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Abstract— For tasks where the dynamics of multiple agents
are physically coupled, the coordination between the individual
agents becomes crucial, which requires exact knowledge of
the interaction dynamics. This problem is typically addressed
using centralized estimators, which can negatively impact the
flexibility and robustness of the overall system. To overcome this
shortcoming, we propose a novel distributed learning frame-
work for the exemplary task of cooperative manipulation by
applying Bayesian principles. Using only local state information
each agent obtains an estimate of the object dynamics and grasp
kinematics. These local estimates are combined using dynamic
average consensus. Due to the strong probabilistic foundation
of the method, each estimate of the object dynamics and
grasp kinematics is accompanied by a measure of uncertainty,
which allows to guarantee a bounded prediction error with
high probability. Moreover, the Bayesian principles directly
allow iterative learning with constant complexity, such that
the proposed learning method can be used online in real-time
applications. The effectiveness of the approach is demonstrated
in a simulated cooperative manipulation task.

I. INTRODUCTION

Recent advances in communication networks allow for
novel applications of distributed cooperative control ap-
proaches in multi-agent systems. Of special interest are tasks
in which the dynamics of the individual agents are physically
coupled, since a high degree of coordination is required
for a successful completion of the goal. For such tasks
typically precise knowledge of the interaction dynamics is
required, which is often unavailable in real world scenarios
and estimation techniques are required. In this work, we
present such an estimation framework and illustrate the steps
by applying it to a cooperative manipulation scenario. In
cooperative manipulation the agents are physically coupled
via the object and distributed control approaches have been
under investigation recently [1], [2]. For such a task it is
critical to know the grasp kinematics and object dynamics
in order to precisely manipulate the object and avoid internal
stress, which could possibly damage the object [3]. The ap-
plication domain varies greatly and ranges from construction
and manufacturing to service robots or search and rescue
scenarios.
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This problem is usually addressed by applying centralized
estimators [4], [5] that use the states of all robots involved
in the manipulation task. This kind of estimation framework
is prone to single-point failures and inflexible regarding
changes in the number of agents involved in the manipulation
task. One way to overcome these shortcomings is to use a
decentralized approach without any communication among
the robot team. Each agent of the team calculates its own
estimate of the unknown parameters. These local estimates
can then be used for subsequent tasks [6]. While elimi-
nating the requirements on the communication among the
agents and introducing more flexibility, purely decentralized
approaches omit the possibility of improving their local
estimates by sharing those over a communication network. In
order to combine the benefits of centralized and decentralized
approaches, distributed estimation frameworks can be used
by allowing for some communication. This can be done by
locally calculating the estimates of the unknown parameters
in a decentralized manner and iteratively combining them by
some sort of consensus algorithm to achieve the convergence
on a globally common estimate [2], [7]. Thus, the commu-
nication overhead is minimized compared to the overhead
imposed by a centralized approach while maintaining the
flexibility and robustness of a decentralized approach.

None of the above mentioned approaches considers
information about the uncertainty of estimates, i.e. they are
all equally weighted during aggregation. While this is a
suitable approach when estimating parameters off-line using
optimized input signals, it can significantly deteriorate the
estimation performance in on-line learning scenarios with
noisy measurements where input signals might not suffi-
ciently excite all agents. Therefore, controllers relying on the
estimated parameters permanently require a high robustness,
since they have no information about the precision of the esti-
mated parameters. It is well-known from centralized systems
that probabilistic approaches relying on Bayesian learning
methods allow to mitigate these issues, as they explicitly
represent the uncertainty of estimates [8]. This allows an ag-
gregation of learned parameters weighted by their uncertainty
[9], [10], such that poor local estimates are oppressed in the
overall aggregation. Moreover, a probabilistic representation
exhibits many advantages in control, e.g., allowing to adapt
control parameters to the uncertainty for ensuring stability
[11], achieving cautiousness in control [12], or steering the
system to regions with informative data [13].

In this work, we propose a Bayesian distributed learning
framework for estimating the object dynamics and grasp
kinematics. By applying Bayesian inference to obtain the
local estimates, each estimated parameter is accompanied by
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a measure of uncertainty. Moreover, the use of Bayesian
principles readily allows iterative learning, such that the
estimation framework can be used online in real-time ap-
plications. The estimated parameters and their uncertainties
are propagated through a communication network using
dynamic average consensus, such that an uncertainty-aware,
distributed aggregation of the local estimates is achieved.
The efficacy of the proposed framework is demonstrated in
a simulation of a cooperative manipulation task.

The remainder of this work is structured as follows. The
exact problem is formulated in Sec. II. The theory substanti-
ating the main contributions of this work is given in Sec. III
and evaluated in numerical simulations in Sec. IV. Sec. V
briefly concludes the proposed contributions and presents
future work. Notation: The matrices 0n, In and 1n denote
the n−dimensional identity and zero matrix and vector with
a 1 in each element, respectively. The dimension n is omitted
if it is clear from context. The matrix S(·) denotes the skew-
symmetric matrix such that S(a)b = a× b, ∀a, b ∈ R3. A
superscript Aij for a matrixA denotes the element of the ma-
trix in the ith row and jth coloumn. Scalar operators applied
to vectors and matrices denote an element-wise operation.

II. PROBLEM STATEMENT

In this work we consider N manipulators rigidly grasping
and manipulating a common rigid object. Each agent i has
a body-fixed frame {i} attached to its tool center point.
The object frame at the object’s center of mass (COM)
is denoted as {o} and {w} is the inertial world frame.
If not stated otherwise by a leading superscript i(·), all
states are given with respect to the world frame {w}. The
states xi, ẋi, ẍi denote the pose, velocity and acceleration
of the ith endeffector, respectively. More precisely, the pose
xi =

[
pTi , q

T
i

]T
consists of the position pi ∈ R3 and the unit

quaternion qi =
[
ηTi εTi

]T ∈ Spin(3), with a scalar real
part ηi and imaginary vector part εi. With a slight abuse of
notation the velocity is defined as ẋi =

[
ṗTi ωT

i

]T
with the

angular velocity
[
0 ωT

i

]T
= 2 d

dtqi ∗ q̃i, where ∗ denotes
the quaternion product and q̃i is the quaternion inverse of
qi. The acceleration is given as ẍi =

[
p̈Ti ω̇T

i

]T
. In the

following the deviation from a desired value ad for any entity
a ∈ {pi, ẋi, ẍi,hi} is denoted as ∆ai = ai − adi . For a
quaternion qi the deviation from the desired orientation is
denoted as ∆qi =

[
∆ηi,∆ε

T
i

]T
= qi ∗ q̃id.

A. System Dynamics

The individual agents are modeled by the well known
impedance equations as

Mi∆ẍi +Di∆ẋi + hKi
(
xi,x

d
i

)
= ∆hi (1)

where Mi and Di denote the virtual mass and damping as

Mi =

[
miI3 03

03 Ji

]
, Di =

[
diI3 03

03 δiI3

]
(2)

with design parameters mi, di, δi ∈ R>0 and inertia matrix
Ji. The endeffector wrench hi =

[
fTi , τ

T
i

]T
consists of

the forces fi ∈ R3 and torques τi ∈ R3. The vector hKi
represents the geometrically consistent stiffness [14] as

hKi
(
xi,x

d
i

)
=

[
ki∆pi
κ′i∆εi

]
(3)

with κ′i = 2∆ηiκi and scalar parameters kj , κj ∈ R>0.
Remark 1: For the sake of exposition the gains

mi, di, δi, ki, κi are chosen to be scalar, but the results of
this work can be easily adapted to matrix valued gains by
applying the same techniques.
The pose, velocity, and acceleration of the object xo, ẋo, ẍo
are defined equivalent to the states of the agents i. We assume
the object frame to be located at the object COM and thus
the object dynamics are given as

Moẍo +Co(xo, ẋo) = ho (4)

where ho denotes the effective object wrench. The object
mass/inertia matrix is given as Mo = blkdiag(moI3,Jo)
and the wrench containing the gravity- and Coriolis-effects

is Co =

[
−mog

ωo × Joωo

]
, where mo ∈ R>0 and Jo ∈ R3×3

denote the object mass and the positive definite symmetric
inertia matrix, respectively, and g ∈ R3 is the gravity vector.
Note that the inertia matrix Jo in the world frame is not con-
stant if the object rotates, which can be problematic during
the estimation process. To combat this we can express Jo as

Jo = Ro
oJoR

T
o (5)

where oJo is the constant inertia matrix denoted in the
object frame.

B. Relative Kinematics

The relative position and orientation of any two frames
i 6= j ∈ {1, ..., N, o} are defined as

jpi = RT
j (pi − pj) (6)

jRi = RT
j Ri, (7)

where Rj is the rotation matrix corresponding to the quater-
nion qj . Note that due to the rigidity assumption the relative
position jpi and the orientation jqi are always constant. In
order to highlight this fact, and due to their importance in the
following results, we denote the constant distances orj,i =
RT
o (pj − pi) and ori = RT

o (pi − po). Solving (6) for pj
and differentiating, we obtain the relationship of translational
velocities and accelerations between two frames as

ṗj = ṗi + S(ωi)
jpi (8)

p̈j = p̈i +
(
S(ω̇i) + S(ωi)

2
)︸ ︷︷ ︸

T (ωi,ω̇i)

jpi. (9)

In addition, since the relative orientation jqi is constant for
all i = 1, ..., N it holds that ωo = ωi = ωj , ω̇o = ω̇i = ω̇j
for all j = 1, ..., N .
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C. Cooperative Manipulation

The object wrench ho can be related to the endeffector
wrenches hi as

ho =

[
I3 03 · · · I3 03

S(r1) I3 · · · S(rN ) I3

]
︸ ︷︷ ︸

=:G

h̄ (10)

with the grasp matrix G ∈ R6×6N and the vector of
combined wrenches h̄ = −[hT1 , · · · ,hTN ]T. Similarly

ẋ = GTẋo, (11)

holds, where ẋ denotes the concatenated vector of the indi-
vidual agent velocities ẋi. For the cooperative manipulation
task, some coordination strategy is required in order to avoid
internal stress in the object. A common solution [3] is ob-
tained choosing the desired velocities according to (11) and
compensating the object dynamics by setting hd = −G+hdo,
with a desired object wrench hdo compensating the object
dynamics, and generalized inverse of the grasp matrix G+.
However, the grasp matrix G and the compensation terms
hdo depend on the typically unknown parameters ori,mo,Jo
and an estimation strategy is indispensable for a successful
coordination of the individual agents. While such estimation
strategies exist, those are typically centralized and do not
provide a measure of uncertainty.

D. Local Information and Communication

We assume that at each time instance k each agent i can
measure its own state z(k)i =

[
xTi ẋTi ẍTi

]T
, which we will

term the local information of agent i. We pose the following
additional assumption on locally available information.

Assumption 1: The reference signals for all quantities of
all agents, as well as all parameters of the dynamics (1) are
known to each agent.
The availability of the desired quantities during the estima-
tion process might seem like a strong assumption. However,
typically an identification trajectory is designed before task
execution and can be locally stored at each agent. While such
an approach might result in internal stress on the object,
this can be avoided by updating the identification strategy
online using the consensus estimates presented in this work.
The second part of Assumption 1 is not restrictive, since
the constant parameters can be either exchanged before task
execution or propagated through the network with methods
similar to the ones presented in this work.

Assumption 2: The relative rotation matrices iRo are
known by each agent.
This assumption consists of two parts. First, note that iRo =
RT
i Ro = const. and as a result it is required that each

agent has information about the initial object orientation Ro.
However, since the object frame can be oriented arbitrary
this essentially means that the agents merely have to decide
on a common initial orientation, which can be achieved via
consensus algorithms on SE(3) or methods similar to the
ones presented in [15]. Second, we assume that each agent
i knows the relative orientation jRo for all agents j. By
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Fig. 1. Overview of the proposed distributed Bayesian learning framework.
The rotational regression problem (red) depends on the estimates of the
translational regression problem (blue), leading to a sequential estimation
structure. For both problems we provide linear models and use Bayesian
regression to obtain estimates of unknown parameters, followed by a local
aggregation and parameter decomposition for the the translational estimator.
Finally, the estimates from all agents are aggregated in a distributed fashion.

recalling that iRo is constant, the relative orientations can be
shared before task execution over a communication network.

Finally, we allow the agents to communicate on a commu-
nication graph G={V, E}, where V⊆{1, ..., N} is the vertex
set, representing the individual agents and E ⊆V×V is the
edge set, where (i, j)∈E if agent i and j can communicate
with each other. The edges of the graph can be compactly
represented through the weighted adjacency matrix A ∈
RN×N , where Aij > 0 if (j, i) ∈ E . The communication
network must satisfy the following properties [16].

Assumption 3: The communication graph G is strongly
connected and balanced, i.e.,A1=AT1=1. Moreover, there
exists a positive constant α such that i) Aii≥α for all i, ii)
Aij ∈{0} ∪ [α, 1], for all i, j, iii)

∑n
j=1A

ij=1, for all i.

The goal of this work is to first estimate the parameters
ori,mo,Jo by using only locally available information. In
a second step we want to increase the accuracy of the
estimation by allowing the agents to exchange their estimates
along the edges of the communication graph.
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III. DISTRIBUTED BAYESIAN ONLINE
LEARNING

In this section we will derive a generalized model for
cooperative manipulation which is linear in the parameters
mo

ori,mo,Jo and depends only on information locally
available at each agent. Based on this model and by ap-
plying Bayesian principles, we proceed by presenting our
novel distributed estimator for the required parameters. An
overview of the general framework is presented in Fig. 1.
The manipulation task is split into two parts corresponding to
the translational and rotational degrees of freedom, each with
a separate estimator. This results in a sequential estimation
procedure, where the results from the translational estimator
are used in the model for the rotational one.

A. Translational Regression Problem

1) Generalized Linear Model: To obtain a distributed
algorithm for the translational regression problem, we start
by transforming all relevant equations such that only lo-
cally available information is used. Substituting the equa-
tions (6), (8), (9) in the original impedance model (1) we
can use the states of agent i to express the force fj as

fj=mj

(
p̈i+T (ωi, ω̇i)rj,i−p̈dj

)
+dj

(
ṗi+S(ωi)rj,i−ṗdj

)
+kj

(
pi+rj,i−pdj

)
+fdj . (12)

Combining this with (10) gives us an expression for the
effective forces acting on the object. Finally, by transforming
the object states using the equations (6), (8), (9), the left-
hand side of the object dynamics (4) can also be expressed
with locally available information of agent i. Separating the
resulting equations into known and unknown entities yields
a model of the form

yi = φT
i θi (13)

for each agent i, which is linear in the parameters

θi =
[
θTi,1 θTi,2

]T
θi,1 =

[
orT1,i · · · orTi−1,i

orTi+1,i · · · orTN,i
]T

θi,2 =
[
mo

orTi mo

]T (14)

and requires only local information, where

yi(zi) =

N∑
j=1

[
mj p̈

d
j + dj ṗ

d
j + kjp

d
j − fdj

]
−mcp̈i − dcṗi − kcpi

φi(zi)
T =

[
φ1,i(zi) φ2,i(zi) φ3,i(zi)

]
φ1,i(zi) = T (ωi, ω̇i)Mw,i + S(ωi)Dw,i +Kw,i

φ2,i(zi) = −T (ωi, ω̇i)R0

φ3,i(zi) = p̈i − g.

(15)

and for any Bw,i ∈ {Mw,i,Dw,i,Kw,i} and respec-
tive parameters bi ∈ {mi, di, ki} we define Bw,i =[
b1Ro, ..., bi−1Ro, bi+1Ro, ...bNRo

]
and bc =

∑N
i=1 bi.

Note that in (13) the left side is an entirely determined

3-element vector of forces. The right side consists of
a 3× (3N + 1) composed matrix of measurable inputs and
a (3N + 1) vector of unknown parameters whose values we
later wish to determine.

2) Bayesian Linear Regression: We use Bayesian linear
regression to find the estimates θ̂i ∈ R3N+1 of the unknown
parameters θi. In contrast to standard linear regression,
where the estimates are obtained by minimizing the quadratic
error within the linear model [17], this allows us to assess the
uncertainty of the estimates and incorporate prior knowledge
about the parameter values or possible noise perturbations.
We place a prior probability distribution pi(θi) : R3N+1 →
R≥0 upon the parameters, which is given by

pi(θi) = N (θi|µ(0)
i ,Σ

(0)
i ) (16)

with the initial mean µ(0)
i ∈ R3N+1 and covariance ma-

trix Σ
(0)
i ∈ R(3N+1)×(3N+1) [8]. In order to derive closed-

form expressions for inference, we assume for the mo-
ment that training targets ti,m = yi,m + ε are output
values yi,m perturbed by homoscedastic normally distributed
i.i.d. noise ε ∼ N (0, β−1), where the index m = 1, 2, 3
denotes the mth element of the three dimensional vectors
yi and ti. Given a current estimate µ(k)

i,m ∈ R3N+1, Σ
(k)
i,m ∈

R(3N+1)×(3N+1) and new data z(k+1)
i , the estimate can be

updated by considering p(θi|t(k)i,m) as prior, i.e.,

p(θi|t(k+1)
i,m ) =

p(t
(k+1)
i,m |θi, t(k)i,m)p(θi|t(k)i,m)

p(t
(k+1)
i,m |t(k)i,m)

, (17)

where t(k)i,m denotes the stacked vector of output values ti,m
at k different input instances. Since both the noise ε and
the parameter vector θi are Gaussian random variables, it
follows from basic properties of Gaussian distributions that
the posterior p(θi|t(k+1)

i,m ) at each time step k + 1 is also
Gaussian with mean and covariance matrix

µ
(k+1)
i,m =Σ

(k+1)
i,m

(
(Σ

(k)
i,m)−1µ

(k)
i,m+βφ(z

(k+1))t
(k+1)
i,m

)
(18)

Σ
(k+1)
i,m =

(
(Σ

(k)
i,m)−1 + βφi(z

(k+1))φT
i (z(k+1))

)−1
. (19)

This gives an iterative update rule and allows for learning
with constant update complexity.

3) Generalized Product of Expert Aggregation: Until now
we have three estimators for each agent, which each have
their individual estimate p(θi|t(k+1)

i,m ). In order to combine
these estimates without losing information about the esti-
mates’ variance or letting estimates with high uncertainty
corrupt the aggregated mean, we choose a product of experts
approach [9]. The key idea is to model a target probability
distribution as the product of multiple densities, each pro-
vided by an expert. Experts are in this case linear Bayesian
regression estimators, such that the product distribution

p(θi|t(k)i,m) ∝
3∏

m=1

p(θi|t(k)i,m) (20)
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is Gaussian with mean and covariance matrix

µ
(k)
i = Σ

(k)
i

(
3∑

m=1

(Σ
(k)
i,m)−1µ

(k)
i,m

)
(21)

Σ
(k)
i =

(
3∑

m=1

(Σ
(k)
i,m)−1

)−1
. (22)

However, this can be problematic since distributions without
data have lower variance than the individual distributions and
as a result the contribution of experts has to be normalized,
which leads to the generalized product of experts as

µ
(k)
i =

1

3
Σ

(k)
i

(
3∑

m=1

(Σ
(k)
i,m)−1µ

(k)
i,m

)
(23)

Σ
(k)
i = 3

(
3∑

m=1

(Σ
(k)
i,m)−1

)−1
. (24)

Due to the structure of this aggregation, it exhibits the ben-
eficial property that a low uncertainty in a single estimator,
i.e., a covariance matrix Σ

(k)
i,m with small entries, is sufficient

to achieve an overall low uncertainty. This effect can also be
observed in the mean µ(k)

i , to which individual estimates
µ

(k)
i,m with high corresponding variance have a low impact.
4) Decomposition of Regression Parameters: For the sake

of readability we denote the elements of µ(k)
i corresponding

to a certain parameter a ∈ θ as â and accordingly ã denote
the corresponding diagonal elements of the covariance matrix
Σ

(k)
i . If not stated otherwise all quantities â and ã refer to

agent i at time-step k. By recalling Sec. II we want to find an
estimate for the parameters orj ,mo,Jo, j = 1, . . . , N , while
with the presented results, each agent i obtains estimates
for mo,mo

ori,
orj − ori. The COM orj , is not a direct

output of the linear Bayesian regression. When dealing
with deterministic estimates, one could straightforwardly
obtain ori by dividing the estimates for mo

ori and mo. For
Gaussian random variables, the stochastic equivalent to the
deterministic division is the ratio distribution [18]. The exact
distribution of the ratio of two Gaussian random variables
can be calculated in closed-form under the assumption of
strictly positive (or negative) mean values, but the resulting
expression is rather complicated, which is prohibitive for
further derivations. Therefore, we approximate the ratio
distribution by a Gaussian distribution, whose mean and
variance follow from a Taylor approximation of the exact
ratio distribution. Considering only the marginal distributions
described by the means m̂o

ori and the vector of diagonal
elements m̃o

ori of the covariance matrix Σ
(k)
i , this yields

the following identities

ôri =
m̂o

ori
m̂o

(25)

õri = (ôri)
2

(
m̃o

ori

m̂o
ori

2 +
m̃o

m̂2
o

)
. (26)

The error between the approximate Gaussian distribution
with mean (25) and standard deviation (26) and the exact

ratio distribution can be shown to be bounded if m̃o
ori

m̂o
ori

2

and m̃o

m̂2
o

are sufficiently small [18]. Since the variance of the
linear Bayesian estimator decreases with a growing number
of suitable data, the Gaussian distributions eventually satisfy
this condition, such that modelling the exact ratio distribution
using a Gaussian distribution is justified.

This estimate of ori directly allows us to obtain estimates
for orj , j 6= i. Since all considered distributions are Gaus-
sian, orj can be estimated by adding two Gaussian random
variables, which yields a posterior Gaussian distribution with
mean and variance

ôrj = ôri + ôrj,i (27)
õrj = õri + õrj,i. (28)

Finally, we can define the vector of means and diagonal
covariance elements of the local kinematic and dynamic
parameters for each agent i as

µ̂
(k)
i =

[
ôr1

T
, . . . , ôrTN , m̂o

]T
(29)

σ̂
(k)
i =

[
õr1

T
, . . . , õrTN , m̃o

]T
. (30)

5) Distributed Model Aggregation: It should be noted
that the estimation up until this point is done by each
agent individually, which results in N estimates µ̂(k)

i , σ̂(k)
i .

In order to combine the different predictive distributions,
we can follow a generalized product of experts approach
in principle again. However, the communication between
agents is restricted according to a communication graph G
in the considered multi-agent setting, such that the direct
aggregation of individual predictions is not possible. In order
to mitigate this issue, we formulate the generalized product
of experts aggregation as dynamic average computation, such
that consensus algorithms are applicable.

In order to achieve this, we transform the local distribution
parameters µ̂(k)

i , σ̂
(k)
i defined in (29)-(30) using

ψi=

[(
µ̂

(k)
i

σ̂
(k)
i

)T (
1

σ̂
(k)
i

)T]T
. (31)

To improve to the overall estimate we take the average value
of the individual estimates, computed in distributed fashion
using a consensus type algorithm. Hence, we define the
consensus states ξi ∈ R6N+2 with the dynamics

ξ
(k+1)
i = ξ

(k)
i +

N∑
j 6=i

Aij(ξ
(k)
j − ξ

(k)
i )+ψ

(k)
i −ψ

(k−1)
i (32)

and initial state ξ(0)i = ψ
(0)
i , following the approach pro-

posed in [16]. This dynamical system has been shown to
exhibit a bounded consensus error under Assumption 3.
Therefore, the local consensus states ξ(k)i can directly be
used for computing the mean and variance of the predictive
Gaussian distributions in a distributed way through[

µ̃
(k)
i

σ̃
(k)
i

]
= ζ

(
ξ
(k)
i

)
, (33)
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where ζ : R6N+2 → R6N+2 is defined as

ζ(ψ)=
[

ψ1

ψ3N+2
· · · ψ3N+1

ψ6N+2

1
ψ3N+2

· · · 1
ψ6N+2

]T
, (34)

where ψm denotes the mth entry of the vector ψ. Hence, a
simple dynamic average consensus algorithm in combination
with a generalized product of expert aggregation allows an
efficient combination of the predictive distributions resulting
from local estimators.

6) Learning Error Bound: Due to the strong theoretical
foundation of the employed methods, it is straightforward to
derive a probabilistic error bound for the estimated param-
eters. In order to bound the estimation of Bayesian linear
regression, we make the following assumption.

Assumption 4: We assume homoscedastic normally dis-
tributed errors ε ∼ N (0, β−1) of the output yi.
Although this assumption does not reflect more realistic
scenarios, where all observed states z are noisy, it is only
used to streamline the proof of the following theorem. In
fact, it is straightforward to derive error bounds for the esti-
mates obtained from Bayesian linear regression under more
general noise distributions since the function φ(·) defines
a kernel. This allows the application of error bounds from
Gaussian process regression, which admit, e.g., sub-Gaussian
noise [19] and arbitrary bounded noise [20]. As the necessary
derivations are rather cumbersome, they are omitted here due
to space limitations. For bounding the error caused by the
ratio distribution, we require the following assumption.

Assumption 5: For δ ∈ (0, 1), define η(k)
i ∈ R3N+1 as

η
(k)
i =

√
2 log

(
6N(3N+1)

δ

) 3∑
m=1

∣∣∣∣13Σ
(k)
i

(
Σ

(k)
i,m

)−1∣∣∣∣σ(k)
i,m,

(35)

where Σ
(k)
i,m, Σ

(k)
i are introduced in (19), (24), respectively,

and σ
(k)
i,m = diag(Σ

(k)
i,m). Let η(k)i,mo

and (m̂o)
(k)
i be the

elements of η(k)
i and µ(k)

i corresponding to the parameter
mo, respectively. Then, there exists a K ∈ N such that∣∣∣(m̂o)

(k)
i

∣∣∣− η(k)
i,mo

> 0 ∀i = 1, . . . , N, ∀k ≥ K. (36)

This assumption is not restrictive since η(k)
i is non-increasing

with respect to k, and a decrease can be guaranteed through a
sufficient excitation of the system. Therefore, this condition
basically requires that the trajectory xd is chosen suitably.
Finally, we employ the following assumption to ensure a
vanishing error of the dynamic average consensus.

Assumption 6: It holds that limk→∞ 1/σ̂
(k)
i > 0.

Since we do not assume an optimal excitation signal, we
cannot expect asymptotically vanishing covariance matrices
Σ

(k)
i,m in general. Therefore, limk→∞ 1/σ̂

(k)
i > 0 is often

satisfied in practice. Even if Assumption 6 does not hold,
the static consensus error can be bounded and is usually
very small, such that Theorem 1 holds approximately. Based
on these assumptions, we can bound the learning error as
shown in the following theorem.

Theorem 1: Consider a communication graph satisfying
Assumption 3, and training data satisfying Assumptions 4-6.

Then, the error between estimated parameters µ̃(k)
i and

unknown parameters ϑ = [orT1 · · · orTN mo]
T satisfies

lim
k→∞

P
(
|µ̃(k)
i −ϑ| ≤ η̂

(k), ∀i=1, . . . , N
)
≥ 1−δ (37)

for η̂(k) =

[(
η̂
(k)
or1

)T
· · ·

(
η̂
(k)
orN

)T
η̂
(k)
mo

]T
composed of

η̂
(k)
orj =

N∑
i=1

(
η
(k)
ori + η

(k)
i,orj,i

)
(
õrj
)(k)
i

∑N
n=1

1

(õrj)
(k)

n

(38)

η̂(k)mo
=

N∑
i=1

η
(k)
i,mo

(m̃o)
(k)
i

∑N
n=1

1
(m̃o)

(k)
n

(39)

η
(k)
ori = max


∣∣∣∣∣∣∣
(
m̂o

ori

)(k)
i

(m̂o)
(k)
i

−

(
m̂o

ori

)(k)
i
± η(k)

i,mo
ori

(m̂o)
(k)
i ± η

(k)
i,mo

∣∣∣∣∣∣∣
, (40)

where η(k)
i,orj,i

, η(k)
i,mo

ori
and η

(k)
i,mo

are the elements of η(k)
i

corresponding to the parameters orj,i, mo
ori and mo,

respectively.
Proof: It follows from Bayes’ theorem, standard tail

bounds for Gaussian distributions and the union bound that

P
(∣∣∣µ(k)

i,m−θi
∣∣∣ ≥ γσ(k)

i,m

)
≤ 2(3N+1) exp

(
−γ

2

2

)
.

The joint probability over all local estimators m = 1, . . . , 3
and all agents i = 1, . . . , N can be obtained through a
second application of the union bound, such that we obtain
γ =

√
2 log (6N(3N + 1)/δ). Next, we define the weight

matrices W (k)
i,m = Σ

(k)
i (Σ

(k)
i,m)−1/3. It it is straightforward

to see that
∑3
m=1Wi,m = I holds, such that the estimation

error after the first generalized product of experts aggregation
can be bounded with probability of at least 1− δ by

|µ(k)
i − θi| ≤

3∑
m=1

γ|W (k)
i,m|σ

(k)
i,m = η

(k)
i .

Due to the different treatment of estimates in the following
processing steps, a case distinction is necessary. In the first
case, we consider the error bound for µ̃(k)

i,3N+1. Since this
value is computed using the distributed generalized product
of experts aggregation of µ

(k)
i,3N+1, the error bounds are

aggregated similarly as within each agent, with the slight
difference of an additional consensus error κ(k)i,3N+1, whose
specific expression is postponed for the moment. This yields
|µ̃(k)
i,3N+1−ϑ3N+1| ≤ η̂(k)3N+1 +κ

(k)
i,3N+1. For all other entries

of µ̃(k)
i , there is exactly one agent computing the estimate

used in the distributed consensus based on (25), while all
other agents compute the estimate through (27). Since the er-
ror bound defines a confidence interval, the quotient between
(25) and the corresponding entry of ϑ can be straightfor-
wardly bounded using interval arithmetic [21], which results
in (40) due to (36). The estimate in (27) is obtained by adding
the result of (25) to the corresponding entry of µ(k)

i . Thus,
the error bound for (27) is obtained by adding the individual



This is the accepted version of an article that has been published in 60th IEEE Conference on Decision and Control (CDC).
The final published article can be found at DOI:10.1109/cdc45484.2021.9683772

error bounds. Due to the distributed generalized product of
expert aggregation, we have in the limit k →∞ that

lim
k→∞

P
(
|µ̃(k)
i −ϑ| ≤ η̂

(k)+κ
(k)
i , ∀i = 1, . . . , N

)
≥ 1−δ

such that it remains to prove that the consensus error
κ
(k)
i asymptotically vanishes. In order to show this, we

make use of [16, Corollary 3.1], which is applicable due
to Assumption 3, and requires the difference between the
inputs to the dynamic average consensus to vanish, i.e.,
ψ

(k+1)
i −ψ(k)

i
!→ 0. This holds in the considered approach,

since the posterior variance of Bayesian regression is non-
increasing with respect to k and bounded from below by 0,
such that the monotone convergence theorem guarantees that
Σ

(k)
i,m → Σ̄ for some Σ̄ ∈ R(3N+1)×(3N+1). This directly

implies convergence of µ(k)
i,m, and since 1/σ̂

(k)
i is assumed

to not diverge, ψ(k+1)
i −ψ(k)

i → 0 holds.

B. Rotational Regression Problem

Based on the results of the translational regression task,
in this section we derive the estimator for the rotational
degrees of freedom. Due to limited space and similarity in
the derivation, we will omit most of the details and focus on
the differences. Following similar steps as in Sec. III-A.1 we
obtain the rotational model for each agent i as

yri = φrTi θ
r (41)

yri (z) = −
N∑
j=1

[
S(rj)

(
mj∆p̈j + dj∆ṗj + kj∆pj + fdj

)
+Jj∆ω̇j + δj∆ωj + κ′j∆εj + tdj

]
φrT(zi) = V (Ro) ([.ω̇i] + S(ωi)[.ωi])

θr =
[
oJ11
o

oJ12
o

oJ13
o

oJ22
o

oJ23
o

oJ33
o

]T
[.ω̇] =

ω̇1 ω̇2 ω̇3 0 0 0
0 ω̇1 0 ω̇2 ω̇3 0
0 0 ω̇1 0 ω̇2 ω̇3


where V is the matrix such that[
J11
o J12

o J13
o J22

o J23
o J33

o

]
= V θr. Note that for

the model (41) information about the unknown parameters
rj and states zj of all agents is required. While it is possible
to reformulate the equations using the techniques presented
for the translational estimator, this would lead to a high
number of unknown parameters for the regression task. In
this work we follow a different approach by noticing that
estimates ori and ori,j exist from the first estimator. As a
result, by applying the transformations (6), (8), (9), agent i
can obtain an estimate of the states zj of agent j for i 6= j.
With this, we can reformulate

yri (zi, µ̃
(k)
i ) = −

N∑
j=1

[
S(r̂j)

(
mj∆̂p̈j + dj∆̂ṗj + kj∆̂pj

)
+Jj(ω̇i − ω̇dj ) + δj(ωi − ωdj ) + κ′j∆εj + S(r̂j)f

d
j + tdj

]
.

(42)

Then, following the same procedure as for the translational
estimator, we can use this model to perform Bayesian linear
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Fig. 2. Desired angular object velocity ωd
o around all axis (x, y, z).

regression, aggregate the individual estimates using the gen-
eralized product of experts, and perform dynamic average
consensus on the resulting estimates. Note that there is no
decomposition step required since the parameters θr resem-
ble the desired parameters, i.e., θr = ϑr. Theorem 1 can
be straightforwardly adapted to this procedure by bounding
the additional error caused by using yri (zi, µ̃

(k)
i ) as training

target instead of the true value yri (zi,ϑ). Since the function
yri (zi, ·) is Lipschitz continuous, the difference between
these two targets is bounded by ‖yri (zi, µ̃

(k)
i )−yri (zi,ϑ)‖ ≤

Lyr‖η̂(k)‖. This can directly be propagated through the
Bayesian linear regression, i.e., the analogue of (18) for the
rotational regression task. Thereby, the error caused by the
targets yri (zi, µ̃

(k)
i ) in the regression can be bounded by

βLyr‖φ(z(k))‖‖Σri,m‖‖η̂k‖.

IV. NUMERICAL EVALUATION

In this section we evaluate the proposed learning frame-
work in a simulated cooperative manipulation task, where
four agents cooperatively manipulate a hollow sphere.

A. Simulation Setup

The agent dynamics in (1) are chosen with homogeneous
parameters mi = 1,Ji = 0.5I3, di = 150, δi = 1, ki =
100, κi = 0.15 for each agent i. The agents cooperatively
grasp and manipulate a hollow sphere with radius ro = 0.325
and dynamics (4), where mo = 10, Jo = 2

3mor
2
o . The

gravitational acceleration is approximated as g = 9.81.
The initial values for the estimator are drawn from
a normal distribution as µ

(0)
i,m ∼ N (θi, ς

2
i ), where

ς =
[
0.51T9 51T3 10 1T6

]
. The initial uncertainty is

chosen as Σ
(0)
i,m = 0.5I . The communication graph is given

as a circular graph with adjacency matrix

A =


1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

 . (43)

The outputs yi are corrupted by additive white noise
with variance β−1 = 2, which is also the parameter
chosen in the translational estimator. For the rotational
estimator we choose βr << β during the first second and
afterwards βr = β. This is done such that only after the
estimates θ have converged, the estimation of θr starts.
The excitation signal consists of purely rotational desired
object velocities as depicted in Fig. 2. The individual
desired endeffector motion is then obtained via (11).
Since for this transformation the actual values of ori are
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Fig. 3. Estimates (left) and estimation errors (right) including the
uncertainty plotted as 10σ as shaded area. From top to bottom: mass mj ,
COM ori, inertia Jo.

required, which are unknown, they are drawn from a normal
distribution ∼ N (ori, 0.01) for the purpose of simulation.

B. Simulation Results

Due to space constraints, we only discuss the results for
the first agent and note that the remaining agents yield similar
results. The estimates including uncertainties are depicted in
the left of Fig. 3, while the estimation error is presented
in the right of Fig. 3. The estimation error is defined as the
Euclidean norm of the difference between true and estimated
value el = ||µ̃l−ϑl||, where an index l ∈ {m, r, J} denotes
the entries corresponding to the parameters mo,

ori,
oJo,

respectively. In the upper two plots it can be seen that the es-
timates for the mass mo and the COM ori converge towards
the true values within a few time-steps, while the uncertainty
decreases. After one second, the estimation errors for mo are
given as em = 0.008, which corresponds to a relative error of
less then 1%, and er ≈ 0.02 for the COM, corresponding to
a relative error of around 6%. After one second the estimator
for the inertia is activated and the estimation error decreases,
as shown in in the bottom plots of Fig. 3. After the simulation
time of seven seconds an error of eJ ≈ 0.1 for the inertia re-
mains, which corresponds to roughly 8% of the actual value.
Note that the estimate is accompanied with a relatively high
uncertainty, such that for critical tasks control parameters
could be updated to account for the uncertainty [11], which is
not possible with standard approaches, which do not provide
this measure of uncertainty.

V. CONCLUSION

In this paper we present a novel distributed online learn-
ing framework for cooperative manipulation using Bayesian
principles. We derive a generalized linear model, which only
requires locally available information. With this model the
parameters are identified with Bayesian linear regression
and combined with dynamic average consensus to obtain
a common estimate. This allows us to provide a bound

for the prediction error with high probability and iterative
learning with constant complexity, making it suitable for
online learning. The approach is illustrated in a simulated
cooperative manipulation setting.
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