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In this paper we establish a weak and a strong law of large numbers for the algorithm of simulated 

annealing. To this end, we recall laws of large numbers for time-inhomogeneous Markov chains 

which are formulated in terms of Dobrushin’s contraction coefficients, and we show how they 

lead to corresponding cooling constants in the annealing algorithm. 

simulated annealing * time-inhomogeneous Markov chains * law of large numbers 

1. Introduction 

Let (E, Z’) be a measurable state space. For two probability measures p and v on 

E, let 

11~ - VII := ;up~ I/.&U - O)l 
C 

denote the variational distance, and let 

c(Q) := sup II Q(x, .I - ax * 1 II 
x.., c E 

denote the contraction coefficient of a transition kernel Q(x, dy) on E. Now consider 

a time-inhomogeneous Markov chain given by a sequence of transition kernels 

P,(x,dy) (n=1,2 ,...) (1.1) 

on (E, ‘8). Suppose that rrn is an invariant probability measure for P,,, and that 

c II ~f7+,--7T,ll<~; (1.2) n 
in particular, (1.2) implies that rrn converges to some probability measure v~. If, 

in addition, 

n c(P,)=O (1.3) 
n%m 

for any m, then the sequence of distributions at time n, 

/&:= PP,.' .P, (n=1,2,...) (1.4) 
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converges to rm for any initial distribution /r (see, e.g., Iosifescu and Theodorescu, 

1969, p. 160). As a special case, one obtains a basic convergence result of Geman 

and Geman (1984) for the annealing algorithm. In this special context, condition 

(1.2) is satisfied automatically, and condition (1.3) corresponds to a condition of 

the form 

Y~-Yyo (1.5) 

for the constant y in the cooling scheme P,, = y log n of the annealing algorithm; 

cf. Section 3 below. 

We are interested in the law of large numbers, i.e., in the convergence 

(1.6) 

for bounded measurable functions f on E, either in probability (weak law) or 

P,-almost surely (strong law), where P, denotes the distribution on R = E(“-‘--) of 

the Markov chain with initial distribution p and transition kernels P,, (n = 1,2, . . .), 

and Xi is the ith coordinate map on 0. Gidas (1985) has addressed this question, 

but the proof of his theorem 1.3 is wrong; a counterexample is given in Section 2 

below. Instead, we use known versions of the law of large numbers for time- 

inhomogeneous Markov chains where the assumptions are formulated in terms of 

the coefficients c(P,,). For the annealing algorithm, this leads to the condition 

Y < Yo 

for the weak law, and to the condition 

Y <SYo 

for the strong law of large numbers. 

(1.7) 

(1.8) 

2. Some asymptotic properties of time-inhomogeneous Markov chains 

Let us first show that conditions (1.2) and (1.3) are not sufficient to guarantee a law 

of large numbers; this shows in particular that Theorem 1.3 in Gidas (1985) is 

incorrect. The following example is due to H.-R. Kiinsch (oral communication). 

Example. Let E = (0, l}, and consider the time-inhomogeneous Markov chain given 

by 

P,(O,1)=P,(1,0)=l/n (n=l,2 )... ). 

Then v,, = rrTT, = ($, i). Conditions (1.2) and (1.3) are satisfied; in particular, 

j.LP,‘.’ P, converges to rm for any initial distribution /*. But for f(x) := x, 

; Z,rWJ 
I 

(2.1) 
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cannot converge in probability. In fact, for any CY = 2,3,. . . , and any /1 we have 

P,[X, =- . .=x~~~,=~~‘(*-~)-(l-t)“‘“-e-~+~>O. (2.2) 

Now assume that the sequence in (2.1) converges in probability to some random 

variable 2. It is easy to see that, due to (2.2), the values of 2 can only be 0 and 1, 

P,-almost surely. On the other hand, condition (1.3) implies that P, satisfies a 

zero-one-law on the tail field %:= nma(X,, X,,,, , . . .) (cf. Ueno, 1957). In par- 

ticular, 2 is constant P,-almost surely, hence P,[Z = E,[Z] = $1 = 1, and so we get 

a contradiction. 

Let us now recall versions of the law of large numbers which are suitable for our 

purpose. For the given sequence (1.1) of transition kernels we set 

crl := max c(Pi). 
,sisn 

Then the condition 

lim n(l-c,)=a (2.3) ,1 +u 

is sufficient for z’(P,)-convergence in (1.6); this follows from estimate (1.2.22) in 

Iosifescu and Theodorescu (1969, p. 53). In particular, (2.3) implies the weak law 

of large numbers. The strong law of large numbers holds if we have 

(2.4) 

this is an immediate consequence of Theorem 1.2.23 in Iosifescu and Theodorescu 

(1969, p. 56). 

3. Application to the annealing algorithm 

Suppose that the state space is of the form E = S’ where I and S are finite. What 

we are looking for is the set of global minima of some energy function U on the 

configuration space E. Simulated annealing corresponds to a time-inhomogeneous 

Markov chain on E which approaches this set of global minima. 

For /3 > 0 let n-,, denote the Gibbs measure on S’ given by 

am := e-pu’.‘)/Z(@) 

where Z(p) := ,&E e mBu’F’. It is easy to verify that )( V~ - ~~1) + 0 for p -+ 00, where 

YT~ denotes the uniform distribution on the set ofglobal minima. Moreover, condition 

(1.2) is satisfied for any sequence p(n) + 00. We fix i E I and s E S and denote by 

x;,~ E S’ the configuration which equals x off i and takes the value s in i. Define the 

conditional probability 
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with normalizing factor Zi(i(p), and introduce the transition 

np(X;)=?rP(SIX)On &(,). 
j#i 

kernel 

where Qj) denotes Dirac measure on x(j). For a fixed enumeration I = { 1, . . . , N}, 

Pp := n’: . . * nP, 

defines a transition kernel on S’ with unique invariant distribution TV. Let us denote 

by Ai := max{l U(X) - Z.J(y)J; x, y E S’ and x = y off i} the oscillation of U in the ith 

coordinate, and set A := max,A,. Then it is easy to show that 

~(P,)sl-e-~““. (3.1) 

Let us now specify the following version of the annealing algorithm. We fix a 

cooling scheme of the form 

P(n) = Y log n 

and consider the time-inhomogeneous Markov chain with transition kernels PPc,,, 

(n = 1,2,. . .). Using (3.1), it is easy to check that condition (1.3) is satisfied as soon 

as 

ys yo:= l/(N6). (3.2) 

Thus, we have the basic convergence result of Geman and Geman (1984) that (3.2) 

implies 

for any initial distribution p. 

Let us now apply the laws of large numbers of Section 2. In our present case, 

c( Pp(,,)) is increasing in n, hence c, = c( Ppcn,), and (2.4) is equivalent to 

u- 1 

,,?, n2(1- c,)‘<co. 

This leads to the following. 

Theorem. If 

@(n)=ylogn withycy,,, (3.3) 

then the weak law of large numbers holds. 7he strong law of large numbers holds if 

1 
Y<2Yo. (3.4) 
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Proof. We only have to check that (3.3) implies (2.3) and (3.4) implies (2.4). 0 

The same technique can be used for other annealing schemes, e.g. for the Metropolis 

dynamics, where the transition kernels on an arbitrary finite state space E are defined 

in the following way. Let Q be an irreducible symmetric matrix on E and define 

1 

Q(x, Y) e -P’L’(V)~U(rl), if U(x) S U(y), x # y, 

p,zz(x, Y) = 0(x, Y), if u(x)> U(Y), 

L- c P/3(x, z), if x=y. 
z f i 

Possibly c(PpCnI) = 1 for all n; then we have to estimate c(F’~(~) . . * Ppt,,+Ml) instead 

of c(PpCnj), where M := min{n B 1; Q” > O}. If we define 

A :=max{lLJ(x)- U(y)l; x, YE E and Q(x,y)>O} 

and yO:= l/(MA), we can get the same theorem. 
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