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Meta-Reinforcement Learning in Non-Stationary
and Dynamic Environments

Zhenshan Bing1, David Lerch1, Kai Huang∗, and Alois Knoll, Senior Member, IEEE

Abstract—In recent years, the subject of deep reinforcement learning (DRL) has developed very rapidly, and is now applied in various
fields, such as decision making and control tasks. However, artificial agents trained with RL algorithms require great amounts of
training data, unlike humans that are able to learn new skills from very few examples. The concept of meta-reinforcement learning
(meta-RL) has been recently proposed to enable agents to learn similar but new skills from a small amount of experience by leveraging
a set of tasks with a shared structure. Due to the task representation learning strategy with few-shot adaptation, most recent work is
limited to narrow task distributions and stationary environments, where tasks do not change within episodes. In this work, we address
those limitations and introduce a training strategy that is applicable to non-stationary environments, as well as a task representation
based on Gaussian mixture models to model clustered task distributions. We evaluate our method on several continuous robotic
control benchmarks. Compared with state-of-the-art literature that is only applicable to stationary environments with few-shot adaption,
our algorithm first achieves competitive asymptotic performance and superior sample efficiency in stationary environments with
zero-shot adaption. Second, our algorithm learns to perform successfully in non-stationary settings as well as a continual learning
setting, while learning well-structured task representations. Last, our algorithm learns basic distinct behaviors and well-structured task
representations in task distributions with multiple qualitatively distinct tasks.

Index Terms—Meta-reinforcement learning, task inference, task adaptation, Gaussian mixture model, robotic control.

✦

1 INTRODUCTION

HUMANS are exceptionally proficient in learning new
skills based on very few examples and trials, since

they have well-established representations of the world and
great amounts of experience from previously acquired skills
from which they can learn. In contrast, modern artificial
agents trained with standard RL algorithms usually lack
this ability, since they can only learn new skills from scratch
by performing extensive training. For example, for learning
the dexterity for an artificial robotic hand to solve a Ru-
bik’s Cube, OpenAI reported a cumulative experience of 13
thousands years [1]. On the contrary, humans are able to
manipulate the cube nearly instantaneously, as they have
learned how to manipulate objects in general beforehand.

One approach for tackling this open challenge is pre-
sented by meta-RL, which aims to learn a priori from a set of
training tasks with shared structure, to enable quick adapta-
tion to similar but new tasks, instead of learning them from
scratch. While the general concept of meta-learning was pro-
posed decades ago [2], modern meta-learning approaches
can be categorized into three lines of work. A first line of
work utilizes recurrent neural networks (RNNs) fed with
data from previous transitions to implicitly obtain a notion
of the environment and task through the hidden states of
the recurrent units [3], [4]. A second category of approaches
is based on model-agnostic meta-learning (MAML) [5]. With
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this method, agents learn a highly sensitive parameter prior,
which forms the basis for quick adaptation to new tasks
through gradient descent. Both concepts adopt on-policy
RL algorithms, leading to sample-inefficient training. Based
on this premise, Rakelly et. al. [6], in a third line of work,
proposed a model-free and off-policy method, utilizing a
variational auto-encoder (VAE) [7] in combination with soft
actor-critic (SAC) [8]. Their algorithm probabilistic embed-
dings for actor-critic RL (PEARL) [6] achieves state-of-the-
art results and significantly outperforms previous methods
in sample efficiency and asymptotic performance.

Despite the great improvement, PEARL has several lim-
itations and is far cry from achieving human-like perfor-
mance or even applicability outside of stationary scenarios.
Furthermore, all previous meta-RL approaches, including
PEARL, are only developed for narrow task distributions.
Using a housekeeper robot as an example, with current
methods a robot would be able to quickly learn how to pick
up and place objects in a new position, if it had been trained
previously on a set of different positions. However, for the
robot to be a helpful housekeeper, we would like to teach
it how to set a table for dinner once it has already learned
to unload the dishwasher, open and close cupboards and
similar tasks, i.e., we expect it to learn new and qualitatively
distinct tasks based on a broad set of skills it has already
acquired. Supported by [9], we suspect one reason for this
limitation of PEARL is the usage of a single Gaussian as
latent distribution and instead propose a generative model
that leads to a mixture of Gaussians as latent distribution.

Furthermore, in the literature, there is currently no algo-
rithm that is model-free and applicable to non-stationary
environments. Previous approaches are either model-free
and achieve high performance, but are only applicable
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to stationary scenarios (MAML [5], PEARL [6], CASTER
[10]), or applicable to non-stationary environments, but
model-based, thus sample-efficient but in general achieving
less asymptotic performance (GrBAL [11], MOLe [12]), or
model-free and applicable to non-stationary environments
but on-policy, such that they exhibit bad sample efficiency
(RL2 [3], LSTM A2C [4], SNAIL [13], Rubik’s Cube [1]).
Therefore, we build on the sample efficiency and asymptotic
performance of PEARL and design a zero-shot adaptation
strategy applicable to non-stationary environments.

In this work, we introduce Continuous Environment
Meta-Reinforcement Learning (CEMRL), an efficient, off-
policy algorithm with zero-shot adaptation, applicable to
a variety of meta-RL settings such as non-stationary envi-
ronments and broad task distributions, based on three main
concepts. First, we design a zero-shot adaptation strategy
based on recent context to transfer the sample efficiency
and asymptotic performance of previous few-shot methods
to non-stationary and continual learning settings. Second,
compared with previous methods using only a Gaussian for
task representation, we derive an encoder from a genera-
tive model based on Gaussian mixture models (GMMs), to
represent complex task distributions with cluster structure.
In providing discrete task indicators naturally by design,
the encoder constitutes the basis for transferring successful
methods from multi-task RL to the meta-RL setting in
the future. It should be noted that, although Gaussian or
Gaussian mixture models are widely used to approximate
the dynamic models with uncertainty and stochasticity in
model-based RL algorithms, the novelty of using GMM
in CEMRL is to formalize the concept of the parametric
and non-parametric variability in meta-RL tasks, in which
the mixtures are used to model the non-parametric base
tasks and each mixture is used to model the parametric
sub-tasks conditioned on its category. Third, our encoder
and decoder are trained in an unsupervised manner, by
reconstructing the task describing the Markov decision pro-
cess (MDP), which allows them to learn a well structured
latent space with few experience. This strategy decouples
the training of the task inference encoder from the training
of the conditioned policy and avoids the problem of the
complex joint training. Finally, CEMRL is demonstrated by
experiments in several continuous locomotion problems.
On four accepted meta-RL benchmarks, CEMRL achieves
competitive performance and superior sample efficiency
compared with PEARL, while it learns successful behaviors
in non-stationary environments, that PEARL cannot solve.
We also show that CEMRL can learn distinct behaviors and
well-structured task representations in task distributions
with multiple qualitatively distinct tasks. To the best of the
authors’ knowledge, CEMRL is the first model-free meta-
RL algorithm that can solve non-stationary environments
requiring zero-shot adaptation and uses GMMs as genera-
tive models to represent broad task distributions.

2 BACKGROUND

In standard reinforcement learning, a task can be formalized
as an MDP and the goal is to find a policy that allows an
agent to solve this task, i.e., maximizing the expected reward
in this MDP. Multi-task and meta-reinforcement learning

extend this concept and aim to solve not only one specific,
but multiple tasks with some common structure. This can be
interpreted as an MDP where both the transition and reward
function are dependent on some task indicator z. Although
it is possible to learn a specific policy πi for each task i from
scratch, multi-task RL aims to learn one single policy that
is able to generalize and solve all tasks simultaneously and
learn more efficiently, leveraging the shared structure of the
tasks. Meta-RL, often framed as learning to learn, aims to
leverage a set of tasks with shared structure in a training
phase, such that it can quickly adapt to new and similar
tasks that are not seen during training.

2.1 Meta-Reinforcement Learning
A meta-reinforcement learning problem consists of a set
of training tasks Dtrain

T and a set of test tasks Dtest
T , both

drawn from the same distribution over tasks p(T ). The
agent is supposed to leverage the training tasks during so-
called meta-training in such a way that it is able to perform
the previously unseen test tasks during the so-called meta-
testing by small adaptations only, without needing to learn
them from scratch. The meta-RL objective is as

θ∗ = argmax
θ

ET ∼Dtest
T

Eτ∼p(τ |πθ)

∑
t≥0

γtrt

 , (1)

Based on the general problem definition of meta-RL, we
introduce these two perspectives of how to view and tackle
the meta-RL problem, which provide the theoretical frame-
work of our algorithms.

2.1.1 Meta-RL as learning an adaptation procedure
The first approach aims to learn a procedure uϕ for adapting
the policy πθ to specific tasks. During training, the agent
uses the training tasks to learn the adaptation procedure
and applies it to new tasks during the test phase. This can
be formally defined as:

θ∗,ϕ∗ = argmax
θ,ϕ

ET ∼Dtest
T

Eτ∼p(τ |πθ′ )

∑
t≥0

γtrt

 ,

where θ′ = uϕ (DT ,θ) .

(2)

We denote the adaptation procedure (also referred to as up-
date function) as uϕ(DT ,θ), to emphasize that it takes the
initial parameters θ and returns task-specific parameters θ′

based on the data from task DT . The specification of the pro-
cedure is abstractly denoted as ϕ and depends significantly
on the concrete workings of the specific algorithm. During
meta-training, the agent learns optimal initial parameters
θ∗ and an optimal adaptation procedure ϕ∗, which are the
basis for adaptation during meta-testing.

2.1.2 Meta-RL as task inference
The second approach views meta-RL as an extension of
multi-task RL. While in multi-task RL task information z is
known as a prior to the algorithm for all tasks, it is unknown
in meta-RL tasks. From this perspective, meta-RL can be
viewed as learning a multi-task RL policy π(a | s, z), while
additionally learning how to infer the task z, using the set
of training tasks Dtrain

T . Therefore, some inference method
is required to infer the task from the transition data.
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2.2 Meta-RL Environments
In this section, we introduce the characteristics of the task
distribution p(T ) and how such a distribution is constituted
in terms of the underlying MDPs. In this work, we use the
terms task distribution and environment interchangeably.
The environment is a set of tasks with a shared structure,
in which each task is defined by its specific MDP.

2.2.1 Parametric and Non-Parametric Variability
To allow an agent to generalize over training and test
tasks, they need to share some common structure. Yu et. al.
[14] categorized task distributions into parametric and non-
parametric task distributions. In parametric environments,
the reward and transition function of the specific MDP differ
only in specific parameters. Formally, we can denote such an
environment and a set of tasks DT of N tasks as

DT = {Ti}Ni=1 = {pi(st+1 | st,at,ϑi), ri(st,at,φi)}Ni=1,
(3)

whereϑi andφi are parameters of the transition and reward
function, respectively, drawn from some distribution. Each
task Ti is an individual MDP, but the state space, action
space, and discount factor are shared among tasks. In non-
parametric environments, the tasks are qualitatively distinct
and cannot described by parameter variations. Both prop-
erties can lead to environments with cluster-like structure.
They consist of a number of qualitatively distinct tasks
(referred to as base-tasks), where each base-task itself has
multiple sub-tasks that constitute a parametric distribution.

2.2.2 Stationary and non-stationary environments
Environments can also be classified as stationary and non-
stationary environments. In stationary environments, the
task specification changes at an episodic level, i.e., the
task describing MDP is fixed during an episode and only
changed between episodes. Therefore, an algorithm is only
required to perform a few-shot adaptation to solve such
environments. In contrast, in non-stationary environments,
the task can potentially change every timestep. To solve such
an environment, the algorithm must perform a zero-shot
(online or continuous) adaptation. However, to be able to
utilize data from prior timesteps, the environment still needs
to exhibit local consistency [11] over a period of time, i.e., the
environment stays fixed for at least some timesteps. For ex-
ample, an agent running at a specified velocity throughout
the episode without anything changing in the environment
is a stationary task. While in a non-stationary task, the goal
velocity can change suddenly or the robot can suddenly
suffer from a motor malfunction, which manifests as a new
transition function from an MDP point of view.

2.2.3 Adaptation in Meta-RL environments
In meta-RL there are two different settings for the adapta-
tion to new tasks, few-shot (episodic) adaptation and zero-
shot (online) adaptation. In a few-shot adaptation setting,
when being exposed to a new task, the agent is allowed
to collect data in this new task for a few episodes and
adapt its policy after each episode based on this data, to
get an increasingly better notion of the environment. Due to
this episode-wise adaptation, few-shot adaptation is only
applicable to stationary environments. Furthermore, this

method is only reasonable if the agent does not need to
perform the task successfully directly after being exposed to
a new task, but only after a few trials. In contrast, in a zero-
shot adaptation setting, the agent is supposed to perform
successfully in a new task instantaneously, without any
previous data collection. This makes it necessary to adapt
the behavior within the episode, at the transition level.
Compared to few-shot adaptation, zero-shot adaptation is
not only applicable to stationary, but also to non-stationary
environments, where the agent might be exposed to a new
task at every timestep and has to react immediately.

2.2.4 Classic benchmark environments
One category of problems used exhaustively throughout the
literature is high-dimensional locomotion tasks based on the
MuJoCo physics engine [15], where simple simulated robot
agents are required to run. Several papers in the field (e.g.,
[5], [16], [11], [6], [17]) used extensions of these problems as
multi-task and meta-RL environments. Thereby, agents are
required, for example, to run in different directions, run at
different speeds (parametric reward functions), or physical
properties such as mass, damping, and friction are changed
(parametric transition functions). The typical robotic agents
are Half-Cheetah, Ant, Walker, and Hopper [18].

2.3 Probabilistic Embeddings for Actor-Critic RL
A major baseline for our work is the meta-RL algorithm
probabilistic embeddings for actor-critic RL (PEARL) [6].
PEARL is developed for fast few-shot meta-RL and sample-
efficient training. Compared to other meta-RL algorithms,
PEARL is an off-policy, model-free algorithm and achieves
good asymptotic performance as well as sample efficiency.

PEARL tackles the meta-RL problem in the notion of
the meta-RL as task inference. It combines a VAE for task
inference with SAC [8] for policy learning, where the state
is augmented by the task encoding z. The encoder of the
VAE uses so-called context tuples cTn = (sn,an, rn, s

′
n)

as inputs, incorporating MDP defining data for each tran-
sition, and encodes them as independent Gaussian factors
Ψϕ(z | cn). The encoder network is implemented as a
multilayer perceptron (MLP). To obtain the overall posterior
estimate qϕ(z | c1:N ), the Gaussian factors are multiplied

qϕ(z | c1:N ) ∝
N∏

n=1

Ψϕ(z | cn) (4)

Hence, the encoder is permutation-invariant and can incor-
porate arbitrary amounts of sampled context from a task.
For reconstruction and decoding, PEARL uses the Bellman
error LQ of the critic from SAC as reconstruction loss.
Thereby the encoder receives gradients from the Q-function.
The corresponding ELBO for the VAE is

ET

[
Ez∼qϕ(z|cT ) [LQ(s,a, r, s

′, z)] + β KL
(
qϕ(z|cT )||p(z)

)]
(5)

with p(z) ∼ N (0, I), a unit Gaussian prior over tasks and
β, a hyperparameter to weight the KL-divergence.

2.3.1 Meta-Training
Each training epoch consists of a data collection and op-
timization phase. First, for each task, the data is collected
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using the task conditioned policy πθ(a|s, z), where z is
either sampled from the posterior qϕ(z | c1:N ) or the prior
p(z). The data is stored in an individual replay buffer Bi for
each task. Thereby, PEARL assumes clear task boundaries
and knowledge from which task data is currently collected.
In the optimization phase, for each task, the losses for
the VAE and SAC are computed and the gradient of the
averaged losses is used to update the parameters of the
policy, critic and encoder.

2.3.2 Meta-Testing
During meta-testing, the policy is adapted to new tasks
in the few-shot manner. For few episodes, context data is
collected and used to update the posterior belief distribu-
tion for the task at hand. With newly collected data from
each episode, the task hypothesis z becomes increasingly
accurate and the task can be solved increasingly optimally.
The average reward from the last episode is reported as the
test performance.

3 RELATED WORK

The general idea of meta learning aims to learn a prior from
a distribution of tasks, to enable the agent to adapt to similar
tasks quickly. Modern meta-RL approaches can be classified
into three main lines of work, with each approaching the
meta-RL problem statement in a different way.

3.1 Recurrence-Based Meta-RL

The first category of approaches uses recurrent models, such
as recurrent neural networks (RNNs) with long short-term
memory (LSTM) or gated recurrent units (GRUs), as policy
networks. The basic idea behind these approaches is to
leverage the ability of recurrent models to represent long-
term relationships in meta-RL by feeding relevant transition
data from previous experience into the network. Concretely,
at each timestep, the network receives a tuple of action,
state, reward, termination signal, and other task-relevant
information depending on the specific setting. Through
the sequence of transitions, the recurrent units are able
retrieve specific task information. RL2 [3] leveraged the
hidden states of GRUs to encode and memorize relevant
task information over time steps and episode boundaries.
LSTM A2C [4] followed a similar approach but used LSTM
and the advantage actor-critic algorithm [19] as the opti-
mizer. Both RL2 and LSTM A2C were validated on bandit
problems and visual navigation tasks. Similarly, SNAIL [13]
used a combination of temporal convolutions [20] and soft
attention [21] as a more efficient alternative to recurrent
units. Further, OpenAI [1] achieved impressive results in
dexterous manipulation by solving a Rubik’s cube with
a robotic hand. Their algorithm was based on an LSTM
policy network, optimized with PPO. However, the training
required huge amounts of data and time.

The methods from this line of work approach the meta-
RL problem in the notion of meta learning in POMDPs, as
they implicitly contain a belief state of the task in the hidden
state of the LSTM or GRU. In general, recurrence-based
meta-RL algorithms are applicable to both stationary and
non-stationary settings, as the hidden states of the recurrent

units are updated at each timestep. However, due to the
RL optimizers used, they are on-policy and comparably
sample-inefficient.

3.2 Gradient-Based Meta-RL
Gradient-based methods build on the foundation of MAML
[5] and leverage the perspective of meta-RL as the adap-
tation procedure. MAML aimed to learn a highly sensitive
weight initialization from a set of given tasks, in order to
adapt quickly to new tasks by taking only few gradient
steps. A great benefit of MAML is the fact that it is model-
agnostic, i.e., the algorithm can be used with any architec-
ture of differentiable model, such as neural networks.

In the original paper [5], the MAML adaptation proce-
dure is used in a model-free, episodic adaptation setting for
RL. Furthermore, as the algorithm needs to collect new data
for adaptation, it is strictly limited to few-shot settings. Al-
Shedivat [22] proposed a method for few-shot adaptation in
non-stationary environments based on MAML. They view
non-stationarity as a Markov chain of tasks that are intro-
duced on an episodic level. Nagabandi et al. [11] developed
GrBAL, a model-based online adaptation algorithm based
on MAML. Instead of adapting a policy network on an
episodic basis, they follow a model-based approach and
adapt the parameters of a dynamics function network on
a per-time-step basis. Thus, the GrBAL can cope with non-
stationary, locally consistent environments. Extending Gr-
BAL to the continual learning setting, Nagabandi et al. [12]
introduced Meta-Learning for Online Learning (MOLe). The
method combined MAML with an Expectation-Maximation
(EM) algorithm and a Chinese restaurant process as task
prior. With this approach, new tasks can be learned with-
out forgetting old tasks. Additionally, in contrast to the
previously described method [11], which only takes data
from some previous timesteps into account, all data can be
incorporated to build up specific task knowledge.

3.3 Inference-Based Meta-RL
Inference-based algorithms approach the meta-RL objective
in the notion of meta-RL as task inference. The basic idea
is to identify the task and learn a task-conditioned policy.
This requires a mechanism to learn task representations and
identify single tasks with some strategy for policy learning.

Gupta et al. [23] first utilized the concept of encodings
in a latent space, by introducing structured noise from a
latent space into a policy network. The noise from the latent
space is modeled as Gaussian distribution. With the param-
eters of the Gaussian being learnable per task, it can be
used to encode task information. Their algorithm MAESN
optimizes an adaptive policy together with the latent space
using MAML. Through this, during test-time, MAESN can
efficiently test different task hypotheses imposed through
Gaussian parameters and adapt to collected data, similar to
MAML. In contrast, Lan et al. [24] trained an RNN encoder
for each task in an MAML-like manner together with a
shared policy. This method is especially effective for out-of-
distribution tasks during meta-testing. Hausman et al. [25]
learned a skill embedding space with a combination of a
variational inference formulation and entropy-regularized
policy gradient formulation. Through modulations in the
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skill embedding space, the agent can interpolate between
different skills. Igl et al. [26] proposed a method leveraging
an ELBO-based auxiliary loss and incorporating an induc-
tive bias as a task identification approach. Humplik et al.
[17] motivated their method from the POMDP view on
meta-RL and use what they call privileged task informa-
tion, which is simply task-specifying parameters like goal
positions etc., which are known for hand-crafted environ-
ments. Utilizing this information, task inference is reduced
to supervised learning of privileged information. Thus it is
possible to separate task inference from task fulfillment, i.e.,
no information must be backpropagated from the policy to
the inference module. However, this method is based on
the strong assumption of access to privileged information.
Most related to our work, Rakelly [6] proposed PEARL, an
efficient, off-policy algorithm, that combines a VAE with
SAC, as discussed in Section 2.3. Extending PEARL to
broader task distributions, Ren [9] proposed a structured
latent space with a combination of a Dirichlet distribution
as base task distribution and Gaussian distribution as so-
called style factors. They conduct validation experiments on
a point-robot navigation task. During the completion of our
work, Wang et al. [10] present CASTER, which adopts a
latent Graph Neural Network architecture [27] as encoder
and decomposes meta-RL into task exploration, task infer-
ence, and task fulfillment. They report slightly increased
performance regarding efficient exploration, performance,
and sample efficiency in stationary environments.

4 PROBLEM STATEMENT

In this work, we focus on meta-RL methods for continuous
control in non-stationary and broad task distributions. We
approach the problem in the notion of meta-RL as task
inference and utilize an encoder for task inference and a
task-conditioned policy πθ(a | s, z) as the actor. In partic-
ular, we aim to achieve the following goals. Our method
should be applicable to a variety of task distributions (also
referred to as environments). The task distributions can
either be parametric, i.e., the MDPs that describe the tasks
differ only in specific parameters, or non-parametric, i.e.,
there is a number of qualitatively distinct base tasks, where
each base task itself has multiple sub-tasks that constitute
a parametric distribution. Further, the environments can
either be stationary, which means the task is the same
during the whole episode and its corresponding MDPs is
fixed respectively, or non-stationary, which means the task
can potentially change at every timestep within an episode.
Beyond that, we consider continual learning (also known as
lifelong learning) environments, in which the tasks are not
accessible right from the start, but introduced sequentially
or are dependent on each other. To cope with the task
changes within episodes in non-stationary environments
and continual learning settings, we aim to develop an al-
gorithm that is able perform zero-shot adaptation.

As introduced and explained in prior work, the task
of designing efficient model-free meta-RL algorithms that
can perform robotic tasks in non-stationary environments
remains unsolved. And to the best of our knowledge, there
is no approach that combines all advantages from previous

work, i.e., a model-free, off-policy algorithm that is applica-
ble to non-stationary environments. Furthermore, previous
inference-based meta-RL methods use simple latent spaces
for task representation, e.g., a single isotropic Gaussian in
PEARL. However, to represent complex task distributions,
these representations are not rich enough.

5 METHODOLOGY

In this section, we first give an overview of our proposed
algorithm CEMRL. Then we explain the strategy to make
CEMRL applicable in non-stationary environments, derive
the generative model and explain how we implement the
resultant encoder and decoder. We finally summarize the
algorithm CEMRL with its pseudocode.

5.1 Overview
In this work, we leverage the notion of meta-RL as task
inference. Similar to PEARL, we also follow the paradigm
that uses an encoder to generate task embeddings and pro-
vide this information to a goal-conditioned policy learned
via SAC. Different from PEARL, we first redesign the en-
coder strategy and the training procedure with zero-shot
adaptation for applicability to non-stationary environments.
Second, we introduce a decoder, which serves as an auxil-
iary loss that allows the encoder to be trained in an un-
supervised manner through the reconstruction of the MDP.
This decouples the training of the encoder from the training
of the conditioned policy via SAC and avoids the problem
of joint training. The architecture of CEMRL is shown in
Figure 1. The algorithm is briefly explained as follows.

• During each meta-training iteration, we first col-
lect training data from the different training tasks.
Thereby, at each timestep t, we feed the recent con-
text into the encoder to identify the current task. The
recent context is a set of transitions (state, action,
reward, next state) of a specified number of previous
timesteps. The transitions are encoded individually
and the resulting encodings are fused to get an
overall task encoding zt for the timestep t. The
task encoding is provided to the conditioned policy,
which outputs an action, based on this encoding and
the current state.

• During the optimization phase, we first train the
encoder and decoder in an unsupervised manner
to learn a task representation by reconstructing the
underlying MDP. This works by encoding the context
from a specific timestep in the collected data and
using the decoder to predict the reward and next
state based on state, action, and the computed task
encoding. Thereafter, we use the trained encoder to
label each transition in the replay buffer and attach
the computed task encoding to the transition. By
doing so, we are able to train the conditioned policy
via SAC, where the state is appended with the task
encoding, independently from the task representa-
tion learning.

• During meta-testing, CEMRL is able to identify and
adapt to a task with zero-shot adaptation, as the en-
coder infers the task on a per-time-step basis, allow-
ing the policy to react to task changes immediately.
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st−1 at−1 rt−1 s′t−1

st−2 at−2 rt−2 s′t−2

...
st−T at−T rt−T s′t−T

Recent context cTt

from time step t Encoder

ϕ

ϕ

ϕ

ϕ

Fusion

Decoder

SAC

Ldecoder

LSAC

task encoding
zt

st+1

rt

at

Fig. 1: Components of our algorithm: The encoder learns task encoding for recent context from gradients (orange) of the
decoder and provides it as input for SAC.

5.2 Online Adaption to Non-Stationary Environments

PEARL is limited to few-shot meta-RL, since the algorithm
by design is build on the assumptions of stationary envi-
ronments: For task identification, transitions from arbitrary
previous timesteps are considered, the adaptation proce-
dure is performed on a per-episode basis, and the algo-
rithms utilizes ”warm-up” episodes for task identification
and adaptation before being able to perform the requested
task. Further, data is collected episode-wise from a specific
task and stored in individual replay buffers. However, in
non-stationary environments the task can change at every
timestep and corresponding adaptation is needed at once.

As a naive solution, assuming a setting where is pos-
sible in a few-shot setting and zero-shot adaptation is
needed only during meta-testing, one could simply retain
the PEARL meta-training, and use only the latest transition
as context for the encoder and perform task inference every
timestep during meta-testing. However, we find that encod-
ings learned in a few-shot adaptation setting during meta-
training are not transferable to the zero-shot adaptation set-
ting during meta-testing. This can be explained by a distri-
bution shift between few-shot training and zero-shot testing.
During meta-training, transitions from arbitrary situations
in the task are used to determine the task, which represents
a broad distribution. In contrast, during meta-testing, only
few highly related transitions are used to determine the task.
Therefore, during meta-testing, the encoder may produce
encodings that the policy was not trained for, and thus fail
to solve the task.

Based on this observation, we use the following modified
training procedure. During both meta-training and meta-
testing, at each timestep t, the encoder produces task indi-
cators zt, based on the recent context. Thus, during training,
the encoder and policy are already explicitly exposed to the
context that they will receive during testing. More formally,
this method employs the concept of local consistency of the
environment and uses only data from timesteps t − T to
t − 1 as sequential context when inferring the task corre-
sponding to timestep t. We denote the context correspond-
ing to timestep t as cTt = {(sn,an, rn, s

′
n)}n=t−T ...t−1 to

emphasize that this data resembles only valid context for the
current, locally consistent task Tt. The transition of timestep
t itself is denoted as τt = (st,at, rt, s

′
t). Akin to PEARL,

we encode single transitions cTt
n individually and use the

resulting encodings as Gaussian factors, to determine the
overall encoding zt for timestep t. A proper choice of

T should consider two design factors. First, T should be
high enough to contain sufficient timesteps to reflect the
consistency of one task. Second, T should be set as small to
save computation burden and ensure quick reactions to task
changes, under the condition of ensuring satisfied accuracy.
Empirical results indicate that the performances are robust
when T is set in the range of 5− 20.

Using this strategy of performing adaptation at each
timestep by inferring the task based on recent context and
allowing the environment to be non-stationary during train-
ing not only has consequences for the data collection phase
during meta-training and the meta-testing, but for the train-
ing process as a whole. In non-stationary environments, it is
no longer known which task collected data stems, meaning
that the training strategy from PEARL of storing transitions
in task-specific replay buffers and performing optimization
on a task-wise basis cannot be used. Instead, we store
the transitions with their corresponding recent context in
a common replay buffer, to be able to recover the exact
context the agent was exposed to during data collection in
the optimization phase. During optimization, we process
batches of randomly selected transitions from the replay
buffer with their context and compute the task encodings
and reconstruction loss for every transition individually.

5.3 Task Representation
Normally, broader task distributions have cluster character-
istics and can be described as base tasks with specific sub-
tasks. Standard VAEs, like the one used in PEARL, with
a single Gaussian as underlying generative model are not
intended to represent such clustered task distributions. We
propose a more complex generative model that resembles
cluster-like task distributions inherently and design an en-
coder and decoder on its basis.

5.3.1 Generative Model
Inspired by Gaussian mixture models (GMMs), we intro-
duce our generative model and derive the evidence lower
bound (ELBO) by applying variational inference. Thereafter,
we show how to implement the generative model in terms
of an encoder and decoder.

A common generative model for distributions with clus-
ter characteristics is GMMs. To point out the connection
between standard GMMs and our application to meta-RL,
we first revisit the generative process in GMMs. We con-
sider the following sampling process for some observable
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random variable x. First, a latent one-hot cluster indicator
y ∼ Cat(π) is drawn from a categorical distribution, with π
being the prior probability for each cluster. Each cluster has
its own multivariate Gaussian distribution as generator with
cluster-specific parameters µk and Σk. The observed data x
is drawn from the Gaussian distribution corresponding to
the cluster indicator y, i.e., x ∼ N (µk,Σk) if yk = 1.

This concept can be transferred to the meta-RL setting in
a similar way. In the meta-RL setting, the observed data are
transitions of the agent in the environment x = (s,a, r, s′)
and we assume the following generative process. The task
distribution is resembled by a GMM, where the base task
is determined by the category and the sub-tasks are de-
termined by the Gaussian distribution. In this setting, the
outcome of the GMM is the unobserved task indicator z.
The observed data x is thought of as being produced by a
generator function from the task indicator z, like in a stan-
dard VAE. This generator is another Gaussian distribution
that resembles the characteristics of the environment.

Formalizing this mathematically, we utilize the following
generative model:

y ∼ p(y) = Cat(π) Base task distribution
z ∼ p(z | y) = N

(
µz(y),σ

2
z(y)

)
Sub-task distribution

x ∼ p(x | z) = N
(
µx(z),σ

2
x(z)

)
Environment model

(6)
The joint probability of the generative model factorizes
p(x,y, z) = p(x | z) p(z | y) p(y). p(y) is the distribution
over base tasks and p(z | y) is the distribution over sub-
tasks corresponding to base task y. Together, these terms
constitute the mixture of Gaussians that model a cluster-
like task distribution. Finally, p(x | z) is the generator
of observed data x from task z. Note that this generative
model is an extension to the generative model of VAE,
where the latent space is modeled not by a mixture of
Gaussians, but a single Gaussian.

Similar to VAEs, we aim to infer the posterior p(y, z | x),
i.e., gain information about the task from the observed data.
However, here we not only aim to infer the overall task z
but also its corresponding base task y. We employ the ap-
proximate variational posterior q(y, z | x) to approximate
the intractable true posterior:

q(y, z | x) = q(z | x,y) q(y | x) (7)

Note that, in accordance with VAEs, this variational pos-
terior will be implemented as the encoder, while the de-
coder will represent the generating function p(x | z).
We follow the variational inference approach employed by
VAEs, which formulates the KL-divergence between the true
posterior and the posterior approximation to find the ELBO:

KL (q(y, z | x) ∥ p(y, z | x)) = Eq(y,z|x)

[
log

q(y, z | x)
p(y, z | x)

]
= Eq(y,z|x)

[
log q(y, z | x)− log p(y, z | x)

]
= Eq(y|x)

[
Eq(z|x,y)

[
− log p(x | z)

]
+KL (q(z | x,y) ∥ p(z | y))

]
+KL (q(y | x) ∥ p(y)) + log p(x)

(8)

Solving for log p(x) gives the evidence lower bound LELBO:

log p(x) = KL (q(y, z | x) ∥ p(y, z | x)) + LELBO

≥ LELBO = Eq(y|x)

[
Eq(z|x,y)

[
log p(x | z)

]
−KL(q(z | x,y) ∥ p(z | y))

]
−KL(q(y | x) ∥ p(y))

(9)

The expectation Eq(y|x) can be computed exactly by
marginalizing over K categorical options. The expectation
Eq(z|x,y) is intractable and approximated with Monte Carlo
sampling z(k) ∼ q(z | x,y = k) from the approximate pos-
terior using the reparametrization trick [28]. In the resulting
approximation of the ELBO, we find terms similar to the
single-component VAE.

LELBO ≈
K∑

k=1

Component
posterior︷ ︸︸ ︷

q(y = k | x)
[ Component-wise

reconstruction loss︷ ︸︸ ︷
log p(x | z(k))

− αKL

Component-wise regularizer︷ ︸︸ ︷
KL (q(z | x,y = k) ∥ p(z | y = k))

]
− βKL KL

(
q(y | x) ∥ p(y)

)︸ ︷︷ ︸
Categorical regularizer

(10)

Intuitively, with this loss, the model can either have high
entropy over q(y | x), such that all reconstruction losses
and regularizers must be low, or assign high probability to a
single base task k and use this specific one to model a datum
well. Note that we introduce hyperparameters αKL and βKL
to weight the Gaussian and categorical regularization terms.
In short, this generative model has the expressiveness to
represent clustered task distributions made up of base tasks
and sub-tasks, as the model itself is derived from a cluster
distribution.

5.4 Encoder
After deriving the generative model and the ELBO, we de-
scribe how the encoder is implemented as a neural network,
which works as the approximate variational posterior. The
encoder part of the generative model comprises the terms
q(z | x,y) and q(y | x) of the approximate variational
posterior q(y, z | x). Both terms are implemented as in-
dividual layers of an overall encoder neural network. In
our setting, the network encodes single transitions cTt

n from
the context cTt , that resemble the input x, and outputs a
categorical distribution over base tasks y and a Gaussian
distribution over sub-task encodings z. Afterwards, the en-
coded distributions from the single transitions are fused by
a multiplication of Gaussian factors to get the information
for the overall context. We show the network with its layers
and their interplay in Figure 2.

The encoding process for a single transition cTt
n works

as follows. First, the input x is transformed to a shared
representation m. For simplicity, this shared layer and the
following layers are implemented as MLPs. The base task
probabilities q(y | x) are determined by an MLP with
softmax activation, like in standard classification networks.
The task-specific Gaussian parameters µk,σk of q(z | x,y)
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m

m

m

y

y

q(y | x)

µK

σK

. . .

. . .

sn an rn s′n

Transition x = cTt
n

Shared
encoder

µ2

σ2

z ∼ N (µz(x,y),σz(x,y))

y ∼ Cat(π(x))

µ1

σ1

Fig. 2: Encoder: Based on the context of a transition cTt
n the class encoder q(y | x) computes a probabilistic class encoding

y, component-specific Gaussian encoders q(z | x,y = k) generate a probabilistic encoding z.

are modeled with individual network layers for each base
task k, conditioned on the shared representation m, hence
implicitly conditioned on x. With our encoder, providing
base task and sub-task distributions for each of the base
tasks, we gain a new degree of freedom in designing the
fusion of information from individual transitions.

In our fusion strategy, we first fuse the base task prob-
abilities of the N timesteps by averaging q(y | cTt) =
1
N

∑
n q

(
y | cTt

n

)
, which again gives a valid probability

function, as all q
(
yn | cTt

n

)
are already valid probability

functions. We then perform k∗ = argmaxy q(y | cTt) on the
fused distribution and retrieve the Gaussian factors from
one base task for all transitions. With this strategy, the
base task is ”agreed on” by all transitions, such that all
parametric encoding hypotheses are drawn for this single
base task. Thus, the focus of the subsequent multiplication
is to determine precise parameteric encoding z for this one
base task.

Further, we use different sampling strategies from
PEARL during optimization and rollouts. During rollouts,
we utilize the fusion strategy to get the Gaussian approx-
imate posterior q(z | x,y). From this posterior, instead
of sampling, we take the mean of the distribution as task
encoding z to provide a more stable task indicator to the
SAC. We use the same method for the labeling of the data
in the replay buffer. During optimization of the encoder, for
q(y | x), no sampling is needed, as the ELBO demands
that a z(k) be sampled for each task k from its task-specific
Gaussian z(k) ∼ N

(
µz(y = k),σ2

z(y = k)
)

respectively.
The sampling from the Gaussian is performed using the
reparametrization trick.

Priors We choose a uniform distribution for the class
prior p(z). To determine the parameters of the component-
specific priors p(z | y = k) = N

(
µz(y = k),σ2

z(y = k)
)
,

we use a linear layer conditioned on a one-hot represen-
tation of y. This layer receives gradients from the ELBO
loss, so that its parameters are optimized jointly with the
parameters of the encoder and decoder. Thus, the means
and variances of the clusters are parametrized in such a
way that only the cluster-like structure is enforced in the
prior, but not the actual values for the component specific
Gaussian.

State
prediction
network

Reward
prediction
network

st
at

zt

ŝt+1

r̂t

Lstate

Lreward

st+1

rt

Fig. 3: Decoder: Based on the state st, the action at, and
the task encoding zt produced by the encoder from the
recent context, the decoder predicts the state transition and
rewards for the timestep t.

5.5 Decoder

In principle, the generative model does not specify how
the decoder p(x̂ | z), mapping from the latent space to
some reconstruction x̂, should be implemented, especially
considering that the concrete data and loss function is
arbitrary. PEARL uses the Bellman error from SAC as the
reconstruction loss. The disadvantage of this is that the Q-
function itself converges in the course of the SAC training
procedure and thus can only serve as an approximation in
the beginning of the training. Further, through this decoding
strategy the training of the encoder is inherently coupled
with the policy optimization in SAC. This makes it impos-
sible to recover task indicators before SAC training. In this
work, we propose a dedicated decoder network that models
the transition and reward function conditioned on the task
indicator, and thereby implicitly reconstructs the MDP of the
task, to learn a task representation in unsupervised manner
from experience data decoupled from the policy training.

In standard model-based RL, neural networks are used
to learn the transition function p(st+1 | st,at). In non-
stationary meta-RL environments, the transition function
p(st+1 | st,at, zt) is also dependent on the task zt (the
index emphasizes non-stationarity on transition level). Ac-
cordingly, we can formulate a reward prediction function,
modeled with p(rt | st,at, zt). By modeling both the tran-
sition and the reward function, we reconstruct the complete
Markov decision process describing the task at hand from
the latent encoding zt. It is only possible to achieve accurate
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predictions with a proper task indicator. Therefore, the
quality of the state and reward predictions are a measure of
how well our encoder describes the task using the indicator
zt. In the end, we are not interested in the actual predictions,
but the emerging encoding zt is used as the input for SAC.

The encoder predicts the task indicator zt using context
data from timesteps t − T : t − 1. This task indicator
zt is used to predict state transitions and rewards from
timestep t, assuming the environment is a locally consistent
environment from t − T to t. In practice, we use a two-
head network with parameter ψ as shown in Figure 3, with
one head for state and one head for reward prediction.
While the state prediction network pψ(st+1 | st,at, zt)
and the reward prediction network pψ(rt | st,at, zt) are
independent MLP networks, they both propagate gradients
back into zt.

Then, the log-likelihood term of the decoder from the
generative model factorizes into the two networks:

log p(x̂ | z) = log pψ(st+1, rt | st,at, zt)

= log pψ(st+1 | st,at, zt) + log pψ(rt | st,at, zt)
(11)

Both networks are regression networks, where the data
is modeled as a normal distribution N

(
f(st,at, zt) | σ2

)
.

Thus the loss function is defined as the negative log-
likelihood as

Ldecoder = − log p(x̂ | z) =
[
1

2
∥ŝt+1 − st+1∥22 +

1

2
(r̂t − rt)

2
]

,

(12)

where ŝt+1 and r̂t are network predictions and st+1 and rt
are the true target values from the replay buffer.

5.6 Algorithm Overview
The algorithms for the meta-training and meta-testing are
summarized in pseudo-code (See Algorithm 1 and See Algo-
rithm 2). The code of CEMRL is available at here1. In every
training epoch, we collect the data from the training tasks,
optimize the task representation in unsupervised manner
by encoding recent context cTt into a latent encoding zt and
reconstructing the MDP from this encoding and the latest
transition, as imposed by the ELBO of our generative model.
We label all data in the replay buffer with the optimized
encoder to allow us to train the policy with this labeled data
from the replay buffer independently with SAC thereafter.
Note that instead of using the state as sole input to the policy
and Q-function, we use a concatenation of state s and latent
encoding z to condition the policy on the task.

6 EXPERIMENTS

As described in previous sections, our proposed method
consists of three novel concepts compared to state-of-the-
art meta-RL methods: an expressive mixture model encoder,
a decoder leveraging MDP reconstruction, and redesigning
the encoding and training strategy for application in non-
stationary environments. We validate those concepts on
different experiments that are designed on the basis of the
well-known benchmark [18], taking the Half-Cheetah, Ant,

1. https://sites.google.com/view/cemrl

(a) Half-Cheetah (b) Ant

(c) Walker (d) Hopper

Fig. 4: MuJoCo agents from Gym [18] used in experiments.

Walker, and Hopper as the agents (See Figure 4). Due to the
page limit, we show comprehensive experiment results with
the Half-Cheetah and Ant, while the Walker and Hopper
are only used to show the consistency of our method on
the velocity task with a non-stationary setting. The results
on the Walker and Hopper are shown in the ablation study
7.1. First, we apply our method to parametric, stationary
environments to compare the performance directly with
PEARL. Second, we investigate parametric, non-stationary
environments and thereby the applicability of CEMRL to
non-stationary environments. In the process, we also test
our algorithm in a continual learning setting. Last, we
conduct experiments in a non-parametric, stationary envi-
ronment with three distinctive base tasks to investigate the
capabilities of the mixture model encoder.

To evaluate the efficiency of our algorithm, we use
the following measures. First, we plot the average reward
during meta testing over the number of collected transitions
during training. In doing so, we can evaluate the asymptotic
performance and the sample efficiency. Second, we illustrate
the connection between the true task specification, e.g., the
true goal velocity, and the encoding for y and z produced by
the encoder. From this, we compute the mean and standard
deviation of the encodings z from all transitions in the
replay buffer that were collected from one task during train-
ing. Besides, we provide an additional plot for the encoded
base task. For each task, we mark the most probable base
task (i.e., argmaxk q(y = k | x)) over all transitions in the
replay buffer corresponding to this task. The encodings are
computed each epoch after the task encoding training using
the labeler. Third, for the locomotion tasks, we report time
responses under test conditions with the trained encoder
and policy, to evaluate, if an agent is able to perform its task
successfully. Last, videos visualizing the performance of our
algorithm can be found at the code’s link.

6.1 Stationary and Parametric Environments
To compare the performance with PEARL, we apply
CEMRL to two stationary and parametric environments
from PEARL, namely, cheetah-stationary-dir: Half-Cheetah
with stationary goal direction and cheetah-stationary-vel:
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Algorithm 1 CEMRL: meta-training

Require: Batch of training tasks {Ti}i=1...T from p(T )
Require: Encoder qϕ (y,z | x), decoder pψ (x̂ | z)
Require: Policy πθ(a | s,z), critic Qθ(s,a,z)

1: Initialize replay buffer D
2: while not done do
3: for all Ti do ▷ Collect data with πθ(a | s,z) and add to D
4: Initialize context cT ← ∅
5: Initialize environment s ∼ p(s)
6: for episode length do
7: y ∼ qϕ(y | cT ) , z ∼ qϕ(z | cT ,y) , a ∼ πθ(a | s,z) (stochastic, training)
8: Apply a to environment, Receive s′ ∼ p(s′ | s,a) and r ∼ r(r | s,a)
9: Update context cT with transition τ = (s,a, r, s′)

10: Add transition to Depisode

11: D = D ∪Depisode
return D

12: Task representation learning ▷ in practice performed batch-wise
13: for step in task encoding training steps do
14: Sample transition τt = (st,at, rt, s

′
t) ∼ D and cTt ∼ D

15: for k = 1, . . . ,K do ▷ For each encoder base class
16: z

(k)
t ∼ qϕ(z | cTt ,y = k) ▷ Sample z(k)

t from class specific Gaussian
17: pψ(st+1, rt | st,at,z

(k)
t ) ▷ Decoder forward pass

18: L(k)
decoder = 1

2
∥ŝt+1 − st+1∥22 +

1
2
(r̂t − rt)

2 ▷ Reconstruction loss
19: L(k)

KLz
= KL (qϕ(z |,y = k) ∥ p(z | y = k)) ▷ Component-wise regularizer

20: LKLy = KL (qϕ(y | x) ∥ p(y)) ▷ Categorical regularizer
21: LELBO =

∑K
k=1 qϕ(y = k | cTt)

[
−L(k)

decoder − αKLL(k)
KLz

]
− βKLLKLy ▷ ELBO

22: ϕ← ϕ+ λ∇ϕ LELBO(ϕ) ▷ Update encoder parameters
23: ψ ← ψ − λ∇ψ LELBO(ψ) ▷ Update decoder parameters
24: Label data ▷ using optimized encoder parameters ϕ
25: for t = 1, . . . , TD,max do
26: yt ∼ qϕ(y | cTt)
27: zt ∼ qϕ(z | cTt ,yt)
28: Add (yt,zt) to transition data in D: τt = (st,at, rt, s

′
t,yt,zt)

29: Soft-Actor Critic training independently with labeled data D
30: θQ ← θQ − λQ ∇θQJQ(θQ) ▷ Q-function update
31: θπ ← θπ − λπ ∇θπJπ(θπ) ▷ Policy update
32: α← α− λ∇αJπ(α) ▷ Temperature update

Algorithm 2 CEMRL: meta-testing

Require: Task Ti, encoder qϕ(y,z | x), policy πθ(a | s,z)
Require: context buffer cT , episode buffer Depisode

1: Initialize context cT ← ∅
2: Initialize environment s ∼ p(s)
3: for episode length do
4: y ∼ qϕ(y | cT )
5: z ∼ qϕ(z | cT ,y)
6: a = πθ(s,z) (deterministic, testing)
7: Apply a to environment, Receive s′ ∼ p(s′ | s,a) and

r ∼ r(r | s,a)
8: Update context cT with transition τ = (s,a, r, s′)
9: Add transition to Depisode

Half-Cheetah with stationary goal velocity. We run PEARL
with the original code and parameters provided from [6].
It should be noted that PEARL achieves reported average
rewards in the few-shot manner. During test time, PEARL
collects data in the unseen environment, infers the task,
and performs the valid and reported test run afterwards.
In contrast, our algorithm achieves the reported rewards at
first sight in the zero-shot manner.

Meta-training performance and efficiency: As shown in
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Fig. 5: Stationary, parametric environments: meta-test per-
formance over collected data during meta-training: CEMRL
is more sample-efficient and stable than PEARL on cheetah-
stationary-dir (5a) and outperforms PEARL in sample effi-
ciency and asymptotic performance on cheetah-stationary-vel
(5b). Note that the x-axis is in log scale.

Figure 5, our algorithm CEMRL is more sample-efficient and
stable than PEARL on cheetah-stationary-dir (Figure 5a) and
outperforms PEARL in sample efficiency and asymptotic
performance on cheetah-stationary-vel (Figure 5b). Further,
compared to PEARL, we can train our encoder strictly off-
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Fig. 6: Task encodings for different training epochs on cheetah-stationary-vel.
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distribution with a well-trained policy.

policy without observing any issues regarding the task dis-
tribution shift between meta-training and testing, which en-
ables more sample-efficient learning. We suspect the slightly
higher asymptotic performance is provoked by the distinct
task representation, which is stable throughout the training
process and well structured and precise after convergence.

Latent Encodings: We show the learned task represen-
tation in different epochs in Figure 6. First we show the
learned task representation in different epochs. For this
specific experiment, the base task is trivial, as we configure
the encoder with one base task only. As early as after the
task encoding training phase of the first epoch, a proper
representation in form of a linear correlation with low
standard deviation between goal velocity and task indica-
tor z is achieved, which indicates high sample efficiency
for the encoder. Over time, while more data is collected,
the uncertainty for the specific velocities increases slightly,
however the linear correlation of the mean values becomes
increasingly stable. Overall, in the last training epoch (epoch
500), the encoding is relatively certain and well correlated
for all velocities. Only for very low velocities is the encoding
uncertain, as motion performance at almost a standstill is
hard to execute and infer.

Time response: To visualize how the encoding translates
to perform the running task at different goal velocities, we
plot the time responses of multiple goal velocities from the
task distribution and the corresponding velocities achieved
in Figure 7. The agent is able to achieve the desired velocity
with high precision at nearly all velocities.

6.2 Non-Stationary and Parametric Environments
In non-stationary environments, the environment describ-
ing MDP can change on a timestep basis. We implement a
set of such environments by redesigning common bench-
mark environments from OpenAI Gym [18]. Parameter

changes are induced on certain trigger events, otherwise the
MDP is fixed, allowing an agent has the chance to observe
and adapt to those changes. We propose the following
two strategies for generating trigger events. In the first
strategy, referred to in the following as trigger-by-time, the
environment has an internal counter of transitions the agent
performed since the last event. After a specific number of
transitions, the MDP is changed. In the second strategy,
referred to in the following as trigger-by-location, the envi-
ronment monitors the location of the agent at each transition
and triggers parameter changes at certain landmarks, e.g.,
10 m apart from the last landmark. In both strategies,
the triggers (time or landmark) are randomized for each
episode, to prevent the agent from memorizing them.

6.2.1 Specific environments
Non-Stationary Goal Velocity. These environments are non-
stationary variants of the goal velocity environments from
MAML [5] and PEARL [6]. The MDP is variable in terms
of the reward function. The tasks use trigger-by-location as
event mechanism during meta-training. Since the goal ve-
locity is a continuous scalar random variable, we configure
the latent space as one dimension.

Non-Stationary Goal Direction. For further validation
on environments with variable rewards, we apply the al-
gorithm to non-stationary variants of the random goal di-
rection environments with Half-Cheetah and Ant (cheetah-
non-stationary-dir and ant-non-stationary-dir). The two goal
directions can be interpreted as discrete, qualitatively dif-
ferent tasks. Therefore, we configure the encoder with two
base tasks and one latent dimension in this case. We also
use trigger-by-location as the event mechanism during meta-
training.

Variable Transition Function. We initially planned to
validate our method in non-stationary variants of environ-
ments with a variable transition function, like the Walker2D
and Hopper with randomized physical parameters, as pro-
posed in PEARL [6]. However, we identify characteristics
of such environments, making the adequacy of them as
meta-RL benchmark environments questionable. When val-
idating the original benchmark from PEARL, we find that
even standard RL algorithms like SAC are able to solve
those environments. Similarly, intentionally compromising
the encoder learned by PEARL to output noise instead of
encoding led to only minor performance loss, and the task
was still solved confidently. We hypothesize this is due
to the fact that the induced parameter changes, namely
variation of mass, friction, and damping of the joints, are
reflected at a physical level in the relationship between
torque and consequential angular velocity of the joint. As
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Fig. 8: Non-stationary, parametric environments: meta-test performance over collected data during meta-training
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Fig. 9: Environment: cheetah-non-stationary-vel, encodings for different training epochs.
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Fig. 11: Environment: cheetah-non-stationary-dir, encodings for different training epochs.
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Fig. 12: Encodings Half-cheetah continuous learning

the torque is reflected in the action of the agent and the
angular velocity is observed through the state, the agent can

learn meaningful actions solely based on the state. In this
case, the environment is purely Markovian and reduced to
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a standard RL problem, with no meta-mechanism required.

6.2.2 Results
The learning curves for the different experiments in non-
stationary environments are shown in Figure 8. These tasks
cannot be solved by PEARL due to the non-stationary
property, therefore we do not report it as a baseline for these
experiments. Of the state-of-the-art algorithms introduced
in Section 3, recurrence-based algorithms like RL2 may be
able to solve these environments, however they are clearly
outperformed by PEARL in asymptotic performance and
sample efficiency, as reported in [6]. They are on-policy
and require massively more data even in stationary envi-
ronments.

CEMRL achieves good asymptotic performance with
similar sample efficiency to the stationary cases, as shown in
Figure 8. For further evaluation of the performance, we ana-
lyze cheetah-non-stationary-vel in more depth. A visualization
of the task representations over different epochs is provided
in Figure 9. Similar to the stationary case, after the task
encoding training phase of the first epoch, a well-structured
representation is learned. During task changes, the encod-
ing uncertainty is increased, as the agent has conflicting
data from two tasks in the recent context. Accordingly, the
standard deviation of the encodings from all samples in the
replay buffer increases. However, the individual tasks can
be inferred robustly after some timesteps. This is proven by
Figure 10b, where we show a run of the ant and plot the
changing goal and actual velocity to illustrate the agent’s
tracking behavior. The agent infers the goal velocity within
few transitions and adapts to it with small steady-state error.
This brief delay, paired with some over- and undershooting
in the first transitions of a new task are the only imper-
fections in an otherwise flawless performance. Figure 10d
for ant-non-stationary-vel shows similar, but less accurate,
tracking performance. The agent is still able to identify and
adapt to the velocity at hand, yet due to the more complex
gait of the ant compared to the cheetah, walking at a precise
velocity is harder to realize. Additionally, in Figure 10a we
show a similar plot for the cheetah-non-stationary-dir. The
agent recognizes the change in goal direction nearly instan-
taneously and adapts its motion. We can see that the cheetah-
non-stationary-dir is successfully modeled as two base tasks
(indicated by the encoding y) as shown in Figure 11.

6.3 Continuous Learning Environments

We further validate our algorithm in a simple continuous
learning environment. To achieve such a setting, we use the
Half-Cheetah environment with non-stationary direction,
but only provide one task (one direction) at the beginning of
the training for data collection. The other task (the other di-
rection) is initially inaccessible. After the agent has learned
to run in one direction, it is able to reach a landmark, at
which the trigger-by-location mechanism changes the goal
direction and the agent gains access to the new task.

Figure 13a shows that our algorithm can be trained
successfully in such an environment. Figure 13b shows that
a good gait with quick adaptation ability is learned for
both directions after convergence. In this environment we
are especially interested in whether the algorithm exhibits
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common continuous learning problems, such as overfitting
to tasks that are already known, or catastrophic forgetting.
This is evaluated in Figure 12, which shows encodings for
selected epochs. As the plots indicate, the agent reaches the
landmark in the third epoch for the first time and is able
to discriminate the new data as a new task immediately.
As a result, the encoding of the old task is not impaired,
meaning that no catastrophic forgetting occurs. Over the
remaining epochs, the two tasks are recognized and mod-
eled as different base tasks (indicated by y), and are clearly
distinguishable until the end of training.

6.4 Stationary, Non-Parametric Environments
Previous experiments evaluated the algorithm’s capabilities
to efficiently learn and solve parametric environments. With
the following experiments, we validate the capability of
the mixture model encoder to learn behaviors and task
representations in environments with qualitatively distinct
base tasks and respective parametric sub-tasks. In these
experiments, we are interested in the class encodings y and
parametric encodings z produced by the algorithm, as they
indicate whether and in what manner our method is able to
represent intra-cluster and inter-cluster relationships.

Ideally, a learned encoding should exhibit the following
characteristics. First, transitions from the same base tasks are
assigned to the same class y. Second, the parametric encod-
ing z resembles the intra-cluster relationships between the
sub-tasks. Third, inter-cluster boundaries are emphasized
by both the class encodings y and parametric encodings z.
Achieving clear separations between base tasks in terms of
the class encoding is especially desirable when this encoder
should generate discrete class labels.

To validate our approach, we propose a novel envi-
ronment (cheetah-mixed-tasks) with qualitatively distinct
tasks by aggregating originally standalone tasks for a Half-
Cheetah as base tasks. However, designing appropriate task
distributions, especially non-parametric ones, comes with
challenges, as indicated in [14], for example. It is important
for the tasks to share a common structure to allow fast adap-
tation to new tasks. Conversely, they also require sufficient
uniqueness to be distinguishable.

We define three base tasks for the Half-Cheetah: run-
ning with a goal velocity, rollovers in forward in backward
direction, and standing up (reaching maximal height with
the torso), in which the goal velocity and rollover direction
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Fig. 14: Encodings for different training epochs on cheetah-mixed-task

base tasks have parametric sub-tasks. The reward function
for the goal velocity task is the negative absolute value of
the difference between the velocity and the goal velocity.
The reward for the rollovers is proportional to the angular
velocity of the torso of the cheetah. As test tasks we use
new goal velocities, but also the same rollover and stand-up
tasks as in the training tasks. Therefore, this environment is
a slight simplification of the original meta-RL setting, but a
challenging environment to evaluate if an algorithm is able
to learn a structured task representation and qualitatively
different skills.

The performance of CEMRL in this environment is
visualized in Figure 14. After a few training epochs the
algorithm already achieves basic distinct behaviors for the
different base tasks. In the videos provided, we show the
learned behaviors. Furthermore, in Figure 14 we evaluate
the task representation learned by the encoder. Regarding
the parametric encodings z, the encoder finds an unambigu-
ous representation that, on the one hand, separates base-
tasks in the latent space, and on the other hand, struc-
tures the sub-tasks of a base task, as shown by the linear
correlation between the goal velocity and the encoding.
Provided with these encodings, the policy can learn distinct
behaviors. Regarding the class encodings y, the encoder
represents the similarity between the closely related goal
velocity sub-tasks in assigning the same class encoding.
With the training going on, we can also see the stand-up task
is clearly distinguished as one bask task due to its unique
dynamics. The forward rollover task (Specification 1) is
assigned to one base task, while the backward rollover task
(Specification −1) is assigned to the velocity task (See Figure
14c and 14d). While those two tasks are disaggregated in
epoch 10 in Figure 14b, they are assumed to be one task in
other epochs. As shown in the video, we suspect that this
is due to their similarity, since both goal velocity and the
backward rollover tasks require some forward motion of
the torso to fulfill the task, while the forward rollover task
requires a backward motion of the torso.

7 ABLATION STUDY

In the ablation study, we first show two more experiments
from two new agents to show the consistency of CEMRL.
We second show the effect of inaccurate estimation of the
task embedding.
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Fig. 15: MuJoCo agents from Gym [18] used in experiments.

7.1 Walker and Hopper
To show the consistency of CEMRL, we also test it

with the Walker and Humanoid agent. Figure 15 shows
the reward curve and the task embedding from the walker-
non-stationary-vel and humanoid-non-stationary-vel envi-
ronments, which are in line with our main results.

7.2 Ablation Study on Noisy Task Inference
To show the effect of inaccurate estimation of z, we run
ablation study experiments by comparing the following
settings in the cheetah-non-stationary-vel environment:

• base: the unmodified CEMRL algorithm
• noise: an additional noise n ∼ N(0, 52) is added to

the encoder’s output
• constant: the encoder’s output is ignored and re-

placed by a constant value of z = 0

The results are shown in Figure 16. As expected, we find that
the predictions of the standard CEMRL yield the most ac-
curate estimation of the task and the goal velocity tracking.
The noisy encoding yields decreased performance and has
difficulty in adapting to new goal velocities. With constant
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Fig. 16: Ablation study of the latent task embedding in cheetah-non-vel task. Figures in the first row shows the task
embedding and figures in the second row shows the velocity of the agent.

encoding, the decoder is unable to predict the correct reward
whereas the policy cannot distinguish between different
goal velocities.

8 DISCUSSIONS

Applicability to non-stationary environments. Our ex-
periments show that our algorithm is applicable to non-
stationary meta-RL environments. The algorithm learns ad-
equate encodings and good gaits, allowing the agents to
perform under non-stationary MDP with zero-shot adapta-
tion, while being stable to be trained. In continual learning
problems, where the agent has to learn a set of tasks se-
quentially, the agent also learns good gaits and encodings
without exhibiting common continual learning problems
like overfitting to tasks that are already known, or catas-
trophic forgetting. Furthermore, our encoder establishes a
good task representation as early as after the first episode
in most scenarios, proving the sample efficiency of the
unsupervised task representation learning strategy. With
these characteristics, our method fills a gap in the landscape
of algorithms that previously were either applicable to non-
stationary environments but inefficient, or sample-efficient
but only applicable to stationary environments.

Superior efficiency and competitive performance in
stationary environments. In addition, as shown by the ex-
periments in stationary environments, CEMRL is even more
sample-efficient than the state-of-the-art algorithm PEARL
and achieves at least competitive asymptotic performance.
It is important to note that, compared to PEARL, which
needs data collection during testing to perform few-shot
adaptation, our performance is achieved in the first trial
with zero-shot adaptation. To achieve zero-short adaptation,
CEMRL infers tasks at every time step to react at the first
sight of a new task. However, from our human’s common
sense, the task may not change so frequently at every time
step, but should be consistent with certain time horizon.
Therefore, inferring the task at so fine-grained timestep may
lead to unstable task inference due to the potential noise

of the context data. In this work, CEMRL adopts a fusion
strategy to fuse the base task probabilities of the N timesteps
by averaging q(y | cTt) = 1

N

∑
n q

(
y | cTt

n

)
, which can

eliminate the effect of noisy data and assure the accuracy of
the task inference. Another alternative to achieve online task
inference can be recurrent neural networks, which encode
the task information from all past states.

Task representation and behavior learning in non-
parametric task distributions. Gaussian models and Gaus-
sian mixture models have been popular approaches of
model approximation in model-based RL algorithms, which
aim at providing stochasticity and good uncertainty esti-
mates from limited observed data. However, the Gaussian
mixture model in this work is inspired by the parametric
and non-parametric variability of meta-RL tasks. As ex-
plained in Section 2.2.1, a number of qualitatively distinct
tasks can be modeled as K Gaussian mixtures and each mix-
ture is used to model the parametric distribution of its base
task. Therefore, unlike previous methods, the choice of the
generative model and the design of the encoder allows our
algorithm to learn a clustered task representation in envi-
ronments that comprise different qualitatively distinct tasks.
The latent representation provides a distinction between
base tasks, while also resembling parametric relationships
between sub-tasks.

9 CONCLUSION

In this work, we have presented CEMRL, an algorithm
for efficient meta-reinforcement learning in non-stationary
environments and broad task distributions. We showed
that with our task representation learning and adapta-
tion strategy, our algorithm is able to learn behaviors in
non-stationary environments that need zero-shot adapta-
tion. Our encoder, based on Gaussian mixture models and
trained by unsupervised MDP reconstruction, makes it
possible to represent complex task distributions. On two
locomotion meta-RL benchmarks, our approach achieves
superior sample-efficiency and performance compared to
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the state-of-the-art algorithm PEARL, although the adapta-
tion of CEMRL is performed in zero-shot manner.
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