LAWS OF LARGE NUMBERS FOR THE ANNEALING ALGORITHM

Nina GANTERT

Institut für Angewandte Mathematik, Universität Bonn, 5300 Bonn 1, FR Germany

Received 29 May 1989 Revised 7 September 1989

In this paper we establish a weak and a strong law of large numbers for the algorithm of simulated annealing. To this end, we recall laws of large numbers for time-inhomogeneous Markov chains which are formulated in terms of Dobrushin's contraction coefficients, and we show how they lead to corresponding cooling constants in the annealing algorithm.

simulated annealing * time-inhomogeneous Markov chains * law of large numbers

1. Introduction

Let (E, \mathcal{E}) be a measurable state space. For two probability measures μ and ν on E, let

$$\|\mu - \nu\| \coloneqq \sup_{A \subset F} |\mu(A) - \nu(A)|$$

denote the variational distance, and let

$$c(Q) := \sup_{x, y \in F} \|Q(x, \cdot) - Q(y, \cdot)\|$$

denote the contraction coefficient of a transition kernel Q(x, dy) on E. Now consider a time-inhomogeneous Markov chain given by a sequence of transition kernels

$$P_n(x, dy) \quad (n = 1, 2, ...)$$
 (1.1)

on (E, \mathcal{E}) . Suppose that π_n is an invariant probability measure for P_n , and that

$$\sum_{n} \|\boldsymbol{\pi}_{n+1} - \boldsymbol{\pi}_{n}\| < \infty; \tag{1.2}$$

in particular, (1.2) implies that π_n converges to some probability measure π_{∞} . If, in addition,

$$\prod_{n \ge m} c(P_n) = 0 \tag{1.3}$$

for any m, then the sequence of distributions at time n,

$$\mu_n := \mu P_1 \cdot \cdot \cdot P_n \quad (n = 1, 2, \ldots) \tag{1.4}$$

0304-4149/90/\$03.50 © 1990-Elsevier Science Publishers B.V. (North-Holland)

converges to π_{∞} for any initial distribution μ (see, e.g., Iosifescu and Theodorescu, 1969, p. 160). As a special case, one obtains a basic convergence result of Geman and Geman (1984) for the annealing algorithm. In this special context, condition (1.2) is satisfied automatically, and condition (1.3) corresponds to a condition of the form

$$\gamma \le \gamma_0 \tag{1.5}$$

for the constant γ in the cooling scheme $\beta_n = \gamma \log n$ of the annealing algorithm; cf. Section 3 below.

We are interested in the law of large numbers, i.e., in the convergence

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = \int f \, \mathrm{d}\pi_{\infty} \tag{1.6}$$

for bounded measurable functions f on E, either in probability (weak law) or P_{μ} -almost surely (strong law), where P_{μ} denotes the distribution on $\Omega = E^{\{0,1,\dots\}}$ of the Markov chain with initial distribution μ and transition kernels P_n ($n=1,2,\dots$), and X_i is the *i*th coordinate map on Ω . Gidas (1985) has addressed this question, but the proof of his theorem 1.3 is wrong; a counterexample is given in Section 2 below. Instead, we use known versions of the law of large numbers for time-inhomogeneous Markov chains where the assumptions are formulated in terms of the coefficients $c(P_n)$. For the annealing algorithm, this leads to the condition

$$\gamma < \gamma_0 \tag{1.7}$$

for the weak law, and to the condition

$$\gamma < \frac{1}{2}\gamma_0 \tag{1.8}$$

for the strong law of large numbers.

2. Some asymptotic properties of time-inhomogeneous Markov chains

Let us first show that conditions (1.2) and (1.3) are not sufficient to guarantee a law of large numbers; this shows in particular that Theorem 1.3 in Gidas (1985) is incorrect. The following example is due to H.-R. Künsch (oral communication).

Example. Let $E = \{0, 1\}$, and consider the time-inhomogeneous Markov chain given by

$$P_n(0, 1) = P_n(1, 0) = 1/n \quad (n = 1, 2, ...).$$

Then $\pi_n = \pi_\infty = (\frac{1}{2}, \frac{1}{2})$. Conditions (1.2) and (1.3) are satisfied; in particular, $\mu P_1 \cdots P_n$ converges to π_∞ for any initial distribution μ . But for f(x) := x,

$$\frac{1}{n} \sum_{i=1}^{n} f(X_i) \tag{2.1}$$

cannot converge in probability. In fact, for any $\alpha = 2, 3, \ldots$, and any μ we have

$$P_{\mu}[X_n = \dots = X_{\alpha n}] = \prod_{j=1}^{\alpha n-1} \left(1 - \frac{1}{j}\right) \ge \left(1 - \frac{1}{n}\right)^{n(\alpha - 1)} \to e^{-\alpha + 1} > 0.$$
 (2.2)

Now assume that the sequence in (2.1) converges in probability to some random variable Z. It is easy to see that, due to (2.2), the values of Z can only be 0 and 1, P_{μ} -almost surely. On the other hand, condition (1.3) implies that P_{μ} satisfies a zero-one-law on the tail field $\mathscr{F} := \bigcap_{m} \sigma(X_{m}, X_{m+1}, \ldots)$ (cf. Ueno, 1957). In particular, Z is constant P_{μ} -almost surely, hence $P_{\mu}[Z = E_{\mu}[Z] = \frac{1}{2}] = 1$, and so we get a contradiction.

Let us now recall versions of the law of large numbers which are suitable for our purpose. For the given sequence (1.1) of transition kernels we set

$$c_n \coloneqq \max_{1 \le i \le n} c(P_i).$$

Then the condition

$$\lim_{n \to \infty} n(1 - c_n) = \infty \tag{2.3}$$

is sufficient for $\mathcal{L}^2(P_\mu)$ -convergence in (1.6); this follows from estimate (1.2.22) in Iosifescu and Theodorescu (1969, p. 53). In particular, (2.3) implies the *weak* law of large numbers. The *strong* law of large numbers holds if we have

$$\sum_{n=1}^{\infty} \frac{1}{2^{n} (1 - c_{2^{n}})} < \infty; \tag{2.4}$$

this is an immediate consequence of Theorem 1.2.23 in Iosifescu and Theodorescu (1969, p. 56).

3. Application to the annealing algorithm

Suppose that the state space is of the form $E = S^I$ where I and S are finite. What we are looking for is the set of global minima of some energy function U on the configuration space E. Simulated annealing corresponds to a time-inhomogeneous Markov chain on E which approaches this set of global minima.

For $\beta > 0$ let π_{β} denote the Gibbs measure on S^{I} given by

$$\pi_{\beta}(x) := \mathrm{e}^{-\beta U(x)}/Z(\beta)$$

where $Z(\beta) \coloneqq \sum_{y \in E} e^{-\beta U(y)}$. It is easy to verify that $\|\pi_{\beta} - \pi_{\infty}\| \to 0$ for $\beta \to \infty$, where π_{∞} denotes the uniform distribution on the set of global minima. Moreover, condition (1.2) is satisfied for any sequence $\beta(n) \to \infty$. We fix $i \in I$ and $s \in S$ and denote by $x_{i,s} \in S'$ the configuration which equals x off i and takes the value s in i. Define the conditional probability

$$\pi_i^{\beta}(s|x) \coloneqq \mathrm{e}^{-\beta U(x_{i,s})}/Z_i(\beta)$$

with normalizing factor $Z_i(\beta)$, and introduce the transition kernel

$$\Pi_i^{\beta}(x,\cdot) = \pi_i^{\beta}(s \mid x) \otimes \prod_{j \neq i} \delta_{x(j)}.$$

where $\delta_{x(j)}$ denotes Dirac measure on x(j). For a fixed enumeration $I = \{1, \ldots, N\}$,

$$P_{\beta} \coloneqq \Pi_1^{\beta} \cdots \Pi_N^{\beta}$$

defines a transition kernel on S^I with unique invariant distribution π_{β} . Let us denote by $\Delta_i := \max\{|U(x) - U(y)|; x, y \in S^I \text{ and } x = y \text{ off } i\}$ the oscillation of U in the ith coordinate, and set $\Delta := \max_i \Delta_i$. Then it is easy to show that

$$c(P_{\beta}) \le 1 - e^{-\beta N\Delta}. \tag{3.1}$$

Let us now specify the following version of the annealing algorithm. We fix a cooling scheme of the form

$$\beta(n) = \gamma \log n$$

and consider the time-inhomogeneous Markov chain with transition kernels $P_{\beta(n)}$ (n = 1, 2, ...). Using (3.1), it is easy to check that condition (1.3) is satisfied as soon as

$$\gamma \leq \gamma_0 = 1/(N\delta).$$
 (3.2)

Thus, we have the basic convergence result of Geman and Geman (1984) that (3.2) implies

$$\lim_{n\to\infty} \|\mu P_{\beta(1)} \cdots P_{\beta(n)} - \pi_{\infty}\| = 0$$

for any initial distribution μ .

Let us now apply the laws of large numbers of Section 2. In our present case, $c(P_{\beta(n)})$ is increasing in n, hence $c_n = c(P_{\beta(n)})$, and (2.4) is equivalent to

$$\sum_{n=1}^{\infty} \frac{1}{n^2(1-c_n)^2} < \infty.$$

This leads to the following.

Theorem. If

$$\beta(n) = \gamma \log n \quad \text{with } \gamma < \gamma_0, \tag{3.3}$$

then the weak law of large numbers holds. The strong law of large numbers holds if

$$\gamma < \frac{1}{2}\gamma_0. \tag{3.4}$$

Proof. We only have to check that (3.3) implies (2.3) and (3.4) implies (2.4). \square

The same technique can be used for other annealing schemes, e.g. for the *Metropolis dynamics*, where the transition kernels on an arbitrary finite state space E are defined in the following way. Let Q be an irreducible symmetric matrix on E and define

$$P_{\beta}(x, y) = \begin{cases} Q(x, y) e^{-\beta(U(y) - U(x))}, & \text{if } U(x) \leq U(y), \ x \neq y, \\ Q(x, y), & \text{if } U(x) > U(y), \\ 1 - \sum_{z \neq x} P_{\beta}(x, z), & \text{if } x = y. \end{cases}$$

Possibly $c(P_{\beta(n)}) = 1$ for all n; then we have to estimate $c(P_{\beta(n)} \cdots P_{\beta(n+M)})$ instead of $c(P_{\beta(n)})$, where $M := \min\{n \ge 1; Q^n > 0\}$. If we define

$$\Delta := \max\{|U(x) - U(y)|; x, y \in E \text{ and } Q(x, y) > 0\}$$

and $\gamma_0 = 1/(M\Delta)$, we can get the same theorem.

References

- R.L. Dobrushin, Central limit theorems for nonstationary Markov chains, Theory Probab. Appl. 1(4) (1956) 329-383.
- S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intelligence 6 (1984) 721-741.
- B. Gidas, Nonstationary Markov chains and convergence of the annealing algorithm, J. Statist. Phys. 39 (1985) 73-131.
- M. Iosifescu and R. Theodorescu, Random Processes and Learning (Springer, Berlin, 1969).
- D.L. Isaacson and R.W. Madsen, Markov Chains: Theory and Application (Wiley, New York, 1976).
- T. Ueno, Some limit theorems for temporally discrete Markov processes, J. Fac. Sci. Univ. Tokyo Sect. I 7 (1957) 449-462.