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Abstract

Agricultural production and yields in developing countries have been lower than those
of developed countries over the past few decades due to poor agronomy practice,
possibly because of (among other reasons) the relative under-utilization of improved
agricultural technologies. There is a need to empower agricultural advisories with
data-based, farm-specific ‘diagnostics’ to characterize farm performance and identify
the reasons of yield-gaps, leading to more customized advisories and potentially higher
adoption of agricultural technologies. Further, cost-effective solutions can be developed
to increase water use efficiency and productivity in agriculture, based on the synergies
of low-cost soil moisture measurement and parsimonious water-driven crop modeling.

This study proposes a data-based approach to ‘diagnose’ nutrient and water related
agricultural performance quantitatively, to facilitate advisors in developing farm-centric
advisories. A user-friendly Farm Agricultural Diagnostics (FAD) tool, developed in
Microsoft Excel VBA, uses farmer surveys and soil testing to quantify current agricultural
performance, classify farms into different performance categories, and visualize farm
performance within a user-friendly interface. The advisory diagnostics approach is
tested in Kanpur (India), which represents an intensively managed rural landscape in
the Ganga river basin.

Low-cost soil moisture measurements can potentially drive technological tools to
improve water management in agriculture. Two low-cost capacitive, and two very low-
cost resistive soil moisture sensors were tested in laboratory conditions to characterize
their performance in irrigation management applications. Sensors were calibrated in
different repacked soils, and tested to evaluate accuracy, precision and sensitivity to
variations in temperature and salinity. The capacitive sensors were additionally tested for
their performance in liquids of known dielectric constants, and the developed calibration
equations were compared with those provided by the manufacturer. While the very
low-cost sensors were unsuitable for irrigation management applications, the low-cost
SM100 sensor (manufactured by Spectrum Technologies, Inc.) was established as a
robust, field ready sensor due to its more consistent performance in soils and reasonable
response to variations in temperature and salinity.

Low-cost soil moisture sensing and water-driven crop-growth modeling can be com-
bined to develop irrigation management tools. However, to be applied in data-scarce
regions, low-cost soil moisture measurements need to be cost-effective and calibrated,
and crop models need to be parsimonious in terms of data requirements. The low-cost
SM100 sensor was calibrated in laboratory and field conditions (against a superior
sensor, the SMT100 manufactured by UGT GmbH.), revealing that superior calibration
was possible in field conditions, using the dry-down curve, and while avoiding over-
fitting. The field calibrated piece-wise linear regression function was selected as the
best calibration technique to improve SM100 performance in the field. Low-cost sensor
data were used with the MATLAB based open-source version of the parsimonious FAO
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Abstract

AquaCrop model, to study the impact of using calibrated soil moisture data to calibrate
crop model soil hydraulic properties on crop model performance. This experiment was
conducted on an experimental field in Kanpur during the 2018 wheat cropping season.
The soil moisture simulation of AquaCrop-OS improved significantly by incorporating
calibrated SM100 data. While there were no significant changes in biomass prediction,
crop water productivity was significantly improved by using calibrated SM100 data.

Irrigation schedules can be generated under the assumption that no water stress occurs
as long as evapotranspirative demand is met. FAO AquaCrop simulates four water
stresses and corresponding thresholds which trigger the respective stresses. Irrigation
was triggered when these thresholds were reached, and this FAO AquaCrop irrigation
strategy was compared with full irrigation conditions in a simulation based study. While
no water stress occurred in both strategies, the full irrigation strategy simulated 1.5
times more irrigation applications (equivalent to 111 mm) and lower water productivity
than the FAO AquaCrop strategy.

Adopting new irrigation strategies requires behavioral change which may be partly
motivated by cost-effectiveness, but it is important to develop solutions with farmers
with design considerations based on the socio-economic characteristics, agricultural risk
taking attitude and previous experience of the farmers, to steer them towards improved
water management practices.
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Zusammenfassung

In den letzten Jahrzehnten waren aufgrund schlechter agronomischer Praktiken die
landwirtschaftliche Produktion und die landwirtschaftlichen Erträge in den Entwick-
lungsländern niedriger als die der entwickelten Länder. Möglicherweise lag es (unter
anderem) an relativ geringer Nutzung verbesserter landwirtschaftlicher Technologien.
Es ist notwendig, landwirtschaftliche Beratungsstellen mit datenbasierten, betriebsspezi-
fischen Diagnosen auszustatten, um die Leistung landwirtschaftlicher Betriebe näher zu
charakterisieren und die Gründe für Ertragslücken zu identifizieren, was zu kundenspe-
zifischeren Beratungsangeboten und potenziell höherer Akzeptanz landwirtschaftlicher
Technologien führen wird. Darüber hinaus können kostengünstige Lösungen entwickelt
werden, um die Wassernutzungseffizienz und Produktivität in der Landwirtschaft zu
steigern, basierend auf den Synergien von kostengünstiger Bodenfeuchtemessung und
sparsamer wassergesteuerter Nutzpflanzenmodellierung. Diese Studie schlägt einen
datenbasierten Ansatz vor, um die nährstoff- und wasserbezogene landwirtschaftliche
Leistung quantitativ zu diagnostizieren und somit den Beratungsstellen Entwicklung
betriebszentrierter Beratungsangebote zu erleichtern. Ein benutzerfreundliches Farm
Agricultural Diagnostics (FAD)-Tool, das in Microsoft Excel VBA entwickelt wurde,
verwendet Umfragen der Landwirte und Bodentests, um die aktuelle landwirtschaftliche
Leistung zu quantifizieren, landwirtschaftliche Betriebe in verschiedene Leistungskate-
gorien zu klassifizieren und landwirtschaftliche Leistung auf einer benutzerfreundlichen
Oberfläche zu visualisieren. Die diagnostische Herangehensweise innerhalb der Bera-
tungsstellen wird in Kanpur (Indien) getestet, das einen intensiv bewirtschafteten länd-
lichen Naturraum im Flussbecken Ganges darstellt. Potentiell können kostengünstige
Bodenfeuchtemessungen technologische Werkzeuge zur Verbesserung des Wassermana-
gements in der Landwirtschaft vorantreiben. Zwei kostengünstige kapazitive und zwei
sehr kostengünstige resistive Bodenfeuchtesensoren wurden unter Laborbedingungen
getestet, um ihre Leistung in Bewässerungsmanagementanwendungen zu charakteri-
sieren. Die Sensoren wurden in verschiedenen aufbereiteten Bodenproben kalibriert
und getestet, um Genauigkeit, Präzision und Empfindlichkeit gegenüber Temperatur-
und Salzgehaltschwankungen zu bewerten. Die kapazitiven Sensoren wurden zusätzlich
auf ihre Leistungsfähigkeit in Flüssigkeiten bekannter Dielektrizitätskonstanten getes-
tet und die entwickelten Kalibriergleichungen mit den vom Hersteller bereitgestellten
verglichen. Während die sehr kostengünstigen Sensoren für Bewässerungsmanagement-
anwendungen ungeeignet waren, hat sich der kostengünstige SM100-Sensor (hergestellt
von Spectrum Technologies, Inc.) aufgrund seiner konsistenteren Leistung in Böden und
seiner angemessenen Reaktion auf Schwankungen in Temperatur und Salzgehalt als
robuster, einsatzbereiter Sensor bewährt. Kostengünstige Bodenfeuchtemessung und
wassergesteuerte Modellierung des Nutzpflanzenwachstums können kombiniert werden,
um Bewässerungsmanagement-Tools zu entwickeln, müssen jedoch kalibriert werden
und rentabel in Bezug auf die Datenanforderungen für Anwendungen in datenarmen
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Zusammenfassung

Regionen sein. Der kostengünstige SM100-Sensor wurde unter Labor- und Feldbedin-
gungen kalibriert (gegenüber einem besseren Sensor, dem SMT100, hergestellt von der
UGT GmbH), was zeigte, dass eine bessere Kalibrierung unter Feldbedingungen unter
Verwendung der Trockenkurve und Vermeidung einer Überanpassung möglich war. Die
feldkalibrierte stückweise lineare Regressionsfunktion wurde als beste Kalibriertechnik
ausgewählt, um die Leistung des SM100 auf dem Feld zu verbessern. Kalibrierte Daten
von kostengünstigen Bodenfeuchtesensoren wurden verwendet, um die hydraulischen
Parameter des Nutzpflanzenmodells zu kalibrieren und die entsprechenden Auswir-
kungen auf die Effizienz des Nutzpflanzenmodells zu untersuchen. Dies wurde mit der
MATLAB-basierten Open-Source-Version des kostengünstigen FAO-AquaCrop-Modells
untersucht. Dieses Experiment wurde während der Weizensaison 2018 auf einem Ver-
suchsfeld in Kanpur durchgeführt. Die Bodenfeuchte-Simulation von AquaCrop-OS
wurde durch die Einbeziehung kalibrierter SM100-Daten deutlich verbessert. Während
es keine signifikanten Änderungen bei der Biomassevorhersage gab, wurde Wasser-
produktivität durch die Verwendung kalibrierter SM100-Daten signifikant verbessert.
Bewässerungspläne können unter der Annahme erstellt werden, dass kein Wasserstress
auftritt, solange der evapotranspirativer Bedarf gedeckt ist. FAO AquaCrop simuliert vier
Wasserbelastungen und entsprechende Schwellenwerte, die die jeweiligen Belastungen
auslösen. Bewässerung wurde ausgelöst, wenn diese Schwellenwerte erreicht wurden,
und diese FAO AquaCrop-Bewässerungsstrategie wurde in einer simulationsbasierten
Studie mit vollständigen Bewässerungsbedingungen verglichen. Während bei beiden
Strategien kein Wasserstress auftrat, simulierte die vollständige Bewässerungsstrate-
gie 1,5-mal mehr Bewässerungsanwendungen (entspricht 111 mm) und eine geringere
Wasserproduktivität als die FAO AquaCrop-Strategie. Die Einführung neuer Bewässe-
rungsstrategien erfordert eine Verhaltensänderung, die teilweise durch Kosteneffizienz
motiviert sein kann, aber es ist wichtig, Lösungen mit Landwirten zu entwickeln, wobei
Designüberlegungen auf Grundlage der sozioökonomischen Merkmale, der Einstellung
zur landwirtschaftlichen Risikobereitschaft und der bisherigen Erfahrung der Landwirte
getroffen werden müssen, um sie in Richtung verbesserter Wassermanagementpraktiken
zu lenken.
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1 Introduction

1.1 Background

The global population is expected to reach almost 10 billion by 2050 (FAO, 2017),
which necessitates a commensurate increase in food supply, sustainably (Parra et al.,
2020). Simultaneously, water resources are increasingly becoming scarce due to a
combination of factors such as climate change, competition from other sectors, and
increasing agricultural regulation, which implies an urgent need to develop sustainable
production practices (Boretti and Rosa, 2019; Kisekka et al., 2022). Hence, sustainable
agricultural intensification is needed to simultaneously manage the resultant situation
and mitigate the environmental impacts of agricultural systems (Matson and Vitousek,
2006; Tilman et al., 2011).

Agricultural production and yields in developing countries have been lower than
those of developed countries over the past few decades due to poor agronomy practices,
possibly because of (among other reasons) the relative under-utilization of improved
agricultural technologies (Aker, 2011; George, 2014). For instance, while high yield
wheat cultivation in France is mostly rainfed and about 90% of such wheat grown in
India is irrigated, the corresponding average yields are 7.7 t/ha and 2.9 t/ha, according
to data from 2009 (George, 2014; Sayre, 2002; Tewatia and Chanda, 2005). Similarly,
though most of the wheat grown the USA is water limited (Elliott, 2010), it has similar
yields to the irrigated wheat in India (George, 2014).

To increase technology adoption, governments and international organizations have
attempted to deliver information inputs to farmers via agricultural extension or advisory
services (J. Anderson and Feder, 2007; Birner and J. Anderson, 2007; Birner et al.,
2009). Extension services disseminate knowledge, new technologies and agricultural
information to farmers and rural inhabitants worldwide (Nyarko and Kozári, 2021).
They can be crucial to enhance productivity, increase food security, improve rural
livelihoods, and promote agriculture as a ‘pro-poor economic growth engine’ (IFPRI,
2020). Particularly for smallholders, agricultural extension can facilitate a break from the
vicious cycle of low productivity, vulnerability, and poverty (Davis and Franzel, 2018).

There has been considerable investment in public extension programs, for e.g., 500,000
personnel engaged in agricultural extension globally in 2005 (J. Anderson and Feder,
2007). Despite this investment and experience over decades, the evidence to support
the impact of agricultural extension on agricultural knowledge, technology adoption
and improved productivity is limited (Aker, 2011). Agricultural extension is reported
to be ‘failing’ (Government of Malawi, 2000), ‘moribund’ (Eicher, 2001), or ‘in disarray
or barely functioning at all’ (W. Rivera et al., 2001), particularly in the developing
world. More recently, questions have been raised about the ability of farmers to utilize
agricultural advisories to enhance productivity and improve agricultural and economic
growth due to unsatisfactory experiences among relevant agencies, particularly in the
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developing world (Feder et al., 2011).

Public agricultural extension services are associated with disenchantment about the
direct provision of such services (Feder et al., 2011). This has been attributed to several
limitations of the inherited methods of organizing and managing public extension
systems (Birner and J. Anderson, 2007; Feder et al., 2001; Feder et al., 2011). The scale
and complexity of, e.g., Indian agriculture, is an impediment to reach geographically
scattered, remote, low-literacy farmers with inadequate mass media access. This is
further affected by the high and regionally variable farmer-to-agent ratios in most
developing countries (Glendenning et al., 2010). Other criticisms include high costs,
low accountability, ad-hoc responsibilities of agents, bureaucratic procedures with
centralized systems, and the lack of adequate stakeholder interaction (J. Anderson and
Feder, 2007; J.R. Anderson et al., 2006; Birner and J. Anderson, 2007).

The provision of private extension services is also limited due to various aspects of
market failures (Feder et al., 2011). Ensuring excludability and competitiveness is a
challenge considering the public-good like features of information delivery, and farmers
may undervalue the benefits of advisories due to insufficient information and short
planning horizons (Birner and J. Anderson, 2007).

Hence, there is a need to address some of the limitations of current extension services.
Adaptation efforts are effective only when they are locally implemented, and use
scientific inquiry supplemented by local knowledge, while incorporating a range of
policy development perspectives (Brunner, 2010).

The ‘yield gap’ (the difference between observed yields and region-specific attainable
yields) is a crucial parameter to study prospects of this sustainable intensification
(Mueller et al., 2012). Fertilizer use, irrigation and climate are major factors responsible
for global yield variability, and balancing food security and sustainability requires
substantial changes in nutrient and water management (Mueller et al., 2012). This
requirement is reasonable for food crops such as wheat, rice and maize in many
developing countries such as India (Mueller et al., 2012). Based on this premise, this
study henceforth focuses on improving water management in wheat cropping in India.

Agriculture can potentially contribute to industrial and economic growth (Byerlee
et al., 2009). This study is contextualized within the Indian agricultural domain because
not only does agriculture contribute to about 17% of India’s gross domestic product, it
is a source of livelihood for over half of the India’s workforce (Department of Economic
Affairs, 2019). The focus on water is because of its indispensability to ‘human well-being
and socio-economic sustainability’ (Zhi et al., 2022). Atleast 4 out of the 17 SDGs (i.e.,
SDG-6, SDG-7, SGD-12, and SDG-13) are related to sustainably using and managing
water resources (Pradhan et al., 2017). Contrastingly, nearly half the global population
faces severe water scarcity (Schewe et al., 2014). Essentially, sustainable agricultural de-
velopment requires an adequate supply of freshwater (Ai et al., 2020). Hence, economic
development, regional food security, and quality of life are all interlinked with each
other and with sustainable water management in agriculture (L.R. Brown and Halweil,
1998; Hanjra and Qureshi, 2010).
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1.1 Background

The Rice-wheat Cropping System (RWCS) is amongst the largest agricultural produc-
tion systems in the world, and contributes to global food security substantially (Banjara
et al., 2022; Dhanda et al., 2022; Laik et al., 2014). Out of the 13.5 million hectares
(Mha) of RWCS practiced in South Asia (J.K. Ladha et al., 2009), around 9.2 Mha are
cultivated in India (M.L. Jat et al., 2020), particularly in Indo-Gangetic Plains (IGP)
of northwest India, due to its agro-climatic conditions, natural resources and ecology
(Dhanda et al., 2022). The major RWCS region of India consists of the states of Punjab,
Haryana and Uttar Pradesh, and is called India’s ‘food basket’ because it produces about
50% of India’s food grains (Pal et al., 2009). The extensive practice of RWCS occurs
due to the availability of short-statured, high-yielding varieties which are irrigation
and fertilizer responsive, increased use of sowing and harvesting machinery, irrigation
facilities at relatively low prices, the government’s guarantee of a minimum support
price and established marketing channels (Bhatt et al., 2021; Dhanda et al., 2022). Hence,
in addition to ensuring national food security and providing livelihoods to millions of
people, the RWCS provides a relatively stable source of income to farmers and other
stakeholders (Dhanda et al., 2022).

Policies developed to meet food security demands by increasing food production
have generally resulted in expanding harvested area at the cost of low average yields
and efficiencies of inputs like water, fertilizer and labor (George, 2014). For instance,
though the advent of the Green Revolution in India in the 1970s increased food grain
production notably (R.B. Singh, 2000), there is growing evidence that the productivity
of the RWCS may be stagnating or plateauing (Dhanda et al., 2022). This could be
because of a combination of the depletion of the natural resource base; high labor, water
and energy demands; and declining input efficiencies, all aggravated by climate and
socio-economic change (Bhatt et al., 2021; Chauhan, 2012; Dhanda et al., 2022; M.L. Jat
et al., 2009; Saharawat et al., 2010). The rise in productivity in RWCS cultivation was
concurrent with input mismanagement, leading to negative impacts on the environment,
biodiversity, air quality, and soil and water resources, thus challenging the sustainability
of the system (Chauhan, 2012; Godfray and Garnett, 2014; V. Kumar et al., 2018; Tilman
et al., 2011). Moreover, the gaps between overall cultivation costs and the minimum
support price of rice and wheat are also increasing, which impacts farm income and
profitability (Dhanda et al., 2022). Nevertheless, farmers continue to practice the RWCS
due to assured prices, marketing, and relative stability in yields (Bhatt et al., 2021).

The lack of adequate water is a critical limitation for sustainable crop production and
maintaining crop yields in semi-arid and arid regions (Yi et al., 2022; C. Zhang et al.,
2022a). About 70% freshwater extraction is used for irrigation in agriculture globally
(Grafton et al., 2018; Y. Lu et al., 2016); this figure increases to around 82% for India
(Sikka et al., 2022). Nearly 68.4 Mha (about 48.8%) of India’s net cultivated area (140
MHa) is irrigated (Ministry of Agriculture and Farmers Welfare, 2017). Irrigation has
contributed to India’s agricultural growth and food security (Sikka et al., 2022), and
national wheat yields with irrigation have been reported to be 13% higher by the 2000s
than without irrigation (Zaveri and B Lobell, 2019).
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The cultivated area under irrigation may increase in the future along with increasing
domestic, urban, industrial and environmental demand (Sikka et al., 2022). Major regions
in the Indo-Gangetic plains (including the ‘food basket’) depend on groundwater to fulfil
their irrigation demand (Ambast et al., 2006). At the same time, irrigated agriculture,
if not managed properly, can lead to environmental degradation and can threaten
sustainability (Howell, 2001). For instance, excessive groundwater pumping in the IGP
has led to deepening groundwater levels (Hira et al., 2004). Unreasonable irrigation,
instead of enhancing crop yield, may cause wastage of water resources and consequently
a decline in water productivity (C. Zhang et al., 2022a).

The RWCS needs an improvement in input use efficiencies and natural resource
conservation (Dhanda et al., 2022) - critically water. Irrigation water can be saved
by applying only that amount of water which is necessary for plant growth, thereby
minimizing water losses, potentially leading to a combination of increased productivity
and saved water (Dhanda et al., 2022). Within the RWCS, water saving technologies can
include the selection of shorter-duration crop varieties to reduce Evapotranspiration
(mm.d-1) (ET) losses, laser land leveling, bed planting, direct seeding of rice, applying
irrigation at hairline cracking, and more efficient irrigation methods (Dhanda et al., 2022).
Surface irrigation, a traditional irrigation method, is inefficient due to deep percolation,
non-uniform distribution of water and labor intensiveness (McNabb, 2019; Pramanik
et al., 2022; R. Smith et al., 2005). However, surface irrigation was used for around
80% of the total irrigated land in India, as recently as in 2016-17 (Government of India,
2017). It continues to be extensively used due to its low-cost and energy requirements
(Bjorneberg, 2013; Pramanik et al., 2022). While micro-irrigation systems (like drip,
sprinkler irrigation, etc.) aim to increase irrigation application efficiency by preventing
surface runoff (Sidhu et al., 2019), their adoption in India has not increased notably
because subsidies by themselves are inadequate in changing farm decision making (Nair
and Thomas, 2022). Moreover, the introduction to water saving techniques generally
leads to expansion of irrigated area or cultivation of water-intensive crops, referred
to as the Jevons’ paradox (Alcott, 2005; Nair and Thomas, 2022). Hence any realistic
intervention to enhance water management in irrigated agriculture in most of the IGP
should be contextualized for current practices including surface or flood irrigation.

In water-limited conditions, agricultural production should optimize net income per
unit water rather than net income per unit land (Zhi et al., 2022), hence reiterating the
importance of improving water use efficiency and water productivity in agricultural
systems (Parra et al., 2020). This challenge requires the development, dissemination and
transfer of technology based irrigation solutions (A.K. Singh et al., 2009). Particularly
in RWCSs, new technologies are needed to improve input water efficiencies (Dhanda
et al., 2022). Though modern irrigation technology like commercial smart irrigation
systems are in use, they are expensive and therefore not widely adopted (Bazaluk et al.,
2022). Moreover, pressurized irrigation systems can have higher irrigation costs (Bazaluk
et al., 2022), which subsequently increases production costs, and reduces profitability
(Rodríguez Díaz et al., 2011).
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Improved irrigation management requires accurate data as well as an understanding
of biophysical processes, such as crop response to water across different crop growth
stages (Kisekka et al., 2022). With regards to data, an essential environmental variable
which can be measured for agricultural sustainability and precision agriculture is soil
moisture or Volumetric Water Content (VWC) (Kisekka et al., 2022). Soil moisture data is
important in developing irrigation systems to maximize crop yield, and long-term VWC
monitoring combined with climatic information can lead to an improved understanding
of agricultural patterns, thresholds and losses (Bastiaanssen et al., 2000; Lin et al., 2018).
With regards to understanding biophysical processes and crop growth response, crop
models are tools to estimate crop growth and yields as a function of weather, soil
conditions and management practices (Guerra et al., 2002). But crop models can be
data intensive, requiring multiple input variables and parameter values which may
not be easy to obtain for many crop-environment combinations, limiting their practical
application in data-scarce regions (Vanuytrecht et al., 2014; Varella et al., 2010) like
the Majority World (Graves et al., 2002; J.W. Jones et al., 2012). Hence, any attempt to
address water management in agriculture by combining sensor data and crop modeling
must not only be cost-effective, but also not be data-intensive, to be applicable to the
context of irrigated agriculture in the IGP.

Irrigation scheduling, i.e., applying the ‘right amount of water at the right time and
place’ can help in enhancing the performance of irrigation systems by increasing crop
production and conserving water (Sikka et al., 2022). Appropriate irrigation scheduling
can lead to benefits like optimal soil water conditions for plant growth, substantial water
savings, increased efficiency in fertilizer application (by reducing leaching losses, and
even reduced greenhouse gas emissions (Sikka et al., 2022). Irrigation application, like
other agricultural management decisions, is often driven by previous observations and
experimentation, and discussions with other farmers (Fafchamps and Minten, 2012;
Greenwood et al., 2010), particularly in developing countries. However, it is more
efficient to schedule irrigation based on the requirement of evapotranspiration (ET) or
using soil moisture sensors (Irrigation Association, 2011).

1.2 State of the art

1.2.1 Data-based extension services

Recently, traditional extension services have been shifting towards a more data rich
paradigm, where farmer-advisor interactions are now based on complex data collation
and interpretation at the backend (Eastwood et al., 2019; Nettle et al., 2018). Farm
decision-making can be facilitated via smartphones or computers with decision support
tools which access data remotely from ‘cloud-based’ servers (Wolfert et al., 2017).

In developed nations, data-based advisory tools have been applied to cropping and for
viticulture management (Bramley, 2009), irrigation scheduling based on evapotranspira-
tion in the USA (Bartlett et al., 2015), and Internet of Things (IoT) enabled automated
irrigation scheduling (Severino et al., 2018). In Canada, Australia and New Zealand,

5



1 Introduction

data-driven tools have been applied to the dairy sector (Gargiulo et al., 2018; Rue et al.,
2019; Vasseur et al., 2010).

In developing nations like Ethiopia, farm-level data on local weather, input availability
and markets have been integrated into advisory platforms such as ‘Farmstack’ (Digital
Green, 2019). In Afghanistan, stakeholders including farmers and extension workers
are facilitated to share reliable agricultural information using the Information and
Communications Technology (ICT) platform, ‘eAfghan’ (M. Bell, 2013). In India, farm
science centres (Krishi Vigyan Kendras) send weekly Short Messaging Service (SMS) alerts
to farmers about weather and disease forecasts, and market information (A. Das et al.,
2016; Saravanan, 2010). Agriculture related information is also relayed through SMS
and voice messages by IFFCO Kissan Sanchar Limited (IKSL) and Reuters Market Light
(Fafchamps and Minten, 2012; USAID, 2000). Farmers can raise agricultural and related
queries using their mobile phones in every state in India, using the farmer call centre or
Kisan Call Centre (Ganesan et al., 2013).

However, such initiatives tend to administer generic advisories rather than data-
based, crop- and plot-specific advisories (Ganesan et al., 2013). This could be one of
the major reasons for low-technology adoption through agricultural extension (Aker,
2011). Besides, farmers in developing countries usually take decisions based on their
observations, experimentation, or conversations with other farmers (Fafchamps and
Minten, 2012).

Since more effect advisory adaptation generally results from scientific enquiry sup-
plemented with local knowledge (Brunner, 2010), some of the limitations of generic
extension services can be addressed by empowering advisors with data-based, farm-
specific ‘diagnoses’ to characterize farm performance. This can further help to identify
the reasons for sub-optimal performance (or yield-gaps), leading to more customized
advisories and potentially higher advisory adoption.

1.2.2 Combining crop-modeling and soil moisture sensing

Many techniques combine data from ground sensor networks (Navarro-Hellín et al.,
2015) or satellites (Bastiaanssen et al., 2000) with agro-hydrological modeling (Chiara and
Marco, 2022) to augmenting irrigation management. Agro-hydrological modeling gener-
ally involves coupled modeling of crop growth and hydrological components/models
(Siad et al., 2019).

1.2.2.1 Crop-modeling

Crop models can be classified into empirical models which directly fit one or more
equations to observations to estimate crop yield, mechanistic models which explain
the mechanisms driving the relationships between weather variables and crop yield,
and stochastic models which have probabilities associated with each output (Siad et al.,
2019). Based on the method used to estimate biomass production rate from resources
like carbon dioxide, solar radiation and water, crop models can be categorized into
three crop growth modules: (i) carbon-driven, (ii) radiation-driven and (iii) water-driven
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(Azam-Ali et al., 1994; Steduto, 2003; Todorovic et al., 2009).
Carbon-driven models were originally developed based on the approach proposed by

Wit (1965), in which crop growth is computed based on carbon assimilation by leaves
via the photosynthetic process (Todorovic et al., 2009). These models are hierarchical
in structure, since higher-level responses result from the integration of the underlying
lower-level processes. This complex structure leads to a larger requirement of parame-
ters. Phenological development and crop growth processes are regulated by radiation,
temperature and CO2 concentration, and limited by water availability. Examples of such
models include WOFOST (WOrld FOod STudies, Boogaard et al., 1998; Van Diepen
et al., 1989), other Wageningen crop models (Bouman et al., 1996; Ittersum et al., 2003),
and the CROPGRO (CROP GROwth) model series (Boote et al., 1998; 2002).

In radiation-driven models, biomass is directly derived from intercepted solar radia-
tion through a conversion coefficient called Radiation Use Efficiency (RUE) (Monteith,
1977; Todorovic et al., 2009). The lower hierarchical processes for biomass accumulation,
including photorespiration rate, dark respiration, leaf quantum efficiency per mole of
CO2 fixed, are all incorporated into the RUE synthetically (Monteith, 1977). This reduces
the required number and complexity of input variables. Examples of such models
include CERES (Crop Environment REsources Synthesis) group of models (J.W. Jones
et al., 2003; J. Ritchie et al., 1985), EPIC (Erosion Productivity Impact Calculator; C. Jones
et al., 1991), and STICS (Simulator mulTIdisciplinary for Crop Standard; Brisson et al.,
2003).

Water-driven models are built on principle that the rate of biomass growth is linearly
proportional to transpiration, through a Water Productivity (WP) parameter (De Wit,
1958; Hsiao and Bradford, 1983; Steduto and Albrizio, 2005). Similar to radiation-driven
models, water-driven models also avoid hierarchical model structures, and hence require
lesser input parameters (Steduto et al., 2007; 2009). Additionally, they have a relative
advantage over radiation-driven models since the WP parameter can be normalized
for climate (CO2 concentration and evaporative demand), which extends their spatio-
temporal applicability (Hsiao et al., 2007; Steduto and Albrizio, 2005; Steduto et al.,
2007). Examples of such models include FAO AquaCrop (Raes et al., 2009; Steduto et al.,
2009), and one of the two growth modules of the CropSyst model (Stöckle et al., 2003).

1.2.2.2 Soil moisture sensing

Multiple studies have used soil moisture sensors for irrigation management applications.
While some have directly used soil moisture measurements to replenish soil moisture
deficit (Pramanik et al., 2022), some actively use measurements to purposely maintain
an acceptable level of soil moisture deficit (Benabdelouahab et al., 2016; S.C. Ma et al.,
2016; Panda et al., 2003). Soil moisture measurements have been incorporated into
crop models to improve model performance (Andarzian et al., 2011; Huang et al., 2022;
A. Singh et al., 2013; W. Zhang et al., 2013). Further, soil moisture measurements have
been used within the framework of IoT to carry out real-time irrigation management
(Cayuela et al., 2022; Pramanik et al., 2022; Vellidis et al., 2008).

However, soil moisture can exhibit variability across both spatial and temporal scales
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due to the corresponding variability in soil properties, and therefore sensors measuring
soil moisture need site-specific calibration (Peddinti et al., 2020; Vereecken et al., 2014).
Calibration of soil moisture sensors can be performed in both laboratory and field
conditions. While the advantage of field calibration is that conditions are representative
of those that present during field application (including variable environmental factors
like temperature, salinity, clay content, organic matter, bulk density) (Kargas and K.X.
Soulis, 2012; Matula et al., 2016a), laboratory calibration is generally performed by
manufacturers with sieved, repacked soils with controlled VWC and environmental
conditions, particularly for coarse homogenous soils including some sands and loams
(Feng and Sui, 2020). Previous studies have developed soil moisture sensor calibration
equations both in the laboratory (Adla et al., 2020; Bello et al., 2019a; Nagahage et al.,
2019; Placidi et al., 2020) and in the field (Rudnick et al., 2015; J. Singh et al., 2018). Most
calibration equations reported in the literature are least squares estimates resulting in
exponential, hyperbolic, linear, logistic, or polynomial regressions. However, data-driven
machine learning approaches can also be used to develop complex soil moisture models
without any explicit assumptions made on the governing soil water processes (Kisekka
et al., 2022).

Eventually, environmental sensors (including soil moisture sensors), processors and
communication components may be available commercially, but their effective applica-
tion depends on cost-effectiveness, and ease of access and maintenance (Pramanik et al.,
2022; Rodríguez-Robles et al., 2020).

1.2.3 Irrigation scheduling

Irrigation scheduling based on soil moisture measurements has been claimed to be ideal
(Sikka et al., 2022). For instance, a tensiometer based irrigation scheduling system has
been tested for paddy irrigation in Punjab which has resulted in decreased number of
irrigations and 13% water savings (Vatta et al., 2018). However, soil moisture sensor
based irrigation is not generally practiced in India due to reasons including but not
limited to cost (capital, maintenance), cumbersomeness (of installing and upkeeping
sensors) and lack of farmers’ awareness (Sikka et al., 2022). ET-based irrigation schedul-
ing involves estimating Soil Evaporation (mm.d-1) (Es) and Plant Transpiration (mm.d-1)
(Tr) to establish the crop water requirement in the root zone (Zamora-Re et al., 2020).
Some experimental studies have used measured or computed Actual Evapotranspiration
(mm.d-1) (ETa) for irrigation scheduling (Hunsaker et al., 2015).

Many studies have reported that soils can lose substantial quantities of water without
suppressing the rate of crop growth (Bacci et al., 2003; Bailey, 1990; Musick and K.B.
Porter, 1990; Panda et al., 2003), and this is fundamental to optimize irrigation without
inhibiting growth (Greenwood et al., 2010). This phenomenon has been investigated
and quantified extensively (Denmead and Shaw, 1962; J. Ritchie, 1973; W. Rosenthal
et al., 1987; V. Sadras and Milroy, 1996; R.B. Thompson et al., 2007b). The Food and
Agriculture Organization (of the United Nations) (FAO) Irrigation and Drainage Paper
No. 56 (Allen et al., 1998) has comprehensively summarized the subject of ET-based crop
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water (and irrigation) requirements (Greenwood et al., 2010). Under the assumption that
soil water deficit does not affect crop growth unless it limits ET, Allen et al. (1998) define
a Soil water depletion fraction (-) (p) and a corresponding estimate of Readily Available
Water (RAW), such that if the soil water depletion crosses the threshold of RAW, then ET
declines linearly until Permanent Wilting Point (PWP) is reached. However, a limitation
of this approach is that the sensitivity of crop growth to soil water deficit (i.e., p) is
considered to be constant throughout the growth season (Allen et al., 1998) despite
claims that this sensitivity could vary across crop growth stages (Salter and Goode,
1967). For instance, wheat is more sensitive to water stress immediately before and
during flowering (Musick and K.B. Porter, 1990). This limitation can be addressed by
disaggregating the soil water depletion fraction into multiple fractions which correspond
to different crop growth processes and target variables across the various crop growth
stages. This is incorporated into the structure of the FAO AquaCrop model (Raes et al.,
2009; Steduto et al., 2009; Vanuytrecht et al., 2014).

1.3 Research questions

Based on the the background provided in Section 1.1 and the gaps in the state of the art
identified in Section 1.2, the following research questions were developed for this study:

1. How can agricultural advisories be supported by data-based, plot-scale farm per-
formance diagnostics, to support agricultural extension? Can such a methodology
include important yield limiting factors such as soil nutrients and water?

2. Focusing on water, can low-cost soil moisture sensors be calibrated and tested in
laboratory conditions to improve their overall performance?

3. How can low-cost soil moisture sensing and parsimonious crop modeling be
combined to improve crop model performance, including water productivity?

4. How can soil water stress coefficients be used to simulate improved irrigation
schedules without encountering stresses?

1.4 Thesis structure

The research questions were addressed using the structure as described in Table 1.1.
Research Question (RQ) 1 is addressed by a data-based farm-specific approach to
conduct agricultural performance diagnostics, and is covered in Chapter 2. RQ 2 is
addressed by an laboratory based study on low- and very-low cost sensors, which is
entailed in Chapter 3. RQ 3 focuses on combining low-cost soil moisture data and
parsimonious crop modeling, and is investigated in Chapter 4. Finally, RQ 4 focusing on
using soil water stress coefficients to improve irrigation scheduling, water productivity
and water savings, and this study is covered in Chapter 5.
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Table 1.1: Structure of the cumulative dissertation. RQ stands for Research Question,
and Ch. No. is the corresponding Chapter Number.

Objective RQ Contents Publication
(Ch. No.)

1. Farm agricultural 1 (2) 1. Data-based approach to quantify Adla et al. 2022. Agricultural
performance nutrient and water related farm Advisory Diagnostics Using a Data-
diagnostics performance Based Approach: Test Case in an

Intensively Managed Rural
2. Development of the Farm Landscape in the Ganga River Basin,
Agricultural Diagnostics tool India. Frontiers in Water 3:798241.
DOI: 10.5281/zenodo.5195682 DOI: 10.3389/frwa.2021.798241

3. Pilot test of the approach in
Kanpur (India)

2. Laboratory calibration 2 (3) 1. Low-cost capacitive and very low- Adla et al. 2020. Laboratory
and performance testing cost resistive sensors calibration and performance

of low-cost soil evaluation of low-cost capacitive
moisture sensors 2. Calibration using four soils cost and very low-cost resistive soil

(sands and silty loams); determination moisture sensors. Sensors 20(2), 363.
of accuracy, precision, sensor to sensor DOI: 10.3390/s20020363
variability; comparison of developed

equations with manufacturer’s
calibration equations

3. Testing of sensors in varying
temperature and salinity conditions;

testing of capacitive sensors in
fluids of known dielectric constants

3. Combining calibrated 3 (4) 1. Laboratory and field calibration of Adla et al. 2022. Impact of
low-cost soil moisture low-cost capacitive SM100 sensor; calibrating a low-cost capacitance

sensing and parsimonious comparative analysis of different based soil moisture sensor on FAO
crop modeling least squares and machine learning AquaCrop model performance.

regression models Journal of Hydrology (under review).

2. Impact of calibrating FAO AquaCrop
model using raw and calibrated

low-cost sensor data (relative to the
literature) on model outputs

4. Using crop modeling 4 (5) 1. Conceptualization of crop growth
for water efficient stage dependent critical water

irrigation scheduling stress coefficients in FAO AquaCrop

2. Comparison of Full and FAO
AquaCrop based irrigation strategies

on crop model outputs and water savings
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1.4 Thesis structure

The titles of the respective chapters are given below:

• Chapter 2: Agricultural advisory diagnostics using a data-based approach

• Chapter 3: Laboratory calibration and performance evaluation of low-cost soil
moisture sensors

• Chapter 4: Low-cost soil moisture calibration and parsimonious crop modeling

• Chapter 5: Irrigation scheduling using soil water stress thresholds

A discussion of the results, major conclusions and an outlook on further research are
reported in Chapter 6.
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2 Agricultural advisory diagnostics using a
data-based approach

Adla et al. (2022) 1

Abstract

Low technology adoption through agricultural extension may be a consequence of
providing generic information without sufficient adaptation to local conditions. Data-
rich paradigms may be disruptive to extension services and can potentially change
farmer-advisor interactions. This study fills a gap in pre-existing, generic advisory
programs by suggesting an approach to “diagnose” farm-specific agricultural issues
quantitatively first in order to facilitate advisors in developing farm-centric advisories.
A user-friendly Farm Agricultural Diagnostics (FAD) tool is developed in Microsoft
Excel VBA that uses farmer surveys and soil testing to quantify current agricultural
performance, classify farms into different performance categories relative to a localized
performance target, and visualize farm performance within a user-friendly interface.
The advisory diagnostics approach is tested in Kanpur, representative of an intensively
managed rural landscape in the Ganga river basin in India. The developed open-source
tool is made available online to generate data-based agricultural advisories. During
the field testing in Kanpur, the tool identifies 24% farms as nutrient-limited, 34% farms
as water-limited, 27% farms with nutrient and water co-limitations, and the remaining
farms as satisfactory compared to the localized performance target. It is recommended
to design advisories in terms of water and nutrient recommendations which can fulfil
the farm needs identified by the tool. The tool will add data-based value to pre-existing
demand based advisory services in agricultural extension programs. The primary users
of the tools are academic, governmental and non-governmental agencies working in the
agricultural sector, whose rigorous scientific research, soil testing capacity, and direct
stakeholder engagement respectively can be harnessed to generate more data-based and
customized advisories, potentially improving farmer uptake of agricultural advisories.

Keywords: agricultural extension, advisory diagnostics, data-based advisory, soil
quality index, water use efficiency.

1Adla, S., Gupta, S., Karumanchi, S.H., Tripathi, S., Disse, M. and Pande, S., 2022. Agricultural Advisory
Diagnostics Using a Data-Based Approach: Test Case in an Intensively Managed Rural Landscape in
the Ganga River Basin, India. Frontiers in Water 3:798241. https://doi.org/10.3389/frwa.2021.798241
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2 Agricultural advisory diagnostics using a data-based approach

2.1 Introduction

Agricultural production and yields in developing countries have been lower than those
of developed countries over the past few decades. Amongst its many reasons is the
relative underutilization of improved agricultural technologies (Aker, 2011). Agricultural
technologies, along with agricultural knowledge are disseminated using agricultural
extension services (or advisories) by governments and international organizations to
farmers and rural inhabitants worldwide (J. Anderson and Feder, 2007; Nyarko and
Kozári, 2021). Advisories can be crucial to enhance productivity, increase food security,
improve rural livelihoods, and promote agriculture as a “pro-poor economic growth
engine” (IFPRI, 2020). Particularly for smallholders, agricultural extension can facilitate
a break from the vicious cycle of low productivity, vulnerability, and poverty (Davis and
Franzel, 2018).

Despite considerable investment and experience over decades (J. Anderson and Feder,
2007), there has been limited evidence to support the impact of agricultural extension
on agricultural knowledge, technology adoption and improved productivity (Aker,
2011). Over time, governments of developed countries have reduced direct investments
in agricultural extension (Laurent et al., 2006; W.M. Rivera, 2011). Moreover, in the
developing world, agricultural extension has been described as “failing” (Government
of Malawi, 2000), “moribund” (Eicher, 2001), “in disarray or barely functioning at all”
(W. Rivera et al., 2001), or ineffective in responding to farmer demands and technological
challenges (Ahikiriza et al., 2021). Factors like wealth, risk preferences, education, access
and affordability of information and learning (Aker, 2011) can result in technology adop-
tion slowing down and becoming more discontinuous, further threatening agricultural
productivity (Oduniyi, 2021).

Agricultural extension’s transfer-of-technology approach, where farmers are “passive
recipients” of uniformly administered advisories (Leeuwis and Van den Ban, 2004),
has been criticized due to its negligence of the “locally specific nature of knowledge
construction” (Klerkx and Jansen, 2010). New data-rich paradigms in agriculture may
also be disruptive to extension services (Nettle et al., 2018) as they change traditional
farmer-advisor interactions with complex backend processes of data collation and
interpretation (Eastwood et al., 2019).

Globally, this shift towards data-driven extension initiatives is quite evident. In
developed countries, such as Australia, New Zealand and Canada, data-driven smart
farming has been incorporated into dairy farming (Gargiulo et al., 2018; Rue et al., 2019;
Vasseur et al., 2010). Data-based tools have been developed for cropping and viticulture
management (Bramley, 2009), evapotranspiration-based irrigation scheduling in the
western United States (Bartlett et al., 2015), and irrigation scheduling using automated
sensors operating within an IoT-framework (Severino et al., 2018). In developing
countries like Afghanistan, the Information and Communication Technologies (ICT)
platform “eAfghan” enables extension workers, farmers and other stakeholders to share
reliable agricultural extension information (M. Bell, 2013). The agricultural advisory
platform “Farmstack” integrates farm-level data, local weather, input availability and
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market information in Ethiopia (Digital Green, 2019). In India, advisories about weather
and disease forecasts, markets and other information are sent by SMS or voice message
alerts by agencies such as the farm science centres (Krishi Vigyan Kendras) (A. Das et al.,
2016; Saravanan, 2010), IFFCO Kissan Sanchar Limited (IKSL) and Reuters Market Light
(Fafchamps and Minten, 2012; USAID, 2000).

However, most of these initiatives deliver generic information rather than data-driven
advisories customized to the specific farm plot or crop (Ganesan et al., 2013), which is one
of the major reasons for low technology adoption through extension services (Aker, 2011).
The primary sources that drive decision making about agricultural practices among
farmers in developing countries are still their own observations and experimentations,
followed by conversations with other farmers (Fafchamps and Minten, 2012). A review of
agricultural extension approaches in India reveals that the farmers generally struggle to
receive reliable information relevant to them at the right time (Glendenning et al., 2010).
Moreover, the lack of adequate interactions between research, extension organizations
and the farmers has led to the generation of non-specific advisory services (Feder et al.,
2010). Nonetheless, data driven tools utilized for smart farming, including the collection
and use of more digital data (Wolfert et al., 2017), sensors measuring animal, plant, soil
and water parameters (Eastwood et al., 2019; Hostiou et al., 2017; Neethirajan, 2017;
Rutten et al., 2013), and online data platforms, can potentially lead to more effective
farmer-advisor interactions through tactical use of data, and administer strategic farm
management advisories (Eastwood et al., 2015).

This study aims to address the limitations of generic data-driven extension tools by
suggesting an approach to inform advisors to “diagnose” farm-specific agricultural
issues more quantitatively. The working assumption for the approach is that yield gaps
(the difference between observed yields and region-specific attainable yields) occur
either due to nutrient or water related limitation (or co-limitations). This is reasonable
for food crops such as wheat, rice and maize in many developing nations such as India
(Mueller et al., 2012). Performance related to soil nutrient status can be assessed with
soil testing and computing a Soil Quality Index (SQI) indicator which combines multiple
soil parameters into a single performance score (Karlen et al., 1997). Performance related
to water as a limiting factor to yield gaps can be evaluated using an indicator such as
Water Use Efficiency (WUE, in kg/m3) (Van Halsema and Vincent, 2012), which has
been applied by irrigation specialists to describe ‘how effectively water is delivered to
crops’ and ‘to indicate the amount of water wasted’ (Molden et al., 2010).

The proposed approach estimates the respective farm-level performances of soil
nutrient and water indicators, and combines the relative performances of multiple farms
in a particular region into an integrated visualization. A corresponding user-friendly
Farm Agricultural Diagnostics (FAD) tool was developed using Macro-in-Excel feature of
Microsoft Office’s Excel software to carry out these calculations, generate a performance-
based visualization, and automate agricultural advisory diagnostics. The approach is
then applied in a pilot study case representative of intensively managed rural landscapes
(IMRLs) in the food critical Ganga river basin of North India.

15



2 Agricultural advisory diagnostics using a data-based approach

2.2 Materials and methods

2.2.1 Study Area

The diagnostics approach is tested in a smallholder dominated Intensively Managed
Rural Landscape (IMRL) representative of the Ganga River Basin in Kanpur (Bilhaur
tehsil, Kanpur Nagar district, Uttar Pradesh), India. The study area (Figure 2.1) is part
of a Critical Zone Observatory created by the Indian Institute of Technology Kanpur
in 2016 in the IMRL (Gupta et al., 2017; Gupta et al., 2019). It lies between the Lower
Ganga Canal distribution system and the Pandu river, a tributary of the Ganga river.
Agricultural practices are typically monocropping (with alternating monsoon paddy and
winter wheat crops), and flood irrigation is carried out using either canal distributaries
which flow into the study region, or using groundwater (GW) abstracted by diesel
pumps.

Figure 2.1: The study area (shown within the green ’catchment boundary’) for advisory
diagnostics approach, in Kanpur (Uttar Pradesh, India). Image modified
from Gupta et al., 2019.

2.2.2 Validating the working assumption using farmer surveys

The working assumption that ‘yield gaps’ can be explained by nutrient-related, water-
related limitations, or co-limitations (Mueller et al., 2012) is validated using inferences
from an interview-based survey in the study area. 144 farmer-respondents were inter-
viewed in 2018 through random sampling from the five villages of Bani, Bansathi, Etra,
Parapratappur, Raigopalpur, Sherpur Baira and Tatarpur, which had a total population
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of 8,887 (Government of India, 2011).
Farmers were asked questions about their demands and preferences related to agri-

cultural advisories, to validate whether the impact of nutrient and water limitations on
yield gaps (Mueller et al., 2012) is also felt by farmers. Questions aimed to derive the
perceived importance of different advisory parameters (input application and irrigation
scheduling, weather forecast for rainfall, soil testing), and preferred means of receiving
advisory (text message, voice message, phone call). The complete list of questions
is included in Section 1 of the Supplementary Material. The developed survey was
incorporated into the public domain software package, Census and Survey Processing
System (CSPro) (United States Census Bureau, 2000), and the mobile phone application
“CSEntry” was used on the field for efficient and convenient data collection.

2.2.3 Selecting indicators to quantify farm performance

The performance indicators used to quantify the current performance are based on the
two major factors resulting in yield gaps: soil nutrients and water.

2.2.3.1 Soil related performance indicator: Soil Quality Index (SQI)

Soil Quality Index (SQI) (Karlen et al., 1997) is the performance indicator used to
quantify the soil-nutrient status. It is computed as a weighted sum of individual soil
parameter scores (or values). The weights are determined based on the literature and
expert opinion (C.-H. Lee et al., 2006). The formula of SQI is given below (Wu and
M. Wang, 2007):

SQI =
n

∑
i=1

Wi · Si (2.1)

where Wi = weight of the ith parameter
Si = score of the ith parameter (here, the normalized parameter value)
n = number of total parameters

Multi-Criteria Decision Making (MCDM) methods are used to assign weights in SQI
computation (A.K. Mishra et al., 2015). In this study, the scores and weights are assigned
to the soil properties using Analytical Hierarchy Process (AHP) (R.W. Saaty, 1987; T.L.
Saaty, 1977). It is a widely used MCDM process (Alharthi et al., 2015; Kil et al., 2016) and
has been applied to assess and enhance soil quality through improved soil management
practices (Kalambukattu et al., 2018; U. Kumar et al., 2019). AHP can generate indicator
weights based on pairwise comparisons of all relevant indicators made by experts, while
also reducing biases in the decision-making process by checking for consistency in the
decision maker’s evaluations. Though the decision maker’s subjective involvement in
assigning weights or assessing attributes leads to more flexibility, it can lead to different
solutions based on different relative prioritizations (A. Kumar et al., 2017a), which
reinforces the importance of selecting domain knowledge experts for the approach.
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Section 2 in the Supplementary Material describes the AHP methodology in further
detail.

2.2.3.2 Water related performance indicator: Water Use Efficiency (WUE)

Water Use Efficiency (WUE, in kg/m3) is defined as the ratio of agricultural production
(yield per unit area, kg/ha) to the gross water application or availability at the field
(mm), inclusive of both precipitation and irrigation water (Van Halsema and Vincent,
2012).

WUE = [agricultural production]/[water applied] (2.2)

WUE has been interpreted as a combination of efficiency and productivity ratios
(Van Halsema and Vincent, 2012). Its idea is motivated by the need to meet increasing
food requirements with limited water resources by maximizing the production per unit
of available water (De Fraiture et al., 2010; De Fraiture and Wichelns, 2010; Van Halsema
and Vincent, 2012). WUE is used here as a measure of ‘localized efficiency’ (Van Halsema
and Vincent, 2012), which is appropriate in the context of this study, since it focuses
on the farmer’s perspective of the efficient allocation of input water (and consequently
economic inputs).

2.2.4 Data collection to compute performance indicators

The specific villages chosen for the survey and soil testing were Bani, Bansathi, Etra,
Parapratappur, Raigopalpur, Sherpur Baira and Tatarpur. The objective was to capture
a range of SQIs and WUEs with a systematic sampling methodology (Fowler, 2014).
Further, a GIS database was developed to visualize the survey and soil data. This helped
in understanding the spatial spread of the current ‘problem areas’, which can potentially
guide applied research, as well as more targeted delivery of the generated advisory.

2.2.4.1 Soil sampling and testing to compute SQI

Soil testing was conducted for 100 farmers in 2018 by the Uttar Pradesh State Agri-
cultural Department. Soil samples were collected in the manner recommended by the
Department of Agriculture, Cooperation & Farmers Welfare. Government guidelines
recommend sample collection on a grid basis with grid area of 2.5 ha for irrigated areas
(Kaur et al., 2020). For this study, the spatial resolution was increased substantially by
collecting five soil samples from each farm (instead of each 2.5 ha). Five soil samples
were collected from the top 15 cm (four from farm corners and one from the centre). The
samples were subsequently mixed to conduct physio-chemical analyses. The parameters
which were tested were physical parameters (pH, EC), macronutrients (SOC, N, P and
K), and micronutrients (S and Zn).
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2.2.4.2 Data for Water Use Efficiency (WUE)

Data regarding wheat yield and number of irrigations, corresponding to the previous
winter cropping season (rabi 2018, from November to April), were collected from 67
farmers, to generate a database of baseline water related data. Consequently, WUE was
computed assuming traditional practices of irrigation depths of 7.5 cm (per irrigation
application) for the wheat crop (Prihar et al., 1978) in India. Rainfall over the cropping
season was assumed constant for all the farms (since the study area has relatively flat
topography with areal coverage of less than 12 km2), and measured monthly rainfall
data from November 2017 to April 2018 (total rainfall of 2.2 cm) were used in addition
to data about irrigation application and yields reported by farmers during the surveys.
WUE was finally computed by dividing the yield values with the gross amount of water
applied (total rainfall and cumulative irrigation during the cropping season).

2.2.5 Integrated visualization: quantification and classification of overall farm
performance

A scatter plot is generated combining the two performance indicators, resulting in a
depiction of localized farm performance (Figure 2.2). The axes limits are determined by
the ranges of the respective performance indicators obtained in the survey. The plot is
subsequently divided based on the median values of the two indicators (derived from
the entire farm dataset generated in Section 2.2.4). There are hence four classes formed,
based on their respective performance zones, (i) Zone of satisfactory performance (S,
top-right): with both high WUE and SQI, where there is an expectation of high overall
performance, (ii) Nutrient limited zone (NL, top-left): with high WUE despite low SQI,
and there may be crucial lessons to learn from such farmers, (iii) Water limited zone (WL,
bottom-right): low WUE despite high SQI, where there are substantial opportunities
to improve the water management practices, and (iv) Zone of co-limitations (NLWL,
bottom-left): with both low WUE and SQI, within which there is low overall performance
needing more focused advisory dissemination.

The top right corner of the scatter chart (red circle) represents a “Localized Perfor-
mance Target” corresponding to the highest SQI and WUE indicators from the local
farms. The emphasis here is that the result-oriented advisory development should be
initially prepared to achieve ‘best’ performance based on localized characteristics, and
not the ‘best’ performance based on global standards, which is a reasonable approach
reported in the literature. For instance, soil quality can only be assessed appropriately
within the context of its inherent properties, environmental influences (temperature and
precipitation), and of ‘what the soil is being asked to do’ (Andrews et al., 2004).

Further, the sub-categories of “Best Practice Farms,” “Critical Farms” and “Quick
Improvement Farms” are proposed (which can be decided subjectively based on the
spread of the scatter – here shown in the corners for clear representation). “Best Practice
Farms,” which despite low SQIs are able to achieve high WUEs through good traditional
or modern water management strategies, can be identified to give crucial insights to
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Figure 2.2: Classification of farms based on the two performance indicators (Soil Quality
Index and Water Use Efficiency) associated with major yield gap limitations
(nutrient, water, or both).

other farmers, to enable community leadership and knowledge exchange. “Critical
Farms,” with both low WUE and SQI would need immediate assistance, and may be
prioritized as part of triage-based critical advisory administration. “Quick Improvement
Farms,” which have low WUE despite having soils with high SQI, would be expected
to show quickest improvements (in WUE) through simple water saving measures due
to their pre-existing relative advantage in nutrient status. Additionally, a subjective
selection of “High Performance Farms” (the best farms within the S-zone), can help
in defining an Intermediate Performance Target which is localized and is based on an
average of their respective performance indicators.

A GIS map is created corresponding to this zonal classification which helps in under-
standing the spatial distribution of the farms.
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2.2.6 Recommendations based on ’Farm performance classification’ to
customize advisories

This step is necessary to customize the advisory content to suit a farm’s current perfor-
mance situation (the farm’s position in the SQI-WUE plot in Figure 2.3) towards the
realistic goal of the Localized Performance Target (top-right corner in Figure 2.3). If this
target seems heuristically unrealistic, an Intermediate Target may be suggested, which
is the average of “High Performance” farms.

For the sake of simplicity, three basic typologies of advisories based on the ratio
of focus between water and nutrient related guidance are proposed. The “Initial soil
advisory zone” initially focuses on improving soil nutrient properties, the “Initial water
advisory zone” initially contains a higher proportion of water management related
content, and the “Balanced advisory zone” has a balance of nutrient and water related
advisory contents. Each of the zones tends to become a balanced advisory after observing
improvements towards better overall performance, as indicated by the red arrows in
Figure 2.3.

2.2.7 Development of the Farm Agricultural Diagnostics (FAD) tool

The motivation for developing the FAD tool (Adla, 2021) is to aid agricultural extension
service providers and professionals in allied sectors, such as in a local governments
or a Non-Governmental Organization (NGO), with a user-friendly tool for conducting
agricultural advisory diagnostics. The tool is developed using the Macro-in-Excel Visual
Basic for Applications (MEVBA) feature of Microsoft Office Suite’s spreadsheet software
MS Excel (Roman, 2002). MEVBA has the ability to incorporate scripts which are easy
to maintain and also allow for expansion through its modular framework. Its dynamic
formatting can be used to make the user interface more interactive, and yet it is a rather
familiar software for collaboration (Yang, Ogunkah, et al., 2013). In the FAD tool (Adla,
2021), MEVBA performs AHP calculations in the back-end by extracting data from
dynamic input tables resulting in a well-ordered and tidy user interface.

The FAD tool (Adla, 2021) is free, user-friendly, and accessible in terms of its work-
flow. Its inputs include data for computing the SQI (results of soil quality testing
on relevant parameters), heuristics to conduct relative comparisons between different
soil quality parameters, and input data for computing WUE (crop yield, rainfall and
applied irrigation during the cropping season). Its GUI can be used to generate a
classification of the farm performance based on the diagnostics approach introduced in
the study, and provide visual aids to promote a better understanding of the reported
results. The resultant chart is easily exportable. The Farm-Agricultural-Diagnostics-tool
version 1.0 has been archived as a Github repository (Adla, 2021), alongwith details
pertaining to its features and operational instructions described using screenshots of the
tool (https://github.com/soham-adla/Farm-Agricultural-Diagnostics-tool/blob/
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Figure 2.3: Performance class based advisory recommendations (with varying propor-
tions of ‘blue’ water vs ‘brown’ soil nutrient advisory ‘water droplet’ content)
based on the current situation relative to the Localized Performance Target
(top right corner). Zones of water limitation (WL), nutrient limitation (NL),
co-limitation (NLWL) and satisfactory performance (S) are shown within
which critical farms, quick improvement farms and best practice farms are
special sub-categories (introduced in Section 2.2.5).

main/FAD-v1.0_Instruction-Manual.pdf).

2.3 Results

2.3.1 Validating the working assumption using farmer surveys

In a reconnaissance survey conducted during 2018, farmers expressed concerns on
irrigation amounts and timing. In the detailed survey subsequently undertaken, 141 out
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2.3 Results

Table 2.1: Soil parameters and the respective weights assigned to compute SQI using the
AHP.

S. No. Soil parameter Weight (%)

1 SOC 35.29

2 pH 15.00

3 EC 15.00

4 N 12.34

5 P 7.38

6 K 7.38

7 S 3.80

8 Zn 3.80

of 144 farmers expressed their need for an advisory on irrigation scheduling, and all
farmers expressed their need for information on rainfall forecast, fertilizer application,
and a need to test their soils regularly. This reinforced the working assumption that the
major limiting factors to address yield gaps were soil and water related, as they were
identified as major advisory requirements by farmers who are the ultimate beneficiaries
of agricultural extension services.

2.3.2 Quantifying farm performance

2.3.2.1 Soil related performance indicator: Soil Quality Index (SQI)

The final weights assigned to each soil parameter, based on the AHP methodology, are
given in Table 2.1. Once the weights were assigned, the respective parameter values
were converted into non-dimensional values lying between 0 and 100%, based on the
linear scoring method (U. Kumar et al., 2019; Liebig et al., 2001) described in Section 2
of the Supplementary Material. The weights were then used in combination with the
parameter values to compute the SQI of each soil sample collected (based on Equation
2.2).

Figure 2.4 shows the spatial distribution of the farm scale SQI of 100 farms as part
of the GIS database that was developed. Higher values of SQI indicate better soil
performance or lower nutrient limitations. Soil properties exhibit spatial variability even
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at farmland scales (McBratney, 1997), and a comprehensive explanation of this variability
would require a historical and current understanding of the physical, chemical and
biological processes occurring in the farms (Santra et al., 2008), along with a broad
knowledge of land use and management practices (Mouazen et al., 2003). Such a
comprehensive database may not be readily available even with advisory institutions.
Hence, it is important to conduct soil testing and compute SQI using local expertise as a
prerequisite to the proposed advisory diagnostics approach, rather than attempting to
address diverse soil quality issues using incomplete information.

Figure 2.4: Spatial variability of the soil related performance indicator, Soil Quality Index
(SQI), computed with the AHP methodology, using the soil testing results of
samples collected from 100 farms in the study area.
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2.3.2.2 Water related performance indicator: Water Use Efficiency (WUE)

The WUE of wheat (calculated using Equation 2.2) was 1.60 kg/m3 (s = 0.49 kg/m3).
Figure 2.5 illustrates the spatial variability of farm scale WUE for 67 farms, as part
of the GIS database that was developed. Higher values of WUE indicate a higher
localized efficiency in the application of water at the farm level (Van Halsema and
Vincent, 2012). A simplistic observation of the proximity to surface water sources (like
canal or canal distributaries, shown in bold and light blue colors respectively) would
not be sufficient to explain the variability in WUE across the farms, since it is impacted
by many management factors including variety, sowing date, planting density and row
spacing, soil water content at planting, irrigation method and pest management (Howell,
2001). This again reinforces the need to provide data-driven, farm-specific advisories.

2.3.3 Integrated visualization: quantifying overall farm performance and
classification

The scatter plot of the farms’ performance, developed using surveys and soil testing,
is given in Figure 2.6. Out of the 144 surveyed farms, 100 soil samples were collected,
and 67 farmers reported previous year yields and irrigation application data. Hence, 67
farm points are included in the visualization

The extreme values of the SQI were 28.12% and 76.22%, and corresponding values
of WUE were 0.61 kg/m3 and 3.48 kg/m3, which represent plot boundaries (X and
Y axis extremes respectively). The median values of SQI and WUE were 43.09% and
1.55 kg/m3 respectively. This led to the Y and X axes passing through these points
respectively and to a relatively evenly distributed percentage of farms across the classes:
S (14.9%), NL (23.9%), WL (34.3%), and NLWL (26.9%).

The identification of the special sub-categories of “Best Practice Farms”, “Critical
Farms” and “Quick Improvement Farms” was performed as follows. A visual judgment
was taken to categorize only one farm into the category of “Best Practice Farms”, whose
SQI (39.45%) was 9.5% lower than the median SQI, but WUE (0.28 kg/m3) was 82.5%
higher than the median WUE. This may have been due to the fact that though the farm
location was relatively upstream to the other farms (and with adequate access to canal
irrigation), the farmer chose to irrigate his wheat three times during the season. This
was in contrast to the modal and mean values of the number of irrigations in all the
farms being 4 and 3.7 respectively. The “Critical Farms” (red diamonds) had both SQI
and WUE values below their respective median values within the NLWL region. 4 out
of the 18 NLWL farms (22.2%) were identified as "Critical Farms", which could be given
prioritized attention through customized advisory services. The "Quick Improvement
Farms" (yellow diamonds) had farms whose WUE values were below, and SQI values
were above, their respective medians (among the WL datapoints).

The subjectivity in the above categorizations is inherent to model development,
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Figure 2.5: Spatial variability of the water related performance indicator, Water Use
Efficiency (WUE), computed using data from 67 farms in the study area.

and becomes more explicit when stakeholders are included in the modelling process
(Srinivasan et al., 2017). It is recommended that advisors take up this process with
the active involvement of stakeholder farmers or farmer groups. The categorization of
“Best Practice Farms”, “Critical Farms” and “Quick Improvement Farms” has not been
incorporated in the corresponding FAD tool (Adla, 2021), and the final outcome of the
tool is a visualization with the broader classes (NL, WL, NLWL, and S).

The Localized Performance Target (red circle at the top-right corner of Figure 2.6)
seemed distant from any of the farm’s performance. The farm with the best SQI =
76.22% had a WUE = 1.62 kg/m3, and the farm with the best WUE = 3.48 kg/m3 had
an SQI = 51.8%. Hence, “High performance farms” were identified through visual
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Figure 2.6: Classification of surveyed farmers (n = 67) based on locally relevant Soil
Quality Index (%) and Water Use Efficiency (kg/m3) to aid zonal advisory
development. S – ‘sufficient’ farms in terms of limitations to yield gap, WL –
‘water limited farms’, NL – nutrient limited farms and NLWL – farms with
co-limitations of both water and nutrients. Also shown are farms identified
as critical, quick improvement, and best practice farms, and the performance
targets.

inspection (green diamonds), and their average performance tuple (SQI = 61.24%, WUE
= 2.26 kg/m3) was designated to be an Intermediate Performance Target.

A GIS map of the spatial variation of farms categorized into the four SQI-WUE
classes is presented in Figure 2.7. An initial visual analysis did not reveal any clear
environmental bases explaining the variability of the farm performance classes within
the study area. For example, there both WL and NLWL farms in proximity to the
Lower Ganga canal, which is counterintuitive since farms adjoining surface water would
generally be expected to not be water limited. The explanation of such patterns may
require a deeper analysis of the human-water interactions within social, economic and
natural systems (Srinivasan et al., 2017; Van Emmerik et al., 2014) which consequently
require more holistic and perhaps new data sources including citizen science, new
sensing technologies or satellite data products (Buytaert et al., 2014). Particularly in
this case, knowledge of previous and current soil and water management practices,
access to farm technology, availability of capital may be useful to make explanatory
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interpretations, which are generally available with government or non-governmental
agencies working in the agricultural sector, and were not collected for this study.

Figure 2.7: GIS map of farm classification using soil nutrients and water as major
limitations contributing to yield gap. S – ‘satisfactory’ farms in terms of
limitations to yield gap, NL – nutrient limited farms, WL – water limited
farms and NLWL – farms with co-limitations of both nutrients and water.
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2.3.4 ‘Farm performance classification’ based recommendations to customize
advisories

The SQI-WUE based classification of the different farms in the study area is given in
Figure 2.8.

Figure 2.8: Classification based advisory development in the study area. The Intermedi-
ate Target is computed using the average of the ‘High performance’ farms
(depicted using green diamonds).

It is desirable to design advisories which would not aim at a performance indicator
tuple of SQI = 76.22%, WUE = 3.48 kg/m3, but rather aim for a relatively well performing
farm in the region. Hence, the average performance of the ‘High performance’ farms
was chosen as an achievable Intermediate Target, e.g., as shown in Figures 2.6 and
2.8. Once a farm achieves this Intermediate Target, it can aim to achieve the Localized
Performance Target. Farms that are already better than this Intermediate Target could
get advisories which aim at the Localized Performance Target.

The GIS map already generated (Figure 2.7) can be used to implement the designed
advisories (three types of advisories each for the Intermediate and the Localized Perfor-
mance Targets) in the region.
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2.4 Discussion

2.4.1 Contextualizing the diagnostics approach using a medical analogy

This study introduces an approach to assess farm performance and diagnose the reasons
for yield gaps with a user inspired, data-based approach (Sivapalan et al., 2014; S.E.
Thompson et al., 2013). The approach limits itself to advisory diagnostics, and does
not make recommendations about advisory content or form. A useful analogy to
contextualize this approach is the diagnosis and treatment of a patient by a medical
doctor, with the help of diagnostic tests, as illustrated in Figure 2.9.

Figure 2.9: Contextualization of the agricultural diagnostics approach, using a medical
analogy, given in parentheses. Image modified from the free-copyright
abstract vector created by macrovector (https://www.freepik.com/vectors/
abstract)

Every patient is different in terms of their physiological or pathological condition,
just like every farm is different in terms of its agricultural condition. A doctor refers
their patient to tests conducted by diagnostic laboratories to better ascertain the current
state of the patient’s physiological condition. An accurate and timely diagnosis, i.e.,
identification of the patient’s problem, leads to ‘clinical decision making’ tailored to a
correct understanding of the patient’s health problems (Holmboe and Durning, 2014).
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2.4 Discussion

Likewise, this study’s approach is a diagnostic method to better quantify the current
condition of a farm, so that an advisor can administer advisories which are more
customized to the farm in question. Moreover, public health policy is often influenced
by diagnostic data, by altering resource allocation decisions and research priorities
(Jutel, 2009; WHO, 2012). Similar diagnostic data collection and analysis in agriculture
also opens up possibilities for applied research which may inform policy makers and
implementing agencies to better serve demand-driven needs.

The tool will add data-based diagnostics value to pre-existing demand based advisory
services, if used within already existing agricultural extension programs. The primary
users of the tools are advisors (analogous to medical doctors), whom it facilitates, to
generate more data-based and hence customized advisories, for farmers. In India, the
district-level farm science centres (Krishi Vigyan Kendras) are such extension institutions
which operate under central or state agricultural universities, the Indian Council of
Agricultural Research (ICAR), NGOs, state governments, or public sector undertakings
(ICAR, 2015)2. It is their mandate to develop advisories, including the disbursement
of ‘farm advisories using ICT and other media means on varied subjects of interest
to farmers’ and ‘assessment of location specific technology modules in agriculture’
(ICAR-IASRI, n.d.)3.

2.4.2 Financial and institutional implications

The financial and institutional implications of this additional diagnostics process are
predominantly related to aspects of soil sampling and testing, management of the data
generated from soil testing, farmer surveys, and the tool, and human resource skill
development for the relevant extension staff. In developing countries such as India, soil
testing is a routine function of the Department of Agriculture, Cooperation & Farmers
Welfare (Kaur et al., 2020). State agricultural departments are mandated to develop Soil
Health Cards (SHCs), launched for Soil Health Management (SHM) by the Department
of Agriculture, Cooperation & Farmers Welfare (Ministry of Agriculture and Farmers
Welfare) by the Govt. of India4. The proposed diagnostics approach can build on
the strengths of pre-existing soil testing infrastructure and leverage data collection
mechanisms through call centres such as the Kisan Call Centre (Ganesan et al., 2013).
The financial investment of the diagnostics approach and tool has two major aspects:
the infrastructure to support data storage and processing for the agricultural “big data”
thus generated (Hashem et al., 2015), and human resource skill development. The
sustainable scaling-up and replication of such data-driven diagnostics will require large-
scale storage, pre-processing and analysis of data coming from different sources (Hashem
et al., 2015; Kamilaris et al., 2017). Though big data management has only recently
been incorporated into agriculture (Lokers et al., 2016), the Indian big data analytics

2https://krishi.icar.gov.in/kvk.jsp
3https://kvk.icar.gov.in/aboutkvk.aspx
4https://soilhealth.dac.gov.in/Content/blue/soil/about.html
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sector is expected to record a growth rate of 26% and increase by 14 billion USD from
2020 to 2025 (Reghunadhan, 2020). The Government of India has initiated various big
data projects in the agricultural sector - Farmers Portal5 (portal which delivers relevant
village/block/city/state level information through text message/email), Agricultural
and Processed Food Products Export Development Authority6 (portal which facilitates
export of food products, registers farms online, conducts surveys and feasibility studies,
aids the collection of test samples, etc.), the Agriculture Portal of www.india.gov.in7

(database on agricultural products, machinery, research, and knowledge resource for
government policies and schemes, market prices, etc.), and the Open Government Data
Platform India8 (open dataset available for research and analysis) (Shankarnarayan and
Ramakrishna, 2020). Additionally, large corporations working in the agri- and allied
sector (e.g., Monsanto, Mahindra and Mahindra) have invested substantially in big data
in the agribusiness segment (Lane, 2015). However, challenges accompanying big data
applications, including privacy, security, data governance, sharing, expense, and data
ownership, will also apply to this context, and will need to be addressed appropriately.
(Shankarnarayan and Ramakrishna, 2020). The human resource skill development,
particularly in subject knowledge and data analytics, can be inculcated through regular
ICT trainings, which has been found to improve computer skills and work efficiency
(Galanouli et al., 2004), and has been recommended for agricultural extension workers
(Nyarko and Kozári, 2021).

2.4.3 Recommendations for advisors using the tool

The advisory content can be supplemented by incorporating knowledge generated
through mutual learning through interactions between farmers, among scientists and
between farmers and scientists, for more effective translation of scientific information
(Feldman and Ingram, 2009). Table 2.2 suggests some key characteristics (or major
commonalities) of farms closer to the Localized Performance Target (shown in Figure
2.3). An identification of the key characteristics (or common factors, if they exist) of
farms in each of the groups listed in Table 2.2 may help in designing advisories which
are more specific than generic advisories. Lessons can be drawn from “Best Practice
Farms” about their superior water management practices (despite relatively poor soils),
and can be applied with confidence to advise “Critical Farms” and particularly “Quick
Improvement Farms” because they are unable to achieve high WUEs despite relatively
high SQIs.

5https://farmer.gov.in/
6http://apeda.gov.in/apedawebsite/
7https://www.india.gov.in/topics/agriculture
8https://data.gov.in
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2.4 Discussion

Table 2.2: Template for collecting key characteristics of farm sub-categories to guide a
bi-directional flow of information. The examples given are descriptive.

Category Commonalities/ learnings Requirements

“Best Practice
Farms” (High
WUE despite

low SQI)

Examples: superior soil
conservation techniques,

efficient irrigation methods,
better educational qualifications

etc.

After improvement of nutrient
based performance characteristics,

incorporating data-based
precision farming techniques

through experiments.

“Quick
Improvement
Farms” (Low
WUE despite

high SQI)

Examples: lack of reliable
irrigation sources, poor

irrigation practices/water use
behaviour, particular

low-yielding crop/seed variety
etc.

Better water management
practices (particularly using
lessons from “Best Practice

Farms”).

“Critical
Farms” (Low

WUE and
SQI)

Examples: poor soil type, poor
access to irrigation water, low
socio-economic situation etc.

Low-cost, agricultural practices
that lead to the quickest initial

increase in performance
characteristics (towards the

Localized Performance Target).

Progressive farmers with the “Best Practice Farms” and “High Performance Farms”
could potentially function as community leaders. Several examples of such leadership
exists across domains, including the kisan mitras (farmer friends) - educated progressive
farmers appointed by the government as village level extension functionaries (Landge
and Tripathi, 2006), ‘barefoot engineers’ - local level para-hydrogeologists employed
by the gram panchayat (local village government) to take independent decisions re-
garding water management programs (Sen et al., 2019), and community health care
workers - facilitators in improving health care access and outcomes in poor and deprived
communities (E.L. Rosenthal et al., 2010). Also, once a farm is closer to the Localized
Performance Target, a customized plan can be designed with modified global best
practices, incorporating the potential of precision farming, for enhanced sustainability
in the longer run. Ensuring transparency in disseminating performance indicators
(with the possibility of farmers to visit vicinal better performing farms) can encourage
farmers to visit each other without any immediate need for contacting the external
‘scientific’ community, inspiring knowledge exchange within the community. Moreover,
employees of some agencies in direct and regular communication with farmers (such as
grassroots NGOs) have informally appreciated the potential of this tool for improved
farm data monitoring and management (particularly of variables causing yield losses),
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and ultimately developing customized solutions for their farmer beneficiaries.
The form in which advisories are administered may be designed considering pre-

existing local practices. Farmers have needed graphs and data to be interpreted by
trained advisors in some advisory services (Eastwood et al., 2019). Engagement with
users in the study area also corroborated this need; farmers suggested that advisories be
administered using the local agronomic and agricultural management nomenclature.
The corresponding training of advisors could incorporate suggestions from selected
local farmers (managing the best practice farms in the region).

2.5 Conclusions
Acknowledging the need for data-driven agricultural extension, a “diagnostics” ap-
proach is developed to supplement pre-existing, demand-based, generic advisory pro-
grams, particularly in the Indian context. It included the following steps. The current
performance of farms is evaluated using soil nutrient and water related performance
indicators (Soil Quality Index SQI and Water Use Efficiency WUE respectively). Next,
farms are classified into different performance zones to develop more customized advi-
sories. Further special classes of farms are identified; the “Best Practice Farms” which
can serve as a source of successful traditional or modern knowledge, “Critical Farms”
which perform relatively poorly and would need critical focus urgently, and “Quick
Improvement Farms” with low WUE despite relatively better SQI. A corresponding
Farm Agricultural Diagnostics (FAD) tool is developed using MS Excel Macros which
incorporates the salient features of the approach into a well-ordered, interactive and
user-friendly design. The approach and tool are piloted in Kanpur, a region represent-
ing a smallholder dominated intensively managed rural landscape in the Ganga river
basin (India). Additionally, a GIS database is developed to visualize the diagnostics for
improved advisory administration. The approach and tool can be utilized extensively by
academia, government and non-government agencies working in the agricultural sector,
synergistically harnessing their strengths of rigorous scientific research, soil testing
capacity, and direct stakeholder engagement, respectively. However, this effort would
require political will, capacity building and cooperation within and between the relevant
sectors.
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3 Laboratory calibration and performance
evaluation of low-cost soil moisture
sensors

Adla et al. (2020) 9

Abstract
Soil volumetric water content (VWC) is a vital parameter to understand several ecohy-
drological and environmental processes. Its cost-effective measurement can potentially
drive various technological tools to promote data-driven sustainable agriculture through
supplemental irrigation solutions, the lack of which has contributed to severe agricul-
tural distress, particularly for smallholder farmers. The cost of commercially available
VWC sensors varies over four orders of magnitude. A laboratory study characterizing
and testing sensors from this wide range of cost categories, which is a prerequisite to
explore their applicability for irrigation management, has not been conducted. Within
this context, two low-cost capacitive sensors - SMEC300 and SM100, manufactured by
Spectrum Technologies Inc. (Aurora, IL, USA), and two very low-cost resistive sensors -
the Soil Hygrometer Detection Module Soil Moisture Sensor (YL100) by Electronicfans
and the Generic Soil Moisture Sensor Module (YL69) by KitsGuru - were tested for per-
formance in laboratory conditions. Each sensor was calibrated in different repacked soils,
and tested to evaluate accuracy, precision and sensitivity to variations in temperature
and salinity. The capacitive sensors were additionally tested for their performance in
liquids of known dielectric constants, and a comparative analysis of the calibration equa-
tions developed in-house and provided by the manufacturer was carried out. The value
for money of the sensors is reflected in their precision performance, i.e., the precision
performance largely follows sensor costs. The other aspects of sensor performance do
not necessarily follow sensor costs. The low-cost capacitive sensors were more accurate
than manufacturer specifications, and could match the performance of the secondary
standard sensor, after soil specific calibration. SMEC300 is accurate (Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Relative Absolute Error (RAE) of
2.12%, 2.88% and 0.28 respectively), precise, and performed well considering its price
as well as multi-purpose sensing capabilities. The less-expensive SM100 sensor had
a better accuracy (MAE, RMSE, and RAE of 1.67%, 2.36% and 0.21 respectively) but
poorer precision than the SMEC300. However, it was established as a robust, field ready,
low-cost sensor due to its more consistent performance in soils (particularly the field

9Adla, S., Rai, N.K., Karumanchi, S.H., Tripathi, S., Disse, M. and Pande, S., 2020. Laboratory calibration
and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors.
Sensors 20(2), 363. https://doi.org/10.3390/s20020363
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soil) and superior performance in fluids. Both the capacitive sensors responded reason-
ably to variations in temperature and salinity conditions. Though the resistive sensors
were less accurate and precise compared to the capacitive sensors, they performed well
considering their cost category. The YL100 was more accurate (MAE, RMSE, and RAE
of 3.51%, 5.21% and 0.37 respectively) than YL69 (MAE, RMSE, and RAE of 4.13%,
5.54%, and 0.41, respectively). However, YL69 outperformed YL100 in terms of precision,
and response to temperature and salinity variations, to emerge as a more robust resistive
sensor. These very low-cost sensors may be used in combination with more accurate
sensors to better characterize the spatiotemporal variability of field scale soil moisture.
The laboratory characterization conducted in this study is a prerequisite to estimate the
effect of low- and very low-cost sensor measurements on the efficiency of soil moisture
based irrigation scheduling systems.

Keywords: volumetric water content; soil moisture; permittivity; capacitive sensor;
SM100 sensor; SMEC300 sensor; resistive sensor; off-the-shelf sensor; calibration; temper-
ature sensitivity, salinity dependence; low-cost sensor; irrigation management; precision
agriculture.

3.1 Introduction
The gravimetric method (Gardner, 1986), which is the most accurate method of VWC
measurement, is destructive, laborious, and does not provide results in real-time (Kargas
and K.X. Soulis, 2012). This has led to the development of non-destructive, indirect
methods for the measurement of VWC (Bogena et al., 2017; Hubner et al., 2009; E.
Ochsner et al., 2013; Robinson et al., 2008; X. Yu et al., 2013; D. Zhang and G. Zhou, 2016).
Examples include neutron thermalization (Greacen, 1981), Time Domain Reflectometry
(TDR) (Robinson et al., 2003; Topp et al., 1980), Time Domain Transition (TDT) (e.g.,
in Blonquist Jr et al., 2005), electrical capacitance (Fares and Polyakov, 2006; Kojima
et al., 2016; Ojo et al., 2015) and impedance sensors (e.g., in Gaskin and Miller, 1996; Ojo
et al., 2015).

The Electromagnetic (EM) sensors (TDR, TDT, and capacitance sensors) work on the
principle that the EM wave propagation in bulk soil is primarily governed by liquid water
that has a substantially larger dielectric permittivity (ϵr) than the other soil components
(gaseous air and solid soil minerals) (Bogena et al., 2017). TDR and TDT sensors operate
at higher frequencies (of the order of GHz Blonquist Jr et al., 2005) at which VWC
measurements are less sensitive to soil electrical conductivity and imaginary dielectric
permittivity (Blonquist Jr et al., 2005). Though the TDR method is regarded as the
most accurate EM based VWC measurement technique (Noborio et al., 1994; Robinson
et al., 2003), it is limited by its high cost and complex waveform analysis (Kargas and
K.X. Soulis, 2012). Capacitance and frequency sensors, developed as alternatives to the
TDR technique (Seyfried and Murdock, 2004), operate between 50 and 150 MHz (Bogena
et al., 2017). They are similar with respect to repeatability, applicability to a wide range
of soil types, and continuous monitoring ability (Dean et al., 1987), but are further
advantageous due to significantly lower costs.
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The combination of new technologies, stakeholders-cooperation and effective pro-poor
institutions, within a larger and enabling policy framework, is considered to be the ‘best
chance for lasting and sustainable impact on poverty’ (Rijsberman, 2003). These factors
can result in an improvement of the livelihoods of the the poorest smallholder farmers
through a transition towards sustainable agriculture (Rijsberman, 2003; Srbinovska
et al., 2015). The lack of supplemental irrigation facilities has been identified as a major
exacerbating factor for smallholder farmers facing severe agricultural distress (Besten,
2016; Pande and Savenije, 2016). Therefore, there is a need for sensor based systems for
VWC monitoring for applications such as irrigation management (for instance, Wireless
Sensor Network (WSN)) (Matula et al., 2016b). The utilization of such technologies is
challenged by low awareness and reluctance towards adoption in farmers, and a lack
of interest in investment due to the economic pressures of fast returns on investments,
which could be countered by developing low-cost and user-friendly systems (Srbinovska
et al., 2015).

Soil moisture sensors operating within WSNs can serve various purposes extending
beyond irrigation management, such as validating remotely sensed soil moisture prod-
ucts (Cosh et al., 2016), observing ecohydrological processes (Baatz et al., 2015; Bogena
et al., 2015), or characterizing spatial soil properties (Qu et al., 2014; 2015). However,
WSNs are claimed to be expensive and to require further development (McBratney et al.,
2005). To maximize the number of sensor nodes and due to the substantial quantity of
VWC measurements from such networks, it is essential to use low-cost sensors with
signals which can be interpreted in a straightforward and clear manner (Bogena et al.,
2017). This has triggered an increase in the number of low-cost VWC sensors operating
within WSNs spread over larger areas (Bogena et al., 2017). The cost of commercially
available VWC sensors varies over four orders of magnitude. Capacitance sensors, being
comparatively inexpensive and easy-to-use, show promise in measuring VWC within
WSNs (González-Teruel et al., 2019; Martini et al., 2015; Qu et al., 2013). However, low-
cost sensors may exhibit sensor-to-sensor variability (Rosenbaum et al., 2011), which,
if not addressed, affects measurement accuracy (Bogena et al., 2017). In this study,
two cost categories are defined: ‘low-cost’ and ‘very low-cost’. These categories are,
respectively, approximately one order and three orders of magnitude lower than an
expensive, TDR-based sensor (without considering data logger or reader costs).

Tables 7.1 and 7.2 list some representative studies from a large body of work during
the past few decades that have focused on the calibration and testing of VWC sensors.
The determination of sensor accuracy, precision, sensor-to-sensor variability, volume
of influence, and temperature and salinity effects is also vital to understand sensor
performance under different conditions encountered in practice (some publications listed
in Table 7.1). A list of publications, which have calibrated different capacitance, Fre-
quency Domain Reflectometry (Frequency Domain Reflectometry (FDR)), or impedance
soil moisture sensors on various fluids or porous media, using different curve-fitting
methods, is given in Table 7.2. The novelty of this study lies in characterizing and
testing non-research grade soil moisture sensors (in particular the low-cost capacitive
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and very-low cost resistive sensors), which is a prerequisite to assess their irrigation
management capabilities. Also, a new approach for holistic visualization of sensor
accuracy and precision for multiple sensors and soils is presented.

Partly based on the literature (Czarnomski et al., 2005), and partly motivated by
the impact that low-cost soil moisture sensors could have on ecological research and
supplemental irrigation, the following questions were used to design the experiments
conducted in the study.

1. What is the ability of the capacitive sensors to estimate the refractive index (ϵr) of
various fluids of known ϵr values?

2. What empirical equation(s) can best explain the relationships between the output
of the low- and very low-cost soil moisture sensor instruments tested in the study,
and the actual VWC, across a variety of soils?

3. What is the difference between the respective accuracies of the soil-specific cal-
ibration equations developed in-house and the general manufacturer-provided
calibration equations?

4. What is the accuracy and precision performance of different low- and very low-cost
soil moisture sensor instruments tested?

5. How is the accuracy and precision of the developed calibration curves affected by
variations in (i) temperature and (ii) electrical conductivity, within ranges that are
commonly encountered in field conditions?

The results pertaining to the above questions are addressed in Sections 3.3.1.1–3.3.1.3,
3.3.2, and 3.3.3, respectively.

3.2 Materials and Methods
3.2.1 Soil Moisture Sensors

The sensors tested in the study are described in the subsections below. A comparison of
the salient features (including prices from quotations) and the corresponding cost-based
nomenclature used in the study are presented in Table 3.1. Sensor photographs are
given in Figure 3.1.

3.2.1.1 Capacitance Based Low-Cost Sensors: Spectrum SM100 and SMEC300

The WaterScout SM100 Soil Moisture Sensor (manufactured by Spectrum Technologies,
Inc.) is a capacitance-based low-cost soil moisture sensor (Spectrum, 2011). The sensor
has a pair of electrodes that operates as a capacitor and the surrounding soil functions
as the charge storing dielectric medium (Spectrum, 2011). The WaterScout SMEC 300
Soil Moisture Sensor is also a capacitance-based low-cost soil moisture sensor with
the additional capability of measuring Electrical Conductivity (EC) and soil temper-
ature (Spectrum, 2012). In both cases, an oscillator operating at 80 MHz drives the
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3.2 Materials and Methods

Figure 3.1: The four soil moisture sensors investigated in the study; from left to right (in
the order of ascending cost): YL69, YL100, SM100, and SMEC300. The right-
most sensor is the secondary standard sensor, ThetaProbe.

capacitor and the generated output (voltage ratio) is proportional to the soil’s dielectric
constant (ϵr) (Spectrum, 2011). However, the estimated ϵr is not available to the user
via data loggers or readers as both sensors are calibrated by developing relationships
between voltage ratios/raw A/D (analog to digital) values and actual VWC (θ) of a
continuously drying soil column (D. Kieffer, personal communication, 5 September 2018).
Additionally, the SMEC300 sensor measures EC with a pair of carbon ink electrodes,
and temperature using a thermistor potted in the sensor molding (Spectrum, 2012).
The SM100 has a reported accuracy of 3% VWC at an EC < 800 mS.m−1, and an operat-
ing range of 0.5 ◦C to 80◦C (Spectrum, 2011). The SMEC300 has reported accuracies of
3% for VWC, ±1 mS.m−1 for EC and 0.6 ◦C (0.8 ◦C) for temperatures greater than −30
◦C (lesser than −30 ◦C), and has ranges of operations of 0–1000 mS.m−1 for EC and −50
◦C to 85 ◦C for temperature (Spectrum, 2012).

3.2.1.2 Generic Resistance Based Very Low-Cost Sensors: YL100 and YL69

The Soil Hygrometer Detection Module Soil Moisture Sensor provided by Electronicfans
(herein referred to as YL100) and the Generic Soil Moisture Sensor Module by KitsGuru
(herein referred to as YL69) are both resistive soil moisture sensors. Both the sensors
have two pronged probes operating as variable resistances which are a function of
the soil moisture. An increasing soil moisture increases the effective conductivity of
soil (Aravind et al., 2015; Saleh et al., 2016). This variation in resistance causes a variation
in voltage drop, which is then measured by the electronic module and subsequently
returned as an output. However, the measured soil resistivity is also influenced by ion
concentration (Bouyoucos and Mick, 1948) and hence careful calibration along with fre-
quent recalibrations (due to variable organic and salt concentrations) are recommended
for effective application (Schmugge et al., 1980). Previous studies have developed calibra-
tion curves for estimating continuous soil moisture (Saleh et al., 2016) or soil moisture
categories (dry, medium, high, etc.) (Aravind et al., 2015) as a compromise between
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Table 3.1: Description of sensors used in the study.

Measurement Soil Moisture Sensor (Company) Price Nomenclature
Technique (Quotation) Used in Study

Capacitance
based

SMEC300 Soil Moisture, Tempera-
ture and EC sensor (Spectrum Tech-
nologies)

$ 219.00 Low-cost *.

SM100 Soil Moisture sensor (Spec-
trum Technologies)

$ 89.00 Low-cost.

Resistance
based

YL100 Soil Hygrometer Detection
Module soil moisture sensor (Elec-
tronicfans)

$ 3.89 Very Low-cost.

YL69 Generic Soil Moisture Sensor
Module (Kitsguru)

$ 2.11 Very Low-cost.

Impedance
based

ThetaProbe ML3 Soil Moisture sen-
sor (Delta-T Devices)

$ 516.33
High-cost, ‘true’
secondary stan-
dard sensor.

* Considering the additional temperature and EC sensing capabilities.

sensor accuracy and cost. No records of sensor specifications (including accuracy and
operating conditions) could be found in the literature for either of the sensors.

3.2.1.3 Impedance-Based Sensor: Delta-T ThetaProbe ML3

The Delta-T ThetaProbe ML3 (henceforth referred to as the ThetaProbe) measures
the soil VWC by responding to the changes in its apparent dielectric constant (Delta-
T, 1999). A 100 MHz sinusoidal signal is applied to an internal transmission line
extending into the soil by means of a sensing head (Delta-T, 1999). This comprises of
an array of four rods: three of them (connected to the instrument ground) behaving
as an electrical shield around the central, signal rod. The sensing head operates as an
additional section of transmission line and has an impedance which depends on the
dielectric constant of the soil (Miller and Gaskin, 1998). The impedance of the rod array
subsequently impacts the reflection of the 100 MHz signal at the junction between the
internal transmission line and the sensing head (Delta-T, 1999) and the interference
of the reflected component with the incident signal causes a standing wave to form
on the transmission line (Miller and Gaskin, 1998). The output is an analog voltage
proportional to the difference in amplitude of this standing wave at two points—the
junction and the starting point of the transmission line (Delta-T, 1999). This amplitude is
related to the relative impedance of the probe, and thus the dielectric constant and VWC
(Miller and Gaskin, 1998). The VWC sensor has a two-step calibration process; a soil
specific linear calibration equation between the actual VWC (θ) and the refractive index
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Figure 3.2: The four different soils used the study. From left to right: Soil 1: Grade I
Sand (Bureau of Indian Standards (BIS), 2002), Soil 2: Grade III Sand (Bureau
of Indian Standards (BIS), 2002), Soil 3: Silty-loam soil from local field, Soil 4:
Graded Silty-loam soil.

(
√

ϵr) of the dielectric medium, and a sensor specific 6th degree polynomial calibration
equation between the output voltage and the refractive index (

√
ϵr), together resulting in

a 6th degree polynomial calibration equation between the output voltage and the actual
VWC (θ) (Delta-T Devices Ltd., 2017). The ThetaProbe has a reported soil moisture
accuracy of ±1%, salinity error of ≤ 3.5% VWC over 50-500 mS.m−1 and 0-50% VWC,
and soil temperature accuracy of ±0.5 ◦C over 0 ◦C to 40 ◦C (Delta-T Devices Ltd.,
2017). It is considered to provide a sensitive and precise measurement of VWC and
soil temperature (Delta-T Devices Ltd., 2017), and is accepted for surface soil water
content measurements (Matula et al., 2016b). Therefore, it could be justified to be used
as a secondary standard (Nakra and Chaudhry, 2006) for the different experiments
conducted in this study.

3.2.2 Description of the Soils Used

The four different soils used in the study are shown in Figure 3.2, and a description of
their physical characteristics is tabulated in Table 3.2. These consisted of two Indian
Standard sands from Indian Standard (IS) 650:1991 (Bureau of Indian Standards (BIS),
2002) and two silty-loam soils representative of agricultural landuse in the Ganga
floodplains. Among the silty-loams, Soil 3 was sampled from a local agricultural field
and included without any grading (to purposefully represent local field conditions),
as opposed to Soil 4, which was graded with a 2 mm sieve.

3.2.3 Sensor Calibration

3.2.3.1 Calibration of Capacitive Sensors with Fluids

Following the literature (Bogena et al., 2017; Kargas and K.X. Soulis, 2012; 2019; Rosen-
baum et al., 2012), fluids of known dielectric properties were used to evaluate (i) sensor
accuracy, (ii) sensor precision, and (iii) the comparative performance of the tested ca-
pacitive sensors. The motivation behind using fluids was to minimize the variability
in measurements arising due to nonuniform contact between the sensor surface and
the porous media (Kargas and K.X. Soulis, 2012). The fluids were chosen because their
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Table 3.2: Description of physical properties of the 4 soils used in the study (Adla et al.,
2018)

.
Nomenclature
Used in Study

Soil Description
Bulk Density

[g/cc]
Soil Texture

Classification

Soil 1 Grade I sand (1–2 mm) 1.82 Sand
Soil 2 Grade III sand (0.09–0.5 mm) 1.59 Sand

Soil 3
Field soil from experimental
site at IIT Kanpur (Kanpur,

India)
1.23 Silty-Loam

Soil 4 Graded Silty-Loam 1.20 Silty-Loam

Table 3.3: Fluids of known relative permittivity (ϵr) used in the study.

Fluid ϵr at T = 25 ◦C (Kargas and K.X. Soulis, 2012)

Air 1.0
Butanol 16.8
Ethanol 24.3

Ethylene-glycol 37.0
De-ionized water (Water) 81.0

respective ϵr values were known and those values fall in the range generally encountered
in soils of varying VWCs. The fluids selected for the study are shown in Table 3.3.
The deionized water is henceforth referred to as “water”.

Note that as the ThetaProbe was taken to be a secondary standard, it was included
as a standard against which the investigated sensors were tested, rather than being
calibrated or tested for performance.

3.2.3.2 Calibration of Sensors with Repacked Soils

In addition to calibrating soil moisture sensors with fluids of different ϵr values (which
was relevant only for the capacitive sensors), it is essential to calibrate sensors in
porous media (such as repacked or natural soils) before effective field application.
Although repacking alters the natural soil structure (Czarnomski et al., 2005), using
repacked soils for calibration is recommended to achieve better precision (Starr and
Paltineanu, 2002). The calibration methodology adopted was based on predetermined
uniform soil water content regimes for repacked soils, similar to recent studies (Kargas
and K. Soulis, 2019; Matula et al., 2016b). Known quantities of water were added to
containers with oven dried soils. The actual VWC (θ) was determined using a weighing
machine, and multiple VWC measurements (θ̂i) were taken with multiple specimens
of each of the four sensors tested in the study. This process was repeated for each
of the four soils (Table 3.2). The calibration methodology used for the repacked soils
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is described in detail on an online database, https://www.protocols.io/ (Adla et al.,
2018), to encourage methodological reproducibility and refinement.

3.2.4 Performance Measures for the Sensors

3.2.4.1 Sensor Accuracy

Accuracy is a measure of how close the measured output is to the true value (Morris
and Langari, 2012). Accuracy may also be defined as the maximum difference that
exists between a measured value and the true value determined by a standard reference
procedure (Carr and J. Brown, 2001). In this study, the true value was determined
through two approaches: a primary calibration standard (the gravimetric weight) as
well as a secondary calibration standard (the impedance-based ThetaProbe soil moisture
sensor). Three measures were used to quantify accuracy: mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Relative Absolute Error (RAE, σ). They are
described, along with other performance measures, in Section 3.3.

3.2.4.2 Sensor Precision

Precision describes a measurement’s repeatability, which indicates the extent to which
consecutive measurements of the same input produce the same output (Bloom, 1989).
In this study, precision was defined using the Pooled relative standard deviation (sr,p),
which provides an overall estimate of imprecision by combining the standard deviations
around the respective means across a series of measurements (IUPAC, 1997). The multi-
ple series of measurements corresponded to different mean values of measured VWC
(for instance, ¯̂θm for the mth series), and the sr,p is defined in Section 3.3.

3.2.5 Sensor Sensitivity

3.2.5.1 Temperature Sensitivity

Multiple studies have investigated the effect of ambient and soil temperature on VWC
measurements (Bello et al., 2019b; Czarnomski et al., 2005; Kargas and K.X. Soulis,
2012; Paltineanu and Starr, 1997; Szypłowska et al., 2019). Further methods have been
proposed for correcting errors in VWC measurements arising due to diurnal variations
in temperature (Chanzy et al., 2012). For this study, capacitive and resistive soil moisture
sensors were tested in a silty-loam soil (Soil-4, described in Table 3.2) with two different
values of actual VWC and ambient temperatures ranging from 10 ◦C to 40 ◦C (with an
error of ±1 ◦C), inside a temperature incubator. The soil surfaces were covered with
polythene sheets to prevent evaporation. To ensure that the electronic components of the
sensors (excluding the sensing element which is inserted in the soil) were not affected
by the temperature variations, they were placed outside the incubator.

3.2.5.2 Salinity Sensitivity

The dependence of the measured VWC on salinity was determined following the method
suggested in the literature (Kargas and K.X. Soulis, 2012; 2019). Varying amounts of
water (to cover a range from dry to saturation) with known KCl concentrations were
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Table 3.4: Electrical conductivities (EC) of the water samples and corresponding VWC
measurements of the soil samples investigated in the salinity experiment.

EC of the
Water Added [mS/cm]

Actual VWC [%] Symbolic Representation in
Figure 3.8

1.7 17.8 Circle (#)
1.7 32.3
1.7 48.81

3.02 20.08 Triangle(△)
3.02 31.12
3.02 47.32

6.32 34.09 Square(□)
6.32 38.5
6.32 49.53

9.69 17.59 Pentagon(D)
9.69 34.8
9.69 43.53

added to Grade III sand (Soil-2, Indian standard (Bureau of Indian Standards (BIS), 2002)
described in Table 3.2) and VWC measurements were made using the different sensors.
A total of 12 samples, as described in Table 3.4, were studied.

3.3 Results and Discussion
The performance measures used in developing the results in the study are listed in
Table 3.5 along with their respective sources from the literature.

3.3.1 Sensor Calibration

3.3.1.1 Performance of Capacitive Sensors with Fluids

The capacitive sensors SM100 and SMEC300 were first tested with fluids of known ϵr

(Table 3.3). The secondary standard, ThetaProbe, provides an estimate of the Refractive
Index (

√
ϵr), whereas the capacitive sensors do not directly measure ϵr but relate raw

sensor output to VWC. Therefore, first, the VWC values of the capacitive sensors were
converted to

√
ϵr values using the expression given by Topp et al. (1980):

θ = −5.30 × 10−2 + 2.92 × 10−2ϵr − 5.50 × 10−4ϵ2
r + 4.30 × 10−6ϵ3

r

where:
θ = VWC (%)
ϵr = Dielectric constant (-)
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Table 3.5: The list of performance measures used in the study: θi denotes an actual VWC
value; θ̂i represents a raw value measured by the sensor; θ̄ is the average of
the actual VWC values; ¯̂θ is the average of the raw values measured by the
sensor; R(x) is the rank of x and n is the number of data points used in the
computation. k, nk, m and sk are the index of the current series, number of
measurements in series k, total number of series, and corresponding standard
deviation of the series, respectively, and are used to compute sr,p.

Performance Metric Description/Equation
Range
(Ideal
Value)

Coefficient of
Determination (R2)

(Moriasi et al., 2007)

R2 =(
n ∑n

i=1 θ̂iθi

)
−

(
∑n

i=1 θ̂i

) (
∑n

i=1 θi
)√

n ∑n
i=1

ˆ(θi)2 − (∑n
i=1 θ̂i)2

√
n ∑n

i=1(θi)2 − (∑n
i=1 θi)2

0 to 1 (1)

Mean Absolute Error
(MAE) (Witten et al.,

2011)
MAE = (∑n

i=1

∣∣∣θi − θ̂i

∣∣∣)/n
0 to ∞

(0)

Pooled relative
standard deviation
(sr,p) (IUPAC, 1997)

sr,p =

√
∑m

k=1(nk − 1)s2
k(1/ ¯̂θ2

k)

∑m
k=1(nk − 1)

0 to ∞
(0)

Relative Absolute
Error (RAE) (Witten

et al., 2011)
RAE = ∑n

i=1

∣∣∣θi − θ̂i

∣∣∣ / ∑n
i=1

∣∣∣θ̂i − θ̄
∣∣∣ 0 to ∞

(0)

Root Mean Squared
Error (RMSE)

(Witten et al., 2011)
RMSE =

√
(∑n

i=1(θi − θ̂i)2)/n
0 to ∞

(0)

σe f f ective σe f f =
√
(σprimary)2 + (σsecondary)2

0 to ∞
(0)

σprimary
RAE between in-house calibrated and actual

VWC value
0 to ∞

(0)

σsecondary
RAE between in-house calibrated and

ThetaProbe VWC value
0 to ∞

(0)
Spearman’s Rank

Correlation
Coefficient (rs)

(Spearman, 1904)

rs =
1
n ∑n

i=1(R(θ̂i)− R( ¯̂θ))(R(θi)− R(θ̄))√(
1
n ∑n

i=1(R(θ̂i)− R( ¯̂θ))2
)
( 1

n ∑n
i=1 R(θi)− R(θ̄))2

−1 to 1
(−1 or

1)
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Table 3.6: Performance metrics of the capacitive (SMEC300 and SM100) and secondary
standard (impedance-based ThetaProbe) sensors, in measuring refractive
indices (

√
ϵr) of fluids of known ϵr at 25 ◦C.

SMEC300 SM100 ThetaProbe

MAE 0.87 0.55 0.48
RAE 0.22 0.27 0.24

RMSE 1.08 0.74 0.75
sr,p 0.0062 0.0062 0.0405

Further, they was compared with the respective actual values and
√

ϵr values measured
by the ThetaProbe. The results of this analysis are provided in Figure 3.3 and Table 3.6.
The estimated

√
ϵr values (along with their standard errors) for all the three sensors are

depicted on the Y-axis, and the actual
√

ϵr (derived from known ϵr values at 25 ◦C) are
plotted on the X-axis of Figure 3.3.

The ThetaProbe sensor has relatively good performance in measuring refractive
indices of air, Butanol and Ethanol compared to ethylene glycol and water. The precision
values (standard deviations) of the ThetaProbe in measuring

√
ϵr in air, butanol, ethanol,

ethylene glycol, and water were StandardDeviation(SD) = 0.003, 0.053, 0.156, 0.401,
and 0.621, respectively. The overall precision of the ThetaProbe was sr,p = 0.0405.

Figure 3.3 indicates that the ThetaProbe sensor was more accurate than both the
SMEC300 and SM100 sensors in all the fluids except Ethylene Glycol. Both SMEC300
and SM100 have equal precision values when considered till the fourth decimal place
(sr,p = 0.0062), and are more precise when compared to ThetaProbe.

The comparison of capacitive sensors in fluids suggests that both the sensors were
equally precise; however, the inexpensive SM100 sensor outperformed the SMEC300
sensor in terms of MAE and RMSE. Overall, these results were encouraging realizations
of the sensing abilities of both the capacitive sensors in general, and the SM100 sensor
in particular, under the conditions of uniform contact between the sensor and the
dielectric medium.

3.3.1.2 Calibration of All Sensors with Repacked Soils

3.3.1.2.1 Strength of monotonic relationship between measured (θ̂) and actual (θ)
VWC

The Spearman’s rank correlation coefficient, rs (Spearman, 1904), was employed to assess
the strength of the relationship between θ̂ and θ. The Spearman’s rank correlation
was selected because it is a nonparametric statistic that measures the strength of a
monotonic relationship between paired data without any assumptions made on the
distribution of the data or the nature of the relationship existing between them (Hauke
and Kossowski, 2011; Mukaka, 2012; Zar, 2005). The number of sensor units of the
SMEC300, SM100, YL100 and YL69 sensors used for the experiment were 6, 5, 6, and 5,
respectively. Table 3.7 illustrates the rs values for the four different sensors tested in the
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Table 3.7: Spearman’s Rank Correlation Coefficient rs between the sensor readings and
the actual soil volumetric water content (VWC) (θ) across the different soils.
All the values are significant at α = 5%.

Low-cost Very low-cost
Capacitive sensors Resistive sensors

SMEC300 SM100 YL100 YL69

Soil 1 0.93 0.92 0.78 0.91
Soil 2 0.96 0.97 0.89 0.94
Soil 3 0.84 0.94 0.94 0.73
Soil 4 0.95 0.92 0.94 0.85

Average 0.92 0.94 0.89 0.86

Figure 3.3: Response of the capacitive soil moisture sensors (SMEC300 and SM100) and
secondary standard (impedance-based ThetaProbe) to fluids of known ϵr at
25 ◦C. The X- and Y-axis depict the actual and measured refractive indices
(
√

ϵr), respectively. Although the ThetaProbe measures
√

ϵr directly, the VWC
values of SM100 and SMEC300 were converted to the corresponding

√
ϵr

values based on the literature (Topp et al., 1980). n is the total number of
measurements in the experiment of a fluid, and the error bar shows the mean
and standard error of the estimated values.
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study. For all the sensors and soils, the Spearman’s rank correlation was positive and
significant at the 5% level.

The capacitive and the resistive sensors had an average rs,resistive = 0.93 and 0.87,
respectively, averaged across all soils. Among the capacitive sensors, the SM100 sensor
(rs = 0.94) performed better than the SMEC300 sensor (rs = 0.92) on average. For each
soil, both the sensors had roughly same rs (within 1 to 3 % of each other) except for Soil
3, in which SM100 (rs = 0.94) substantially outperformed SMEC300 (rs = 0.84). This
difference may be attributed to soil characteristics, which was an ungraded field soil
purposefully included in the study to represent local field conditions. These results
implied that SM100 could outperform the SMEC300 sensor as a robust, field ready
capacitive sensor (on the basis of VWC measures in repacked soils). These results
advanced the results obtained in Section 3.3.1.1, where the SM100 sensor outperformed
the SMEC300 sensor in fluids. Among the resistive sensors, the YL100 sensor (rs = 0.89)
performed marginally better on average, compared to the YL69 sensor (rs = 0.86).
The YL69 sensor performed better for both the sandy soils Soil 1 (by 16.7%) and Soil
2 (by 5.62%), compared to YL100. However, for the silty-loam soils, YL100 performed
better (rs = 0.94 in both cases) than YL69, which itself performed worse in Soil 3
(rs = 0.73) than in Soil 4 (rs = 0.85).

Overall, considering only rank correlations, the order of performance was SM100 >
SMEC300 > YL100 > YL69. This result could be expected in terms of the capacitive
sensors being more accurate compared to the resistive sensors. To further strengthen
these inferences, calibration equations were developed for each sensor.

3.3.1.2.2 Calibration equations developed between measured (θ̂) and actual (θ) VWC

The soil-specific calibration equations were piecewise linear regression equations based
on the least squares estimate, in which the objective function, Sum of Squared Residuals
Sumo f SquaredResiduals(SSR) = ∑n

i=1(θi − θ̂i)
2, was minimized. The number of line

segments were decided using visual inspection, while an open source Python library,
pwlf (Jekel, 2017), was used to develop the corresponding piecewise linear equations.

The subsequent sections on sensor testing have used these calibration equations
developed for each sensor and soil. Each segment of the piecewise linear equations,
outlined in Table 7.3 and illustrated in Figure 3.4, are of the following form,

θ = β0 + (β1 × θ̂) (3.1)

where,
θ̂ = Raw sensor value (-),
θ = Actual VWC (%), and
βi = Calibration coefficients

The performance of the calibration equations developed for the capacitive sensors was
comparable to that of other low-cost capacitive sensors reported in the literature (Kinzli
et al., 2012). The SM100 sensor (average overall R2 = 0.94) performed at par with other
low-cost capacitive sensors for sandy soils (average R2 = 0.95 compared to R2 = 0.97
from the literature, Kinzli et al., 2012), and surpassed previous work for silty-loams
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(a) SMEC300 (b) SM100

(c) YL100 (d) YL69

Figure 3.4: Calibration of capacitive sensors (a) SMEC300 and (b) SM100, and resistive
sensors (c) YL100 and (d) YL69, in repacked soil using piecewise linear
equations. The raw values correspond to either the raw readings from the
Spectrum’s FieldScout reader (for capacitive sensors), or the raw outputs
generated using the Arduino setup developed in-house (for resistive sensors).
The coefficient of determination, R2, for each soil, is illustrated adjacent to
the corresponding line.
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(average R2 = 0.93 compared to R2 = 0.88 from the literature, Kinzli et al.,Kinzli et al.,
2012). The SMEC300 performed equally well as the SM100 in sands (average R2 = 0.95),
but not in silty-loam soils (average R2 = 0.82); nevertheless, being comparable to
previous literature, Kinzli et al., 2012). Overall, the calibration results reinforce the
inference that the SM100 sensor is more robust (due to its superior performance in a
field soil) compared to the SMEC300 sensor.

Understandably, the resistive sensors did not perform as well as the capacitive sensors.
However, considering the fact that they were very-low cost sensors, the average perfor-
mances of both the YL100 (average R2 = 0.81) and the YL69 sensors (average R2 = 0.76)
were notable. Though a literature-based comparison to previous calibrations of low-cost
resistive sensors was not possible, it emerged that the YL69 sensor performed reasonably
well for sands (average R2 = 0.89) and the YL100 performed well for silty-loam soils
(average R2 = 0.85).

Considering the extent to which the calibration equations could explain the variation
in the measured data (through the R2), the order of performance was SM100 > SMEC300
> YL100 > YL69. This is identical to the order of performance based on the Spearman’s
rank correlation (rs). These results are encouraging as all the sensors perform well
compared to the results reported in the literature, where applicable.

3.3.1.3 Comparison of Manufacturer and In-house Calibration Equations:
Capacitive Sensors

Figure 3.5 compares the performance of the calibration equations developed in-house
during the study and provided by the manufacturer, for the capacitance sensors (calibra-
tion equation were not available for the very low-cost resistive sensors). Additionally,
Table 3.8 compares accuracy measures MAE, RMSE and RAE for manufacturer’s and
in-house calibration equations for the four soils. The manufacturer calibration equations
for the capacitance sensors were made available from Spectrum Technologies, Inc. (D.
Kieffer, personal communication, 5.9.2018). The number of SMEC300 and SM100 sensors
used for this experiment are six and five, respectively.

From Figure 3.5, it was observed that for both the sensors, the manufacturer’s equa-
tions had a tendency to underpredict the actual VWC (θ), with the exception of Soil
3 (ungraded silty-loam soil) at higher VWC (θ) values. Sensor accuracy increased
substantially, overall as well as in each soil, after soil specific calibration equations
were developed. From Table 3.8, it could be inferred that the sensor accuracy without
calibration, for both the capacitive sensors, was lower than the accuracy specified by the
manufacturer, 3% (for both SMEC300 (Spectrum, 2012) and SM100 (Spectrum, 2011)).
This observation was in line with the claim that it is “optimistic” to expect such levels of
accuracy for many EM sensors (K. Soulis et al., 2015). After soil specific calibrations,
there were substantial improvements in sensor accuracy. The MAE (and RMSE) of
the calibrated SMEC300 and SM100 sensors were 2.12% and 1.67% (2.88% and 2.36%)
respectively, which were better than the manufacturer reported accuracy values.
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(a) SMEC300 sensor (n = 6)

(b) SM100 sensor (n = 5)

Figure 3.5: Comparison of manufacturer and in-house calibration equations for capac-
itive sensors (a) SMEC300 and (b) SM100 for the four different experimen-
tal soils.

It was hence evident that more effective overall performance can be ensured with
soil-specific calibration equation development and installation based on the soil texture
established in the field, which supports the previous literature (Kargas and K.X. Soulis,
2012). This performance enhancement would ideally compensate for the resources
(financial, human) incurred in the exercise.
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3.3 Results and Discussion

3.3.2 Performance Measures for the Sensors

Figure 3.6 illustrates the accuracy (σe f f ) and precision (sr,p) of the tested sensors together
in a bubble plot in a 2-D Euclidean space. Although the primary accuracy (σprimary)
evaluates sensor performance with actual VWC values (θ), secondary accuracy (σsecondary)
compares the sensor to the ThetaProbe, which was considered as the secondary standard
due to its superior measurement technique (Delta-T Devices Ltd., 2017). The relevant
performance indicators for effective accuracy (σe f f ), component accuracies (σprimary and
σsecondary) and precision (sr,p) are described in Table 3.5.

Figure 3.6: Accuracy (primary and secondary) and precision of different soil moisture
sensors (SMEC300, SM100, YL69, YL100), in 4 different soils (corresponding
to four quadrants). Overall accuracy, σe f f (Table 3.5), is the Euclidean distance
of the bubble cross-hairs from the origin. The closer the bubble is to the
origin, the more accurate the sensor is. Precision is indicated by the size of
the bubbles (radius = 100× sr,p); the smaller the bubble, the more precise the
sensor. ‘n’ is the number of sensor units per sensor used in the experiment.

Each accuracy component is represented by the distance from the origin to the cross-
hair centers of the bubbles in the respective directions (σprimary along the X-axis and
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σsecondary along the Y-axis). Therefore, the effective accuracy (σe f f ) can be described
as the Euclidean distance of the cross-hair centers of the bubbles (i.e. the closer the
bubble center from the origin, the more accurate the sensor is). As the σsecondary = 0
for the ThetaProbe as it is computed with respect to itself, σe f f = σprimary and its
accuracy is defined only by the distance of the cross-hairs along the X-axis direction.
The performance of all the sensors in each soil is represented in different quadrants (i.e.
each soil has a corresponding quadrant, labeled in the figure). Precision is represented
by the radius of the bubble graphs, which are proportional to sr,p; radius = 100 × sr,p).
Therefore, the bubbles with smaller radii are more precise in their VWC estimates (θ̂).

3.3.2.1 Sensor Accuracy

An analysis of metrics related to accuracy revealed the order of performance as SM100 >

SMEC300 > YL100 > YL69, which was identical to the results in Section 3.3.1.2.
The metrics included Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and the primary Relative Absolute Error (σprimary values, reported in Table 3.8). As shown
in Figure 3.6, the effective accuracy (σe f f ) computed after including the secondary
standard sensor measurements, gave rise to a slightly different order of performance,
i.e., SM100 > SMEC300 > YL69 ≳ YL100. The capacitive sensors outperformed the
resistive sensors by a factor of 2 on average (MAEcapacitive = 1.90%, MAEresistive = 3.82%;
RMSEcapacitive = 2.62%, RMSEresistive = 5.38%; RAEcapacitive or σcapacitive,primary = 0.25,
RAEresistive or σresistive,primary = 0.39).

Both capacitive sensors had accuracy measures comparable to the previous literature
pertaining to low-cost capacitive sensors, in terms of MAE and RMSE (González-Teruel
et al., 2019; Kinzli et al., 2012). In terms of RAE, the SMEC300 sensor was accurate
across all soils (average σe f f = 0.47, Standard Error SEσe f f = 0.07) barring Soil 3, in which
the σe f f reduced to 0.69. The SM100 was also accurate across all the soil types (average
σe f f = 0.43 with a lower SEσe f f of 0.03). Comparatively, the SM100 sensor outperformed
the SMEC300 sensor in terms of overall effective accuracy (σe f f ), but largely due to
the substantially better performance in Soil 3, supporting the results in Section 3.3.1.2.
The SMEC300 was more accurate than the SM100 in both the sands and in Soil 4.

The MAE and RMSE values of the resistive sensors could not be compared with
the existing literature on resistive sensors, but were poorer than the specified accuracy
values (3%) of most EM sensors (K. Soulis et al., 2015). In terms of RAE, their accuracy
values were enhanced by 56% (average σprimary = 0.39, varying between 0.32 and 0.48)
when only primary accuracies were considered, which implied that they were able to
capture variations in actual VWC better than the variations taking into account the
secondary standard VWC. Comparatively, though the overall accuracies of both the
resistive sensors across all the soils were similar, it could be remarked that each sensor
complemented the other’s performance in a particular soil texture category. YL100
performed better in silty-loam soils while YL69 performed better in sandy soils.

Overall, it can be remarked that the low-cost sensors, when calibrated, could match
(or exceed) the accuracy performance of the secondary standard sensor. YL100 was
~10% less accurate than the secondary standard ThetaProbe in terms of MAE, while
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Table 3.9: Comparison of precision performance of the tested sensors, based on pooled
relative standard deviation, sr,p (% VWC). In-house calibration equations were
used for the capacitive and resistive sensors, and Manufacturer calibration was
used for the secondary standard sensor (for which no calibration equations
were developed).

Low-Cost Very Low-Cost Secondary
Capacitive Sensors Resistive Sensors Standard

SMEC300 SM100 YL100 YL69 ThetaProbe

Soil 1 0.51 0.55 1.11 0.81 0.47
Soil 2 0.05 0.44 1.13 0.63 0.30
Soil 3 0.48 0.30 0.74 0.40 0.24
Soil 4 0.28 0.35 0.78 0.72 0.24

Average 0.33 0.41 0.94 0.64 0.31

its RMSE, and both MAE and RMSE values of YL69 were poorer when compared to
the ThetaProbe.

3.3.2.2 Sensor precision

The precision performance of each sensor across all four tested soils, along with the
performance of the secondary standard sensor, is given in Table 3.9. The order of overall
precision (averaged across all soils) nearly followed the order of the cost of the sensors,
i.e., SMEC300 > SM100 > YL69 > YL100 with the ThetaProbe being the most precise
(as well as expensive) sensor (sr,p = 0.31). Capacitive sensors were about twice as precise
as the resistive sensors (sr,p(resistive) = 0.79, sr,p(capacitive) = 0.37). Additionally, the lowest
precision achieved by the capacitive sensors was only 18% poorer than the precision of
the ThetaProbe.

Both the capacitive sensors had a consistently high precision across all soils. The SMEC300
had a higher precision overall than the SM100 and also across all soils barring Soil 3.
However, the SM100 was more consistent in terms of its precision performance across
the different soils (SDsr,p,SM100 = 0.11) when compared to SMEC300 (SDsr,p,SMEC300 = 0.21).
The SMEC300 sensor was reasonably precise compared to the ThetaProbe in Soils 1,
2, and 4, and even exceeded the ThetaProbe performance in Soil 2 (in which it had
a very high precision of sr,p = 0.05). It was more precise in the soils with the finer
grained soils within the two categories (Soil 2 and Soil 4 in the sandy and silty-loam
soils, respectively), which was an indicator of the need for better packing around the
sensing material during installation. The SM100 sensor also had comparable precision
performance vis-à-vis the ThetaProbe (it performed within 31.2% of the ThetaProbe on
average). Its performance increased with better packing in the sandy soils (Soil 2 is
20% more precise than Soil 1), but it performed well in both the silty-loams, with its
performance being more precise in the ungraded silty-loam field Soil 3 than that in Soil
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4 by 16.7%. The consistent precision performance of SM100 across soils in general and
in the field Soil 3 in particular suggests that SM100 is a robust and field ready sensor.

Both the resistive sensors were reasonably imprecise compared to the ThetaProbe.
The YL69 sensor was a more precise sensor compared to YL100, both overall and also
in each soil. YL69 was almost as precise as the capacitive sensors in Soil 3. This was
also an encouraging result for field application. Otherwise, the YL69 is within 85.8%
and 58.9% of the performance of the capacitive sensors in sandy and silt-loam soils,
respectively. YL100 also had better performance (by 32.1%) in silt-loam soils compared
to the sandy soils, but was equally imprecise in both the sands and silty-loam soils. It
was quite imprecise compared to the ThetaProbe (3 times as imprecise) as well as the
capacitive sensors (2.54 times as imprecise).

3.3.3 Sensor sensitivity

3.3.3.1 Temperature Sensitivity

The subfigures of Figure 3.7 show the results of the temperature sensitivity experiments
conducted for all sensors in Soil 4 for two different values of actual VWC (θ), depicted
by the dashed and solid horizontal lines. The hollow circles and filled squares represent
the average VWC estimated by each sensor (based on the corresponding calibration
equations in Table 7.3) along with their respective standard errors. The temperature
variation is plotted for each sensor on the X-axis. The SMEC300, SM100, YL69 and
YL100 sensors had, on average, 6, 211, 276, and 276 data points, respectively, for each
VWC-temperature combination. The data from SM100, YL100 and YL69 sensors were
automatically read using open source Arduino (https://www.arduino.cc/) electronics
while the hand-held FieldScout soil sensor reader was used for SMEC300 readings.
The lower number of readings for the SMEC300 was a result of the effort to minimize
the number of times the incubator door was opened, to consequently lower the variation
in the incubator temperature.

The capacitive sensors showed a positive temperature effect (larger temperature
leading to a higher estimated VWC), which is characteristic of capacitance sensors
in soils with fine textures due to the release of bound water from clay minerals at
higher temperatures (Kargas and K.X. Soulis, 2012). The SMEC300 sensor followed the
positive temperature effect at the lower actual VWC of 9.36%, with an overall average
estimated VWC change of 9.34% responding to a 36.8 ◦C temperature increase. However,
though the temperature effect was not visible at the higher actual VWC of 21.39%. This
is justified through the corresponding fitted calibration curve (Soil 4; indicated in dark
brown in Figure 3.4a and Table 7.3) which flattens out at higher raw values (> 1525),
and subsequently limits the increase in estimated VWC as a consequence of increasing
raw values. Therefore, the positive temperature effect not being visible at the higher
actual VWC value is due to the calibration curve and not the physical changes in the
measurement. Similarly, the SM100 sensor followed an expected positive temperature
effect, for both the levels of actual VWC. At the actual VWC values of 7.63% and 18.38%,
respectively, an increase of 30 ◦C resulted in an increase of estimated VWC by 7% and
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(a) SMEC300 capacitive sensor (b) SM100 capacitive sensor

(c) YL100 resistive sensor (d) YL69 resistive sensor

Figure 3.7: Temperature sensitivity of estimated VWC for different sensors: (a) capacitive
SMEC300, (b) capacitive SM100, (c) resistive YL100, and (d) resistive YL69.
The horizontal lines represent the actual VWC according to the legend.
The hollow circular and solid square markers, along with their error bars,
represent the average and standard deviations of the calibrated/estimated
sensor readings corresponding to the fixed lower and higher actual VWC
values, respectively. Positive temperature effects are seen to different extents
in all sensors, with the resistive sensors’ performance being limited by
relatively lower accuracy and precision.

2.99%, respectively. The results suggest that the temperature response of the capacitive
sensors SMEC300 and SM100 could be predicted and consequently corrected.
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The resistive sensors responded in dissimilar manners to the change in temperature at
different actual VWC conditions. The YL100 sensor showed a temperature effect which
was seen across larger temperature ranges, but there was a relatively large amount of
variability which was seen at smaller temperature differences. Since this variability in
measurements dominated the temperature sensitivity, characterizing the temperature
sensitivity was difficult in the case of YL100. The YL69 sensor responded with a positive
temperature effect, which was less pronounced in the lower actual VWC compared to
the higher actual VWC. The YL69 under-estimated the lower value of the actual VWC
(7.32%) for all the temperatures. Though this was due to its low accuracy compared to
the capacitive sensors and the resultant calibration equation, which underpredicted the
actual lower VWC, there was actually a small increase of the estimated VWC by 0.36%
over 30 ◦C. The sensor response to the higher actual VWC (of 17.89%) was substantially
closer to what was expected, with a positive temperature effect translating to a rise
in 9.33% over the same 30 ◦C rise in temperature. If the calibration equation was not
used, the positive temperature effects were more clearly seen, with increases of 11.03
and 284.98 in the raw values corresponding to actual VWC values of 7.32% and 17.89%,
over the same rise in temperatures. The overall behavior implied that notwithstanding
the lower accuracy performance, the temperature response of the YL69 sensor was
reasonable and would hence be possible to correct.

3.3.3.2 Salinity Sensitivity

Figure 3.8 plots the calibrated VWC (based on the equations developed in Section 3.3.1.2,
listed in Table 7.3) and the actual VWC with changing salinity in water. The correspond-
ing EC values were 1.70, 3.02, 6.32, and 9.69 mS/cm, represented by circular, triangular,
square, and pentagonal shapes, respectively.

Based on the coefficients of determination (R2 values), the order of performance was
SM100 > SMEC300 > YL69 > YL100, i.e., SM100 results were least sensitive to changes
in salinity. The corresponding R2 values were 0.85, 0.79, 0.63 and 0.13, respectively. These
results are encouraging as the SM100 sensor, despite being the relatively less-expensive
capacitive sensor, outperformed the more expensive SMEC300 by 7.6%, and the very
low-cost resistive YL69 was only 20.5% less effective compared to the performance of
the SMEC300 in response to salinity variations. However, YL100 was almost completely
unable to capture any variation, and estimates more or less the same value (SD = 0.57%)
irrespective of the actual VWC or the EC of the added water. Additionally, the bulk soil
EC values measured by the SMEC300 sensors (median values based on the manufacturer
calibration) are plotted in Figure 3.8e. As expected, an increase in the EC of the added
water led to an increase in the bulk soil EC measured by SMEC300. The best-fit which
minimized SSR was significantly linear (at α = 5%) and had an R2 = 0.92.

However, these results were inferred from an experiment with the sandy Soil 2,
and further testing would be necessary to extend the results for each of these sensors to
more generalized applications.
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(a) SMEC300 capacitive sensor (b) SM100 capacitive sensor

(c) YL100 resistive sensor (d) YL69 resistive sensor

(e) SMEC300 bulk soil EC measurement

Figure 3.8: Effect of water of different electrical conductivity (EC) values on VWC
measured (θ̂i) by different sensors: (a) capacitive SMEC300, (b) capacitive
SM100, (c) resistive YL100, and (d) resistive YL69. (e) shows the relationship
between the median values of the bulk soil EC measured by SMEC300 and
the EC of water (with the corresponding best-fit line).
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3.3.4 Further Discussion

The drawbacks of the experiment included and were not limited to experimental and
human errors, as well as the choice of piecewise linear calibration functions. Further,
the possibilities to represent more natural variability (by incorporating more soils),
and introducing the packing density as an experimental variable (which has shown to
have an impact in similar experiments (Matula et al., 2016b)) were not integrated due
to resource constraints. Moreover, it was assumed that a laboratory characterization is
an essential precursor to field trials and experiments, especially since such a laboratory
study involving these particular sensors had not been conducted earlier. Another aspect
which was not tested, either in the laboratory or field conditions, was the durability of
the sensors.

Having quantified the operations of these sensors, a case can be developed, within the
larger framework of low-cost technological tools in agricultural water management,
to propose the use of such sensors based on an understanding of the required precision
of the problem as well as harness the complementary strengths of the sensors in
different aspects of performance. For example, within the resistive sensors, there was
a differentiation among the sensors in accuracy estimates across the grain size of the
soils (YL69 and YL100 respectively outperformed the other resistive sensor in coarser
and finer grained soils respectively). Such a characterization is valuable in choosing the
correct sensor for a particular application case.

The efficiency of soil moisture based irrigation scheduling systems is dependent
strongly on the sensor accuracy, with 3% errors in soil moisture sensors possibly leading
to ‘critical’ effects on irrigation efficiency (K. Soulis et al., 2015). Therefore, although the
capacitive sensors tested in this study had accuracy levels (<2% VWC on average)
possibly leading to ‘limited’ effects on irrigation efficiency, using resistive sensors
independently (with an accuracy of <4% VWC on average) could have potentially
critical effects. The actual effect of these sensors on irrigation water use efficiency can be
determined with comprehensive field experiments.

Field scale soil moisture distribution exhibits high spatial and temporal variabil-
ity (Vereecken et al., 2014). Instead of a sparse network of capacitive sensors, a dense
network combining capacitive and resistive sensors could help better characterize the
spatiotemporal variability of soil moisture, which may potentially improve irrigation
management. Such a characterization using a combination of low- and very-low cost
soil moisture sensors has not been attempted, as per the knowledge of the authors.

3.4 Summary and Conclusions

Four soil moisture sensors, i.e., two low-cost capacitive sensors (SMEC300 and SM100)
and two very low-cost resistive sensors (YL100 and YL69), were tested in laboratory
conditions to characterize their performance for application in low-cost irrigation man-
agement. Based on the literature, five research questions were developed and addressed
with specific laboratory experiments. Piecewise linear calibration equations were devel-
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oped for each sensor in four different repacked soils to explain the relationship between
sensor measurements and actual VWC values. In the case of the capacitive sensors,
the manufacturer-provided calibration equations were compared with the calibration
equations developed in-house in terms of accuracy measures. Such a comparative
analysis could not be performed for the resistive sensors due to the unavailability of
manufacturer calibration equations. An evaluation of sensor accuracy and precision
was conducted for all the studied sensors in all the tested soils and a novel approach
to visually represent the combined performance characteristics is proposed. The sen-
sitivities of the sensors were evaluated for temperature and salinity ranges commonly
encountered in field conditions. Additionally, only for the capacitance-based sensors,
the performance of the sensors was tested in fluids of known dielectric permittivity
(ϵr). The impedance-based ThetaProbe sensor was used as the secondary standard to
contextualize the performance of the tested sensors in some of the experiments.

The overall value for money of the sensors is reflected in their precision performance,
i.e., the precision performance, on average, of the sensors followed the order of SMEC300
> SM100 > YL69 > YL100, which was almost the same as that of sensor costs, particularly
considering that the ThetaProbe sensor was highest in precision. The accuracy of the
sensors, on average, followed the order of SM100 > SMEC300 > YL100 > YL69.

It was found that the low-cost capacitive sensors, with soil-specific calibration, can
match the performance of the secondary standard and could possibly be used for
irrigation management with ‘limited’ effects on irrigation efficiency (in the context of
accuracy). Among the two capacitive sensors, the less-expensive SM100 sensor can be
inferred as a more robust and field ready low-cost soil moisture sensor. This is due to its
strong performance in fluids (which is a proxy to its measurement technique), consistent
precision across soils, accurate performance particularly in the field soil, and reasonable
sensitivity to variations in temperature and salinity conditions. The SMEC300 sensor was
accurate (except in field silty-loam soil), more precise than the SM100 sensor, and was
reasonable in its response to temperature and salinity variations. With its additional
capabilities of measuring temperature and electrical conductivity (the results of which
have been purposely left out in lieu of being out of the framework of soil ‘moisture’
sensor comparison), it also presents itself as a useful multipurpose low-cost sensor.

The resistive sensors perform well considering their price category. Both the sensors
are less precise and less accurate than the capacitive sensors. The YL100 has limited
accuracy and precision, particularly when operating in temperature sensitive conditions,
and fails in varying salinity conditions. The YL69 sensor, on average, is as accurate
but more precise than the YL100, and is additionally able to operate with expected
response to variability in temperature and salinity (comparable even to the capacitive
sensors), establishing it as a robust, very low-cost soil moisture sensor. Though neither
of the resistive sensors can be recommended as a standalone soil moisture sensor for
irrigation management solutions (due to their limited accuracy), they may be used
in combination with more accurate soil moisture sensors to better characterize the
spatiotemporal variability of field scale soil moisture.
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Despite the limitations of the current experiments and having acknowledged the
need for more comprehensive investigation (including field experiments), this study,
which describes the laboratory performance evaluation and characterization of low and
very low-cost soil moisture sensors, is a precondition for the realization of tangible
progress within the larger framework of improving low-cost data-driven agricultural
water management solutions.
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4 Low-cost soil moisture calibration and
parsimonious crop modeling

Adla et al. (2022) 10

Abstract

Sensor data and agro-hydrological modeling have been combined to improve irrigation
management. Crop water simulation models simulate crop growth and production in
response to the soil-water environment but are needed not to be data intensive (i.e.,
inputs and parameters) to be applicable for data scarce regions. Soil moisture sensors
in precision agriculture are needed to be site-calibrated, low-cost, and maintainable.
Therefore, there is a need for parsimonious crop modeling combined with low-cost soil
moisture sensing without losing predictive power.

This study calibrated the low-cost capacitance-based Spectrum Inc. SM100 soil
moisture sensor with both laboratory and field data to investigate the impact of soil
moisture calibration on performance in the field. The best calibration technique, field-
based piece-wise linear regression, was used with the parsimonious FAO AquaCrop
Open Source (AquaCrop-OS) model to study the impact of using raw and calibrated soil
moisture sensor data to calibrate crop model soil hydraulic properties on crop model
performance.

This approach was tested during the wheat cropping season in 2018, in Kanpur
(India), in the Indo-Gangetic plains. Some best practices regarding sensor calibration
were developed as a result. The soil moisture sensor was calibrated best in field
conditions against a medium-cost secondary standard sensor (UGT GmbH. SMT100),
followed by dry-down and then wet-up calibration in laboratory conditions against
gravimetric soil moisture. Moreover, model overfitting with machine learning algorithms
led to poorer field validation performance. The soil moisture simulation of AquaCrop-
OS improved significantly by incorporating both raw and even further by calibrated
low-cost SM100 data. There were non-significant improvements in biomass prediction,
but water productivity was significantly improved by using calibrated low-cost soil
moisture sensor data. The latter was not the case for the raw low-cost sensor data. The
results suggest the use of calibrated low-cost soil moisture sensors and crop modeling
to improve crop water productivity.

10Adla, S., Bruckmaier, F., Arias-Rodriguez, L.F., Tripathi, S., Pande, S., and Disse, M., 2020. Impact of
calibrating a low-cost capacitance-based soil moisture sensor on FAO AquaCrop model performance.
Journal of Hydrology, under review.
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4.1 Introduction

The growing world population, expected to rise to nearly 10 billion by 2050 (FAO, 2017),
requires a sustainable increase in food production (Parra et al., 2020). Since agriculture
consumes around 70% of the global freshwater resources (Zhi et al., 2022), there are
serious risks that the food production system may face, due to water availability, quantity
and quality (Sikka et al., 2022). Additionally, the growing water demand from competing
sectors (Sikka et al., 2022), combined with the effect of climate change and contamination
on water supplies, are leading to water scarcity in most regions globally (E. Jones et al.,
2019; Pereira et al., 2002). This implies unprecedented challenges in ensuring adequate
agricultural water supply (Grafton et al., 2018; Y. Lu et al., 2016; Zheng et al., 2020).

Agriculture is the least efficient user of global freshwater resources (Chiara and Marco,
2022). The increasing difference between irrigation water supply and water demand
continues to threaten food security (Dinar et al., 2019; Zhi et al., 2022). The RWCS
has seen “phenomenal growth" in South Asia (Kataki et al., 2001), and contributes
considerably to global food security (Banjara et al., 2022; Laik et al., 2014). Within South
Asia, it is practiced primarily in the Indo-Gangetic plains out of which 9.2 million ha
lies within India (Banjara et al., 2021). The major RWCS region in India, comprising the
states of Punjab, Haryana and Uttar Pradesh, is called the “food basket" region because
it produces about 50% of the national food grains (Pal et al., 2009). The production of
food grains had increased significantly since the Green Revolution in the 1970s (R.B.
Singh, 2000). However, a stagnation or decline in the system yields has been observed
more recently (Bhatt et al., 2021; Chauhan, 2012) due to the natural resource base getting
exhausted (Pathak et al., 2003), high demand for labor, water and energy (Bhatt et al.,
2021; M.L. Jat et al., 2009; Saharawat et al., 2010), declining input efficiencies, and has
been exacerbated by climate change and socio-economic conditions (Dhanda et al., 2022).

Irrigation has led India towards agricultural growth and food security, with around
82% of the total freshwater withdrawals in India being used for agriculture (Sikka et al.,
2022). A large part of the Indo-Gangetic plains (including the “food basket") depends
on groundwater for irrigation (Ambast et al., 2006). Excessive groundwater pumping,
which was a component of the Green Revolution, has led to declining groundwater
levels in these regions (Hira et al., 2004). Surface irrigation, like other traditional
irrigation methods, is inefficient, but may continue to remain the most extensively used
irrigation method due to its low-cost and energy requirements (Bjorneberg, 2013). It
is associated with low irrigation application efficiency due to deep percolation and
non-uniform distribution of water (Pramanik et al., 2022). Simultaneously, the adoption
of micro-irrigation methods (such as drip, sprinkler irrigation etc.) has not increased
remarkably in India since subsidies by themselves are inadequate to affect a change
in farm decision making, and farmers equipped with water saving techniques tend to
expand the area under irrigation or grow more water-intensive crops (Nair and Thomas,
2022), exemplifying the Jevons’ paradox (Alcott, 2005). Hence, such technological
solutions need to atleast be cost-effective, particularly when they are to be used by
smallholder farmers, who tend to be more economical in technology adoption (A.K.
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Singh et al., 2009).
Techniques aiming at improving irrigation management have combined either data

from satellites (Bastiaanssen et al., 2000) or ground sensor networks (Navarro-Hellín
et al., 2015) with agro-hydrological modeling (Chiara and Marco, 2022). Precise irrigation
water management requires accurate data as well as a comprehensive understanding of
biophysical processes related to crop response to water at different crop growth stages
(Kisekka et al., 2022). Crop water simulation models have been developed that describe
the crop growth and production responses to the soil-water environment (C. Zhang et al.,
2022a). Such models are often data intensive as they require numerous input variables
and parameter values which may not be available for different crops and environments
(Vanuytrecht et al., 2014). Similarly, though commercial sensors, processors, actors and
communication components may be available, they need to be cost-effective, easy to
access and maintainable to be applied effectively in agriculture (Pramanik et al., 2022;
Rodríguez-Robles et al., 2020).

Soil moisture or VWC information is one such key variable involved in precision
agriculture and agricultural sustainability (Kisekka et al., 2022). For similar reasons as
stated above, the technologies to sense soil moisture can have low-utilization due to
farmers’ reluctance in investment due to economic limitations (Srbinovska et al., 2015).
Further, soil moisture sensors need to be calibrated at each site because of the effects
of the variability in soil properties on the sensor outputs (Peddinti et al., 2020). The
advantage of field calibration is that undisturbed soil samples can be most representative
of field conditions where the sensors might be used. However, soil moisture sensing
can be sensitive to environmental factors like temperature, salinity, bulk density, organic
matter and clay content, and the gap between the probe sensor body and soil (Kargas
and K.X. Soulis, 2012; Matula et al., 2016a). Though researchers have highlighted the
importance of field calibration (Robinson et al., 2008), it is generally performed (also by
manufacturers) indoors with sieved, uniformly packed, homogenous soil at regulated
VWCs and temperature conditions, particularly for homogeneous coarse soils like some
sands and loams (Feng and Sui, 2020).

To summarize, the challenge is to combine accurate (calibrated) soil moisture sensing
at low costs and parsimonious crop models without losing predictive power (Landau et
al., 2000). There are studies on irrigation scheduling with calibrated low-cost capacitance
sensors (R.B. Thompson et al., 2007a) with thresholds computed using indices based
on VWC data (R.B. Thompson et al., 2007b). Other studies have used relatively higher
cost sensors in combination with crop modeling (Y. Lu et al., 2021b). However, the
combination of calibrating a low-cost capacitance based soil moisture sensor (using
different least squares and machine learning algorithms) and robust crop modeling, has
yet to be studied, to the best of the authors’ knowledge.

This paper addresses this gap by answering the following research questions:

1. How much impact does the calibration of Low-cost (LC) soil moisture sensors,
against some primary standard or Medium-cost (MC) sensor, have on the accuracy
of soil moisture sensing applied in a field? What is the difference in the perfor-
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mance of laboratory and field calibrated LC soil moisture sensors on independent
field validation data?

2. What is the effect of using soil moisture data to calibrate the Soil Hydraulic
Properties (SHP) of a parsimonious crop model on model outputs such as canopy
cover, soil moisture, biomass and crop water productivity/water use efficiency?

3. What is the effect of using calibrated LC soil moisture data to calibrate the crop
model’s SHPs instead of raw LC soil moisture data on the above crop model
outputs?

4.2 Material and methods
4.2.1 Study area and wheat cropping season

4.2.1.1 Experimental site

The questions are explored for the wheat cropping season of 2018 in Kanpur, which is
representative of an intensively managed rural region with RWCS in the Indo-Gangetic
plains (Gupta et al., 2019). The experiments were conducted in a 20 m × 30 m field
(Figure 4.1) at the Indian Institute of Technology Kanpur, Kanpur, India (26◦30′56.8′′N
80◦13′47.3′′E and altitude of about 126 m above mean sea level). The experimental
site falls within the sub-tropical climate zone with an average annual rainfall of 833.5
mm, 92.5% of which falls within the monsoon season (June to September); the other
two seasons are the cold season from November-February and the hot season from
March-June (Sankararamakrishnan et al., 2008).

4.2.1.2 Description of the wheat cropping season

The Indian spring wheat variety K7903 (improved Halna) (Dwivedi et al., 2019; S. Kumar
et al., 2012) was sown in check basins (hence referred to as ‘plots’, each 3 m × 3 m) on 5
January 2018. The seeds were sown at a row-spacing of 10 cm, at a depth of 5 cm and
with a planting density of 363 plants/sq.m. Halna is a very late sown, short duration,
drought tolerant variety of wheat (Dwivedi et al., 2019; S. Kumar et al., 2017b).

Agricultural management was performed based on local farming practices, that
included fertilizer (urea) application during tillering, 27 Days after sowing (DAS), and 4
irrigation applications (25 DAS, 45 DAS, 59 DAS and 74 DAS, given in Table 7.5) totaling
220.2 mm, to supplement the 50.4 mm rainfall during the cropping season. There was a
flooding event which occurred just following the final irrigation, totalling 262.5 mm of
water. Hence, the total water input was 533.1 mm. The crop was harvested on 15 April
2018 (101 DAS).

4.2.2 Literature review

4.2.2.1 Selecting appropriate soil moisture sensing techniques

The different techniques for soil moisture sensing include neutron thermalization
(Chanasyk and Naeth, 1996), TDR (Robinson et al., 2003; Topp et al., 1980), TDT
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Figure 4.1: (a) Location of Kanpur in India, (b) Location of the Indian Institute of
Technology (IIT) Kanpur in the Kanpur district (landuse map shown here),
(c) Experimental wheat farm in IIT Kanpur, with multiple check-basins
(hence referred to as ’plots’) irrigated using flood irrigation. 6 plots with
soil moisture monitoring using both MC and LC sensors were chosen for the
study.

(Blonquist Jr et al., 2005), electrical impedance (Cosh et al., 2005; Gaskin and Miller,
1996), FDR (Ojo et al., 2015), electrical capacitance (Zotarelli et al., 2011), and sensing
using electrical resistance blocks (Cummings and Chandler Jr, 1941) or tensiometers
(Muñoz-Carpena et al., 2005).

Capacitance-type soil moisture sensors are more widely used for decision support
systems in irrigated agriculture (Fares and Alva, 2000; Gallardo et al., 2020) due to
their lower cost, robustness, precision, and low power and maintenance requirements
(S.B. Jones et al., 2005; Rosenbaum et al., 2011; Spelman et al., 2013; Visconti et al.,
2014). However, despite performing well in laboratory conditions, they may exhibit
sensor-to-sensor variability in field conditions (Bogena et al., 2017; Rosenbaum et al.,
2010; Spelman et al., 2013), and consequently require site-specific calibration to be able
to provide reliable VWC measurements (Kisekka et al., 2022; Peddinti et al., 2020).
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4.2.2.1.1 TDR-FDR based medium-cost (MC) sensor: SMT100

The SMT100 sensor (manufactured by Umwelt-Geräte-Technik GmbH, Müncheberg,
Germany) was chosen as the secondary standard soil moisture sensor (UGT, 2017),
henceforth called the ’medium-cost (MC)’ sensor. This nomenclature comes from
previous research which characterized the performance low-cost (capacitance) and
very-low cost (resistance) sensors against high-cost (impedance) sensors (Adla et al.,
2020) The cost of the SMT100 sensor is intermediate between the low-cost and high-cost
sensors (see Figure 4.3). The SMT100 incorporates the higher accuracy of a TDR system
with the cost effectiveness of FDR sensing (UGT, 2017). The sensor head containing the
sensor electronics emits a steep pulse which travels along a closed transmission line
which is buried in the soil. However, instead of directly measuring the time for the pulse
to return (e.g., in TDT or TDR), the pulse is inverted and fed back into the line driver
input, resulting in an “oscillation" frequency which is a function of the soil dielectric
permittivity (Bogena et al., 2017). Also, unlike the FDR which is based on a capacitor,
the SMT100 uses a ring oscillator to generate the pulse and transform the travel time
to frequency (Bogena et al., 2017; UGT, 2017). The oscillation frequency is around 340
MHz in air and 150 MHz in water (Bogena et al., 2017). This resultant frequency is high
enough to not be influenced by the high clay content, electrical conductivity or imaginary
dielectric permittivity of the soil (Blonquist Jr et al., 2005; UGT, 2017). The outputs of
SMT100 are relative permittivity, volumetric water content computed using the relative
permittivity (Blonquist Jr et al., 2005) and soil temperature. The accuracy for VWC is 3%
(which can be improved to 1% with calibration), and the accuracy for temperature is
±0.2 ◦C within a temperature range of -40 °C to 80 °C, as reported by the manufacturer
(UGT, 2017). Sensor specific calibration in the laboratory with (non-soil) materials of
known apparent dielectric permittivity can improve the VWC accuracy (RMSE, Raes
et al., 2018) to range between 0.21% to 1.30%, for different materials (Bogena et al., 2017).
The MC SMT100 sensor was assumed to be relatively more accurate due to its superior
sensing technique, and was thus used as a secondary standard (Nakra and Chaudhry,
2006) to calibrate the low-cost (LC) SM100 sensor (see Section 4.2.4.1.2).

4.2.2.1.2 Capacitance based low-cost (LC) sensor: SM100

The WaterScout SM100 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL,
USA) was chosen as the capacitance based low-cost (LC) soil moisture sensor (Spectrum,
2011). The sensor operates with a pair of electrodes behaving as a capacitor and the soil
surrounding the sensor behaving as the charge storing dielectric medium. An oscillator
operating at 80 MHz drives the capacitor, and generates an output (voltage ratio) which
is proportional to the dielectric permittivity of the soil-water system. The sensor output
(voltage ratio/raw value) is then converted to a VWC value using the factory calibration
equation (Kieffer, personal communication, 5 September 2018). The accuracy of SM100
is reported to be 3% (for EC < 800 mS.m-1) and it has an operating range of 0.5 ◦C to
80 ◦C (Spectrum, 2011). Calibration in the laboratory (with repacked sands and silty
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loams) has improved the VWC accuracy (RMSE) to range between 1.63% to 2.97% (Adla
et al., 2020). The LC SM100 sensor was calibrated using a primary standard as well as
the MC SMT100 sensor as the secondary standard (see Section 4.2.4.1).

4.2.2.2 Selecting calibration techniques for the LC capacitance sensor

4.2.2.2.1 Least squares estimate based regression

Studies have calibrated capacitance-based soil moisture sensors, both in laboratories
(Adla et al., 2020; Bello et al., 2019a; Nagahage et al., 2019; Placidi et al., 2020; 2021) and
in the field (Rudnick et al., 2015; J. Singh et al., 2018), to improve performance. Most
of the calibration equations reported in the literature for the low-cost sensors are least-
squares estimates and are either linear, logistic, hyperbolic, logarithmic, exponential, or
polynomial. Based on a visual inspection of the data, piecewise linear regression, power
law regression and polynomial regressions (both degree 2 and 3) were used to calibrate
the LC capacitance based SM100 sensor.

4.2.2.2.2 Machine learning based regression

Diverse machine learning algorithms were applied to calibrate and evaluate a predictive
model. The focus was on standard algorithms for regression applications: linear
regression (LR), support vector regression (SVR), random forest regression (RFR) and
multilayer perceptron neural networks (MLP). LR models have been applied extensively
earlier in soil moisture applications (Qiu et al., 2003; Teng et al., 1993); and are still
relevant due to their simplicity and easy interpretation (García et al., 2016; Y. Lee et al.,
2019). The Support Vector Machine (SVM) algorithm defines optimal hyperplanes in
a high or infinite dimensional space which can be used for classification or regression
(Vapnik et al., 1996). SVR has been applied in soil moisture related studies (Gill et al.,
2006; D. Liu et al., 2010; Z. Yu et al., 2012). The RFR algorithm (Breiman, 2001) is
based on averaging non-correlated decision trees for variance reduction and avoidance
of overfitting. Its simplicity in training and tuning has made it popular in current
regression applications of soil moisture (Carranza et al., 2021; Qingling et al., 2019;
Srivastava et al., 2021; H. Zhang et al., 2022b). However, calibration hyperparameters
can be computationally expensive due to its many possibilities. The MLP is an algorithm
based on the typical architecture of a neural network, hence it is a nonlinear statistical
model which has unknown parameters (weights) meant to be tuned to make the model
well fit to training data using back-propagation equations in multiple hidden layers. It
has also been applied in soil moisture applications extensively (Chai et al., 2009; Gu
et al., 2021; F. Yu et al., 2012). All the algorithms were applied using the Scikit-learn
tool library (v.10.2) (Pedregosa et al., 2011) in Python (v.3.8.5). Hyperparameters of each
algorithm were calibrated with default values available in Scikit-learn and evaluated
with a cross validation of 10 folds (CV, k = 10). This process avoided skewing results
in validation due to random sampling in the training process. The controlling metrics
were the coefficient of determination (R2, Raes et al., 2018) and the root mean squared
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error (RMSE). A detailed definition of all the machine learning models applied here
can be found in (Hastie et al., 2009), and an example of this application can be found in
(Arias-Rodriguez et al., 2021).

4.2.2.3 Selecting a parsimonious crop model

Crop growth models can simulate physiological processes (Chenu et al., 2009; Yin et al.,
2003), and crop growth behavior in the field (J.W. Jones et al., 2003; Keating et al., 2003;
Steduto et al., 2009). Modeling has been used to quantify yield gaps (Schils et al., 2018;
Van Ittersum et al., 2016), highlight gaps regarding food security (Keating et al., 2014),
quantify land area needed (currently and into the future) to feed the population (Gerten
et al., 2020), and discuss the possible need to expand agricultural lands into natural
habitats (Stehfest et al., 2019). In the past few decades, crop models have been refined
and updated by incorporating the influence of various water-fertilizer conditions and
field management practices on the variables of interest (C. Zhang et al., 2022a). As a
result, crop models have informed management decisions regarding water and nutrients,
identified optimal sowing dates, and explored the feasibility of new cropping systems
(Asseng et al., 2014; Silva et al., 2017). The more popular models that have recently been
used for simulating crop growth and yield production of wheat under different soil
water conditions and irrigation scenarios are: APSIM (Ahmed et al., 2016; Chen et al.,
2010), DSSAT-CERES-Wheat (Attia et al., 2016; L.-l. Zhou et al., 2018) FAO AquaCrop
(Iqbal et al., 2014; Toumi et al., 2016) RZWQM2 (Saseendran et al., 2015; Zheng et al.,
2020), and SWAP (Eitzinger et al., 2004; X. Wang et al., 2021).

Crop modeling environments like DSSAT and APSIM can require 211 and 292 param-
eter inputs respectively (Soltani and T.R. Sinclair, 2015), which enables such models to
address complex research questions linking crop development to long-term nitrogen
balances, greenhouse gas emissions, or climate variability (Todorovic et al., 2009). The
incorporation of all possible processes and integration levels amplifies errors and uncer-
tainties (Silva and Giller, 2020). Moreover, data intensive models with numerous inputs
and parameter requirements may not be practical in data-scarce regions (Vanuytrecht
et al., 2014; Varella et al., 2010) like the Majority World (Graves et al., 2002; J.W. Jones
et al., 2012).

The water-driven FAO AquaCrop model has been developed with the vision to
balance simplicity, accuracy and robustness (Vanuytrecht et al., 2014). Consequently, it
relies on considerably fewer (about 19, according to Raes, 2017), and relatively easier
to measure inputs, such as the percentage of green Canopy Cover (CC) instead of the
leaf area index (LAI) (Kulshreshtha and Elshorbagy, 2017; Steduto et al., 2012; Steduto
et al., 2009; Todorovic et al., 2009; Vanuytrecht et al., 2014). Model comparison studies
have confirmed that despite the reduced number of inputs data and parameters, FAO
AquaCrop’s performance can be similar or only slightly inferior compared to data-
intensive models (Babel et al., 2019; Quintero and Díaz, 2020; Todorovic et al., 2009).
Moderate to good simulation results have also been reported for wheat and regions of
water scarcity (Andarzian et al., 2011; Huang et al., 2022; A. Singh et al., 2013; W. Zhang
et al., 2013).
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4.2.2.4 Description of the crop-water model FAO AquaCrop

AquaCrop is freely distributed stand-alone software distributed by the Food and Agri-
culture Organization of the United Nations (FAO). Open-source versions of the FAO
AquaCrop model have been developed using both proprietary and open-source software
environments (Camargo Rodriguez and Ober, 2019; T. Foster et al., 2017; Kelly and T. Fos-
ter, 2021). This study uses the MATLAB-based AquaCrop OpenSource (AquaCrop-OS)
v.6.1 tool (T. Foster et al., 2017).

Evolving from the approach of (Doorenbos and Kassam, 1979), AquaCrop simulates
daily yield loss in response to soil water depletion in the root zone. The improvements
include using a simple canopy growth and senescence model to compute transpiration,
consequently partitioning evapotranspiration (ET) into crop transpiration and soil
evaporation, and estimating yield from biomass and Harvest Index (-) (HI) (Steduto et
al., 2009). Four main variables are calculated consecutively and on a daily basis through
individual equations; i.e., accumulated canopy cover (CC), daily plant transpiration,
accumulated aboveground biomass, and accumulated final dry yield. These model
variables are mainly interconnected by empirical factors, such as the water productivity
(WP) and harvest index (HI), to convert transpiration to biomass and biomass to yield,
respectively. Water productivity only incorporates plant transpiration to account for
the confounding effect of the nonproductive consumptive water use (Steduto et al.,
2009). Moreover, WP is normalized for atmospheric CO2 concentration and climate
(Raes et al., 2018), and hence makes the model more robust and generalizable (Steduto
et al., 2009). AquaCrop also differentiates the effect of water stress into 4 components:
canopy growth, canopy senescence, transpiration and harvest index (Steduto et al., 2009).
AquaCrop-OS v.6.1 integrates the adverse effects of water excess or deficiency, and
extreme temperatures on crop development by calculating daily reductive factors which
then impact the model equations that compute the corresponding variables (Raes et al.,
2018; Steduto et al., 2012). The separate modeling of water deficiency stresses depending
on their impact pathway is expected to give AquaCrop a competitive advantage over
other water-driven models (Foster et al., 2017).

Model set-up requires user input for climate parameters, ’non-conservative’ (i.e.,
temporally and spatially variable) model parameters, and, where applicable, an irrigation
schedule and the groundwater water table. Climate parameters include precipitation,
reference evapotranspiration, and minimum and maximum temperature, which are to
be specified on a daily scale for the entire growing season. Non-conservative model
parameters relate to crop phenology, soil conditions, and field management practices
(Raes et al., 2018; Steduto et al., 2012).

4.2.3 Measurements

Figure 4.2 illustrates the seasonal evolution of the daily water demand (depicted by
weather parameters combined into the FAO-56 reference ETo, from Allen et al., 1998),
water supply (depicted by rainfall and applied irrigation during the season), and soil
moisture (VWC) monitoring by both low-cost (LC) SM100 and medium-cost (MC)
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4 Low-cost soil moisture calibration and parsimonious crop modeling

SMT100 soil moisture sensors.

Figure 4.2: Variation of daily values of FAO-56 reference evapotranspiration Reference
Evapotranspiration (mm.d-1) (ETo), input water through rainfall or irrigation
application, and soil moisture measurements (both medium-cost SMT100
and low-cost SM100 sensor) during the wheat cropping season. Soil moisture
averages over the field are depicted as bubbles, with their standard deviations
as ranges.

An automatic weather station at the experimental field measured precipitation, baro-
metric pressure, relative humidity, global solar radiation, wind speed and direction,
and air temperature at two different heights (2 m and 3 m above the ground), all at
15-minute intervals aggregated to daily values. During the cropping season, the average
daily temperature and relative humidity (both at 2 m) ranged from 9.3°C to 30.7°C and
from 35.3% to 93.9%, respectively.

The soil texture components of the experimental plot were found to be 15.4% sand,
66.3% silt and 18.2% clay, classifying it as silty-loam (USDA classification). The soil
texture classification was conducted by the UGT Sedimat 4-12 instrument, which deter-
mines the particle size distribution in mineral soils based on the Köhn method (König
et al., 2005). Moreover, the soil was relatively homogenous in depth and the ground-
water table is deep enough to prevent capillary rise from influencing soil moisture
measurements.

Surface soil moisture was determined at the center of each plot at 15-minute intervals
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4.2 Material and methods

by the TDR-FDR based MC SMT100 sensor (manufactured by Umwelt-Geräte-Technik
GmbH), and the capacitance based LC SM100 (manufactured by Spectrum Technologies,
Inc.), and both datasets were aggregated to the daily time-step.

The observations used for model parameterization included the following. Phenolog-
ical parameters which were observed included days to emergence, start of flowering,
start of senescence and maturity, length of flowering (days). VWC related observed
parameters were maximum rooting depth, The observed parameters plant population
density was related to crop management. The observations compared with simulated
outputs for crop modeling calibration were leaf area index and above ground biomass.
Leaf Area Index (LAI) was measured eight times during the season (36, 44, 55, 59, 68, 83,
90 and 101 DAS) using the LAI-2200C plant canopy analyzer manufactured by LI-COR
Biosciences. It was converted into Canopy Cover values (which is the direct crop model
output) using an empirical exponential equation for wheat (Nielsen et al., 2012). Above
ground dry biomass was measured conducting a crop cutting experiment (M. Singh,
2014) from a representative 1 sq. m section for each plot. Moreover, actual evapotran-
spiration ETa was measured using microlysimeters which was part of another study
(Kumar, 2019). These measurements were used to calculate the ET Water Productivity
(kg.kg-1 or kg.m-3) (WPET), introduced in Section 4.2.5.2.

There were six plots which had simultaneous measurements by both MC and LC soil
moisture sensors as well as the observations required for crop modeling, and were used
for the analyses. Overall, VWC measurements for both the sensors were available on
average for 61.2 days (s=3.0 days) out of the 100 day cropping season across the six plots.

4.2.4 Calibration of low-cost soil moisture sensors

4.2.4.1 Strategy to calibrate-validate soil moisture data

Capacitance based soil-moisture sensors have been calibrated both with repacked (Adla
et al., 2020; Nagahage et al., 2019; Placidi et al., 2020) or undisturbed (Bello et al., 2019a)
soil samples inside the laboratory, as well as in the field (Rudnick et al., 2015; J. Singh
et al., 2018). In the laboratory, calibration of soil moisture sensors is generally carried
out either using the substantially faster ’wet-up’ or wetting (downward or upward
infiltration, taking <1 day) or slower ’dry-down’ or drying (taking about 1-2 weeks)
processes (Burns et al., 2014).

Figure 4.3 describes the overall workflow of this study. The sensors used are displayed
at the top-left corner of the figure. Throughout the study, the data corresponding
to the LC SM100 and MC SMT100 sensors are represented in blue and green colors
respectively. The simulations corresponding to the calibrated LC soil moisture sensor
data are represented in a deeper blue compared to the raw LC sensor data.

The workflow related to the LC soil moisture sensor (SM100) calibration is illustrated
in the inset “Soil moisture sensor calibration", in Figure 4.3. The LC sensor data is
calibrated against either a primary standard (gravimetric water content, Section 4.2.4.1.1)
or a secondary standard (the MC SMT100 data, Section 4.2.4.1.2) - this is mentioned in the
respective bubbles, “Lab Cal." (laboratory calibration) and “Field Cal." (field calibration).
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4 Low-cost soil moisture calibration and parsimonious crop modeling

Figure 4.3: Overview of the strategy to calibrate LC soil moisture sensor and crop model.
The sensors used are displayed at the top-left corner of the figure, along
with information about the manufacturer and cost (US dollars). The “Soil
moisture sensor calibration" of the LC SM100 sensor was conducted in the
laboratory “Lab Cal.") using gravimetrically determined VWC, and in the
field (“Field Cal.") using the MC SMT100 sensor as a secondary standard.
All the developed models were then validated in the field (“Field Val.) to
select the best model, “Best LCcal model". The “Crop model calibration"
either used the literature ("Default"), raw VWC values from both MC and
LC sensors (“Raw"), or the Best LCcal model (“Calibrated") to calibrate the
SHP of the AquaCrop model. The Best LCcal rhombus in “Soil moisture
sensor calibration" is a flowchart decision, whereas, the “Calibrated" diamond
in "Crop model calibration" is not a decision, but a representation that is
followed in Figure 4.5.

The number of paired data points (sensor and primary/secondary standard) used in
both calibration approaches is also mentioned (n=100 for laboratory calibration, n=65
for field calibration). The objective of the following process was to select the “best"
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calibration algorithm (across laboratory and field calibration schemes) to be used in a
crop modeling scenario (Section 4.2.5.2).

4.2.4.1.1 Laboratory calibration of LC SM100 sensor

The laboratory calibration of repacked soils using the LC SM100 sensor had already
been undertaken in a previous study (Adla et al., 2020); piece-wise linear regression
functions (PWLFs, Jekel, 2017) were used to fit the LC VWC values of five LC SM100
sensors against gravimetric VWC (primary standard), for four soils (number of data
points, n=400). The study had calibrated five sensors in controlled laboratory conditions
with the wet-up curve (similar to Matula et al., 2016a) to account for sensor-to-sensor-
variability and improve cost-effectiveness in terms of saved time and energy resources
(Burns et al., 2014). For this study, the data (n=100) corresponding to the soil sampled
from the current study site (silty-loam soil referred to as Soil 3 in Adla et al., 2020), were
used to fit the LC sensor values against gravimetric VWC, using the different algorithms
described in Section 4.2.2.2. The coefficient of determination (R2) and root mean squared
error (RMSE) were used to quantify the calibration performance in all cases.

4.2.4.1.2 Field calibration of LC SM100 sensor

Out of the six plots used for the study, the plot with the highest (significant) linear
correlation between the aggregated daily values of MC SMT100 and LC SM100 sensor
(r2 = 0.76) was used for calibration (n=65), and the five remaining plots were used
for validation (n=302). The TDR-FDR based MC SMT100 sensor was taken as the
secondary standard based on the evidence of superior performance compared to the
capacitance based LC SM100 sensor (Section 4.2.2.1). Consequently, the daily aggregated
LC SM100 data were calibrated using the daily aggregated MC SMT100 data, using all the
algorithms listed in Section 4.2.2.2. Similar to the laboratory calibration, the calibration
performance in each case was quantified using the coefficient of determination (R2) and
root mean squared error (RMSE).

4.2.4.1.3 Field validation of laboratory and field calibrations

The data from the five validation plots (n=302) were used to validate the performance of
each calibration algorithm developed using both laboratory or field data. These data
were independent of the calibration datasets of the laboratory and field. Moreover, since
the aim of the calibration process is eventually to use the calibrated LC SM100 sensors
in the field, it was decided to use field data to validate all the developed calibration
algorithms. The MC SMT100 data measurements were taken as the secondary standard
used for calibrating or validating the field data. The square of the Pearson correlation
coefficient (r2, Raes et al., 2018), and the RMSE were used as the performance indicators
for the validation process.
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4 Low-cost soil moisture calibration and parsimonious crop modeling

4.2.5 Crop model calibration scenarios

4.2.5.1 AquaCrop calibration procedure/method

The official AquaCrop calibration guidelines propose calibrating all non-conservative
and non-observed model parameters in a sequential process with appropriate objective
functions (Raes et al., 2018; Steduto et al., 2012). Accordingly, model simulation was
sequentially improved using intermediately computed model variables like canopy cover
(CC), volumetric water content (VWC) and biomass (BM) by adjusting different sets of
model parameters, until the simulation of the harvested yield agreed with observations
within an acceptable error range. The model performance regarding intermediate
variables can be evaluated and interpreted by visually and statistically comparing the
respective simulated and observed curves (Raes et al., 2018).

In this study, eight (non-conservative) crop growth parameters of the AquaCrop-OS
model were calibrated: phenological parameters (initial canopy size of the emergent
seedling CCo, maximum canopy cover CCx, and Canopy Growth Coefficient (CGC))
similar to Vanuytrecht et al. (2014), and soil hydraulic parameters (readily available
water REW, saturated soil hydraulic conductivity Ksat, VWC at wilting point θPWP, field
capacity θFC and saturation θs).

4.2.5.2 Different calibration scenarios used in the study (default, raw and calibrated)

The inset ‘Crop model calibration" in Figure 4.3 illustrates the crop modeling scenarios to
address the second and third research questions defined for the study. The soil hydraulic
properties (SHPs) of FAO AquaCrop which were calibrated within the scenarios were:
θPWP (%), θFC (%), θs (%), Ksat (mm/day), and REW (mm). A trial-and-error method
(Liang et al., 2017; H. Ma et al., 2020) was used to calibrate the canopy cover (CC) curve
to maximize the r2 and minimize the RMSE between the observed (estimated) and
simulated CC values for each plot. The calibration of the crop model SHPs was done, to
optimize the same performance indices, under the following scenarios (refer to Figure
4.3):

• The “Default" scenarios (for both MC and LC sensor): The SHPs were calibrated
based on average values from the literature (Gupta et al., 2021; Rawls and Brak-
ensiek, 1989), corresponding to the classified soil texture (silty-loam). The soil
moisture data for both the MC SMT100 and LC SM100 sensors were only used to
observe model performance, and had no effect on the SHPs.

• The “Raw" scenarios (for both MC and LC sensor): The AquaCrop SHPs were
calibrated using the raw (uncalibrated) LC and MC soil moisture data. The
calibration was done using a trial-and-error method of Liang et al. (2017) and H.
Ma et al. (2020). The difference between “Raw" and “Default" scenarios quantified
the respective impacts of calibrating the SHPs on the crop model performance
(research question 2).

• The “Calibrated" scenario (only for LC sensor): The SHPs were calibrated using
the “best" LC soil moisture sensor calibration technique. The difference between
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4.3 Results and discussion

the “Calibrated" and “Raw" model performance (both for the LC sensor) quantifies
the additional impact of using calibrated soil moisture data (as compared to raw
data) on crop model performance (research question 3).

Another simulated output of the AquaCrop model, the above ground dry biomass
(BM) was compared with the observed biomass, using the indicators mean absolute
error (MAE, Witten et al., 2011), RMSE, NRMSE (normalized RMSE, Raes et al., 2018),
and percentage bias (PBIAS, Sorooshian et al., 1993). The recommendations of NRMSE
for qualitative performance, of NRMSE ≤ 5% for very good performance, NRMSE
between 6%-15%, 16%-25%, 26%-35%, 36%-45% for good, moderately good, moderately
poor, and poor performance respectively, and NRMSE ≥ 45% implying very poor
performance (Raes et al., 2018), were used to evaluate the BM simulations.

Also, in the context of food and water security, Water Productivity was used to under-
stand the “efficacy of the crop production processes in relation to their required water
consumption" (Van Halsema and Vincent, 2012). Water productivity is a critical element
in irrigated agriculture to evaluate the enhancement of agricultural production without
majorly increasing fresh water allocation to agriculture (De Fraiture and Wichelns, 2010;
Molden et al., 2010). There are many alternative terms used to denote this concept -
water productivity (Van Halsema and Vincent, 2012; Vanuytrecht et al., 2014), water
use efficiency used in the agronomic context (Ai et al., 2020; Andarzian et al., 2011),
ET water productivity (Raes et al., 2018). This study uses Water Productivity or WPET

(kg.m-3, or kg.kg-1), defined as the following (Van Halsema and Vincent, 2012):

WPET = Yield/ETa (4.1)

where Yield is the final (simulated or observed) crop yield (kg/m2) and ETa (m) is
the cumulative actual evapotranspiration during the cropping season. The simulated
WPET was computed by extracting the yield and simulated seasonal evaporation and
transpiration (sum of daily values), generated by AquaCrop. The observed WPET values
were computed using the observed biomass, the default Initial Harvest Index (-) (HIo)
for wheat, and ETa estimated on the field using microlysimeters (A. Kumar, 2019).

4.3 Results and discussion
4.3.1 Calibration of low-cost soil moisture sensors

Table 4.1 details the results of the calibration and validation procedure used for the LC
SM100 soil moisture sensor described in Section 4.2.4. The sub-table on the left and right
describe the calibration-validation performance in the laboratory and field respectively,
using coefficient of determination (R2) or square of Pearson’s correlation coefficient (r2),
and the root mean squared error (RMSE) as the performance indicators. The validation
in both cases is done on the same independent field data (n=302). Figure 4.4 plots all the
calibration curves preserving the index from Table 4.1, highlighting the selected “best"
calibration technique.
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4 Low-cost soil moisture calibration and parsimonious crop modeling

Figure 4.4: Comparison of the different calibration equations developed using (a) lab
and (b) field data. The index numbers correspond to Table 4.1. The "Best"
model identified in both cases is the PWLF algorithm. The respective data
used for calibration are shown as points.

During both laboratory and field calibrations, the performance of the machine learning
algorithm Random Forest Regression (RFR) was quantitatively the best among all the
algorithms included in the study, based on the chosen performance indicators. In
laboratory calibration, the coefficient of determination R2=0.98 and RMSE=1.26%, and
during field calibration, R2=0.93 and RMSE=1.67%.
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4 Low-cost soil moisture calibration and parsimonious crop modeling

However, plotting the curve (index 6 in Figure 4.4) revealed evidence of overfitting.
Even when RFR avoids overfitting from the original decision trees, a lack of general-
ization is still possible (Hastie et al., 2009). Particularly, generalization error variance
decreases as more trees are added to the algorithm, without a change in the bias of the
generalization. This study used the default n_estimators = 100 (Pedregosa et al., 2011),
however, different options of decision trees should be examined, particularly searching
for lower n_estimators using a GridSearch. Overfitting is likely a consequence of the
limited tuning of the hyperparameters and the need of more computation resources. As
a consequence, the validation of the RFR-laboratory model worsened the performance
substantially (r2=0.20, RMSE=8.88%). The RFR-field and RFR-laboratory models were
not monotonic and monotonically non-decreasing functions respectively, which implied
that the calibrated LC VWC values could also decrease (or not increase, respectively)
with increasing MC VWC. Both the model behaviors were not realistic. Hence, the RFR
algorithm was not chosen for further analyses.

The piece-wise linear regression function had the next best performance during
calibration: laboratory R2=0.95, RMSE=1.96%; and field R2=0.76, RMSE=3.13%. Further,
during both the respective validation cases, the PWLF performed adequately well
when compared to the relative performances of the RFR models (PWLF-laboratory:
r2=0.42, RMSE=7.98%, PWLF-field: r2=0.67, RMSE=4.57%). The piece-wise (segmented)
behavior is also a feature of the manufacturer’s calibration equation; its segments are
linear and quadratic (Kieffer, personal communication, 5 September 2018). A comparison
of the calibration equations developed by the manufacturer (Spectrum Technologies,
Inc.) and in-house has been studied earlier (Adla et al., 2020).

Scatter plots between the measured/calibrated LC SM100 values and the measured
MC SMT100 values are presented in Figure 4.5, for (a) laboratory calibration, (b) valida-
tion of the laboratory-calibrated model, (c) field calibration, and (d) validation of the
field-calibrated model. The cyan bubbles depict the scatter plots for the original data,
i.e. raw LC SM100 vs. raw MC SMT100 data, and the deeper blue diamonds represent
the scatter of the data after the respective calibration, i.e. calibrated LC SM100 vs. raw
MC SMT100 data, except for Figure 4.5(a) laboratory calibration, where the Y-axis is
gravimetrically determined VWC.

The comparison of calibration approaches provided an opportunity to generate some
best practices for soil moisture sensor calibration. These would correspond more
specifically to silty-loam soils in agricultural fields monitored by capacitance based
sensors. The derived best practices were:

• Field calibration of less sensors may be more robust than laboratory calibra-
tion of more sensors, for field application: The performance of the laboratory-
calibrated models is significantly poorer than the field-calibrated models, when
applied to the field validation set, in terms of both r2 and RMSE values. This
supports the previous literature which recommends calibration on-site or on
undisturbed soil-specific calibration (Feng and Sui, 2020). Field calibrations with
undisturbed soils may be more robust for field applications. This can be observed
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4.3 Results and discussion

by the difference in performance moving from the laboratory calibrations to the
validation, and from field calibrations to the validation.

Figure 4.5: Soil moisture calibration in the lab (top-left) and the field (top-right), val-
idated on an independent, identical field dataset (bottom left and right
respectively). R2 represents the coefficient of determination, and r2 repre-
sents the square of the Pearson correlation coefficient. The best performing
model in both cases is PWLF, and data generated using the PWLF-field-
calibration model was used to calibrate the soil hydraulic parameters of the
AquaCrop-OS crop model.
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4 Low-cost soil moisture calibration and parsimonious crop modeling

• If field calibration is not possible, calibration should be done using the dry-
down curve, for field applications: Calibrating LC sensors in the laboratory using
the dry-down curve rather than the wet-up curve leads to superior performance
for field applications. This corroborates with previous literature which claimed
superior laboratory calibration accuracy using dry-down curves, particularly for
finer textured soils (Burns et al., 2014). In this study, the validation performances
of all the field-calibrated models were significantly better than that of laboratory-
calibrated models. Moreover, capturing the drying curve is more apt to capture the
dynamics on the field in dry non-monsoonal rabi crop conditions in northern India,
where most of the annual rainfall occurs in the monsoons (Sankararamakrishnan
et al., 2008). Calibration using the dry-down curve in the laboratory may partly
address the loss of representativeness when soils are repacked, may apply for
soils that are similar in texture and structure, and also compensate for sensor-to-
sensor variability. Calibration of the dry-down curve using 3 LC SM100 sensors
in an earlier study was found to have the best validation performance among
all laboratory calibrated models (r2=0.66, and the best RMSE=5.26%), despite a
slightly different silty-loam soil (around 10% more sand and 10% less silt than
this study) being used for it (Rai, 2012). Similarly, a linear equation developed
by calibrating one LC SM100 sensor in the laboratory (without environmental
representativeness) using repacked soil from the experimental site, had nearly the
best r2=0.61 and RMSE=6.06% (Gedilu, 2012). This seemed to compensate for the
sensor-to-sensor variability even for repacked soils inside the laboratory, since it
performed better than the laboratory models (models 0 to 7) calculated using the
wet-up curve with five LC sensors.

• Overfitting during calibration can lead to loss in robust application: Overfitting
was observed in the poor validation performance of both laboratory and field RFR
models compared to the respective calibration performance. Machine learning
models, applied to non-linear hydrological processes have been found to exhibit
issues such as overfitting and difficulties explaining results (Elshorbagy et al.,
2010). Soil moisture calibration curves that are monotonic (preferably “gently
sloped") are more robust for field application, as the data in this study seems to
suggest. This is reiterated by previous studies with capacitance sensors, which
mainly report calibration equations such as linear and polynomial (Bello et al.,
2019a; Deng et al., 2020; Gedilu, 2012; Nagahage et al., 2019; Placidi et al., 2020;
Rudnick et al., 2015; J. Singh et al., 2018; R.B. Thompson et al., 2007a,b).

Overall, the PWLF model calibrated using field data was chosen as the “best" model
for further analysis. This strengthens the choice of piece-wise linear regression that
was also selected in a previous study with the same capacitance sensor in the same
field soil (Adla et al., 2020). It combines the flexibility of multiple segments without
compromising on physical realities through monotonicity which should result from the
soil moisture sensing of two electromagnetic sensors in the same soil.
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4.3 Results and discussion

4.3.2 Crop model calibration scenarios

4.3.2.1 Intermediate crop model outputs: canopy cover and volumetric water content

Table 4.2 details performance indices computed between simulated and observed crop
model outputs for each calibration scenario (4.2.5.2) for the five modeled plots taken
together. Table 7.4 outlines the default values of all non-conservative parameters, which
were either fixed using either secondary literature or observations, or calibrated under
the different calibration scenarios (Section 4.2.5.2). Figure 7.1 shows the respective mean
and standard deviation values of only the parameters which were calibrated under
the different scenarios (subset of Table 7.4). Figure 4.6 illustrates the time series of the
simulated and observed canopy cover (CC) (a-e) and volumetric water content (VWC)
(f-j) for the same scenarios, as averages and standard error of the mean (SEM) for all the
plots taken together. Tables 4.2 and 7.4, and Figures 4.6 and 7.1 are used together for the
following discussion of the results.

In the DefMC and DefLC scenarios, only the parameters related to the CC development
were altered to improve the fit of the simulated CC curve with the observations, i.e.,
SeedSize (CCo), CCx and CGC (descriptions in Section 4.2.5.1 and Table 7.4). The SHPs
which would impact the VWC curve fitting were chosen from (the average of) default
values from literature (as given in Table 7.4). Hence, neither the MC nor the LC soil
moisture sensor observations were used to fit these parameters, and were rather only
used to infer how well SHPs calibrated using the literature would be able to predict the
VWC.

In both the default scenarios, CC was predicted very well, with r2=0.96 and RMSE=5.71%,
which was satisfactory based on the previous literature with AquaCrop modeling on
wheat (Huang et al., 2022; Kale et al., 2018). The canopy growth parameters related to
the RawMC and RawLC were identical to those developed for the 2 default scenarios,
and hence the performance indicators were also nearly equal. The same CC parameters
were also carried over to the CalLC scenario, leading to non-significant differences in the
respective r2 and RMSE values.

In the DefMC and DefLC scenarios, the SHPs were calibrated using the literature, and
the simulated VWC values were modeled significantly better for the DefMC scenario
(r2=0.59, RMSE=7.76%) relative to DefLC (r2=0.38, RMSE=10.61%). These results would
help in serving as a reference to compare with the results of including the VWC
observations in the process of calibrating the SHPs, addressing research question 2.
When the SHPs were modified based on the raw daily aggregated MC and LC sensor
values (in the RawMC and RawLC scenarios respectively), the RMSE for both RawMC

(5.69%) and RawLC (8.58%) scenarios both showed significant improvement compared to
the respective default scenarios (DefMC RMSE=7.76%, DefLC RMSE=10.61%), and the
r2 value improved significantly in the case of the RawLC scenario (RawLC r2=0.46, DefLC

r2=0.38). Since the r2 value for the DefMC scenario (r2=0.59) was already moderately
good, the improvement to RawMC (r2=0.61) was non-significant.
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4 Low-cost soil moisture calibration and parsimonious crop modeling

When the SHPs were modified using the calibrated LC soil moisture data (in the CalLC

scenario), there was an improvement in r2 values (RawLC r2=0.46 to CalLC r2=0.56), as
well as RMSE (RawLC RMSE=8.58% to CalLC RMSE=6.17%), which performs closer
to the RawMC performance in general. This indicates the utility of calibrating LC
sensors using MC sensors in terms of improving VWC simulation performance of
AquaCrop. The VWC performance of this study was not as good as previous studies
which employed either cumbersome gravimetric VWC measurements or highly accurate
(and costly) neutron probes (Huang et al., 2022; Kale et al., 2018; W. Zhang et al., 2013).
However, it was promising to note that significant improvements were obtained in
the VWC simulations by calibrating the LC capacitance-based sensor even against an
uncalibrated, medium cost (TDR-FDR) sensor.

4.3.2.2 Final crop model outputs: crop model yield and water productivity

Figure 4.7 illustrates the simulated aboveground crop Water Productivity (WPET) for all
the scenarios, as averages and standard error of the mean (SEM) for all the plots taken
together. Table 4.2 also lists the MAE, RMSE and PBIAS for the respective BM values.
AquaCrop-OS overestimated the observed biomass by an average of 0.11 kg/m2, and
an average RMSE of 0.145 kg/m2, and NRMSE of 13.41%, which is considered to be a
’good’ simulation performance (Jamieson et al., 1991; Raes et al., 2018).

Figure 4.7: Comparison of AquaCrop-OS simulated Water Productivity (WPET) averaged
over 5 field plots, for the 5 different AquaCrop-OS crop modeling scenarios
(DefaultMC, DefaultLC, RawMC, RawLC and CalibratedLC). Error bars in all
figures represent the standard error of the respective mean values.

In the context of the differences between the simulations of BM across scenarios,
most of the observed differences were not significant. Hence, there were no significant
differences in the simulated BM across the five scenarios irrespective of the strength
of VWC simulation, indicating that the FAO AquaCrop simulation of biomass relied
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4.4 Conclusions

primarily on the canopy curve development.
However, the effect of the different SHP calibration schemes could be seen through

the water productivity WPET comparison across all scenarios. There was a significant
improvement in WPET when the SHPs were calibrated using the MC sensor data as
compared to the default literature (WPET for DefMC = 1.566 ± 0.009 kg/m3, WPET for
RawMC = 1.629 ± 0.006 kg/m3), due to significantly lower ET in RawMC compared to
DefMC. Comparing DefLC and RawLC, there was a non-significant change in WP when
LC sensors were used to calibrate the SHPs: (WPET for DefLC = 1.566 ± 0.009 kg/m3,
WPET for RawLC = 1.564 ± 0.011 kg/m3), which corresponded to the non-significant
differences in simulated ET between the two scenarios, in addition to the non-significant
difference in computed yield. This implies that incorporating the raw LC SM100 sensor
data to calibrate SHPs was not significantly more useful compared to the taking literature
values, and did not address any water saving objectives. However, when the LC sensors
were calibrated using the MC sensors, there was a significant improvement in WPET

(WPET for RawLC = 1.564 ± 0.011 kg/m3, WPET for CalLC = 1.601 ± 0.010 kg/m3), due
to the significant differences between simulated ET between both the scenarios. This
implies that the raw LC SM100 sensors do not increase WPET, but if they are calibrated
using a higher quality sensor, they lead to significant improvements in WPET.

4.3.3 Further discussion

This study focused on low-cost soil moisture measurements and calibration without
accounting for other soil related factors to remain relevant in the context of irriga-
tion management applications in the Majority World. Capacitance based sensing is
affected by environmental factors including salinity, clay and temperature, which can be
measured and compensated for, to improve performance at lower frequencies of soil
moisture sensing (Deng et al., 2020). Hence, although the SMT100 measures temperature,
these data were not included in the analyses. Machine learning algorithms may have
performed better by incorporating more data and variables (e.g., weather), but this was
also not done to keep the least squares and machine learning algorithms comparable in
terms of the input data. The validations of the different soil moisture calibration models
performed poorly than the recommended 3% sensor accuracy for soil moisture sensor
based irrigation scheduling systems (K. Soulis et al., 2015). However, since this study
was aimed at analyzing the effect of sensor calibration on relevant crop model outputs,
this was not a valid concern within this context, and would need further investigation.

4.4 Conclusions

A set of best practices of calibrating capacitance based low-cost (LC) soil moisture
sensors (Spectrum SM100 used in this study) was developed using two calibration
approaches: calibrating against gravimetric water content in the using wet-up curve
laboratory conditions, and calibrating against a TDR-FDR medium-cost (MC) soil
moisture sensor (UGT SMT100) in the field. Different least squares and machine
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4 Low-cost soil moisture calibration and parsimonious crop modeling

learning approaches were used to calibrate the LC sensor. Field calibration was observed
to be more robust than calibration in the laboratory. Calibration of the dry-down
curve was found to be more accurate, and even calibrations using the dry-down curve
in the laboratory were robust enough to perform similarly well as the superior field
calibrations. Overfitting during calibration can lead to loss in robustness on the field,
and hence, should be avoided. The best calibration model, considering the above issues,
was the field calibrated piece-wise linear regression function (PWLF-field).

The soil hydraulic parameters (SHPs) of the FAO AquaCrop model were calibrated
under different calibration schemes to understand the effect of using raw soil moisture
sensor data, and the additional effect of calibrating the capacitance LC sensor, on model
outputs. While VWC estimation improved significantly on incorporating the sensor
data in calibrating SHPs compared to deriving them from the literature (except SMT100,
where the default parameters also resulted in a good model performance), there were
non-significant improvements in biomass simulation performance. However, the water
productivity (WPET) improved significantly while incorporating raw MC sensor data to
calibrate SHPs. This was not seen while incorporating raw LC data, but on transforming
the data using the best calibration model, a significant improvement was seen in the
WPET compared to both the raw and default scenarios.

These experiments and modeling reveal that while the default SHPs from the literature
may result in better simulations than using raw LC capacitance sensor measurements,
calibrating the LC sensors using a higher-quality secondary standard sensor in the field
may give rise to not only better VWC simulations by the crop model, but also significant
improvements in water productivity.
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5 Irrigation scheduling using soil water
stress thresholds

5.1 Introduction

The Sustainable Development Goal 6 (UN, 2017), in particular, SDG Target 6.4, aims to:
“By 2030, substantially increase water-use efficiency across all sectors and ensure sustain-
able withdrawals and supply of freshwater to address water scarcity and substantially
reduce the number of people suffering from water scarcity.” This goal is particularly
relevant to irrigation, which is the largest global consumer of freshwater resources, and
is often cited for its profligate and inefficient water usage (Grafton et al., 2018; Y. Lu
et al., 2016; C. Perry et al., 2017). Irrigation scheduling aims to provide plants with the
appropriate quantity of water at the appropriate time, and can help in enhancing the
performance of irrigation systems by increasing crop production and conserving water
(Gu et al., 2020; Sikka et al., 2022).

Water is essential to plants since it supports photosynthesis, regulates temperature
through evaporative cooling, maintains cell turgor pressure, and transports nutrients into
and within the plant, consequently supporting plant growth (Gu et al., 2020). Both the
lack and excess of adequate (irrigation) water can be detrimental, in terms of crop water
stress at critical plant growth stages, and water losses through ponding, waterlogging,
runoff and deep percolation leading to nurient leaching and pollution, respectively
(Gu et al., 2020). Increasing the efficiency of irrigation can result from allowing plants
to use the water stored in the entire root zone, and reducing water lost through soil
evaporation and minimizing water leached beyond the root zone (Greenwood et al.,
2010).

Irrigation scheduling has been classified into four major categories, based on the
mechanism used for decision making: (i) evapotranspiration (ET) and soil water balance
based, (ii) soil moisture based, (iii) plant water status based, and (iv) simulation model
based (Gu et al., 2020). All four methods are centered around soil volumetric water
content VWC, which connects crop water requirements and irrigation management.

In the evapotranspiration-water balance based method, the main consumptive com-
ponent, i.e., Crop Evapotranspiration (mm.d-1) (ETc) is estimated, and then daily soil
water deficit is computed using the soil water balance equation. Irrigation is scheduled
when soil water depletion in the root zone exceeds the Readily Available Water (RAW).
Any further increase in the soil water depletion leads to the inhibition of ET, which then
inhibits crop growth (Greenwood et al., 2010). The Management Allowed Depletion
(MAD) fraction (i.e., p), is the fraction of the Total Available soil Water (TAW) that
RAW represents, i.e. p = RAW/TAW (Allen et al., 1998). Since the direct measurement
of ETc is costly and labor intensive (e.g., with lysimeters), ETc is generally estimated
using the two-step crop coefficient-reference evapotranspiration approach (Pereira et al.,
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5 Irrigation scheduling using soil water stress thresholds

2015). This combines the Reference Evapotranspiration (mm.d-1) (ETo), which represents
weather driven effects on water consumption, and the crop coefficient (-) (Kc), which is
a crop-specific scaling factor depending on the variation of the crop-based influences
during the cropping season (Pereira et al., 2015). Details of this approach are reported
in the FAO Irrigation and Drainage Paper No. 56 (Allen et al., 1998). This method
requires weather data, crop Kc curve, crop-specific MAD fraction, and soil properties,
and is limited by the availability of such data and the cumulative errors which can
result in a mismatch between the required and supplied irrigation water (Gu et al., 2020;
H.G. Jones, 2004).

Soil moisture based irrigation scheduling compares measured soil moisture or volu-
metric water content (VWC) to a soil moisture threshold to trigger irrigation, so that
VWC in the root zone can be maintained within ranges beneficial for crop growth, yield
and quality (Gu et al., 2020; Viani, 2016). Soil water tension or soil matric potential mea-
surements (by tensiometers) can also be used instead of soil moisture measurements to
quantify the availability of soil water for plant use, and thereby irrigation requirements
(Gu et al., 2020). Different methods have been reported in the literature to determine
irrigation timings using either soil moisture thresholds (Haley and Dukes, 2012; Zotarelli
et al., 2011), or soil water tension thresholds (Hoppula and Salo, 2007; Migliaccio et al.,
2010; R.B. Thompson et al., 2007a). These threshold values are generally optimized
for specific locations and crop species, due to their variation across soil properties and
crops, respectively (Gu et al., 2020). Thresholds can be estimated either through field
experiments (Hoppula and Salo, 2007; Migliaccio et al., 2010; J. Wang et al., 2017) or
secondary literature (Haley and Dukes, 2012). This method requires sensor systems and
verified soil moisture thresholds, but can be limited by their respective accuracies, and
the non-representativeness of soil moisture measurements due to spatio-temporal soil
moisture variability (Gu et al., 2020).

Plant based irrigation scheduling methods use indices describing plant water status to
relate crop water stress and soil water deficit (Gu et al., 2020). Such methods have been
reviewed by H.G. Jones (2004). While they do not directly indicate water requirement
(Greenwood et al., 2010), they need a conversion of plant water status to an optimum
VWC level for crop growth, which can vary across plant species, plant tissues and
phenological stages due to variable sensitivity to water deficit (Gu et al., 2020). Thermal
imaging is an extensively used approach which is based on measuring the drop in
canopy temperature as a result of evaporation via the stomata, along with evaporative
conditions in the surrounding atmosphere (H.G. Jones, 2004). This method requires a
monitoring system with sensors and validated threshold conditions, and is limited by
the requirement of relatively higher expertise of the operator, sensitivity of the measured
parameters, and the challenge to remove the noise in the measured data (Greenwood
et al., 2010; Gu et al., 2020).

Model based irrigation scheduling methods use either process-based or regression
models which use optimization algorithms developed based on the soil water balance
equation to determine irrigation timing and amount (Gu et al., 2020). This is similar to
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the evapotranspiration-water balance method since both work essentially with models,
but these models are more complex in terms of the crop growth processes and outputs
that are incorporated into the model structure. Process based models investigate crop
growth responses to different irrigation management strategies and can recommend
irrigation schedules (Gu et al., 2020). Alternatively, regression models can be used
by viewing the irrigation planning problem as optimal control problem with objective
functions which minimize the total irrigation volume during the growing season (Lopes
et al., 2016), or maximize the crop water productivity for a given total irrigation volume
(Seidel et al., 2015). This method requires a calibrated model (based on previous field
experiments), weather data and a developed code for the scheduling procedure, and can
be limited by its crop- and site-specific results which may not be easily generalizable
(Ortega Álvarez et al., 2004).

In this study, the evapotranspiration-water balance based method is used with a
modified strategy to determine the MAD fraction(s) - as defined by the FAO AquaCrop
model (Raes et al., 2009; Steduto et al., 2009; Vanuytrecht et al., 2014). Previously, FAO
Aquacrop has been used to develop optimized irrigation frequencies during sensitive
crop growth stages to develop easy-to-use charts for farmers (Geerts et al., 2010),
without recommending the corresponding irrigation amounts (Gu et al., 2020). This
study quantifies the effect of simulated irrigation schedules (i.e., timing and amount)
using the soil water stress thresholds defined by FAO AquaCrop (Raes et al., 2009;
Steduto et al., 2009), on the resultant water productivity, total irrigation, and water
savings, and compares the corresponding results with the ‘full irrigation’ strategy.

5.2 Methodology

5.2.1 Study area

The study area was the experimental plot in IIT Kanpur where the wheat cropping
experiment was conducted in 2018, as described in detail in Chapter 4. A model study
was conducted to critically analyze the difference between the FAO AquaCrop irrigation
scheduling approach (via its MAD conceptualization) and Full Irrigation (FI) conditions,
using the FAO Aquacrop model (Raes et al., 2009; Steduto et al., 2009). FI maintains
Field Capacity (FC) conditions in the root zone, a practice which stores sufficient water
for plant uptake, but can lead to excessive water losses through soil evaporation and
drainage beyond the root zone (Greenwood et al., 2010). Section 5.2.2 describes the FAO
Aquacrop’s conceptualization of MAD fractions (or p) (Raes et al., 2009; Steduto et al.,
2009).

5.2.2 Soil water depletion threshold for no stress/soil water stress coefficients
defined by FAO Aquacrop

The Total Available Water (TAW) is defined as the capacity of a soil to retain water for
plants, ranging between the Soil moisture at field capacity (m3.m-3 or %) (θFC) and the
Soil moisture at wilting point (m3.m-3 or %) (θPWP). Water is theoretically available until
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5 Irrigation scheduling using soil water stress thresholds

the PWP but binds more strongly to the soil matrix as the water content in the root zone
decreases (Allen et al., 1998).

The soil water content threshold below which soil water cannot be uptaken by roots
quickly enough to satisfy the transpiration demand (resulting in crop water stress) is
called the Readily Available Water (RAW), expressed as a fraction of the TAW:

RAW = p ∗ TAW (5.1)

where p is the the soil water depletion fraction corresponding to the management
allowed deficit (MAD). Values of p for different crops are listed in FAO56 (Allen et al.,
1998). FAO56 assumes that a single MAD factor can be used to schedule irrigations, by
keeping the soil water depletion below the RAW threshold (Greenwood et al., 2010).
However, the sensitivity of crop growth to soil water deficit can vary across different
crop growth stages (Salter and Goode, 1967). For example, wheat is more sensitive to
water stress immediately before and during flowering (Musick and K.B. Porter, 1990).
FAO Aquacrop disaggregates soil water stress coefficients into different components
which affect different crop model variables, thus resulting in multiple MAD values
corresponding to the most sensitive water stress in a particular growth stage (Raes et al.,
2009; Steduto et al., 2009; Vanuytrecht et al., 2014).

Figure 5.1: Conceptualization of individual stress response functions in FAO Aquacrop
(Raes et al., 2009). The upper threshold corresponds to the level of the stress
indicator at no stress (i.e., relative stress, Srel=0 and Ks=1) and the lower
threshold corresponds to fully stressed conditions (i.e., relative stress, Srel=1
and Ks=0).
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Table 5.1: Description of different soil water stresses defined in FAO AquaCrop, along
with their direct effect, target AquaCrop variable, upper and lower thresholds.
Table is modified from Raes et al. (2009).

Soil water stress
coefficient

Direct effect

Target
model

parame-
ter

Upper
thresh-

old
(p_up)

Lower
thresh-

old
(p_lo)

Soil water stress
coefficient for

canopy expansion (-)
(Ksexp,w)

Reduced canopy expansion;
possible positive effect on

harvest index (depending on
time and strength of stress)

CGC,
HI

0.2 0.65

Soil water stress
coefficient for
pollination (-)

(Kspol,w)

Affects pollination; possible
negative effect on harvest

index (depending on
duration and strength of

stress)

HIo 0.8 0.1

Soil water stress
coefficient for

canopy senescence
(-) (Kssen)

Reduced green canopy cover CC 0.7 1

Soil water stress
coefficient for

stomatal closure (-)
(Kssto)

Reduced crop transpiration
and root zone expansion;

possible negative effect on
harvest index (depending on

timing and strength of
stress)

Trx, HI,
dZ

0.65 1

CC - Canopy Cover; CGC - Canopy Growth Coefficient; dZ - root zone growth rate

HIo - initial Harvest index; HI - Harvest Index; Trx - potential transpiration

FAO Aquacrop defines four stresses overall - soil water stress, air temperature stress,
soil fertility stress and soil salinity stress (Raes et al., 2009; Steduto et al., 2009). Bruck-
maier (2021) presents a detailed overview on the description of the soil water stresses
in FAO AquaCrop; each stress is computed using the approach depicted in Figure
5.1 (Raes et al., 2009). Out of the four stresses, this study focused on (preventing)
soil water stresses. In FAO AquaCrop, soil water stress has impacts on canopy cover
development, root zone expansion rate, stomatal closure and consequently a reduction
in crop transpiration rate. It can also alter harvest index and, if severe, can lead to failure
in pollination which can trigger early canopy senescence.

FAO AquaCrop’s soil water stresses are differentiated into the following stresses which
are defined in Table 5.1, along with their respective effects, target model parameter and
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upper and lower thresholds. They include Soil water stress coefficient for water logging
(aeration stress) (-) (Ksaer), Soil water stress coefficient for canopy expansion (-) (Ksexp,w),
Soil water stress coefficient for pollination (-) (Kspol,w), Soil water stress coefficient for
canopy senescence (-) (Kssen) and Soil water stress coefficient for stomatal closure (-)
(Kssto). The upper threshold (pup) is the higher VWC (lower soil water depletion) where
the respective water stress coefficient starts to fall below 1, and the lower threshold (plo)
is the lower VWC at which the water stress coefficient reduces to zero.

5.2.3 Irrigation scheduling in FAO AquaCrop

With an understanding of the four different FAO AquaCrop water stresses (Ksexp,w,
Kspol,w, Kssen and Kssto) and their pup values across the four crop growth stages (initial,
crop development, mid-season and late-season), a daily time-series of the overall critical
pup values was developed, to avoid all water stresses across the entire cropping season.
This is depicted in Figure 5.2.

Figure 5.2 (a) depicts the same stress response function to changing soil water deple-
tion (as presented in Figure 5.1). The representational image of the crop and root zone
in Figure 5.2 (b) illustrates the same response function in terms of root zone depths
with indicative root zone depletion values shown on the left. The non-stressed region
(between root zone depletion values of zero and pup ∗ TAW) and fully stressed region
(between depletion values of plo ∗ TAW and TAW) are highlighted with blue and yellow
shading respectively.

Figure 5.2 (c) presents a time series of the four different water stresses across the
100-day cropping season with their active operational periods (out of the crop growth
stages printed on the top) with their respective pup and plo thresholds.

The canopy expansion stress (Ksexp,w) has the critical pup value (0.2, from Table 5.1)
during the initial and crop development stage as vegetative growth is driven by canopy
expansion. Since the end of the crop development stage coincides with the achievement
of maximum canopy cover (or effective full cover, Allen et al., 1998), the remainder of
the Ksexp,w period is shaded in a lighter green color, and is not critical to avoid stress. In
the mid- and late-season stages, stomatal closure is the critical water stress (Kssto) since
the primarily reproductive growth is limited by transpiration which drives biomass
accumulation via AquaCrop’s water productivity parameter (Steduto et al., 2009). The
corresponding critical pup value is 0.65.

In Figure 5.2 (c), the pup,all threshold, which is depicted with the thicker black line, is
the upper soil water depletion threshold (or MAD fraction) which avoids all four soil
water stresses. Subsequently, the critical pup values not to be exceeded to prevent water
stress are 0.2, 0.2, 0.65 and 0.65 during the initial, crop development, mid-season and
late-season stages, respectively.
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5.2 Methodology

Figure 5.2: (a) General stress response function for individual water stresses in FAO
AquaCrop. (b) Representational image of root zone with soil water depths
corresponding to the stress response function. (c) Time series of individual
stress response functions. The upper threshold corresponds to the level of
the stress indicator at no stress (i.e., relative stress, Srel=0 and Ks=1) and the
lower threshold corresponds to fully stressed conditions (i.e., relative stress,
Srel=1 and Ks=0). The overall level of pup,all to avoid all stresses is given as a
thick black line in the time series. Figures (a) and (b) are modified from Raes
et al. (2009).
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5 Irrigation scheduling using soil water stress thresholds

AquaCrop-OS provides the option of scheduling irrigation with soil moisture thresh-
olds (T. Foster et al., 2017; Raes, 2017). The soil moisture values corresponding to these
soil water depletion thresholds were inserted as thresholds to trigger irrigation while
avoiding any water stress. In the FI scenario, AquaCrop-OS was programmed in a
manner that irrigation was triggered every time the soil moisture went below θFC. In
both cases, irrigation was applied to bring the VWC to θFC.

These simulation experiments were conducted in the five validation plots calibrated
with the best performing model parameters, the MCraw paramaters, as defined in
Chapter 4. The results compare model outputs such as ET water productivity (WPET),
total irrigation (mm), and other explanatory soil water balance components to analyze
the difference between FI and FAO AquaCrop based stress-avoiding irrigation strategies.

5.3 Results and Discussion

The FI and FAO Aquacrop irrigation strategies were simulated on the five validation
plots referred to in Chapter 4. A comparison of the relevant AquaCrop outputs over the
entire season is given in Table 5.2.

Table 5.2: Comparison between the seasonal values (mean ± standard error) of relevant
variables for Full Irrigation and FAO AquaCrop irrigation strategies.

Relevant variables Full Irrigation FAO AquaCrop
Rainfall (mm) 50.4 50.4
Total irrigation (mm) 537.28 ± 0.17 426.06 ± 5.02
Total soil evaporation, Es (mm) 100.33 ± 1.51 86.95 ± 1.68
Total plant transpiration, Tr (mm) 250.53 ± 1.46 250.53 ± 1.46
Total evapotranspiration, ET (mm) 350.86 ± 2.1 337.48 ± 2.23
Total deep percolation, Deep Percolation (DP) (mm) 13.14 ± 0.21 0
Final biomass (kg/m2) 1.09 ± 0.06 1.09 ± 0.06
Potential biomass (kg/m2) 1.09 ± 0.07 1.09 ± 0.07
Yield (kg/m2) 0.51 ± 0.03 0.51 ± 0.03
ET Water Productivity, WPET (kg/m3) 1.44 ± 0.01 1.50 ± 0.01

Across both strategies, average canopy growth and root zone development were
identical, and canopy growth was not limited and was always equal to the potential
canopy growth (in all the plots). The average total transpiration over the entire season
was also identical across both the strategies (250.53 ± 1.46 mm) Moreover, the average
biomass accumulated with both strategies were equal to each other (10.85 kg/m2) and
were equal to the respective potential biomass values (also 10.85 kg/m2). Principally,
the yield values generated by both strategies were 5.13 ± 0.03 t/ha (or 0.513 ± 0.003
kg/m2). These results imply that both the strategies didn’t result in any stresses which
may have limited any of these variables from obtaining their potential growth.
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5.3 Results and Discussion

Figure 5.3: Key water balance components of the Full (left) and FAO AquaCrop based
irrigation (right) strategies for the five validation plots (mentioned at the top
left of each panel). Rainfall and irrigation are plotted as inverted bar graphs,
and soil evaporation (Es) and root zone soil moisture (Root zone soil water
content (mm) (wRZ)) are illustrated with line graphs. Total applied water
(rainfall and irrigation), Watertotal , is printed on the bottom left of each panel.
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The differences between the strategies were seen in the Root zone soil water content
(mm) (wRZ), soil evaporation (Es), which along with the different soil water depletion
thresholds, led to the differences in irrigation schedules and eventually total irrigation.
A time series of these variables across all plots and both the strategies is given in Figure
5.3.

The total irrigation applied in the FI strategy was 537.28 ± 0.17 mm, as opposed to
426.06 ± 5.02 mm applied in the FAO AquaCrop strategy, and the difference between
the two was statistically significant. The FI irrigations were triggered on 91 days during
the 100 day season, with an average amount of 5.42 ± 0.26 mm. The only days when
irrigation wasn’t triggered was on the day of sowing (since the initial water content
was set to θFC), and the days when there was rainfall which was greater than 3 mm.
On 96 DAS (days after sowing), there was a rainfall event of 31.4 mm, which led to
no irrigation till the end of the season. Comparatively, the FAO AquaCrop strategy
simulated 7-9 irrigations, with higher number of irrigations in plots with lower TAW.
The average irrigation amounts increased from 12.7-17.8 mm (within the first 10 DAS) to
a maximum of 144.29 mm (averaged across the plots) for the last irrigation application.
The average irrigation amount for the non-terminal irrigation applications was 45.02
mm (across all plots).

The difference between the irrigation application amounts could be explained by
the differences in root zone soil water storage (wRZ), soil evaporation (Es) and Deep
Percolation (DP). The higher irrigation application led to a higher overall Es in the FI
strategy (100.33 ± 1.51 mm) compared to the FAO AquaCrop strategy (86.95 ± 1.68
mm). Additionally, there was 13.14 ± 0.21 mm of deep percolation that occurred in
the FI as opposed to no DP in the FAO AquaCrop strategy. The wRZ at the end of the
cropping season was significantly higher for FI (272.51 ± 2.05 mm) compared to FAO
AquaCrop (232.34 ± 2.31 mm). Most of this difference in wRZ was accumulated during
the mid-season stage, after 53 DAS. This is because FAO AquaCrop’s critical soil water
depletion fraction (i.e., pup) changed from 0.20 to 0.65, allowing the root zone to become
more depleted without resulting in any stresses. This also led to the relatively higher
irrigation application amount during the last irrigation which occurred just following
the stage change from mid-season to late-season stage.

Finally, despite the same yield obtained across both strategies, the ET water productiv-
ity (WPET) was significantly higher for the FAO AquaCrop strategy (1.5 ± 0.01 kg/m3)
compared to the FI strategy (1.44 ± 0.01 kg/m3), due to the significant differences in
the Es. These results imply that changing irrigation strategy from full irrigation to one
where soil water depletion thresholds are not crossed can lead to significant irrigation
water savings and increase in WPET without incurring losses in yield, due to reduction
in soil water storage in the root zone, soil evaporation and deep percolation while
satisfying the crop transpiration demand.
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5.4 Conclusions

5.3.1 Further discussion

This study focused on comparing the impact of reducing irrigation input to avoid water
stresses as conceptualized by FAO AquaCrop with full irrigation conditions. Hence,
deficit irrigation as a scheduling strategy was not within the scope of the study. Deficit
irrigation is an optimization strategy where irrigation is applied to water-sensitive
growth stages of a crop to maximize WPET rather than avoiding reductions in yields
(H. Zhang and Oweis, 1999). However, this is also dependent on the farmer’s strategy
and constraints, which can vary based on a combination of factors like socio-economic
condition, farm size, and availability of resources. A smallholder farmer may want to
maximize yield if there is no dearth of irrigation water supply, and may only resort to
maximizing WPET in case of water limiting conditions. Similarly, larger commercial
farms with higher input investment (including water) may need to optimize resource
efficiency to maintain profit margins. Nonetheless, the FAO AquaCrop irrigation strategy
was able to save 111.22 mm of irrigation water on average, which constitutes around
1.5 irrigations (assuming an average irrigation application amount of 75 mm, Prihar
et al., 1978) without incurring any biomass or yield losses. Also, maintaining conditions
of field capacity is cumbersome as there were 91 days of irrigation application in
the FI strategy as opposed to 7-9 days in the FAO AquaCrop strategy. This can be
especially labor intensive for smallholder farms which may not have mechanization to
automate irrigation management, and need the supervision of farmers during irrigation
application, as well as access to reliable water sources and withdrawal techniques (diesel
or electrical irrigation pumps etc.). Another limitation of this study is that the results
were obtained using simulation modeling of experimentally calibrated field plots. Hence
they can be generalized further only after validation through appropriately designed
experiments combining both simulation modeling and field experimental components.
Further studies on irrigation scheduling can investigate soil moisture management based
on an improved understanding of the effects of soil moisture on crop growth, either by
integrating different irrigation scheduling methods, or developing new methods using
intelligent algorithms (Gu et al., 2020).

5.4 Conclusions

A simulation study was conducted using the FAO AquaCrop model, to compare two
different irrigation scheduling strategies - ‘full irrigation’ which implies constant condi-
tions of field capacity, and the FAO AquaCrop strategy, which avoids the generation
of soil water stresses by not crossing critical soil water stress thresholds as defined
by the model. The study was conducted for the spring wheat crop during the winter
cropping season (2018) in Kanpur, India, based on five plots previously calibrated using
the AquaCrop model. There were no changes across the irrigation strategies on the
final model output variables like biomass, yield, and the intermediate model outputs
like canopy cover, root zone development and total plant transpiration for the growing
season, which implied identical (non-stressed) crop development across both strategies.
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5 Irrigation scheduling using soil water stress thresholds

There was a significant reduction in total applied irrigation of 111.22 mm on average
moving from the FI to FAO AquaCrop irrigation strategy, corresponding to the average
value of 1.5 irrigation application amounts of 75 mm each. Also, ET water productivity
increased significantly from the FI to FAO AquaCrop strategy, due to a reduction in
root zone soil water storage, soil evaporation and deep percolation. Also, the number of
irrigation applications was about 10 times higher for FI strategy, increasing input costs
particularly in the context of smallholdings. The results highlight the utility of irrigation
scheduling using the FAO AquaCrop strategy to avoid water stresses, to reduce water
input without reducing yields, hence increasing water productivity.

100



6 Discussion, conclusions and outlook

The importance of improving water use efficiency and water productivity, particularly
in intensive and subsistence agriculture, to ensure food security without compromising
either crop productivity or environmental sustainability, cannot be overstated. One
strategy to address this problem is by first diagnosing the limitations in farm per-
formance using a data-based, plot-scale approach, and then developing cost-effective
tools which combine soil water measurements and parsimonious crop modeling to
recommend techniques to improve irrigation management. This study employed a
four step approach to address the above problem (see also Chapter 1): (i) developing a
data-based approach for plot-scale farm performance diagnostics, (ii) calibrating and
testing low-cost soil moisture sensors in the laboratory, (iii) combining calibrated soil
moisture sensor data with parsimonious crop modeling, and (iv) scheduling irrigation
to avoid stresses and improve water savings and water productivity. For each of these
topics, research questions were proposed and addressed in a series of methodologies
(see Chapters 2 to 5). In this chapter, the results of each of these studies are critically
discussed in Section 6.1, major conclusions drawn from each study are summarized in
Section 6.2, and an outlook on possible research which could be attempted in the future
is described in Section 6.3. All of these descriptions generally pertain to spring wheat
cultivation in the intensively managed rural landscape of Kanpur, India.

6.1 Discussion

Agricultural extension providers usually administer generic advisories which are not
customized at a plot-scale. Though there is a paradigm shift towards data-based
advisories, they are still rather generic. Cost effective advisories that are data-based and
farm-specific can potentially improve farmer-advisor relations and extension services in a
disruptive manner. The data-based agricultural advisory diagnostics approach proposed
in Chapter 2 focused on two factors which have been identified as most critical to yield
gaps, nutrients and water, and incorporated both objective and subjective elements,
potentially resulting in a robust solution that can support advisory development. Its
objective elements included the laboratory testing of different soil (nutrient) parameters.
Subjectivity was introduced both from the perspective of the farmer, via surveys seeking
data on self-reported yields and number of irrigation applications, and the advisor, via
heuristic expert knowledge regarding which soil parameters (relevant to the region
in question) should be included in the analysis and the relative importances of each
parameter pair (as an input to the Analytic Hierarchy Process). Naturally, this diagnostics
approach has financial and logistical implications related to regular soil sampling
and testing, data management, and skill development of the extension staff, which
can become economically impractical for NGOs or farmer organizations to sustain
independently. However, the current focus of the Government of India on improving
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overall soil quality under various schemes, through initiatives such as regular soil
testing and distribution of soil health cards (Kaur et al., 2020), may provide a favorable
environment for such a tool to be adapted and applied extensively. Though the proposed
approach was tested on farm data, and classified and visualized farm performance, there
were no follow-up studies conducted with either farmers or advisors to test whether
these diagnostics could quantitatively improve farm performance. This would involve
more intensive and concerted testing with different stakeholders. Also, the demand from
citizens to be engaged as stakeholders in planning related to decisions that impact them
and their communities, has recently increased (Voinov et al., 2016). This reinforces the
importance of stakeholder interaction as a prerequisite to ‘understand, negotiate, and
mediate the variable of interest’ (Srinivasan et al., 2017). While this study was motivated
by some of the authors’ field surveys in same study area in Kanpur for various research
projects (Adla et al., 2017; Gupta et al., 2017; Gupta et al., 2019; Hossain et al., 2020b),
there was no focused effort to carry out stakeholder interaction directly regarding this
study.

This study consequently concentrated on soil moisture or volumetric water content
(VWC) as a key parameter to the overall problem statement of agricultural water use
efficiency and water productivity. Supplemental irrigation facilities have been identified
as a major challenge for smallholder farmers who face severe agricultural distress,
and sensor based systems for VWC monitoring for irrigation management and other
applications can be one way to address this challenge, provided the developed solutions
are cost-effective. Soil moisture sensors determine VWC indirectly by measuring some
soil property which is a proxy of the moisture content (such as resistance, interaction
with neutrons, or dielectric constant ϵr), and sensors may also exhibit variability from
one sensor to another, and across different soils. Hence, it is essential to calibrate soil
moisture sensors and test them for different environmental conditions before applying
them on the field. In Chapter 3, two Low-cost (LC) and two Very low-cost (VLC) soil
moisture sensors were calibrated and tested in laboratory conditions to characterize their
applicability for low-cost irrigation management. The LC capacitance based sensors
were the Spectrum SM100 sensor (costing about United States Dollar (USD) 90), and
the Spectrum SMEC300 sensor which had additional temperature and salinity sensing
ability (costing about USD 220). The two VLC resistive sensors were the Electronicfans
Soil Hygrometer Detection Module Soil Moisture sensor YL100 (about USD 4), and
the KitsGuru Generic Soil Moisture Sensor Module YL69 (about USD 2). The sensors
were calibrated with repacked soils to develop soil-specific calibration equations for
four soils, to determine the accuracy, precision and sensor-to-sensor-variability, and to
compare the performance of the equations developed in-house with those provided
by the manufacturer (only for LC sensors). Testing in the laboratory was conducted
with the objectives to understand the ability of capacitance based sensors to estimate
the ϵr values of various standard fluids, and to analyze how variations in temperature
and electrical conductivity (EC) modified the sensors’ performance. Piece-wise linear
calibration functions were developed for all the sensors.
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6.1 Discussion

Repacked soils were used for many of the experiments (in Chapter 3). However,
different studies report contrasting claims about the reliability of repacked soils for soil
moisture sensor calibration. Studies use both repacked (Nagahage et al., 2019; Placidi
et al., 2020) and undisturbed (Bello et al., 2019a) soils for laboratory calibration. While
studies have recommended calibration on-site or on undisturbed soils (Feng and Sui,
2020) because repacking alters natural soil structure (Czarnomski et al., 2005), repacked
soils have also been recommended for better precision (Starr and Paltineanu, 2002).
Notwithstanding this academic debate, many manufacturers perform calibration in the
laboratory with sieved, uniformly packed, homogeneous soils (particularly some sands
and loams), with regulated environmental conditions (Feng and Sui, 2020). Although
soil moisture is also sensitive to factors such as bulk density and gap between the sensor
body and soil (Kargas and K.X. Soulis, 2012; Matula et al., 2016a), packing density could
not be introduced as an experimental variable due to resource constraints. Another
contentious issue regarding soil moisture sensor calibration is whether to use the dry-
down or the wet-up curve for calibration. Dry-down curves may be more representative
to field conditions as well as superior in terms of calibration accuracy (Burns et al., 2014).
However, it is claimed that wet-up curves (with either upward or downward infiltration)
are faster to calibrate (taking < 1 day) than dry-down curves which can sometimes
take even more than 1-2 weeks to calibrate (Burns et al., 2014). In Chapter 3, wet-up
curves were calibrated following the methodology suggested by Matula et al. (2016a) to
calibrate and test multiple LC and VLC sensors manually with limited resources.

Several methods have been developed which combine data from ground sensor
networks with agro-hydrological modeling to improve irrigation water management.
For such methods to be effective, it is necessary to obtain accurate data as well as
understand biophysical processes of crop response to water at different crop growth
stages. Water-driven crop models, which simulate crop growth and production as a
response to the soil-water environment, need to be parsimonious in terms of their data
and parameter requirements, to be applicable in data scarce regions like the Majority
World. Additionally, soil moisture sensors being combined with such models need to
be cost-effective, maintainable, and site-calibrated to be effective. Chapter 4 combined
the previously investigated LC SM100 soil moisture sensor with the parsimonious
AquaCrop model developed by the Food and Agricultural Organization (FAO) of the
United Nations to test the impact of different laboratory and field calibration techniques
on crop model performance in the field. The soil hydraulic parameters (SHPs) of the FAO
AquaCrop model were calibrated under different calibration schemes to understand the
effect of using raw soil moisture sensor data, and the additional effect of calibrating the
capacitance based LC sensor, on model outputs.

The study undertaken in Chapter 4 had the following implicit assumptions. The field
soil moisture measurements were assumed to capture the plot-scale spatio-temporal soil
moisture variability. Measurements were carried out using two sensors (one each of LC
and MC) per plot (of size 3 m × 3 m), placed at the center of the plot at a depth of 5
cm from the soil surface with a measurement frequency of 15 minutes. While this was
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reasonable in capturing the temporal variation after aggregation to daily values (since
crop model computations were conducted at a daily time step), there was no explicit
incorporation of the spatial variability within the plot. Soil hydraulic properties may
exhibit considerable spatial variability, also within parameters which may be assumed
to be homogeneous (K.R. Bell et al., 1980). The spatial variability of soil moisture can
have characteristic length scales from a few centimeters to several kilometers (Vereecken
et al., 2014). Plot-scale spatial variability of soil moisture has been analyzed by previous
studies (K.R. Bell et al., 1980). Quantitative methods such as geostatistics, wavelet and
spectral analysis, multi-fractal analysis, fuzzy set analysis and state-space analysis have
been used to understand the spatio-temporal patterns and dynamics of soil properties
across a range of scales (B.C. Si, 2008). A study was conducted using the soil moisture
sensor data during the 2018 cropping season to comparatively analyze the impact of
varying spatial resolution of soil moisture data on plot scale soil moisture variability
using deterministic and geostatistical soil moisture interpolation techniques (Ghimire,
2020). Simulating crop heterogeneity accurately ideally requires incorporating the spatial
variability in soil moisture as well (J.T. Ritchie, 1981; V.O. Sadras et al., 2016; Verhagen
and Bouma, 1997). However, FAO AquaCrop carries out daily computations at the point
scale, and while this is accepted as a limitation of current crop models, it has received
limited attention (Ahuja et al., 2014; J.W. Jones et al., 2017). Hence, spatio-temporal
variability could not be incorporated into Chapters 4 or 5, both of which used FAO
AquaCrop for their model simulations. The optimum placement and number of soil
moisture sensors is also a factor to consider to improve irrigation scheduling (including
automation, performance and cost-effectiveness) (Pramanik et al., 2022).

The FAO AquaCrop model is calibrated on a trial-and-error basis (Liang et al., 2017;
H. Ma et al., 2020; Raes, 2017; Steduto et al., 2012). This technique (as opposed to more
systematic methods) can challenge the replication of the model calibration, preclude the
achievement of the global optima of the objective function (Wallach et al., 2001), and
can make the model calibration process cumbersome for complex systems or multiple
measured locations (Tolson and Shoemaker, 2007). Some tools have been developed for
automating and systematizing the process of sensitivity analysis and model calibration
- such as the propeitary SWAT-CUP software for the SWAT (Soil & Water Assessment
Tool) hydrological model (Abbaspour, 2015), or the Dockerized Job Scheduler for the
National Water Model of the USA (Raney et al., 2022). Such tools are intended to ‘lower
the model usage entry barrier’ by automating simulation runs and model calibration
(Raney et al., 2022). While some studies have investigated sensitivity analysis and model
calibration in FAO AquaCrop (Y. Lu et al., 2021a; 2022; Silvestro et al., 2017; Xing et al.,
2017), a comprehensive yet user-friendly sensitivity analysis and calibration tool is not
yet available for the model, which limits its functionality and replicability. This limitation
has been addressed to an extent by the recently developed Automated AquaCrop OS
tool (Bruckmaier, 2022b) which is based on the coupling of AquaCrop-OS (T. Foster
et al., 2017) and the Sensitivity Analysis For Everybody (SAFE) toolbox (Pianosi et al.,
2015). However, this effort requires further investigation and development.
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6.1 Discussion

Model calibration resulting in single-valued parameter sets (i.e., each parameter in
the calibrated model parameter has one ‘effective ’ value) may not account for model
equifinality, i.e., the possibility of multiple parameter sets resulting in the same model
output (Abbaspour, 2015; Beven and Freer, 2001; Khatami et al., 2019). Using such
single-valued optimal parameter sets for model application may limit the effectiveness
of any subsequent decision making (He et al., 2009; Sheng et al., 2019). Hence, there
is a need to quantify the uncertainty associated with model structure, parameters,
and input data (Moges et al., 2020). Several approaches have been developed for
parameter estimation and uncertainty analysis, including the Sequential Uncertainty
Fitting (SUFI-2, Abbaspour et al., 2004; 2015), Parameter Solution (ParaSol), and Bayesian
methods (Beven and Binley, 1992; Kuczera and Parent, 1998; D. Lu et al., 2017; McMillan
and M. Clark, 2009; Tao et al., 2009; Vrugt et al., 2009). While some research has
focused on analyzing the uncertainty in crop modeling systems (He et al., 2009; Sheng
et al., 2019; Yan et al., 2020), an extensive study to quantify uncertainty for FAO
AquaCrop is yet to be reported. Some progress was made on sensitivity analysis and
understanding uncertainty in AquaCrop (Bruckmaier, 2022a), but there is still a need for
more comprehensive studies which quantify uncertainty and address the equifinality
problem within the AquaCrop model.

Crop water requirement can also be computed empirically using indirect estimation
techniques such as the two-step crop-coefficient-reference-evapotranspiration (Kc-ETo)
approach (Pereira et al., 2015), described in the FAO56 paper (Allen et al., 1998). The
ETo represents the weather driven effects on water consumption, and the crop coefficient
(Kc) is a scaling factor specific to the crop, which represents the variation of the crop’s
influence on crop water requirement across the crop growth stages (Pereira et al., 2015).
Subsequently, irrigation can be scheduled to either replenish the crop water requirement
(accounting for precipitation), or triggered when the depletion equals readily available
water (RAW), both of which avoid any soil water stresses (Allen et al., 1998). This
approach was also attempted within an unpublished study developed during the study
period. The study utilized microlysimeter based estimates of soil evaporation (Es) and
plant transpiration (Tr) (A. Kumar, 2019) and the two-step Kc-ETo method to develop
empirical crop coefficients for the spring wheat variety (Halna) used in this study.
However, since the FAO AquaCrop model disaggregates soil water stress coefficients
into different components, it was selected to simulate irrigation scheduling in Chapter 5.

Applications of crop model simulation include yield forecasting, adaptation to and
impact assessment of climate change, crop breeding, yield prediction, support to policy
makers, and strategic management decision making (Ewert et al., 2015; Rosenzweig et al.,
2013; R. Rötter et al., 2015). Chapter 5 focused on irrigation scheduling with the objective
to prevent water related stresses from occurring during the cropping season. The study
compared two different irrigation scheduling strategies, ‘full irrigation’ (FI) and the
FAO AquaCrop strategy which avoided all water stresses (related to canopy expansion
Ksexp,w, canopy senescence Kssen, stomatal closure Kssto and pollination Kspol,w).

In water-limited regions, agriculture should optimize net income (or yield) per unit
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water instead of net income (or yield) per unit land (Zhi et al., 2022). Hence, deficit
irrigation, which aims at stabilizing yields and maximizing water productivity (H.
Zhang and Oweis, 1999), can be used as an irrigation scheduling strategy instead
of scheduling supplemental irrigation while avoiding stresses as proposed by Allen
et al. (1998) and FAO AquaCrop (Raes et al., 2009). Deficit irrigation applies water
below ET requirements (Fereres and Soriano, 2007), and optimizes irrigation scheduling
within the drought-sensitive crop growth stages, with less or no irrigation applied
to drought-tolerant, vegetative or late ripening phenological stages (Geerts and Raes,
2009). There have been numerous experimental studies which have explored the effect
of deficit irrigation on wheat cropping systems (Kang et al., 2002; Tari, 2016; Thapa
et al., 2019), some of which proposed soil moisture thresholds resulting in acceptable
levels of soil water deficit (Benabdelouahab et al., 2016; S.C. Ma et al., 2016; Panda
et al., 2003). Further, optimization algorithms have also been used to simulate irrigation
strategies under deficit irrigation, and consequently develop tools such as the Deficit
Irrigation Toolbox (Schütze and Mialyk, 2019; Seidel et al., 2015), which is also coupled
with AquaCrop-OS. It has been applied to simulate different irrigation strategies under
hydroclimatic variability (Gadédjisso-Tossou et al., 2018; Orduña Alegría et al., 2019),
or extend the scope to study economic effects of such irrigation strategies on crop
production (Gadedjisso-Tossou et al., 2019). However, the study in Chapter 5 aimed at
quantifying the water savings for an irrigation strategy which avoided water stresses,
which was also found to be significant. Also, subsistence farmers may still prioritize
yield rather than water productivity, which is behaviourally similar to the inclination of
farmers to keep practising rice-wheat cropping system because it provides more stable
incomes despite stagnating productivity (George, 2014).

6.2 Conclusions
The main conclusions from the thesis are summarized in Table 6.1, and outlined below:

• Data-based, farm-scale agricultural performance diagnostics can supplement
pre-existing, demand-based, generic advisory programs, particularly in the
Indian context: a methodology was proposed to balance the trade-off between
data-based plot-scale farm performance diagnostics and upscaling the applicability
of such a tool by contextualization its outputs to a region. The diagnostics ap-
proach first quantified farm performance based on soil and water indicators, i.e., a
localized Soil Quality Index (SQI) and Water Use Efficiency (WUE), respectively. It
subsequently classified farms into different performance categories, and visualized
this classification on a two-dimensional plane (of performance). A user-friendly,
freely available, open-source tool, the Farm-Agricultural-Diagnostics-toolbox, was
developed using Microsoft Excel-VBA, which can automate this process. Field
testing of this tool in Kanpur classified 24% farms as nutrient-limited, 34% farms
as water-limited, 27% farms as having nutrient and water co-limitations, and the
remaining 15% farms as satisfactory, based on a localized performance target.
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Further, farms were divided into “Best Practice Farms" which could potentially be
model farms, “Quick Improvement Farms" which had low WUE despite having
high SQI performance, and “Critical Farms" which perfomed poorly in terms
of both nutrient and water performances. Additionally, a GIS database was de-
veloped to provide visual support for these diagnostics, to potentially lead to
more efficiently administered advisories. This conceptualization could assist not
only agricultural advisors, but also academia, government and non-government
agencies working in agriculture to harness their respective strengths to suggest
customized advisories and strategically establish connections between different
types of farmers to encourage co-learning by exchanging knowledge, experiences,
and best practices in agricultural management.

• Laboratory calibration and testing of low-cost capacitance based sensors can
lead to improved, robust performance: The LC capacitance sensors (SM100 and
SMEC300) had acceptable performance in terms of accuracy and precision, as well
as sensitivity to temperature and salinity, establishing them as prospective sensors
to be investigated for field experiments associated with irrigation management. In
particular, the Spectrum SM100 sensor was recognized as a robust, cost effective
sensor which could be calibrated and tested for field application. However, VLC
resistive sensors (YL69 and YL100) were deemed unsuitable for irrigation manage-
ment due to either their poor performance in high EC conditions or their lower
than acceptable accuracy (threshold of acceptability was 3% VWC, K. Soulis et al.,
2015) for field application. The cost of the sensor is generally proportional to the
precision performance of the sensor, i.e., higher cost implied more precise sensing.

• Field calibration results in superior soil moisture sensor calibration for irriga-
tion management, followed by laboratory calibration using dry-down curve
(provided that overfitting is avoided in both cases): A set of best practices of
calibrating capacitance based LC soil moisture sensors was developed using two
calibration approaches: calibrating against gravimetric water content in laboratory
conditions using wet-up curve, and calibrating against a TDR-FDR medium-cost
(MC) soil moisture sensor (UGT SMT100) in the field. Sensor calibration was
carried out using various least squares regression methods (like piece-wise linear
regression, quadratic, cubic, power law) as well as machine learning algorithms
(like linear regression, support vector regression, random forest regression and
multilayer perceptron neural networks). Field calibration was observed to be
more robust than calibration in the laboratory. Calibration of the dry-down curve
was found to be more accurate, and even calibrations using the dry-down curve
in the laboratory were robust enough to perform similarly well as the superior
field calibrations. Overfitting during calibration led to loss in robustness on the
field, and hence, should be avoided. The best calibration model that was selected
for crop model calibration was the field calibrated piece-wise linear regression
function (PWLF-field).
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• FAO AquaCrop soil hydraulic parameters (SHPs) should ideally be calibrated
using calibrated LC soil moisture data, or directly using default values from
the literature. Using raw LC soil moisture data is not effective: VWC simula-
tion generally improved significantly on incorporating the raw LC sensor data
in calibrating SHPs compared to deriving them from the literature, which im-
proved further on incorporating calibrated LC sensor data (nearly to the level
of the medium-cost SMT100 sensor). There were non-significant improvements
in biomass simulation performance in all cases. However, the water productiv-
ity (WPET) improved significantly by incorporating calibrated LC sensor data to
calibrate SHPs, which was not observed while calibrating the crop model with
the raw LC sensor data. These experiments and modeling revealed that while
the default SHPs from the literature may result in better simulations than using
raw LC capacitance sensor measurements, calibrating the LC sensors using a
higher-quality secondary standard sensor in the field may give rise to not only
better VWC simulations by the crop model, but also significant improvements in
water productivity.

• Irrigation scheduling with the FAO AquaCrop strategy to avoid critical water
stress coefficients across the crop growth season can lead to significant increase
in water productivity and reduction in total irrigation amount and number of
events, relative to full irrigation (FI) conditions: The FAO AquaCrop strategy
simulated significantly lower total irrigation, significantly lower evaporation, root
zone soil water storage, and deep percolation, which led to a significant increase
in WPET. The irrigation schedule calculated for the FI strategy had a higher total
irrigation input than the FAO AquaCrop by an amount corresponding to 1.5 irriga-
tion applications or 111.22 mm (assuming an irrigation application depth of about
75 mm), and had 10 times more irrigation events (during one cropping season)
respectively. The results also indicated that there were no differences between the
FI and FAO AquaCrop strategy in any of the variables directly contributing to crop
yield, such as canopy cover development, rootzone development, transpiration,
which indicated the absence of any water stresses in both the strategies (since FI
by definition is fully non-stressed).

6.3 Outlook
Acknowledging the demand from citizens to be engaged in decision making which
impacts their communities (Srinivasan et al., 2017; Voinov et al., 2016), stakeholder
interaction is a prerequisite to any studies aiming at supporting advisory development.
Future studies to support advisory development could include stakeholder interaction
with farmers (or farmer groups) as well as agricultural advisors through interactive
and regular workshops. Follow-up studies could be conducted over multiple crop-
ping seasons to verify the impact of using data-driven approaches on actual adoption
of the advisories by the farmers. Also, the strengths of academia, government and
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Table 6.1: Summary of the conclusions from the thesis.

Conclusion No. Conclusion Chapter No. and publication

1 Data-based, farm-scale agricultural performance Chapter 2, Adla et al. 2022.
diagnostics can supplement pre-existing, demand-based, Frontiers in Water.

generic advisory programs DOI: 10.3389/frwa.2021.798241

2 Laboratory calibration and testing of low-cost capacitance Chapter 3, Adla et al. 2020.
based sensors can lead to improved, robust performance Sensors.

DOI: 10.3390/s20020363

3 Field calibration results in the best calibration Chapter 4, Adla et al. 2022.
performance, followed by laboratory calibration using Journal of Hydrology

dry-down curve (it is important to avoid overfitting in both) (under review).

4 If low-cost soil moisture sensors are being used to Chapter 4,
calibrate FAO AquaCrop model, they should necessarily be Adla et al. 2022.

calibrated. If calibration is not possible, it is better to use Journal of Hydrology
default values of soil hydraulic parameters to calibrate (under review).

FAO AquaCrop

5 Irrigation scheduling with the FAO AquaCrop strategy to Chapter 5
avoid critical water stress coefficients across the crop

growth season can lead to significant increase in water
productivity and reduction in total irrigation amount and

number of events, relative to full irrigation conditions

non-governmental agencies, i.e., scientific research and data management, soil test-
ing capacity, and direct stakeholder engagement, respectively, could be synergistically
combined to maximize the utility of such approaches.

Since soil moisture is sensitive to bulk density, gap between the sensor body and soil
(i.e., packing density), and sensor calibration results depend on whether dry-down or
wet-up curves are used, future studies on soil moisture sensor testing could carefully
investigate and critically analyze the marginal effects of each of these variables on sensor
performance. The performance of soil moisture sensors could be determined both within
the laboratory and in the field, with both dry-down and wet-up curves, with repacked
and undisturbed soils, along with other experiments already conducted in this study.

Crop modeling studies in the future using the parsimonious FAO AquaCrop model
should ideally incorporate more systematic approaches for sensitivity analysis, and
an addressal of model equifinality via the quantification of the associated uncertainty
arising from model structure, input data, and more importantly, model parameters.
Also, it is also important to investigate how this uncertainty can be communicated to
the end-user farmer, whose primary interest is to apply a certain irrigation depth at
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the right time, and may not be able to incorporate uncertainty directly into irrigation
decision-making. Alternatively, the scope of reporting uncertainty in crop modeling can
be explored, in terms of its relevance to particular applications (such as yield forecasting
or climate adaptation) and avenues (such as policy development).

Studies combining soil moisture data and crop modeling can also investigate the
difference in irrigation application performance between soil moisture being input as
a continuous variable and a category variable. Low-cost soil moisture sensors may
be limited in terms of their ability to predict true soil moisture exactly, but they may
have more potential in predicting categorical soil moisture values more accurately. The
different categories could include a ‘no stress’ category (with soil water depletion under
RAW), an ‘intermediate’ category between no stress and full stress (with depletion
between RAW and TAW), and a ‘full stressed’ category (with higher depletions). This
calibration could be attempted using categorical regression (or classification) techniques
such as logistic regression, support vector classification, etc.

In addition to commercially available systems, more studies are being conducted
which aim at real-time, wireless irrigation automation using soil moisture sensors within
the IoT framework. For instance, Vellidis et al. (2008) tested a real-time smart sensor
array consisting of granular resistive soil water tension sensors and thermocouples to
measure canopy temperature to trigger variable rate irrigation based on established soil
water tension thresholds in a cotton crop. Communication between the sensors and
the smart sensor circuit board was established using a Radio Frequency Identification
(RFID) tags. The cost for the 20-sensor node system was about USD 2400. Similarly,
Pramanik et al. (2022) deployed capacitance based soil moisture sensors along the length
of a field, and established a wireless communication network between these sensors
and an automatic check gate (which could be opened remotely based on soil moisture
sensor values, to release water). This wireless communication was established using
Long Range (LoRa) and Global System for Mobile Communications (GSM) modules.
They measured field Irrigation Application Efficiency (%) (ea) as the irrigated water
stored in the rootzone as a fraction of the total water applied, and were on average able
to achieve increases in ea by upto 86.6% across nine irrigation events with different soil
moisture thresholds. The cost of this system, including the check gate and controller
unit, solar charging module, gateway and one soil moisture sensor, was around USD
160. It is not clear whether this would increase proportionally for multiple sensors.

Nevertheless, it is equally important to understand the scope and effectiveness of such
purely technological water management interventions. There are usually two major
challenges to farmers, particularly smallholders, in adoption water efficient irrigation
technologies. Firstly, information regarding effective irrigation strategies must be pro-
vided to the farmers, and secondly, there needs to be a behavioural change towards
adopting such technology. The first challenge involves verifying the accuracy of such
technology and contextualizing it to local conditions, which has been addressed to an
extent in Chapters 4 and 5. Further, the information should be disseminated through
extension services - this issue has been partly discussed in Chapter 2. Information and
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Communications Technologies (ICTs) are gaining popularity as a means of communica-
tion to disseminate advisories (Baumüller, 2018; Steinke et al., 2021), particularly mobile
phone-enabled services. One such service had also been tested in the study region of
Kanpur during this period, which provided satellite and model based recommendations
for irrigation application, during the wheat cropping season of 2019 (Hossain et al.,
2020a,b). However, such mobile phone enable services see disappointingly low uptake
by farmers in terms of impact on their decision making (Baumüller, 2018; Rose et al.,
2018). This poor adoption is reported to occur due to gaps between the information
needs and technological capabilities/habits of the farmer, and the advisory delivered
by the tool in question (Lindblom et al., 2017; Parker and M. Sinclair, 2001; Rose et al.,
2018). While there is a need to involve end-users in developing such solutions using a
user-centered design approach (Kragt and Llewellyn, 2014; Oliver et al., 2017; 2012; Rose
et al., 2018; Rossi et al., 2014), the information should be administered in a way which
can influence a change in the decision making behaviour of the farmer (Mosler, 2012),
which is the second challenge in widespread adoption of such irrigation strategies.

Since adopting new irrigation strategies result from a change in behaviour, ‘under-
standing, predicting, and influencing’ this behaviour would then require an under-
standing of the motivations behind behaviour, which may not only be limited to utility
maximization and may also include cognitive and social parameters (Weersink and
Fulton, 2020). The key factors which govern the adoption of agricultural technologies
have been classified into four categories: (i) weather and agro-climatic conditions, (ii)
farm characteristics, (iii) socio-economic characteristics of the (head of the) household,
and (iv) farmers’ attitude towards risk (Bahinipati and Viswanathan, 2019). Moreover,
psychological frameworks have to used to understand the adoption of water technologies
in low-middle income countries (Daniel et al., 2019; Dessart et al., 2019; Gamma et al.,
2017). For instance, Daniel et al. (2019) identify socio-economic and psychosocial factors
as key determinants to technology adoption. Contextualizing this body of research to
this study, it is possible that despite the low-cost sensor and crop modeling technology
having been verified, there would be additional important factors which may influence
farmer uptake, such as socio-economic characteristics (which includes income, educa-
tional level and previous experience with farm technology), perceptions about resource
efficiency in agriculture, and agricultural risk-taking attitude. For instance, an educated
farmer who has had some previous experience with sensors (say through visits to or
by agricultural extension centres, research universities or NGOs) may be more inclined
to attempt such technological interventions on their field. Further, some farmers may
experiment with different management strategies within their fields as well, to test
out new varieties of inputs (like fertilizers), and such risk-taking farmers may be more
inclined to attempt experiments with such innovations. This intervention may also be
more suitable for more economically affluent farmers (who can afford some losses as a
result of negative results) as compared to marginal subsistence farmers. While these
factors and their relative weights in influencing farmer behaviour may be specific to the
local conditions (Knowler and Bradshaw, 2007), contextualizing these factors in the local
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context can help design solutions in a way which is suited to behaviour change towards
improved water management practices.
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7 Article Appendices

7.1 Appendix to Chapter 3

Table 7.1: Publications relevant to sensor testing studies.

Category Relevant publications

Sensor accuracy
Czarnomski et al. (2005), Kargas and Soulis (2012), González-
Teruel et al. (2019)

Sensor precision Czarnomski et al. (2005)

Sensor-to-sensor
variability

Sakaki et al. (2008), Rosenbaum et al. (2010), Kargas and
Soulis (2012), Bogena et al. (2017), González-Teruel et al.
(2019)

Temperature effects

Paltineanu and Starr (1997), Baumhardt et al. (2000), Czarnom-
ski (2005), Chanzy (2012), Kargas and Soulis (2012), Fares et al.
(2016), Bello et al. (2019b), Szypłowska et al. (2019), Zhu et al.
(2019)

Salinity effects
Baumhardt et al. (2000), Kargas and Soulis (2012), Matula et al.
(2016b), Kargas and Soulis (2019)

Volume of
influence/sensitivity

Paltineanu and Starr (1997), Sakaki et al. (2008), Sun et al.
(2012)
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Table 7.2: Publications relevant to sensor calibration studies.

Publication
Sensor Name

(Company Name)
Sensor Type Soils Used

Calibration
Curve Details

Paltineanu
and Starr

(1997)

Multisensor
Capacitance probe:

MCAP (Enviroscan)

Capacitance
sensor

Mattaplex silt loam
(fine-silty, mixed,

mesic, Aquic
Hapludult)

Scaled frequency

Baumhardt et al.
(2000)

Multisensor
Capacitance probe:

MCAP (Enviroscan)

Capacitance
sensor

2 soil materials:
Surface and calcic

horizons of an
Olton soil

Scaled frequency

Czarnomski et al.
(2005)

ECH2O (Decagon), CT
1502C (Tektronix Inc.),
WCR CS615 Campbell

Scientific)

Capacitance
sensors

Alluvial soils of
volcanic origin
(sandy loam to

sandy clay loam)

Linear (for
capacitance

sensor)

Sakaki et al.
(2008)

ECH2O (Decagon)
Capacitance

sensor
4 sands

Linear, quadratic,
2-point alpha
mixing model

Kargas and
Soulis (2012)

10HS (Decagon
Devices)

Capacitance
sensor

Liquids and
porous media of
known dielectric

permittivity

2-point calibration
equation

Matula et al.
(2016b)

ThetaProbe ML2x
(Delta-T Devices Ltd.),

ECH2O EC10
(Decagon), ECH2O EC
20 (Decagon), ECH2O

EC5 (Decagon),
ECH2O TE (Decagon)

Impedance
sensors, FDR

sensors

Silica sand and
loess

Comparison
between

manufacturer and
developed linear

calibration
equations

Kargas and
Soulis (2019)

CS655 (Campbell
Scientific)

Water Content
Reflectometer

Liquids of known
dielectric

permittivity and 10
soils (sand,

sandy-loam,
sandy-clay-loam,
loam, clay-loam,

clay)

2-point,
multi-point
calibration
equations;
calibration

equation for
non-conductive

soils using
Kelleners’(2005)

method

González-
Teruel et al.

(2019)

Self-developed soil
moisture sensor with

SDI-12 communication

Capacitance
based

3 soils (clay-loams
and sand)

Exponential
equations
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Table 7.3: Coefficients of the calibration equations for repacked soil samples, of the form
indicated in Equation (3.1). The segment limits indicate the [lower, upper]
limits of the fitted piecewise linear segments.

Sensor Name Soil Type
Equation

Characteristics
Segment 1 Segment 2

SMEC300

Soil-1
Segment limits [1135, 1280) [1280, 1792)
Slope (β1) 0.13 0.03
Intercept (β0) −152.65 −23.21

Soil-2
Segment limits [1200, 1451) 1451, 1707)
Slope (β1) 0.07 0.04
Intercept (β0) −85.91 −34.23

Soil-3
Segment limits [1231, 1402) [1402, 1899)
Slope (β1) 0.08 0.02
Intercept (β0) −94.19 −19.71

Soil-4
Segment limits [1275, 1525) [1525, 1685)
Slope (β1) 0.09 0.00
Intercept (β0) −112.50 23.58

SM100

Soil-1
Segment limits [1200, 1238) [1238, 1812)
Slope (β1) 0.25 0.04
Intercept (β0) −303.95 −42.88

Soil-2
Segment limits [1200, 1464) [1464, 1728)
Slope (β1) 0.07 0.03
Intercept (β0) −87.61 −32.15

Soil-3
Segment limits [1263, 1578) [1578, 1895)
Slope (β1) 0.06 0.02
Intercept (β0) −78.57 −14.80

Soil-4
Segment limits [1319, 1630) [1630, 1833)
Slope (β1) 0.06 0.01
Intercept (β0) −81.29 −3.56
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Table 7.3 Continued from previous page

Sensor Name Soil Type
Equation

Characteristics
Segment 1 Segment 2

YL100

Soil-1
Segment limits [2, 467.5) [467.5, 763)
Slope (β1) 0.04 0.03
Intercept (β0) −0.80 5.01

Soil-2
Segment limits [6, 615.5) [615.5, 826)
Slope (β1) 0.03 0.09
Intercept (β0) −0.81 −32.32

Soil-3
Segment limits [5, 333.5) [333.5, 709)
Slope (β1) 0.02 0.08
Intercept (β0) −0.17 −20.81

Soil-4
Segment limits [6, 418.5) [418.5, 705)
Slope (β1) 0.02 0.07
Intercept (β0) −1.08 −21.08

YL69

Soil-1
Segment limits [11, 134) [134, 724)
Slope (β1) 0.07 0.04
Intercept (β0) −1.35 3.24

Soil-2
Segment limits [7, 722]
Slope (β1) 0.05
Intercept (β0) −0.87

Soil-3
Segment limits [18, 838]
Slope (β1) 0.03
Intercept (β0) 1.48

Soil-4
Segment limits [14, 824)
Slope (β1) 0.03
Intercept (β0) −0.71
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7.2 Appendix to Chapter 4

Figure 7.1: Mean and standard deviation values for non-conservative parameters across
all crop model calibration scenarios. The parameters related to CC that were
calibrated: Soil surface covered by an individual seedling at 90% emergence
(SeedSize), maximum canopy cover (CCx), and canopy growth coefficient
(CGC). The soil hydraulic parameters (SHPs) related to the VWC that were
calibrated: readily evaporable water (REW), saturated hydraulic conductivity
(Ksat), VWC at saturation (θs), VWC at permanent wilting point (θPWP), VWC
at field capacity (θFC), and total available water content (TAW = θFC − θPWP).
For more details like parameter descriptions, please see Table 7.5
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Table 7.4: Non-conservative model parameters and their default values before calibrat-
ing the AquaCrop model. The target variable indicates which intermediate
AquaCrop output is affected by a change in the corresponding paramater. (i)
Raes et al. (2018), (ii) Brouwer et al. (1989), (iii) Taghavaeian (2017), (iv) Allen
et al. (2005), (v) Rawls and Brakensiek (1989), (vi) Gupta et al. (2021), (vii)
USDA-NRCS (2017)

Parameter Description Target Unit Default value (range)

SeedSize
Soil surface covered by an
individual seedling at 90%

emergence

CC cm2/plant 1.5i

CCx Maximum canopy cover CC m2 m-2 0.80 - 0.99i

CGC Canopy growth coefficient CC d-1 or °C-d-1 0.0930 - 0.1235i

CDC Canopy decline coefficient CC d-1 or °C-d-1 0.0925i

Emergence
Time from sowing to

emergence
CC d 8

HIstart
Time from sowing to start of

build-up of Harvest Index
70

Flowering
Length of the

flowering stage
CC d 14

Senescence
Time from sowing to

start of senescence
CC d 81

Maturity
Time from sowing to maturity,

i.e., length of crop cycle
CC d 100

Zmin
Minimum effective

rooting depth
VWC m 0.2-0.3i

Zmax
Maximum effective

rooting depth
VWC m 1.5

AppEff Irrigation Application Efficiency VWC % 60ii, iii

REW Readily Evaporable Water VWC mm 9-12iv

K_sat Saturated hydraulic conductivity VWC mm-d-1 96-446iv, vi

th_wp
VWC at

Permanent wilting point
VWC m3 m-3 0.133 (0.078-0.188)v

th_fc VWC at Field Capacity VWC m3 m-3 0.330 (0.258-0.402)v

th_sat VWC at Saturation VWC m3 m-3 0.501 (0.42-0.582)v

CN
Curve Number for

antecedent moisture class II
VWC - 69-75vii

HI Reference Harvest Index Yield % 0.48 (0.45-0.50)i
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Table 7.5: Details of agricultural management during the experiment

Management practice Management date
Management day

(DAS)

Management quantification
(irrigation depth in mm,

or quantity in kg/ha)

Fertilizer application 01-Feb-18 27 (at tillering) 347 kg/ha
Irrigation – 1 29-Jan-18 25 50
Irrigation – 2 18-Feb-18 45 43
Irrigation – 3 04-Mar-18 59 52.4
Irrigation – 4 19-Mar-18 74 37.3
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