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Abstract

Mindfulness practice, i.e., the non-judgmental awareness of present-moment ex-
perience, has reliably been demonstrated to reduce stress and trait anxiety. Im-
proved attention, altered brain function, changes in white matter, and altered
cerebral bloof flow (CBF) have also often been reported, but findings are less con-
sistent. To date, little is known about the relationship between these measures and
psychological outcomes. Given the documented detrimental effects of stress and
anxiety on cognition and on brain function, I investigated whether stress and anx-
iety reduction following mindfulness training would be related to improvements
in attention, brain activation, changes in CBF and white matter. 42 healthy,
meditation-naive participants (age range: 20 - 60 years old) were randomly allo-
cated to receive either a short (31 days, 15 min/day) online-based mindfulness-
training or an active control health information program (matched for structure
and time commitment). Participants underwent: a) functional magnetic resonance
imaging (fMRI) while completing the attention network test (ANT), b) diffusion
tensor imaging (DTT), and ¢) perfusion imaging at resting-state using arterial spin
labeling (ASL). Participants also completed standardized questionnaires on per-
ceived stress, anxiety, physical well-being, mindfulness, and flow experience before
and after interventions. Results supported the expected improvement on levels of
anxiety. Perceived stress also decreased in the experimental— and not the control
group. While no specific effects on any of the three attentional components of
the ANT (i.e., alerting, orienting, and executive attention) were found, overall
reaction times improved strongly and highly significantly in the experimental, but
not the control group. At the neuronal level, no significant training-associated
activations were seen during the orienting and executive conditions of the ANT.
However, during the ANT alerting condition, brain activation increased in the su-
perior frontal gyrus (SFG), posterior cingulate cortex (PCC), and right hippocam-
pus in the experimental group as a consequence of the mindfulness intervention.
While there was no correlation between decreased stress and attentional perfor-

mance, decreased stress was significantly correlated with activation in the right



hippocampus following mindfulness training. Fractional anisotropy (FA) values of
white matter in the experimental group increased in the right uncinate fasciculus
(UNC), enforcing connections between the right hippocampus and frontal areas
of the brain. CBF Results of a region of interest (ROI) analysis on gray mat-
ter of core brain regions known to be susceptible to perfusion changes related to
mindfulness practices showed a significant decreased in the CBF of the anterior
cingulate cortex (ACC) as a result of the web-based mindfulness meditation train-
ing; correlations between perceived stress and CBF values showed a less reactive
response to stress on the experimental group in this brain region compared to the
control group. To conclude, the study provides support that a short online-based
mindfulness training have beneficial effects on mental health (i.e., decreased stress
and anxiety), attentional performance, and state of mind (i.e., increased flow expe-
rience), and it sheds some light on the potential relationship with improved brain

function and overall well-being.
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Zusammenfassung

Achtsamkeit ist ein Zustand, in dem sich ein Mensch im Hier und Jetzt befindet,
dass heifft, im gegenwartigen Moment ist, ohne sich Gedanken zu machen oder
Wahrnehmungen zu bewerten. Achtsamkeitspraxis kann Stress und Angst zu-
verlassig reduzieren. Verbesserte Aufmerksamkeit, verdnderte Gehirnfunktion,
Verdnderungen in der weiflen Substanz und verénderter zerebraler Blutfluss (cere-
bral blood flow, engl. CBF) wurden ebenfalls oft in der Literature als ein Effekt
von Achtsamkeitsiibungen berichtet, allerdings sind diese Ergebnisse weniger ein-
deutig. Bisher ist wenig tiber die Beziehung zwischen diesen Mafinahmen und psy-
chologischen Ergebnissen bekannt. Ausgehend von den vielfach dokumentierten
schadlichen Auswirkungen von Stress und Angst auf Kognition und Gehirnfunk-
tion habe ich untersucht, ob reduzierte Stress- und Angstwerte nach einem Acht-
samkeitstraining mit einer Verbesserung der Aufmerksamkeit, erhohter Gehirnak-
tivitat, Veranderungen des CBF und der weiflen Substanz zusammenhangen. 42
gesunde, meditationsnaive Teilnehmer (Alter: 20 - 60 Jahre) wurden zuféllig, zu
entweder einem kurzen online-basierten Achtsamkeitstraining (31 Tage, 15 Min/-
Tag) oder einem aktiven Kontroll-Gesundheitsinformationsprogramm (in Struktur
und Zeitaufwand vergleichbar mit dem Achtsamkeitstraining) zugeteilt. Die Teil-
nehmer wurden mit den folgenden MRT-Sequenzen gemessen: a) funktioneller
Magnetresonanztomographie (fMRT) wéhrend der Durchfiihrung des Aufmerk-
samkeitsnetzwerktests (ANT), b) Diffusions-Tensor-Bildgebung und c) Perfusions-
bildgebung im Ruhezustand mittels arteriellem Spin-Labeling (ASL). Zudem fiillten
die Teilnehmer vor und nach den Interventionen standardisierte Fragebogen zu
wahrgenommenem Stress, Angst, korperlichem Wohlbefinden, Achtsamkeit und
Flow-Erfahrung aus. Die Ergebnisse unterstiitzen die erwartete Verbesserung der
Angst. Auch der wahrgenommene Stress nahm in der Versuchsgruppe ab — je-
doch nicht in der Kontrollgruppe. Obwohl keine spezifischen Wirkungen auf eine
der drei Aufmerksamkeitskomponenten des Aufmerksamkeitsnetzwerktests (dass
heit Alarmierung, Orientierung und exekutive Aufmerksamkeit) gefunden wur-
den, verbesserten sich die Gesamtreaktionszeiten des Aufmerksamkeitsnetzwerk-
tests in der Versuchsgruppe stark und hochsignifikant. Diese Verbesserung war

in der Kontrollgruppe gleichermafien nicht vorhanden. Auf der neuronalen Ebene
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wurden wéhrend der Orientierungs- und Exekutivsbedingungen des ANTs keine
signifikanten interventions-assoziierten Aktivierungen beobachtet. Wahrend des
ANT-Alarmzustands lief jedoch eine erhohte interventions-assoziierte Gehirnak-
tivitat im superioren frontalen Gyrus, im posterioren cingularen Kortex und im
rechten Hippocampus in der Achtsamkeitsgruppe verzeichnen. Obwohl es keine
Korrelation zwischen verringertem Stress und Aufmerksamkeitsleistung gab, fand
sich eine signifikante Korrelation zwischen der verringertem Stress und Aktivitét
im rechten Hippocampus nach dem Achtsamkeitstraining. Die Werte der frak-
tionalen Anisotropie (FA) der weiflen Substanz in der Versuchsgruppe verzeich-
neten einen signifikanten Anstieg im der rechten fasciulus uncinatus, indikativ fiir
eine verstarkte Verbindungen zwischen dem rechten Hippocampus und frontalen
Bereichen des Gehirns. CBF Ergebnisse einer ROI-Analyse (engl. region of in-
terest) der grauen Substanz von Kernhirnregionen, fiir welche in fritheren Stu-
dien Blutflussdnderungen im Zusammenhang mit Achtsamkeitstraining berichtet
wurden, zeigten eine signifikante Abnahme des CBF im Bereich des anterioren
cinguldren Kortex (ACC) als Konsequenz des Web-basierten Achtsamkeitsmedi-
tationstraining; Korrelationen zwischen wahrgenommenem Stress und ACC-CBF-
Werten zeigten eine weniger reaktive Reaktion auf Stress bei der Versuchsgruppe in
dieser Gehirnregion im Vergleich zur Kontrollgruppe. Zusammenfassend legen die
Ergebnisse dieser Studie nahe, dass ein kurzes online-basiertes Achtsamkeitstrain-
ing positive Auswirkungen auf die psychische Gesundheit (d.h. weniger Stress
und Angst), auf die Aufmerksamkeitsleistung sowie die mentale Verfassung (d.h.
erhéhte Flow-Erfahrung) haben kann, und sie legen einen Zusammenhang mit

einer verbesserten Gehirnfunktion und allgemeinem Wohlbefinden nahe.
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Chapter 1

Introduction

1.1 Mindfulness Meditation

1.1.1 What is Mindfulness Meditation?

The roots of mindfulness meditation remote to the Buddhist traditions. More
specifically, it is derived from a Buddhist meditation practice called Vipassana
(Hart, 2020). The secularization of this practice gave rise to what we know to-
day as mindfulness meditation, which mainly involves exercising of focused atten-

!"and open monitoring? (Lutz et al., 2008). Mindfulnes meditation practice

tion
is a framework to achieve the mental state of mindfulness which is then defined
as moment-to-moment (i.e., present-centered) awareness of thoughts, feelings, or
sensations that are acknowledged and accepted free of judgement (Kabat-Zinn &

Hanh, 2013).

Mindfulness practice has increasingly been adapted by clinical programs (Shonin
et al., 2013), as well as in schools and companies, and research on the effects of such

programs has exponentially increased over the past fifteen years (Baminiwatta &

!Focused attention consists in focusing the attention on something, e.g., in the breath.
20Open monitoring consists in focusing on whatever comes to our attentional field (i.e.,
awareness of thoughts or sensations) without judgement.
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Solangaarachchi, 2021). Given the positive effects of such studies, mindfulness
meditation has also been considered as a form of mental training that can enhance

aspects of cognitive processing and cognitive capacities (Bishop et al., 2004).

1.1.2 Mindfulness Meditation Programs and Traditions

There are many mindfulness meditation programs and traditions, here I provide

a brief overview of the most common ones:

e Integrative body-mind training (IBMT) refers to the practice of mind-
fulness meditation, Tai Chi, Yoga, and Qi Gong (Tang et al., 2017).

e Iyengar Yoga, named after his developer Bellur Krishnamachar Sundararaja
(B.K.S) Iyengar, focuses on the practice of body/yoga postures (i.e., asanas)
through the use of props such as belts, mats, pillows, etc. It also encourages

the practice of breathing exercises and meditation (Iyengar, 2006).

e Insight meditation consists of practicing focused attention to internal ex-

periences (Goldstein & Kornfield, 2001).

e Mindfulness-based stress reduction (MBSR) is an intensive eight-week
mindfulness training program designed by John Kabat-Zinn focused to help

people suffering from stress, anxiety, depression, and pain (Kabat-Zinn &

Hanh, 2013).

e Mindfulness-based art therapy (MBAT) is an MBSR based program

combined with art activities®.

e Mindfulness-based blood pressure reduction (MB-BT) is also an
MBSR based program adapted for individuals with hypertension and tar-
geted to modify known determinants of blood pressure such as stress reac-

tivity (Loucks et al., 2019).

3http://www.arttherapyandmindfulness.com/about /mindfulness-based-art-therapy/
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e Mindfulness-based cognitive therapy (MBCT) combines mindfulness
meditation practices with cognitive behavioural therapy (CBT) to help indi-

viduals cope with their thoughts; this in return reduces feelings of distress®*.

e Mindfulness-based interventions (MBI) or Mindfulness-based pro-
grams (MBPs) are any meditation program that incorporates mindful-
ness practices and theory to relief human distress by increasing joy, com-
passion, wisdom and improving attentional, emotional and behavioural self-
regulation. Examples of this programs are MBAT, MB-BT, MBCT, and
MBSR (Crane et al., 2017).

e Templestay is four-day intensive mindfulness meditation retreat program

based on Korean Buddhism?®.

e Tibetan Dzogchen also known as Utmost Yoga is an Indo-Tibetan Bud-
dhist tradition which aims to reach the rigpa (i.e., a state of pure awareness)
through yoga postures, contemplation and meditation practices, breathing

techniques, among others (Lama, 2006).

e Zen meditation is a Buddhist tradition that consists on the practice of open

monitoring in a seated position (Dogen, 2004).

1.2 Effects of Mindfulness Practice on The Brain
and Well-Being

1.2.1 Effects on Physical and Phsycological Well-Being

Numerous studies have been able to effectively demonstrate a positive effect of
mindfulness training on individual’s physical well-being (e.g., through stress re-

duction, improved cardiovascular health, better pain processing, and improved

4https://www.mbct.com
Shttps://eng.templestay.com /page-templestay.asp
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immune function) in addition to improvements in mental health [e.g., through a
decrease in depression, anxiety, drug dependence, attention deficit hyperactivity
disorder (ADHD) symptoms, and eating disorders| (Chiesa et al., 2010; David-
son et al., 2003; Grossman et al., 2004; Hofmann et al., 2010; Khoury et al., 2015;
Zeidan et al., 2011; Goldberg et al., 2018; Black & Slavich, 2016). Furthermore, re-
cent mindfulness meditation findings have shown improvements in social behaviour
(e.g., through an increased compassion, empathy, and improvements in communi-
cation skills), life satisfaction, creativity, and emotion regulation (Luberto et al.,
2018; Kreplin et al., 2018; Amutio-Kareaga et al., 2017; Lamothe et al., 2016;
Ostafin et al., 2015; Baas et al., 2014).

Of great interest is the stress and trait anxiety reduction that has been shown
in multiple studies done with MBSR trainings (Chiesa & Serretti, 2009; Kabat-
Zinn & Hanh, 2013; Goyal et al., 2014; Khoury et al., 2015; Crowley et al., 2022;
Basso et al., 2019), as it has been documented that prolonged periods of stress
and trait anxiety have detrimental effects on cognitive performance, specifically on
attentional control, working memory, response inhibition, among others (Girotti
et al., 2018; Jiang & Rau, 2017; Luethi et al., 2009; Du et al., 2022). It is therefore
possible, that some of the positive effects of mindfulness practice on cognitive
functioning (see section 1.2.2) are related to or a consequence of stress and trait
anxiety reduction. However, the association between improvement of cognitive
functions, decreased stress levels, and trait anxiety as a result of a mindfulness

training is still a matter of research.

1.2.2 Effects on Cognition

Many studies have been able to demonstrate improvements in various aspects
of cognitive processing in mindfulness meditation practitioners such as executive

attention®, working memory, and problem-solving skills (Bishop et al., 2004; Chiesa

SExecutive attention is the mechanism that blocks distracting information when trying to
achieve a goal.
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et al., 2011; Jha et al., 2007). However, findings in this field of research are a bit
less univocal (Im et al., 2021; Lao et al., 2016; Whitfield et al., 2021) and more
research is needed. A recent meta-analysis investigating the neurobiological effects
of mindfulness meditation interventions on cognition did not observe significant
effects on attention (i.e., sustained” and selective®), working memory, and long-
term memory; however, they indicated a small effect on executive attention (Im
et al., 2021). In the following section, a detailed overview of previous findings of

mindfulness studies in attention and their underlying brain regions is given.

1.2.2.1 Effects on Attention and Underlying Brain Regions

The preferred method used by neuroscientists to investigate the effects of mindful-
ness meditation on attention and its underlying brain regions is functional mag-
netic resonance imaging (fMRI), based on blood-oxygen-level-dependent (BOLD)
contrast. BOLD contrast also known as BOLD signal surges from the differ-
ent magnetic properties of oxygenated (i.e., diamagnetic) and deoxygenated (i.e.,
paramagnetic) hemoglobin. During neural activity, following the principle of neu-
rovascular coupling, there is an increase in cerebral blood flow (CBF) relative to
the oxygen cosumption [i.e., increased in amount of oxyhemoglobin (HbO,) rela-
tive to the amount of deoxyhemoglobin (dHb)]; this change in ratio, and therefore,
in the magnetic resonance (MR) signal, changes the contrast in the magnetic res-
onance image, which in turn is interpreted as an indirect measurement of brain

activity (see Figure 1.1) (Ogawa et al., 1992).

Neuroscience studies have revealed that several brain regions implicated in atten-
tional processes such as the cingulate cortex (CC) and prefrontal cortex (PFC) are
being altered through mindfulness practice (Sperduti et al., 2012; Zsadanyi et al.,

2021). Figure 1.2 shows a depiction of these brain areas. The anterior cingulate

"Sustained attention is the ability to focus on a task or stimulus over an extended period
of time.

8Selective attention is the ability to focus on a particular task or stimulus among different
ones.
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Figure 1.1: BOLD Haemodynamic Response Function (HRF). This figure

shows the BOLD HRF following a single brief stimulus. The x-axis depicts the time

after the stimulus, and the y-axis the percentage change of the MRI signal. Image
courtesy of Allen D Elster, MRIQuestions.com

cortex (ACC) is a region that is known to play a prominent role in executive pro-
cessing and, more specifically, in executive attention (van Veen & Carter, 2002).
In fact, several fMRI studies have demonstrated an increase in ACC activation
in experienced meditators (Fox et al., 2016; Holzel et al., 2007), while linking
this increase in ACC activation to a direct consequence of a mindfulness training
(Tang & Posner, 2009). Interestingly, improvements in executive attention have
also been observed in studies following short mindfulness training interventions;
these shorter training sessions were comprised of 20-min sessions per day for three
to five days (Tang et al., 2007; Wenk-Sormaz, 2005). A follow up study evaluating
the effects of a short mindfulness training [30-mins of IBMT for five days| in naive

subjects found enhanced CBF in subgenual/adjacent ventral ACC (Tang et al.,
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Figure 1.2: Depiction of Prefrontal Cortex (PFC), Anterior Cingulate
Cortex (ACC), and Posterior Cingulate Cortex (PCC). This figure was
made with FSLeyes using the Harvard-Oxford Atlas.

2015). And, a recent mindfulness study was even able to detect a direct associa-
tion between the improvement in executive attention and increased activation in
both the right ACC and the right dorsolateral prefrontal cortex (DLPFC) using
the Attentional Network Task (ANT) (Kwak et al., 2019).

In addition to the changes observed in ACC activations, several resting state stud-
ies found that mindfulness training had an effect on posterior areas of the cin-
gulate cortex while also reporting an increase in functional connectivity between
the posterior cingulate cortex (PCC), dorsal ACC, and DLPFC (Brewer et al.,
2011; Creswell et al., 2016; Kral et al., 2019). Another study looking at structural
changes following MBSR programs even found an increased gray matter (GM)
concentration in the PCC indicating that the PCC is a region which is very sus-

ceptible to the effects of mindfulness meditation (Holzel et al., 2011).

Furthermore, studies investigating the effects of mindfulness trainings on the PFC
have also shown changes in the BOLD signal in this area after the intervention.
For example, Tomasino & Fabbro (2016) found increased activation in the right
DLPFC and decreased activation in the rostral PFC on naive-meditators after
an eight-week focused attention based mindfulness meditation, and Ives-Deliperi
et al. (2013) found increased medial PFC activations after a mindfulness based
cognitive therapy in patients with bipolar disorder. Moreover, a study investigat-
ing CBF differences between experienced meditators and non-meditators found a

significant higher CBF in the PFC of long-term meditators (Newberg et al., 2010).

7



Chapter 1. Introduction

The PFC is an essential brain structure for executive functions’, and lesions in
the DLPFC have shown alteration in working memory, rule learning, planning,
attention, and motivation (Szczepanski & Knight, 2014). Therefore, investigating
PFC changes after a standardized short-mindfulness training is within our interest.
However, it can be assumed that there are several other brain regions involved in

the enhancement of attention through mindfulness meditation.

1.2.3 Effects on White-Matter Tracts

Diffusion-tensor-imaging (DTT) is a magnetic resonance imaging (MRI) technique
that allows us to image the white matter (WM) tracts of the brain thanks to
the brownian motion (i.e., random motion) of water molecules. This motion, also
known as diffusion, can be isotropic or anisotropic. Isotropic diffusion refers to
the motion of water molecules not being restricted or restricted in all directions.
On the other hand, anisotropic diffusion is when the movement of water molecules
is hindered by the microstructure of the tissue in neural fibres; therefore, by mea-
suring this anisotropy, indirect information about the microstructural integrity of
white matter tracts is provided (Beaulieu, 2002). Fractional anisotropy (FA) is
a value between cero and one that describes the degree of anisotropical diffusion
(i.e., cero means isotropic diffusion and one represents restricted diffusion in all
but one direction). Other important measurements that describe axonal proper-
ties in white matter are the mean, axial, and radial diffusivity. Mean diffusivity
(MD) gives a measurement of the total diffusion (i.e., total movement of water
molecules) within a voxel or region of interest (ROI). Axial diffusivity (AD) de-
scribes water diffusion parallel to the axonal fibers, while radial diffusivity (RD)

refers to water diffusion perpendicular to the axonal fibers.

Cross-sectional DTT studies of long-term meditators compared to non-meditators

have shown increased FA values in major white matter projection pathways (i.e.,

9Examples of executive functions are executive attention, cognitive inhibition, working
memory, planning, and flexible thinking.
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corticospinal tract and corona radiata), association pathways [i.e., cingulum, su-
perior longitudinal fasciculus (SLF), and uncinate fasciculus (UNC)], and com-
missural pathways (i.e., corpus callosum and anterior commissure) (Nakata et al.,
2014; Tang et al., 2015; Zsadanyi et al., 2021). Figure 1.3 shows a depiction of
the previously mentioned WM tracts. Longitudinal DTT studies done on naive
meditators following a short-term mindfulness training have confirmed some of
these findings as a result of a mindfulness training. For example, Tang et al.
(2010) showed that 11 h of IBMT spaced in four weeks increased the FA in the
corona radiata of 22 young healthy undergrads compared to an active control group
matched for age and sex that received a relaxation training. The corona radiata
is a major WM projection tract connecting the ACC with other brain structures.
A follow up study of the same group with the same experimental settings showed
that five hours of IBMT spaced in two weeks were not able to increase the FA nor
the RD in areas surrounding the ACC, but reductions in the AD were detected
(Tang et al., 2012). A recent study looking at plastic changes in WM after a Tem-
plestay program found increased FA in the left SLF, left posterior corona radiata,
and splenium of the corpus callosum, which are regions known to be important for
cognitive functions (Yoon et al., 2019). And, an MBSR study by Kral et al. (2019)
on meditation-naive participants with an active and waitlist control group found
a larger resting state functional connectivity between the PCC and the DLPFC in
the mindfulness group that was associated with an increased microstructural con-
nectivity in the SLF', which is the white matter tract connecting the PCC and the
DLPFC. In this study, white matter microstructure was assessed through several

DTI measurements (i.e., FA, MD, RD, and AD).

DTTI studies investigating the effects of mindfulness meditation have successfully
demonstrated the appearance of neuroplastic changes in improved brain function;
for this reason, I included DTI measurements in our research as to have more
resources that would help us better understand improvements in attention and

pyschological outcomes as consequence of mindfulness training.
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Figure 1.3: White Matter Pathways Susceptible to Meditation. This figure

shows a depiction of projection, association and commissural pathways susceptible

to mindfulness trainings/programs. This figure was made with FSLeyes using the

JHU ICBM-DTI-81 White-Matter, JHU White-Matter Tractography, and XTRACT
HCP Probabilistic Tract Atlases.

1.2.4 Effects on Cerebral Perfusion or CBF

Nutrients and oxygen are transfered from the blood to brain tissue through the
capillary beds in a process called cerebral perfusion also known as cerebral blood
flow. CBF is defined as the quantity of blood in ml delivered per 100 g of tissue in
one minute. Typical CBF values in GM of the human brain are between 40 and
100 ml/100g/min (Alsop et al., 2015). Thanks to CBF measurements we have in-
direct access to brain metabolism (i.e., brain function) as there is a high coupling
between oxygen delivery and consumption (Barker et al., 2013). Unfortunately,
studies on CBF are not very popular as the vast majority of the methods to mea-
sure CBF need the use of an external contrast agent, which implies an increased

risk of nephrogenic systemic fibrosis and allergic reactions in the study population;

10
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it is therefore not suitable for everyone specially for children, and contraindicated
in patients with renal failure. Other disadvantages of perfusion methods with
contrast agents are their long set-up times, difficulty to apply them on longitu-
dinal studies, and the increased in cost. However, a relative new and accesible
MR method named arterial spin labeling (ASL), which uses water molecules as
en endogenous tracer for imaging cerebral perfusion, is expanding the use of CBF

measurements in neuroscience studies (Koretsky, 2012).

Differences in cerebral blood flow patterns have been seen between long-term med-
itators and non-meditators. Specifically, long-term meditators have shown an
asymmetry in their thalamic activity and increased CBF in the prefrontal cortex
(as described in section 1.2.2.1), parietal cortex, putamen, caudate, and midbrain
(Newberg et al., 2010) (see Figure 1.4 for a depiction of these brain areas). How-
ever, it is yet not clear if this difference in CBF values is the result of mindfulness
training or if brains of meditators are per se different from brains of people that
do not pursue meditation as a practice. A preliminary evaluation of CBF effects
of a 12-week Iyengar Yoga training program in four naive subjects showed reduced
CBF values in the right amygdala, right dorsal medial cortex, and right sensori-
motor area (SMA) (Cohen et al., 2009). And as reported in section 1.2.2.1, a most
recent study using a short mindfulness training (30-mins of IBMT for five days)
in 20 naive subjects found enhanced CBF not only in subgenual/adjacent ventral
ACC, but also in the medial prefrontal cortex and insula, not seen in their active
control group [sample size (n) = 20] that underwent a relaxation training (Tang
et al., 2015). Another study done on women with breast cancer that followed
an MBAT program found significant CBF increases in the left caudate at resting
state that significantly correllated with deceased scores in anxiety; this was not
present in their control group (Monti et al., 2012). Figure 1.4 illustrates brain
areas of naive meditators that have shown changes in CBF. While these studies
have given some direction on the effects of mindfulness meditation in CBF, there
is still a need for more neuroscience studies looking not only at reproducibility, but

also at psychological and physiological correlations that will help in interpretation

11
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CBF Changes in Experienced Meditators
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Figure 1.4: Brain Areas Susceptible to CBF Changes in Mindfulness

Meditators. This figure depicts brain areas susceptible to CBF changes in experi-

enced and naive mindfulness meditators. This figure was made with FSLeyes using
the Talarach Daemon and Harvard-Oxford Cortical/Subcortical Atlases.

of these CBF changes seen on meditators. For this reason, CBF measurements

acquired with ASL were also included in the study presented in this thesis.
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Aims and Hypotheses

2.1 Event-Related fMRI and Psychological Out-

comes Analyses

2.1.1 Aims

Given the recent advances made in the field of neuroimaging, the neurobiological
effects of an intervention training on functional brain activation can now more
accurately be investigated. While previous studies reported the impact of mind-
fulness training on attention and executive functions, as well as the relevance of
these processes in everyday life, the present study sought to investigate the neural
and behavioural training effects on the three main components of attention (i.e.,
alerting, orienting, and executive attention) in more detail and its association
with changes in stress and anxiety using robust and updated analyses procedures.
While most published studies to date still suffer from poor methodological quality,
[ implemented state-of-the-art methods including an active control group, random-
ization, and pre- and post-intervention measurements (i.e., longitudinal study). In
addition, I investigated the effects of the training on other relevant psychological

outcome parameters such as mindfulness and flow experience, and their correlation

13
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with brain activation in order to explore possible mechanisms of action behind the

cognitive training effects.

2.1.2 Hypothesis

I expected to observe an improvement in attention (i.e., faster reaction times in
the ANT) together with elevated activation patterns in the CC and PFC, going
along with reductions in stress and anxiety. It was also hypothesized that mindful-
ness training would increase perceived mindfulness, physical well-being, and flow

experience.

2.2 White Matter Tracts Analysis Using DTI

2.2.1 Aims

The aim was to investigate if a 31-day web-based mindfulness training can al-
ter white matter FA values (i.e., increased connectivity) between brain areas
that showed a significant interaction between the experimental and control group

among timepoints in the event-related ANT fMRI study.

2.2.2 Hypothesis

An increased FA in main white matter tracts connecting brain regions that showed
a significant interaction between the experimental and control group among time-

points in the event-related ANT fMRI study.

14
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2.3 Perfusion Analysis Using ASL

2.3.1 Aims

The present study investigated the CBF effects of a 31-day web-based mindfulness
meditation training on gray matter of core brain regions known to be involved in
mindfulness meditation and perfusion changes (i.e., frontal lobe, superior parietal

lobule, ACC, thalamus, putamen, caudate, and right amygdala).

2.3.2 Hypothesis

I hypothesized that the mindfulness meditation training would go along with a
greater asymmetry in the thalamic activity, and an altered CBF in the frontal pole,

superior parietal lobule, insula, ACC, putamen, caudate, and right amygdala.

15
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Materials and Methods

3.1 Subjects

Participants were recruited via flyer distributions, online advertisements, and
word-of mouth based on their interest in participating in a health-enhancement

program. Our inclusion criteria were as follows:

e All participants were screened using the Mini-International Neuropsychiatric
Interview (M.L.N.I) (Sheehan et al., 1998) and had no previous or current

diagnosed psychiatric or neurological diseases,
e participants reported taking no psychotropic drugs,

e participants needed to be naive meditators (i.e., participants could not have
practiced more than three meditation sessions in the last year or more than

ten meditation sessions over the course of their life),
e age range between 15 and 65 years old,
e German proficiency, and

e right-handedness.

16
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Before the main study, I performed a pilot study to test the adequacy of the
task investigating the effects of the mindfulness training on the different cognitive
processes (i.e., attention conditions) assessed by the ANT. Figure 3.1 shows the
demographics and descriptive statistics of the participants included in the final
pilot, behavioural (i.e., pyschological outcomes), and fMRI study. A monetary
compensation was given to the subjects for their participation, and access to both

courses was given to each participant after their intervention.

3.2 Procedure

Written informed consent was obtained from all participants, and the ethics com-
mittee from Klinikum rechts der Isar, Technical University of Munich approved
this study. Subjects were screened /scanned no more than two weeks prior to their
first training session. All subjects were scanned in a 3T Philips Ingenia MR-
Scanner (Philips Healthcare, Best, The Netherlands) at Klinikum rechts der Isar.
Participants completed standardized questionnaires prior to, and upon completing
the training, which assessed their physical well-being [Fragebogen zur Erfassung
des korperlichen Wohlbefindens, FEW-16 (Kolip & Schmidt, 1999)], stress levels
[Perceived Stress Scale, PSS (Cohen et al., 1983)], perceived mindfulness [Mindful
Attention Awareness Scale ~German version, MAAS (Brown & Ryan, 2003; Micha-
lak et al., 2008)], anxiety [State and Trait Anxiety Inventory, STAI (Spielberger
et al., 1999)], and flow experience [Flow Short Scale, FSS (Stiensmeier-Pelster &
Rheinberg, 2002)]. Following the pre-training assessment and scanning, partici-
pants were randomized to either the mindfulness or health-enhancement program.
This study was a single blinded study as all subjects were only informed that they
were participating in a training to improve their overall health, i.e., no meditation
training was mentioned prior to the start of the intervention/training. After the
intervention, participants were directly asked how many training sessions did they

complete. Enrollment in the respective trainings was checked through the course

17
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online platform: Teachable!. All participants in both the experimental and the
control group had to complete at least 25 sessions to be included in the study.
Participants then underwent the identical testing and scanning procedure within

two weeks following the end of their program/training.

3.3 Training

Both training courses were structured in a similar manner in which every three
days a 15-minute video was shown, which was followed by two days of 15-minute
podcasts or audio recordings. This pattern repeated for the duration of the 31-day
course. Videos and audios were framed by short texts to highlight the take-aways
of the topic of that day. A detailed overview on both trainings can be found in

Appendix A.

3.3.1 Mindfulness Meditation Training

The mindfulness course? was based on the MBSR program and developed in close
cooperation with Dr. Britta Holzel (BKH), a highly experienced MBSR instruc-
tor and mindfulness researcher, and contained guided meditation exercises and
various mindfulness exercises, in addition to theoretical concepts and explana-
tions provided in German by BKH. More specifically, theoretical topics included
mindfulness research, mind wandering, body awareness, stress physiology, deal-
ing mindfully with pain and difficult emotions, loving kindness, self-perception,
connectedness, among others. Audio-guided meditations instructed participants
to focus on various objects of attention, such as the breath, body sensations,
emotions, thoughts, and sensations of walking, and to encounter experiences non-
judgmentally, with acceptance and kindness. Loving kindness and open monitoring

practice were included.

'https://teachable.com
’https://iam-onlinetraining.de
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3.3.2 Health-Enhancement Program

The course on ‘everyday health’ was developed specifically as an active control
training that resembled the mindfulness meditation training in all aspects but
did not contain any information or active training in mindfulness or meditation
in general. This course provided participants with information on health-related

topics such as sleep, burn-out, aging, and nutrition.

3.4 Acquisition of MRI data

All MR imaging was performed on a 3T Philips Scanner, equipped with a 32-
channel head coil at Klinikum Rechts der Isar in Munich, Germany. Our imaging

protocol consisted on the following sequences:
1. T1-weighted MPRAGE —magnetization prepared rapid gradient echo—,
2. FLAIR —fluid-attenuated inversion recovery—(acquired for clinical purposes),
3. DTI,
4. event-related fMRI using an adapted event-related ANT of Fan et al. (2005),
5. resting-state fMRI (rs-fMRI),

6. T2*- weighted images (field-map), and

7. 3D GRASE —gradient- and spin-echo— pseudo-continuous ASL (pCASL).

Structural scans, with 230 anterior commisure-posterior commisure (AC-PC) axial
slices (0.7 mm interslice gap) were acquired using the T1-weighted MPRAGE
sequence with echo time (TE) = 5.2 ms, repetition time (TR) = 11 ms, flip angle
= 8°, field of view (FOV) = 256 x 240 x 161 mm?, and an isotropic voxel high-
resolution of 0.7 x 0.7 x 0.7 mm?. For DTI, diffusion-weighted images (DWI) were
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acquired with a TR = 5643 ms, TE = 96 ms, FOV = 224 x 256 x 132 mm?, and
an isotropic voxel resolution of 2 mm. Diffusion-sensitizing gradient echo encoding
was applied in 64 directions using a diffusion-weighting factor (b) of 1400 s/mm?.
The total DWI acquisition time was 8 min. Whole brain functional scans, with 63
AC-PC axial slices (0.2 mm interslice gap) were acquired using a T2*-weighted 2D
single shot gradient echo planar (GE-EPI) sequence, multiband (MB) Factor = 3,
TE = 33 ms, TR = 1550 ms, flip angle = 70°, FOV = 192 x 192 x 138.4 mm?, and
an 8 mm? isotropic voxel resolution. To estimate the corresponding field maps to
correct for EPI-distortions (Jezzard & Balaban, 1995), two simple T2*-weighted
images were acquired using a gradient echo sequence with two different TEs (long
TE = 10.54 ms, short TE = 6.0 ms). FOV, spatial resolution, and number of slices
were the same as for the functional scans. The 3D pCASL imaging parameters
were as follows: FOV = 240 x 240 x 6 mm?, voxel resolution = 3 x 3 x 6 mm?*, TR
=4.2s, TE = 11 ms, PLD = 1.8 s, labeling duration (7) = 1.8 s, and 8 averages.
The total scan time was ~45 min. Participants were asked to keep their eyes
closed during rs-fMRI and pCASL acquisitions to avoid BOLD signal and CBF

changes in the occipital regions.

3.5 Envent-Related Functional MRI

3.5.1 Attentional Network Task

The ANT is a paradigm designed to measure the efficiency of the alerting, orient-
ing, and executive control networks of attention (Fan et al., 2002). An adapted
version of this task can be also used to detect the brain activity of these atten-
tional networks (Fan et al., 2005). Figure 3.2 shows a depiction of the ANT task
used in this study. The stimuli of the MRI task consisted of three cue conditions
(no cue, center cue, spatial cue) and two target conditions (congruent target, and
incongruent target). The no cue condition presented a fixation cross in the center

of the image and was the baseline condition of this paradigm. The center cue
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condition consisted of a fixation cross with an asterisk overlaid in the center of
the screen, and its function was to alert participants to the onset of the upcoming
target. The spatial cue condition was an asterisk displayed on the side of the
screen where the target condition was going to be presented, thus orienting the
attention of the participants towards the upcoming target. The duration of each
cue was 200 ms. In the target condition a column of five horizontal arrows point-
ing leftward or rightward were shown. The task was to recognize the direction of
the center arrow. In the congruent condition all arrows were pointing to the same
direction, whereas in the incongruent condition the center arrow was pointing in a
different direction, thus introducing a response conflict. The participants had to
press a button with the index finger of their right hand to indicate if the center
arrow was pointing to the left, and press a button with the middle finger of their
right hand if the center arrow was pointing to the right. There were two runs
in this experiment which each consisted of 36 trials. Conditions were counter-
balanced and randomly generated. The experimental paradigm was programmed
and presented to the participant using the Presentation®) software (Version 20.1,

Neurobehavioral Systems, Inc., Berkeley, CA, United States)?.

3.5.2 Analysis of fMRI Data

Preprocessing and the event-related analysis of the functional images were con-
ducted using statistical parametric mapping (SPM12, The Wellcome Centre for
Human Neuroimaging, London, UK). Participants with a frame wise displace-
ment (FDyean > 0.25) were excluded (Power et al., 2012; Siegel et al., 2014).
Our pipeline to preprocess the data was as follows: Realignment to the mean
functional imaging and unwarping of fMRI time-series, co-registration of anatom-
ical MRI to mean functional image, segmentation of anatomical images, creation

of a group specific diffeomorphic anatomical registration using exponentiated lie

3https://www.neurobs.com
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-— — -— —_—
-— — — -—
-— — -— —
-— — - —
* +
congruent incongruent

no cue center cue spatial cue

Figure 3.2: A Simplified Version of the ANT. Arrows were presented in a

column on the right or left side of the screen, instead of in a row on the upper

or lower part of the screen as seen in the original ANT arrangement. In-house

pilot behavioural experiments showed a greater effect in the orienting network of

attention with this vertical arrangement. Figure adapted from Fan et al. (2005).

Licence Number: 5271351122300 given by Elsevier and the Copyright Clearance
Center (CCC) to reuse and adapt this figure for this thesis.

algebra (DARTEL) template for normalization purposes (Ashburner, 2007), nor-
malization to Montreal Neurological Institute (MNI) space, and smoothing with a
4 mm full width at half maximum (FWHM) Gaussian Kernel. Slice time correc-
tion was not performed as a multiband sequence was used to acquire the data and
the TR used was less than 2 s, which should make the acquisition robust enough

to avoid slice timing problems (Poldrack et al., 2011).

Based on the General Linear Model (GLM), a canonical HRF was convolved on
the onsets of the events within the time series to create a statistical model of
the ANT for each subject. Design matrices of the first level analysis consisted
of five events (regressors): no cue (i.e., fixation cross), center cue, spatial cue,

congruent target, and incongruent target. Six additional movement regressors
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were also added to the design matrix as nuisance regressors. To test the ANT
paradigm, a one sample t-test including all participants was run on the fMRI data
to see the activation of the three different ANT attentional networks. The second
level analysis of the control and experimental data was performed using a two-way
repeated measurements factorial analysis of variance (ANOVA) on the contrasts
of interest: alerting (center cue — no cue), orienting (spatial cue — center cue), and
executive attention (incongruent target — congruent target). The height (intensity)
threshold was set at an uncorrected p = 0.05. Multiple comparison correction
at p < 0.05 was determined by a Monte Carlo simulation yielding a cluster size
threshold of 350 voxels (2 x 2x 2 mm?). The parameters of the simulation were the
following: SPM volume in voxels (x = 64, y = 77, z = 50), local p = 0.05, one tail,
global p = 0.05, fwhm = 2 voxels, number of iterations = 1500, t-distributed, df
= 80, number of maps = 3)*. Parameter estimates of the activated clusters were
obtained using MarsBaR (Brett et al., 2002). 2D visualizations of attentional
networks wered created with SPM and WFU _PickAtlas (Tzourio-Mazoyer et al.,
2002; Maldjian et al., 2003, 2004; Lancaster, 1997; Lancaster et al., 2000). 3D
visualizations of fMRI images with a significant interaction were created following

Madan (2015) Guide.

3.6 Behavioural Analysis

Training effects on the attentional networks were assessed by three-way mixed
ANOVAs with time (pre and post) and network conditions (i.e., no cue and cen-
tered cue as the alerting network conditions, centered cue and spatial cue as the
orienting network conditions, and congruent and incongruent target as the exec-
utive network conditions) as within-subject factors, and group (control and ex-

perimental) as a between-subject factor on the reaction times of the ANT task as

“https://github.com/mbrown/fmrimontecluster/blob/master/fMRIMonteCluster.m by
Grown, M. R. G. 2013
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seen in Kwak et al. (2019). Effects on stress levels, mindfulness, anxiety, phys-
ical well-being, and flow experience were assessed by two-way mixed ANOVAs
(with time as the within-subject factor, and group as the between-subject factor).
Data distributions of the behavioural questionnaires are visualized in raincloud
plots (Allen et al., 2019). Effect sizes were calculated using Cohen’s d (see Equa-
tion 3.1). Outliers were removed. Statistical analyses were conducted using R

(The R Foundation for Statistical Computing, Vienna, Austria)®.

Cohens'd = , where u = RTrpy — RIrpy (3.1)

RN

o = standard deviation, r = correlation coefficient,
RT = Reaction Time, TP = Time Point

3.7 Preprocessing and Analysis of DTI Data

The DTI data was first denoised with MRtrix3 (Tournier et al., 2019) and the
rest of the preprocessing was done with Explore DTI (Leemans et al., 2009)°.
The preprocessing pipeline was as follows: Denoising algorithm from MRtrx3
(dwidenoise), signal drift correction, Gibbs ringing correction, Venetian Blinds
correction, motion and EPI/eddy current distortion corrections. The preprocessed
images were fitted to the tensor model at each voxel, and FA maps were cal-
culated. The automated/atlas based ROI analysis from Explore DTI was used
to extract the FA values of important white matter tracts connecting our ROIs
(i.e., PCC, PFC, and right hippocampus). The WM tracts of interest were the
SLF (connecting the PCC to the PFC), and the right UNC (connecting the right
hippocampus to the PFC). The atlas used was the ”JHU ICBM-DTI-81 White-
Matter Labeles” atlas (Mori et al., 2005). To find the interaction effects, two-way

repeated-measures ANOVA (rmANOVA) (group as between-subjects factor and

Shttps://www.r-project.org
Shttp://exploredti.com
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time as within-subjects factor) was conducted on the FA values of the SLF and the
right UNC. The statistical tool used for this analysis was JASP version 0.16 (The
Jasp Team, Amsterdam, The Neterlands) (JASP Team, 2022). Multiple compar-
isons were corrected using the Bonferroni method (Bonferroni, 1936). Statistically
significant changes in FA where visualized using raincloud plots (Allen et al., 2019).
For illustration purposes, fiber tractography was done following the constrained

spherical deconvolution (CSD) model (Jeurissen et al., 2011; Tax et al., 2014).

3.8 CBF Quantification and ROI Analysis

CBF was quantified, corrected for partial volume effects and motion using BASIL:
Bayesian Inference for Arterial Spin Labeling” (Chappell et al., 2011, 2009; Groves
et al., 2009) on the pCASL data. The quality check of the CBF maps was based on
good gray matter depiction of CBF, and that CBF values in gray mater were ~2
times higher than the CBF values in white matter. ROI parcellation was based
on the Harvard-Oxford atlas (Makris et al., 2006; Frazier et al., 2005; Desikan
et al., 2006; Goldstein et al., 2007). To detect significant interactions a two-
way rmANOVA (group as between-subjects factor and time as within-subjects
factor) analysis was performed with the absolute CBF values of the brain regions
of interest. Outliers were removed and multiple comparisons were corrected using
the Bonferroni method (Bonferroni, 1936). Statistical analyses were conducted in

R and visualized in raincloud plots (Allen et al., 2019).

"https://asl-docs.readthedocs.io/en/latest/index.html
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3.9 Correlation Analyses

3.9.1 Correlation Analysis Between Brain Activations, ANT
RTs, and Psychological Outcomes

Based on my hypothesis and on positive statistically significant results of the
psychological outcomes (i.e., reduced stress and trait anxiety, and increased flow
experience after the mindfulness intervention), assessment of Pearson’s correlation

was performed between:

PSS and ANT-Reaction times,

trait anxiety and ANT-Reaction times,

e flow experience and ANT-Reaction times,

PSS and brain activations,

o ANT Alerting Effect (center cue RT — no cue RT) and brain activations,

ANT Alerting Cue (center cue RT) and brain activations,

trait anxiety and brain activations, and

e flow experience and brain activations

Pearson’s correlations were corrected for multiple comparisons using the Holm’s
method (Holm, 1979). Python programming language (Python Software Founda-

tion)® was used to perform correlation analysis and illustrations.

8https://www.python.org/

27


https://www.python.org/

Chapter 3. Materials and Methods

3.9.2 Correlation Analysis Between FA Changes, ANT RTs,

and Psychological Outcomes

Pearson’s correlations between FA changes in white matter tracts where the two-
way rmANOVA detected a significant interaction (i.e, the right UNC) and changes
in stress perception, trait anxiety, flow experience, and ANT RT were assessed.

Python programming language was used to perform correlation analysis.

3.9.3 Correlation Analysis Between CBF Changes and Psy-

chological Outcomes

Pearson’s correlations between CBF changes in brain regions where the two-way
rmANOVA detected a significant interaction (i.e., the ACC) and changes in stress
perception, trait anxiety, and flow experience were assessed. Pearson’s correla-
tions were corrected for multiple comparisons using the Holm’s method (Holm,
1979). Python programming language was used to perform correlation analysis

and illustrations.
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Results

4.1 Behavioural Results

4.1.1 Psychological Questionnaires

Results of questionnaires are shown in Figure 4.1. The two-way mixed ANOVA
of perceived stress and mindfulness did not yield significant interactions; however,
supporting our hypotheses, a significant reduction of stress levels [tsiess(36) =
2.25, p = 0.03, Cohen’s d = 0.46)] in addition to a slightly increase in perceived
mindfulness, were present in the experimental group (albeit with small effect sizes)
compared to the control group, where no effects were seen [tgess(36) = 1.20, p =
0.24, Cohen’s d = 0.06)]. A significant interaction [F(1,68) = 5.52, p = 0.02] was
seen in the two-way mixed ANOVA of trait anxiety. Post-hoc t-tests confirmed a
significant decrease in trait anxiety [t(35) = 3.29, p = 0.002] in the experimental
group, this significant decreased was not seen in the control group [t(34) = 0.80,
p = 0.43, Cohen’s d = -0.28]. Unpaired t-tests in the change of trait anxiety
among both groups also revealed a significantly decreased in trait anxiety in the
experimental group in which a large effect size was observed (t(68) = 2.35 , p =
0.02, Cohen’s d = -1.30). The two-way mixed ANOVA of physical well-being did

not yield a significant interaction, and while a moderate effect (Cohen’s d = 0.52)
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in improved physical well-being was observed in the experimental group, it was
not statistically significant. A significant group by time interaction was, however,
seen for the two-way mixed ANOVA of flow experience [F(1,51) = 9.254, p =
0.004]. Post-hoc paired t-tests showed a significantly increased flow experience
for the experimental group [t(24) = -4.56, p = 0.0001] not seen in the control
group [t(27) = -0.09, p = 0.93, Cohen’s d = 0.04)]. Unpaired t-tests in the change
of flow experience among both groups also revealed a significantly increased flow
experience in the experimental group in which a large effect size was observed [t(51)
= -3.04, p = 0.004, Cohen’s d = 1.46]. Control and experimental group baselines
were statistically different for the flow experience sample [t(51) = -3.24, p = 0.002]
and for the trait anxiety sample [t(73) = 2.33, p = 0.02], with the experimental
group scoring lower in flow experience and higher in the trait anxiety levels at

baseline.

4.1.2 ANT Reaction Times

Results of the ANT reaction times for the two groups (control and experimental)
that underwent fMRI scans are shown in Figure 4.2 and Figure 4.3. Strikingly,
the mean overall reaction times improved by ~ 48 ms and highly significant in
the experimental group [t(1,19) = 5.07, p = 0.00008], while they only increased
~ 23 ms in the control group; a change that was not significant [t(1,22) = 1.10,
p = 0.285], i.e., there was more than a two-fold improvement in the experimental
group compared to the control group. Nevertheless, a three-way interaction was
not found to be significant for none of the three attention conditions. However,
there was a significant two-way interaction [F(1,39) = 6.811, p = 0.01] between
group and network condition (i.e., centered cue and spatial condition) for the
orienting of attention. Post-hoc two-way ANOVA analysis revealed a significant
main effect of group in the spatial cue condition [F(1,163) = 4.84, p = 0.03].
Furthermore, and not surprisingly, main effects of network condition were also

seen for the alerting condition (no cue vs. centered cue) [F(1,39) = 11.097 , p =
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0.002] and executive condition (incongruent vs. congruent)[F(1, 40) = 34.39, p <
0.001], indicating that the more complex condition required longer reaction times.
As expected, main effects of time were seen for each of the attention condition [F(1,
39) Aterting = 16.469, p < 0.001; F(1,39)0pienting = 21.16, p < 0.001; F(1,40) grecutive
= 15.53, p < 0.001], indicating practice effects.

As can be seen from the effect sizes per condition for the difference in reaction
times between the two timepoints in each group in Table 4.1, the effects of the
intervention were rather unspecific, in that reaction times strongly improved for
the experimental group in all conditions, and therefore, no specific effect on any of
the attention networks could be seen. Also, the impact of the training in accuracy

was not able to be measured, as strong ceiling effects were present in both groups.

Table 4.1: ANT effect sizes per condition reflecting the difference in reaction times
between the two timepoints for each group.

Cue Target (jc(());en,zi;
Yoo T U s
CENTER (o0 4
{0

C = congruent; I = incongruent
*The Cohen’s d (d) effect size scale is: negligible effect (d < 0.2), small effect (0.2 < d < 0.5),
moderate effect (0.5 < 0.8), and large effect (d > 0.8) (Cohen, 1988, 1992).

4.2 Imaging Results
4.2.1 fMRI Results
4.2.1.1 Imaging of Attentional Networks

Figure 4.4 shows the results of a sample t-test including all participants to see

the activation of the alerting network of attention and a comparison with previous
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Reaction Times (RT) for all ANT-Conditions

RT (ms)
825 T
775 T
725 +
675 +
625 T
575 +
525 +
475 +
425

TP1 mTP2 TP1 mTP2

CONTROL EXPERIMENTAL
GROUP

Figure 4.3: ANT Mean Reaction Time (mean £+ SD) in ms of the control and
experimental groups before and after the intervention over all conditions.

literature. Figure 4.5 shows the results of a sample t-test including all participants
to see the activation of the orienting network of attention and a comparison with
previous literature. And, Figure 4.6 shows the results of a sample t-test including
all participants to see the activation of the executive network of attention and a
comparison with previous literature. Reproducibility of the imaging of the atten-
tional networks as in Fan et al. (2005) was only possible for the alerting network

of attention (see Figure 4.4).

4.2.1.2 Imaging Results of the Two-way Repeated-Measures Factorial
ANOVA

Results of the whole brain two-way repeated-measures factorial ANOVA (see Fig-
ure 4.7 and Table 4.2) demonstrated a significant training-associated increase in
activation in the superior frontal gyrus (SFG), Brodmann area 31 or PCC, and the

right hippocampus in the experimental group compared to the control group for
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Fan et al, Neuroimage, 2005 Our Data
(16 participants) (42 participants scanned twice)
6 runs 2 runs

Figure 4.4: Alerting Network of Attention. Masked regions: right superior

temporal gyrus, brain stem, thalamus, parietal lobe, left fusiform, left inferior frontal

gyrus, vermis 6. Licence Number: 5271351122300 given by Elsevier and the Copy-

right Clearance Center (CCC) to reuse and adapt Figure 2 of Fan et al. (2005) for
this thesis.

the alerting condition. Post-hoc t-tests did not show significant results in these ar-
eas; however, box plots (see Figure 4.8) of the parameter estimates of the activated
regions showed decreased activation in the control group and increased activation
in the experimental group after the intervention training in the aforementioned
three brain regions. The other attention conditions (i.e., orienting and executive

attention) showed no significant interaction results.

4.2.2 DTT of the Right UNC and SLF

Results of the two-way rmANOVAs via JASP showed a significant training-associated
increased in FA in the right UNC [F(1,42) = 6.047, p=0.018] of the experimental
group compared to the control group (see Figure 4.9), which survived Bonferroni
correction. Results of the two-way rmANOVA on the SLF yielded no significant

interaction. Increased FA values in the right uncinate fasciculus might indicate
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Fan et al, Neuroimage, 2005 Our Data
(16 participants) (42 participants scanned twice)
6 runs 2 runs

Figure 4.5: Orienting Network of Attention. Masked regions: fusiform gyrus,

left precental gyrus, superior parietal lobe, left superior frongal gyrus, right post-

central gyrus. Licence Number: 5271351122300 given by Elsevier and the Copyright

Clearance Center (CCC) to reuse and adapt Figure 2 of Fan et al. (2005) for this
thesis.

Fan et al, Neuroimage, 2005 Our Data
(16 participants) (42 participants scanned twice)
6 runs 2 runs

Figure 4.6: Executive Network of Attention. No masked regions. Licence
Number: 5271351122300 given by Elsevier and the Copyright Clearance Center
(CCC) to reuse and adapt Figure 2 of Fan et al. (2005) for this thesis.
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. Vi U
x4 \

4 : 2 b g

Peak Coordinates

@ Superior Frontal Gyrus Left
(-12, 44, 46)

(] Brodmann Area 31
(12, -48, 36)

] Right Hippocampus
(34, -36, -8)

Figure 4.7: fMRI neuroimaging results of the significant interaction of the two-way
repeated measurements factorial ANOVA of the alerting network of attention.

increased connectivity between the right hippocampus and frontal areas of the

brain. Figure 4.10 and Figure 4.11 show an example of the right UNC for one

control and experimental participant after the training, respectively.

4.2.3 Perfusion Imaging With ASL

Global CBF values in GM of the control and experimental groups are reported in

Table 4.3. Results of the two-way rmANOVAs on global CBF yielded no significant
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Right UNC Rainclouds with Interaction Plots

0.5

0.4
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B3 exp
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!
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0.365
|

0.355
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Figure 4.9: UNC FA Rain Cloud and Interaction Plot

interactions. Figure 4.12 and Figure 4.13 show an example of the calculated CBF

maps for one control and experimental participant, respectively.

However, in the ROI analysis, results of the two-way rmANOVAs showed a signifi-
cant training-associated decrease in CBF in the left thalamus [F(1,40) = 5.01, p =
0.031] and ACC [F(1,38) = 8.29, p = 0.007] of the experimental group compared to
the control group (see Figure 4.14). Post-hoc paired t-tests showed no significant
differences for the control group [t irhatamus(21) = -0.98, p = 0.34; tacc(21) =
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Figure 4.10: Tractography of the right UNC of a participant in the control group
after the health-enhancement training (female, age: 23 years old).

Table 4.3: Global GM CBF values of our participants before and after the inter-

vention
Group Time Point CBF (mean + sd)
(ml/100g/min)
Control before 374 £7.3
Control after 382+73
Experimental before 38374
Experimental after 35.1£7.0

3 outliers were removed.

-0.99, p = 0.33], but a decreased CBF in the experimental group after the training
[tie ferhatamus(19) = 2.30, p = 0.033; tacc(17) = 3.00, p = 0.008].

Control and experimental group baselines were not statistically different for the

ACC and left Thalamus CBF measurements. The significant interaction in the
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Figure 4.11: Tractography of the right UNC of a participant in the experimental
group after the mindfulness training (male, age: 32 years old).

ACC marginally survived the Bonferroni correction, while the significant interac-
tion in the left thalamus did not. Results of the two-way rmANOVAs for the rest
of the analysed regions (i.e., frontal lobe, superior parietal lobule, insula, putamen,

caudate, right thalamus, and right amygdala) showed no significant interactions.

4.2.4 Others: Voxel-Based Morphometry (VBM) and Resting-
State fMRI Analyses

Results of the VBM analysis generated based on the T1-weighted images and
resting-state fMRI are reported elsewhere [Julia Schulz, Master Thesis; Bremer

et al. (2022)].
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control

CBF (ml/100g/min)

Figure 4.12: CBF maps of a participant in the control group after the health-
enhancement training.

4.3 Correlations Between Brain Activations in
the Alerting Network of Attention, ANT Re-

action Times, and Pyschological Outcomes

There was a significant negative correlation (r = -0.51, p = 0.02) between PSS
scores and the activation in the right hippocampus after the mindfulness inter-
vention in the experimental group, that marginally survived the Holm’s correction

method for multiple comparisons (see Figure 4.15). This correlation was not seen
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experimental

CBF (ml/100g/min)

Figure 4.13: CBF maps of a participant in the experimental group after the
mindfulness training.

in the experimental group before the intervention nor in the control group at any
of the two timepoints (see Figure 4.16). The correlation between the change in
PSS scores and change in mean ANT reaction times in the experimental group (r
= 0.36, see Figure 4.17) slightly missed significane (p = 0.059, one-tailed). There
was no significant correlation between ANT Reaction Times and the PSS scores
nor between the Alerting Effect (no cue — centered cue) and the activated brain
regions (SFG, Brodmann area 31, and right Hippocampus) before and after the

intervention. However, there was a positive correlation (r = 0.42, see Figure 4.18
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between the percentage change in activation at the SFG and the change in reac-
tion times of the centered cue condition that missed significance (p = 0.07) in the

experimental group, not seen in the control group.

15 Pe)
k] )

c 10 @ ¢
0
o
=
5 0.5
<
v
a
E 00 n
n
Y
Q
a 0.5 -
- o

-1.0 -

)
P}
8 10 12 14 16 18 20 22
PSS Score

Figure 4.15: Correlation between PSS scores and the right hippocampus after the
mindfulness training.

A significant positive correlation (r = 0.52, p = 0.02) was found between trait
anxiety scores and the activation in the right hippocampus in the control group
before the intervention, this correlation was not seen after the intervention and
neither in the experimental group before the mindfulness training. However, a
significant negative correlation (r = -0.46, p = 0.04) was found in the experimental
group after the training (see Figure 4.16). The correlation in the control group
marginally survived Holm’s correction, while the correlation in the experimental

group did not.

Significant positive correlations between flow experience measurements and right
hippocampus (r = 0.49, p = 0.047), Brodmann area 31 (r = 0.64, p = 0.006),

and SFG (r = 0.6, p = 0.01) were found in the experimental group after the
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mindfulness intervention in the alerting condition. These correlations were not
seen in the experimental group before the intervention nor in the control group at
any of the two timepoints (see Figure 4.16). These previous correlations survived

Holm'’s correction for multiple comparison.

No significant correlations were found between trait anxiety and overall ANT
reaction times, nor between flow experience and overall ANT reaction times (see

Figure 4.17).

4.4 Correlations Between Psychological Outcomes,
ANT RTs, and FA Values in the Right UNC

No statistically significant correlations were found between the change in FA values
in the right UNC and the change in perceived stress, trait anxiety, flow experience,

and ANT RT between the control nor the experimental group (see Figure 4.19).

4.5 Correlations Between Psychological Outcomes
and CBF Values in the ACC

Figure 4.20 shows a significant positive correlation (r = 0.43, p = 0.045) between
the percentage change of perceived stress and the percentage change in CBF values
in the ACC in the control group, not seen in the experimental group (r = 0.13,
p = 0.62). When accounting for multiple comparisons, this correlation did not
survived the Holm’s correction. No significant correlations were found between
trait-anxiety and CBF in the ACC, nor between flow experience and CBF in the
ACC.
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Figure 4.16: Correlation between PSS, flow experience, trait anxiety, and brain
activations accross the different time points and for the control and experimental
groups.
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Correlation Matrix between the Overall Change in the ANT RT
Vs
the Change in Stress, Anxiety, and Flow in the Control Group
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Correlation Matrix between the Overall Change in the ANT RT
VS
the Change in Stress, Anxiety, and Flow in the Experimental Group
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Figure 4.17: Correlation between PSS, flow experience, trait anxiety, and ANT
reaction times across the different time points and for the control and experimental
groups.
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Correlation Matrix between the Percentage Activation Change
Vs
Percentage MID_CUE RT Change in the Control Group 100
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Figure 4.18: Correlation between the percentage change in brain activations and
percentage change of the reaction times of the alerting cue for the control and
experimental groups.
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Correlation Matrix between the Change in FA of the R_UNC
VS
the Change in Stress, Anxiety, Flow, and ANT RT in the Control Group
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Correlation Matrix between the Change in FA of the R_UNC
Vs
the Change in Stress, Anxiety, Flow, and ANT RT in the Experimental Group

100
FA_R_UNC 01 033 038 075
-0.50

STRESS - 0.25 0.46
-0.25
ANXIETY - 0.1 0.16 -0.00
--0.25

FLOW - 0.33 048 01
--0.50
ANT - .38 046 0.16 01 -0.75
--1.00

| | | |
FA_R_UNC STRESS ANXIETY  FLOW ANT
Figure 4.19: Correlation between changes in stress, trait anxiety, flow experience,

ANT RT and changes in FA in the right UNC of the control and experimental groups
after the intervention.
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Correlation Matrix of the Change in ACC CBF
VS
Change in Psyhological Outcomes in the Control Group
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Correlation Matrix of the Change in ACC CBF
Vs
Change in Psychological Outcomes in the Experimental Group
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Figure 4.20: Correlation between changes in stress, trait anxiety, and flow experi-

ence and changes in CBF in the ACC in the control and experimental groups after
the intervention
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Discussion

5.1 Summary of Findings

This study demonstrated that, compared to an active control health-enhancement
training, a 31-day online mindfulness meditation training that required relatively
little time of the participants per day (about 15 mins) led to greater improvements
in measures of mental health (i.e., reductions in anxiety and stress levels), state

of mind (i.e., increased flow experience), and attentional performance.

On the neuronal level, it led to stronger brain activation in the PCC, left superior
frontal gyrus, and right hippocampus during the alerting condition of attention
of the ANT. PCC, right hippocampus, and SFG activations in the experimental
group were positively correlated with flow experience, and only the right hippocam-
pus activation in the experimental group was negatively correlated with stress and
anxiety. Increased FA in the right UNC, and decreased CBF in the ACC were also

seen in the experimental group as a result of the mindfulness training.
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5.2 ANT fMRI, Psychological Outcomes, and FA
Changes

In my study, I found that upon completing a 31-day online mindfulness training
course, improvements in attentional performance in addition to an increased acti-
vation in the left superior frontal gyrus, Brodmann area 31 (PCC), and right hip-
pocampus could be observed. A significant group by time interaction was found for
the trait anxiety, in which anxiety levels were reduced after the mindfulness train-
ing. Paired t-tests of decreased stress levels, decreased anxiety, and increased flow
experience reached statistical significance in the experimental group. Eventhough
not statistically significant, small and moderate effects in improving mindfulness
and physical well-being were observed respectively, after the mindfulness training

had been completed.

Although the group by time interaction in perceived stress was not significant -
most probably due to the short duration of our training and the stress baseline
of our participants - there was a significant decrease in perceived stress levels in
the experimental group after the mindfulness training, not seen in the control
group. Previous MBSR-studies have also shown that psychological outcomes can
be positively moderated by the number of treatment /training hours (Khoury et al.,
2015; Sedlmeier et al., 2018); therefore, as the present mindfulness training was
very short compared to the standard MBSR program, I expect that by increasing
the duration of our training, larger effects on the observed variables could be
obtained. However, the moderation of baseline characteristics on intervention
responses should also be considered, as it has been shown that individuals with
high distress levels show larger changes (i.e., high-distressed individuals are more
sensitive to mindfulness trainings) than well-functioning individuals that undergo

the same amount of training hours (Rosenkranz et al., 2019).

The observed significant increase of flow experience in the experimental group was
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a very interesting finding. A recent study conducted by Xie (2021) on flow expe-
rience of members of a work team environment reported that the most proactive
workers had higher team mindfulness and flow experience, and this same study
found a positive correlation between flow experience and team mindfulness. The
presented online mindfulness training may be very suitable for work environments
as it increases individual flow experience which can enrich the working performance
of members of a team. In addition, this increase in flow was positively correlated
with increased activation in the right hippocampus, Brodmann area 31, and SFG.
Although it is difficult to interprete these results, as the neurocognitive processes
behind the state of flow are still an open area of research (van der Linden et al.,
2021), these correlations indicate a close association between changes in activation
and changes in mental state (i.e., with those subjects showing an increase in flow

experience after the training exhibiting also an increase in brain activation).

Moreover, the behavioural results of the ANT showed larger improvements in
most measures in the experimental group compared to the control group, thereby
indicating that the mindfulness training positively affected attention and executive

function.

On the neuronal level, our 31-day mindfulness training was associated with a
significant increase in PCC, SFG, and right hippocampus activation during the
alerting mode of attention. The PCC, which is considered to be a major hub of
the default mode network has previously been associated to be an area of the brain
that is very susceptible to the effects of mindfulness meditation (Bilevicius et al.,
2018; Creswell, 2017; Kral et al., 2019; Mai & Paxinos, 2012). A recent fMRI
cross-sectional study between regular meditators of attentional training medita-
tion traditions (Zen, Kriya yoga, and mindfulness of breathing) and nonmedita-
tors showed increased PCC activation during an adapted Stroop Word-Color Task
(SWCT) (i.e., a sustained attention task) in the meditation practitioners, which
goes in line with the increased activity seen in the PCC during our alerting con-

dition (Rodrigues et al., 2018). While the PCC is connected to the DLPFC, the
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thalamus, and the hippocampus (amongst other brain regions), it additionally has
strong connections to the anterior part of the CC, which is a region important
for executive functions that has also been found to be susceptible to the effects of
mindfulness meditation (Fox et al., 2016; Kwak et al., 2019; Pernet et al., 2021). In
fact, there is also evidence that experienced meditators have an increased connec-
tivity between the PCC, ACC and DLPFC (Brewer et al., 2011). This interplay of
brain regions is relevant for several cognitive processes. Specially, the PCC is also
known to play an important role in the frontoparietal control network in addition
to the dorsal attention network, which are two networks critical for visuospatial
attention (Leech & Sharp, 2014; Leech & Smallwood, 2019; Somers & Sheremata,
2013).

Similarly, our observed activations in the SFG, can be linked to previous findings
which associate SFG activations with higher cognitive functions and, more specifi-
cally, with attentional shifting and spatial cognition (du Boisgueheneuc et al., 2006;
Nagahama et al., 1999). Lesion studies have also been able to demonstrate longer
reaction times in patients with SFG lesions in the Flanker Task (Usami et al.,
2013). Therefore, our findings of increased SFG activation can be associated with
faster reaction times found in the alerting cue condition in our experimental group,
which, once again, corroborates the relevance of these regions in the context of
visuospatial attention, thereby indicating that our mindfulness training had pos-
itive effects on attention on the behavioural level reflected in specific activation

increases on the neuronal level.

Finally, there was an interesting significant negative correlation observed between
PSS scores and activation of the right hippocampus after the mindfulness inter-
vention. The hippocampus is a key brain area responsible for spatial attention and
spatial mapping (L. Nadel, 2008), with the dorsal hippocampus playing an impor-
tant role in cognitive functions and the ventral part modulating the behavioural
adaptation to stress (Fanselow & Dong, 2010). Previous works have shown that

there is a deactivation of the limbic system (i.e., hippocampus, hypothalamus,
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medio orbitofrontal cortex, and ACC) during psychosocial stress, triggered by a
significant increase of cortisol (Pruessner et al., 2008). And later, it was also shown
that this response is different in stress-responders (people with increase cortisol
segregation during stressful situations) than in stress-non-responders (people with
decrease cortisol levels during stressful situations) (Khalili-Mahani et al., 2010).
In my experimental sample, I did see that the mechanism of more activation of the
hippocampus was in line with lower PSS scores after the intervention, implying
that after the mindfulness training an increased hippocampus activation is closely
related to a decreased stress level, also in such a non-daily and rather stressful

situation of an MRI experiment.

Other mindfulness studies on the hippocampus have shown functional and struc-
tural changes upon engaging in mindfulness meditation (Gotink et al., 2016; Holzel
et al., 2011; Sevinc et al., 2020, 2019). Sevinc et al. (2019) even reported that
functional changes in the hippocampus correlated with trait-anxiety; a finding
that was also seen in our experimental group (see Figure 4.16) and not surpris-
ing as stress and anxiety are closely related. Additionally, a study investigating
structural changes in meditation practitioners found that the FA of white matter
tracts surrounding the dorsal part of the hippocampus increased in meditators
compared to non-meditators (Laneri et al., 2015). Similarly, another study using
diffusion tensor imaging and probabilistic tractography detected a significant in-
crease in FA in the UNC following mindfulness training and thus in a biger tract
connecting, amongst others, the hippocampus with frontal regions (Holzel et al.,
2016). I was able to reproduce this finding in my study (see Figure 4.9). Moreover,
voxel-based morphometry investigations on mindfulness meditation practitioners
vs non-practitioners have shown greater gray matter concentration in the right
hippocampus of meditators (Holzel et al., 2008). Our results portraying increased
meditation training-related activations in the right hippocampus and increased FA
in the right UNC, together with earlier findings demonstrating significant struc-
tural effects of mindfulness training on the hippocampus suggest that, apart from

the PCC, the hippocampus also represents a brain region which is susceptible
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to meditation and which, most probably, works according to the principle “form
follows function” (i.e., increases in medium- or long-term activation lead to alter-

ations in grey and white matter structure).

The UNC is a major association white matter pathway of the limbic system with
afferent and efferent fibers (i.e., biderectionality) with a ventral part connecting
the amygdala and hippocampal gyrus with the orbital cortex, and a dorsal section
connecting the temporal pole cortex with the rostral end of the middle frontal
gyrus (Wycoco et al., 2013; Kier et al., 2004). There are some DTI studies that
argue that there is no concrete evidence that the UNC connects the hippocampus
to frontal areas of the brain (Von Der Heide et al., 2013); however, based on post-
mortum studies there is evidence that the UNC do connect the hippocampal gyrus
with the pre-frontal cortex (Kier et al., 2004). Another important characteristic of
the UNC is that it continues to develop in adults older than 30 years old, reaching
its developmental peak at the age of 35 (Lebel et al., 2008, 2012). This large time
span in its development makes the UNC fasciculus a pathway more prompt to FA
changes driven by mindfulness trainings. The right UNC has also been strongly
linked to emotional empathy, and abnormalities in its development have been seen
in patients with psychiatric illnesess (Oishi et al., 2015; Von Der Heide et al.,
2013); therefore, mindfulness meditation trainings can also be used as a mean
to decreased the risk of developing psychiatric illnesses in young populations as
seen in mindfulness interventions that helped protect mental health during the

COVID-19 pandemic (Zhu et al., 2021; Sun et al., 2021; Antonova et al., 2021).

Our correlation analyses on DTI images between FA in the right UNC, psycho-
logical outcomes, and ANT RT could not revealed that these changes in white
matter microstructure (i.e, increased WM integrity) might underlie the increased
training-related activation within the hippocampus and PFC in association with
attention. However, the role that the right UNC plays on emotional process such

as empathy might explain why I saw increased changes in FA in the right UNC
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of our experimental group as previous studies have already reported an impor-
tant correlation between mindulness meditation practice and increased empathy

(Luberto et al., 2018).

5.3 ACC Activation/CBF Changes and Its Re-
lationship With Stress

A recent review of 49 neuroimaging studies published between 2000 and 2020 on
the effects of mindfulness and meditation on the CC in the healthy brain reported
significant effects specifically on the ACC in 55% of these studies (Zsadanyi et al.,
2021). Kwak et al. (2019) was able to demonstrate that after a four-day intensive
Templestay meditation training naive meditators showed increased activity in the
ACC while performing the executive condition of the ANT; however, this finding
contradicts a previous study where Kozasa et al. (2018) reported a reduced ACC
activation on naive meditators after a mindfulness training while performing a
SWCT. In this study, naive meditators showed a reduced ACC activation during
the incongruent condition (i.e., during an executive attention task) of the SWCT
after a seven-day Zen intensive meditation retreat, whereas the experienced med-
itators showed an increased ACC activation. At resting state, Tang et al. (2015)
reported an increased CBF in the subgenual/adjacent ventral ACC in young (age
= 23 + 2 years) naive meditators after a five-day (30-min per day) IBMT training.
In contrast, our CBF analysis at resting state showed a significant CBF decreased
in the ACC of the experimental group (age = 33 + 8 years) after our 31 day
(15-min per day) web-based mindfulness training. While it is difficult to conclude
if mindfulness training increases or decreases ACC activation/CBF, a change in

the ACC function after a short mindfulness training can reliable be reported.

This study furthermore investigated the role of cerebral perfusion in changes in
perceived stress after our web-based mindfulness training. It is known that stress-

ful events trigger increases in CBF (Bryan, 1990). Participants undergoing MRI
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scans, given the characteristics of the setting and noisy environment, are unfor-
tunately exposed to a stressful situation. In our study, results of the pCASL
imaging at resting state showed a significant decreased CBF in the ACC cortex
of participants in the experimental group as a consequence of the mindfulness
training. And, when I had a closer look at the correlation between CBF changes
in the ACC and perceived stress changes in both the experimental and control
group, I found a positive significant correlation in the control group not seen in
the experimental group. This result or lack of correlation between perceived stress
and the ACC CBF values in the experimental group might indicate that after the
mindfulness training participants showed a less reactive response towards stress in
this area of the brain. Previous studies have already shown that the ACC plays
an important role in regulating cardiovascular reactivity to behavioural stressors
(Critchley et al., 2003; Gianaros et al., 2004). And, a follow up study already
linked the ACC to be involved more specifically in the regulation of blood pres-
sure as a stressors-evoked response. (Gianaros et al., 2005). Moreover, a most
recent study by the same group showed how this stress related reactivity in the
ACC can lead to cardiovascular diseases (Gianaros & Wager, 2015). The reduced
reactivity in the ACC to stressors shown in this thesis might be one mechanism of
action on how mindfulness meditations trainings help in the treatment of cardio-
vascular diseases (Nardi et al., 2020). However, more research has to be done to
show reproducibility of this finding, and therefore confirm this hypothesis. These
results also showed the importance of incorporating CBF measurements in mind-
fulness studies to investigate and explore neurological pathways behind the positive

impact of mindfulness meditation on well-being.

5.4 Limitations

In the current study, one limitation is the small sample size in the neuroimaging
data. Finding participants that fit the requirements to undergo an MRI scan is

not an easy task, 16 of our 72 recruited participants were not suitable for an MRI.
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This is more than 20% of my main sample size. In addition, given the nature of
longitudinal studies, I had an attrition rate of ~10%. And, technical issues such
as malfunction of the scanner or too much motion from the participants while
being scanned reduced our sample size in another 15%. Therefore, I was able
to include only 60% of the recruited participants in my final MRI sample (see
Figure 3.1 for a more detailed overview of my sample size). Also, the non-normal
distribution of my sample size regarding age range might have had some influence
in the neuroplastic and CBF changes observed between the older and younger
participants, which might have had affected the significance and effect sizes of my
results. Future studies should take care in satisfying normal distributions of the
sample size or used stratified analysis to determine effects of age on mindfulness

trainings, as some previous studies have already reported different results among

these groups (Shook et al., 2017; Mahlo & Windsor, 2021).

Anoter limitation was the inability to proof the compliance of participants with the
respective training; this might have had and impact in the quality of our study,
and therefore decreased the effect size of our results. Nonetheless, this study
contributed to our understanding of mindfulness meditation neural mechanisms
of action, its impact on pyschological outcomes, and improvements in cognition
(i.e., attention). Future studies should incorporate online tracking functionalites or

control questions within the training to assure training compliance of participants.

Unfortunately regarding our MRI acquisition, no cardiac or respiratoriy gating
was used to remove pulsation/motion artifacts, or physiological noise. While this
gating might not be that relevant for structural measurements, it is indeed strongly
adviced in the acqusition of fMRI data to reduce noise sources; however, its im-

plementation is challenging (Bulte & Wartolowska, 2017).

In our behavioural analysis, the differences in our baseline samples measuring trait
anxiety and flow experience were not considered in the ANOVA analysis which
could have introduced random differences between groups. A future approach to

correct for this bias should incorporate the use of baseline scores as a covariate in
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the model, i.e., running an ANCOVA instead of an ANOVA. Moreover, the use of
a passive control group should be considered as the active training in this study
might have had some infulence on the psychological outcomes such as stress and

well-being that might have overshadowed the effect of the mindfulness intervention.

Finally, our CBF analysis was based on absolute CBF values which does not ac-
count for CBF changes caused by caffeine intake, time of day when the measure-
ment was taken or other unknown factors that might have affected CBF values.
To eliminate the previous bias and corroborate the findings presented at this work,
the same analysis should be run on relative CBF, i.e., by normalizing CBF values
to another brain structure or to the global CBF value. And, to have a better
understanding of the CBF changes induced by mindfulness practice, shorter and
longer mindfulness interventions within the context of longitudinal studies with

control groups (i.e., passive and active) should be explored.

5.5 Conclusions and Outlook

Our results indicate that a web-based mindfulness training has the potential to
alter state of mind (i.e., mindfulness, flow experience, anxiety, and perceived stress
level), cognitive performance (i.e., attention mechanisms), and underlying brain
correlates (i.e., CBF and FA). Specifically, the brain of the experimental group
showed greater activation in the SFG, PCC, and right hippocampus during the
alerting condition of the attention network task, increased FA in the right UNC,
and decreased CBF in the ACC at resting state.

My study showed that an intensive, standardized, short mindfulness training al-
ters the CBF baseline of brain structures susceptible to meditation such as the
ACC and Thalamus. CBF reductions in the ACC presumably indicated a less re-
active response to stress after a mindfulness training. Also in this study, I showed
that the decreased in stress in our experimental group is a precursor of improved

brain function, more specifically by improving alerting attention. And finally, this
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increased in functionality might have reflected changes in white matter tracts con-
necting the underlying brain regions. However, more research has to be done to
investigate the effects of the right UNC on attention, as the current study was
unable to detect a significant correlation between the right UNC FA values and

the ANT scores.

As future directions, I prospectively plan to employ the current web-based mind-
fulness training in clinical populations, such as in obsessive-compulsive disorder
(OCD) and attention-deficit/hyperactivity disorder (ADHD) patients, hoping to
see similar effects predominantly on stress, anxiety, flow experience, and cognitive
capacities. As well as to better understand the neurological mechanisms of action
behind these changes, and how these can help in the treatment and prognosis of

psychiatric diseases/disorders.
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Appendix A

A.1 Mindfulness Training

Table A.1 shows the structure and content of the mindfulness meditation training.

A.2 Health-Enhancement Program

Table A.2 shows the structure and content of the health-enhancement program.



Appendix A. Mindfulness Training

Table A.1: This is the structure and content of the mindfulness meditation train-

ing.

Session Format

Theory

Practice

—_ =
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N NN = = = =
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23
24
25
26
27
28
29
30
31

Video
Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video

Audio
Audio
Video
Audio
Audio
Video
Audio
Audio
Video

Introduction to Mindfulness
NA
NA
Arriving in Presence
NA
NA
Arriving in the Body
NA
NA
Subjectivity of Perception
NA
NA
Comunicating Mindfully
NA
NA
Non-judgement
NA
NA
Dealing with Stress
NA
NA
Turning Towards instead
of Turning Away
NA
NA
Positive Qualities
NA
NA
Decentring
NA
NA
Reflecting the course

Mindful Breathing A
Mindful Breathing A
Mindful Breathing A
Mindful Breathing B
Mindful Breathing B
Mindful Breathing B
Bodyscan A
Walking Meditation
Bodyscan A
Bodyscan B
Walking Meditation
Bodyscan B
Mindful Attention to Body Sensations
Mindful Attention to Body Sensations
Mindful Attention to Body Sensations
Mindful Attention to Body Sensations
Mindful Listening
Mindful Listening
Mindfully Approaching Emotions
Mindfully Approaching Emotions
Mindfully Approaching Emotions
Turning Towards instead
of Turning Away
Approaching Unpleasant Feelings
Awareness of Thinking
Loving Kindness
Loving Kindness
Loving Kindness
Open Monitoring
Open Monitoring
Silent Meditation
Silent Meditation

NA: not applicable
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Appendix A. Mindfulness Training

Table A.2: This is the structure and content of the health-enhancement program.

Session Format Theory
1 Video Sleep
2 Audio Chronic Pain
3 Audio Light Exposition and Health
4 Video Sleep Disturbances
5 Audio Body Memory
6 Audio Migraine
7 Video Burnout
8 Audio Nutritional Supplements
9 Audio Social Inequality and Health
10 Video Sore Muscles/Vegan Diet
11 Audio Time Perception
12 Audio  Gender Specific Health Experience
13 Video Vitamins
14 Audio Health Impacts of Dieting
15 Audio Aging
16 Video Sugar
17 Audio Maintaining a Diet
18 Audio Self-Deceit
19 Video Raw Foods
20 Audio Migration and health
21 Audio Epigenetics
22 Video Sensible Footwear
23 Audio Obsessive-Compulsive Disorder
24 Audio Self-Efficacy
25 Video Busting Breakfast Myths
26 Audio Cardiovascular
27 Audio Hypnotherapy
28 Video Staying Active in the Office
29 Audio Negative Empathy
30 Audio Pain Perception
31 Video Physical Activity
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