pre-
diction). However, the two curves approach each other as system size is
increased. This is shown by the inset, where the blue dotted curve represents

2
> [% 51000 dt(S3(t)S7) =0 — Cij(oo)] as a function of L, approximately de-
creasing as 1/L (red dashed line).
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Figure B.2.:
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Energy density E/L

Thermalization in the t — J, model with closed boundaries Left: ex-
pectation values of nearest neighbor antiferromagnetic correlations in eigen-
states for Np = L/2, Si, = 0 for different system sizes. The distribution
has a width that does not decrease with system size. Right: time average
(between times 50 and 100) of the spatially resolved spin-spin correlations at
infinite temperature. While there is a small peak around the origin remain-
ing for the available system sizes, the correlations mostly spread out over the
whole chain and take values o< 1/L, unlike the case of an open chain shown
in Fig. 3.3(c).
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consider, usually an integer) associated to this configuration. One can then consider the
distribution of the expectation value (in some appropriately chosen ensemble of typical
states) (Qiiy..,). This is now a distribution on [1, L]" (where we have assumed a 1D
system) and one can examine how it is localized on this potentially larger dimensional
space.

The t — J, model with arbitrary spin corresponds (for a given fermion indexed by k) to
the choice n =1, 0, = 7521‘3 and C; = S7. The sign of a defect in H3 again corresponds to
taking n = 1, but now with 9 a projector onto having the k-th defect on site ¢ and again
C; = S? (in the original spin-1 language). Both of these cases are partially localized, to
regions of size O(v/L), in the single coordinate 3. The localized dipole moments, on the
other hand, correspond to n = 2, with Qij projecting onto configurations with a pair of
defects on sites 4, j with no other defect in-between. The expectation value (QU) in this
case is exponentially localized in the relative coordinate j — i as discussed in the main
text. The associated charge is now the dipole moment C;; = P;; = Ei;zl 0S;3.

This general definition also allows us to talk about conserved quantities for the ¢t — J,
model with periodic boundaries (see also App. B.5), even though in this case they are no
longer localized. With periodic boundaries, we no longer have a way of labeling fermions
individually (e.g. the first fermion can become the last by travelling around the boundary).
Nevertheless, we still have a conservation of the total spin pattern and could use the general
form (B.2) with n = Np to define conserved quantities accociated to this. Let us take
Qi1.-.iNF to be the projector onto states where the N fermions occupy the sites i,...,in,
and let o be a cyclic permutation of the indices i1, 42, ...,in,. Then the following choices
all correspond to conserved quantities:

11 ANp Z o(i1)
z z
11 ’LN § :SO' (31) SO’ (i2)

(3 z z 4
Ch ANg Z SU (i1) SU(ZQ)SU(ZS)

(NF) z z z z
Czl ITLN ZSO' (41) SU(ZQ)SU(Z3)"'SO'(iNF)'

CW is just the total magnetization Si+ .+ 55 - C® measures the AFM ordering
of the spins in squeezed space, etc. Note that they gre not all independent, for example
CWNF) | which measures the overall spin parity, is completely determined by C(1).

Nevertheless, while one can write conserved quantities for the periodic case, they are
qualitatively very different from the SLIOMs of the open chain. The main difference is
that in this case, with periodic boundaries, the conserved quantities do not factorize into
products of 1-particle charges (SLIOMs with n = 1). Instead, for a typical state, they
involve a sum over all extensively many particles, and thus any notion of localization is
lost.
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Figure B.3.: Distribution of <Si /2‘92 /2 +1> uniformly sampled after fixing a random spin

pattern. This numerical simulation was performed by Johannes Feldmeier.

B.2. Averaging over ensembles of random states

Here we briefly summarize the relevant formulae for averaging over both Haar random
states, as well as random states restricted to a fixed U(1) symmetry sector.

B.2.1. Haar average and variance

A Haar random state [¢)) can be written as [¢p) = U|0) = >, Uaolc), where U is a
unitary matrix chosen from the Haar ensemble and |0) is an arbitrary basis element from
a complete orthonormal basis {|a)}. The average of an an observable O is then

A . tr(O
Bt ($1016)] = 3 OusBitane UoUpo] = 0 (B.3)
a7/6
where D is the Hilbert space dimension and we have used the fact that
* 5a6
EHaar[UaoUﬁO] = F (B.4)

To get the variance over the Haar distribution, we are going to need to average over
higher moments of the unitary U. In particular we have to evaluate

EHaar[<¢|O|¢>2] = Z OaﬂOWEHaar[UéoUﬂOUJOUI/O]7 (B.5)
afuv
which is given by the formula

dap0uw + dardpy

EHaar[USOUﬁOUSOUI/O] = D(D n 1) (B.G)
Using this, one find that the variance is
1 {20 ()
EHaar[<¢‘O|¢>2] - EHaar[<¢’O‘w>]2 = D + 1 D - ( D ) . (B7)
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Figure B.4.: Scaling of the saturation value of the entanglement entropy with
system size. We show the ratio of the saturation value of the entanglement
entropy S(oco) and the Page value Spyge = In(3)L/2 — 1/2, for for H3 (red
circles), Hs + Hy (blue stars) and H;_ ;. (green squares).

The particular cases we considered in the main text correspond to projection operators,
0O? = O. In this case, defining the probability p = tr(O)/D we get

Ettane[(¢1010)?] — Eraar[(¥|0]))2 = Z—L (B.8)

which is suppressed by a factor of D compared to p itself.

B.2.2. Fixed U(1) symmetry sectors

In order to consider random states with a fixed eigenvalue under some U(1) symmetry,
we should to consider a unitary U that commutes with the symmetry operator. That is,
we take U to be block diagonal in the symmetry basis, with each block an independent
Haar random unitary. In this case, we can average over the block separately. Denoting
the U(1) quantum numbers by N, we then get a generalization of the previous formula,

p) p(V)

By [UzaUss] = D —5 2, (B.9)
N

where P(N) is a projector onto the symmetry sector with N, and Dy = tr(PW)) is the
corresponding dimension.

The ensemble of random states is defined by |¢) = U|0) where the basis state |0) is
chosen to have a fixed quantum number N. This picks out a single projector from the
above sum to give
tr(OPW))

e (B.10)

Eym[(¥|0¥)] =

In the cases we consider, O and PY) are both diagonal projectors in the same local product
basis. tr(OP(N )} is therefore simply given by counting the number of configurations that
are in the intersection, satisfying both O=1and PWV) =1.

In an analogous manner, one could calculate variances over this ensemble. The result is
the same as for the Haar random case, but with D — Dy and the § functions in Eq. (B.6)
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replaced by matrix elements of PXY). Consequently, the variance becomes

; HOPMOPM™Y (0P
EU(l)[<¢|O|¢’>] EHaarKMOW)] 1 e or )_<t . ))

Dy +1 Dy Dy
(B.11)

As mentioned above, we are interested in cases where O and P are both projectors,
diagonal in the same basis. Therefore OP®) is also a projector, oOPMOpWN) = OpWN),
and the variance is now suppressed by a factor of Dy + 1, still exponentially large in
system size for typical symmetry sectors.

B.2.3. Computation of the average number of defects

As an application, in this section we compute the average filling fraction of defects (vg).
To do so, let us compute EHaar[<1/1]Nd|w>] appearing in Eq. (3.21). Using Eq. (B.3) we
find that

L tr| (Grga) (1 + Grd
Ertaae (41N} = £ 3 (@) (SL deivs)| (B.12)

k=1

Now we split the computation in two steps. First, let us compute each of the terms
individually:

1 . 9 1 A A
et (@e)’] = o7 e[ PEAI S SE| = Zt PE(s2)] = Z PHaan (i3 k + 1),
(2%]
where we have used that for ¢ < j the trace vanishes due to tr(Sj ) = 0 and ppaay is defined
in Eq. (3.7). Now, combining this with the fact tha 75;“75? 1 =0, the second term vanishes:

3%“ 41 (ds0)’] = 3i S wr[PEPEs7s7] = 3i >t |PERE(57)%] =0
i, i

Thus, for a Haar random state with filling fraction v = 2/3, and using the fact that
> i PHaar(4; k + 1) = v, we obtain that the typical filling fraction of defects is

1

<Vd> = ZEHaar[< ‘NdWJ> 2L Zszaar Z k + ;;Z; = %

Intuitively, this comes from the fact that any given charge has equal probability of having
the same vs. opposite sign as the nearest charge on the left, making the probability of
finding a defect on a particular site v/2 = 1/3.

B.3. Finite-size scaling of Fig. 3.4

We show numerical evidence that the width of the distribution in Fig. 3.4 scales with
system size as L~/ for sufficiently large system sizes. To do so, we assume that the
fragment associated to any spin pattern configuration is ergodic, and approximate energy
eigenstates (in the middle of the spectrum) by an equal weight superposition of all possible
hole positions with a given spin pattern. One can then use Monte-Carlo techniques to

sample the expectation value ( S} /ZS L2 +1> evaluated on these eigenstates. This results

in a probability distribution for <S I /QS L2 +1> as shown in Fig. B.3 for different system

sizes. The inset shows evidence that the width scales as L™/, due to the scaling-collapse

of the distribution for L1/4 <Si/25’z/2+1> with system size.
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B.4. Spatially resolved autocorrelations at long times

As noted in the main text (see Eq. (3.10)), Mazur’s inequality provides a strict lower bound
on autocorrelations (S7(¢)S7) in terms of the conserved quantities of the system. However,
to understand the spatial spreading of spin density S7, it is also interesting to consider
correlations between different sites of the form (S7(¢)S7), for which the same lower bound
does not exist. Here we provide a conjecture for the long-time average of these correlations
in the thermodynamic limit of the ¢ — J, model and show some supporting numerics.
While one cannot lower bound the correlations between different sites in the same way
as autocorrelators, one could in principle calculate their time average if one had access to
a complete orthogonal set of 3% conserved quantities (a basis of all operators diagonal in

3L

o_4, one can prove [170] that

the eigenbasis of H;_;, ). Given such an orthogonal set {fa}
the time average becomes

S#1,)p=0(S71,) p=
lim ;/dt (S5 05750 = 3 >,aj20< )s=0. B3

T—oo a < a>ﬁ:0

The formula (B.13) requires knowledge of exponentially many conserved quantities,
which is much more than the information contained in only the SLIOMs §;, defined in
Eq. (3.6). Our conjecture is that in the limit L — oo the correct time average is given
by restricting the sum on the right hand side to the set {gx}, ignoring other conserved
quantities, i.e.

3 (S%dk) p=0(SF Gk) s=0
k (47) =0

= Cy5(00). (B.14)

Indeed, this conjecture is supported by the observation that the quantities Cj;(oc0) are all
positive and they sum up to the correct value, 3 Cjj(00) = 2/3 = (55 (t)S7)s=0. This
means that the contribution coming from all remaining terms (fa # Gx) in the sum (B.13)
have to be such that their sum over i vanishes. Our conjecture amounts to saying that
they in fact all individually vanish in the thermodynamic limit.

This conjecture is supported by our small scale numerics, which show that the difference
between the two distributions decreases with L. In particular, we can define the mean
square distance of the two,

2

2 [jlv/dt<55(t)5§>ﬂo — Cij(o0)| (B.15)

i

We find (see in particular the inset of Fig. B.1) that this quantity decreases with system
size, approximately as 1/L. Note that the distribution Cj;j(co) has a width o V'L, such
that our conjecture implies that for a finite open chain the charge remains trapped in a
region much smaller than the entire system as discussed also in the main text.

B.5. t — J. model with closed boundaries

Our discussion of the t—J, model in the main text focused on a chain with open boundaries.
This allowed us to label fermions by an integer k, starting from one of the endpoints,
leading to the definition of SLIOMs in Eq. (3.6). Here we detail how the situtation
changes when periodic boundary conditions are taken.

In the periodic case, the conserved spin pattern is only well defined modulo cyclic trans-
lations around the chain, allowing for additional matrix elements between certain sectors
that are disconnected for the open chain. Nevertheless, this only reduces the number of
disconnected sectors by at most a factor of 1/L, such that there are still exponentially
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many invariant subspaces and the dimension of the largest one still scales asymptotically
as ~ 2. The Hilbert space is therefore still strongly fragmented and should therefore
violate ETH. Indeed, repeating the same calculation as in Fig. 3.4(b) for the closed chain,
we again find a wide distribution of diagonal matrix elements of S7 /QSE J2=1" This is
shown in Fig. B.2(a). Approximating eigenstates by an equal weight superposition of hole
positions in this case suggests that the width of the distribution asymptotically decreases
with system size as L~/2 in the thermodynamic limit (recall, that for open chains the
narrowing was slower, ~ L~/ 4.

The difference between open and closed boundaries becomes even more explicit when
we consider the conserved quantities that label the disconnected sectors. In particular, the
SLIOMs defined in Eq. (3.6) are no longer conserved, since fermions can now circle around
the boundaries. Indeed, while the whole of the spin pattern is still conserved, talking
about the spin of individual fermions is no longer meaningful and consequently, the spatial
localization associated to the conserved quantities breaks down. This explains the different
asymptotic scaling in the width of the distribution of diagonal matrix elements. It also
shows up when considering the late-time behavior of correlations of the form (S%(t)S7) s=o-
Unlike the case with open boundaries, where these spread out only over a region of size
V'L (see Fig. 3.3(c)), for a closed chain the spread out over the entire chain, saturation to
a value of O(1/L). This is shown in Fig. B.2(b).

Note that for the Hamiltonian Hs in Eq. (3.16) the situation is quite different. While
labeling individual defects also loses meaning with periodic boundaries, the regions sur-
rounded by neighboring defects are still well defined and have the same O(1) size as with
open boundaries. This is consistent with the localized behavior (i.e., infinitely long-lived
autocorrelations) in the bulk, discussed in Sec. 3.2.2.

B.6. Saturation value of the entanglement entropy

In this appendix we compare the scaling of the saturation value of the entanglement
entropy (S(co0)) with initial (Haar) random product states (not in the z basis), for the
models studied in the main text. For completeness, we also show the scaling for the
dipole-conserving Hamiltonian Hs + H4 with

Hy= =3 |58 SmaSis + Hel, (B.16)

n

which is only weakly fragmented and saturates close to the Page value [118], Spage =
In(3)L/2 —1/2, up to a constant offset.

In Fig. B.4, we show the scaling of S(co) with system size for H3 (red circles), Hs +
H, (blue stars) and H;_j, (green squares). The scaling (for the small system sizes the
simulations were performed) suggests that for the ¢t — J, model S(oco) will approach Spage
in the thermodynamic limit, while it remains only a fraction of it for Hs.
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C. Effective description in the strong
interacting limit

In this short appendix we obtain the effective Hamiltonian in the limit |U| > J, A with
||U| — nA| # 0 for any n € N to avoid possible resonances [347]. In this limit, the number
of doublons Ngoup, is effectively conserved up to times that scale exponentially in the
interaction strength U [235, 255]. Dealing with initial singlon configurations, we have
Ngoub = 0 and assume a negligible fraction of dynamically-generated doublons after the
quench. In this limit, the effective Hamiltonian provides non-trivial dynamics at first order
in perturbation theory

1% =— 73 [~ fug)el jeir1o(l — fip1s) + huc.]
1,0
+AY i, (C.1)
1,0

Note that the dynamics generated by this Hamiltonian conserves the configuration of
spins [{o1,...,0n}), with o; = {1,]} and the total particle number N. The last term
in Eq. (C.1) equally couples to both spin degrees of freedom and the many-body states
expressed in the particle-number basis factorize in terms of N free Wannier-Stark localized

spinless fermions with many-body wave function |{i1,...,in}), withi; € {—%, SR § R %
and fixed spin configuration [{o1,...,0n}) [196]. As a result the effective Hamiltonian
[Eq. (C.1)] takes the form
A% = -7 (elem +he) + A iy (C.2)
i i

This has to be compared with the non-interacting Hamiltonian in Eq. (4.1) for N =
N3 + Ny spinful fermions, which for a one-body observable like the imbalance gives ex-
actly the same result. Higher-order terms at finite U do not conserve the spin configura-
tion [{o1,...,0n}). The leading terms in second-order perturbation are spin-exchange and
longer-range hopping terms, as well as nearest-neighbors interactions —2.J2 /U ZZ o NioNitl5,
which lead to an interaction-induced decay of the imbalance to lower values compared to
the non-interacting case at sufficiently long times (t ~ U/J?).

The experimental setup has a weak spin-dependent tilt (A} — Ay &~ 0.3J < J), hence,
the previous discussion provides a good approximation for sufficiently strong U. Only
in the limit A} — Ay > J, the effective Hamiltonian in Eq. (C.1) does not map onto
spinless fermions, because it depends on the spin configuration. This implies that the
non-quadratic interaction terms, appearing in the hopping, have to be taken into account.
This corresponds to two Stark ladders with different slopes constraining the mobility
within each other.
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D. Implementation of cellular automaton
dynamics and Mazur bound

In this appendix we start by providing additional details about the numerical implemen-
tation of the cellular automaton evolution in Chapters 5 and 6, and show that Mazur’s
bound [116] can be applied to the correlation functions, as for example defined in Eq. (5.29),
of the stochastic evolution we studied (Section D.3). This relies on showing that its infinite-
time-average value is non-negative.

D.1. Details on the implementation of cellular automaton
dynamics

As discussed in the main text, at each application of a local gate we choose randomly (with
probabilities 1/3 each) between three possibilities: applying Gx, applying its inverse, or
doing nothing. In the first two cases, the update is applied only if it does not lead to a
violation of the local constraint |sy| < .S on any site, otherwise we leave the configuration
unchanged. These updates are randomly applied among those configurations for which
|sz4+i £ ni| < S, such that the corresponding transition rates between two different local
configurations s, s’ are symmetric, i.e., Ts_,y = Ty _,s. This ensures that detailed balance
is satisfied with respect to the “infinite temperature” (uniformly random) ensemble, which
is therefore a stationary state of this stochastic process. Note that this implementation
differs from that used in previous works [6, 178, 291, 292], where all local updates consistent
with symmetry requirements were allowed. Thus, certain direct transitions in the latter
implementation require multiple updates in the former.

At each time step, we randomly pick a non-overlapping complete covering of the (1D
or 2D) lattice by the gates Gx. For a model in 1D with gates acting on 2/ sites, we
pick randomly an integer m € {,...,¢ — 1} and apply all gates on sites x = m (mod /).
Similarly, in 2D with gates of size £ x £ we pick two integers m,,m, € {0,...,£ — 1} and
shift the gates accordingly. Moreover, for periodic boundary conditions we choose system
sizes that are multiple of £.

When considering periodic boundary conditions, we average not only over randomly
initial configurations but also over different lattice sites. Being the system translational in-
variant, the spin-spin correlation only depends on the relative distance, i.e. (sx,(t)sx, (0))c =
(Sx;—x5(t)s0(0))c. We do this by centering every site and computing the correlations rel-
ative to this new central site x = 0. Using this procedure, we can increase the number of
averaged measurements by the size of the volume of the system.

Finally, Tables D.1 and D.2 provide details on the choice of boundary conditions (PBC
and OBC standing for periodic and open boundary conditions respectively ) and the num-
ber of random initial configurations (Number Initial States) the data has been averaged
over.
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D.1. Details on the implementation of cellular automaton dynamics

’ Figure ‘ Label ‘ Number Initial States | Boundary Conditions

30 12550
5.6(a) 10% 3000 PBC
10° 1000
5.6(b) 5000 5000 OBC
' 10% 4000
10?
5.6(c)/(d) | 10? 2000 PBC
10*
5.8(a)/(b) | 106 1000 PBC
6.1(b)/(d) | 10° 2000 OBC
6.1(c) 10° 3000 PBC
200
6.4(c) 248 1000 PBC
300
6.4(b)/(d) | 10% 1000 PBC

Table D.1.: Boundary conditions and number of random initial states used for the data
shown in the respective figures and labels of the main text.

Number Initial
Figure Label tber A Boundary Conditions
States
Eq. (E5
BA(a) |4 (E5) 1000 PBC
Eq. (E.7)
10%
E.4(b) 1000 PBC
10°
10* 6500
5.7(a) PBC
10° 1000
10?
5.7(b) 10° 2000 PBC
10%

Table D.2.: Boundary conditions and number of random initial states used for the data
shown in the respective figures and labels of the supplement material.
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Appendix D. Implementation of cellular automaton dynamics and Mazur bound

D.2. Scaling analysis of the generalized diffusion equation

We provide a general scaling analysis demonstrating that the expansion of the multipole
current in terms of derivatives of the charge density employed in the main text, indeed
captures the relevant contributions at late times and for long wavelengths. Let us start
with the hydrodynamic equation for the coarse-grained charge density s(x,t) of a system
conserving all multipole moments Qn=m)

0
—s,) = (0™ () =

oy (D.1)

= 5;5(2,1) + D (=)™ (0,)*" Vs (. ) = 0.

Here, we have used the expansion of the multipole current given by <Q§cm)> ~ —D (0,)"s(z,1)
as discussed in the main text. The goal is to determine the relevance of taking into account
additional contributions <Q§cm)> = <Qg(cm)> (02s(x,t)") with i,j € N.

We do so following the scheme laid out in Ref. [99, 100]. While the continuity equation
for the charge is exact, the multipole current is subject to fluctuations or noise £(z,t), i.e.

<Qg(ﬁm)> — <Q§Um)> + &(x,t), such that Eq. (D.1) becomes

;5(% t) + D (—1)" T (8,) 2" s(x, 1) = (—0,)" (1), (D.2)
These fluctuations are assumed to be uncorrelated
(E(z,t) (', t)) =no(x —a")o(t — 1), (D.3)

whose amplitude (n) are tied to the correlation functions of the charge density at equi-
librium [99, 100]. Moreover, ({(z,t)) = 0 since otherwise this would yield a persistent
current. Eq.(D.2) and Eq. (D.3) define a fixed point relative to which we can investigate
the effect of other possible terms. Consider a scale transformation z — & = x/\ with
A > 1. We say that a quantity F' has a scaling dimension n if under this transforma-
tion F — FA™. Assuming that the generalized diffusion constant is scale invariant, i.e.
[D] = 0, and demanding that Eq. (D.2) is a fixed point under this rescaling, then fixes the
scaling dimensions of ¢, &, s(x,t): Firstly, we obtain [t] = —2(m + 1) from the left hand
side of Eq.(D.2). Second, Eq.(D.3) implies [{] = m + 3/2. Note that [n] = 0, as n is
fixed by D due to its relation via equilibrium fluctuations [100]. Finally, Eq. (D.2) yields
[s(z,t)] = 1/2. Given these scaling dimensions, we can assess whether additional terms

(

included in the expansion of <me)>, are relevant (positive scaling dimension), irrelevant
(negative one) or marginal (vanishing scaling dimension), and moreover, whether they are
consistent with multipole conservation laws.

We see that including terms <Q§Z”)) ~ a;j (0z)7s(z,t)" in Eq. (D.1) leads to a scaling
dimension [a;;] = m + 1 — j + 5 (1 — ) of the corresponding coefficient o ;. In gen-
eral all terms for which 2(m + 1 — j) < i — 1 are irrelevant, which include terms with
j>m+1,i>1laswellasj=m+1,i> 1.

How about potentially relevant/marginal terms with j < m+ 1 and 1 < i < 2(m +
1—7)+1? For j = m+ 1 we are led back to the term used in Eq.(D.1). All other
relevant /marginal terms necessarily have j < m + 1, and thus fewer derivatives than the
number of m + 1 independent constants necessary to characterize equilibrium. Following
the argument used in the main text, integrating the associated condition <Q;(Em)>eq, =0
of a vanishing multipole current in equilibrium does hence not provide sufficiently many
freely adjustable parameters for the equilibrium charge distribution. In other words, for
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D.3. Non-negativity of autocorrelations

terms with j < m + 1 it is always possible to find initial states such that the conservation
of some Q"=<™) ig broken.

Overall, we find that the expansion <Q§;m)> ~ —D (0;)™!s(x,t) used in the main text
captures the unique, most scaling relevant term consistent with all multipole conservation
laws.

D.3. Non-negativity of autocorrelations

Let us write out in more detail what we mean by the autocorrelation that we want to

calculate: )

G(t) =5 > 5e(0)(s:(t)s(0)- (D.4)

s(0)

Here, we are sampling all initial configurations s(0) and D is the total number of con-
figurations (D = (25 + 1)V = 5 for an N-site lattice of spin-S d.o.f.). s(t) denotes the
time-evolved configuration and the brackets denote averaging over the random trajectories.
In other words, (s¢(t))s0) = D_sPs(0)(S;t)sr, Where pg(p)(s,t) is the probability distribu-
tion over spin configurations for a fixed initial condition s(0). In terms of the transition
probability matrix T" — connecting two spin configurations with a certain rate— it can
be written as ps)(s,t) = (T")ss(0)- Ultimately, we are interested in the time-averaged
correlations Cyp = lim,_, o0 % Yt Cr(t)

The space of all spin configurations falls apart into a large number of different connected
components. Let us decompose the correlation into contributions coming from different
sectors:

Cult) = ;ch 3 s (D.5)

Let us now focus on (sy(t))s() for a particular initial configuration belonging to a sec-
tor C. Restricted to the sector, the dynamics is by definition irreducible. It is also
reversible: Tgy = Tys. With these two conditions, there is a unique stationary distri-
bution, which is uniform over all s € C. We therefore reach the uniform distribution
pe(s) = lim, o0 L > i—oPs0)(s,t) = %, where D(C) is the number of configurations
belonging to C.

Let Dy(C) denote the number of configurations in C which has s, = ¢ (notice that

>4 Dq(C) = D(C)). Then the time-averaged expectation value is (sx(t))s0) = >_, q%l((cc))
g(C). This is independent of s(0) within the same C so we get

Y 5:(0){se(t))s0) = 4(€) Y aDy(C) = D(C)a(C)*. (D.6)

s(0)eC

Plugging this back into Eq. (D.5), we get that Cy = > %Q(C)Q > 0, with all terms
being non-negative.
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E. Survey of results for spatially-modulated
symmetries

In this appendix we gather various results for spatially-modulated symmetries in two and
higher-dimensions, expanding our discussion in Chapter 6. We start by constructing other
examples of microscopic systems with modulated symmetries in Section E.1. We then
provide the analytics supporting the general theory whose main results are summarized in
Section 6.2.2. This predicts the late-time decay of the spin auto-correlation function in the
presence of quasi-periodic symmetries (see Section E.2). In Section E.3, we show that for
open boundary conditions, the number of solutions of a two-dimensional recurrence scales
with the linear system size (as implicitly contained in the main text). In Section 6.2.1 we
discussed the possibility of combining the set of conserved modes lying along any closed
loop in momentum space, to construct a subsystem symmetry in real space.

E.1. Further examples of systems with periodically modulated
symmetries

In this section we show some additional examples of 2D and 3D models with quasi-periodic
symmetries. The 2D models consist of size-5 gates Gy = {n; ;} with ,j € {-2,...,+2},
acting on a neighbourhood of a site r. n; ; are identified with the entries of a 5 x 5 matrix.
The first set of models, shown in Table E.1, conserve all moments of the charge including
the octupole one, i.e., Z%y x"yY"szy with n +m < 3. Imposing these symmetries leads
to the general matrix expression

a b c b a
b g h g b
ng; = c h m h c (El)
b g h g b
a b c b a
Different choices of the parameters a, ..., m will in general correspond to different quasi-

periodic modulated symmetries. In terms of these parameters, x(k) takes the form

x(k) o 4a cos(2k,) cos(2ky) + 4b(cos(ky) cos(2ky) + cos(2ky) cos(ky)) + 2¢(cos(2k,)
+ cos(2ky)) + 4g cos(ky) cos(ky) + 2h(cos(ky) + cos(ky)) + m. (E.2)

Dropping the requirement of D4 symmetric gates (and instead considering skew-centrosymmetric
gates), while still preserving all quadratic moments, included Q- 442, leads to the general
matrix expression

a b c —f —a
frg h —g -0
nigj=11c h 0 —h —cl, (E.3)
b g —h —g —f
a f —c —=b —a
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E.1. Further examples of systems with periodically modulated symmetries

’ Characteristic x(k)

T 0
W/Q-X /27
& 0]a=72 <& 0
b=1
c=2
—m/29 g=—1 —m /27
h=0
m=—4
—TT T T T —TT T T
-m —r/2 0 /2 s -7 T
kfl' X

’ Leading order of w(k ~ 0) ‘
| (25k212)? | (kL + Kk} — 17k22)? |

Table E.1.: Examples of 2D systems with quasi-periodic symmetries and 3-pole conserva-

tion. The plot shows e~ IXM with the analytical expression for y(k) given in
Eq. (E.2). The corresponding parameters are specified in the panel.

with

x(k) o< 2asin(2k,) cos(2ky) + b(sin(ky — 2ky) + sin(2k, + ky)) + c(sin(2k,) — sin(2k))
+ f(sin(2ky — ky) + sin(ky + 2ky)) + 2gsin(ky) cos(ky) + h(sin(ky) — sin(ky)). (E.4)

Results for models of this type are shown in Table E.2.

In Fig. 6.6a of the main text, we also gave an example of a model which does not
conserve the total charge @ = > sy, and thus any of its higher-moments, but realize
non-trivial finite mode contributions. This model corresponds to the 5 x 5 local gates

2 0 3 0 -2
0 -2 0 -2 0

nij 3 0 2 0 3], (E.5)
0 -2 0 -2 0
2 0 3 0 -2

with associated characteristic equation
X (k) = 4cos(k,) cos(ky) — 3 (cos(2k,) + cos(2ky)) + 4 cos(2k;) cos(2k,) — 1. (E.6)

Here, we also introduce a second model with 3 x 3 local gates given by

0 10
Nij; = 1 -3 1 5 (E?)
0 10
and characteristic function
x(k) = 2(cos(kz) + cos(ky)) — 3. (E.8)

whose solutions lie in a single loop (see Fig. E.1). In the following section we will obtain
the long-time behavior of C(r,t) for these.
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Appendix E. Survey of results for spatially-modulated symmetries

‘ Characteristic x (k)

ﬂ‘ﬁt ™
/2 /2
& opa=0 <5
b= -2
c=1
—m/24f=0 —m/21f=-1
g=2
h=0 \‘ ( =
— 7 — 7T T T T
- —x/2 0 7w/2 7 - —x/2 0 7w/2 7
k. ky
‘ Leading order of w(k = 0) ‘
| (KD 4 2k2ky + dkok2 — KD)? | (k3 — 2k2ky — kok? + k})? |

Table E.2.: Examples of 2D systems with quasi-periodic symmetries. The plot shows

e~ XM with the analytical expression for x(k) given in Eq. (E.4). The cor-
responding parameters are specified in the panel.

—m /27

s —7|r/2 0 7T|/2 m
ke

Figure E.1.: 2D system without total charge conservation. The figure shows e~ X2 (or-
ange) and solutions of x(k) = 0 (blacked dashed line) with the analytical
expression for x(k) given in Eq. (E.8).
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E.2. General theory for the decay of autocorrelations in 2D

Figure E.2.: Structure of the three-dimensional gate whose characteristic’s zeros (x(k) =
0) are shown in Fig. 6.6b. It is constructed from two Eq. (6.30) gates super-
imposed on the diagonal planes.

Finally, we turn to a 3D model, which is a natural generalization of Eq. (6.30). The
corresponding gate acts on a 4 x 4 x 4 cube, moving charges between the inner 8 sites and
the outer corners; this is illustrated in Fig. E.2. The resulting characteristic equation is
given by

x(k) =16 cos(%) cos(%) cos(%) X

x [4 cos(kz) cos(ky) cos(k.)—

— 2(cos(ky) cos(ky) + cos(ky) cos(k.) + cos(ky) cos(k.))
)

ckxthkytkz

+ cos(kg) + cos(ky) + cos(k;) — 1]e™ 2 . (E.9)

The zeros of this function were sketched in Fig. 6.6b of the paper.

E.2. General theory for the decay of autocorrelations in 2D

Here we discuss how the presence of conserved momentum modes in 2D affects the decay
of the spin-spin autocorrelation. As we argued in the main text, the long time behavior
is dominated by the density of states at low frequencies, via Eq. (5.31), which can be
determined from the dispersion relation w(k) ~ |x(k)|>. We first discuss the details of this
calculation for the model (6.30) and then provide some general considerations applicable
to arbitrary dispersion relations.

E.2.1. General considerations

As we saw in Fig. 6.6a, and in the previous section, there are many other examples of
conserved momentum modes arranged along various shapes in the BZ. While the details
of these shapes should show up in the spatial structure of C(r,t), the r = 0 autocorrelation
is dictated by a few relevant features that enter into the calculation of p(w). Similarly
to the example above, we will split up the calculation of p(w) into two contributions:
continuous lines and singular points (such as crossing points between two lines).

Along the lines, N (w) is the area of a strip given by broadening the line to include points
with w(k) < w; The width of this strip depends on the expansion of w along the transverse
direction. Taylor expanding around a point k on the contour, we can write the leading
order term as x(k + dk) = (a 0k, + bok,)™, where a,b € R generically depend on k. We
call m the multiplicity of the line: the simplest possibility, realized in the model (6.30), is
m = 1 which gives N(w) ~ w'/? and thus C(0,t) ~ t~'/2. However, higher multiplicities
are possible, as in the model shown on the left of Table E.1, where near the k, = 0 axis,
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Appendix E. Survey of results for spatially-modulated symmetries

we have w(k) ~ kg‘; (and vice versa). In general, we then get N(w) ~ w!'/?™ which leads
to a contribution C(0,t) ~ t~1/2™ in the autocorrelation.

An enhanced contribution to the DOS can arise from singular points, where the leading
order Taylor expansion of x(k) does not have the form (a 6k, +0bdk,)™. This can occur for
various reasons: at isolated points, at a meeting point of multiple branches of the curve,
or if the form of the expansion changes at a point along the curve. In our list of singular
points, we also include points where two or more lines touch: while in this case we do have
an expansion of the above form, with m > 1, the value of m changes discontinuously as
we move away from the touching point.

Without loss of generality, we can write the leading term in the Taylor expansion of the
characteristic function around a point as [326]

X(k + 0k) ~ [ [ (a; ks + b; 6ky)™, (E.10)

7

where the coefficients a;,b; might be complex in general. When a;/b; is real, we can
picture the corresponding term as the tangent of the curve at k, each appearing with
some multiplicity m;. m; > 1 might occur because the line in question itself has a non-
trivial multiplicity, or because two different lines share the same tangent, i.e. when they
have a touching point at k. Terms where a;/b; is complex are singularities that do not
arise from the meeting of contour lines; an extreme example is an isolated singular point
(such as k = 0 for Eq. (6.34)) where all tangent lines are complex. For another example
of complex roots, consider k = 0 in the left panel of Table E.2.

Using polar coordinates, (8kz, 6ky) = (k cos 6, ksin §) we can rewrite Eq. (E.10) as x(k+
0k) = k™ f(6), where m = ). m, is the total multiplicity of the singular point. Consider
now the set of points defined by the condition w(k,8) ~ |x(k,0)|?> = k>™|f(0)* = w; this
is equivalent to k = k,(#) = w/?™|f(#)|~Y/™. The state counting then becomes

N 2w ko (0) wl/m 2m a/m
N(w) N/ d k:/ d0/ dk k= / WO (B11)
w(k)<w 0 0 2 Jo

The integrand in Eq. (E.11) diverges along the tangent lines, § = 6;, defined by a; cos 0; +
b;sin@; = 0. We can split the integral into regions close to these angles and regions away
from them, as illustrated in Fig. E.3; for the latter, the integrand is finite and we are
simply left with a contribution that scales as N(w) ~ w'/™.

The contribution from regions close to # ~ 6; depends on how f(f) vanishes at this
point, which is set by the multiplicity m;: f(6; + 660) ~ 66™ + O(66™i*1). Close to the
tangent line, we thus have fgﬁAe" df (6 — 6;)~2™i/™ (here A#; is some small angle beyond
which the leading order Taylor expansion is no longer valid) If 2m; < m then the integral
converges and we are left with N(w) ~ w/™. If 2m; > m it diverges at w — 0 and we
need to regularize it.

To regularize the integral, note that our initial Taylor expansion of x(k) is only valid
within some neighborhood of the singular point we consider. In particular, we should
restrict ourselves to a disc of some small radius, k < Ak, around this point and count low-
frequency states only within this circle. This means that the part of the integral (E.11)
near 6; should be further decomposed into two parts: those 6 for which k,(0) < Ak and
those where k() > Ak; this is again illustrated in Fig. E.3. The point separating the
two cases is defined by Ak*™|f(8; + 60F)|> ~ Ak*™ (66F)*™ = w which implies 66 ~
wt/2mi | Ag™/mi - We thus replace the contribution from 6 ~ 6; with a sum of two terms:

0;,+A0; 91‘+59;‘ 0;+A0;
/ k2(0)d0 — Ak? / do + / k2 (6)do. (E.12)
0; 0; 0;+30;
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E.2. General theory for the decay of autocorrelations in 2D

i1

Figure E.3.: Evaluating the integral over angles in Eq. (E.11). We evaluate a contribution
from the region between two subsequent zeros of f(0), 6; and 6,11 which we
take to be the x and y axes for simplicity. We are interested in the area
bounded by the curve k2(6) (red line) which diverges at 6;;11; to regularize
we restrict to within a circle of radius Ak (green line). This splits the area
into three parts, shown in different shades of red. This figure was created by
Tibor Rakovszky and published in Ref. [5].

The first is simply the area of the circular segment between 6; and 6; + 667, which gives

N(w) ~ Ak%@f ~ w'/2mi The second behaves differently depending on whether 2m; = m
or 2m; > m:

S — L *
92mz‘/m w?2mi + O(w%) 2m; >m

1 /M dé {wit log(w) 2m; =m
wm ~
567

To summarize we find three distinct cases:
e if 2m; < m then N(w) ~ w'/™,
e if 2m; = m then N(w) ~ w'/™log(w),
e if 2m; > m then N(w) ~ w'/?™,

to leading order. Remembering that m = ). m;, the condition 2m; > m is equivalent to
m; > i T s such that one tangent line dominates over all the others.

The first of these possibilities is realized at the origin in Fig. 6.6a and in the right panel
of Tables E.1 and E.2. In these cases m is simply the number of lines that cross; for
example, the dispersion of Fig. 6.6a leads to C(0,t) ~ t~1/4. The second case was realized
at the crossing points in the model (6.30), with m; = mg = 1. This is also the case near
the origin in the left figure of Table E.1 where m; = mg = 2. In some sense, the most
interesting is the last possibility. In this case, the DOS has an entirely different power law
than what the naive dimension counting w ~ k?™ would suggest; consequently correlations
have a slower decay C(0,t) ~ t~1/2mi A simple situation where this occurs is a point
where two lines have a touching point.
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1 (b)

104

10 r ;
10° 10° 0 2
Time Step ¢ w4

Figure E.4.: Examples of 2D models lacking charge conservation. (a) Autocorrela-
tion decay C(0,t) for gates in Eq. (E.7) (red line) and Eq. (E.5) (green line).
(b) Approximate scaling collapse for model in Eq. (E.7).

E.2.2. Applications to models in Fig. 6.6a

Let us first consider the model specified by the set of gates in Eq. (E.7) and associated set
of slow modes specified by Eq. (E.8), which lie along a single-loop. Since no momentum
k along this loop is a singular point, e.g., there are no crossings, the multiplicity of the
line is simply m = 1. This then leads to N(w) ~ wl/2, ie., the area of a ‘fattened’ loop
of transversal size w'/2, giving an autocorrelation decay C(0,t) ~ t~1/2 as numerically
verified in Fig.E.4a (see red line). In fact, approximating the set of solutions by a circle of
radius k., we can get a closed expression for C(r,t) as the Hankel transform of e~ (K> —k)%t

C(r,t) =2 / dk kJo(kr)e™ B =kt (E.13)
0

with Jp the zeroth order Bessel function of the first kind. While for k, = 0, this has a
closed analytical expression given by a Meijer G-function, this does not appear to be the
case for k.. Thus, we consider the limit ¢ — oo where only momenta k ~ k, contribute,
such that we obtain the leading order term

jO(k*r)

\/i 9
resembling our findings in 1D, with the sinusoidal dressing replaced by a different oscil-
latory function. This approximate behavior is numerically verified in Fig. E.4b (black
dashed line). We will further discuss this model in Section 6.2.1.

On the other hand, the set of slow modes associated to the second model in Eq. (E.5)
(see left half of Fig. 6.6a), lie along two loops centered at (m,0) and (0, 7). These intersect
at eight different points along the k, = %k, lines given by {(i%,i%), (i%”, i%’r)}. As
each independent loop has simple multiplicity (m; = 1), this corresponds to the case
2m; =m =), m; = 2, and thus we expect a long-time scaling of the autocorrelation given
by C(0,t) ~ log(t)/v/t+ O(t~1/?). This prediction is numerically verified in Fig. E.4a (see
blue line).

C(r,t) ~

(E.14)

E.3. Counting the number of independent modulated
symmetries

We would like to count the number of independent modulated symmetries corresponding to
independent solutions of the two-dimensional recurrence equation Eq. (6.4). To do so, let
us consider a finite system of linear size L and open boundary conditions (OBC), such that
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all solutions of the recurrence relation correspond to exact symmetries. Imposing periodic
boundary conditions (PBC), leads to the additional constraints cvir,; = o j+1, = a; j for
all 4, j, which then depends on the system size.

Let us first consider a particular example, and only later extend the resulting counting
to the general case. Consider the recurrence relation

4Ct7;’j — Q1 — Ol — QG 51 — QG541 = 0, (E.15)

which is a two-dimensional second-order linear equation in both z and y directions. This
e.g., is the associated equation to the set of 3 x 3 local gates

G = {no,0,n-1,0,n1,0,70,1, 10,1} = {4,—1,—1,—1, -1},

Obtaining an analytical exact solution for a 2D recurrence relation, requires either
to obtain the corresponding generating function, or rewriting the system as a Sylvester
equation [324]. In both cases, and even with the full solution at hand, it is still rather
involving to extract information from it. Alternatively, one can recursively solve «; ; =
flamn) with m # i,n # j, after fixing a minimal set of initial (or boundary [324])
conditions. For example, Eq. (E.15) can be expressed as

Qi) = AQij — Qi1 = Qi1 — i1, (E.16)

such that it is sufficient to fix the values along the first two left columns ayg j, aq j, and
the rows at the bottom ;¢ and top «; 1 of the lattice, to obtain the value of any «; ;
corresponding to an exact conservation law. This implies that one needs to fix D = 4(L—2)
initial conditions. These correspond to the entries of ag j, 1,5, ;0 and «; 1 after taken
care of the corner values which do not enter into the solution of the recurrence relation
Eq. (E.15). In general, given a two dimensional recurrence relation, one needs to fix
D = O(L) values.

However, not every choice of initial conditions corresponds to a linearly independent
conserved quantity. Let us collect oy j, a1 j and ;g into a vector vo with D entries. Then,
any choice of initial conditions can be written as a linear combinations of elements of the
canonical basis e; with zeros in every entry except the ¢th one. This was also the case in
1D: There we encountered a second-order recurrence relation which requires fixing (ag, a1)
(or equivalently (ap, ar—1)). Thus, the set of initial conditions is a two-dimensional vector
space with canonical basis vectors: e; = (1,0) and ez = (0, 1).

In 2D, this implies that there exist a subextensive number of linearly independent con-
served quantities D = O(L). Indeed, this scaling is consistent with the fact that factoriz-
able solutions of the form a; j = (r;)%(r,)?, lead to one-dimensional manifolds parametrized
by 74,7y. An example of this was shown in Fig. 6.4b and Fig. 6.6, but it also holds for the
exponential localized solutions of Eq. (E.15).

We emphasize that for the previous computation any such choice corresponds to an
exact symmetry. Nevertheless, in the case of PBC, neither exponential symmetries nor
most modes are exactly realized; moreover, we also note that if k is a conserved mode, so
is —k.
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