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IV. ABSTRACT 
Pancreatic ductal adenocarcinoma (PDAC) is a complex disease displaying extensive genetic 

heterogeneity along with a tumor microenvironment (TME) unique in its composition. While the 

PDAC TME is known to be highly immunosuppressive, the drivers of distinct TME states and 

modes of immunosuppression remain elusive. Moreover, it is poorly understood how distinct 

genetic alterations affect TME cell type recruitment and how this, in turn, influences progression 

and treatment outcome. Therefore, we systematically investigated the TME states and cell-cell 

communication networks in molecular PDAC subtypes.  

 

Here, we describe the TME landscape of a comprehensive, genetically well-defined tumor cohort 

derived from PDAC mouse models, which represent multiple molecular subtypes. We used a 

multimodal approach by integrating single-cell RNA-sequencing (scRNA-seq) with 

histopathological, spatial transcriptomics and secretome analysis. Our results show that tumors of 

distinct molecular PDAC subtypes recruit divergent subpopulations of infiltrating immune cells, 

most notably evidenced by major differences in frequency and phenotype of macrophages and 

neutrophils. Functional secretome analysis of well-characterized Kras-driven mouse PDAC cell 

lines revealed subtype-specific factors which differ between the two main transcriptional subtypes 

(classical and mesenchymal). Accordingly, crosstalk between tumor and immune cells inferred by 

ligand-receptor interaction analysis from scRNA-seq data nominates the CSF signaling network 

as a key player in mesenchymal PDAC. Classical tumors, in contrast, leverage CXCL signaling 

hubs to mediate higher infiltration of immunosuppressive neutrophils. Moreover, immune 

checkpoint signaling by PD-L1 and TIGIT was elevated in mesenchymal PDAC. 

 

In this work, we systematically delineate the subtype-specific TME states and cell-cell 

communication networks of PDAC. Our findings pinpoint molecular pathomechanisms that shape 

cell type recruitment and abundance into this immunologically cold tumor type and aid the 

identification of potential immunotherapeutic vulnerabilities. These results could be deployed for 

future therapeutic interventions directed towards immunomodulation and subtype-specific 

combinatorial therapies. 
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V. ZUSAMMENFASSUNG 
Das duktale Pankreaskarzinom (PDAC) ist eine genetisch sehr komplexe Tumorentität, welche eine 
äußerst schlechte Prognose aufweist. Des Weiteren besitzt PDAC eine hohe genetische 

Heterogenität, sowie ein immunsuppressives Tumormikromilieu. Es ist bisher nur unzureichend 
charakterisiert, wie verschiedene Phänotypen des Tumormikromilieus zu Stande kommen und welche 
Mechanismen zur Entstehung eines immunsuppressiven Tumormikromilieus führen. Weiterhin ist noch 

unerforscht, wie verschiedene genetische Veränderungen der Tumoren die Rekrutierung von 
Immunzellen modulieren, und wie dies wiederum die Tumorprogression und den Therapieerfolg von 

PDAC-Patienten beeinflusst. 
In der hier vorliegenden Arbeit wurde daher eine systematische Analyse der Tumormikromilieu-

Phänotypen und der entsprechenden Zell-Zell-Kommunikationsnetzwerke in verschiedenen 
molekularen PDAC-Subtypen durchgeführt. Diese Analyse wurde in einer umfangreichen, genetisch 

charakterisierten Kohorte von PDAC-Mausmodellen mittels multimodaler Integration von scRNA-seq 
(Einzelzell-Transkriptom-Sequenzierung) Daten, histopathologischen Parametern, Spatial 

Transcriptomics (räumliche Transkriptom Analyse) Daten und den entsprechenden Sekretomen 
durchgeführt. Unsere Ergebnisse zeigen, dass sich das Tumormikromilieu verschiedener molekularer 

PDAC-Subtypen durch Infiltration von unterschiedlichen Immunzellen auszeichnet. Ein Beispiel ist der 
signifikante Unterschied in der Rekrutierung von Makrophagen und Neutrophilen. Durch eine 
funktionelle Sekretom-Analyse von Zellkulturen eines KrasG12D-induzierten murinen PDAC-Modells 

wurden subtyp-spezifische sezernierte Faktoren identifiziert, die sich zwischen dem klassischem und 
dem mesenchymalem PDAC Subtyp unterscheiden. Weiterhin wurden die zugrundeliegenden Zell-

Zell Interaktionen zwischen Tumor- und Immunzellen mithilfe einer Liganden-Rezeptoren-
Interaktionsanalyse der scRNA-seq-Daten in den beiden PDAC Subtypen analysiert. Im 

mesenchymalen Subtyp interagieren Tumorzellen mit Makrophagen durch den CSF-Signalweg, 
wohingegen im klassischen PDAC die Interaktion von Tumorzellen mit Neutrophilen hauptsächlich 

über den CXCL-Signalweg stattfindet. Weiterhin ist der mesenchymale PDAC-Subtyp durch eine 
höhere Expression von Immun-Checkpoint-Signalwegen, wie PD-L1 und TIGIT, gekennzeichnet. 

Zusammenfassend wurden sowohl die Komposition des Subtyp-spezifischen PDAC 
Tumormikromilieus charakterisiert, als auch Zell-Zell-Kommunikationsnetzwerke in klassischen und 

mesenchymalen Tumoren identifiziert. Durch diese Ergebnisse wurden molekulare 
Pathomechanismen aufgedeckt, welche der tumor-vermittelten Immunzellrekrutierung zu Grunde 
liegen. Unsere Analyse zeigt zahlreiche therapeutische Angriffspunkte im Tumormikromilieu auf, die in 

Zukunft für effektivere Therapiestrategien genutzt werden können. Dies kann z.B. durch eine 
Umprogrammierung des Tumormikromilieus oder durch die Kombination von immunmodulatorischen 

Therapien mit Tumorzell-fokussierten Therapeutika geschehen.
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1. INTRODUCTION 

1.1. Pancreatic ductal adenocarcinoma  
Pancreatic cancer is a complex and heterogeneous tumor type characterized by a poor prognosis 

and high therapeutic resistance. In comparison to other tumor entities, the 5-year relative survival 

rate is one of the lowest with around 11% (Siegel et al., 2022). Moreover, pancreatic cancer is 

projected to become the second leading cause of cancer related deaths within the next decade, 

accompanied by rising incidence (Rahib et al., 2014; Ying et al., 2016). 

Pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype of pancreatic 

cancer, accounting for over 85% of cases (Klimstra et al., 2009). A myriad of reasons contributes 

to the poor outcome in PDAC, including late-stage diagnosis (due to lack of early detection 

markers) aggravating resectability of end-stage tumors, frequent metastasis formation, and the 

lack of effective therapeutic options. On a genetic level, molecular analyses of large human PDAC 

cohorts revealed a complex genetic landscape with only few prevalent driver mutations, namely 

mutations in KRAS and the tumor suppressor genes TP53, CDKN2A and SMAD4, followed by 

multiple genetic alterations found at lower frequencies (Waddell et al., 2015; Witkiewicz et al., 

2015). In addition to the genetic heterogeneity, PDAC is characterized by a stroma-rich, highly 

immunosuppressive tumor microenvironment (TME) diverse in its cellular composition, including 

multiple immune and stromal cell types (Hosein et al., 2020; Neesse et al., 2015). These unique 

characteristics present a challenge for the identification of therapeutic vulnerabilities and more 

effective treatment strategies (Figure 1).  
PDAC arises from the exocrine pancreas compartment and is preceded by microscopic precursors 

lesions, such as pancreatic intraepithelial (PanINs), intraductal papillary mucinous neoplasms 

(IPMNs) and mucinous cystic neoplasms (MCNs) which eventually progress to invasive 

carcinomas. As the most common precursor lesion, PanINs are characterized to advance through 

a stepwise progression due to acquisition of several key mutations (Hruban et al., 2000; Maitra 

and Hruban, 2008). Oncogenic KRAS mutations (> 90% patients) can already be detected in pre-

cancerous lesions and early-stage PanINs (Kanda et al., 2012; Mueller et al., 2018). In high-grade 

PanINs as well as PDAC, additional mutations in TP53, SMAD4 and CDKN2A are found in > 50% 

of patients, thus representing predominant mutations beyond KRAS. While other mutations, such 

as ARID1A, KDM6A, MLL3 and TGFBR2 are present in a subset of patients (5-10%), most of the 

genetic alterations occur at lower frequencies (< 5%) (Bailey et al., 2016; Collisson et al., 2019).  

For resectable PDAC, surgery remains the main option to tackle the disease. As most patients 

relapse after surgery, adjuvant chemotherapy with FOLFORINOX (a combination of folinic acid, 

fluorouracil, irinotecan and oxaliplatin) or gemcitabine-capecitabine is recommended after 

resection which has been shown to result in long-term survival for a subset of patients (Conroy et 
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al., 2018; Neoptolemos et al., 2018). However, resection is not an option for >85% of PDAC 

patients due to advanced tumor stage, typically manifested as borderline resectable and/or locally 

advanced unresectable or metastatic PDAC. For the latter diagnosis, first-line treatment is 

chemotherapy, either by administration of FOLFIRINOX or nanoparticle albumin-bound paclitaxel 

(nab-paclitaxel) plus gemcitabine (Neoptolemos et al., 2018). For metastatic PDAC, 

FOLFORINOX led to a significantly overall survival benefit with a median of 11.1 months in 

comparison to gemcitabine (Conroy et al., 2011). Nab-paclitaxel in combination with gemcitabine 

significantly increased survival to 8.5 months compared to gemcitabine monotherapy (Von Hoff et 

al., 2013). For borderline resectable and/or locally advanced unresectable PDAC, neoadjuvant 

chemotherapy with FOLFORINOX constitutes the consensus treatment option (Neoptolemos et 

al., 2018). Dismal for patients, none of these therapy options generally evoked durable remissions 

and a large fraction of patients shows therapeutic resistance (Aung et al., 2018). Moreover, 

targeted therapy approaches have so far failed in clinical trials, albeit their extensive preclinical 

research and validation in mouse models. This leaves current research efforts with the task to 

systematically investigate pancreatic cancer intratumor- and TME heterogeneity with the aim of 

designing more effective therapeutic approaches, ultimately striving to achieve better outcomes 

for patients.  

  

Figure 1. Hallmarks of pancreatic cancer 

PDAC is a complex disease and characterized by several hallmarks: Left, PDAC displays a complex genetic 
landscape with KRAS mutations as main driver event in >90% of patients and TP53, CDKN2A and SMAD4 
mutations in >50% cases. Other genetic alterations occur at lower frequencies. Moreover, PDAC shows an 
extensive intratumor heterogeneity including clonal tumor populations, the presence of multiple subtypes 
within one tumor as well as multiple sub tumor microenvironments (subTMEs; R - reactive, D – deserted). 
Right, the PDAC TME is considered highly immunosuppressive leading to exclusion of T cells from the 
tumor core, T cell exhaustion and a dysfunctional T cell compartment. Immunosuppression is mediated by 
complex cell-cell interactions between all cell types within the tumor. In addition, PDAC presents a strong 
desmoplastic reaction and is designated as a stroma-rich tumor type. Cancer-associated fibroblasts (CAFs) 
show diverse phenotypes and modulate ECM production, immunosuppression and build the structural TME.  
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1.2. Molecular subtypes of PDAC 
 
In the last decade, various sequencing studies conducted on human PDAC specimens allowed to 

investigate the extensive heterogeneity of the disease. Moreover, PDAC tumors could be stratified 

into molecular subtypes based on their transcriptional and histopathological profile. 

 

1.2.1. Bulk RNA-sequencing subtyping approaches 
In the first of these studies, Collisson et al defined three subtypes, namely classical, quasi-

mesenchymal and exocrine-like, based on microarray data from microdissected PDAC epithelium 

obtained from treatment-naïve patients. Notably, the quasi-mesenchymal subtype was associated 

with poor prognosis and advanced stage of the tumors (Collisson et al., 2011). Further subtyping 

efforts by Moffitt and Bailey allowed more refined classifications, showing substantial overlap with 

the subtypes described by Collisson (Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015). 

Moffitt et al defined the basal-like and classical subtype as well as two stroma signatures which 

were designated as activated and normal stroma (Moffitt et al., 2015). Bailey et al proposed the 

occurrence of four distinct subtypes, which were named squamous, pancreatic progenitor, 

immunogenic and aberrantly differentiated endocrine exocrine (ADEX) (Bailey et al., 2016). 

Consistent within these classifications, the quasi-mesenchymal (Collisson), basal-like (Moffitt) and 

squamous (Bailey) subtypes were identified in corresponding data sets of other classifications, 

each showing association with poor survival and advanced disease stage compared to the 

classical subtypes. Therefore, all mentioned subtypes can be stratified into two major subtypes, 

which show features of classical (e.g. pancreatic progenitor) and mesenchymal (e.g. basal-like, 

squamous, quasi-mesenchymal) PDAC (Bailey et al., 2016; Chan-Seng-Yue et al., 2020; 

Collisson et al., 2019; Collisson et al., 2011; Kalimuthu et al., 2020; Moffitt et al., 2015). Generally, 

the classical PDAC subtype is characterized by a well-differentiated histopathology, associated 

with a better prognosis and shows a partial response to standard-of-care chemotherapy (Aung et 

al., 2018; Kalimuthu et al., 2020). Furthermore, classical PDAC shows a high expression of the 

transcription factor GATA6, which cooperates with HNF1A and HNF4A to sustain the epithelial 

identity and classical phenotype. Loss of GATA6 is necessary for a shift to a mesenchymal gene 

expression state (Kloesch et al., 2022; Martinelli et al., 2017). Conversely, the mesenchymal 

PDAC subtype is associated with a poorly differentiated histopathology and exhibits mutations in 

chromatin modifiers such as KDM6A, MLL2 and MLL3 as well as TP53 and TP63 (Andricovich et 

al., 2018; Bailey et al., 2016; Collisson et al., 2011; Kalimuthu et al., 2020; Somerville et al., 2018). 

The mesenchymal subtype is further highly resistant to standard-of-care chemotherapy compared 

to classical PDAC and correlates with a poor prognosis in patients (Aung et al., 2018). 

In conclusion, the stratification of molecular PDAC subtypes presents an important approach to 

predict prognosis and treatment outcome in PDAC patients but is currently not used to inform 

treatment strategies (Collisson et al., 2019). The identification of subtype-specific therapeutic 
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vulnerabilities will help to improve treatment outcome, especially in the aggressive and highly 

resistant mesenchymal subtype. One important advancement to systematically analyze tumor-cell 

intrinsic features of the different subtypes was the generation of subtype-specific preclinical 

genetically engineered mouse models (GEMMs) which recapitulate the human diseases. With the 

help of these models, genotype-phenotype associations could be analyzed in great depth and 

evolutionary routes of PDAC tumorigenesis were delineated. For example, the mesenchymal 

subtype was characterized by homozygous loss of the tumor suppressor Cdkn2a, promoting a 

KrasMUT oncogenic dosage increase and leading to an undifferentiated, highly metastatic 

phenotype, whereas the classical subtype was characterized by amplifications of alternative 

oncogenes (Myc, Nfkb2 and Yap1) and lower KrasMUT expression as well as more differentiated 

histology and lower metastatic potential (Miyabayashi et al., 2020; Mueller et al., 2018; Tiriac et 

al., 2018). 

In addition to tumor cell heterogeneity, PDAC is described as a stroma-rich tumor type with a high 

desmoplastic reaction, posing a major challenge to evaluate not only the tumor cell subtype states 

but also to consider the surrounding stroma. The strong desmoplastic reaction of tumors has been 

shown to present a barrier for effective drug delivery as well as elicit tumor promoting features 

(Hosein et al., 2020; Neesse et al., 2015). 

In addition to the identification of molecular PDAC subtypes of the malignant cell compartment, 

multiple studies described TME-related immune and stromal gene expression signatures (Bailey 

et al., 2016; Maurer et al., 2019; Moffitt et al., 2015; Nicolle et al., 2017; Puleo et al., 2018). For 

example, three distinct stromal and immune subtypes were identified in a study by Puleo et al, 

namely the immune classical, desmoplastic as well as stroma activated subtype, with the two latter 

correlating with a poor prognosis in PDAC patients (Puleo et al., 2018). Maurer et al identified two 

TME-related subtypes which are described as extracellular matrix-rich (ECM-rich) and immune-

rich subtypes. Mesenchymal/ECM-rich tumors were associated with a poorer prognosis in 

comparison to classical/immune-rich PDAC (Maurer et al., 2019). These findings highlight the 

importance to acknowledge the heterogenous PDAC TME and further study the characteristics of 

subtype-specific TME composition, as this has the potential to aid the identification of therapeutic 

vulnerabilities, ideally by combinatorial approaches targeting the tumor cells and TME 

simultaneously. 

All mentioned PDAC subtyping studies were derived from bulk RNA-seq measurements and 

thereby potentially disguise intratumor heterogeneity. Hence, the existence of multiple subtypes 

within the same tumor or intermediate cell states of a tumor cell as well as the presence of multiple 

tumor cell clones may be masked. Additionally, many studies enriched the tumor cell fraction for 

subtype stratification, but did not connect them to distinct TME features, thereby obscuring the 

heterogeneity of multiple diverse immune and stromal cell types in the PDAC TME.  
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1.2.2. scRNA-sequencing subtyping approaches 

With the advent of single-cell profiling methods, particularly single-cell RNA sequencing (scRNA-

seq), it became possible to delineate PDAC subtype states and TME heterogeneity at a high 

resolution (Chan-Seng-Yue et al., 2020; Hosein et al., 2019; Juiz et al., 2020; Krieger et al., 2021; 

Lin et al., 2020; Raghavan et al., 2021). 

In a study by Chan-Seng-Yue and colleagues, the authors performed RNA-seq subtyping of 

purified PDAC epithelium within a large patient cohort and refined the existing subtype 

stratification into five distinct subtypes, namely Basal-like A, Basal-like B, Hybrid, Classical-A and 

Classical-B subtypes. The Hybrid cluster was characterized by co-expression of mesenchymal 

(basal-like) and classical gene expression signatures, indicating a high intratumor heterogeneity 

for a large subset of PDAC patients. Using scRNA-seq of resected PDAC, the intratumoral co-

existence of classical and mesenchymal PDAC subtypes could be further elucidated. Notably, in 

>85% of the cases both classical and mesenchymal tumor cells were present within the same 

tumor, accentuating the high heterogeneity of PDAC (Chan-Seng-Yue et al., 2020). Moreover, 

Raghavan et al identified an ‘intermediate co-expressor’ subtype presenting intermediate 

expression levels of classical and mesenchymal signatures within individual PDAC cells in addition 

to the previously classical and mesenchymal subtypes. The scRNA-seq data set was generated 

from metastatic PDAC patient samples and scRNA-seq analysis was performed from biopsies as 

well as patient-matched in vitro organoid cultures. Cells expressing the intermediate co-expressor 

subtype signature showed elevated expression of genes related to RAS signaling, 

inflammatory/stress response as well as enrichment in developmental gene sets. This novel 

subtype might represent a transitional state between the classical and mesenchymal subtype. In 

addition, the identified subtypes were linked to TME associations inferred from the scRNA-seq 

data set of non-malignant cells, thereby delineating state-specific TME compositions. The 

mesenchymal subtype was enriched in C1QC+ macrophages and displayed a low TME diversity. 

Conversely, the classical subtype showed a higher TME cell type diversity and specific enrichment 

in SPP1+ macrophages. The intermediate co-expressor subtype presented a higher T cell 

infiltration (IFNG+ CD8+ T cells) compared to classical and mesenchymal subtypes (Raghavan et 

al., 2021). This study suggests striking differences between molecular PDAC subtypes, which 

warrant further systematical validation. As indicated by the previously mentioned study, 

mesenchymal PDAC correlates with a higher infiltration of macrophages. In line with these 

observations, Tu et al. propose a cell-cell interaction model between TNFa-expressing 

macrophages and mesenchymal PDAC cells, in which the malignant cells secrete the chemokine 

CCL2 leading to recruitment of TNFa+ macrophages which in turn sustain the aggressive 

mesenchymal cell state (Tu et al., 2021). 

In conclusion, scRNA-seq analyses refined previous PDAC subtype classifications and revealed 

intermediate subtype states. Moreover, single-cell profiling offers the possibility to connect tumor 
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cell states with TME features, which needs to be analyzed more systematically to dissect the 

subtype-specific cell-cell communication networks.  

1.3. Tumor microenvironment of PDAC 
The TME of PDAC is special in multifaceted aspects, both with regard to occurrence of immune 

and stromal cell types as well as their corresponding functions and phenotypes. According to the 

diverse tasks of various cell types, the PDAC TME can be compartmentalized into the structural 

and immune TME. Grünwald et al recently contextualized the structural and immune TME of PDAC 

by classification of recurrent TME phenotypes, namely the deserted, reactive and intermediate 

TME phenotypes. The deserted TME is described as immunologically “cold” with an accumulation 

of thin, spindle shaped cancer-associated fibroblasts (CAFs), whereas the reactive TME is 

characterized as immunologically “hot”, thus showing enrichment in plump CAFs with enlarged 

nuclei. The intermediate TME represents a transitional phenotype with characteristics of both 

TMEs. As these TME phenotypes co-occurred within the same tumor in defined spatial 

localizations, they were further annotated as “sub-tumor microenvironments” (subTMEs), 

corroborating the observation of extensive intratumor heterogeneity in PDAC (Grünwald et al., 

2021). The two major subTME phenotypes displayed distinct characteristics with respect to ECM 

deposition, CAF activation and immune cell infiltrates. Moreover, they could be correlated to 

treatment outcome in PDAC patients, as for instance the deserted subTME showed higher 

resistance to chemotherapy. Co-occurrence of the deserted and reactive subTMEs was 

associated with the poorest prognosis compared to tumors which consist in main parts of only one 

subTME (Grünwald et al., 2021). In the following paragraphs, the composition of the structural and 

immune PDAC TME as well as functional implications are specified. 

1.3.1. The structural TME in PDAC 
One hallmark of PDAC is a strong desmoplastic reaction, leading to a stroma-rich tumor. This 

stroma is characterized by the presence of numerous CAF subpopulations responsible for ECM 

production which shapes the so-called ‘structural TME’. Pancreatic stellate cells (PSC), a cell type 

present in the healthy pancreas as well, are one source of activated CAFs in the TME and 

transdifferentiate during tumorigenesis. CAFs exhibit various functions, such as remodeling of the 

ECM, regulation of metabolic functions, immune cell crosstalk and secretion of growth and other 

soluble factors. Due to the extensive ECM deposition and fibrotic reaction, the structural TME 

presents a barrier for effective drug delivery to the tumor core and hinders vascularization of the 

tumor (Hosein et al., 2020; Neesse et al., 2015; Rhim et al., 2014; Sahai et al., 2020). Generally, 

CAFs are associated with tumor promoting functions by influencing tumor growth, mediating 

immunosuppression and possibly tumor cell dissemination; however, there is also evidence of 

tumor restricting functions of specific CAF subsets (Sahai et al., 2020). Recently, multiple CAF 

subpopulations were identified based on specific gene expression profiles and their spatial 

distribution within the tumor. The major CAF subsets are termed myofibroblastic CAFs 
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(myoCAFs), inflammatory CAFs (iCAFs) and antigen presenting CAFs (apCAFs). MyoCAFs are 

characterized by elevated expression levels of aSMA, upregulated TGFb signaling and a 

localization in close proximity to tumor cells. In contrast, iCAFs are localized further away from the 

tumor cells and generally dispersed within the tumor stroma. They are associated with a secretory 

phenotype and high expression of IL6 and LIF (Biffi et al., 2019; Öhlund et al., 2017). The apCAF 

subpopulation was identified in a recent scRNA-seq analysis of human and mouse PDAC tumors. 

This CAF subset shows high expression of MHCII and CD74 but lacks the expression of co-

stimulatory molecules needed for induction of T cell proliferation (Elyada et al., 2019). It was 

recently shown that apCAFs originate from mesothelial cells in PDAC and that they are inducing 

regulatory T cell (Treg) differentiation and proliferation, thereby fostering an immunosuppressive 

phenotype (Huang et al., 2022). 

1.3.2. The immune TME in PDAC 
The other of the identified TME compartments, the immune TME, can be further sub-stratified on 

a pan-cancer level into two distinct groups according to immune cell infiltration and spatial 

dispersion of immune cell subpopulations. These two subgroups are the infiltrated-excluded (I-E 

TME) and infiltrated-inflamed TME (I-I TME). PDAC is associated with the I-E TME class and 

described as immunologically “cold” and highly immunosuppressive tumor as cytotoxic T cells are 

excluded from the tumor core and display a dysfunctional phenotype (Binnewies et al., 2018). In 

addition, PDAC is highly infiltrated by myeloid cell populations which are thought to mediate 

immunosuppression of T cells (Veglia et al., 2021b; Zhu et al., 2017). Moreover, PDAC is 

eminently refractory to immune checkpoint blockade (ICB) which prominently led to higher 

response rates in other solid tumor entities, such as melanoma and lung cancer (Bear et al., 2020; 

Thorsson et al., 2018), further corroborating the lack of activated immune cells in PDAC. 

In contrast, tumors displaying an I-I TME are described as immunologically “hot” tumors, 

characterized by high infiltration rates of activated T cells and clinical response to ICB, e.g. in MSI-

high colorecral cancer (CRC). These are features not frequently observed in PDAC (Binnewies et 

al., 2018).  

Recently, numerous studies set out to characterize the heterogenous PDAC immune TME in large 

patient cohorts by using a multimodal approach including scRNA-seq, multiplexed 

immunohistochemistry and flow cytometry analyses to delineate phenotypes and spatial 

localization of immune cell infiltrates (Grünwald et al., 2021; Hosein et al., 2019; Kemp et al., 

2021b; Liudahl et al., 2021; Steele et al., 2020). Multiplexed immunohistochemistry analysis of 

treatment-naïve, resected PDAC identified distinct immune phenotypes based on cell type 

densities which could be stratified into hypo-inflamed, myeloid and lymphoid immune TMEs. 

However, no association between the immune clusters and overall survival of patients was 

detected. Moreover, densities of immune cells varied substantially within individual tumors, with 

respect to both histological regions as well as patients (Liudahl et al., 2021). Using scRNA-seq 
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analyses, the PDAC immune landscape could be analyzed at a high resolution. Steele et al 

combined scRNA-seq, CyTOF (Cytometry by time of flight) and multiplexed immunohistochemistry 

analyses to systematically delineate immune cell infiltration in PDAC as well as peripheral blood 

of patients. The expression levels of immune checkpoints, which can be harnessed for 

immunotherapy, differed between immune cell populations and individual patients indicating a high 

level of heterogeneity. Profiled CD8+ T cells of PDAC showed an exhausted phenotype by 

expressing exhaustion markers such as EOMES and GZMK. The receptor TIGIT was the only 

immune checkpoint receptor that showed higher expression levels in CD8+ T cells when comparing 

PDAC with adjacent normal tissue. Interestingly, TIGIT-positive cells could also be identified in 

patient’s blood and correlated with the expression levels in the tumor. Hence, TIGIT inhibition 

might present a therapeutic vulnerability in patients with elevated expression of this immune 

receptor (Steele et al., 2020). Myeloid cells, in particular macrophages and neutrophils, are one 

of the most abundant immune cell types in PDAC. Single-cell profiling of human and mouse PDAC 

models characterized the phenotypic diversity of these cell types. Tumor associated macrophages 

(TAMs) show high expression of the complement factors C1QA and C1QB as well as APOE, 

TREM2 and ARG1. Conversely, expression of the C1Q complement factors and APOE was also 

observed in the blood samples of PDAC patients (Kemp et al., 2021a; Kemp et al., 2021b). Co-

expression of Trem2 and Arg1 in TAMs was previously described as a feature of 

immunosuppressive myeloid derived suppressor cells (MDSC) in a mouse fibrosarcoma model. 

Subsequent ablation of Trem2 decreased exhausted T cells and led to an increase in cytotoxic T 

and NK cells (Katzenelenbogen et al., 2020). Activated Arg1 signaling mediates 

immunosuppression by leading to a deficiency of arginase in the TME which is needed for T cell 

activation and proliferation (Bronte et al., 2003). Multiple chemoattractants including cytokines, 

chemokines and interleukins are known to recruit macrophages to tumors. Specifically, the 

chemokines CCL2, CCL3, CCL4 and CXCL12, the cytokine CSF1 as well as IL-6, IL-1b and 

VEGFA are known to induce macrophage/monocyte recruitment to the tumor (Lesokhin et al., 

2012; Pathria et al., 2019). 

Neutrophil-like polymorphonuclear MDSCs (PMN-MDSC) are another immunosuppressive 

myeloid population originating from the granulocytic myeloid lineage and are associated with poor 

prognosis in cancer patients. PMN-MDSCs enable suppression of T cells, B cells and NK cells by 

different modes, e.g. upregulation of STAT3, ARG1 and S100A8/A9 as well as induction of 

endoplasmic reticulum (ER) stress signaling. Moreover, they also play a role in metastatic 

dissemination of tumor cells and are involved in formation of the pre-metastatic niche (Veglia et 

al., 2021b). Recruitment of PMN-MDSC to the tumor site is controlled by chemoattractants such 

as G-CSF, GM-CSF and IL-1 (Bronte et al., 2016; Veglia et al., 2021b). 

In summary, the immune PDAC TME represents an accumulation of immunosuppressive myeloid 

cell subpopulations which lead to repression of T cells. However, the exact modes of 
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immunosuppression and complex cell-cell interactions between tumor, myeloid and T cells in 

PDAC have not been systematically delineated so far. 

1.3.3. Therapeutic approaches to target the PDAC TME 
The composition of the PDAC TME offers many potential therapeutic opportunities by targeting 

the fibrotic stroma and ECM to enhance drug delivery. Equally, reprogramming of the immune 

TME to enable ICB or recruitment and signaling of distinct immune cell populations holds 

promising possibilities for therapeutic approaches. 

Immunotherapies, particularly ICB, have transformed cancer therapy in many solid cancer types 

but showed disappointing results in the context of PDAC. This can be explained by the 

dysfunctional T cell compartment and the high accumulation of immunosuppressive myeloid 

populations. As stated above, PDAC is almost entirely refractory to ICB targeting PD-1/PD-L1 or 

CTLA-4 either in a monotherapy or as combination (Bear et al., 2020; Brahmer et al., 2012; 

O'Reilly et al., 2019; Royal et al., 2010). Therefore, therapeutic approaches targeting or 

reprogramming the immunosuppressive myeloid compartment can potentially result in 

susceptibility of PDAC to ICB therapies and prolonged T cell responses. Among myeloid cells, 

several targetable options have emerged, namely TAMs and MDSCs. Particularly, targeting of 

receptor-ligand interactions to inhibit recruitment as well as targeting signaling pathways, 

epigenetic regulation, metabolism or angiogenesis to modulate the immunosuppressive myeloid 

phenotype to an antitumor phenotype present as reasonable treatment strategies (Bear et al., 

2020; Goswami et al., 2022; Pathria et al., 2019). However, tackling the CAF compartment mainly 

failed in preclinical and clinical studies so far. For example, the approach to deplete aSMA+ 

myoCAFs in a mouse model resulted in poorly differentiated tumors and shortened survival of 

mice (Özdemir et al., 2014). This highlights the importance to thoroughly study functional 

phenotypes of TME cell types, thus enabling to stratify immune cell types according to tumor 

promoting or restricting properties. 

Future approaches to effectively target the TME need to account for the broad cellular diversity in 

PDAC, with the imperative to identify targets or combinatorial approaches aiming to reverse the 

immunosuppressive phenotype. 

1.4. Mouse models of pancreatic cancer 
Mouse models are a valuable preclinical model system in cancer research to systematically 

dissect multiple aspects of tumor biology in vivo. Among these, effects of genetic alterations on 

tumor initiation and progression, the interplay between tumor cells and the surrounding 

microenvironment and efficacy of novel therapies can be studied. Importantly, the development of 

PDAC GEMMs allowed the recapitulation of the human disease along with its extensive genetic 

heterogeneity and diverse TME landscape. Mutations in KRAS, particularly the G12D hotspot 

mutation, are the most predominant oncogenic driver mutations in >90 % of PDAC patients. 

Correspondingly, intercross of the KrasLSL-G12D allele and a pancreas-specific Cre-recombinase, 
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either a transgenic Pdx1-Cre or knock-in Ptf1aCre line, resulted in the first reliable PDAC model 

mimicking the step-wise tumor progression, histopathology and metastatic dissemination of the 

human context (Hingorani et al., 2003; Jackson et al., 2001). In this model, endogenous KrasG12D 

expression is silenced by a LSL-cassette (LoxP-stop-LoxP), consisting of two LoxP sites flanking 

a transcriptional STOP element. This construct was introduced upstream of exon 2 in the Kras 

locus. Upon Cre-mediated recombination, the STOP cassette and one LoxP site are excised, 

resulting in KrasG12D expression specifically in the pancreas (Hingorani et al., 2003). To understand 

the influence of specific genetic alterations on PDAC tumorigenesis, the KrasLSL-G12D was 

combined with inactivation of other alleles, such as the main tumor suppressors Trp53R172H/+ 

(mutated) or Trp53flox/flox (knock-out), Cdkn2aflox/flox, Smad4flox/flox or Tgfbr2flox/flox  (Ijichi et al., 2006; 

Krimpenfort et al., 2001; Marino et al., 2000; Olive et al., 2004; Yang et al., 2002). Within the last 

decade, next-generation PDAC models were generated which combine the Cre/LoxP and Flp/frt 

recombination systems, thereby allowing sequential genetic manipulation or targeting of TME cell 

types in a time-dependent manner. These dual-recombinase models enhance the possibilities of 

conventional PDAC GEMMs (Schönhuber et al., 2014).  

In addition to endogenous GEMMs, mouse orthotopic allografts present another valuable model 

system in PDAC research. Orthotopic transplantations of murine PDAC cells, with known 

molecular and histological features, present a reproducible, cost-effective system to investigate 

tumor-host interaction and treatment studies in vivo.  

1.5. Single cell RNA-sequencing analyses in PDAC 
Single cell profiling of tumors, particularly scRNA-seq analyses, has significantly contributed to 

our understanding of the genetic and TME heterogeneity in the last decade. Compared to 

conventional bulk RNA-seq analysis, scRNA-seq can profile samples at a high-resolution, thereby 

interrogating gene expression profiles of individual cells. In contrast, bulk RNA-seq assesses the 

average gene expression of a cell population. As a drawback, scRNA-seq analyses come at a 

higher cost and data sets are more complex to analyze compared to bulk RNA-seq approaches. 

Droplet-based microfluidic approaches to encapsulate thousands of single cells in parallel are 

widely applied to assess the transcriptional profiles and phenotypes of diverse cell types (Baslan 

and Hicks, 2017; Giladi and Amit, 2018; Sun et al., 2021). In short, droplet-based scRNA-seq 

experimental workflows consist as a first step of the generation of a single-cell suspension by 

dissociating the desired tissue. Next, single cells are encapsulated in droplets containing barcoded 

beads which will add a unique nucleotide sequence (i.e. a molecular barcode) to the transcriptome 

of each cell using a microfluidics system. The input of cells in a high dilution ensures that only 

single cells are captured in droplets, rendering the majority of droplets empty. Within each droplet 

that encapsulated a cell, lysis is performed and the released mRNA is captured. Each transcript 

is additionally barcoded by a unique molecular identifier (UMI), which allows to distinguish 

between different transcripts from the same gene, plus a common cell barcode to distinguish 
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different cells. Next, the mRNA is reversely transcribed to cDNA, followed by cDNA amplification. 

Then, sequencing libraries are constructed by enriching 3’ ends of the cDNA and adding indices 

and adapters to the amplified fragments which can then be subjected to sequencing. The obtained 

reads can be analyzed by numerous computational toolkits to identify cell types and investigate 

cell states, gene expression dynamics, trajectories and cellular interactions (Luecken and Theis, 

2019). 

Multiple studies in PDAC research applied scRNA-seq analyses to investigate heterogeneity of 

the tumor cell compartment by identification of novel intermediate PDAC subtypes and their 

phenotypes. Moreover, immune cell subsets, e.g. a specific population of Arg1+ Trem2+ 

immunosuppressive macrophages, and CAF subpopulations, such as immunosuppressive 

apCAFs, were recently identified through scRNA-seq analysis (Elyada et al., 2019; Han et al., 

2021; Katzenelenbogen et al., 2020; Raghavan et al., 2021). 

In addition to analyzing the transcriptional states of cells, scRNA-seq data can be deployed to infer 

cell-cell interactions within tumors and thereby enable prediction of communication patterns 

between distinct cell types. To this end, the gene expression of ligand-receptor interaction pairs is 

analyzed between cell types and computationally predicted based on statistical methods from a 

priori knowledge about ligands and cognate receptors. Consequently, for predicting interactions 

between cell types, curated databases of ligand-receptor pairs can be interrogated. Inferred cell-

cell communication networks build a basis for experimental validation of cell-cell interactions and 

aid to understand complex processes in the TME, for example how immunosuppression towards 

T cell is mediated (Armingol et al., 2021). As an example, Steele et al analyzed the interactions 

originating from macrophages, granulocytes, dendritic cells, endothelial cells and epithelial cells 

towards CD4, CD8 and NK cells using a ligand-receptor interaction prediction algorithm in a 

human PDAC scRNA-seq data set. Immune checkpoint ligands were highly expressed on myeloid 

cells and were predicted to signal to T and NK cells. Among those upregulated immune 

checkpoints were ICOS/ICOSLG, SIRPA/CD47 and TIGIT/PVR, all identified as communication 

axis between macrophages and T cells/NK cells (Steele et al., 2020). This instance presents 

implications for immunotherapy and shows one possibility to dissect the PDAC TME cell-cell 

communication networks. 
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1.6. Objective 
PDAC remains one of the most lethal cancer entities with a poor prognosis and a rising incidence. 

Recent studies described the extensive heterogeneity of the genetic landscape and the 

immunosuppressive TME in PDAC using single cell technologies. Although sequencing studies 

stratified PDAC into molecular subtypes, it remains elusive how the subtype-specific TME is 

composed and what drives immunosuppression in these states. To this end, the following 

questions need to be addressed: (i) Are molecular PDAC subtypes differing in their TME 

composition? (ii) What are the drivers of immunosuppressive immune cell recruitment in distinct 

subtypes? (iii) Is immunosuppression mediated via a direct interaction between tumor cells and T 

cells or via immune cell interactions? 

The aim of this study is to conduct a comprehensive characterization of the TME composition in 

molecular PDAC subtypes using well-characterized GEMMs and orthotopic transplantation 

models of PDAC and to stratify them according to their TME state. Furthermore, we aim to infer 

the subtype-specific cell-cell communication networks to identify mechanisms of tumor-immune 

and immune-immune crosstalk, ultimately indicative of potential vulnerabilities for more effective 

therapeutic targeting of PDAC. To conduct this study systematically, we use a multimodal 

approach, ranging from bulk to single cell level, integrating histopathological analysis, flow 

cytometry, scRNA-seq, spatial transcriptomics and MS-based secretome analysis. 
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2. MATERIALS 
This section contains all materials which I used myself to conduct experiments and analysis. 
Materials for methods which were performed by collaboration partners are not included. 

2.1. Cell lines 
All mouse PDAC cell lines were previously generated in the groups of Prof. Dieter Saur and Prof. 

Günter Schneider. The following cell lines were characterized and subtype stratified in the 

publication of Müller et al in close collaboration with Prof. Roland Rads group (Mueller et al., 2018). 

  
Cell line ID Description Subtype 

5671 Mouse PDAC Classical – C2a 
16990 Mouse PDAC Classical – C2a 
53578 Mouse PDAC Classical – C2a 
5748 Mouse PDAC Classical – C2a 
8182 Mouse PDAC Classical – C2a 
B590 Mouse PDAC Classical – C2b 
53631 Mouse PDAC Classical – C2b 
53646 Mouse PDAC Classical – C2b 
8442 Mouse PDAC Classical – C2b 
8661 Mouse PDAC Classical – C2b 
2259 Mouse PDAC Classical – C2b 
9591 Mouse PDAC Classical – C2b 
53704 Mouse PDAC Classical – C2c 
4900 Mouse PDAC Classical – C2c 
8296 Mouse PDAC Classical – C2c 
S821 Mouse PDAC Classical – C2c 
4706 Mouse PDAC Classical – C2c 
6075 Mouse PDAC Classical – C2c 
8028 Mouse PDAC Mesenchymal – C1 
8570 Mouse PDAC Mesenchymal – C1 
16992 Mouse PDAC Mesenchymal – C1 
9091 Mouse PDAC Mesenchymal – C1 
5320 Mouse PDAC Mesenchymal – C1 
8513 Mouse PDAC Mesenchymal – C1 
8349 Mouse PDAC Mesenchymal – C1 
3202 Mouse PDAC Mesenchymal – C1 

 

2.2. Cell culture medium and reagents 
Product Manufacturer 

Acetic acid Sigma 
AMPure XP Beckman Coulter 
Bluing Buffer, Dako Agilent 
DMEM high glucose Sigma 
Eosin Y Solution, 0,5 % Sigma 
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Ethanol (100 %) Merck  
Ethanol (80 %) BrüggemannAlcohol 
Fetal calve serum (FCS) Sigma 
Glycerol Sigma 
Hematoxylin, Mayer’s (Lilie’s Modification) Agilent 
Hydrochloric Acid Solution, 0.1N Thermo Fisher 
KAPA SYBR FAST qPCR Master Mix (2X) KAPA Biosystems 
Low TE Buffer (10 mN Tris-HCl pH 8.0, 0.1 mM EDTA) Thermo Fisher 
Methanol, for HPLC  Sigma 
Penicillin (10,000 units/mL)/Streptomycin (10,000 
µg/mL)  

Invitrogen GmbH 

Phosphate buffered saline (PBS) Sigma  
RNAse inhibitor, mouse NEB 
SSC Buffer 20X Concentrate Sigma 
SDS solution, 10% in water Sigma 
Tissue-Tek O.C.T compound Sakura Finetek 
Qiagen Buffer EB Qiagen 

2.3. Kits 
Product Catalog number Manufacturer 

Tumor dissocation kit, mouse #130-096-730 Miltenyi Biotec 
Debris removal kit, mouse #130-109-398 Miltenyi Biotec 
Dead cell removal kit, mouse #130-090-101 Miltenyi Biotec 
Chromium Next GEM Single Cell 3’ GEM, Library & 
Gel Bead Kit v3.1, 16 rxns 

#1000121 10x Genomics 

Chromium Next GEM Chip G Single Kit,  
48 rxns 

#1000120 10x Genomics 

Chromium Single Cell 3’ GEM, Library & Gel Bead 
Kit v3, 4 rxns 

#1000092 10x Genomics 

Chromium Chip B Single Cell Kit, 16 rxns #1000074 10x Genomics 
Chromium i7 Multiplex Kit, 96 rxns #120262 10x Genomics  
Visium Spatial Tissue Optimization Reagent Kit, 4 
slides 

#1000192 10x Genomics 

Visium Spatial Tissue Optimization Slide Kit #1000191 10x Genomics 
Visium Spatial Gene Expression Reagent Kit, 16 rxns #1000186 10x Genomics 
Library Construction Kit, 16 rxns #1000190 10x Genomics 
Dual Index Plate TT Set A #3000431 10x Genomics 
Agilent High Sensitivity DNA Kit #5067-4626 Agilent 
Zombie Aqua Fixable Viability Kit  #423102 Biolegend 

 

2.4. Antibodies 
Specificity Cat.number/RRID Manufacturer Application 

CD4 BUV805 (Clone GK1.5) Cat #564922; RRID:AB_2739008 BD Biosciences FACS: 1:100 
CD3ε BUV395 (Clone 145-2C11) Cat #563565, RRID:AB_2738278 BD Biosciences FACS: 1:20 
CD11c BUV737 (Clone HL3) Cat #564986, RRID:AB_2739034  BD Biosciences FACS: 1:30 
NK1.1 BUV395 (Clone PK136) Cat #564144, RRID:AB_2738618 BD Biosciences FACS: 1:25 
Siglec-F BB515 Cat #564514, RRID:AB_2738833 BD Biosciences FACS: 1:100 
CD8a BV785 (Clone 53-6.7) Cat #100749, RRID:AB_11218801 Biolegend FACS: 1:100 
CD45 PerCP Cy5.5 (Clone I3/2.3) Cat #147705, RRID:AB_2563537 Biolegend FACS: 1:100 
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CD19 FITC (Clone 6D5) Cat #115505, RRID:AB_313640 Biolegend FACS: 1:100 
EpCAM APC/AF647 (Clone G8.8) Cat #118212, RRID:AB_1134101 Biolegend FACS: 1:200 
Ly6C BV785 (Clone HK1.4) Cat #128041, RRID:AB_2565852 Biolegend FACS: 1:200 
CD11b BV650 (Clone M1/70) Cat #101239, RRID:AB_11125575 Biolegend FACS; 1:100 
F4/80 BV421/PB (Clone BM8) Cat #123131, RRID:AB_10901171 Biolegend FACS: 1:30 
Ly6G PE (Clone 1A8) Cat #127607, RRID:AB_1186104 Biolegend FACS: 1:200 
CD68 APC-CY7 (Clone FA-11) Cat #137023, RRID:AB_2616812 Biolegend FACS: 1:20 
CD25 BV650 (Clone PC61) Cat #102038, RRID:AB_2563060 Biolegend FACS: 1:50 
TCR γ/δ BV421 (Clone GL3) Cat #118120, RRID:AB_2562566 Biolegend FACS: 1:50 
CD62L PE (Clone MEL-14) Cat #104408, RRID:AB_313095 Biolegend FACS: 1:500 
CD44 APC/Fire750 (Clone IM7) Cat #103062, RRID:AB_2616727 Biolegend FACS: 1:30 
TruStain FcX CD16/32 (Clone 93) Cat #101320, RRID:AB_1574975 Biolegend FACS; 1:100 
TER-119/Erythroid Cells BV421 Cat #116233, RRID:AB_10933426 Biolegend FACS; 1:100 
CD45 APC/AF647 (Clone 30-F11) Cat #103124, RRID:AB_493533 Biolegend FACS: 1:20 
CD31 APC/AF647 (Clone 390) Cat #102416, RRID:AB_493410 Biolegend FACS: 1:20 

 

2.5. Software and databases 
Software URL/manufacturer Reference 

BayesSpace (v1.5.1) https://github.com/edward130603/BayesSpace (Zhao et al., 2021) 
BBKNN https://github.com/Teichlab/bbknn (Polański et al., 2020) 
bioinfokit visuz (v2.0.8) https://github.com/reneshbedre/bioinfokit n/a 
CellChat (v1.0.0) https://github.com/sqjin/CellChat (Jin et al., 2021) 
CellRanger (v3.1.0) https://support.10xgenomics.com/single-cell-gene-

expression/software (10x Genomics) 
n/a 

Corrplot (v0.9.2) https://github.com/taiyun/corrplot n/a 
FlowJo (v10.8.1) FlowJo LLC, Ashland, OR, USA n/a 
GraphPad Prism (v8) GraphPad Software, Inc. n/a 
GSEApy (v0.10.8) https://github.com/zqfang/GSEApy n/a 
ImageScope (v12.3) Leica Biosystems, Wetzlar n/a 
Leiden (v0.8.1) https://github.com/vtraag/leidenalg (Traag et al., 2019) 
MaxQuant3 (v1.6.2.10) https://www.maxquant.org (Cox and Mann, 2008b) 
R (v4.0.3) https://www.R-project.org (R Core Team, 2016) n/a 
Python (v3.8.3) https://www.python.org (Python Software) n/a 
Scanpy (v1.8.1) https://github.com/theislab/scanpy (Wolf et al., 2018) 
Seurat (v4.0.6) https://satijalab.org/seurat (Hao et al., 2021) 
Squidpy (v1.0.0) https://github.com/scverse/squidpy (Palla et al., 2022) 
SpaceRanger (v.1.10) https://support.10xgenomics.com/spatial-gene-

expression/software (10x Genomics) 
n/a 

UMAP (v0.4.6) https://github.com/lmcinnes/umap (Becht et al., 2018) 
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3. METHODS 
3.1. Mouse strains and animal experiments 
All animal studies were conducted in compliance with the European guidelines for the care and 

use of laboratory animals and ARRIVE. All studies were approved by the Institutional Animal Care 

and Use Committees (IACUC) of the local authorities of Technische Universität München and the 

Regierung von Oberbayern. Mice were housed in a vivarium facility, with a light-dark cycle on 

12:12 hours, a constant housing temperature between 20 and 24°C and a relative air humidity of 

55%. The following mouse strains were included in this study: 
Allele name Mouse strain Reference 

Ptf1aCre/+ Ptf1atm1(cre)Hnak (Nakhai et al., 2007) 
Pdx1-Flp Tg(Pdx1-flpo)#Dsa (Schönhuber et al., 2014) 
LSL-KrasG12D/+ Krastm4Tyj (Hingorani et al., 2003; Jackson et al., 2001) 
FSF-KrasG12D/+ Krastm1Dsa (Schönhuber et al., 2014) 
FSF-R26CAG-CreERT2/+  Gt(ROSA)26Sortm4(CAG-Cre/ERT2)Dsa/J (Schönhuber et al., 2014) 
LSL-Trp53R172H/+ B6.129S4(Cg)-Trp53tm2.1Tyj/J (Olive et al., 2004) 
Trp53lox/+ B6.129P2-Trp53tm1Brn/J (Marino et al., 2000) 
Trp53frt/+ Trp53tm1.1Dgk (Lee et al., 2012) 
p16Ink4a*/+ Cdkn2atm1Rdp (Krimpenfort et al., 2001) 
Tgfbr2flox/+ Tgfbr2tm1.2Hlm (Chytil et al., 2002; Ijichi et al., 2006) 
LSL-R26Snail/+ n/a  (Paul, 2013) 
LSL-R26Tgfb1/+ Gt(ROSA)26Sortm3(TGFb1)/J (Hieber, 2021) 
Smad4flox/+ Smad4tm2.1Cxd (Yang et al., 2002) 
LSL-Pik3caH1047R/+ Gt(ROSA)26Sortm2(Pik3ca*)Dsa (Eser et al., 2013) 

 

The following genotype groups were investigated in this study:  
Genotype 
group Allele combination 

PK Ptf1aCre/+,LSL-KrasG12D/+; Pdx1-Flp, FSF-KrasG12D/+ 
PKC Ptf1aCre/+,LSL-KrasG12D/+; p16Ink4a*/+, Ptf1aCre/+,LSL-KrasG12D/+; p16Ink4a* Ink4a* 
PKP Ptf1aCre/+,LSL-KrasG12D/+,LSL-Trp53R172H/+; Ptf1aCre/+,LSL-KrasG12D/+, Trp53lox/+; Pdx1-Flp, FSF-

KrasG12D/+,Trp53frt/+; Ptf1aCre/+,LSL-KrasG12D/+,LSL-Trp53R172H/R172H; Ptf1aCre/+,LSL-KrasG12D/+, 
Trp53lox/lox; Pdx1-Flp, FSF-KrasG12D/+,Trp53frt/frt 

PKS Ptf1aCre/+,LSL-KrasG12D/+,LSL-R26Snail/+ 
PKSC  Ptf1aCre/+,LSL-KrasG12D/+,LSL-R26Snail/+,p16Ink4a*/+ 
PKPS Ptf1aCre/+,LSL-KrasG12D/+,LSL-Trp53R172H/+,LSL-R26Snail/+ 
PKT Ptf1aCre/+,LSL-KrasG12D/+,Tgfbr2flox/+; Ptf1aCre/+,LSL-KrasG12D/+,Tgfbr2floxflox+ 
PKPT Ptf1aCre/+,LSL-KrasG12D/+, LSL-Trp53R172H/+,Tgfbr2flox/+ 
PKTo Ptf1aCre/+,LSL-KrasG12D/+, LSL-R26Tgfb1/+ 
PKPCSm Pdx1-Flp, FSF-KrasG12D/+, FSF-R26CAG-CreERT2/+,Trp53lox/+, p16Ink4a*/+,Smad4flox/+; Pdx1-Flp, FSF-

KrasG12D/+, FSF-R26CAG-CreERT2/+,Trp53lox/lox, p16Ink4a*/ Ink4a*,Smad4flox/flox 
PPI3K Ptf1aCre/+,LSL-Pik3caH1047R/+ 

PPI3KP Ptf1aCre/+,LSL-Pik3caH1047R/+,LSL-Trp53R172H/+; Ptf1aCre/+,LSL-Pik3caH1047R/+,LSL-Trp53R172H/R172H  
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3.2. Orthotopic implantation of mouse PDAC cell lines 
For orthotopic transplantation of PK mouse PDAC cell lines, cancer cells (2500 to 10000 cells) 

were orthotopically injected into the pancreas tail of syngeneic immunocompetent C57Bl/6J 

animals. Mouse cell cultures for implantation were sex-matched as well as matched to the genetic 

background of the host animal to avoid graft rejection and immunogenicity. Orthotopic 

implantations were performed together with Chiara Falcomatà, Jack Barton and Saskia Ettl.  

3.3. Cell culture of mouse PDAC cell lines 
Cell culture experiments were performed in biosafety cabinets under sterile conditions. Previously 

generated mouse PDAC cell lines were cultured in DMEM supplemented with 10% FCS and 1% 

Penicillin/Streptomycin unless otherwise stated. Cell cultures were kept in incubators at 37°C and 

5% CO2 condition. All cell lines were routinely tested for mycoplasma contaminations by using an 

in-house PCR test as well as previously confirmed for their genotype by PCR (Mueller et al., 2018). 

3.4. Histopathological analysis of PDAC samples 
Collection and H&E staining of the PDAC histology cohort (n=500 tumors) was performed mainly 

by Dr. Chen Zhao (Zhao, 2021) and former lab members of the Saur group. The histopathological 

analysis was conducted by board-certified pathologist Prof. Moritz Jesinghaus and documented 

by Dr. Chen Zhao (Zhao, 2021). Stroma content, granulocyte and lymphocyte infiltration were 

estimated as percentage of the tissue area from the H&E-stained tumor sections and up to 2 

replicates per individual tumor were analyzed. Mitoses were counted per high power-field in areas 

showing increased mitotic activity. Unsupervised clustering analysis of the data set was performed 

by Chiara Falcomatà.  

3.5. Immunophenotyping by flow cytometry 
Freshly harvested tumor samples were minced and enzymatically digested with the tumor 

dissociation kit (Miltenyi Biotec) for 40 min at 37°C with agitation. The cell suspension was strained 

through a 100 µm strainer, spun down and resuspended in 2% FCS/PBS. Cells were blocked for 

10 min on ice with anti-mouse CD16/CD32 FC block (Biolegend, 1:100) and stained with Zombie 

Aqua Fixable Viability Kit (Biolegend, 1:500) and the following antibody cocktails: CD4 BUV805 

(BD, 1:100), CD3εBUV395 (BD, 1:20), CD8a BV785 (Biolegend, 1:100), CD45 PerCP Cy5.5 

(Biolegend, 1:100), CD19 FITC (Biolegend, 1:100), EpCAM APC/AF647 (Biolegend, 1:200) for 

acquisition of adaptive immune cells; CD11c BUV737 (BD, 1:30), NK1.1 BUV395 (BD, 1:25), Ly6C 

BV785 (Biolegend, 1:200), CD11b BV650 (Biolegend, 1:100), F4/80 BV421/PB (Biolegend, 1:30), 

CD45 PerCP Cy5.5 (Biolegend, 1:100), Ly6G PE (Biolegend, 1:200), CD68 APC-CY7 (Biolegend, 

1:20), EpCAM APC/AF647 (Biolegend, 1:200) for acquisition of innate immune cells. Per panel 

1,000,000 events were acquired on the BD LSRFortessa. Flow cytometry data was analyzed using 

FlowJo software (v10.6.2). Flow cytometry experiments were performed together with Chiara 

Falcomatà and Jack Barton. Spearman’s rank cell type correlation analysis resulting from flow 
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cytometry data in classical and mesenchymal implanted tumors was performed by Chiara 

Falcomatà using the corrplot toolkit.  

3.6. scRNA-seq experiments and computational analysis 

3.6.1. Tissue dissociation and sample preparation 
Dissociation and sample preparation was conducted as described in Falcomatà et al.: “Tumor 

specimens were dissociated and enzymatically digested with the tumor dissociation kit as 

described above. The cell suspension was strained through a 100 µm strainer, spun down and 

resuspended in 2% FCS/PBS including RNase inhibitor (1:100). Debris removal solution (Miltenyi 

Biotec) was used to remove cell debris from the dissociated tissue. Then, a dead cell removal kit 

(Miltenyi Biotec) was used to enrich for living cells. For specific samples, the cell suspension was 

spun down, resuspended in PBS and blocked for non-antigen-specific binding for 10 min on ice 

with anti-mouse CD16/CD32 FC block (Biolegend, 1:100). Cells were stained with the following 

antibodies for FACS sorting: TER-119 BV421 (Biolegend, 1:100), CD45-AF647 (Biolegend, 1:20), 

CD31-AF647 (Biolegend, 1:20) and EPCAM-AF647 (Biolegend, 1:20) for 30 min on ice. Cell 

sorting was performed using the BD FACS Aria Fusion. The sorted cells from the TER-119-

negative/CD45-/CD31-/EPCAM-positive fraction (for enrichment of immune, endothelial and 

epithelial tumor cells and exclusion of erythrocytes) as well as TER-119-/CD45-/CD31-/EPCAM-

negative fraction (for enrichment of fibroblasts/mesenchymal tumor cells and exclusion of 

erythrocytes) were collected in 2% FCS/PBS.” (Falcomatà et al., 2022). Sample preparation was 

performed together with Chiara Falcomatà. 

3.6.2. Library preparation and sequencing 
Library preparation and sequencing was performed as described in Falcomatà et al.: “The (sorted) 

cells were counted, diluted to an appropriate cell number in 2% FCS/PBS and loaded on a 10x 

Chromium chip (up to 20,000 cells per lane) to generate gel beads in emulsion (GEMs). Single 

cell GEM generation, barcoding and library construction was performed by using 10x Chromium 

Single Cell 3’ v3 and v3.1 chemistry according to the manufacturer’s instructions. cDNA and 

generated libraries were examined for library size and quality on an Agilent Bioanalyzer 2100 

using HS DNA Kit (Agilent). Libraries were sequenced on Illumina NovaSeq 6000 S2 (PE, 28+94 

bp) and NovaSeq 6000 S4 (PE, 100 bp).” (Falcomatà et al., 2022). Albulena Toska helped with 

generating the scRNA-seq libraries. 

3.6.3. Pre-processing of data, integration and quality control 
Pre-processing, data integration and quality control was performed as described in Falcomatà et 

al.: Alignment of the scRNA-seq data to the mouse reference genome (mm10, release 

108.20200622), filtering, barcode and unique molecular identifier (UMI) counting was performed 

using the 10x Genomics Cell Ranger software (v3.1.0). Python (v3.8.3) and the Python software 
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package Scanpy was employed for all further analyses (v1.8.1) (Wolf et al., 2018). Cells that 

expressed less than 200 genes, had less than 1000 or more than 20000 counts or had more than 

10% mitochondrial gene counts were excluded from the analysis. In addition, genes with less than 

20 counts were filtered out. Counts were per-cell normalized and (log+1)-transformed. Highly 

variable genes were computed using the first n=4000 most variable genes for the analyses across 

all cell types. Batch-effect correction was performed using BBKNN (batch balanced k nearest 

neighbors, v1.5.1) (Polański et al., 2020).” (Falcomatà et al., 2022). Initial data analysis was 

supported by Jonas Mir and Albulena Toska.  

3.6.4. Dimensionality reduction, clustering and cell type annotation 
Dimensionality reduction, clustering and cell type annotation was performed as described in 

Falcomatà et al.: “The Leiden algorithm (v0.8.1) (Traag et al., 2019) was used for cell clustering 

and Uniform Manifold Approximation and Projection (UMAP, v0.4.6) (Becht et al., 2019) for 

dimensionality reduction. The clusters were further annotated by assessment of known cell-type 

specific markers. Principal component analysis was performed with default parameters. 

Neighborhood graphs were computed based on n=10 principal components and k=30 neighbors 

and the calculation of all UMAP projections was based on default parameters. The optimal number 

of Leiden clusters was adjusted according to the sample of consideration.” (Falcomatà et al., 

2022). 

3.6.5. Macrophage cluster analysis 
Macrophages were initially identified by expression of Cd68 and Lyz2, extracted from the quality-

controlled data set and further normalized as well as batch corrected as described above using 

the same parameters (total 8,145 cells). Macrophage and monocyte subpopulations were 

assessed by using different reference data sets (Kemp et al., 2021b; Zhang et al., 2020; Zilionis 

et al., 2019). Differential gene expression analysis between macrophages/monocytes from 

mesenchymal and classical tumors was performed by using Wilcoxon rank-sum test. Then, genes 

were ranked (log2fc_min=0.5, pval_cutoff=0.01) and gene set enrichment analysis was performed 

using the ‘MSigDB_Hallmark_2020’ gene set with the GSEApy toolkit.  

3.6.6. Neutrophil cluster analysis 
Neutrophils were identified by expression of S100a8/S100a9 and Cxcr2, extracted from the 

quality-controlled data set and further normalized and batch corrected as described above using 

the same parameters (total 3,017 cells). To assess phenotypic characteristics, the expression of 

‘PMN-MDSC’ and ‘activated PMN-MDSC’ gene sets were analyzed (Veglia et al., 2021a). 

3.6.7. T cell cluster analysis 
Cd3g expressing cells were extracted from the quality-controlled data set for T cell analysis and 

further normalized and batch corrected as described above using the same parameters (total 
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20,055 cells). T cell subpopulations were annotated as previously described (Falcomatà et al., 

2021). 

3.6.8. Tumor cell cluster analysis 
Tumor cells (Krt19, Krt18 expression) were extracted from the quality-controlled data set and 

further normalized and batch corrected as described above using the same parameters (total 

11,953 cells). Differential gene expression analysis between tumor cells from mesenchymal and 

classical tumors was performed by using Wilcoxon rank-sum test. 

3.6.9. CAF cluster analysis 
CAF cells, expressing high levels of Pdpn, Dcn and showing no expression of Krt19/Krt18, were 

extracted from the quality-controlled data set and further normalized and batch corrected as 

described above using the same parameters (total 1,414 cells). CAF subpopulations were 

annotated by previously published using marker gene sets (Elyada et al., 2019).  

3.7. CellChat ligand-receptor interaction analysis 
CellChat was used to infer cell-cell communication between immune cell subpopulations as well 

as between tumor cells and immune cells in vivo by integration of scRNA-seq data of orthotopically 

implanted PK tumors (Jin et al., 2021). As input for the CellChat analysis, normalized scRNA-seq 

data with assigned cell type labels was used and converted to a CellChat object (Jin et al., 2021). 

Next, relevant CellChatDB (database), either ‘secreted signaling’ or ‘cell-cell contact’, was chosen. 

Overexpression of ligand or receptors belonging to either database in a cell type were identified 

as well as ligand-receptor interactions between cell types if either ligand or receptor was 

overexpressed in a cell type. CellChat calculates a communication probability value for each 

ligand-receptor interaction and performs a permutation test. The probability value of the interaction 

is assigned by integration of gene expression and prior knowledge of ligand-receptor pair 

interactions using law of mass action. For calculating the average gene expression per cell type, 

we set the ‘trimean’ function to 10% truncated mean.  

CellChat objects were separately processed for the classical and mesenchymal scRNA-seq data 

set. For direct comparison of the two subtypes, both CellChat objects were merged into one 

combined CellChat object. CellChat then compared the number of identified ligand-receptor 

interactions and interaction strength across different cell types. Thereby, enhanced or decreased 

interaction patterns/signaling pathways can be identified between the classical and mesenchymal 

subtype. First, the ‘secreted signaling’ CellChatDB was used for assessing the interactions 

between tumor cells and TME cell types as well as between Macrophages – T cells and 

Neutrophils – T cells. Additionally, the ‘cell-cell contact’ CellChatDB was interrogated to infer 

interactions between Macrophages – T cells and Neutrophils – T cells. 
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3.8. Spatial transcriptomics experiments and computational analysis 

3.8.1. Sample acquisition, tissue optimization and Visium spatial gene expression library 

preparation and sequencing 
Fresh frozen tumor samples were stored in OCT and sectioned at 10 µm using a cryotome (Leica), 

followed by careful placement on the capture areas (6,5 x 6,5 mm) of the Visium Tissue 

Optimization Slide (10x Genomics) and Visium Gene Expression Slide (10x Genomics). First, the 

tissue optimization workflow was performed to identify the optimal permeabilization time for each 

individual tumor. The Visium Spatial Gene Expression workflow was performed according to the 

manufacturer’s instructions. Next, cDNA and generated libraries were examined for sample size 

and quality on an Agilent Bioanalyzer 2100 using HS DNA Kit (Agilent). Libraries were sequenced 

on Illumina NovaSeq 6000 S1 (PE, 100 bp) with minimum 50,000 read pairs per tissue covered 

spot on the capture area. Sectioning of fresh frozen samples onto Visium slides was performed 

by Olga Seelbach (Katja Steiger group).  

3.8.2. Pre-processing of data and quality control 
Alignment and initial data analysis was performed by Giovanni Palla (Fabian Theis Lab) in close 

collaboration. The raw sequencing reads of the spatial transcriptomics data were quality checked 

and aligned to the mouse reference genome (mm10, release 108.20200622) using Space Ranger 

(v1.10). The resulting gene-spot matrices were further analyzed with the Squidpy (v1.0.0) toolkit 

in Python (Palla et al., 2022). Spots were filtered for a minimum expression of 200 genes, minimum 

read counts of 5000 and maximum read count number of 35,000 counts. Spots with more than 

10% mitochondrial gene counts were excluded from the analysis. In addition, genes with fewer 

than 10 read counts were removed. Counts were per-spot normalized and (log+1)-transformed. 

Highly variable genes were computed with the cellranger method in scanpy and the first n=2000 

most variable genes were kept for downstream analysis (Wolf et al., 2018). Principal component 

analysis was performed with default parameters.  

3.8.3. BayesSpace enhanced clustering and cluster annotation 
To enhance the capture spot resolution of the Visium gene expression slide, we employed the 

BayesSpace toolkit, which subsets each capture spot into 6 subspots. First, number of clusters 

were selected based on the pseudo-log-likelihood by choosing the cluster number around the 

elbow of the plot. Spatial clustering implementing a Bayesian model with a Markov random field 

was performed using 10,000 iterations (nrep=10000). Next, the clustering was enhanced at the 

subspot level similar to the previous spot-level clustering using 100,000 iterations (nrep=100000). 

To enhance gene expression at the supspot-level, BayesSpace uses a fitted model to predict gene 

expression at high-resolution (Zhao et al., 2021). Visualizations of heatmaps were performed in 

Seurat.  
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3.9. Secretome analysis of tumor cell-derived conditioned media 
Collection of conditioned media was performed together with Constantin Schmitt and Chiara 

Falcomatà. The MS-based secretomics experiment and data processing was performed by 

Jonathan Swietlik (Meissner group). 

3.9.1. Conditioned media collection 
Classical and mesenchymal PK cell lines were cultured in 10-cm dishes under standard conditions 

until 80-90% confluency was reached. Cells were washed thoroughly twice with PBS, once with 

serum/phenol-red-free DMEM and incubated for 12h in 5 ml serum/phenol-red-free DMEM. The 

conditioned media was collected, filtered through 0.2 µm pores, snap frozen and then further 

processed for MS-based secretomics analysis.  

3.9.2. MS-based secretomics 
MS-based secretome analysis was conducted as described in Falcomatà et al.: “Serum- and 

phenol red free PDAC cell conditioned media was concentrated to ∼250 μl and washed with 50 

mM Tris, pH 8 (Amicon Ultra 3 kDa cutoff filter units, Merck) at 4°C, 4,000 x g. 50 µl of concentrated 

supernatants were complemented with 10 mM TCEP and 40 mM 2-chloroacetamide and then 

heated in a thermoshaker for 10 minutes at 95°C, 1,000 rpm. Next, samples were digested with 

1.5 µg trypsin/ LysC mix for 16 h at 37°C, 1000 rpm. Samples were acidified by adding 100 µl 

isopropanol, 1% TFA and desalted using in-house made SDB-RPS StageTips. Desalted peptide 

mixtures were reconstituted in buffer A (0.1% formic acid) and analyzed with an EASY-nLC 1200 

ultrahigh-pressure system (Thermo Fisher Scientific) coupled to an Orbitrap Exploris 480 

instrument (Thermo Fisher Scientific). 300 ng peptide were loaded onto a 50-cm in-house made 

column with 75 µm inner diameter, packed with C18 1.9 µm ReproSil beads (Dr. Maisch GmbH). 

Peptides were eluted with a linear gradient from 5% to 30% buffer B (0.1% formic acid, 80% 

acetonitrile) for 95 minutes at flow rate of 300 nl min-1. An in-house made column oven ensured 

a constant temperature at 60°C. Data acquisition was performed with a data-dependent MS/MS 

method. Full scans (300 to 1650 m/z, R = 60,000 at 200 m/z) at a normalized AGC target of 300% 

were followed by 15 MS/MS scans with higher energy collisional dissociation (normalized AGC 

target 100%, maximum injection time 28 ms, isolation window 1.4 m/z, HCD collision energy 30%, 

R = 15,000 at 200 m/z). Dynamic exclusion of 30 s was enabled.” (Falcomatà et al., 2022) 

3.9.3. Data preprocessing 
Data preprocessing was performed as described in Falcomatà et al.: “The Andromeda search 

engine built into MaxQuant3 (v1.6.2.10) (Cox and Mann, 2008a) was used to process MS raw 

files. Next, MS/MS spectra were matched against the mouse UniProt FASTA database (June 

2019) with an FDR of 0.01 at the protein and peptide level and a minimum peptide length of seven 

amino acids. Match between runs was enabled and the minimal ratio count for label-free 

quantification was set to one. Proteins were filtered for extracellular annotation (GOCC terms 
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"extracellular space" and "extracellular matrix", UniProt keywords "secreted"). Missing values 

were replaced from a Gaussian distribution (30 % width and downshift by 1.8 standard deviations 

of measured values) and t-tests were performed with a permutation-based FDR of 0.05.” 

(Falcomatà et al., 2022). Differentially secreted proteins were visualized in a volcano plot using 

the bioinfokit visuz (v2.0.8) toolkit in Python. Then, proteins were ranked (log2fc_min=0.5, 

pval_cutoff=0.05) and gene set enrichment analysis was performed using the 

‘MSigDB_Hallmark_2020’ and ‘GO_Biological_Process_2021’ gene sets with the GSEApy toolkit 

in Python
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4. RESULTS 
 

Context-specific oncogenic signaling across organs can differ substantially in various tissues, thus 

influencing tumorigenesis as well as treatment outcome and resistance (Falcomatà et al., 2019; 

Schneider et al., 2017). To dissect signaling downstream of oncogenic drivers in various tissues, 

we elucidated the role of context specific PI3K and Kras signaling for extrahepatic 

cholangiocarcinoma (ECC) and PDAC initiation in mouse models. We showed that oncogenic 

Pik3caH1047R activation leads to transformation of the biliary epithelium, while oncogenic KrasG12D 

signaling initiates exclusively PDAC formation. Further molecular analysis revealed that the tumor 

suppressor p27Kip1 presents a barrier to ECC tumorigenesis. In conclusion, we generated the first 

GEMM for functional studies of ECC and identified PI3K signaling output strength and tumor 

suppressor function of p27Kip1 as integral determinants for ECC development. These results have 

been recently published in the research article “Genetic Screens Identify a Context-Specific 

PI3K/p27Kip1 Node Driving Extrahepatic Biliary Cancer “, Falcomatà, Bärthel, Ulrich et al. (Cancer 

Discovery. 2021 Dec 1;11(12):3158-3177.) (Falcomatà et al., 2021).  

During this PhD work, we further focused on KrasG12D-driven PDAC and investigated a novel 

combinatorial therapy approach in molecular PDAC subtypes. The combination consisting of the 

MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib was specifically effective in the 

aggressive mesenchymal PDAC subtype. Moreover, the therapy reprogrammed the 

immunosuppressive TME in vivo by inducing T cell infiltration, which sensitized the mesenchymal 

subtype, but not the classical, to ICB by PD-L1 inhibition. This work was recently published in the 

research article “Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to 

immune checkpoint blockade by remodeling the tumor microenvironment “, Falcomatà, Bärthel et 

al. (Nature Cancer 2022 Mar;3(3):318-336.) (Falcomatà et al., 2022).  

The striking difference in therapy response in both subtypes, particularly the effect on the TME, 

prompted us to investigate the TME characteristics of PDAC subtypes in a treatment-naïve state. 

The results of this comprehensive analysis are not published as research article to this date and 

are presented in this PhD dissertation in the next chapters. Contributions from colleagues and 

collaborators to the results presented in this work are indicated in the methods section and the 

figure legends.  
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The PDAC TME consists of various immune and stromal cell types presenting a heterocellular 

ecosystem, which aggravates the already difficult to dissect heterogeneity in the genetic 

landscape of this cancer entity. Given the previous classification of molecular PDAC subtypes 

(classical and mesenchymal) which defines tumor compartment-intrinsic characteristics, we 

hypothesized that the TME composition of the subtypes equally differs to a large extent (Collisson 

et al., 2019). 

In the scope of this doctoral thesis, we conducted a comprehensive analysis of the PDAC subtype-

specific TME to (i) characterize the TME architecture, focusing on immune infiltrates, (ii) analyze 

the tumor cell-mediated communication network between tumor- and immune cells and (iii) infer 

the aggregated immune-immune interaction network in classical and mesenchymal PDAC (Figure 
2a). We addressed these questions through an in vivo and in vitro multimodal approach by 

integration of single cell resolution methods, such as flow cytometry and scRNA-seq, with bulk 

resolution methods, e.g. large-scale histopathological analysis. Therefore, it is possible to analyze 

the subtype-specific TME attributes on multiple levels (e.g., population dynamics of immune cells 

as well as molecular features of subtype-specific infiltrates) (Figure 2b). 
The analysis was performed by leveraging a large cohort of mouse PDAC tumors, previously 

generated in the Saur group, and corresponding mouse PDAC cell cultures established thereof. 

Mouse models recapitulate the spectrum of human PDAC subtypes and are therefore a valuable 

model system to systematically study the TME characteristics in a treatment-naïve setting. 

 

 

  

Figure 2. Overview of systematic TME characterization 

a, Schematic depiction of analysis strategy for the subtype-specific TME in PDAC, focusing on a 
comprehensive characterization of the TME composition and analysis of cell-cell communication networks 
in classical and mesenchymal PDAC. Within the scope of this work, we focus on tumor-immune and 
immune-immune crosstalk. 
b, Schematic overview of methods integrated in the TME characterization. Using mouse models of PDAC 
subtypes, the subtype-specific TME was analyzed by (1.) Flow cytometry and histocytometry, (2.) scRNA-
seq analysis, (3.) spatial transcriptomics and (4.) MS-based secretomics. 
Individual graphical elements and panel b by courtesy of Chiara Falcomatà. 
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4.1. Integrative histopathological analysis and single-cell profiling reveals 
TME heterogeneity across molecular PDAC subtypes 
 

We first aimed to characterize the TME composition in mouse models of molecular PDAC 

subtypes defined by distinct genetic alterations. By using mouse models with previous molecular 

annotation, we hypothesized that faithful recapitulation of human PDAC tumorigenesis and 

influence of specific alterations on tumor progression and TME composition is facilitated, thereby 

reducing the complex genetic landscape of human PDAC. 

To this end, a large cohort of mouse PDAC FFPE tissue samples (n=500) was previously 

generated in the Saur Lab for which H&E staining was performed on each tissue section. Chen 

Zhao compiled the cohort of 500 PDAC specimens. Next, a comprehensive histopathological 

analysis was conducted by board-certified pathologist, Moritz Jesinghaus, providing assessment 

of tumor grade, annotation of stroma content and immune cell infiltration, as well as quantification 

of mitoses per HPF for each individual H&E-stained slide. 

Tumors were graded according to the following grading system: G1 – well differentiated (low 

grade), G2 – moderately differentiated (intermediate grade), G3 – poorly differentiated (high 

grade) and G4 – undifferentiated (high grade) (Edge and Compton, 2010). Representative images 

of each grading can be found in Figure 4b. 

Genotypic composition of our cohort encompassed predominantly Kras-driven models, either 

harboring an oncogenic KrasG12D alone (PK group) or in combination with additional genetic 

alterations, such as Trp53, Cdkn2a, Snail or Tgfb. In contrast, a subset of tumors expressed 

mutant Pik3caH1047R as main oncogenic driver (Figure 3a). This genotype distribution reflects the 

human mutational spectrum, where the majority of PDAC patients show activating KRAS 

mutations in combination with recurrent alterations of tumor suppressor genes, most notably 

TP53, CDKN2A and SMAD4. Importantly, these GEMMs are molecularly well-defined and 

extensively characterized in our lab. 

Of note, histopathological analysis of prominent TME features, particularly the amount of stroma 

content or lymphocyte infiltration, revealed high intra- as well as inter-group heterogeneity with 

respect to individual genotypes. Tumors belonging to the PK (KrasG12D mutated) group displayed 

varying stroma content (between 5 and 70%), while PKT (additional Tgfbr2 deletion) and 

Pik3caH1047R-driven (PPI3K and PPI3KP) tumors generally showed higher stroma abundance, 

although similar variance within the respective groups was noted. In comparison to the overall 

high stroma content across the PDAC cohort, the proportion of infiltrating lymphocytes (combining 

T cells and B cells) was mostly low with an average percentage of lymphocytes per section below 

10% (Figure 3b). 
After integration of all histologically determined variables, we performed unbiased hierarchical 

clustering of the whole data set, thereby aiming to combine all annotated TME features and link 
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distinct TME phenotypes to their oncogenic driver or histopathological grading. This approach 

revealed five different clusters, distinguished by unique properties with respect to their TME  

composition: C1 – lymphocyte high, C2 – proliferating/hybrid, C3 – granulocyte high, C4 –  immune 

excluded and C5 – stroma high (Figure 3c). 

  

Figure 3. Histopathological analysis and characterization of the TME composition in 
molecular mouse PDAC subtypes 

a, Schematic overview of histopathological workflow (top); pie chart depicting mouse PDAC cohort (n=500 
tumors) and genotype model distribution (bottom). PDAC GEMMs were generated by lab members of the 
Saur and Schneider labs. Sectioning of FFPE specimens and subsequent H&E staining as well as scanning 
of slides was performed by Chen Zhao. Board-certified pathologist Moritz Jesinghaus assessed tumor 
grading, granulocyte and lymphocyte infiltration, stroma content and quantified mitoses. Graphical 
visualization by courtesy of Chiara Falcomatà. 
b, Violin plots showing the amount of stroma content (top) and infiltration of lymphocytes (bottom, both in 
%) across genotype groups in mouse PDAC tissue sections. Genotype groups are annotated with the main 
oncogenic driver and optionally additional genetic alterations. Each dot represents an individual tumor. The 
mean is indicated by a dashed line. 
c, Unbiased hierarchical clustering of mouse PDAC samples according to annotated histopathological 
features (mitoses, granulocytes, lymphocytes and stroma content). Samples are further annotated with 
oncogenic driver and grading. Clustering analysis was performed by Chiara Falcomatà.  
 



Results 
 

 39 

Pik3caH1047R-driven tumors were enriched in the lymphocyte high (C1) and stroma high (C5) 

cluster. These tumors were also more differentiated as shown by grading assessment (31/40 

Pik3ca-driven tumors were graded as G1/G2). Generally, the stroma high (C5) cluster was largely 

composed of G1/G2 tumors. In contrast, undifferentiated (G4) tumors contributed mostly to the 

proliferating/hybrid (C2) cluster as they displayed the highest abundance of mitotic figures, 

suggestive of a rapid invasive tumor growth.  

The large cohort of Kras-driven PDAC samples was represented throughout all grading stages, 

which was particularly noted for the PK genotype group (n=81), showing no preference of 

occurrence for any of the grading groups.  

Subtyping of human PDAC patients revealed classical and mesenchymal (squamous, basal-like) 

PDAC as the two major subtypes based on their transcriptional profiles. Molecular subtypes can 

be used to predict standard chemotherapy sensitivity and tumor progression, and these 

transcriptional subtypes are also correlative to the differentiation state of the tumor, with the 

classical subtype being more differentiated and the mesenchymal subtype being poorly 

differentiated or undifferentiated (Bailey et al., 2016; Collisson et al., 2019; Mueller et al., 2018). 

On this basis, we stratified the H&E sections of the PK tumors into classical (G1/G2) and 

mesenchymal (G3/G4) subtypes and conducted a comparative analysis to identify subtype-

specific TME differences (Figure 4a and b). The classical (G1/G2) cohort (n=30) showed 

significantly higher stroma content and infiltration of lymphocytes, while the mesenchymal (G3/G4) 

group (n=51) had a higher number of mitoses indicative of a higher tumor proliferation rate (Figure 
4d). Indeed, when comparing the survival of both groups, the mesenchymal (G3/G4) tumors 

displayed a significant shorter survival compared to the classical (G1/G2) tumors (Figure 4c). 
The histopathological assessment did not allow for the identification of specific cell types, such as 

the distinction between T and B cells or identification of macrophages. Therefore, spatial 

transcriptomics data of one differentiated classical (G2) and one undifferentiated mesenchymal 

(G4) tumor was generated, enabling us to analyze the infiltration of immune cell types and their 

transcriptional states simultaneously in a spatially resolved manner (Figure 5b).  
To this end, we used the Visium platform, a spot-based assay which can map the gene expression 

profile of each capture spot (55 µm in diameter) back to the spatial location within the tissue. This 

assay does not provide transcriptional profiles at single cell resolution, but can rather capture 

multiple cell types, depending on their size, on one spot (typically between 3-12 cells). To 

overcome this limitation, we computationally enhanced the spot resolution to a subspot level by 

using the BayesSpace toolkit (Zhao et al., 2021). First, spatial clustering was performed with a 

Bayes clustering algorithm to identify regions with similar gene expression profiles. Next, 

clustering was enhanced to the subspot level by dividing each spot into six smaller ones (Figure 
5c and e). This allowed refinement of spatial clusters, enabling us to investigate the spatial 

distribution of various cell types of interest in two tumors. Based on their marker gene expression, 

we identified tumor cells, fibroblasts, macrophages, neutrophils as well as T cells and B cells  
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(Figure 5e and f). For highly abundant TME cell types, like fibroblasts, macrophages and 

neutrophils, substantial overlap of their marker gene expression pattern with enhanced spatial 

clusters was evident. 

In contrast, both T cell (Cd3g) and B cell (Cd19) marker genes were only found to be highly 

expressed in a scarcity of Bayes-refined subspots, showing that PDAC tumors are excluded from 

T cells as described in the literature (Binnewies et al., 2018). Accordingly, we identified six 

subspots with high T cell marker gene expression in the classical tumor and 16 subspots in the 

mesenchymal tumor (Figure 6a and b). Notably, we observed a striking difference in immune 

infiltration of the cells from the myeloid compartment: the classical tumor showed high expression 

of neutrophil marker genes (S100a8, S100a9, Cxcr2) widely distributed across the tissue section 

Figure 4. Comparative histopathological analysis of the classical and mesenchymal 
subtype in Kras-driven mouse PDAC samples 

a, Pie chart depicting the mouse PDAC cohort (n=500 tumors) and genotype model distribution, with the 
proportion of PK tumors highlighted (n=81 tumors). PDAC GEMMs were generated by lab members of the 
Saur and Schneider labs. Sectioning of FFPE specimens and subsequent H&E staining as well as scanning 
of slides was performed by Chen Zhao. Board-certified pathologist Moritz Jesinghaus assessed tumor 
grading, granulocyte and lymphocyte infiltration, stroma content and quantified mitoses. 
b, Representative H&E-stained tumor sections of G1-G4-graded PK tumors. G1/G2 are stratified as 
classical subtype, while G3/G4 tumors are associated to the mesenchymal subtype. 
c, Kaplan-Meier survival curve comparing G1/G2 (median survival=539 d) and G3/G4 (median survival=474 
d) tumors of the PK cohort. The number of mice per group is indicated and the P value was calculated using 
the Log-Rank (Mantel-Cox) test. 
d, Violin plots depicting stroma content, lymphocyte infiltration and number of mitoses by comparing 
classical (G1/G2) vs mesenchymal (G3/G4) PK tumors. Each dot represents an individual tumor. P values 
were calculated by using a two-tailed, unpaired Student’s t-test. 
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in close proximity to and partly surrounding areas of high tumor cell marker expression. In contrast, 

the mesenchymal tumor displayed high abundance and spatial distribution of macrophages (Cd68, 

Arg1) over the whole tissue section. As mesenchymal tumors are more undifferentiated, it is 

challenging to annotate cell-type specific areas based on the morphological appearance from the 

H&E-stained tissue sections compared to the classical tumors, where tumor-cell- and stroma-rich 

areas can be clearly identified (Figure 5b). It was furthermore challenging to distinguish 

mesenchymal tumor cells (Krt18, Cdh2) from fibroblasts (Dcn, Pdpn, Col1a2), as they share a 

similar gene expression profile. In mesenchymal PDAC, fibroblasts are lowly abundant (as shown 

by our histopathological analysis), but these tumors are densely packed with mesenchymal tumor 

cells. Interestingly, we observed a small area of higher classical tumor cell gene expression (Krt19, 

Cdh1) within the mesenchymal tumor. This observation was in concordance with the 

histopathological annotation of these tumor lesions to be a G2-grade tumor. We furthermore 

identified several subspots with high expression of neutrophil genes in close proximity to these 

classical tumor lesions, which recapitulated the phenotype from the classical tumors (Figure 5f 
and 6c). This observation also highlights the presence of intratumoral heterogeneity and shows 

that PDAC can consist of multiple subTMEs (Grünwald et al., 2021). 
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Figure 5. Spatial transcriptomics analysis of classical and mesenchymal tumors to analyze 
subtype-specific TME features 

a, Schematic overview of spatial transcriptomics analysis: a fresh frozen tissue section of interest is placed on a 
gene expression slide with capture areas. First, fixation of tissue, H&E staining and afterwards imaging of the 
tissue is performed. Following the 10x genomics Visium Spatial workflow, spatial transcriptomics libraries are 
generated and sequenced. After alignment of the data, spatial clustering of the barcoded capture spots and other 
downstream analysis can be performed. We analyzed one classical, differentiated (G2) and one mesenchymal, 
undifferentiated (G4) tumor. Graphical visualization by courtesy of Chiara Falcomatà. 
b, Overview of spatial transcriptomics samples: Left, H&E-stained tissue sections of the classical and 
mesenchymal tumors are shown. Right, manual annotation of major tumor areas performed by board-certified 
pathologist Moritz Jesinghaus. 
c, Spatial embedding plots of the classical tumor. Left, Bayes spatial clustering of eight identified clusters. Right, 
Bayes-enhanced spatial clustering at subspot resolution of eight identified clusters. 
d, Spatial expression plots at subspot resolution for different cell types defined by marker gene expression: 
tumor cells (Krt19, Cdh1), fibroblasts (Dcn, Pdpn, Col1a2), macrophages (Cd68, Arg1), neutrophils (S100a9, 
S100a8, Cxcr2), T cells (Cd3g) and B cells (Cd19). 
e, Spatial embedding plots of the mesenchymal tumor. Left, Bayes spatial clustering of nine identified clusters. 
Right, Bayes-enhanced spatial clustering at subspot resolution of ten identified clusters. 
f, Spatial expression plots at subspot resolution for different cell types defined by marker gene expression: 
tumor cells (Krt18, Cdh2), fibroblasts (Dcn, Pdpn, Col1a2), macrophages (Cd68, Arg1), neutrophils (S100a9, 
S100a8, Cxcr2), T cells (Cd3g) and B cells (Cd19). Spatial Transcriptomics cohort was generated together with 
Chiara Falcomatà. Alignment and initial pre-processing and quality control of data was performed by Giovanni 
Palla (Theis Lab).  
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Next, to further investigate the spatial dispersion and neighborhoods of the most abundant cell 

types, we performed differential gene expression analysis of the Bayes enhanced clusters in both 

subtypes (Figure 7a and d). This yielded in identification of the top enriched marker genes for 

each cluster, enabling us to link them to specific cell types. Based on the neutrophil spatial 

dispersion and abundance, we could draw a connection to clusters 5 and 8 of the enhanced Bayes 

clustering in the classical tumor, whereas clusters 2 and 4 could be mapped to tumor cell marker 

expression, thus potentially presenting different tumor cell populations (Figure 7 a,b and c). 
Especially tumor cluster 2 and 4 were directly adjacent to the identified neutrophil clusters 5 and 

8, suggesting potential cell-cell interactions between these populations which need to be further 

explored. Fibroblasts were linked to cluster 3, 6 and highly expressed collagens and ECM genes, 

such as Fn1, Col8a1, Col1a2 and Sparc (Figure 7 a and c). 

Figure 6. Spatial transcriptomics analysis reveals T cell exclusion and intratumor 
heterogeneity of tumor cells  

a, Left, H&E-stained PDAC section of classical tumor. Right, spatial expression plot for Cd3g+ T cells at 
subspot resolution. Regions with high expression of Cd3g are circled in red and zoomed in.  
b, Left, H&E-stained PDAC section of mesenchymal tumor. Right, spatial expression plot for Cd3g+ T cells 
at subspot resolution. Regions with high expression of Cd3g are circled in red and zoomed in. 
c, Spatial expression plots at subspot resolution for mesenchymal (Krt18, Cdh2) and classical (Krt19, Cdh1) 
tumor cell marker genes. The mesenchymal tumor shows intratumor heterogeneity and expression classical 
tumor cell marker genes in a distinct region of the tumor.  
Alignment and initial pre-processing and quality control of data was performed by Giovanni Palla (Theis 
Lab).  
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In the mesenchymal subtype data set, cluster 1,3 and 5 were annotated as macrophages. Their 

differentially expressed genes indicated the presence of multiple subpopulations, e.g. Apoehi 

macrophages showing a different spatial dispersion in comparison to Ly6c1hi macrophages. It was 

furthermore possible to annotate tumor cell dominant clusters (7,8 and 9) which were adjacent to 

the highly infiltrating macrophage clusters. We hypothesize that cluster 10 presents a fibroblast-

dominated cluster as expression of fibroblast associated genes, such as Tagln and Acta2, but not 

the tumor cell related genes from cluster 7,8 and 9, was evident (Figure 7b and c). However, 

further analysis is needed to confirm the purity of our annotation, possibly aided by refined gene 

expression signatures to profoundly be able to distinguish mesenchymal tumor cells from 

fibroblasts. 

In summary, we analyzed the histopathological features of the two major transcriptional PDAC 

subtypes and identified differences in their subtype-specific TME composition. Using spatial 

transcriptomics, we could integrate large-scale gene expression profiling into a histopathological 

context, providing indications for potential cell-cell crosstalk between tumor and immune cell 

populations which we set out to further explore in this study.  
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Figure 7. Bayes enhanced clustering reveals spatially variable TME cell types 

a, Heatmap displaying the top 15 differentially expressed genes per cluster of the classical tumor. Selected 
genes are annotated on the left site. 
b, Bayes-enhanced spatial clustering at subspot resolution of eight identified clusters with annotated cell 
type populations of the classical tumor.  
c, Spatial expression plots at subspot resolution for neutrophils – cluster 5 & 8 (Cftr, Fos), fibroblasts – 
cluster 3 & 6 (Fn1, Col8a1) and tumor cells – cluster 2 & 4(Sync, Prss2) in the classical tumor.  
d, Heatmap displaying the top 15 differentially expressed genes per cluster of the mesenchymal tumor. 
Selected genes are annotated on the left site. 
e, Bayes-enhanced spatial clustering at subspot resolution of ten identified clusters with annotated cell type 
populations of the mesenchymal tumor. 
f, Spatial expression plots at subspot resolution for macrophages – cluster 1,3 & 5 (Apoe, Lyz2, Ly6c1), 
tumor cells – cluster 7,8 & 9 (Grem1, Mif) and fibroblast – cluster 10 (Acta2). 
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4.2. Classical and mesenchymal PDAC differ substantially in infiltrating 
myeloid cells 
 

Next, to assess sub-type specific TME characteristics in a systematic fashion, we performed flow 

cytometry and scRNA-seq of both subtypes, using an in vivo orthotopic implantation model. This 

enabled us to focus specifically on immune infiltrates (Figure 8a). Orthotopic allografts are 

standardized and reproducible PDAC models which hold important advantages over endogenous 

GEMMs to systematically analyze immune infiltration, such as predictable tumor progression and 

known phenotypic peculiarity of PDAC subtypes of interest. Endogenous PDAC GEMMs from the 

same genotype often display a high heterogeneity in terms of tumor progression, metastasis 

formation and differentiation state, as seen in our initial histopathological analysis. Previously, we 

performed a large-scale implantation experiment to analyze treatment-induced effects of a 

combinatorial therapy in both subtypes which among other things revealed that the classical and 

mesenchymal subtype of the implanted cell line was preserved after implantation (Figure 8b) 
(Falcomatà et al., 2022). Moreover, we can utilize this system to genetically perturb cell lines, e.g. 

via CRISPR-Cas9, to then study these effects on the TME composition. Thus, orthotopic 

implantation models present a valuable tool for functional studies. 

For the purpose of immune infiltrate characterization, previously generated mouse cell lines from 

endogenous PK mice were used: these cell lines were deeply characterized and stratified into 

classical and mesenchymal subtypes based on their gene expression profile by RNA-seq analysis, 

which also correlated to the cell line morphology and histological grading of the tumors arising 

after orthotopic implantation of the respective cell line (Figure 8b, left) (Mueller et al., 2018). This 

procedure enables to systematically link tumor-cell intrinsic attributes to TME phenotypes 

according to the classical or mesenchymal subtype. Thus, we chose multiple PK cell lines 

representing the classical (n=5) and mesenchymal (n=5) subtype and orthotopically implanted 

them into the pancreas of syngeneic immunocompetent C57Bl6/J mice. Flow cytometry analysis 

of an innate and adaptative antibody panel was performed when mice were moribund. Using the 

innate panel, the following immune cell populations were analyzed: macrophages, neutrophils, 

dendritic cells and NK cells. With the adaptive panel, we could identify B cells and T cells as well 

as specific T cell subsets. Classical and mesenchymal PK tumors displayed a remarkable 

difference in the abundance of myeloid cells. Neutrophils occurred in significantly higher amounts 

in classical tumors while, in contrast, mesenchymal tumors displayed significantly elevated 

numbers of macrophages (Figure 8c, upper panels). We did not observe a significant difference 

in T cell infiltration, but some mesenchymal tumor lines showed a higher CD8+ and CD4+ T cell 

fraction than most classical lines (Figure 8c, lower panels).  
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In classical tumors, we noted a negative correlation of neutrophils to T cell subsets (CD8+, CD4+), 

B cells and NK Cells as well as macrophages and dendritic cells. In mesenchymal tumors, 

macrophage occurrence was negatively correlated to the same T cell subsets and neutrophils, but 

positively correlated to dendritic cells (Figure 8d). 
Next, we performed scRNA-seq analysis from selected tumors of our implantation experiment, 

representing both subtypes (classical n=2 lines, mesenchymal n=3 lines). In total we generated 

fourteen 3’-scRNA-seq libraries using the 10x v3 and v3.1 chemistry, which were comprised of up 

to 3 replicates (individual tumors) per implanted cell line to enhance robustness and cell type 

representation in our analysis. All libraries were pre-processed jointly and then integrated with 

BBKNN batch correction in the Scanpy environment (Polański et al., 2020; Wolf et al., 2018). The 

final data set with all integrated tumor samples contained 54,835 cells and the resulting Leiden 

clusters were annotated by using well-known marker genes for each cell type (Figure 9a and d). 

Figure 8. Systematic analysis of immune infiltration in PDAC subtypes by using an 
orthotopic implantation model 

a, Schematic overview of analysis workflow: orthotopic implantation of multiple cell lines representing the 
classical and mesenchymal subtype into the pancreas of syngeneic C57Bl6/J mice. Resulting tumors were 
dissociated and deployed for flow cytometry immunophenotyping and/or scRNA-seq analysis.  
Graphical visualization by courtesy of Chiara Falcomatà. 
b, Left, representative brightfield images of classical and mesenchymal PK cell lines. Right, representative 
H&E-stained tissue sections of implanted classical and mesenchymal tumors. Scale bars are 100 µm.. 
c, Flow cytometry staining for neutrophils (Ly6G+CD11b+), macrophages (Ly6G-CD11b+F4/80+), CD8+ T 
cells (CD3+CD8+) and CD4+ T cells (CD3+CD4+) of classical and mesenchymal tumors, depicted as fraction 
of CD45+ cells (in %). Each dot represents an individual implanted cell line from at least 3 recipient mice, 
and average values are depicted. P values were calculated by using a two-tailed, unpaired Student’s t-test.  
d, Cell type correlation analysis resulting from flow cytometry data by Spearman’s rank correlation in 
classical and mesenchymal implanted tumors. All P values are shown. Orthotopic implantations and flow 
cytometry experiments were performed together with Chiara Falcomatà, Jack Barton and Saskia Ettl. The 
correlation analysis was performed by Chiara Falcomatà. 
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Individual libraries, including replicates, were first jointly annotated according to tumor-inducing 

cell line which were further stratified either as classical or mesenchymal subtype (classical: 8442, 

8661; mesenchymal: 9091, 8513, 8570) (Figure 9b). 
Next, cell type proportions of classical and mesenchymal tumors were compared and, similar to 

the flow cytometry phenotyping, differences in cell type abundance between classical and 

mesenchymal tumors were noted. Higher fractions of macrophages as well as monocytes were 

identified in the samples derived from mesenchymal tumors, whereas higher proportions of 

neutrophils, NK cells and B cells were detected in the classical subtype (Figure 9c). Interestingly, 

fibroblasts were lowly abundant, especially in the classical tumors, which contradicts our previous 

histopathological and spatial transcriptomics analysis. One possible explanation is that more 

sensitive cell types, such as fibroblasts, are underrepresented in scRNA-seq analysis, because 

they are more prone to undergo apoptosis during the long tissue preparation process, particularly 

during tissue dissociation. While immune cells are generally considered more viable under tissue 

dissociation stress, they are also smaller in size and are therefore expected to be captured more 

effectively during the microfluidics single cell encapsulation.  

Figure 9. scRNA-seq analysis of implanted classical and mesenchymal tumors to analyze 
the subtype-specific immune cell phenotypes 

a, Left, UMAP embedding shows the Leiden clustering of the integrated scRNA-seq data set (54,835 cells). 
Clustering resolution was adjusted to distinguish fibroblasts from mesenchymal tumor cells as they have a 
similar gene expression profile. Right, the resulting 29 clusters were annotated according to typical marker 
gene expression. 
b, Left, UMAP plots showing integration of 5 different tumor lines (classical: 8442, 8661; mesenchymal: 
9091, 8513 and 8570) after BBKNN batch correction. Right, UMAP embedding showing annotation of 
classical and mesenchymal subtype. 
c, Cell type proportions in percent of annotated cell types divided into classical and mesenchymal subtype. 
d, Dot plot depicting expression of selected marker genes for each annotated cell type for both subtypes. 
Single cell experiments were performed together with Chiara Falcomatà and supported by Albulena Toska.  
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To investigate the phenotypic states of specific cell types, we extracted these cells from the whole 

scRNA-seq data set and re-clustered them at a higher resolution, aiming to identify functional 

subsets. First, we analyzed the tumor cell clusters and annotated them according to their 

previously known subtype as classical or mesenchymal. Tumor cells derived from classical 

implanted tumor lines clustered together and were separated from the mesenchymal lines, which 

were not overlapping to a large extent, potentially indicating that these differ in their mesenchymal 

gene expression states (Figure 10a and b). We performed a differential gene expression analysis 

between the classical and mesenchymal annotated cells and showed that they were mainly 

distinguished by classical and mesenchymal marker genes, such as Clu and Krt19 for classical 

tumor cells and S100a4 and Timp1 for mesenchymal tumor cells (Figure 10 c and d).  
Moreover, we investigated CAF subtypes in our data sets and extracted the fibroblast cluster for 

this analysis. As mentioned above, the number of sequenced fibroblasts from both subtypes did 

not match to our results of the histopathological analysis. With this bias in mind, we annotated the 

clusters with well-known CAF subsets, which were previously identified in studies of mouse and 

human PDAC (Elyada et al., 2019; Öhlund et al., 2017). The majority of fibroblasts derived from 

mesenchymal tumors belonged to the myoCAF and iCAF subtypes, while only a minority of cells 

was annotated as apCAFs. In contrast, classical tumors displayed high abundance of myoCAFs 

(Figure 10 e and f). To enhance this analysis, it would be desirable to enrich for fibroblasts and 

then subject this enriched cell type to scRNA-seq analyses. Moreover, optimized dissociation 

protocols of tumors could lead to higher fibroblast fractions as well (Dominguez et al., 2020; Elyada 

et al., 2019; Hutton et al., 2021).  

As shown above, classical and mesenchymal tumors varied significantly in their amount of 

infiltrating myeloid cells. To characterize their phenotypes, we analyzed the clusters of neutrophils 

and macrophages/monocytes more in depth by extracting them from the whole data set and 

performing clustering with a higher resolution. For the macrophage/monocyte dataset (8,154 

cells), three distinct macrophage clusters could be identified: C1q-high, Spp1-high and Ly6c-high 

macrophages which were annotated by the expression of signifying marker genes (Figure 11f). 
The occurrence of these subtypes is in line with recent evidence that describes these populations 

of tumor-associated macrophages in the context of cancer. Furthermore, Ly6c-high monocytes, 

MonoDCs (Monocytes expressing dendritic cell specific genes) and a fraction of dendritic cells 

emerged as separate clusters (Figure 11a, left). The majority of cells from this data set is derived 

from the mesenchymal subtype, whereas a substantially smaller fraction of cells belongs to the 

classical subtype (Figure 11a, right). Higher contribution of cells from the mesenchymal subtype 

was noted for all three major macrophage subsets as well as the Ly6c-high monocytes. 

Conversely, cells derived from classical tumors contributed to the majority of MonoDCs and 

dendritic cells (Figure 11b). Analyzing the cell type proportions of individual tumors from both 

subtypes, we observed heterogeneity within subtypes. Tumors arising from the implantation of 

mesenchymal tumor line 9091, for example, displayed a lower fraction of total macrophages   
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compared to the other two mesenchymal lines and had similar proportions to the classical 8661 

line. Interestingly, classical tumors showed no contribution to Ly6c-high monocytes. 

Differential gene expression analysis between identified myeloid cell subpopulations revealed that 

C1q-high macrophages are characterized by the highest expression of Apoe, previously identified 

as marker gene for immunosuppressive macrophages in PDAC (Kemp et al., 2021a).  

Figure 10. scRNA-seq analysis of tumor cells and fibroblasts 
a, UMAP plot of tumor cells (11,953 cells) colored by annotated classical and mesenchymal subtype.  
b, UMAP plot showing integration of 5 different tumor lines (classical: 8442, 8661; mesenchymal: 9091, 
8513 and 8570) after BBKNN batch correction.  
c, Heatmap displaying the top 10 differentially expressed genes per annotated cluster. Selected genes are 
annotated on the left site. 
d, UMAP plots showing expression of differentially expressed genes; classical: Clu and Krt19, 
mesenchymal: S100a4 and Timp1. 
e, Left, UMAP plot of fibroblasts (1,414 cells) colored by annotated CAF subpopulations. Right, UMAP plots 
showing the distribution of cells from classical and mesenchymal tumors. 
f, Dot plot depicting expression of selected marker genes for each annotated CAF subpopulation for both 
subtypes 
g, UMAP plots showing expression of pan-CAF markers Pdpn and Dcn, myoCAF marker Acta2, iCAF 
marker Pdgfra and apCAF marker Slpi.  
Single cell experiments were performed together with Chiara Falcomatà and supported by Albulena Toska.  
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In contrast, the smaller fraction of Spp1-high macrophages showed the highest expression of Fn1, 

Vegfa and Arg1 (Figure 11d). Arg1 as well as Trem2 were recently reported as marker genes of 

highly immunosuppressive macrophage populations and are strongly expressed in our annotated 

macrophage subpopulations, but not in monocytes/dendritic cells (Katzenelenbogen et al., 2020). 

Although Spp1-high macrophages showed the highest expression of Arg1 and C1q-high 

macrophages the highest Trem2 expression, all macrophage populations generally co-expressed 

both marker genes (Figure 11g). We performed differential gene expression between cells 

derived from the mesenchymal and classical dataset and analyzed HALLMARK gene sets, 

focusing on enrichments in mesenchymal-derived cells. Two of the top immune-related enriched 

gene sets in the mesenchymal subtype were ‘TNFa signaling’ as well as ’Interferon gamma 

response’, suggesting inflammatory functions (Figure 11e) (Tu et al., 2021). 

Collectively, our macrophage/monocyte-centered analysis revealed the presence of distinct 

macrophage subpopulations characterized by an immunosuppressive gene expression profile. 

C1q-high, Spp1-high and Ly6c-high cells were predominantly derived from the mesenchymal 

PDAC subtype, whereas the classical subtype showed higher fractions of MonoDC cells. 
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Figure 11. scRNA-seq analysis reveals immunosuppressive phenotype of infiltrating 
macrophages/monocytes 

a, Left, UMAP plot of macrophage/monocyte cells (8,154 cells) colored by annotated cell subpopulation 
from classical and mesenchymal tumors. Right, UMAP plots showing the distribution of cells from classical 
and mesenchymal tumors. 
b, Cell type proportions in percent of annotated macrophage/monocyte subpopulations divided into classical 
and mesenchymal subtype. 
c, Cell type proportions in percent of annotated macrophage/monocyte subpopulations divided by implanted 
PK cell lines from classical and mesenchymal subtypes. 
d, Heatmap displaying the top 10 differentially expressed genes per cluster. Selected genes are annotated 
on the left site and clusters are annotated with identified subpopulations on the right. 
e, GSEA pathway enrichments (HALLMARK gene set) from differentially expressed genes in cells derived 
from mesenchymal tumors compared to classical tumors. 
f, UMAP plots showing expression of macrophage marker genes C1qb, Spp1 and Ly6c2. 
g, Left, Violin plots showing the expression of Trem2 and Arg1 which characterize an immunosuppressive 
macrophage subset, between classical and mesenchymal tumors. Right, UMAP plots showing expression 
of Trem2 and Arg1. 
Single cell experiments were performed together with Chiara Falcomatà and supported by Albulena Toska.  
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Next, we performed immunophenotyping of the subtype-specific neutrophil compartment following 

the same analysis workflow as for the macrophage data set. In general, neutrophils can be 

characterized by high expression of the marker genes S100a8, S100a9 and Cxcr2 (Figure 12b) 
(Bronte et al., 2016). 
In contrast to the macrophage dataset, cells derived from classical tumors make up the majority 

of neutrophils, while mesenchymal derivates only show a minor contribution (Figure 12a). This 

recapitulates our results from the flow cytometry phenotyping, showing a significantly higher 

infiltration of neutrophils in classical PDAC tumors. As neutrophils are often synonymously 

described as PMN-MDSC cells in cancer, we compared the gene expression profiles and 

phenotypes of PDAC PMN-MDSC cells against results of a recent study which provided 

comprehensive functional characterization of tumor-derived PMN-MDSCs (Veglia et al., 2021a). 

Figure 12. Neutrophil subpopulations display an immunosuppressive activated PMN-
MDSC phenotype and are enriched in classical tumors 

a, Left, UMAP plot of neutrophil cells (3,017 cells) colored by annotated Leiden clusters with cell 
subpopulations from classical and mesenchymal tumors. Right, UMAP plots showing the distribution of cells 
from classical and mesenchymal tumors. 
b, UMAP plots depicting expression of neutrophil marker genes S100a8/9 and Cxcr2. 
c, Cell type proportions in percent of annotated neutrophil subpopulations divided into classical and 
mesenchymal subtype. 
d, Left, heatmap displaying the expression of genes from ‘PMN-MDSC’ and activated ‘PMN-MDSC’ gene 
sets. Right, UMAP plot depicting the score of ‘PMN-MDSC’ and ‘activated PMN-MDSC’ gene sets. 
e, Heatmap displaying the top 15 differentially expressed genes per cluster. Selected genes are annotated 
on the left and clusters with identified PMN-MDSC subpopulations on the right side.  
Single cell experiments were performed together with Chiara Falcomatà and supported by Albulena Toska. 
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We analyzed the expression of the reported ‘PMN-MDSC’ and ‘Activated PMN-MDSC’ gene sets 

in our neutrophil data set and computed scores for both gene sets. Remarkably, the majority of 

cells belonging to clusters 0-2 (annotated as PMN-MDSC1-3) displayed high expression of the 

activated PMN-MDSC genes and only a small fraction of cells from cluster 0 (PMN-MDSC1) were 

highly expressing the PMN-MDSC genes (Figure 12d). Notably, cluster 0 (PMN-MDSC1) 

consisted of a higher fraction of cells derived from mesenchymal tumors compared to cells from 

classical tumors (Figure 12d). Activated PMN-MDSC genes are associated with an 

immunosuppressive activity and corresponding cells that express these signatures are widely 

present in cancer (Veglia et al., 2021a; Veglia et al., 2021b). Cluster 3 (PMN-MDSC4) was 

generally characterized by a lower transcriptional activity and did not express activated PMN-

MDSC genes at a high level. 

In summary, the here identified neutrophils mostly display an activated PMN-MDSC phenotype, 

indicating an immunosuppressive activity in conjunction with high expression of multiple 

chemokines. 

4.3. The PDAC T cell compartment is characterized by T cell exhaustion 
PDAC is described as an immunologically “cold” tumor, characterized by exclusion of T cells from 

the tumor core and an overall marginal infiltration of T cells (Binnewies et al., 2018). Concordantly, 

we detected low numbers of T cells in our flow cytometry analysis. Next, we analyzed the T cell 

compartment within our scRNA-seq data and identified distinct T cell subpopulations (Figure 13a). 
We captured a large number of T and NK cells (20,055 cells) for both classical and mesenchymal 

subtype, which stands in contrast to our flow cytometry data. However, this discrepancy can be 

attributed to an increased viability of immune cells, especially T cells, after tumor dissociation in 

comparison to relatively large tumor cells or fibroblasts, thus providing explanation for the 

observed enrichment in the scRNA-seq analysis. T cell subsets were identified by analysis of 

reference marker genes describing naïve-like, cytotoxic, effector, memory and regulatory T cells 

as well as NK cells (Figure 13c and d). The T cell compartment in many solid cancer entities is 

described as exhausted and dysfunctional (Wherry and Kurachi, 2015). Therefore, we analyzed 

the expression of T cell exhaustion markers, such as Pdcd1, Havcr2, Lag3 and Tigit as well as 

other co-stimulatory genes (Figure 13e and f). We observed high expression of these genes in 

the CD8+ subset as well as regulatory T cells which was accompanied by a low cell cycle score 

within these populations, indicating an exhausted phenotype (Figure 13g). Effector T cells – 

typically only represented by a small fraction of cells – on the other hand showed a high expression 

of these activation markers and a high cell cycle score (Figure 13g). Generally, mesenchymal 

dataset-derived cells were enriched in the cytotoxic CD8+ and Tregs cluster, and classical cells 

showed highest representation in naïve-like CD4+ and NK cell cluster (Figure 13b).  
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Figure 13. T cells in both classical and mesenchymal tumors are characterized by an 
exhausted phenotype 

a, Left, UMAP plot of T and NK cells (20,055 cells) colored by annotated Leiden clusters with cell 
subpopulations from classical and mesenchymal tumors. Right, UMAP plots showing the distribution of cells 
from classical and mesenchymal tumors. 
b, Cell type proportions in percent of annotated T and NK cell subpopulations divided into classical and 
mesenchymal subtype. 
c, Dot plot depicting marker gene expression of various T cell subpopulations and NK cells. Annotated cell 
subsets can be found on the left y-axis. 
d, UMAP embeddings displaying the expression of Cd3g, Cd4 and Cd8a. 
e, Dot plot depicting expression of different T cell exhaustion marker genes, mainly inhibitory receptors, 
across annotated subpopulations. 
f, UMAP plots show expression of selected exhaustion markers: Pdcd1, Lag3, Havcr2 and Tigit. 
g, UMAP plots depicting the cell cycle scores (S and G2M) based on a cell cycle gene set. 
Single cell experiments were performed together with Chiara Falcomatà and supported by Albulena Toska.  
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4.4. Cell-cell communication analysis reveals distinct routes of immune cell 
recruitment and immunosuppression 
We next set out to delineate the context-specific cell-cell communication networks in the classical 

and mesenchymal PDAC subtype by performing a systematic interaction analysis, thereby aiming 

to address the following questions: (i) Which factors are secreted by classical and mesenchymal 

tumor cells, leading to distinct myeloid infiltrates in the TME? (ii) Is T cell suppression mediated 

via a direct tumor – T cell interaction or indirectly, through myeloid – T cell interactions? and (iii) 

How do classical and mesenchymal PDAC globally differ in signaling pathways of their cell-cell 

communication network? From the evidence of our scRNA-seq data, we propose a cell-cell 

communication model which we wanted to refine further (Figure 14). To this end, we first 

addressed the question of how tumor cell subtypes govern immune cell recruitment by secretion 

of chemokines/cytokines whose signaling activity leads to infiltration and proliferation of immune 

cell populations. We integrated two complimentary approaches: first, in vitro MS-based secretome 

analysis of conditioned media from cell cultures (n=25 cell lines) derived from each subtype 

allowed us to identify tumor cell secreted proteins. Second, we inferred ligand-receptor 

interactions (using the CellChat toolkit) from our integrated scRNA-seq data set of both subtypes, 

with the directionality of signaling from tumor cells (source of ligands) to immune cells (expression 

of the corresponding receptors) (Jin et al., 2021).  

Figure 14. Cell-cell communication analysis integrating secretome and scRNA-seq data to 
delineate the subtype-specific interaction network 

Left, Schematic overview of proposed cell-cell communication model: (1) Investigation of tumor-immune 
signaling to identify secreted factors of tumor cell subtypes which differently recruit myeloid immune cells 
(neutrophils or macrophages) to the PDAC TME. (2) Analysis of cell-cell contact signaling between myeloid 
cells and T cells to identify signaling routes of T cell suppression. (3) Analysis of secreted signaling 
between myeloid cells and T cells. Right, Schematic overview of workflow for (1) MS-based in vitro 
secretome analysis by using supernatants of cultured cells from both subtypes (classical and 
mesenchymal), performing cell free filtering, then MS detection of peptides. Differential peptide analysis is 
carried out to identify top secreted chemokines/cytokines per subtype. (2) in vivo CellChat communication 
analysis to infer intercellular communication networks using scRNA-seq data as input. Individual graphical 
elements by courtesy of Chiara Falcomatà. 
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As outlined, we first analyzed secretome data generated from in vitro cell cultures of both subtypes 

(Figure 15a). After sample processing and mass spectrometry-aided peptide identification, our 

data set consisted of 4,348 proteins identified through this approach. To understand global 

differences between both subtypes, we performed gene set enrichment analysis. Mesenchymal 

tumor cells were enriched in multiple ECM terms, EMT and collagen organization, indicating that 

they secrete proteins involved in ECM production. For classical tumor cells, the top enriched term 

was coagulation. They were also enriched in some ECM gene sets, but to a much lower extent in 

comparison to mesenchymal tumor cells (Figure 15b). Next, to identify enriched secreted 

proteins, a differential test between classical and mesenchymal samples was performed. As 

immune cell recruitment or proliferation is mostly mediated by chemokines and cytokines, we 

specifically focused on secreted proteins with a corresponding annotation as 

chemokines/cytokines (manually curated), which is highlighted in the volcano plot (Figure 15c). 

 

Figure 15. In vitro secretome analysis of classical and mesenchymal mouse PDAC cells 
reveals subtype-specific secreted factors 

a, Schematic overview of experimental workflow for the MS-based secretomics approach: conditioned media 
was generated from classical and mesenchymal PK cell lines, supernatants were filtered and then subjected 
to MS-based secretomics analysis. Graphical elements by courtesy of Chiara Falcomatà. 
b, GSEA analysis of enriched secreted proteins in classical versus mesenchymal cell lines. Top enriched 
terms from the HALLMARK and GO (Biological Process 2021) are depicted for both subtypes. 
c, Differential testing between mesenchymal and classical secreted proteins was performed to identify top 
secreted factors per subtype. Volcano plot depicts statistically significant differentially secreted proteins (p-
adj < 0.05 and LFC ³ ±1). Top secreted proteins, which are annotated as chemokines/cytokines, are labelled 
in the plot. Collection of conditioned media was conducted together with Constantin Schmitt and Chiara 
Falcomatà. MS-based secretome analysis and data preprocessing was performed by Jonathan Swietlik 
(Meissner Lab).  
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As a complimentary approach, we performed ligand-receptor interaction analysis between tumor 

cells and immune cells by leveraging our in vivo scRNA-seq data. Here, we used data for one 

classical (8442) and for one mesenchymal (9091) tumor line as these data sets exhibited the 

highest sequencing depth (> 150,000 reads per cell) to detect chemokine/cytokine expression in 

the tumor cell clusters. 

The CellChat toolkit was used to infer the cell-cell communication network in both subtypes by 

identifying highly expressed ligands and their cognate receptor genes in two distinct cell types, 

followed by calculation of a communication probability for each specific interaction. This metric is 

based on the average gene expression of ligands by one cell type and receptors by another cell 

type and furthermore integrates prior knowledge of ligand-receptor interaction. CellChat analysis 

is supported by three databases with curated ligand-receptor pairs for secreted signaling, cell-cell 

contact signaling and ECM-receptor signaling. To identify relevant chemokines mediating 

crosstalk in the two PDAC subtypes, we chose to query the secreted signaling database. First, we 

analyzed the aggregated communication networks in both subtypes, by inferring the total number 

of interactions between cell types. Both subtypes show similar numbers of identified ligand-

receptor interaction pairs (classical: 1575, mesenchymal: 1586 interactions), reflected in the 

overall interaction pattern as well (Figure 16b). To address the first main question, namely which 

factors are secreted by classical versus mesenchymal tumor cells leading to recruitment of 

neutrophils (classical tumors) and macrophages (mesenchymal tumors), secretome and CellChat 

data were integrated and a comparative analysis to systematically identify top tumor cell-secreted 

factors was performed. We reasoned that factors emerging as shared candidates from both 

approaches would represent robust candidates and thus performed an overlap of secreted 

chemokines/cytokines from the secretome analysis and ligands expressed by tumor cells from the 

CellChat analysis. The intersection resulted in 15 secreted ligands for classical and 17 ligands for 

mesenchymal tumor cells (Figure 16c, left panels). Next, ligands were assigned to signaling 

pathways according to the CellChat database. Classical tumor cells were enriched in CXCL 

chemokines and growth factor signaling related ligands, while in mesenchymal tumor cells ligands 

belonging to CSF and ACTIVIN/BMP/TGFb signaling were prominently identified. Then, each 

ligand was queried for their cell-cell interaction pattern to delineate factors which mediate signaling 

from tumor cells to either neutrophils or macrophages. For the interaction between classical tumor 

cells and neutrophils, two specific interactions pairs were identified: Cxcl5-Cxcr2 and Cxcl1-Cxcr2 

which signal specifically between tumor cells and neutrophils. The third identified interaction pair 

was Gdf15-Tgfbr2 which not only conveys signaling to neutrophils, but also to all tested cell types 

present in the tumor and therefore seems to mediate a broader communication pattern rather than 

specific tumor-neutrophil interaction. In contrast, query of mesenchymal tumors was directed 

towards ligands which mediate interactions from tumor cells to macrophages. As top selective 

interactions pairs, Csf1-Csf1r and Il34-Csf1r were identified.  
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Figure 16. Cell-cell communication analysis integrating secretomics and CellChat to 
delineate tumor-immune crosstalk in PDAC subtypes 
 
a, Schematic overview of proposed cell-cell communication model focusing on the tumor-immune interaction 
axis to identify differentially secreted factors in both subtypes. scRNA-seq data of two tumor lines (classical: 
8442, mesenchymal: 9091) was integrated and cell-cell communication analysis performed using the 
CellChat toolkit. Individual graphical elements by courtesy of Chiara Falcomatà. 
b, Circle plots show number of identified interactions from CellChat ligand-receptor interaction analysis for 
classical (left) and mesenchymal (right) tumors. The edge width between two cell type depicts the number 
of interactions between them. 
c, Comparative analysis integrating secretome and CellChat analysis to identify top tumor cell secreted 
factors. Upper left panels show overlap of identified secreted chemokines/cytokines of secretome and 
CellChat analysis and overlapping ligands are depicted below. Ligands are then grouped into pathways and 
ligands which are either highlighted in yellow or blue were significantly enriched in the secretome analysis. 
Right side of each panel, Circle plots for selected ligand receptor interaction pairs in classical (left) and 
mesenchymal (right) tumors. Edge width between two cell types shows cell communication probability. The 
size of the cell type circles is proportional to the number of cells in these groups. 
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Similar to the classical tumor, the third ligand (Tgfb3-Tgfbr1/Tgfbr2) showed no specific tumor-

macrophage interaction, instead mediating signaling to multiple other cell types of the TME 

(Figure 16c, right panels). Notably, the two top identified ligands per tumor subtype are predicted 

to signal to the same receptor: Cxcr2 in the classical tumor and Csf1r in the mesenchymal tumor 

TME. 

As CXCL/CSF/CCL signaling was enriched in both subtypes, we further analyzed ligand-receptor 

interactions with tumor cells as the source of the signal and compared both subtypes side-by-side 

(Figure 17a). This analysis revealed Cxcl5-Cxcr2 for classical and Csf1-Csf1r for mesenchymal 

tumors as significant interaction pairs with the highest communication probabilities that are specific 

to their respective subtype (Figure 17a and c/d). 
Interestingly, Cxcl1-Cxcr2 and Il34-Csf1r did not display exclusivity for the respective subtype, a 

phenomenon also accompanied by lower communication probabilities. Albeit Il34-Csf1r showed 

the highest communication probability for the interaction from mesenchymal tumor cells to 

macrophages, communication probabilities were also computed from classical tumor cells to 

macrophages/monocytes and, interestingly, for the interaction classical tumor cells – neutrophils, 

although to a much lower extent. The Cxcl1-Cxcr2 signaling was likewise not exclusive to classical 

tumor cells and neutrophils, but also present in the mesenchymal tumor (Figure 17a). It can be 

hypothesized that macrophage and neutrophil recruitment in the two PDAC subtypes is primarily 

mediated by Csf1 and Cxcl5, respectively, with a potential contribution from Il34 and Cxcl1, 

possibly acting in a synergistic fashion. Interestingly, also interactions between tumor cells and T 

cells via CXCL chemokines were inferred in this analysis. Cxcl12-Cxcr4 was a specific tumor – T 

cell interaction in the mesenchymal subtype, but Cxcl12 was not significantly secreted in the 

secretome analysis. In the classical tumor cells, Cxcl16 was identified as significant differentially 

secreted protein in classical tumor cells and showed a higher interaction strength in the CellChat 

analysis between tumor cells and T cells than the mesenchymal subtype (Figure 16c and 17a). 
In PDAC, CXCL16 was previously described as contributor of tumor progression and invasiveness 

and CXCL16-CXCR6 signaling was also reported to be important for adhesion of lymphocytes 

(Lesch et al., 2021; Wente et al., 2008). In addition to the tumor cell mediated signaling, we 

observed that Cxcl5/Cxcl1 and Csf1/Il34 is engaged by fibroblasts with a high communication 

probability. Therefore, we visualized the ligand-receptor interactions for CXCL and CSF signaling 

in chord diagrams with tumor cells and fibroblasts as source cell types comparing both subtypes 

(Figure 17b). 
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This approach revealed that fibroblasts interact via Cxcl5/Cxcl1 and Csf1/Il34 with neutrophils and 

macrophages, respectively, with a higher interaction strength than the corresponding tumor cells. 

Since these fibroblast interaction patterns are similar in classical and mesenchymal tumors, we 

hypothesize that the high difference in infiltrating macrophages and neutrophils stems from the 

signaling mediated by the tumor cell compartment, an assumption that needs further functional 

validation. 

In conclusion, we identified Cxcl5 in the classical and Csf1 in the mesenchymal subtype as tumor 

cell secreted factors with the highest communication probability mediating recruitment of 

neutrophils and macrophages, respectively, into the TME (Figure 17c/d). This comparative 

analysis also highlights the power of integrating protein (secretome) with RNA (scRNA-seq) 

expression to infer cell-cell communication networks with high confidence. 
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Figure 17. Cell-cell communication to myeloid cells is mediated by Cxcl5 in classical and 
Csf1 in mesenchymal tumor cells 

a, Comparison of significant tumor-immune interactions between classical and mesenchymal tumors. 
Bubble plot depicts identified ligand-receptor pairs (belonging to CXCL/CCL/CSF signaling pathways) for 
both subtypes mediating interactions from tumor cells (source) to other TME cell types and. Color of dots 
visualizes communication probability and dot size represents computed p-values from a one-sided 
permutation test. Empty spaces denote that communication probability is zero for this specific interaction. 
b, Chord diagrams visualizing the ligand-receptor interactions of CXCL/CSF signaling pathways for source 
cell types (tumor cells and fibroblasts) and target cell types (neutrophils, macrophages, monocytes, T and 
B cells). Edge width between two cell types is proportional to the cell communication probability. The inner 
bar circle shows the target cells which receive signaling from the source cells via a specific ligand. 
c, Circle plots for Cxcl5-Cxcr2 (upper panel) and Csf1-Csf1r (lower panel) comparing their signaling 
interactions in both subtypes. Edge width between two cell types shows cell communication probability. 
The size of the cell type circles is proportional to the number of cells in these groups. 
d, Violin plots depicting expression of Cxcl5 and Csf1 in tumor cells comparing both subtypes. 
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The next main question that was posed was to interrogate how macrophages and neutrophils 

communicate with T cells, thereby potentially mediating T cell exhaustion and suppression. To this 

end, we extended our CellChat analysis by implementing the cell-cell contact database and 

analyzed cell-cell contact signaling specifically between macrophages – T cells and neutrophils – 

T cells, using our full scRNA-seq data set presented in Figure 9 (Figure 18a). First, cell-cell contact 

signaling pathways were globally compared between classical and mesenchymal tumors. In 

mesenchymal tumors, several inhibitory immune checkpoint signaling pathways, such as PD-L1, 

PD-L2, PVR and TIGIT signaling, as well as MHC I and II signaling were enriched compared to 

classical tumors (Figure 18b). We decided to further focus on PD-L1 and MHC signaling as PD-

1/PD-L1 inhibitors play a major role in cancer immunotherapy, further warranting detailed 

exploration of subtype-specific differences in the PD-L1 cell-cell communication network (Brahmer 

et al., 2012; Waldman et al., 2020). MHC signaling plays a fundamental role in T cell activation 

and, by using CellChat, we determined differences in antigen-presentation between subtypes. In 

both subtypes, we did not detect interaction originating from tumor cells via PD-L1 signaling, but 

instead noted differences in the other TME cell types. In classical tumors, while PD-L1 signaling 

from neutrophils to CD8+ T cells showed the highest interaction strength, minor communication 

probabilities were detected that emerged from NK cells, dendritic cells and 

macrophages/monocytes (Figure 18c, left). In contrast, dendritic cells and 

macrophages/monocytes displayed the highest interactions strengths when signaling to CD8+ T 

cells via PD-L1 in the mesenchymal subtype. This suggests that mesenchymal PDAC could 

benefit more from PD-1/PD-L1 immune checkpoint blockade and indeed, we could previously 

show clinical benefit specific to the mesenchymal subtype in an in vivo treatment study, when a 

combination of targeted therapy with anti-PD-L1 treatment was administered (Falcomatà et al., 

2022). 

Next, we analyzed MHC-I signaling which is important for signaling to CD8+ T cells (Hennecke and 

Wiley, 2001; Neefjes et al., 2011). Overall, MHC-I signaling displayed higher interaction strengths 

in the mesenchymal tumors compared to classical cancers across all immune cell types as well 

as tumor cells and fibroblasts, suggestive of a generally higher antigen-presentation in this 

subtype. MHC-II signaling (which is important for CD4+ T cell activation) was mostly mediated by 

macrophages, dendritic cells and B cells, and displayed higher interaction strength in the 

mesenchymal subtype akin to MHC-I signaling (Figure 18d and e). In summary, the mesenchymal 

subtype is characterized by higher antigen-presentation and amplified inhibitory PD-L1-signaling 

compared to the classical subtype. 

Our subsequent analysis focused on cell-cell contact signaling between macrophages or 

neutrophils and CD4+/CD8+ T cells, allowing inference of significantly enriched ligand-receptor 

interaction pairs through comparison of both subtypes. First, the enriched ligand-receptor 
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interactions in the mesenchymal tumors that mediate signaling from macrophages to CD4+/CD8+ 

T cells were identified. In total, we detected 51 interaction pairs, which were enriched in the  

mesenchymal tumors compared to the classical tumors. Interestingly, many of those interactions 

were also present in the classical tumors, but with partly lower communication probabilities. 

Figure 18. Myeloid-T cell interaction analysis reveals subtype-specific cell-cell contact 
signaling 

a, Schematic overview of proposed cell-cell communication model focusing on the myeloid cell-T cell 
communication axis. This model has implications to pinpoint cell-cell contact signaling enriched in both 
subtypes and ligand-receptor interactions potentially mediating T cell suppression. The full scRNA-seq 
data set from Figure 9 was used as input for the analysis. Individual graphical elements by courtesy of 
Chiara Falcomatà. 
b, Bar plots displays significantly enriched signaling pathways in the mesenchymal versus classical 
subtype. Significant pathways were ranked based on differences in information flow between the two 
subtypes, which is calculated by summarizing all communication probabilities of the interactions within 
the respective signaling network. 
c, Circle plots for PD-L1 signaling comparing these signaling interactions in both subtypes. Edge width 
between two cell types shows cell communication probability. The size of the cell type circles is 
proportional to the number of cells in these groups. 
d, Circle plots for MHC-I signaling comparing these signaling interactions in both subtypes. 
e, Circle plots for MHC-II signaling comparing these signaling interactions in both subtypes. 
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While most identified ligand-receptor interaction pairs were associated with MHC signaling, H2-

k1–Cd8a and H2-d1–Cd8a were identified with highest interaction strengths between 

macrophages and CD8+ T cells in the mesenchymal subtype. Other interaction pairs could be 

associated to ICOS and NOTCH signaling as well as immune checkpoints, such as Cd274-Pdcd1, 

Cd86-Ctla4 and Pvr-Tigit, which showed lower communication probabilities compared to the MHC 

interactions (Figure 19a).  
 

 
  

Figure 19. Comparison of myeloid – T cell cell-cell communication in classical and 
mesenchymal tumors 

a, Bubble plot displays significant identified ligand-receptor interaction pairs between macrophages and 
CD4+/CD8+ T cells, which are enriched in the mesenchymal subtype. Ligand-receptor interactions are 
grouped into signaling pathways. Color of dots visualizes communication probability and dot size 
represents computed p-values from a one-sided permutation test. Empty spaces mean that 
communication probability is zero for this specific interaction. 
b, Bubble plot displays significant identified ligand-receptor interaction pairs between neutrophils and 
CD4+/CD8+ T cells, which are enriched in the classical subtype. Color of dots visualizes communication 
probability and dot size represents computed p-values from a one-sided permutation test. Empty spaces 
mean that communication probability is zero for this specific interaction. 
c, Circle plots for APP signaling comparing these signaling interactions in both subtypes. Edge width 
between two cell types shows cell communication probability. The size of the cell type circles is 
proportional to the number of cells in these groups. 
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As a result, interactions between macrophages and CD4+/CD8+ T cells are alike in both subtypes, 

even though macrophages are more abundant in the mesenchymal tumors as shown in the 

analyses before. 

Secondly, interactions between neutrophils and CD4+/CD8+ T cells were analyzed for cell-cell 

contact signaling, focusing on those ligand-receptor interaction pairs which are enriched in the 

classical compared to mesenchymal subtype. Here, a smaller number of significant interactions 

(n=10) was detected, but six of these interaction pairs were exclusive to the classical subtype. 

Among these, App-Cd74 displayed the highest communication probability (Figure 19b). 
Interestingly, while APP signaling does not engage in any interactions towards CD4+/CD8+ T cells 

in the mesenchymal tumors, it does so in the classical subtype (Figure 19c). Therefore, App could 

be an interesting factor for further functional validation. PD-L1 signaling mediated by Cd274-Pdcd1 

similarly displayed a higher communication probability in the classical compared to the 

mesenchymal subtype for neutrophil – CD8+ T cell  interactions and Pdcd1lg2-Pdcd1 interaction 

was only present in the classical tumors. 

In conclusion, mesenchymal tumors showed increased signaling via PD-L1 and MHC ligand-

receptor interactions to mediate cell-cell communication towards T cells which is an attractive 

option for designing new treatment rationales including immunotherapies. 

In a complimentary approach, interactions between myeloid cells and CD4+/CD8+ T cells were 

investigated for secreted signaling following the same analysis workflow as for the cell-cell contact 

signaling (Figure 20a). First, secreted signaling interactions between neutrophils and CD4+/CD8+ 

T cells were inferred, focusing again on ligand-receptor pairs which are enriched in the classical 

subtype. In total, 13 interaction pairs were identified in the classical tumors, with Mif – 

(Cd74+Cd44) presenting a specific interaction between neutrophils and CD8+ T cells and showing 

the highest communication probability of all inferred interaction pairs (Figure 20b). Interestingly, 

Mif is described to be widely expressed by multiple innate and adaptive immune cell types and is 

also known to inhibit T cell activation by inducing activation-induced T cell death (Noe and Mitchell, 

2020). Interestingly, Mif – (Cd74+Cd44) signaling to CD8+ T cells was the only interaction towards 

T cells via Mif in the classical subtype. In the mesenchymal tumors, there were no Mif interactions 

with T cells observed (Figure 20c). This makes Mif an interesting vulnerability for further follow-

up. It can also be noted that only three out of 13 identified neutrophil – T cell interactions are 

shared by both subtypes, the remaining ligand-receptor interactions are exclusively inferred in the 

classical subtype (Figure 20b).  
Next, macrophage - CD4+/CD8+ T cell signaling via secreted factors was analyzed and 28 ligand-

receptor interaction pairs were inferred as enriched in the mesenchymal subtype (Figure 20d). 
Although not exclusive, Cxcl16-Cxcr6 siganling from macrophages to CD8+ T cells displayed one 

of the highest communication probabilities in the mesenchymal tumors. In contrast, we identified 

Cxcl16 as differentially secreted factor enriched in the classical PDAC cell lines in our previous 

secretome analysis in Figure 15b. Cxcl16 interactions towards CD8+ T cells are additionally 
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outgoing from dendritic cells (both subtypes) and monocytes (mesenchymal subtypes), which also 

display high communication probabilities (Figure 20e).  
Other macrophage – T cell interactions with high interaction strengths were mediated by Spp1 

and Lgals9, but these are widely present in all immune cell types and therefore we did not 

investigate them further. To this end, both subtypes show a specific secreted signaling 

communication network in terms of myeloid – T cell interactions.  
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Figure 20. Cell-cell communication analysis of secreted signaling between myeloid cells 
and T cells in classical and mesenchymal tumors 

a, Schematic overview of proposed cell-cell communication model focusing on the myeloid cell-T cell 
communication axis. This model has implications to pinpoint secreted signaling enriched in both subtypes 
and ligand-receptor interactions potentially mediating T cell suppression. The full scRNA-seq data set from 
Figure 9 was used as input for the analysis. Individual graphical elements by courtesy of Chiara Falcomatà. 
b, Bubble plot displays significant identified ligand-receptor interaction pairs between neutrophils and 
CD4+/CD8+ T cells, which are enriched in the mesenchymal subtype. Color of dots visualizes communication 
probability and dot size represents computed p-values from a one-sided permutation test. Empty spaces 
mean that communication probability is zero for this specific interaction. 
c, Circle plots for ligand-receptor interaction Mif – (Cd74+Cd77) signaling comparing these signaling 
interaction in both subtypes. Edge width between two cell types shows cell communication probability. The 
size of the cell type circles is proportional to the number of cells in these groups. 
d, Bubble plot displays significant identified ligand-receptor interaction pairs between neutrophils and 
CD4+/CD8+ T cells, which are enriched in the classical subtype. Color of dots visualizes communication 
probability and dot size represents computed p-values from a one-sided permutation test. Empty spaces 
mean that communication probability is zero for this specific interaction. 
e, Circle plots for ligand-receptor interaction Cxcl6 – Cxcr6 signaling comparing these signaling interaction 
in both subtypes. Edge width between two cell types shows cell communication probability. The size of the 
cell type circles is proportional to the number of cells in these groups. 
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4.5. Conclusion 
To design more effective treatment strategies, it is crucial to understand the tumor ecosystem in 

all aspects. In this study, we performed a comprehensive TME characterization of the clinically 

relevant classical and mesenchymal PDAC subtype to unravel the TME composition and cell-cell 

communication networks. The classical and mesenchymal subtype differed substantially in their 

immune infiltrates, with the greatest difference in myeloid cell infiltration. Albeit these differences 

in composition, both subtypes are T cell excluded. We delineate with the cell-cell communication 

analysis that T cell suppression is mostly mediated via immune cell crosstalk and to a lower extent 

by direct tumor – T cell interactions (Figure 21).  
Overall, this study proposes a refined PDAC subtype cell-cell communication network highlighting 

potential therapeutic vulnerabilities for targeting the PDAC TME:  

 
 

 
 
 
 
 
 
 

 

Figure 21: Summary of subtype-specific TME characteristics and resolved cell-cell 
communication network 

Schematic overview presents TME characteristics, with focus on immune infiltration, derived from 
our multimodal TME analysis. Tumor cells mediate immune cell recruitment via secreted signaling. 
Namely, classical tumor cells secrete Cxcl5 and Cxcl1, which signal to the Cxcr2 receptor, thereby 
recruiting neutrophils, which display a PMN-MDSC-like phenotype. These MDSC-like cells signal to 
T cell via secreted (through Mif secretion) and App signaling (cell-cell contact), potentially mediating 
T cell suppression and exhaustion.  
In contrast, mesenchymal tumor cells secrete Csf1 and Il34, which mediate recruitment and 
proliferation of immunosuppressive Arg1+Trem2+ macrophages. These engage in turn with T cells 
via PD-L1/MHC signaling as well as by secretion of Cxcl16, contributing to the dysfunctional T cell 
compartment. Tumor cells also directly interact with T cells via secretion of Cxcl16 in classical tumors 
and Cxcl12 in mesenchymal tumors.   
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5. DISCUSSION 
PDAC is a dismal disease presenting a complex genetic landscape and heterogenous TME. 

Moreover, PDAC belongs to one of the most lethal cancer entities and is projected to become the 

second leading cause of cancer-related mortality by 2030 (Rahib et al., 2014; Siegel et al., 2022). 

Among the hallmarks of cancer, which were first postulated by Hanahan and Weinberg in 2011, 

is the ability of transformed cells to avoid immune destruction (Hanahan, 2022; Hanahan and 

Weinberg, 2011). Following this hypothesis, extensive research efforts in the last decade have 

invoked the characterization of the PDAC TME and mechanisms of immune evasion. At the same 

time, the wide applicability of next-generation sequencing (NGS) studies fueled the molecular 

characterization of PDAC patient cohorts to decipher the genetic landscape and phenotypes of 

PDAC. Comprehensive efforts led by Collisson, Moffitt and Bailey revealed transcriptional 

subtypes of PDAC which are associated with prognosis and treatment outcome. Classical and 

mesenchymal PDAC emerged as the two major subtypes (Bailey et al., 2016; Collisson et al., 

2011; Moffitt et al., 2015). One intriguing question arising from these molecular classifiers is how 

these PDAC subtypes are connected to the immunosuppressive phenotype of the PDAC TME 

and in which way they shape their specific TME. Systematic analysis of the TME composition in 

PDAC subtypes was not conducted so far and thus molecular drivers of immunosuppression 

remained elusive. 

To tackle this issue, we delineated the TME composition and cell-cell communication networks in 

the two major transcriptional PDAC subtypes in this study by utilization a multimodal analysis 

approach. Importantly, we analyzed the TME composition at high-resolution using flow cytometry 

and scRNA-seq, thereby considering the heterogeneity of immune cell types, as well as taking the 

spatial variability of these cell types into account by deploying spatial transcriptomics analyses. 

Through integration of secretomics with scRNA-seq data, we inferred the subtype-specific cell-cell 

communication networks and interrogated distinct modes towards immunosuppression in PDAC 

subtypes. Our work opens new possibilities for identifying therapeutic vulnerabilities or designing 

combinatorial therapies targeting PDAC subtypes and their immunosuppressive TME. 

5.1. TME phenotypes and heterogeneity in PDAC  
With the advent of high-resolution scRNA-seq approaches, detailed study of the TME composition 

at the single cell level became feasible. This opened new avenues in investigating the complex 

heterogeneity of tissue architectures, such as delineation of organ cell type composition in 

development or adulthood (Pijuan-Sala et al., 2019; Tabula Muris et al., 2018). Considering cancer 

research, scRNA-seq has helped to elucidate distinct stromal and immune cell types in the PDAC 
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TME as multiple studies investigated the cellular diversity previously in mouse and human PDAC 

(Giladi and Amit, 2018; Han et al., 2021; Sun et al., 2021) . 

In the study presented here, we delineated first TME phenotypes in a large histological cohort of 

PDAC GEMMs reflecting the genetic complexity of the human disease. Of note, while individual 

genetic alterations influence TME composition, significant heterogeneity within each genotype 

group was observed. Five distinct TME phenotypes were identified and annotated as enriched in 

lymphocytes, granulocytes, proliferating cells and stroma content as well as one cluster named as 

immune excluded, which was devoid of immune cells. One drawback of this analysis was the 

source material being H&E-stained FFPE tissue sections, thus preventing identification of specific 

cell types other than lymphocytes and granulocytes. Liudahl et al performed a multiplexed 

immunohistochemistry analysis on FFPE PDAC sections from 135 patient specimens, enabling 

the precise description of specific cell populations and functional states. In total, 17 distinct cell 

types including epithelial cells, multiple T cell populations, B cells, neutrophils, macrophages, mast 

cells and dendritic cell subsets could be identified. Similarly, distinct functional states, such as 

proliferation, cytotoxicity and immunoregulation were described. Analysis of treatment-naïve 

PDAC revealed three main TME phenotypes, namely the hypo-inflamed, myeloid and lymphoid 

TME, which were partly overlapping with our histopathological analysis. Moreover, the spatial 

distribution of these cell types throughout different tumor regions, e.g. invasive tumor, tumor 

adjacent stroma and adjacent normal tissue, was analyzed. Among the cell types showing distinct 

spatial variability over different tumor regions were neutrophils and CD8+ T cells. The former were 

highly accumulating in areas near tumor cells, while the latter were excluded from those areas, 

but could be found outside tumor regions (Liudahl et al., 2021). These findings corroborate the 

results from our spatial transcriptomics analysis, in which close proximity between neutrophils and 

classical tumor cells was observed to a similar extent, in contrast to T cells showing sparse 

infiltration and a dispersed occurrence in the stroma regions of mouse PDAC.  

 

5.2. Subtype-specific TME characteristics 
An inherent advantage of orthotopic implantation models in cancer research is the ability to 

characterize cells prior to implantation, thus obtaining insight into molecular pathomechanisms of 

disease subtypes. In this study, we deployed an orthotopic allograft model to investigate tumors 

allocated to a defined subtype state and showing distinct molecular features. As model system, 

we orthotopically implanted mouse PDAC cell lines with an extensively history of molecular 

characterization (Falcomatà et al., 2022; Mueller et al., 2018). Importantly, the phenotype of these 

subtypes is stable in vivo and faithfully recapitulated in our implantation models. In this work, we 

analyzed the most pronounced phenotypic states of PDAC subtypes, by comparing the most 

classical versus the most mesenchymal subtypes. These are typically characterized by a pure 

classical or mesenchymal gene expression signature and morphological phenotype. Although a 
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recent research study showed the existence of an intermediate co-expressor subtype, presenting 

as a transitional state between classical and mesenchymal, profound knowledge of either classical 

or mesenchymal cells on immune cells recruitment in PDAC is of utmost importance to stratify 

patients into clinically actionable cohorts (Raghavan et al., 2021). The TME characteristics of this 

intermediate subtype need to be systematically addressed in further studies. 

Moreover, TME properties of PDAC subtypes were also analyzed in bulk RNA-sequencing cohorts 

and were previously associated to distinct gene expression signatures (Maurer et al., 2019; Puleo 

et al., 2018). The structural TME in classical PDAC is characterized by a high abundance of 

activated CAFs and a dense desmoplastic stroma, but low in tumor cellularity. In contrast, the 

mesenchymal subtype shows lower extent of stroma and a higher tumor cell fraction (Steins et al., 

2020). Notably, mesenchymal/ECM-rich tumors were associated with the poorest survival in 

comparison to classical/immune-rich tumors (Maurer et al., 2019). In their comprehensive analysis 

of intratumor TME heterogeneity, Grünwald et al identified the reactive, deserted and intermediate 

TME state, which can co-occur within the same tumor, warranting the annotation as subTMEs. 

Importantly, these subTMEs were associated with PDAC subtypes defined by the transcriptional 

profile of tumor cells. Focusing their analysis on the malignant cells, the authors showed that the 

dominant reactive subTMEs displayed enrichment of mesenchymal tumor cells, distinguished by 

proliferative and mesenchymal gene expression signatures, while classical PDAC showed a lower 

frequency of dominant deserted TMEs. Conversely, the dominant deserted TMEs showed 

histologically more well-differentiated glandular tumor structures and were positively correlated 

with a better patient outcome (Grünwald et al., 2021). 

In this study, we focused on the investigation of the immune TME subtype-specific differences as 

these have not been systematically analyzed so far. While our data supports the notion that both 

PDAC subtypes show sparse infiltration of T cells and a dysfunctional T cell compartment, the 

most striking difference was found in the myeloid compartment. Classical tumors were infiltrated 

by high fractions of activated PMN-MDSC like neutrophils, while mesenchymal tumors displayed 

high abundance of immunosuppressive Arg1+/Trem2+ macrophages. Only few recent studies 

focused on specific cell lineages of the immune TME in PDAC subtypes. Our findings of high 

macrophage infiltration in the mesenchymal subtype are corroborated by a study from Tu et al in 

which the authors found that TNFa expressing macrophages are recruited by CCL2 secretion from 

mesenchymal tumor cells, which is secreted from tumor cells and regulated via BRD4-mediated 

cJUN/AP1 expression. Conversely, regulatory elements of the CCL2 locus were not active in 

classical PDAC cells, determined by absence of cJUN binding to the corresponding enhancer. 

TNFa, secreted by macrophages in mesenchymal PDAC, was furthermore found to maintain the 

aggressive mesenchymal subtype through downregulation of lineage-specific classical 

differentiation genes (Tu et al., 2021). This study also highlights tumor cell intrinsic mediation of 

secreted factors as potential therapeutic vulnerability to inhibit infiltration of immunosuppressive 

macrophages. In another study, patient-derived PDAC liver metastasis samples were subjected 



Discussion 
 
 

 74 

to scRNA-seq analysis and subsequent subtype-stratification. Additional to the classical and 

mesenchymal subtype classification, an intermediate co-expressor state was identified which 

exhibits shared gene expression originating from both classical and mesenchymal signatures. 

These refined subtypes were associated with TME compositions. Notably, the mesenchymal state 

was associated with a high abundance of C1QC+ macrophages and generally a lower TME cell 

type diversity (Raghavan et al., 2021).  

Modulation of the PDAC TME can furthermore lead to differences in therapeutic responses. Our 

recent findings show that a novel combinatorial targeted therapy elicits significant response in the 

therapy-refractory mesenchymal subtype. The combined kinase-targeted therapy induced a 

remodeling of the TME in vivo and led to a higher infiltration of effector T cells, specifically in the 

mesenchymal subtype. Thus, this subtype was more receptive for PD-L1 checkpoint inhibition, 

contrasting the classical subtype where we could not detect this T cell influx (Falcomatà et al., 

2022).  

5.3. Subtype-specific cell-cell communication networks and therapeutic 
vulnerabilities 
The differences in the TME composition in classical and mesenchymal PDAC led us to 

hypothesize that these subtypes also differ in their cell-cell communication networks. 

Understanding the cell-cell communication relationships between the diverse cell types within a 

tumor is crucial for identifying therapeutic vulnerabilities as a rising number of biologics is 

achieving FDA approval, thus positioning elimination of chemokine-mediated cell communication 

through antibody administration as a powerful treatment regimen (Mullard, 2021). To understand 

these communication networks in PDAC subtypes, we propose a cell-cell communication model 

where we delineate (i) how tumor-cell intrinsic properties influence immune cell recruitment and 

(ii) how immune cells communicate with each other to shape an immunosuppressive PDAC TME. 

5.3.1. Tumor-immune crosstalk in PDAC 
It is known that the genetic landscape of a tumor can influence the immune composition, but these 

complex genotype-phenotype relationships remain to be fully understood (Binnewies et al., 2018; 

Wellenstein and de Visser, 2018). As an example, it was reported that KRASG12D-driven PDAC 

cells secrete GM-CSF (CSF2) which correlated with an infiltration of Gr1+CD11b+ myeloid cells 

(Bayne et al., 2012; Pylayeva-Gupta et al., 2012). Similarly, PDAC tumors with a high FAK activity 

were associated with increased levels of fibrosis and low infiltration of CD8+ T cell infiltration (Jiang 

et al., 2016). In another study of KrasG12D-driven PDAC, higher infiltration of immunosuppressive 

CD11b+ myeloid cells and regulatory T cells was dependent on additional loss of p53 in the tumor 

cells. Furthermore, these malignant cells were also shown to secrete multiple cytokines and 

chemokines (e.g. Csf1, Mcp1, Cxcl10 and Cxcl1) important for myeloid cell recruitment at higher 

levels (Blagih et al., 2020). Particularly, cytokines and chemokines are crucial mediators of 
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immune cell trafficking and cell-cell interactions in cancer (Nagarsheth et al., 2017; Ozga et al., 

2021). In our study, we identified multiple cytokines/chemokines which differ in secretion levels 

between classical and mesenchymal PDAC by integrating an in vitro secretome analysis with an 

in vivo scRNA-seq ligand-receptor interaction analysis (CellChat). As top differentially secreted 

factors, Csf1 (mesenchymal PDAC) and Cxcl5 (classical PDAC) emerged. The Csf1/Csf1r 

signaling axis plays a central role in differentiation, proliferation and chemotaxis of macrophages 

and is thus an attractive therapeutic target to inhibit accumulation of immunosuppressive 

macrophages (Pathria et al., 2019; Stanley and Chitu, 2014). CSF1R-expressing macrophages 

were associated with a poor prognosis and could be linked to the squamous and immunogenic 

PDAC subtypes in patients (Bailey et al., 2016; Candido et al., 2018). Using a small-molecule 

CSF1R inhibitor, which inhibits CSF1R phosphorylation, led to a significant reduction of 

macrophages and a reduced tumor mass in a PDAC mouse model (PKP genotype). In addition, 

CSF1R inhibition increased CD4+ and CD8+ T cell infiltration, suggesting TME reprogramming to 

an immune-infiltrated TME (Candido et al., 2018). In contrast, Kumar et al tested CSF1R inhibition 

in implantation models of different tumor entities, such as melanoma, lung cancer and breast 

carcinoma, and described higher infiltration of PMN-MDSC granulocytes upon treatment. Further 

analysis revealed that CAFs upregulated chemokines important for granulocyte recruitment upon 

CSF1R inhibition and thereby mediated the PMN-MDSC influx. The authors proceeded to combine 

CSF1R inhibition with selective CXCR2 inhibition, resulting in a delay in tumor progression in lung 

carcinoma and melanoma models (Kumar et al., 2017). Moreover, CSF1 was found to influence 

the CAF compartment specifically in the mesenchymal PDAC subtype. Steins et al described an 

deactivation of pancreatic stellate cells via CSF1 secretion from mesenchymal tumor cells, 

accounting for the low stromal content in the mesenchymal subtype (Steins et al., 2020). In 

addition to Csf1, Il34, a chemokine binding the Csf1r receptor as well, was equally secreted at 

high levels in the mesenchymal subtype. Similarly to Csf1, it was shown that Il34 mediates 

macrophage recruitment and leads to an exclusion of T cells in murine cancer mouse models 

(Hama et al., 2020). A high co-expression of CSF1 and IL34 in lung cancer patients was 

associated with a poor survival, an association particularly strong in advanced stages of this tumor 

type (Baghdadi et al., 2018). Thus, a combinatorial approach to inhibit CSF1 and IL34, either by 

inhibiting both factors through antibody-mediated ablation or by targeting the common CSF1R 

receptor, could be an effective approach to modulate antitumor immunity in PDAC. 

In the classical PDAC subtype, we identified Cxcl5 as top differentially secreted factor and inferred 

that Cxcl5-Cxcr2 signaling leads to an accumulation of PMN-MDSCs in the TME. CXCL5 was 

recently described in the context of prostate cancer to be associated with higher PMN-MDSC 

infiltration (Bezzi et al., 2018). Moreover, Raghavan et al identified CXCL5 as differentially 

secreted factor enriched in the classical tumor cell state in a scRNA-seq data set of patient-derived 

metastatic PDAC (Raghavan et al., 2021). Across TCGA cancer cohorts, CXCL5 expression levels 

were generally highest in PDAC. Furthermore, it was shown that Cxcl5 expression in tumor cells 



Discussion 
 
 

 76 

is mediated by NF-kB activation via TNFa in a PDAC mouse model. Subsequent inhibition of the 

Cxcr2 receptor led to delayed tumor growth in mice and to infiltration of activated T cells (Chao et 

al., 2016). Combination of CXCR2 inhibitors with anti-PD1 immunotherapy entailed significant 

longer survival time in a PDAC mouse model and highlights the immunosuppressive effects of 

Cxcr2 expressing PMN-MDSCs in PDAC (Steele et al., 2016). Besides Cxcl5, we identified other 

chemokines which were significantly enriched in classical PDAC, among them Cxcl1 and Cxcl16. 

PDAC cell derived Cxcl1 was previously reported to induce a T cell excluded TME with high 

infiltration of MDSCs. Further analysis of tumor cell intrinsic properties showed that Cxcl1 

expression is induced by higher c-Myc activity in tumor cells, thus presenting a potential 

therapeutic vulnerability. Tumor cell specific knockout of Cxcl1 followed by implantation into mice 

led to higher infiltration of PD-1+CD8+ T cells accompanied by a lower infiltration of PMN-MDSCs, 

thereby inducing antitumor immunity (Li et al., 2018). We identified Cxcl16 secreted by classical 

tumor cells as well as macrophages as abundant sources in classical tumors, communicating with 

the Cxcr6 receptor on T cells. Previous reports suggest that CXCL16 has a role in PDAC tumor 

progression and induces PDAC cell invasiveness (Wente et al., 2008). As T cell abundance in 

both PDAC subtypes is negligible and T cells are excluded from the tumor core, the Cxcl16-Cxcr6 

interaction axis did not lead to increased T cell trafficking in both PDAC subtypes. Notably, Lesch 

et al recently showed that T cells equipped with CXCR6 and a chimeric antigen receptor (CAR) 

mediated higher T cell infiltration in a subcutaneous PDAC model and thus enhanced adoptive T 

cell transfer efficacy (Lesch et al., 2021). This study highlights the importance of considering 

context-specific characteristics of cell-cell communication networks and to simultaneously assess 

quantitative infiltration and spatial distribution of interacting cell types. Moreover, we identified 

Cxcl12-Cxcr4 as mesenchymal tumor cell secreted factor signaling, which is known to suppress 

T cell influx and accumulation of T cells within the tumor (Wang et al., 2022). Cxcl12 was further 

described to be secreted by FAP+ CAFs in a mouse PDAC model (PKP genotype), leading to 

coating of the tumor cells with Cxcl12. Inhibition of the cognate receptor Cxcr4 induced T cell 

infiltration and synergized with anti PD-L1 therapy (Feig et al., 2013; Wang et al., 2022). 

5.3.2. Immune-immune crosstalk in PDAC 
Our comprehensive cell-cell communication analysis of subtype-specific secreted cytokines and 

chemokines indicated that immunosuppression is mainly achieved via the recruitment of 

immunosuppressive macrophages or PMN-MDSCs in both subtypes. Therefore, we next 

investigated how macrophages and PMN-MDSCs communicate with T cells and sustain a 

dysfunctional and exhausted T cell compartment. Investigating global differences in cell-cell 

contact signaling, the mesenchymal subtype was associated with upregulation of multiple immune 

checkpoint signaling pathways, such as PD-L1, TIGIT and CD80, as well as antigen processing 

pathways (MHCI and MHCII) compared to the classical subtype. Elevated TIGIT expression levels 

were described by Steele et al in a subset of CD8+ T cells within human PDAC as well as in the 
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patient’s blood presenting a potential biomarker for advanced disease as well as a therapeutic 

vulnerability for immunotherapy (Steele et al., 2020). Using our combinatorial therapy, we could 

show that the mesenchymal subtype benefitted more from anti PD-L1 therapy after TME 

reprogramming than the classical subtype (Falcomatà et al., 2022). Interactions between 

macrophages and T cells via cell-cell contact (e.g. MHC, ICOS, NOTCH and PD-L1 signaling) and 

secreted signaling are mostly shared between the mesenchymal and classical subtype, indicating 

that the higher abundance of macrophages in the mesenchymal subtype mediates 

immunosuppression. Moreover, we also identified Cxcl16 as macrophage-secreted chemokine 

whose function was described in the previous paragraph.  

Less interactions were identified between neutrophils and T cells, but we found few interactions 

which are specific for the classical subtype, such as App-Cd74 and Mif-Cd74+Cd44. App (Amyloid 

b) is discussed as the causal protein for neurodegenerative disorders and mediates Amyloid-

driven formation of neutrophil extracellular traps (NETosis) in Alzheimer’s, thus predicting poor 

prognosis (Munir et al., 2021). There are limited studies linking neutrophils and T cells via APP in 

cancer, although APP is generally associated with a pro tumorigenic function (Lee et al., 2021).  

MIF is known to be widely expressed in various immune cell types and has autocrine or paracrine 

functions which mediate immunosuppression (Noe and Mitchell, 2020). Moreover, a high 

expression of MIF in human PDAC specimens was correlated with a poor prognosis (Funamizu et 

al., 2013; Wang et al., 2018). In cancer, MIF signaling leads to a reduced cytotoxic T cell activation, 

fostering activation-induced T cell death via IFNg signaling (Noe and Mitchell, 2020; Yan et al., 

2006). 
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5.4. Outlook 
In this study, we present a comprehensive analysis of TME states and cell-cell communication 

networks in PDAC subtypes. Our results show multiple potential targets for therapeutic 

intervention by immunomodulation and reprogramming of the PDAC TME. 

The identified subtype-specific secreted factors will be functionally validated in vivo in future 

experiments to fully understand their effect on the TME composition. To this end, we will employ 

genetic knockouts via CRISPR-Cas9 and overexpression constructs of secreted factors in 

classical and mesenchymal PDAC cell lines and implant them into syngeneic mice. This will shed 

light on the question to which extent tumor cells mediate myeloid cell recruitment as well as T cell 

exclusion and exhaustion by modulating the amount of immunosuppressive myeloid cells. As 

immune cell infiltration is potentially driven by multiple chemokines and cytokines, we will also 

generate multiplexed genetic knockouts to investigate if these factors act synergistically. 

Another intriguing question is how tumor cells intrinsically regulate secreted factor expression and 

if there are differences between subtypes. Therefore, we will investigate ATAC-seq and ChIP-seq 

data from our KrasG12D-driven mouse cell line cohort to identify transcription factor programs 

associated to chemokine/cytokine expression and potentially targetable by epigenetic modifiers. 

Moreover, our analysis will be extended to human PDAC data sets to cross-validate our inferred 

cell-cell communication networks, using publicly available human scRNA-seq data sets and 

integrating them with secretome analysis of human PDAC cell lines which are available in our lab. 

These additional analyses will build an extensive framework for PDAC subtype-specific immune 

hubs  
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Figure 22. Flow cytometry gating strategy 

a, Gating strategy for the innate flow cytometry panel. FSC and SSC gates were used to identify cells and 
exclude doublets. Live/dead cells were distinguished by Zombie Aqua staining, which stains dead cells. Live 
cell fraction was further analyzed for innate cell types of interest, which can be analyzed by the following 
marker combinations: CD45+Ly6G+CD11b+ (Neutrophils), CD45+Ly6G-CD11b+F4/80+ (Macrophages), 
CD45+Ly6G-F4/80-CD11c+ (Dendritic cells), CD45+Ly6G-F4/80-CD11c-NK1.1+ (NK cells) 
b, Gating strategy for the adaptive flow cytometry panel. FSC and SSC gates were used to identify cells 
and exclude doublets. Live/dead cells were distinguished by Zombie Aqua staining, which stains dead cells. 
Live cell fraction was further analyzed for adaptive cell types of interest, which can be analyzed by the 
following marker combinations: CD45+CD3+ (T cells), CD45+CD19+ (B cells), CD45+CD3+CD4+ (CD4+ T 
cells), CD45+CD3+CD8a+ (CD8+ T cells) 
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