
TUM School of Computation, Information and Technology
Technische Universität München

Temporally Coherent Video Generation
with Generative Adversarial Networks

You Xie
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0 Abstract

Video generation has been an important topic in both computer vision and graphics, but
still challenging because of the complicated dynamics in the sequence. In this disserta-
tion, we will explore GAN-based video generation algorithms under various backgrounds,
such as fluid flow and natural videos. The primary goal of our work is to apply GANs
to achieve realistic and temporally coherent details in the generated sequences.

Increasing the resolution of a fluid simulation always always brings tremendous com-
putation costs. We propose a temporally coherent generative model for fluid flow super-
resolution. Based on a conditional GAN, our model generates consistent and detailed
results via a novel temporal discriminator, in addition to the commonly used spatial one.
Our experiments show that the generator is able to infer more realistic high-resolution
details by using additional physical quantities, such as the low-resolution velocities or
vorticities, which offer means for artistic control as well. We additionally employ a
physics-aware data augmentation step, which is crucial to avoid overfitting and reduce
the memory requirements. In this way, our network learns to generate advected quanti-
ties with highly detailed, realistic, and temporally coherent features. Our method works
instantaneously, using only a single time-step of low-resolution fluid data. To improve
the efficiency of model training with 3D volume data, we re-visit the classic idea of un-
supervised autoencoder pretraining and propose a modified variant that relies on a full
reverse pass trained in conjunction with a given training task. This yields networks that
are as-invertible-as-possible, and share mutual information across all constrained layers.
We additionally establish links between singular value decomposition and pretraining
and show how it can be leveraged for gaining insights into the learned structures. Most
importantly, we demonstrate that our approach yields an improved performance for a
wide variety of relevant learning and transfer tasks ranging from fully connected networks
over residual neural networks to GANs.

For natural videos, we focus on pose-guided human video generation. Instead of gen-
erating the human sequence directly, we propose a novel approach to generate tempo-
rally coherent UV coordinates. Our method is not constrained by human body outlines
and can capture loose garments and hair. We implemented a differentiable pipeline to
learn UV mapping between a sequence of RGB inputs and textures via UV coordinates.
Instead of treating the UV coordinates of each frame separately, our data generation
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approach connects all UV coordinates via feature matching for temporal stability. Sub-
sequently, a generative model is trained to balance the spatial quality and temporal
stability. It is driven by supervised and unsupervised losses in both UV and image
spaces. Our experiments show that the trained models output high-quality UV coordi-
nates and generalize to new poses. Once a sequence of UV coordinates has been inferred
by our model, it can be used to flexibly synthesize new looks and modified visual styles.
Compared to existing methods, our approach reduces the computational workload to
animate new outfits by several orders of magnitude.

Our methods achieved spatially realistic and temporally coherent sequence generation
with GANs. Our various results, e.g., generated fluid flow and natural sequence, demon-
strate the capability of GANs in video generation. We hope that our work can provide
inspiration for other video generation tasks.

vi Chapter 0.



0 Zusammenfassung

Die Videogenerierung ist aufgrund der komplizierten Dynamik in der Sequenz ein wich-
tiges, aber immer noch schwieriges Thema in den Bereichen Computer Vision und Grafik.
In dieser Dissertation erforschen wir GAN-basierte Algorithmen zur Videogenerierung
vor verschiedenen Hintergründen, wie z. B. Flüssigkeitsströmungen und natürliche
Videos. Das Hauptziel unserer Arbeit ist die Anwendung von GANs, um realistische
und zeitlich kohärente Details in den erzeugten Sequenzen zu erreichen.

Bei Strömungssimulationen ist die Erhöhung der Auflösung immer mit enormen Rechen-
kosten verbunden. Wir schlagen ein zeitlich kohärentes generatives Modell für die Su-
perauflösung von Strömungen vor. Basierend auf einem bedingten GAN erzeugt unser
Modell konsistente und detaillierte Ergebnisse durch die Verwendung eines neuarti-
gen zeitlichen Diskriminators, zusätzlich zu dem üblicherweise verwendeten räumlichen
Diskriminator. Unsere Experimente zeigen, dass der Generator in der Lage ist, realis-
tischere hochaufgelöste Details abzuleiten, indem er zusätzliche physikalische Größen
verwendet, wie z. B. niedrig aufgelöste Geschwindigkeiten oder Wirbelstärken, die
ebenfalls Mittel zur künstlerischen Kontrolle bieten. Zusätzlich verwenden wir einen
physikalischen Datenanreicherungsschritt, der entscheidend ist, um eine Überanpassung
zu vermeiden und den Speicherbedarf zu reduzieren. Auf diese Weise lernt unser Net-
zwerk, advozierte Größen mit sehr detaillierten, realistischen und zeitlich kohärenten
Merkmalen zu erzeugen. Unsere Methode funktioniert sofort und verwendet nur einen
einzigen Zeitschritt von niedrig aufgelösten Flüssigkeitsdaten. Wir demonstrieren die
Fähigkeiten unserer Methode anhand einer Vielzahl komplexer Eingaben und Anwen-
dungen in zwei und drei Dimensionen.

Um die Effizienz des Modelltrainings mit 3D-Volumendaten zu verbessern, greifen
wir die klassische Idee des unbeaufsichtigten Autoencoder-Vortrainings wieder auf und
schlagen eine modifizierte Variante vor, die auf einem vollständigen Rückwärtsdurchlauf
basiert, der in Verbindung mit einer bestimmten Trainingsaufgabe trainiert wird. Dies
führt zu Netzwerken, die so invertierbar wie möglich sind und gegenseitige Informatio-
nen über alle eingeschränkten Schichten hinweg teilen. Darüber hinaus stellen wir eine
Verbindung zwischen der Singularwertzerlegung und dem Vortraining her und zeigen,
wie diese genutzt werden kann, um Einblicke in die gelernten Strukturen zu gewinnen.
Am wichtigsten ist, dass wir zeigen, dass unser Ansatz eine verbesserte Leistung für eine
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Vielzahl von relevanten Lern- und Transferaufgaben liefert, die von vollständig verbun-
denen Netzwerken über residuelle neuronale Netzwerke bis hin zu GANs reichen.

Für natürliche Videoanwendungen konzentrieren wir uns auf die posengeleitete Gener-
ierung menschlicher Videos. Anstatt die menschliche Sequenz direkt zu generieren, schla-
gen wir einen neuen Ansatz vor, um zeitlich kohärente UV-Koordinaten zu erzeugen. Un-
sere Methode ist nicht an die Umrisse des menschlichen Körpers gebunden und kann lose
Kleidungsstücke und Haare erfassen. Wir haben eine differenzierbare Pipeline implemen-
tiert, um die UV-Zuordnung zwischen einer Sequenz von RGB-Eingaben und Texturen
über UV-Koordinaten zu lernen. Anstatt die UV-Koordinaten jedes Einzelbildes separat
zu behandeln, verbindet unser Ansatz zur Datengenerierung alle UV-Koordinaten durch
Feature-Matching, um zeitliche Stabilität zu gewährleisten. Anschließend wird ein gener-
atives Modell trainiert, um die räumliche Qualität und zeitliche Stabilität auszugleichen.
Es wird durch überwachte und nicht überwachte Verluste sowohl im UV- als auch im
Bildraum gesteuert. Unsere Experimente zeigen, dass die trainierten Modelle hochwer-
tige UV-Koordinaten ausgeben und sich auf neue Posen verallgemeinern lassen. Sobald
eine Sequenz von UV-Koordinaten von unserem Modell abgeleitet wurde, kann sie ver-
wendet werden, um flexibel neue Looks und veränderte visuelle Stile zu synthetisieren.
Im Vergleich zu bestehenden Methoden reduziert unser Ansatz den Rechenaufwand für
die Animation neuer Outfits um mehrere Größenordnungen.

Unsere Methoden erreichen eine räumlich realistische und zeitlich kohärente Sequen-
zgenerierung mit GANs. Unsere verschiedenen Ergebnisse, z. B. die Erzeugung von
Flüssigkeitsströmen und natürlichen Sequenzen, zeigen die Leistungsfähigkeit von GANs
bei der Videogenerierung. Wir hoffen, dass unsere Arbeit als Inspiration für andere ver-
wandte Arbeiten dienen kann.

viii Chapter 0.
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“In motion alone is the answer 
to all of the mysteries of matter.”

Walter Russell

1 Introduction

The development of imaging technologies brings an explosive increase of digital data,
such as images and videos. Compared with a static image, a video is a sequence of
temporally coherent images and can record the movement of objects, which contains more
dynamic information and is more aligned with what humans see in the real world. With
those advantages, videos play more and more important roles in various situations, from
daily life to mass entertainment to researches. Besides, in the field of computer graphics,
which aims for digitally synthesizing and manipulating visual content, it’s also crucial to
develop video synthesizing algorithms. Traditionally, videos are typically synthesized via
solving dynamic equations or motion tracking to generate realistic motions, as shown in
Figure 1.1. Despite the rapid developments of computing hardware and algorithms, it’s
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still highly challenging to efficiently generate videos with realistic dynamics, because of
the complicated physical relationships between frames. On the other hand, deep learning
methods achieve rapid developments and great success in the last decades in many
fields, such as computer vision and natural language processing. Under this background,
methods based on Convolutional Neural Networks (CNN) [1] provide a different approach
for video synthesizing. Instead of generating the sequence via solving dynamic equations
or tracing from real motion, CNN-based methods train a model to learn the dynamics
from the dataset directly. Once the model is well trained from the dataset, then the
model can be applied to generate sequences with learned corresponding dynamics.

Video generation shows great application prospects in various fields. Hollywood con-
sumes a lot of human and material resources every year in video generation for good
movies, e.g., a single “Game of Thrones” episode costs around 10 million dollars with
a huge group of experts for visual effects. Video games, as shown in Figure 1.2 a, the
market of which is above 100 billion dollars, are also highly relied on video generation
technologies to improve users’ experience. Another example is the Metaverse (Figure 1.2
b), which aims at building a virtual social world. Global market of Metaverse accounted
for over 330 million dollars in 2020 and is estimated to be over 1000 million dollars by
2030. In the virtual Metaverse, scenes should be synthesized as realistic as our real
world, so that users can be fully immersed in the virtual world and get the best user
experience. To achieve this goal, video synthesizing technologies are indispensable.

Video generation technologies have been developed for decades. Except for solving dy-
namic equations or motion tracking to generate realistic motions, early works achieved
video generation via synthesizing dynamic texture [2, 3, 4, 5]. While it is difficult to be
applied in complicated situations. The machine learning based methods show the pos-
sibility to improve the efficiency of video generation. CNN is built with convolutional
layers, then model size and non-linearity can be easily changed via modifying model
layers. Besides, convolutional operations can be efficiently executed with Graphics Pro-
cessing Units (GPU), which largely increases the computation efficiency. Those reasons
result in CNN achieving great success in various fields and those are also what video gen-
eration needs. [6, 7, 8, 9] applied Variational Auto-Encoder (VAE) for video generation.
However, those methods primarily applied traditional L-Norms loss functions, which aim
at decreasing average loss values over the whole space and result in smoothed detail. In-
stead, GANs [10] aim at matching the output distribution with ground truth, which
largely alleviates the problem of detail smoothing. With the development of GANs,
the quality of the generated videos are largely improved, e.g., MocoGAN [11] achieved
video generation via decomposing video content and dynamic motions, but resolution of
generated video is quite limited since MocoGAN used a whole sequence as the inputs of
the discriminator. On the other hand, Vid2vid [12] used data pair, image and optical
flow, as the inputs of the discriminator, and achieved mapping between semantic videos
and target videos, then new videos can be generated with corresponding semantic se-
quences. However, dynamic processing is not involved in the adversarial training, and
discriminator cannot discover the correct dynamic relationship between adjacent frames.
Thus, improving the temporal coherence of the generated videos is still challenging. This
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(a) Generating fluid sequence via solving dy-
namic equations [13] (b) Motion capturing with sensors [14]

Figure 1.1: Examples of fluid simulation and motion tracking.

(a) Example of games using Unreal engine [15].
(b) Example of metaverse.

Figure 1.2: Example applications of video generation.

dissertation focuses on improving the temporal coherence of the videos generated from
GANs.

1.1 Dissertation Overview

In this dissertation, we start by introducing the motivation of video generation in Part
I. Then we explore approaches with applying GANs to improve efficiency for fluids sim-
ulation (part II) and natural videos generation(part III). Further discussion is provided
in Part IV to summarize the connections between generating fluid sequence and natural
sequence. An overview of the dissertation structure is shown in Figure 1.3. At the be-
ginning of this chapter, a teaser image is presented as a preview of the results generated
with methods proposed in this dissertation.

Fluid simulation aims at recovering realistic fluid motion, then those data can be ap-
plied for various purposes, e.g., explosion and fire scenes can be generated via smoke
simulation for movies, data of which are extremely expensive, or dangerous, or even im-
possible, to be personally captured from the real scene. However, traditional technologies
for fluid simulation require not only tremendous time cost, but considerable human and
material resources to achieve the required quality. On the other hand, we found that
it would be much more efficient to generate desired fluid data at low resolution (LR)
than high resolution (HR). Thus, in Chap. 3, we present a generative model for fluid
super-resolution (SR), generating HR data based on LR data. Preparing a collection
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of paired low- and high-resolution data, our method bridges the gap between low- and
high-resolution data via using HR data as ground truth to train a GAN model with
LR data as generator input. However, training the network with traditional adversarial
functions can only recover the sharp spatial details in the results, and for sequential data,
temporal coherence is also an important aspect for quality evaluation. Thus, except for
the traditional spatial discriminator, we proposed a novel temporal discriminator to im-
prove the temporal coherence of the results, and we demonstrated that trained models
can efficiently generate promising HR data with inputting LR data. However, training
with fluid data is time-consuming because of large data size and model should be re-
trained from scratch for new fluid scenes. On the other hand, all the fluid simulation
data can be generated with the same dynamic equations, e.g., Navier-Stokes equations,
which means there are implicit connections for different scenes. In Chap. 4, we propose
a novel training pipeline to make the CNN learn dominant features from the data set, so
that learned model can be applied for different fluid scenes as transfer learning. Unlike
traditional CNN, which only builds the forward pipeline from input to output, we also
build the backward pipeline with shared weights from the forward pipeline, and using
reconstruction loss during training to make CNN extract dominant features from the
data set.

Natural video generation brings great convenience to our daily life. For instance, buy-
ing shoes or clothing frequently happens in our daily life, but normally we spend lots of
time for try-on to see whether the style fits or not. Traditional methods normally can
deal with clothes that fit close to the human body, but loose clothing is still challenging.
For instance, DensePose [16] can generate UV coordinates from a single image only for
the human body part. Besides, DensePose aims for single image representation, and
temporal incoherence happened when applying DensePose for videos. In Chap. 5, we
present our approach temporalUV, which can generate temporally coherent UV coordi-
nates for videos with loose clothing. The most challenging step of generating temporally
coherent UV coordinates for loose clothing is the lack of ground truth data, which means
that the supervised training approach would not be valid in this case. On the other hand,
high non-linearity in the transformation between images and textures makes it also diffi-
cult to successfully train a model with only un-supervised training. Thus, our approach
combines both supervised and un-supervised losses for training the model. Firstly, we
build a differentiable pipeline to achieve transformation between images and textures
with UV coordinates, which allows us to fill the missing UV coordinates for the raw
UVs, e.g., UVs generated from the DensePose model or SMPL model, via extrapola-
tion and optimization. Then we applied temporal relocation to improve the temporal
coherence of the UVs sequence. Those pre-processed data are regarded as guidance
for supervised training. We also apply the differentiable transformation pipeline during
training, so that images can be generated from UVs and texture, and un-supervised
losses from the images can be applied to improve the resulting UVs quality. We use
different matrices and conduct user studies to demonstrate that our approach achieves
significant improvements than baselines.

Except works discussed above, we also explore the GAN approaches to achieve fluid
super-resolution with larger-scale factors, such as 8, and we also applied spatial-temporal
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Temporally Coherent Video Generation with GANs

Introduction (Part I) Algorithms Conclusion (Part IV)

GANs for Fluid Sequence (Part II) GANs for Natural Sequence (Part III)

TempoGAN for Fluids

A Multi-pass GAN
for Fluids

Dominant Feature Extraction 

(Chap. 3)

(Chap. 4)

TecoGAN for 
Natural videos

TemporalUV for Capturing
Loose Clothing (Chap. 5)

Figure 1.3: An overview of the dissertation structure.

adversarial learning for more natural video applications, such as video SR and unpaired
video translation. Discussion about those parts is given in Chap. 7 to gain a more
in-depth understanding of video generation with GANs. Furthermore, we summarize
the contributions, current challenges, and potential future directions in the last part of
this dissertation.

1.2 Publication List

This dissertation explains and concludes researches from the following manuscripts:

Publications:

1. Y. Xie*, E. Franz*, M. Chu*, and N. Thuerey, “tempoGAN: A temporally co-
herent, volumetric GAN for super-resolution fluid flow,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, p. 95, 2018

2. M. Werhahn, Y. Xie, M. Chu, and N. Thuerey, “A multi-pass GAN for fluid flow
super-resolution,” Proc. ACM Comput. Graph. Interact. Tech., vol. 2, no. 2, Jul.
2019

3. M. Chu* , Y. Xie*, J. Mayer, L. Leal-Taixé and N. Thuerey, “Learning temporal
coherence via self-supervision for GAN-based video generation,” ACM Transac-
tions on Graphics (TOG), vol. 39, no. 4, p. 75, 2020
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4. Y. Xie, H. Mao, A. Yao and N. Thuerey, ”TemporalUV: Capturing Loose Clothing
with Temporally Coherent UV Coordinates”, In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3450-3459. 2022

5. Y. Xie and N. Thuerey, ”Reviving Autoencoder Pretraining”, Neural Comput
Applic 35, 4587–4619 (2023). https://doi.org/10.1007/s00521-022-07892-0

6. Z. Yu, L. Yang,Y. Xie, P. Chen, A. Yao. “UV-Based 3D Hand-Object Recon-
struction with Grasp Optimization”, the 33rd British Machine Vision Conference
(Spotlight), 2022.

Pre-prints:

1. N. Thuerey, Y. Xie, M. Chu, S. Wiewel, and L. Prantl, ”Physics-Based Deep
Learning for Fluid Flow,” NeurIPS Workshop, Modeling the Physical World, 2018.

*: These authors contributed equally to the paper
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“You must have a solid foundation 
if you‘re going to have a strong superstructure.”

Gordon B. Hinckley

2 Fundamentals

A journey of a thousand miles begins with a single step. Video generation, as a develop-
ing area, is still facing various challenges which hinder performance improvement. For
instance, fluid simulation suffers from numerical dissipation in the advection step and
computational cost during the projection step; the balance between spatial quality and
temporal coherence is still non-trivial for natural sequence generation. In this chapter,
we will first introduce fundamental knowledge about fluid simulation and corresponding
difficulties during simulation steps. Then machine learning algorithms, especially GANs,
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will be outlined. In the end, we will discuss related works, which applied machine learn-
ing algorithms to solve the problems during video generation.

2.1 Fluid Simulation

Fluid simulation is typically generated via solving Navier-Stokes equations, which can
be written as:

∂u

∂t
+ u · ∇u = −1

ρ
∇p + v∇ · ∇u + g ,

∇ · u = 0,

(2.1)

Here, u , p and v represent velocity, pressure, and kinematic viscosity, respectively. g
means the acceleration due to external forces, such as gravity. Incompressible Navier-
Stokes equations contain two parts: the momentum equation (first row), which is derived
from Newton’s second law and indicates how the external forces influence the fluid; and
the incompressibility condition (second row), which preserves the volume of the flow.
The momentum equation can also be written with the material derivative:

Du

Dt
= −1

ρ
∇p + v∇ · ∇u + g ,

with
Du

Dt
=

∂u

∂t
+ u · ∇u .

(2.2)

In this dissertation, we primarily focus on the single-phase inviscid flow. Thus, the
viscosity term is not considered and Equation 2.2 will be simplified as Euler equations:

Du

Dt
= −1

ρ
∇p + g ,

∇ · u = 0.

(2.3)

How to solve Equation 2.2 mathematically is still an open challenge, because those par-
tial differential equations are highly non-linear, and in particular, turbulence is normally
included in the solutions, which is also an unsolved problem. Thus, Equation 2.2 is
typically solved numerically to get the fluid simulation results [17]. To generate visually
realistic fluid simulations, [18] firstly brought a stable single-phase fluid simulation algo-
rithm to computer animation. Based on this algorithm, extension works and developed
algorithms were proposed. E.g., [19, 20] proposed more accurate advection schemes;
[21, 22] researched the coupling between fluid and solid, so that interaction simulation
between fluid and obstacles becomes possible. Other popular works, such as [23, 24],
increase flows’ resolution by adding turbulence to the flow. Numerical fluid solver can be
classified into different categories according to the viewpoint to track the fluid motion:
Eulerian methods, Lagrangian methods and Hybrid methods.

2.1.1 Eulerian Methods

Eulerian methods treat the flow as a continuous phase and are mesh-based methods, such
as uniform grids. For Eulerian methods, we can assume that observers are standstill on
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the grids and record all fluid parameters step by step. At every time step, fluid parame-
ters will be updated with a finite volume scheme on the mesh grids. Normally Eulerian
method based fluid solver solves Equation 2.3 with three split parts: the advection part

Du

Dt
= 0, (2.4)

the body forces part
∂u

∂t
= g, (2.5)

and the pressure projection part

∂u

∂t
= −1

ρ
∇p, s.t. ∇ · u = 0. (2.6)

The advection function computes how the transportation influences the quantities with
the velocity field u for a time interval. Solving Equation 2.4 with direct Forward Euler
discretization is unconditionally unstable and the flow will eventually blow up. The semi-
Lagrangian method is commonly used to avoid this problem, which applies a Lagrangian
viewpoint with imaginary particles. Given position xA and its velocity un at time step
n, semi-Lagrangian aims at looking for a particle located at xB, which will end up at
xA after one time step ∆t. This step is achieved with:

xB = xA − un∆t. (2.7)

Thus, fluid parameters at xA will be replaced with xB at time step n + 1. xB is most
likely not located at the grid, then fluid parameters at xB will be interpolated from the
neighbor grids. This scheme is popular since it’s unconditional stable, so it’s allowed to
use a large time step and is especially efficient for simulating large-scale flows.

However, interpolation applied in the semi-Lagrangian method brings another prob-
lem, numerical dissipation. Spatial interpolation results in the smoothing of the fluid
parameters, which decreases the system energy. Thus, even viscosity is not considered
in Equation 2.3, but generated fluid looks unnatural sticky. Furthermore, turbulence
details in the flow will also be smoothed out by the numerical dissipation. Till now,
it’s hard to measure the numerical dissipation with mathematical expressions, while the
complex flow is widely used in many areas, such as games and movies. Thus, a lot of
works focus on improving numerical dissipation. Based on the semi-Lagrangian method,
BFECC [19] and MacCormack [20] improve the accuracy via calculating the difference
between forward and backward warping, i.e.,

x∗B = xA − un∆t, x∗∗B = x∗B + un∆t,

xerrorB =
1

2
(x∗∗B − xA), xB = x∗B + xerrorB .

(2.8)

However, those methods cannot fundamentally avoid the accumulated errors. Instead,
[25] achieved the fluid energy preservation discretely, but non-linearly coupled equa-
tions required to be solved. [26] proposed an energy-preserving reflection operator for
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the projection step, which largely alleviated the energy reduction problem and led to
improved detail preservation. But this method was only focused on the energy con-
servation of velocity dynamics. More recent work BiMocq2 [27], as an unconditionally
stable method evolved mapping functions to decrease numerical dissipation. However,
BiMocq2 required further improvements for the free-surface boundary conditions.

On the other hand, vorticity modeling is another category of the solution, which
focuses on the curl form of the Navier-Stokes equation [28]. Different algorithms were
proposed using vortex filaments [29], vortex sheets [30], vorticity amplification [31, 32],
or anisotropic vortices [33].

After the advection step, the body force part Equation 2.5 calculates the velocity
change caused by external forces, such as gravity. The third step is the pressure pro-
jection part, i.e., Equation 2.6. The pressure projection step aims at a divergence-free
velocity field u under required boundary conditions. Divergence-free is an important
feature of the incompressible flow, which guarantees the conservation of mass. To solve
the pressure projection step, we can transform Equation 2.6 into:

∇ · ∇p =
ρ

∆t
∇ · u, (2.9)

where u is assumed to be the velocity result from the body force step Equation 2.5. We
can see that Equation 2.6 can be written as a Poisson equation with Equation 2.9. Then
solving the pressure projection step is equivalent to solving a linear equation Ap = b,
where A represents a large, sparse, and symmetric matrix. This linear system can be
solved with preconditioned conjugate gradient (PCG) solver [34]. With solved pressure p,
final velocity can be recomputed from Equation 2.9. However, solving Equation 2.9 with
a PCG solver is computationally expensive, especially with large resolution, which leads
the pressure projection step to the most time-consuming step among the whole solving
procedure. Thus, various algorithms for accelerating the pressure projection step were
proposed in the last decades, and they can be classified into two categories according to
whether they aim for reducing algorithm complexity, such as [35, 36, 37, 38, 39], or the
type of data structures, such as [40, 41, 42].

2.1.2 Lagrangian Methods

Lagrangian methods, on the other hand, treat the flow as a discrete phase or particles,
and the state of the particles is updated via solving flow equations. For Lagrangian meth-
ods, we can assume that observers follow the movements of the particles and record all
fluid parameters step by step. Smoothed-particle hydrodynamics (SPH) is the most com-
monly used Lagrangian fluid. Without interpolation during the advection step, SPH is
good at linear and angular momentum conservation, but SPH computes fluid parameters
for every particle purely with its neighbor particles, which cannot guarantee incompress-
ibility and stability. Thus, different various of SPH were proposed to overcome those
weaknesses, such as the weakly compressible SPH [43] and the implicit incompressible
SPH [44].
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1. Grid Operations

- Pressure Projection

- Boundary Conditions

- …
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- Move Particles

- Update Material

- …
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Particles

2. Grids to Particles

4. Particles to Grids

Figure 2.1: Hybrid method overview.

2.1.3 Hybrid Methods

With the discussions above, we can see that Eulerian methods are good at discretiza-
tion, and it’s efficient to achieve neighbor look-up with Eulerian grids. But it’s hard to
overcome the numerical dissipation problem with the Eulerian methods. On the con-
trary, Lagrangian methods are good at the advection step, which means lower numerical
dissipation error and better energy conservation. However, without grids, it’s difficult
to achieve discretization with the Lagrangian method and complicated data structures
are required for neighbor look-up. Thus, hybrid methods are proposed to combine those
two viewpoints, using the Lagrangian viewpoint during kinematic steps, e.g., advection,
but Eulerian grids for dynamic steps, e.g., pressure projection step. Overview of hy-
brid method is shown in Figure 2.1. It is worth pointing out that in the procedures
of ”Particles to Grid” and ”Grid to Particles”, kernel functions are applied to achieve
appropriate transformation. E.g., during transferring the parameters from particles to
the grids, normally if grids are closer to the particle, the particle should influence those
grids more than others far away from the particle. Thus, kernel functions such as B-
spline kernels can be applied so that particles will not treat all neighbor grids equally.
Various hybrid methods were proposed with different transformation schemes between
grids and particles. Early works, such as Particle-In-Cell (PIC) [45], transfer all fluid
parameters from the grid to particles, which is stable but leads to obvious numerical
dissipation. Fluid-Implicit-Particle (FLIP) method [46] improved the dissipation prob-
lem via purely applying interpolation for the change of the flow from the grid, but FLIP
is less stable. Affine PIC (APIC) [47] and PoliPic [48] constructed extra functions to
improve the numeric noise problem in FLIP and preserve the local features. Material
point method (MPM) [49, 50, 51] also takes into consideration the deformation gradient.
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……

Figure 2.2: Example of 2D convolutional neural networks.

Since every particle in MPM can have a different material model, interactions between
different phases can be conveniently addressed. MPM is commonly used for continuum
material simulations, e.g., solids, fluids, or multi-phase interactions. Hybrid methods
make use of the strengths of Eulerian and Lagrangian representations, but non-trivial
transferring between grid and particles leads to extra computational cost.

2.2 Deep Learning for Sequence Generation

Deep learning techniques have achieved significant breakthroughs in numerous fields
such as classification [52], object detection [53], style transfer [54], novel view synthesis
[55], and additionally, in the area of content creation [56]. Sequence generation, which
is the main focus of this dissertation, is also a subset of content creation. Deep learning
generative model f can be regarded as a mapping from input domain X to the target
domain Y , which can be summarized as:

Y = f(X|θ), (2.10)

where θ are trainable parameters of the model f . Input domain X could be 1-D vectors
or 2-D images. The output of the model normally can be an image or a sequence directly.
Training can be classified into supervised training if paired input and output data are
given, which can be manually or automatically labeled. Otherwise, it’s unsupervised
training if the corresponding ground truth of the model output is not given. Then
the model can be trained via minimizing designed loss functions. Minimizing the loss
functions is normally equivalent to maximizing the likelihood function of the target
dataset, or minimizing the Kullback–Leibler divergence between the model output and
target dataset distribution. In this section, we first introduce the fundamentals of deep
learning methods, such as neural networks. Then we will continue with introducing the
adversarial training approach, GANs. After that, a review on applying GANs for fluid
simulation and natural sequence will be given.

2.2.1 Neural Networks and CNNs

Neural networks are composed of artificial neurons, and neurons at different layers are
connected via trainable weights W , bias b, and activation function σ, which can be
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summarized as:

yi+1 = σ(Wyi + b), (2.11)

where yi and yi+1 are from the ith and (i + 1)th layers, respectively. The first layer of
the network is the input data layer and output is regarded as the last layer. Operation
Wyi + b achieves linear transformation of yi, and activation function σ brings non-
linear transformation to yi. Practically, mapping from input to output distribution is
highly non-linear, so σ plays a very important role to make the model well trained, e.g.,
Rectified Linear Unit (ReLU) function (σReLU (z) = max(0, z)) keeps all values in the
output to be non-negative; sigmoid function (σsigmoid(z) = 1

1+e−z ) and Tanh function
(σTanh = Tanh(z)) restrict all the values in the range [0,1] and [-1,1], respectively.
Thus, network capacity can be modified via adjusting the number of layers, weights,
and activation functions. And theoretically, all logical functions can be modeled with
neural networks. Besides, all operations in Equation 2.11 are differentiable, which brings
the possibility of training the network with gradient-based optimizers.

Once the model is built and data are prepared, trainable parameters, such as weights
and bias, in the neural network can be trained via minimizing designed loss functions.
Proper loss functions are crucial for training. Loss functions normally contain terms,
which can measure the distance between neural network outputs and corresponding
ground truth, and also regularization terms, which aim at avoiding model over-fitting.
Training proceeds via gradient back-propagation. For every step, the gradient of the
loss functions with respect to the trainable parameters can be computed via chain rules.
Then weights can be updated according to the gradient. The traditional gradient descent
method moves the weights along the direction of the gradient with the learning rate as the
moving distance. However, frequent updating of the trainable parameters results in the
oscillation of the loss function and it’s easy to fall into a local minimum point or saddle
point when training with the gradient descent method. RMSprop, Adagrad, Adam
algorithms bring momentum for every step optimization, which can stabilize the weight
updating direction and adaptively change the learning rate. However, even training
with momentum and adaptive learning rate, global optimal solutions are not guaranteed,
because the loss functions are normally highly non-linear and non-convex.

Images are typically analyzed with various filters, e.g., information at different frequen-
cies can be separated with a corresponding frequency filter; derivatives of the images can
be computed with derivative kernels. Those filters can be conveniently represented with
convolutional operations. For Equation 2.11 of the neural networks, we can also replace
the matrix multiplication Wyi with convolutional operations to achieve CNNs. CNNs
have been applied in numerous eulerian representation related tasks, such as images,
videos. CNNs only need a small number of parameters in every layer as a local-wise
kernel for feature extraction, and the same kernel can be applied in the whole input
image, which largely decreases the number of training parameters and improves the
training efficiency. With decreased number of parameters, CNNs also benefit from the
reduced risk of over-fitting. Convolutional layers are normally combined with pooling
layers, which can decrease the dimension for the next layers, and also make it possible
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Figure 2.3: Pipeline overview of GANs. Generator G aims at reproducing target distribution y
from input distribution x. At every step, discriminator D is trained to distinguish
real distribution y and estimated distribution G(x) from the generator, while G is
trained to fool D via improving the quality of G(x). After the model is trained,
the generator can output results that are close to the target distribution y and the
discriminator cannot distinguish G(x) and y anymore.

to build connections for points far away from each other even with small size kernels.
An example 2D CNN is shown in Figure 2.2.

2.2.2 GANs

In this section, we will introduce one of the popular methods to generate content, GANs
[57], which is also the main focus of this dissertation. They were shown to be particularly
powerful at re-creating the distributions of complex data sets, such as images of human
faces. GANs consist of two models, which are trained in conjunction: the generator
G and the discriminator D. Both are typically realized as CNNs. For regular ones,
i.e., unconditional GANs, the goal is to train a generator G(x) that maps a simple
data distribution, typically noise, x to a complex desired output y, e.g., natural images.
discriminator D is trained to classify whether its input is from the true data distribution
or not.

Instead of using a manually specified loss term to train the generator, another NN,
the discriminator, is used as a complex, learned loss function [57]. This discriminator
takes the form of a simple binary classifier, which is trained in a supervised manner
to reject generated data, i.e., it should return D(G(x)) = 0, and accept the real data
with D(y) = 1. For training, the loss for the discriminator is thus given by a sigmoid
cross-entropy for the two classes “generated” and “real”. On the contrary, generator is
trained to achieve D(G(x)) = 1. Loss functions of discriminator and generator can be
summarized as:

LD = Ey∼py(y)[− logD(y)] + Ex∼px(x)[− log(1 −D(G(x)))],

LG = Ex∼px(x)[log(1 −D(G(x)))].
(2.12)

Overview of the GANs structure is shown in Figure 2.3. Generator and discriminator
are trained together. Theoretically, the training will arrive at a convergent stage when
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generator and discriminator achieve an equilibrium state and under this situation, the
discriminator cannot distinguish the generated data G(x) from the true data y, which
means that GANs are trained via matching the distribution of G(x) with y. With this
training approach, GANs show state-of-the-art performance with multi-modal problems.
The problem of multi-modality means that for every input x, the valid target y is not
unique, such as super-resolution. This is a pretty common problem in generative tasks.
For non-adversarial training approaches, normally L-norm-based losses are applied to
measure the distance between G(x) and y, then the model will be trained via minimizing
the distance for the whole dataset. However, data samples in different modalities may
cause conflicted gradients feedback for the optimization and result in the differences
between distributions G(x) and y. From the point of view of the generated images,
we will see that details are smoothed in the results. On the contrary, GANs training
directly minimizes the distance between distributions G(x) and y, rather than computing
the difference for every data sample, which yields better perceptual quality.

The generator is not trained with manually designed loss functions, but LG in Equa-
tion 2.12 is still equivalent to minimizing the Jensen-Shannon divergence between G(x)
and y. One challenge for applying Equation 2.12 to train GANs is how to balance LD

and LG, e.g., if the discriminator is trained better than the generator, then LD would
be small, which results in gradient vanishing problem for the generator and makes it
hard to improve the generator further. Several variants are proposed to alleviate this
problem, e.g., Wasserstein GAN [58]

LD = −Ey∼py(y)[D(y)] + Ex∼px(x)[D(G(x))],

LG = −Ex∼px(x)[D(G(x))].
(2.13)

However, the weights of the discriminator of the Wasserstein GAN are restricted within
a certain range, which largely limits the capacity of the discriminator. Thus, gradient
penalty is applied in Wasserstein GAN to improve the network property [59]:

LD = −Ey∼py(y)[D(y)] + Ex∼px(x)[D(G(x))] + λEŷ∼pŷ(ŷ)[(∇D(ŷ) − 1)2],

LG = −Ex∼px(x)[D(G(x))],

ŷ = ϵy + (1 − ϵ)G(x).

(2.14)

Other variants to solve the gradient vanishing problems are like least-square GAN [60]
and relativistic average GAN [61]. It’s worth pointing out that vanilla GANs apply
Sigmoid activation in the last layer of the discriminator, while Wasserstein GAN, least-
square GAN, and relativistic average GAN do not apply any activation functions in the
last layer of the discriminator.

Another common problem for GANs training is model collapse. When the generator
generates a result ŷ with a high discriminator score D(ŷ), theoretically, the discrimina-
tor should learn to reject ŷ with a low score. However, if the next generation of the
discriminator gets stuck in a local minimum, and continuously outputs a high score for
ŷ, then it’s easy for the generator to always output ŷ since the task of the generator is to
generate the most plausible output for the current discriminator. Based on the vanilla
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GANs, amount of strategies are proposed to balance generator and discriminator during
the training. Progressive growing GAN [62] achieved stabilized training via starting the
generative task with a small resolution and then increasing the output resolution and
model size progressively. [63] and [64] applied various regularizations to improve GANs
convergence.

Depending on the kind of input data they take, GANs can be separated into uncon-
ditional and conditional ones. The formers generate realistic data from samples of a
synthetic data distribution like Gaussian noise. The DC-GAN [65] is a good example
of an unconditional GAN. It was designed for generic natural images, while the cycle-
consistent GAN by Zhu et al. [66] was developed to translate between different classes of
images. The conditional GANs were introduced by Mirza and Osindero [67], and provide
the network with an input that is in some way related to the target function to control
the generated output. Therefore, conditional variants are popular for transformation
tasks, such as image translations problems [68] and super-resolution problems [69].

2.2.3 Deep Learning for Fluid Sequences

Deep learning algorithms have begun to influence computer graphics algorithms over the
last decades. E.g., they were successfully used for efficient and noise-free renderings [70,
71], the illumination of volumes [72], modeling porous media [73], and character control
[74]. First works also exist that target numerical simulations. E.g., a conditional GAN
was used to compute solutions for smaller, two-dimensional advection-diffusion problems
[75, 76]. Others have demonstrated the inference of SPH forces with regression forests
[77], proposed CNNs for fast pressure projections [78], learned space-time deformations
for interactive liquids [79]. [80] used CNN to find out the relationship between control
parameters and simulations of interactive liquids. [81] applied a neural network model
to help with the splashes generation. [82] used GANs to build the relationship between
the solver’s parameters and velocity field directly.

Overall, the methods discussed above are aimed at efficiently generating highly de-
tailed fluid simulation, and another type of solution for this goal is fluid super-resolution.
Since HR fluid simulation is much more time-consuming than LR simulation, it would
be very efficient if we could use a super-resolution algorithm to generate HR data based
on LR data. Chu et al. [83] proposed a method to lookup pre-computed patches us-
ing CNN-based descriptors. However, their method still required additional Lagrangian
tracking information, and need to store a large amount of data at runtime apart from
the trained model.

In this dissertation, we primarily explore GAN-based methods for fluid super-resolution.
Regular GANs losses offer good performance for image generation tasks in terms of PSNR
metrics [84, 85, 86]. However, sequence generation requires the generation of realistic
content that changes naturally over time. Temporal coherence is a crucial aspect for
video generation tasks, and it is especially so for conditional video generation tasks
[87, 88, 89, 90], where specific correlations between the input and the generated spatio-
temporal evolution are required. While discriminators of GANs typically only supervise
the spatial content. Thus, directly applying GANs without carefully engineered con-
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straints typically results in strong artifacts over time due to the significant difficulties
introduced by the temporal changes. E.g., [91] focused on images without temporal
constraints and generators can fail to learn the temporal cycle-consistency for videos.

To improve the spatial details and temporal coherence for video generation tasks, one
way to solve this problem is by directly incorporating the time axis [92, 93, 94, 95],
i.e., by using sequences of data as input and output. E.g., [96] proposed a temporal
generator in their work; [97] recurrently used previously estimated outputs;.[98] proposed
a sequence generator that learns a stochastic policy. However, for fluid simulation,
large data size limits the algorithms to take multiple frames as generator’s inputs or
outputs. An alternative method is to generate single-frame data with additional loss
terms to keep the results coherent over time. While L1 and L2 temporal losses based
on warping are generally used to enforce temporal smoothness in video generation tasks
[99, 100, 101, 102], it leads to an undesirable smoothing over spatial detail and temporal
changes in outputs. [103] achieved improved coherence in their results for video frame
prediction, by adding specially designed distance measures as a discontinuity penalty
between nearby frames. Similarly, [104] used neural networks to learn spatial alignment
for low-resolution inputs, and adaptive aggregation for high-resolution outputs, which
also improved the temporal coherence.

2.2.4 Deep Learning for Natural Sequences

Sharing similarities with deep learning for fluid sequence, improving spatial details and
temporal coherence are also key points to natural sequence generation tasks, which are
discussed in detail in the last section. In this dissertation, we primarily focus on pose
guided human sequences generation. In image or video generation tasks [105, 106] that
involve people, it is crucial to obtain accurate representations of the 3D human shape and
appearance that allow for the efficient generation of modified content. UV coordinates
are a popular 2D representation in this context that establishes dense correspondences
between 2D images and 3D surface-based representations of the human body. UV coor-
dinates go beyond skeleton landmarks as a means for encoding human pose and shape,
and are widely used to achieve realistic and high-quality generations [107, 108, 109].
Human body UV coordinates can be derived indirectly from estimates of 3D shape mod-
els [110, 111, 112, 113] like SMPL [114]. Alternatively, direct estimation methods like
DensePose [16] and UltraPose [115] bypass intermediate 3D models to directly output
UV coordinates from a single RGB image. The convenience of direct methods has led to
DensePose being widely used in animation and editing applications [109, 116, 117, 118].
Irregardless, the UV coordinates obtained from SMPL and DensePose approximate only
tight human body silhouettes. They do not capture loose clothing, such as long skirts
or wide pants. In addition, the methods for UV estimation work only on individual im-
ages; for video inputs, they are applied frame-by-frame [119, 120], without considering
the temporal relationship between frames. As such, the UV coordinates are inconsistent
over time, so any re-targeted sequences will shift and jitter.
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Pose-guided methods [121, 122, 123, 124, 109, 107, 108] generate images of a person
with designated target poses. The appearance information is sourced from either images
(image-to-video [125, 120, 126, 127]) or videos (video-to-video [128, 129, 130, 131]).
Image-to-Video: An early example is MonkeyNet [125]; while Monkeynet decouples

appearance and motion information, it uses keypoints, which is insufficient for high
quality capture of human body or clothing with complex textures. DwNet [120] used
DensePose UV coordinates as inputs. DwNet applies an encoder-decoder architecture
that warps the human body from source to target poses. However, DwNet can be difficult
to train due to its use of highly non-linear warping grids. The generator also needs to
be re-run for computing the warping grid each time the source image changes.

Video-to-Video: These methods [128, 129, 130, 131] have access to a source video and
can therefore create richer models of the source subject than single image sources. In
particular, [130] generate videos with spatial transformation of target poses, allowing it
to capture loose clothing. However, all these works rely on 2D keypoints, making it hard
to consider complicated visual styles.
Generalized Video Generation: Early methods modeled the entire video clip as a sin-

gle latent representation [132, 96]. Follow-up work MoCoGAN [11] used a disentangled
representation, separating appearance and motion. However, the model is not condi-
tional, so cannot generate videos conditioned e.g. on target appearances or motions.
End-to-end video re-targeting works RecycleGAN[133] and Vid2Vid[12] generate videos
with content from one source video and motion from another, while a concurrent work
[134] chose to learn motion translation in addition to the spatial content translation.
These methods train target-specific models, in that a new network is trained for each
target video.

20 Chapter 2.



Part II

Fluid Sequence Generation with
GANs

21





Part II.

In this part, we will first introduce a temporally coherent super-
resolution approach for fluid flow. Instead of generating high-
resolution flow directly, we aim at building mappings 𝐺 between low-
and high- resolution flows. Then given low-resolution flow 𝑥, which
can be efficiently generated, high-resolution flow 𝑦 can be obtained
with y = 𝐺(𝑥). A core challenge of generating fluid flow with 𝐺 is how
to keep the generated sequence temporally coherent since most of
the super-resolution algorithms aim at images, which only consider
the spatial details. However, temporal coherence is another
important aspect of synthesized sequence.

With trained model 𝐺, we can efficiently generate high-resolution flow.
However, model 𝐺 should be retrained for different datasets, and the
training procedure of 𝐺 is still expensive because of the large volume
of flow data. As introduced in Sec. 2.1, flow data are generated via
solving NS equations, which indicate implicit relationships among
different datasets. Thus, we aim at extracting those implicit and
dominant features from the dataset, which can be reused for different
training.

In the following, we will introduce our pipeline to achieve temporally
coherent fluid flow super-resolution. Afterward, we will explain how to
extract dominant features from the given dataset.
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3 Temporally Coherent Fluid
Super-Resolution

𝑥𝑎

𝑥𝑡−1

𝑥𝑡

𝑥𝑡+1 𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

𝐺(𝑥𝑡−1) 𝐺(𝑥𝑡) 𝐺(𝑥𝑡+1)

𝑦𝑎

𝐺(𝑥𝑎)

Figure 3.1: This figure gives a high-level overview of our approach: a generator on the left is
guided during training by two discriminator networks (right), one of which focuses
on space (Ds), while the other one focuses on temporal aspects (Dt). At runtime,
both are discarded, and only the generator network is evaluated.

Capturing the intricate details of turbulent flows has been a long-standing challenge for
numerical simulations. Resolving such details with discretized models induces enormous
computational costs and quickly becomes infeasible for flows on human space and time
scales. While algorithms to increase the apparent resolution of simulations can alleviate
this problem [23], they are typically based on procedural models that are only loosely
inspired by the underlying physics. In contrast to all previous methods, our algorithm
represents a physically-based interpolation, that does not require any form of additional
temporal data or quantities tracked over time. The SR process is instantaneous, based
on volumetric data from a single frame of a fluid simulation. We found that inference
of HR data in a fluid flow setting benefits from the availability of information about the
flow. In our case, this takes the shape of additional physical variables such as velocity
and vorticity as inputs, which in turn yield means for artistic control. A particular
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challenge in the field of SR flow is how to evaluate the quality of the generated output.
As we are typically targeting turbulent motions, a single coarse approximation can be
associated with a large variety of significantly different HR versions. As long as the
output matches the correlated spatial and temporal distributions of the reference data,
it represents a correct solution.

A core challenge of generating flow data with deep learning methods is the temporal
coherence of the results. Various SR algorithms are proposed for images [135, 136],
which only consider the spatial quality. However, fluid flow, as dynamic sequences,
should be temporally coherent and all the parameters should be changed smoothly. We
propose a temporally coherent generative model addressing the SR problem for fluid
flows. Our work represents the first approach to synthesizing four-dimensional physics
fields with neural networks. Based on a conditional generative adversarial network that
is designed for the inference of three-dimensional volumetric data, our model generates
consistent and detailed results by using a novel temporal discriminator, in addition to
the commonly used spatial one. Our experiments show that the generator is able to infer
more realistic HR details by using additional physical quantities, such as LR velocities or
vorticities. Besides improvements in the training process and in the generated outputs,
these inputs offer means for artistic control as well. We additionally employ a physics-
aware data augmentation step, which is crucial to avoid over-fitting and reduce memory
requirements. In this way, our network learns to generate advected quantities with highly
detailed, realistic, and temporally coherent features. Our method works instantaneously,
using only a single time-step of LR fluid data. We demonstrate the abilities of our method
using a variety of complex inputs and applications in two and three dimensions.

We additionally present best practices to set up a training pipeline for physics-based
GANs. E.g., we found it particularly useful to have physics-aware data augmentation
functionality in place. The large amounts of space-time data that arise in the context
of many physics problems quickly bring typical hardware environments to their limits.
As such, we found data augmentation crucial to avoid over-fitting. We also explored a
variety of different variants for setting up the networks as well as training them, and we
will evaluate them in terms of their capabilities to learn high-resolution physics functions
below.

3.1 Network Architectures

As we target a super-resolution problem, our goal is not to generate an arbitrary high-
resolution output, but one that corresponds to a low-resolution input, and hence we
employ a conditional GAN conditioned on low-resolution input. As shown in Figure 3.1,
our pipeline is built based on the GAN structure, containing a generator G, which can
generate high-resolution data with low-resolution data as input, and a spatial discrimi-
nator Ds, which is trained to judge distinguish generated data from real data. Beyond
those basic GAN components, we propose a novel temporal discriminator Dt to im-
prove the temporal coherence of the results in an unsupervised manner. Below, we will
demonstrate loss functions for each part of our pipeline in detail.
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3.2 Loss functions

Based on a set of low-resolution inputs, with corresponding high-resolution references,
our goal is to train a CNN that produces a temporally coherent, high-resolution solution
with adversarial training. We will first very briefly summarize the basics of adversarial
training, and then explain our extensions for temporal coherence and for results control.

3.2.1 Spatial Adversarial Loss

As discussed in Chapter 2, GANs consist of two models, which are trained in conjunction:
the generator G and the discriminator D. Both will be realized as convolutional neural
networks in our case. This discriminator takes the form of a simple binary classifier,
which is trained in a supervised manner to reject generated data, i.e., it should return
D(G(x)) = 0, and accept the real data with D(y) = 1. For training, the loss for the
discriminator is thus given by a sigmoid cross-entropy for the two classes “generated”
and “real”:

LD(D,G) =Ey∼py(y)[− logD(y)] + Ex∼px(x)[− log(1 −D(G(x)))]

=Em[− logD(ym)] + En[− log(1 −D(G(xn)))] ,
(3.1)

where n is the number of drawn inputs x, while m denotes the number of real data
samples y. Here we use the notation y ∼ py(y) for samples y being drawn from a
corresponding probability data distribution py, which will, later on, be represented by
our numerical simulation framework. The continuous distribution LD(D,G) yields the
average of discrete samples ym and xn in the second line of Equation 3.1. We will omit
the y ∼ py(y) and x ∼ px(x) subscripts of the sigmoid cross-entropy, and m and n
subscripts of D(ym) and G(xn), for clarity below.

In contrast to the discriminator, the generator is trained to “fool” the discriminator
into accepting its samples and thus generate output that is close to the real data from
y. In practice, this means that the generator is trained to drive the discriminator result
for its outputs to one. Instead of directly using the negative discriminator loss, GANs
typically use

LG(D,G) = Ex∼px(x)[− log(D(G(x)))] = En[− log(D(G(x)))] (3.2)

as the loss function for the generator, in order to reduce diminishing gradient problems
[10]. As D is realized as a NN, it is guaranteed to be sufficiently differentiable as a loss
function for G. In practice, both discriminator and generator are trained in turns and
will optimally reach an equilibrium state.

In our case, the input x now represents the low-resolution data set, and the discrimi-
nator of conditional GANs is provided with x in order to establish and ensure the correct
relationship between input and output, i.e., we now have D(x, y) and D(x,G(x)) [67].

3.2.2 Spatial L1 Loss

Furthermore, previous work [137] has shown that an additional L1 loss term with a small
weight can be added to the generator to ensure that its output stays close to the ground
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None L2,t LDt
′ LDt y

Figure 3.2: A comparison of different approaches for temporal coherence. The top two rows
show the inferred densities, while the bottom two rows contain the time derivative
of the frame content computed with a finite difference between frame t and t + 1.
Positive and negative values are color-coded with red and blue, respectively. From
left to right: no temporal loss applied, L2,t loss applied, LD′

t
, i.e., applied without

advection, LDt
applied with advection (our full tempoGAN approach), and the

ground-truth y. From left to right across the different versions, the derivatives
become less jagged and less noisy, as well as more structured and narrow. This
means the temporal coherence is improved, esp. for the result from our algorithm
(LDt).

truth y. This yields λL1En ∥G(x) − y∥1, where λL1 controls the strength of this term,
and we use E for consistency to denote the expected value, in this discrete case being
equivalent to an average.

3.2.3 Temporal Coherence

While the GAN process described so far is highly successful at generating highly detailed
and realistic outputs for static frames, these details are particularly challenging in terms
of their temporal coherence. Since both the generator and the discriminator work on
every frame independently, subtle changes in input x can lead to outputs G(x) with
distinctly different details for higher spatial frequencies.

When the ground truth data y comes from a transport process, such as frame motion or
flow motion, it typically exhibits a very high degree of temporal coherence, and a velocity
field vy exists for which yt = A(yt−1, vt−1

y ). Here, we denote the advection operator (also
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called warp or transport in other works) with A, and we assume without loss of generality
that the time step between frames t and t−1 is equal to one. Discrete time steps will be
denoted by superscripts, i.e., for a function y of space and time yt = y(x, t) denotes a full
spatial sample at time t. Similarly, in order to solve the temporal coherence problem, the
relationship G(xt) = A(G(xt−1), vt−1

G(x)) should hold, which assumes that we can compute
a motion vG(x) based on the generator input x. While directly computing such a motion
can be difficult and unnecessary for general GAN problems, we can make use of the
ground truth data for y in our conditional setting. I.e., in the following, we will use a
velocity reference vy corresponding to the target y, and perform a spatial down-sampling
to compute the velocity vx for input x.

Equipped with vx, one possibility to improve temporal coherence would be to add an
L2 loss term of the form:

L2,t = ∥G(xt) −A(G(xt−1), vt−1
x )∥22 (3.3)

We found that extending the forward-advection difference with backward-advection im-
proves the results further, i.e., the following L2 loss is clearly preferable over Equation 3.3:

L2,t = ∥G(xt) −A(G(xt−1), vt−1
x )∥22 + ∥G(xt) −A(G(xt+1),−vt+1

x )∥22 (3.4)

, where we align the next frame at t + 1 by advecting with −vt+1
x .

While this L2,t based loss improves temporal coherence, our tests show that its effect is
relatively small. E.g., it can improve outlines but leads to clearly unsatisfactory results.
One side effect of this loss term is that it can easily be minimized by simply reducing the
values of G(x). This is visible, e.g., in the second column of Figure 3.2, which contains
noticeably less density than the other versions and the ground truth. However, we do
not want to drive the generator towards darker outputs, but rather make it aware of
how the data should change over time.

Instead of manually encoding the allowed temporal changes, we propose to use another
discriminator Dt, that learns from the given data whose changes are admissible. In this
way, the original spatial discriminator, which we will denote as Ds(x,G(x)) from now
on, guarantees that our generator learns to generate realistic details, while the new
temporal discriminator Dt mainly focuses on driving G(x) towards solutions that match
the temporal evolution of the ground-truth y.

Specifically, Dt takes three frames as input. We will denote such sets of three frames
with a tilde in the following. As real data for the discriminator, the set ỸA contains
three consecutive and advected frames, thus ỸA = {A(yt−1, vt−1

x ), yt, A(yt+1,−vt+1
x )}.

The generated data set contains correspondingly advected samples from the generator:
G̃A(X̃) = {A(G(xt−1), vt−1

x ), G(xt), A(G(xt+1),−vt+1
x )}.

Similar to our spatial discriminator Ds, the temporal discriminator Dt is trained as a
binary classifier on the two sets of data:

LDt(Dt, G) = Em[− logDt

(
ỸA

)
] + En[− log(1 −Dt

(
G̃A

(
X̃
))

)], (3.5)

where set X̃ also contains three consecutive frames, i.e., X̃ = {xt−1, xt, xt+1}. Note
that, unlike the spatial discriminator, Dt is not a conditional discriminator. It does not
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a) Ỹ a) ỸA b) Ỹ b) ỸA

Figure 3.3: These images highlight data alignment due to advection. Three consecutive frames
are encoded as R, G, B channels of a single image, thus, ideally a fully aligned
image would only contain shades of grey. The two rows contain front and top views
in the top and bottom row, respectively. We show two examples, a) and b). Each

of them contains Ỹ (left), and ỸA (right). The RGB channels are the three input

frames, t-1, t, and t+1. Compared with Ỹ , ỸA is significantly less saturated, i.e.,
better aligned.

“see” the conditional input x, and thus Dt is forced to make its judgment purely based
on the given sequence.

In Figure 3.2, we show a comparison of the different loss variants for improving tem-
poral coherence. The first column is generated with only the spatial discriminator, i.e.,
provides a baseline for the improvements. The second column shows the result using the
L2-based temporal loss L2,t from Equation 3.4, while the fourth column shows the result
using Dt from Equation 3.5. The last column is the ground-truth data y. The first two
rows show the generated density fields. While L2,t reduces overall density content, the
result with Dt is clearly closer to the ground truth. The bottom two rows show time
derivatives of the densities for frames t and t+1. Again, the result from Dt and the
ground-truth y match closely in terms of their time derivatives. The large and jagged
values of the first two columns indicate the undesirable temporal changes produced by
the regular GAN and the L2,t loss.

In the third column of Figure 3.2, we show a simpler variant of our temporal dis-
criminator. Here, we employ the discriminator without aligning the set of inputs with
advection operations, i.e.,

LD′
t
(D′

t, G) =Em[− logDt

(
Ỹ
)

] + En[− log(1 −Dt(G̃
(
X̃
)

))] (3.6)

with Ỹ = {yt−1, yt, yt+1} and G̃
(
X̃
)

= {G(xt−1), G(xt), G(xt+1)}.
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This version improves results compared to L2,t, but does not reach the level of quality
of LDt , as can be seen in Figure 3.2. Additionally, we found that LDt often exhibits a
faster convergence during the training process. This is an indication that the underlying
neural networks have difficulties aligning and comparing the data by themselves when
using LD′

t
. This intuition is illustrated in Figure 3.3, where we show example content

of the regular data sets Ỹ and the advected version ỸA side by side. In this figure, the
three chronological frames are visualized as red, green, and blue channels of the images.
Thus, a pure gray-scale image would mean perfect alignment, while increasing visibility
of individual colors indicates un-aligned features in the data. Figure 3.3 shows that,
although not perfect, the advected one leads to clear improvements in terms of aligning
the features of the data sets, despite only using the approximated coarse velocity fields
vx. Our experiments show that this alignment successfully improves the back-propagated
gradients such that the generator learns to produce more coherent outputs. However,
when no flow fields are available, LD′

t
still represents a better choice than the simpler L2,t

version. We see this as another indicator of the power of adversarial training models. It
seems to be preferable to let a neural network learn and judge the specifics of a data set,
instead of manually specifying metrics, as we have demonstrated for data sets of fluid
flow motions above.

It is worth pointing out that our formulation for Dt in Equation 3.5 means that the
advection step is an inherent part of the generator training process. While vx can be pre-
computed, it needs to be applied to the outputs of the generator during training. This
in turn means that the advection needs to be tightly integrated into the training loop.
The results discussed in the previous paragraph indicate that if this is done correctly,
the loss gradients of the temporal discriminator are successfully passed through the
advection steps to give the generator feedback such that it can improve its results. In
the general case, advection is a non-linear function, the discrete approximation for which
we have abbreviated with A(yt, vty) above. Given a known flow field vy and time step,
we can linearize this equation to yield a matrix My = A(yt, vty) = yt+1. E.g., for a first-
order approximation, M would encode the Euler-step lookup of source positions and
linear interpolation to compute the solution. While we have found first-order scheme
(i.e., semi-Lagrangian advection) to work well, M could likewise encode higher-order
methods for advection.

We have implemented this process as an advection layer in our network training, which
computes the advection coefficients, and performs the matrix multiplication such that
the discriminator receives the correct sets of inputs. When training the generator, the
same code is used, and the underlying NN framework can easily compute the necessary
derivatives. In this way, the generator actually receives three accumulated, and aligned
gradients from the three input frames that were passed to Dt.

3.2.4 Loss in Feature Spaces

In order to further control the coupled, non-linear optimization process, the features of
the underlying CNNs can be constrained. This is an important issue, as controlling the
training process of GANs is known as a difficult problem. Here, we extend previous work
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a) b) c) d)

Figure 3.4: From left to right: a) a sample, low-resolution input, b) a CNN output with naive
L2 loss (no GAN training), c) our tempoGAN output, and d) the high-resolution
reference. The L2 version learns a smooth result without small scale details, while
our output in (c) surpasses the detail of the reference in certain regions.

on feature space losses, which were shown to improve realism in natural images [138],
and were also shown to help with mode collapse problems [139]. To achieve this goal,
an L2 loss over parts or the whole feature space of a neural network is introduced for
the generator. I.e., the intermediate results of the generator network are constrained
w.r.t. a set of intermediate reference data. While previous work typically makes use of
manually selected layers of pre-trained networks, such as the VGG net, we propose to
use features of the discriminator as constraints instead.

Thus, we incorporate a novel loss term of the form

Lf = En,jλ
j
f

∥∥F j(G(x)) − F j(y)
∥∥2
2
, (3.7)

where j is a layer in our discriminator network, and F j denotes the activations of the
corresponding layer. The factor λj

f is a weighting term, which can be adjusted on a per
layer basis, as we will discuss in Sec. 3.5.2. It is particularly important in this case that
we can employ the discriminator here, as no suitable, pre-trained networks are available
for three-dimensional flow problems.

Interestingly, these weights yield different and realistic results both for positive as well
as negative choices for the weights. For λf > 0 these loss terms effectively encourage
minimization of the mean feature space distances of real and generated data sets, such
that generated features resemble features of the reference. Surprisingly, we found that
training runs with λf < 0 also yield excellent, and often slightly better results. As we
are targeting conditional GANs, our networks are highly constrained by the inputs. Our
explanation for this behavior is that a negative feature loss in this setting encourages the
optimization to generate results that differ in terms of the features, but are still similar,
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ideally indistinguishable, in terms of their final output. This is possible as we are not
targeting a single ground-truth result, but rather, we give the generator the freedom to
generate any result that best fits the collection of inputs it receives. From our experience,
this loss term drives the generator towards realistic detail, an example of which can be
seen in Figure 3.4. Note that due to the non-linear nature of the optimization, linearly
changing λf yields to models with significant differences in the generated small scale
features.

3.3 Training Details

3.3.1 Full algorithm

While the previous sections have explained the different parts of our final loss function,
we summarize and discuss the combined loss in the following section. We will refer
to our full algorithm as tempoGAN. The resulting optimization problem that is solved
with NN training consists of three coupled non-linear sub-problems: the generator, the
conditional spatial discriminator, and the un-conditional temporal discriminator. The
generator has to effectively minimize both discriminator losses, additional feature space
constraints, and a L1 regularization term. Thus, the loss functions can be summarized
as:

LDt(Dt, G) = − Em[logDt(ỸA)] − En[log
(

1 −Dt

(
G̃A

(
X̃
)))

]

LDs(Ds, G) = − Em[logDs(x, y)] − En[log(1 −Ds(x,G(x)))]

LG(Ds, Dt, G) = − En[logDs(x,G(x))] − En[logDt

(
G̃A

(
X̃
))

]

+ En,jλ
j
f

∥∥F j(G(x)) − F j(y)
∥∥2
2

+ λL1En ∥G(x) − y∥1

(3.8)

Our generator has to effectively compete against two powerful adversaries, who, along
the lines of ”the enemy of my enemy is my friend”, implicitly cooperate to expose the
results of the generator. E.g., we have performed tests without Ds, only using Dt, and
the resulting generator outputs were smooth in time, but clearly less detailed than when
using both discriminators.

Among the loss terms of the generator, the L1 term has a relatively minor role to
stabilize the training by keeping the averaged output close to the target. However, due to
the complex optimization problem, it is nonetheless helpful for successful training runs.
The feature space loss, on the other hand, directly influences the generated features.
In the adversarial setting, the discriminator most likely learns distinct features that
only arise for the ground truth (positive features), or those that make it easy to identify
generated versions, i.e., negative features that are only produced by the generator. Thus,
while training, the generator will receive gradients to make it produce more features of
the targets from F (y), while the gradients from F (G(x)) will penalize the generation of
recognizable negative features.

While positive values for λf reinforce this behavior, it is less clear why negative values
can lead to even better results in certain cases. Our explanation for this behavior is that
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the negative weights drive the generator towards distinct features that have to adhere to
the positive and negative features detected by the discriminator, as explained above in
Sec. 3.2.4, but at the same time differ from the average features in y. Thus, the generator
cannot simply create different or no features, as the discriminator would easily detect
this. Instead, it needs to develop features that are like the ones present in the outputs
y, but don’t correspond to the average features in F (y), which, e.g., leads to the finely
detailed outputs shown in Figure 3.4.

3.3.2 Training

We use the same modalities for all training runs: we employ the commonly used ADAM
optimizer 1 with an initial learning rate of 2 · 10−4 that decays to 1/20th for the second
half of the training iterations. The number of training iterations is typically on the order
of 10k. We use 20% of the data for testing and the remaining 80% for training. Our
networks did not require any additional regularization such as dropout or weight decay.
The training procedure is summarized again in Alg. 1. Due to the typically limited
amount of GPU memory, especially for 3D data sets, we perform multiple training steps
for each of the components. In Alg. 1, we use kDs , kDt , and kG to denote the number
training iterations for Ds, Dt, and G, respectively.

While the coupled non-linear optimization can yield different results even for runs with
the same parameters due to the non-deterministic nature of parallelized operations, we
found the results to be stable in terms of quality. In particular, we did not find it
necessary to change the weights of the different discriminator loss terms. However, if
desired, λf can be used to influence the learned details as described above. For training
and running the trained networks, we use Nvidia GeForce GTX 1080 Ti GPUs (each
with 11GB Ram) and Intel Core i7-6850K CPUs, while we used the tensorflow and
mantaflow software frameworks for deep learning and fluid simulation implementations,
respectively.

Algorithm 1 tempoGAN training algorithm

1: for number of training steps do
2: for kDs

do
3: Compute data-augmented mini batch x, y
4: Update Ds with ∇Ds

[LDs
(Ds, G)]

5: for kDt
do

6: Compute data-augmented mini batch X̃, Ỹ

7: Compute advected frames ỸA and G̃A

(
X̃
)

8: Update Dt with ∇Dt
[LDt

(Dt, G)]

9: for kG do
10: Compute data-augmented mini batch x, y, X̃

11: Compute advected frames G̃A

(
X̃
)

12: Update G with ∇G[LG(Ds, Dt, G)]

1Parameterized with β = 0.5.
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a) b) c) d)

Figure 3.5: An illustration of different training results after 40k iterations with different input
fields: a) ρ, b) ρ + v, c) ρ + v + w, all with similar network sizes. Version d) with
only ρ has 2x the number of weights. The seams in the images show the size of
the training patches. Supplemental physical fields lead to clear improvements in b)
and c), that even additional weights cannot compensate for.

3.3.3 Generator Inputs

At first sight, it might seem redundant and unnecessary to input flow velocity v and
vorticity w in addition to the density ρ. After all, we are only interested in the final
output density, and many works on GANs exist, which demonstrate that detailed images
can be learned purely based on image content.

However, over the course of numerous training runs, we noticed that giving the net-
works additional information about the underlying physics significantly improves the
convergence and quality of the inferred results. An example is shown in Figure 3.5.
Here, we show how the training evolves for three networks with identical size, struc-
ture, and parameters, the only difference being the input fields. From left to right, the
networks receive (ρ), (ρ,v), and (ρ,v,w). Note that these fields are only given to the
generator, while the discriminator always only receives (ρ) as input. The version with
only density passed to the generator, G(ρ), fails to reconstruct smooth and detailed
outputs. Even after 40000 iterations, the results exhibit strong grid artifacts and lack
detailed structures. In contrast, both versions with additional inputs start to yield higher
quality outputs earlier during training. While adding v is crucial, the addition of w only
yields subtle improvements (most apparent at the top of the images in Figure 3.5), which
is why we will use (ρ,v) to generate our final results below.

We believe that the insight that auxiliary fields help improve training and inference
quality is a surprising and important one. The networks do not get any explicit guidance
on how to use the additional information. However, it clearly not only learns to use
this information but also benefits from having this supporting information about the
underlying physics processes. While larger networks can potentially alleviate the quality
problems of the density-only version, as illustrated in Figure 3.5 d), we believe it is
highly preferable to instead construct and train smaller, physics-aware networks. This
not only shortens training times and accelerates convergence, but also makes evaluating
the trained model more efficient in the long run. The availability of physical inputs
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turned out to be a crucial addition in order to successfully realize high-dimensional
GAN outputs for space-time data, which we will demonstrate in Sec. 3.5.

3.4 Architecture and Training Data

While our loss function theoretically works with any realization of G,Ds and Dt, their
specifics naturally have a significant impact on performance and the quality of the gen-
erated outputs. A variety of network architectures has been proposed for training gen-
erative models [57, 65, 140], and in the following, we will focus on pure convolutional
networks for the generator, i.e., networks without any fully connected layers. A fully
convolutional network has the advantage that the trained network can be applied to
inputs of arbitrary sizes later on. We have experimented with a large variety of genera-
tor architectures, and while many simpler networks only yielded sub-optimal results, we
have achieved high-quality results with generators based on the popular U-net [141, 68],
as well as with residual networks (res-nets) [142]. The U-net concatenates activations
from earlier layers to later layers (so-called skip connections) in order to allow the net-
work to combine high- and low-level information, while the res-net processes the data
using multiple residual blocks. Each of these residual blocks convolves the inputs with-
out changing their spatial size, and the result of two convolutional layers is added to the
original signal as a “residual” correction. In the following, we will focus on the latter
architecture, as it gave slightly sharper results in our tests.

We found the discriminator architecture to be less crucial. As long as enough non-
linearity is introduced over the course of several hidden layers, and there are enough
weights, changing the connectivity of the discriminator did not significantly influence the
generated outputs. Thus, in the following, we will always use discriminators with four
convolutional layers with leaky ReLU activations 2 followed by a fully connected layer to
output the final score. As suggested by Odena et al. [143], we use the nearest-neighbor
interpolation layers as the first two layers in our generator, instead of deconvolutional
ones, and in the discriminator networks, the kernel size is divisible by the corresponding
stride. An overview of the architecture of our neural networks is shown in Figure 3.6,
while their details, such as layer configuration and activation functions, can be found in
Appendix A.1.

3.4.1 Data Generation

We use a randomized smoke simulation setup to generate the desired number of training
samples. For this we employ a standard fluids solver [18] with MacCormack advection
and MiC-preconditioned CG solver. We typically generate around 20 simulations, with
120 frames of output per simulation. For each of these, we randomly initialize a cer-
tain number of smoke inflow regions, another set of velocity inflows, and a randomized
buoyancy force. As inputs x, we use a down-sampled version of the simulation data sets,
typically by a factor of 4, while the full resolution data is used as ground truth y. Note

2With a leaky tangent of 0.2 for the negative half space.
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Figure 3.6: Here an overview of our tempoGAN architecture is shown. The three neural net-
works (blue boxes) are trained in conjunction. The data flow between them is
highlighted by the red and black arrows. Note that x and y denote fluid data that
contains velocity and/or vorticity fields, as well as density depending on the chosen
architecture (see Sec. 3.3.3).

a) b)

Figure 3.7: An identical GAN network trained with the same set of input data. While version a)
did not use data augmentation, leading to blurry results with streak-like artifacts,
version b), with data augmentation, produced sharp and detailed outputs.

that this setup is inherently multi-modal: for a single low-resolution configuration, an
infinitely large number of correct high resolution exists. We do not explicitly sample
the high-resolution solution space, but the down-sampling in conjunction with data aug-
mentation leads to ambiguous low- and high-resolution pairs of input data. To prevent
a large number of primarily empty samples, we discard inputs with an average smoke
density of less than 0.02. Details of the parametrization can be found in Appendix A.2.

3.4.2 Data Augmentation

Data augmentation turned out to be an important component of our pipeline due to
the high dimensionality of our data sets and the large amount of memory they require.
Without sufficient enough training data, adversarial training yields undesirable results
due to over-fitting. While data augmentation is common practice for natural images
[144, 52], we describe several aspects below that play a role for physical data sets.
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The augmentation process allows us to train networks having millions of weights with
data sets that only contain a few hundred samples without over-fitting. At the same
time, we can ensure that the trained networks respect the invariants of the underlying
physical problems, which is crucial for the complex space-time data sets of flow fields that
we are considering. E.g., we know from theory that solutions obey Galilean invariance,
and we can make sure our networks are aware of this property not by providing large
data sets, but instead by generating data with different inertial frames on the fly while
training.

In order to minimize the necessary size of the training set without deteriorating the
resulting quality, we generate modified data sets at training time. We focus on spatial
transformations, which take the form of x̃(p) = x(Ap), where p is a spatial position,
and A denotes an 4 × 4 matrix. For applying augmentation, we distinguish three types
of components of a data set:

• passive: these components can be transformed in a straightforward manner as
described above. An example of passive components are the advected smoke fields
ρ, shown in many of our examples.

• directional: the content of these components needs to be transformed in conjunc-
tion with the augmentation. A good example is velocity, whose directions need
to be adjusted for rotations and flips, i.e., ṽ(p) = A3×3v(Ap), where A3×3 is the
upper left 3 × 3 matrix of A.

• derived: finally, derived components would be invalid after applying augmentation,
and thus need to be re-computed. A good example is physical quantities such as
vorticity, which contain mixed derivatives that cannot be easily transformed into
a new frame of reference. However, these quantities typically can be calculated
anew from other fields after augmentation.

If the data set contains quantities that cannot be computed from other augmented
fields, this, unfortunately, means that augmentation cannot be applied easily. However,
we believe that a large class of typical physics data sets can in practice be augmented
as described here.

For matrix A, we consider affine transformation matrices that contain combinations
of randomized translations, uniform scaling, reflections, and rotations. Here, only those
transformations are allowed that do not violate the physical model for the data set.
While shearing and non-uniform scaling could easily be added, they violate the NS
momentum equation and thus should not be used for flow data. We have used values
in the range [0.85, 1.15] for scaling, and rotations by [−90, 90] degrees. We typically do
not load derived components into memory for training, as they are re-computed after
augmentation. Thus, they are computed on the fly for a training batch and discarded
afterward.

The outputs of our simulations typically have significantly larger size than the input
tiles that our networks receive. In this way, we have many choices for choosing offsets,
in order to train the networks for shift invariance. This also aligns with our goal to train
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a) b) c)

Figure 3.8: These images show our algorithm applied to a 3D volume. F.l.t.r.: a). a coarse in-
put volume (down-sampled from the reference c, rendered with cubic up-sampling),
b). our result, and c). the high-resolution reference. As in 2D, our trained model
generates sharp features and detailed sheets that are at least on par with the ref-
erence.

a network that will later on work for arbitrarily sized inputs. We found it important
to take special care at spatial boundaries of the tiles. While data could be extended by
Dirichlet or periodic boundary conditions, it is important that the data set boundaries
after augmentation do not lie outside the original data set. We enforce this by choosing
suitable translations after applying the other transformations. This ensures that all
data sets contain only valid content, and the network does not learn from potentially
unphysical or unrepresentative data near boundaries. We also do not augment the time
axis in the same way as the spatial axes. We found that the spatial transformations
above applied to velocity fields give enough variance in terms of temporal changes. An
example of the huge difference that data augmentation can make is shown in Figure 3.7.
Here we compare two runs with the same amount of training data (160 frames of data),
one with, the other one without data augmentation. While training a GAN directly with
this data produces blurry results, the network converges to a final state with significantly
sharper results with data augmentation. The possibility to successfully train networks
with only a small amount of training data is what makes it possible to train networks
for 3D+time data.

3.5 Results and Discussion

In the following, we will apply our method discussed so far to different data sets, and
explore different application settings. Among others, we will discuss related topics such
as art direction, training convergence, and performance.

3.5.1 3D Results

We have primarily used the 2D rising plume example in the previous sections to ensure
the different variants can be compared easily. In Figure 3.8, we demonstrate that these
results directly extend to 3D. We apply our method to a three-dimensional plume with
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Figure 3.9: We apply our algorithm to a horizontal jet of smoke in this example. The inset
shows the coarse input (rendered with cubic up-sampling), and the result of our
algorithm. The diffuse streaks caused by procedural turbulence in the input (esp.
near the inflow) are turned into detailed wisps of smoke by our algorithm.

resolution 643, which in this case was generated by down-sampling a 2563 simulation
such that we can compare our result to this reference solution. For this input data,
the 2563 output produced by our tempoGAN exhibits small-scale features that are at
least as detailed as the ground truth reference. The temporal coherence is especially
important in this setting, which is best seen in the accompanying video.

We also apply our trained 3D model to two different inputs with higher resolutions.
In both cases, we use a regular simulation augmented with additional turbulence to
generate an interesting set of inputs for our method. A first scene with 150 × 100 × 100
is shown in Figure 3.9, where we generate a 600×400×400 output with our method. The
output closely resembles the input volumes but exhibits a large number of fine details.
Note that our networks were only trained with down-sampled inputs, but our models
generalize well to regular simulation inputs without re-sampling, as illustrated by this
example.

Our method also has no problems with obstacles in the flow, as shown in Figure 3.10.
This example has resolutions of 256 × 180 × 180 and 1024 × 720 × 720 for input and
output volumes. The small-scale features closely adhere to the input flow around the
obstacle. Although the obstacle is completely filled with densities towards the end of
the simulation, there are no leaking artifacts as our method is applied independently to
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Figure 3.10: Our algorithm generated a high-resolution volume around an obstacle with a final
resolution of 1024 × 720 × 720. The inset shows the input volume. This scene is
also shown in Figure 5.1 with a different visualization.

each input volume in the sequence. When showing the low-resolution input, we always
employ cubic up-sampling, in order to not make the input look unnecessarily bad.

3.5.2 Fine Tuning Results

GANs have a reputation for being particularly hard to influence and control, and in-
fluencing the outcome of simulation results is an important topic for applications in
computer graphics. In contrast to procedural methods, regular GAN models typically
lack intuitive control knobs to influence the generated results. While we primarily rely
on traditional guiding techniques to control the low-resolution input, our method offers
different ways to adjust the details produced by our tempoGAN algorithm.

A first control knob for fine-tuning the results is to modify the data fields of the condi-
tional inputs. As described in Sec. 3.3.3, our generator receives the velocity in addition
to the density, and it internally builds tight relationships between the two. We can
use these entangled inputs to control the features produced in the outputs. To achieve
this, we modify the velocity components passed to the generator with various procedu-
ral functions. Figure 3.11 shows the results of the original input and several modified
velocity examples and the resulting density configurations. We have also experimented
with noise fields instead [67], but found that the trained networks completely ignored
these fields. Instead, the strongly correlated velocity fields naturally provide much more
meaningful input for our networks, and as a consequence provide means for influencing
the results.
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a) b)

c) d)

Figure 3.11: The red&green images on the left of each pair represent the modified velocity
inputs, while the corresponding result is shown on the right. For reference, pair
a) shows the unmodified input velocity and the regular output of our algorithm.

In addition, Figure 3.12 demonstrates that we can effectively suppress the generation of
small scale details by setting all velocities to zero. Thus, the network learns a correlation
between velocity magnitudes and amount of features. This is another indicator that
the network learns to extract meaningful relationships from the data, as we expect
turbulence and small-scale details to primarily form in regions with large velocities.
Three-dimensional data can similarly be controlled, as illustrated in Figure 3.13.

In Sec. 3.2.4, we discussed the influence of the λf parameter for small scale features.
For situations where we might not have additional channels such as the velocity above,
we can use λf to globally let the network generate different features. However, as this
only provides a uniform change that is encoded in the trained network, the resulting
differences are more subtle than those from the velocity modifications above. Examples
of different 2D and 3D outputs can be found in Figure 3.14 and Figure 3.15, respectively.
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Figure 3.12: An illustration of how the entangled inputs of density and velocity can be used
to fine-tune the results: on the left, the velocities were scaled up by a factor
of 2, while the right-hand side was scaled by zero. The network has learned a
relationship between detail and velocities, leading to reduced details in regions
where the velocity was set to zero.

3.5.3 Additional Variants

In order to verify that our network can not only work with two- or three-dimensional data
from a Navier-Stokes solver, we generated a more synthetic data set by applying strong
wavelet turbulence to a 4× up-sampled input flow. We then trained our network with
down-sampled inputs, i.e., giving it the task to learn the output of the wavelet turbulence
algorithm. Note that a key difference here is that wavelet turbulence normally requires
a full high-resolution advection over time, while our method infers high-resolution data
sets purely based on low-resolution data from a single frame.

Our network successfully learns to generate structures similar to the wavelet turbu-
lence outputs, shown in Figure 3.16. However, this data set turned out to be more
difficult to learn than the original fluid simulation inputs. The training runs required
two times more training data than the regular simulation runs, and we used a feature
loss of λ1,...,4

f = 10−5. We assume that these more difficult training conditions are caused
by the more chaotic nature of the procedural turbulence, and the less reasonable cor-
relations between density and velocity inputs. Note that despite using more wavelet
turbulence input data, it is still a comparatively small data set.

We additionally were curious about how well our network works when it is applied to
a generated output, i.e., a recursive application. The result can be found in Figure 3.17,
where we applied our network to its own output for an additional 2× up-sampling.
Thus, in total this led to an 8× increase in resolution. While the output is plausible,
and clearly contains even more fine features such as thin sheets, there is a tendency to
amplify features generated during the first application.
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a) b)

c) d)

Figure 3.13: a) is the result of tempoGAN with velocity set to zero. The other three examples
were generated with modified velocity inputs to achieve more stylized outputs.

3.5.4 Training Progress

With the training settings given in Appendix A.2, our training runs typically converged
to stable solutions of around 1/2 for the discriminator outputs after sigmoid activation.
While this by itself does not guarantee that a desirable solution was found, it at least
indicates convergence towards one of the available local minima.

However, it is interesting how the discriminator loss changes in the presence of the
temporal discriminator. Figure 3.18 shows several graphs of discriminator losses over the
course of a full training run. Note that we show the final loss outputs from Equation 3.1
and Equation 3.5 here. A large value means the discriminator does “worse”, i.e., it has
more difficulty distinguishing real samples from the generated ones. Correspondingly,
lower values mean it can separate them more successfully. In Figure 3.18a) it is visible
that the spatial discriminator loss decreases when the temporal discriminator is intro-
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a) b)

Figure 3.14: A comparison of training runs with different feature loss weights: a) λ1,...,4
f =

−10−5 , b) λ1,4
f = 1/3 · 10−4, λ2,3

f = −1/3 · 10−4.

a) b) c)

Figure 3.15: A comparison of training runs with different feature loss weights in 3D: a) with
λ1,...,4
f = −1/3 · 10−6 , b) with λ1

f = 1/3 · 10−6, λ2,3,4
f = −1/3 · 10−6. The latter

yields a sharpened result. Image c) shows the high resolution reference.

duced. Here the graph only shows the spatial discriminator loss, and the discriminator
itself is unchanged when the second discriminator is introduced. The training run corre-
sponding to the green line is trained with only a spatial discriminator, and for the orange
line with both spatial and temporal discriminators. Our interpretation of the lower loss
for the spatial discriminator network is that the existence of a temporal discriminator in
the optimization prevents the generator from using the part of the solution space with
detailed, but flickering outputs. Hence, the generator is driven to find a solution from
the temporally coherent ones, and as a consequence has a harder time, which in turn
makes the job easier for the spatial discriminator. This manifests itself as a lower loss
for the spatial discriminator, i.e. the lower orange curve in Figure 3.18a).

Conversely, the existence of a spatial discriminator does not noticeably influence the
temporal discriminator, as shown in Figure 3.18b). This is also intuitive, as the spatial
discriminator does not influence temporal changes. We found that a generator trained
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a) b)

Figure 3.16: Our regular model a) and one trained with wavelet turbulence data b). In contrast
to the model trained with real simulation data, the wavelet turbulence model
produces flat regions with sharper swirls, mimicking the input data.

a) b)

Figure 3.17: a) is the network output after a single application. b) is the network recursively
applied to a) with a scaling factor of 2, resulting in a total increase of 8×.

only with Dt typically produces fewer details than a generator trained with both. In
conjunction, our tests indicate that the two discriminators successfully influence different
aspects of the solution space, as intended. Lastly, Figure 3.18c) shows that activating
the negative feature loss from Sec. 3.2.4 makes the task for the generator slightly harder,
resulting in a lowered spatial discriminator loss.

3.5.5 Performance

Training our two- and three-dimensional models is relatively expensive. Our full 2D
runs typically take around 14 hours to complete (1 GPU), while the 3D runs took ca.
9 days using two GPUs. However, in practice, the state of the model after a quarter of
this time is already indicative of the final performance. The remainder of the time is
typically spent fine-tuning the network.
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Figure 3.18: Several discriminator loss functions over the course of the 40k training iterations.
a) Ds (spatial discriminator) loss is shown in green without Dt, and orange with
Dt. b) Temporal discriminator loss in blue with only Dt, and in red for tempoGAN
(i.e., with Ds, and feature loss). c) Spatial discriminator loss is shown in green
with Lf , and in dark blue without. For each graph, the dark lines show smoothed
curves. The full data is shown in a lighter color in the background.

When using our trained network to generate high-resolution outputs in 3D, the limited
memory of current GPUs poses a constraint on the volumes that can be processed at
once, as the intermediate layers with their feature maps can take up significant amounts
of memory. However, this does not pose a problem for generating larger final volumes,
as we can subdivide the input volumes, and process them piece by piece. We generate
tiles with a size of 1363 on one GPU, with a corresponding input of size 343. Our 8
convolutional layers with a receptive field of 16 cells mean that up to four cells of an
input could be influenced by a boundary. In practice, we found 3 input cells to be enough
in terms of overlap. Generating a single 1363 output took ca. 2.2 seconds on average.
Thus, generating a 2563 volume from a 643 input took 17.9s on average. Comparing the
performance of our model with high-resolution simulations is inherently difficult, due to
the substantially different implementations and hardware platforms (CPU vs. GPU).
However, for the example of Figure 3.9 we estimate that fluid simulation at the full
resolution would take ca. 31.5 minutes per frame of animation on average, while the
evaluation of all volume tiles with our evaluation pipeline took ca. 3.9 minutes.

The cost for the trained model scales linearly with the number of cells in the volume,
and in contrast to all previous methods for increasing the resolution of flow simulations,
our method does not require any additional tracking information. It is also fully in-
dependent for all frames. Thus, our method could ideally be applied on the fly before
rendering a volume, after which the high-resolution data could be discarded. Addition-
ally, due to GPU memory restrictions, we currently evaluate our model in volumetric
tiles with 3 cells of overlap for the input. This overlap can potentially be reduced fur-
ther, and become unnecessary when enough memory is available to process the full input
volume at once.

3.6 Limitations and Conclusions

Limitation One limitation of our approach is that the network encodes a fixed reso-
lution difference for the generated details. While the initial up-sampling layers can be

Chapter 3. 47



Part II.

stripped, and the network could thus be applied to inputs of any size, it will be inter-
esting to explore different up-sampling factors beyond the factor of four which we have
used throughout. With our current implementation, our method can also be slower than,
e.g., calculating the advection for a high-resolution grid. However, a high-res advection
would typically not lead to different dynamics than those contained in the input flow and
require a sequential solve for the whole animation sequence. Our networks have so far
also focused on buoyant smoke clouds. While obstacle interactions worked in our tests,
we assume that networks trained for larger data sets and with other types of interactions
could yield even better results.

Our three-dimensional networks needed a long time to train, circa nine days for our
final model. Luckily, this is a one-time cost, and the network can be flexibly reused
afterwards. However, if the synthesized small-scale features need to be fine-tuned, which
we luckily did not find necessary for our work, the long runtimes could make this a
difficult process. The feature loss weights clearly also are data-dependent, e.g., we used
different settings for simulation and wavelet turbulence data. Here, it will be an inter-
esting direction for future work to give the network additional inputs for fine-tuning the
results beyond the velocity modifications discussed in Sec. 3.5.2.

Conclusion We have realized a first conditional GAN approach for four-dimensional
data sets and we have demonstrated that it is possible to train generators that preserve
temporal coherence using our novel time discriminator. The network architecture of this
temporal discriminator, which ensures that the generator receives gradient information
even for complex transport processes, makes it possible to robustly train networks for
temporal evolutions. We have shown that this discriminator improves the generation
of stable details as well as the learning process itself. At the same time, our fully
convolutional networks can be applied to inputs of arbitrary size, and our approach
provides basic means for the art direction of the generated outputs. We also found
it very promising to see that our CNNs are able to benefit from coherent, physical
information even in complex 3D settings, which led to reduced network sizes.

Overall, we believe that our contributions yield a robust and very general method
for generative models of physics problems, and for super-resolution flows in particular.
It will be highly interesting in future work to apply our tempoGAN to other physical
problem settings, or even to non-physical data such as video streams.

48 Chapter 3.



4 Dataset Feature Extraction

0.037

0.099

0.121

0.138

0.102

0.126

0.089

0.083

0.137

0.066

0.084

0.19

𝑆𝑡𝑑்ௌ

Classification of the left image

𝑂𝑟𝑡்ௌ

𝑅𝑅்ௌ

Stylized airplane

a) Texture-Shape Classification

b) Mutual Information

Digit

Rotation

Thickness

0.921

0.925

0.928

𝑆𝑡𝑑஼ଵ଴ 𝑂𝑟𝑡஼ଵ଴ 𝑅𝑅஼ଵ଴

c) CIFAR 10 (↑)

𝑃𝑟𝑒்ௌ

d) Weather Prediction (↓)

𝑆𝑡𝑑 𝑅𝑅

𝑬𝑺𝒕𝒅: 𝟎. 𝟎𝟗𝟐𝟐

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝑍500 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

...

...

...

0.0123 

0.0106 

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 
𝑅𝑀𝑆𝐸

𝑬𝑹𝑹: 𝟎. 𝟎𝟕𝟑𝟎

Frame 7031
7031*2+24=14086=586*24+22=(365+221)*24+22
2018  August 9, 22:00

𝑹𝑹

𝑺𝒕𝒅

Figure 4.1: Our pretraining (denoted as RR) yields improvements for numerous applications:
a) For difficult shape classification tasks, it outperforms existing approaches (StdTS,
OrtTS, PreTS): the RRTS model classifies the airplane shape with significantly
higher confidence. b) Our approach establishes mutual information between input
and output distributions. c) For CIFAR 10 classification with a Resnet110, RRC10

yields substantial practical improvements over the state-of-the-art. d) Learned
weather forecasting likewise benefits from our pretraining, with RR yielding 13.7%
improvements in terms of latitude-weighted RMSE for the ERA dataset [145]. Pres-
sure is shown for 2019-08-09, 22:00 UTC, together with MAE for Std and RR mod-
els.

In the last chapter, we introduced tempoGAN, our temporally coherent SR algorithm
for fluid flow. Once the tempoGAN model is trained, we can achieve efficient transfor-
mation from the LR fluid data to HR data. However, tempoGAN model requires to be
retrained once the training data is changed, which is computationally expensive because
of the large volume data size. This problem leads us to think about whether we can
pretrain a base model, which can extract general and basic features of the fluid, then
various models can be efficiently further trained based on this base model with specific
fluid data. Similar ideas can be traced back to the image processing field. For example,

49



Part II.

the VGG network is pretrained with imagenet data set [146], then features extracted by
the VGG network can be efficiently reused in various tasks, such as image perceptual
measuring [147], image stylization [148].

A common pretraining tool to extract features from the dataset is the autoencoder.
While approaches such as greedy layer-wise autoencoder pretraining [149, 150, 151] paved
the way for many fundamental concepts of today’s methodologies in deep learning, the
pressing need for pretraining neural networks has been diminished in recent years. An
inherent problem is the lack of a global view: layer-wise pretraining is limited to adjust-
ing individual layers one at a time. Thus, bottom layers that are optimized first cannot
be adjusted to correct errors in higher layers [152]. In addition, numerous advances
in regularization [153, 154, 155], network architectures [141, 156, 157], and improved
optimization algorithms [158, 159, 160] have decreased the demand for layer-wise pre-
training. Despite these advances, training deep neural networks that generalize well to a
wide range of previously unseen tasks remains a fundamental challenge [161, 162, 163].

In this chapter, we develop an algorithm that reformulates autoencoder pretraining in
a global way to arrive at a method that efficiently extracts general, dominant features
from datasets. These features in turn improve performance for new tasks. Our approach
is also inspired by techniques for orthogonalization [164, 165, 166]. Hence, we propose
a modified variant that relies on a full reverse pass trained in conjunction with a given
training task. A key insight is that there is no need for ”greediness”, i.e., layer-wise
decompositions of the network structure, and it is additionally beneficial to take into
account a specific problem domain at the time of pretraining. We establish links between
singular value decomposition (SVD) and pretraining, and show how our approach yields
an embedding of problem-aware dominant features in the weight matrices. An SVD
can then be leveraged to conveniently gain insights about learned structures. Unlike
orthogonalization techniques, we focus on embedding the dominant features of a dataset
into the weights of a network. This is achieved via a reverse pass network. This reverse
pass is generic, simple to construct, and directly relates to model performance, instead
of, e.g., constraining the orthogonality of weights. Most importantly, we demonstrate
that the proposed pretraining yields an improved performance for a variety of learning
and transfer tasks. Our formulation incurs only a very moderate computational cost,
which is very easy to integrate, and widely applicable.

The structure of our networks is influenced by invertible network architectures that
have received significant attention in recent years [167, 168, 169]. However, these ap-
proaches rely heavily on specific network architectures. Instead of aiming for a bijective
mapping that reproduces inputs, we strive for learning a general representation by con-
straining the network to represent an as-reversible-as-possible process for all intermediate
layer activations. Thus, even for cases where a classifier can, e.g., rely on color for in-
ference of an object type, the model is encouraged to learn a representation that can
recover the input. Hence, not only the color of the input should be retrieved, but also,
e.g., its shape, so that more dominant features of the input dataset are embedded into
the networks. In contrast to most structures for invertible networks, our approach does
not impose architectural restrictions. We demonstrate the benefits of our pretraining for
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a variety of architectures, from fully connected layers to CNNs [52], over networks with
batch normalization or dropout regularization, to GANs architectures [57].

Below, we will first give an overview of our formulation and its connection to singular
values, before evaluating our model in the context of transfer learning. For a regular, i.e.,
a non-transfer task, the goal usually is to train a network that gives optimal performance
for one specific goal. During a regular training run, the network naturally exploits any
observed correlations between input and output distribution. An inherent difficulty in
this setting is that typically no knowledge about the specifics of the new data and task
domains is available when training the source model. Hence, it is common practice to
target broad and difficult tasks hoping that this will result in features that are applicable
in new domains [170, 171, 172]. Motivated by autoencoder pretraining, we instead
leverage a pretraining approach that takes into account the data distribution of the
inputs. We demonstrate the gains in accuracy for original and new tasks below for a
wide range of applications, from image classification to data-driven weather forecasting.

4.1 Method Analysis

With state-of-the-art methods, there is no need for breaking down the training process
into single layers. Hence, we consider approaches that target whole networks, and employ
orthogonalization regularizers as a starting point [173]. Orthogonality constraints were
shown to yield improved training performance in various settings [166], and for an n-layer
network, they can be formulated as:

Lort =
n∑

m=1

∥∥MT
mMm − I

∥∥2
F
, (4.1)

i.e., enforcing the transpose of the weight matrix Mm ∈ Rsoutm ×sinm for all layers m to yield
its inverse when being multiplied with the original matrix. I denotes the identity matrix

with I = (e1m, ...e
sinm
m ), ejm denoting the jth column unit vector. Theoretically, Lort = 0

can not be perfectly fulfilled because of the information imbalance between inputs and
outputs in most deep learning cases [174]. We will first analyze the influence of the loss
function Lort assuming that it can be fulfilled, before applying the analysis to our full
pretraining method.

Minimizing Equation 4.1, i.e. MT
mMm − I = 0 is mathematically equivalent to:

MT
mMmejm − ejm = 0, j = 1, 2, ..., sinm,m = 1, 2, ..., n, (4.2)

with rank(MT
mMm) = sinm, and ejm as eigenvectors of MT

mMm with eigenvalues of 1.
This formulation highlights that Equation 4.2 does not depend on the training data,
and instead only targets the content of Mm. Inspired by the classical unsupervised
pretraining, we re-formulate the orthogonality constraint in a data-driven manner to
take into account the set of inputs Dm for the current layer (either activation from a
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previous layer or the training data D1), and instead minimize

LRR =
n∑

m=1

∥∥MT
mMmdi

m − di
m

∥∥2
2

=

n∑
m=1

∥∥(MT
mMm − I)di

m

∥∥2
2
,

(4.3)

where di
m ∈ Dm ⊂ Rsinm . Due to its reversible nature, we will denote our approach

with an RR subscript in the following. In contrast to classical autoencoder pretraining,
we are minimizing this loss jointly for all layers of a network, and while orthogonality
only focuses on Mm, our formulation allows for minimizing the loss by extracting the
dominant features of the input data.

Let q denotes the number of linearly independent entries in Dm, i.e. its dimension,
and t the size of the training data, i.e. Dm = t , usually with q < t. For every single
datum di

m, i = 1, 2, ..., t, Equation 4.3 results in

MT
mMmdi

m − di
m = 0,m = 1, 2, ..., n, (4.4)

and hence di
m are eigenvectors of MT

mMm with corresponding eigenvalues being 1. Thus,
instead of the generic constraint MT

mMm = I that is completely agnostic to the data
at hand, the proposed formulation of Equation 4.4 is aware of the training data, which
improves the generality of the learned representation, as we will demonstrate in detail
below.

As by construction, rank(Mm) = r ⩽ min(sinm, soutm ), the SVD of Mm yields:

Mm = UmΣmV T
m ,m = 1, 2, ..., n,

with

{
Um = (u1

m,u2
m, ...,ur

m,ur+1
m , ...,u

soutm
m ) ∈ Rsoutm ×soutm ,

Vm = (v1
m,v2

m, ...,vr
m,vr+1

m , ...,v
sinm
m ) ∈ Rsinm×sinm ,

(4.5)

with left and right singular vectors in Um and Vm, respectively, and Σm having square
roots of the r eigenvalues of MT

mMm on its diagonal. uk
m and vk

m(k = 1, ..., r) are
the eigenvectors of MmMT

m and MT
mMm, respectively [175]. Here, especially the right

singular vectors in V T
m are important, as they determine which structures of the input

are processed by the transformation Mm. The original orthogonality constraint with
Equation 4.2 yields r unit vectors ejm as the eigenvectors of MT

mMm. Hence, the influence
of Equation 4.2 on Vm is completely independent of training data and learning objectives.

Next, we show that LRR facilitates learning dominant features from a given dataset.
For this, we consider an arbitrary basis for spanning the space of inputs Dm for layer
m. Let Bm :

〈
w1

m, ...,wq
m

〉
denote a set of q orthonormal basis vectors obtained via

a Gram-Schmidt process, with t ⩾ q ⩾ r, and Dm denoting the matrix of the vectors
in Bm. As we show in more detail in the appendix, our constraint from Equation 4.4
requires eigenvectors of MT

mMm to be wi
m, with Vm containing r orthogonal vectors

(v1
m,v2

m, ...,vr
m) from Dm and (sinm − r) vectors from the null space of M .

We are especially interested in how Mm changes w.r.t. input in terms of Dm, i.e., we
express LRR in terms of Dm. By construction, each input di

m can be represented as a
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linear combination via a vector of coefficients cim that multiplies Dm so that di
m=Dmcim.

Since Mmdm = UmΣmV T
mdm, the loss LRR of layer m can be rewritten as

LRRm =
∥∥MT

mMmdm − dm

∥∥2
2

=
∥∥VmΣT

mΣmV T
mdm − dm

∥∥2
2

=
∥∥VmΣT

mΣmV T
mDmcm −Dmcm

∥∥2
2
,m = 1, 2, ..., n,

(4.6)

where we can assume that the coefficient vector cm is accumulated over the training
dataset size t via cm =

∑t
i=1 c

i
m, since eventually every single datum in Dm will con-

tribute to LRRm . We can also rewrite Equation 4.6 with q components of Dm:

LRRm =

∥∥∥∥∥
q∑

h=1

VmΣT
mΣmV T

mwh
mcmh

−wh
mcmh

∥∥∥∥∥
2

2

,m = 1, 2, ..., n. (4.7)

This form of the loss highlights that minimizing LRRm requires an alignment of wh
mcmh

and VmΣT
mΣmV T

mwh
mcmh

.

By construction, Σm contains the square roots of the eigenvalues of MT
mMm as its

diagonal entries. The matrix has rank r = rank(MT
mMm), and since all eigenvalues are

required to be 1 by Equation 4.4, the multiplication with Σm in Equation 4.7 effectively
performs a selection of r column vectors from Vm. Hence, we can focus on the interaction
between the basis vectors wm and the r active column vectors of Vm:

VmΣT
mΣmV T

mwh
mcmh

−wh
mcmh

= cmh
(VmΣT

mΣmV T
mwh

m −wh
m)

= cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m).

(4.8)

As Vm is obtained via an SVD it contains r orthogonal eigenvectors of MT
mMm. Equa-

tion 4.4 requires w1
m, ...,wq

m to be eigenvectors of MT
mMm, but since typically the di-

mension of the input dataset is much larger than the dimension of the weight matrix,
i.e. r ≤ q, in practice only r vectors from Bm can fulfill Equation 4.4. This means the
vectors v1

m, ...,vr
m in Vm are a subset of the orthonormal basis vectors Bm :

〈
w1

m, ...,wq
m

〉
with

∥∥wh
m

∥∥2
2

= 1. Then for any wh
m we have{

(vf
m)Twh

m = 1, if vf
m = wh

m

(vf
m)Twh

m = 0, otherwise.
(4.9)

Thus if Vm contains wh
m, we have

r∑
f=1

(vf
m)Twh

mvf
m = wh

m, (4.10)
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and we trivially fulfill the constraint

cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m) = 0. (4.11)

However, due to r being smaller than q in practice, Vm typically can not include all
vectors from Bm. Thus, if Vm does not contain wh

m, we have (vf
m)Twh

m = 0 for every

vector vf
m in Vm, which means

r∑
f=1

(vf
m)Twh

mvf
m = 0. (4.12)

As a consequence, the constraint Equation 4.4 is only partially fulfilled:

cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m) = −cmh
wh

m . (4.13)

As wh
m has unit length, the factors cm determine the contribution of a datum to the

overall loss. A feature wh
m that appears multiple times in the input data will have a

correspondingly larger factor in cm and hence will more strongly contribute to LRR.
The L2 formulation of Equation 4.3 leads to the largest contributors being minimized
most strongly, and hence the repeating features of the data, i.e., dominant features, need
to be represented in Vm to minimize the loss. Interestingly, this argumentation holds
when additional loss terms are present, e.g., a loss term for classification. In such a case,
the factors cm will be skewed towards those components that fulfill the additional loss
terms, i.e. favor basis vectors wh

m that contain information for about the loss terms.
This, e.g., leads to clear digit structures being embedded in the weight matrices for the
MNIST example below.

To summarize, Vm is driven towards containing r orthogonal vectors wi
m that represent

the most frequent features of the input data, i.e., the dominant features. Additionally,
due to the column vectors of Vm being mutually orthogonal, Mm is encouraged to extract
different features from the input. For the sake of being distinct and representative of
the dataset, these features have the potential to be useful for new inference tasks. The
feature vectors embedded in Mm can be extracted from the network weights in practical
settings, as we will demonstrate below.

Realization in Neural Networks Calculating MT
mMm is usually very expensive due to

the dimensionality of Mm. Instead of building it explicitly, we constrain intermediate
results to realize Equation 4.3 when training. Regular training typically starts with a
chosen network structure and trains the model weights for a given task via a suitable
loss function. Our approach fully retains this setup and adds a second pass that reverses
the initial structure while reusing all weights and biases. For instance, for a typical
fully connected layer in the forward pass with dm+1 = Mmdm + bm, the reverse pass
operation is given by d

′
m = MT

m(dm+1−bm), where d
′
m denotes the reconstructed input.
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Figure 4.2: Left: An overview of the regular forward pass (blue) and the corresponding re-
verse pass (yellow). The right side illustrates how parameters are reused for a
convolutional layer. conv/deconv denote convolution/deconvolutional operations.
fm and BNm denote the activation function and batch normalization of layer m,
respectively. Shared kernel and bias are represented by Mm and bm.

Our goal with the reverse pass is to transpose all operations of the forward pass to ob-
tain identical intermediate activations between the layers with matching dimensionality.
We can then constrain the intermediate results of each layer of the forward pass to match
the results of the backward pass, as illustrated in Figure 4.2. While the construction
of the reverse pass is straightforward for all standard operations, i.e., fully connected
layers, convolutions, pooling, etc., slight adjustments are necessary for non-linear activa-
tion functions (AFs) and batch normalization (BN). It is crucial for our formulation that
dm and d

′
m contain the same latent space content in terms of range and dimensionality,

such that they can be compared in the loss. Hence, we use the BN parameters and the
activation of layer m− 1 from the forward pass for layer m in the reverse pass.

Unlike greedy layer-wise autoencoder pretraining, which trains each layer separately
and only constrains d1 and d

′
1, we jointly train all layers and constrain all intermediate

results. Due to the symmetric structure of the two passes, we can use a simple L2

difference to drive the network towards aligning the results:

LRR =
n∑

m=1

λm

∥∥∥dm − d
′
m

∥∥∥2
2
. (4.14)

Here dm denotes the input of layer m in the forward pass and d
′
m the output of layer m

for the reverse pass. λm denotes a scaling factor for the loss of layer m, which, however,
is typically constant in our tests across all layers. Note that with our notation, d1 and
d

′
1 refer to the input data, and the reconstructed input, respectively.
Next, we show how this setup realizes the regularization from Equation 4.3. For

clarity, we use a fully connected layer with bias. In a neural network with n hidden
layers, the forward process for a layer m is given by dm+1 = Mmdm + bm, with d1

and dn+1 denoting in- and output, respectively. All neural networks can be classified
according to whether the full reverse pass can be built from the output to input, and
we also classify our pretraining as full network pretraining and localized pretraining in
implementation.

Chapter 4. 55



Part II.

Full Network Pretraining: For networks where a unique path from output to input
exists, we build a reverse pass network with transposed operations starting with the final
output where dn+1 = d

′
n+1, and the intermediate results d

′
m+1:

d
′
m = MT

m(d
′
m+1 − bm),m = 1, 2, ..., n, (4.15)

where the reverse pass activation d
′
m depends on dm+1

′, this formulation yields a full
reverse pass from output to input, which we use for most training runs below. Here we
analyze the influence of Equation 4.14 during training by assuming LRR = 0 during the
minimization. We then obtain activated intermediate content during the reverse pass
that reconstructs the values computed in the forward pass, i.e. d

′
m+1 = dm+1 holds. In

this case
d

′
m = MT

m(d
′
m+1 − bm)

= MT
m(dm+1 − bm) = MT

mMmdm,m = 1, 2, ..., n,
(4.16)

which means that Equation 4.14 is consistent with Equation 4.3.
Localized Pretraining: For architectures that have a reverse path that is not unique,

e.g., in the presence of additive residual connections, we cannot uniquely determine the
b, c in a = b + c given only a. In such cases, we use a local formulation, and dm+1 is
used as input of the reverse path of layer m directly. In this case Equation 4.15 can be
written as:

d
′
m = MT

m(dm+1 − bm),m = 1, 2, ..., n, (4.17)

which effectively employs dm+1 for jointly constraining all intermediate activations in
the reverse pass. Moreover, it is consistent with Equation 4.3.

In summary, Equation 4.14 will drive the network towards a state that is as-invertible-
as-possible for the given input dataset. Comparing the full network pretraining and local-
ized pretraining, the full network pretraining establishes a stronger relationship among
the loss terms of different layers, and allows earlier layers to decrease the accumulated
loss of later layers. Localized pretraining, on the other hand, is even valid for cases
where the reverse path from output to input is not unique.

Up to now, the discussion focused on simplified neural networks with convolutional
operations, which are crucial for feature extraction, but without AFs or extensions such
as BN, which are applied to increase model non-linearity. While we leave a more detailed
theoretical analysis of these extensions for future work, we apply these non-linear exten-
sions for all of our tests in sections 4.2 and 4.4. Thus, our experiments demonstrate that
our method works in conjunction with BN and AFs. They show consistently show that
the inherent properties of our pretraining remain valid: even in the non-linear setting our
approach successfully extracts dominant structures and yields improved generalization.

In Sec. 4.3, we will give details on how to ensure that the latent space content for
forward and reverse pass is aligned such that differences can be minimized, and we give
practical examples of full and localized pretraining architectures.

To summarize, we realize the loss formulation of Equation 4.14 to minimize Equa-
tion 4.3without explicitly having to construct MT

mMm. Following the notation above,
we will refer to networks trained with the added reverse structure and the additional
loss terms as RR variants. We consider two variants for the reverse pass: a local pre-
training Equation 4.17 using the datum dm+1 of a given layer, and a full version via
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Figure 4.3: Column vectors of Vm for different trained models Std, Ort, Pre and RR for peaks.
Input features clearly are successfully embedded in the weights of RR, as confirmed
by the LPIPS scores.

Equation 4.15 which uses d
′
m+1 incoming from the next layer during the reverse pass.

More details about the architecture will be illustrated in Sec. 4.3.

Embedding Singular Values In the following, we evaluate networks trained with dif-
ferent methodologies. We distinguish our pretraining approach RR (in green), regular
autoencoder pretraining Pre (in grey), and and orthogonality constraints Ort (in blue).
In addition, Std denotes a regular training run (in orange color in graphs below), i.e.,
models trained without autoencoder pretraining, orthogonality regularization or our pro-
posed method. Besides, a subscript will denote the task variant the model was trained
for, such as StdT for task T. While we typically use all layers of a network in the
constraints, a reduced variant that we compare below only applies the constraint for
the input data, i.e., m=1. A network trained with this variant, denoted by RR1

A, is
effectively trained to only reconstruct the input. It contains no constraints for the inner
activations and layers of the network. For the Ort models, we use the Spectral Restricted
Isometry Property algorithm [166].

We verify that the column vectors of Vm of models from RR training contain the dom-
inant features of the input with the help of a classification test, employing a single fully
connected layer, i.e. d2 = M1d1, with BN and activation. To quantify this similarity, we
compute an LPIPS distance [147] between vim and the training data (lower values being
better). We employ a training dataset constructed from two dominant classes (a peak in
the top left, and bottom right quadrant, respectively), augmented with noise in the form
of random scribbles, as shown in Figure 4.3. Based on the analysis above, we expect the
RR training to extract the two dominant peaks during training. The LPIPS measure-
ments confirm our SVD argumentation above, with average scores of 0.217 ± 0.022 for
RR, 0.319± 0.114 for Pre, 0.495± 0.006 for Ort, and 0.500± 0.002 for Std. I.e., the RR
model fares significantly better than the others. At the same time, the peaks are clearly
visible for RR models, while the other models fail to extract structures that resemble the
input. Thus, by training with the full network and the original training objective, our
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Figure 4.4: MI planes for different models: a) Visual overview of the contents. b) Plane for
task A. Points on each line correspond to layers of one type of model. All points
of RRA, are located in the center of the graph, while StdA and OrtA, exhibit large
I(Dm;Y ), i.e., specialize on the output. PreA strongly focuses on reconstructing
the input with high I(X;Dm) for early layers. c, d) After fine-tuning for A/B.
The last layer D7 of RRAA and RRAB successfully builds the strongest relationship
with Y , yielding the highest accuracy.

pretraining yields structures that are interpretable and be inspected by humans. More
details about the tests are illustrated in Appendix B.

The results above experimentally confirm our formulation of the RR loss and its ability
to extract dominant and generalizing structures from the training data. In addition, they
give the first indication that this still holds when non-linear components such as AFs are
present. Next, we will focus on quantified metrics and turn to measurements in terms
of mutual information to illustrate the behavior of our pretraining for deeper networks.

4.2 Mutual Information

As our approach hinges on the introduction of the reverse pass, we will show that
it succeeds in terms of establishing mutual information (MI) between the input and
the constrained intermediates inside a network. More formally, MI I(X;Y ) of ran-
dom variables X and Y measures how different the joint distribution of X and Y is
w.r.t. the product of their marginal distributions, i.e., the Kullback-Leibler divergence
I(X;Y ) = DKL[P(X,Y )||PXPY ]. [174] proposed MI plane to analyze trained models,
which show the MI between the input X and activations of a layer Dm, i.e., I(X;Dm)
and I(Dm;Y ), i.e., MI of layer Dm with output Y . These two quantities indicate how
much information about the in- and output distributions are retained at each layer, and
we use them to show to which extent our pretraining succeeds at incorporating infor-
mation about the inputs throughout training. Details of the settings can be found in
Appendix B.

The following tests employ networks with six fully connected layers and non-linear
AFs, with the objective to learn the mapping from 12 binary inputs to 2 binary output
digits [176], with results accumulated over five runs. We compare the versions StdA,
PreA, OrtA, RRA, and a variant of the latter: RR1

A, i.e. a version where only the input
d1 is constrained to be reconstructed. While Figure 4.4 (a) visually summarizes the
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content of the MI planes, the graph in Figure 4.4 (b) highlights that training with the
RR loss correlates input and output distributions across all layers: the cluster of green
points in the center of the graph shows that all layers contain balanced MI between
in- as well as output and the activations of each layer. RR1

A fares slightly worse, while
StdA and OrtA almost exclusively focus on the output with I(Dm;Y ) being close to one.
PreA instead only focuses on reconstructing inputs. Thus, the early layers cluster in the
right-top corner, while the last layer I(D7;Y ) fails to align with the outputs. Once we
continue fine-tuning these models without regularization, the MI naturally shifts towards
the output, as shown in Figure 4.4 (c). Here, RRAA outperforms the other models in
terms of the final performance. Likewise, RRAB performs best for a transfer task B
with switched output digits, as shown in graph (d). The final performance for both
tasks across all runs is summarized in Figure 4.5. The graph shows that the proposed
pretraining succeeds in robustly establishing mutual information between inputs and
targets across a full network while extracting reusable features. The non-linearity of the
underlying network architectures does not impede the performance of the RR models.
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Figure 4.5: Performance for MI source and transfer tasks for the models of Figure 4.4. Due to
the large standard deviation of Ort, we show min/max value ranges. The dashed
gray line and region show the baseline accuracy for StdB. The top-left inset high-
lights the stability of the high accuracy results from RR training.

MI has received attention recently as a learning objective, e.g., in the form of the
InfoGAN approach [177] for learning disentangled and interpretable latent representa-
tions. While MI is typically challenging to assess and estimate [178], the results above
show that our approach provides a straightforward and robust way for including it as
a learning objective. In this way, we can easily, e.g., reproduce the disentangling re-
sults from [177] without explicitly calculating mutual information, which are shown in
Figure 5.1(c) and Figure 4.6. A generative model with our pretraining extracts intu-
itive latent dimensions for the different digits, line thickness, and orientation without
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Figure 4.6: Additional results for the disentangled representations with the MNIST data: For
every row in the figures, we vary the corresponding latent code (left to right), while
keeping all other inputs constant. Different rows indicate a different random noise
input. For example, in b) every column contains five results which are generated
with different noise samples, but the same latent codes c1∼3. In every row, 10
results are generated with 10 different values of c1, which correspond to one digit
each for b). a) For a regular training (Std), no clear correspondence between c1
and the outputs are apparent (similarly for c2,3). c) Different c2 values result in
a tweaked style, while c3 controls the orientation of the digit, as shown in d).
Thus, in contrast to Std, the pretrained model learns a meaningful, disentangled
representation.

any additional modifications to the loss function. The joint training of the full network
with the proposed reverse structure, including non-linearities and normalization, yields
a natural and intuitive decomposition.

4.3 Pretraining Network Architectures

While the proposed pretraining is significantly easier to integrate into training pipelines
than classic autoencoder pretraining, there are subtleties w.r.t. the order of the op-
erations in the reverse pass that we clarify with examples in this section. To specify
NN architectures, we use the following notation: C(k, l, q), and D(k, l, q) denote con-
volutional and deconvolutional operations, respectively, while fully connected layers are
denoted with F (l), where k, l, q denote kernel size, output channels and stride size,
respectively. The bias of a CNN layer is denoted with b. I/O(z) denote input/output,
their dimensionality is given by z. Ir denotes the input of the reverse pass network.
tanh, relu, lrelu denote hyperbolic tangent, ReLU, and leaky ReLU activation func-
tions (AFs), where we typically use a leaky tangent of 0.2 for the negative half-space.
UP , MP and BN denote 2× nearest-neighbor up-sampling, max pooling with 2 × 2
filters and stride 2, and batch normalization, respectively.

Below we provide additional examples of how to realize the pretraining loss LRR in
a neural network architecture. As illustrated in Equation 4.3, dm, and λm denote the
vector of activated intermediate data in layer m from the forward pass, and a scaling
factor, respectively. d

′
m denotes the activations of layer m from the reverse pass. For

instance, let Lm() denote the operations of a layer m in the foward pass, and L′
m()

the corresponding operations for the reverse pass. Then dm+1 = Lm(dm), and d
′
m =

L′
m(d

′
m+1).
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When Equation 4.14 is minimized, we obtain activated intermediate content during the
reverse pass that reconstructs the values computed in the forward pass, i.e. d

′
m+1 = dm+1

holds. Then d
′
m can be reconstructed from the incoming activations from the reverse

pass, i.e., d
′
m+1, or from the output of layer m, i.e., dm+1. Using d

′
m+1 results in a global

coupling of input and output throughout all layers, i.e., the full loss variant. On the
other hand, dm+1 yields a variant that ensures local reversibility of each layer, and yields
a very similar performance, as we will demonstrate below. We employ this local loss for
networks without a unique, i.e., bijective, connection between two layers. Intuitively,
when inputs cannot be reliably reconstructed from outputs.

Full Network Pretraining An illustration of a CNN structure with AFs and BN and
a full loss is shown in Figure 4.2 in the main paper. To illustrate this setup, we
consider an example network employing convolutions with mixed AFs, BN, and MP .
Let the network receives a field of 322 scalar values as input. From this input, 20, 40,
and 60 feature maps are extracted in the first three layers. Besides, the kernel sizes are
decreased from 5 × 5 to 3 × 3. To clarify the structure, we use ReLU activation for the
first convolution, while the second one uses a hyperbolic tangent, and the third one a
sigmoid function. With the notation outlined above, the first three layers of the network
are

I(32, 32, 1) = d1 → C1(5, 20, 1) + b1 → BN1 → relu

→ d2 → MP → C2(4, 40, 1) + b2 → BN2 → tanh

→ d3 → MP → C3(3, 60, 1) + b3 → BN3 → sigm

→ d4 → ...

(4.18)

The reverse pass for evaluating the loss re-uses all weights of the forward pass and
ensures that all intermediate vectors of activations, dm and d

′
m, have the same size and

content in terms of normalization and non-linearity. We always consider states after
activation for LRR. Thus, dm denotes activations before pooling in the forward pass
and d

′
m contains data after up-sampling in the reverse pass, in order to ensure matching

dimensionality. Thus, the last three layers of the reverse network for computing LRR

take the form:

... → d
′
4 → −b3 → D3(3, 40, 1) → BN2 → tanh → UP

→ d
′
3 → −b2 → D2(4, 20, 1) → BN1 → relu → UP

→ d
′
2 → −b1 → D1(5, 3, 1)

→ d
′
1 = O(32, 32, 1).

(4.19)

Here, the de-convolutions Dx in the reverse network share weights with Cx in the forward
network. I.e., the 4× 4× 20× 40 weight matrix of C2 is reused in its transposed form as
a 4 × 4 × 40 × 20 matrix in D2. Additionally, it becomes apparent that AFs and BN of
layer 3 from the forward pass do not appear in the listing of the three last layers of the
reverse pass. This is caused by the fact that both are required to establish the latent
space of the fourth layer. Instead, d3 in our example represents the activations after
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the second layer (with BN2 and tanh), and hence the reverse pass for d
′
3 reuses both

functions. This ensures that dm and d
′
m contain the same latent space content in terms

of range and dimensionality, and can be compared in Equation 4.14.
For the reverse pass, we additionally found it beneficial to employ an AF for the very

last layer if the output space has suitable content. For instance, for inputs in the form
of RGB data we employ an additional activation with a ReLU function for the output
to ensure the network generates only positive values.

Localized Pretraining In the example above, we use a full pretraining with d
′
m+1 to

reconstruct the activations d
′
m. However, if the architecture of the original network

makes use of operations between layers that are not bijective, e.g., residual connections,
we instead use the local loss. Note that our loss formulation has no problems with
irreversible operations within a layer, e.g., most convolutional or fully-connected layers
typically are not fully invertible. In all these cases the loss will drive the network towards
a state that is as-invertible-as-possible for the given input dataset. However, this requires
a reliable vector of target activations in order to apply the constraints. If the connection
between layers is not bijective, we cannot reconstruct this target for the constraints, as
in the examples given above. In such cases, we regard every layer as an individual unit
to which we apply the constraints by building a localized reverse pass. For example,
given a simple convolutional architecture with

d1 → C1(5, 20, 1) + b1 = d2 (4.20)

in the forward pass, we calculate d
′
1 with

(d2 − b1) → D1(5, 3, 1) = d
′
1. (4.21)

We, e.g., use this local loss in the Resnet110 network below. It is important to note that
despite being closer to regular autoencoder pretraining, this formulation still incorporates
all non-linearities of the original network structure, and jointly trains full networks while
taking into account the original learning objective.

4.4 Application

We now turn to a broad range of network structures, i.e., CNNs, Autoencoders, and
GANs, with a variety of datasets and tasks to show our approach succeeds in improving
inference accuracy and generality for modern-day applications and architectures. All
tests use non-linear activations and several of them include BN. Experimental details
are provided in Appendix B.

CIFAR-100 classification We first focus on orthogonalization for a CIFAR-100 classi-
fication task with a ResNet-18 network, and compare the performance of RR with the
variants Std, Ort, in addition to an OCNN (in light blue) network [179]. The CNN
architecture has ca. 11 million trainable parameters in each case. Pre is not included
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Figure 4.7: CIFAR-100 classification performance for RR, Std, Ort and OCNN. RR yields the
highest accuracy, and outperforms state-of-the-art methods for orthogonalization
(Ort and OCNN).
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Figure 4.8: Test accuracy over training epochs for StdTS, OrtTS, and RRTS. The RRTS model
consistently exhibits faster convergence than the other two versions.

in this comparison due to its incompatibility with ResNet architectures. The resulting
performance for the different variants (evaluated for 3 runs each) is shown in Figure 4.7.
For CIFAR-100, the orthogonal regularizations (Ort and OCNN) result in noticeable
performance gains of 0.33% and 0.337%, but RR clearly outperforms both with an im-
provements of 1.2%. Despite being different formulations, both Ort and OCNN represent
orthogonal regularizers that aim for the same goal of weight orthogonality. Hence, their
performance is on-par, and we will focus on the more generic Ort variant for the following
evaluations.

Transfer-learning Benchmarks We evaluate our approach with two state-of-the-art
benchmarks for transfer learning. The first one uses the texture-shape dataset from
[180], which contains challenging images of various shapes combined with patterns and
textures to be classified. The results below are given for 10 runs each. For the stylized
data shown in Figure 4.9 (a), the accuracy of PreTS is low with 20.8%. This result is in
line with observations in previous work and confirms the detrimental effect of classical
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Figure 4.10: Left: Examples from CIFAR 10.1 dataset. Right: Accuracy comparisons when
applying models trained on CIFAR 10 to CIFAR 10.1 data.

pretraining. StdTS yields a performance of 44.2%, and OrtTS improves the performance
to 47.0%, while RRTS yields a performance of 54.7% (see Figure 4.9 b). Thus, the
accuracy of RRTS is 162.98% higher than PreTS, 23.76% higher than StdTS, and 16.38%
higher than OrtTS. To assess generality, we also apply the models to new data without
re-training, i.e. an edge and a filled dataset, also shown in Figure 4.9 (a). For the
edge dataset, RRTS outperforms PreTS, StdTS and OrtTS by 178.82%, 50% and 16.75%,
respectively.

Exemplary curves for test accuracy at training time for StdTS, OrtTS, and RRTS are
shown in Figure 4.8. PreTS is not included since it’s layer wise curriculum precludes a
direct comparison. The graph shows that RRTS converges faster than StdTS and OrtTS

from the very beginning. It achieves the performance of StdTS and OrtTS with ca. 1
3

and 1
2 of number of training epochs, respectively. Achieving comparable performance

with less training effort, and a higher final performance support the reasoning given
in Sec. 4.1: RRTS with its reverse pass is more efficient at extracting relevant features
from the training data. Over the course of our tests, we observed a similar convergence
behavior for a wide range of other runs.

It is worth pointing out that the additional constraints of our training approach lead
to moderately increased requirements for memory and computations, e.g., 41.86% more
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time per epoch than regular training for the texture-shape test. On the other hand, it
allows us to train smaller models: we can reduce the weight count by 32% for the texture-
shape case while still being on-par with OrtTS in terms of classification performance. By
comparison, regular layer-wise pretraining requires significant overhead and fundamental
changes to the training process. Our pretraining fully integrates with existing training
methodologies and can easily be deactivated via λm = 0. More details of runtime
performance and training behavior are given in the appendix.

As a second test case, we use a CIFAR-based task transfer [181] that measures how
well models trained on the original CIFAR 10, generalize to a new dataset (CIFAR 10.1)
collected according to the same principles as the original one. Here we use a Resnet-110
with 110 layers and 1.7 million parameters, Due to the consistently low performance
of the Pre models [182], we focus on Std, Ort and RR for this test case. In terms of
accuracy across 5 runs, OrtC10 outperforms StdC10 by 0.39%, while RRC10 outperforms
OrtC10 by another 0.28% in terms of absolute test accuracy (Figure 4.10). This increase
for RR training matches the gains reported for orthogonality in previous work [166], thus
showing that our approach yields substantial practical improvements over the latter. It
is especially interesting how well performance for CIFAR 10 translates into transfer
performance for CIFAR 10.1. Here, RRC10 still outperforms OrtC10 and StdC10 by
0.22% and 0.95%, respectively. Hence, the models from our pretraining very successfully
translate gains in performance from the original task to the new one, indicating that
the models have successfully learned a set of more general features. To summarize, both
benchmark cases confirm that the proposed pretraining benefits generalization.

4.4.1 Smoke Generation

In this section, we employ our pretraining in the context of generative models for trans-
ferring from synthetic to real-world data from the ScalarFlow dataset [183]. As SR
task A, we first use a fully-convolutional generator network, adversarially trained with
a discriminator network on the synthetic flow data. While regular pretraining is more
amenable to generative tasks than orthogonal regularization, it can not be directly com-
bined with adversarial training. Hence, we pretrain a model Pre for a reconstruction task
at HR without a discriminator instead. Figure 4.11(a) demonstrates that our method
works well in conjunction with the GAN training: As shown in the bottom row, the
trained generator succeeds in recovering the input via the reverse pass without modifi-
cations. A regular model StdA, only yields a black image in this case. For PreA, the
layer-wise nature of the pretraining severely limits its capabilities to learn the correct
data distribution [184], leading to low performance.

We now mirror the generator model from the previous task to evaluate an autoencoder
structure that we apply to two different datasets: the synthetic smoke data used for the
GAN training (task B1), and a real-world RGB dataset of smoke clouds (task B2). Thus
both variants represent transfer tasks, the second one being more difficult due to the
changed data distribution. The resulting losses, summarized in Figure 4.11(b), show that
RR training performs best for both autoencoder tasks: the L2 loss of RRAB1

is 68.88%
lower than StdAB1 , while it is 13.3% lower for task B2. The proposed pretraining also
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Figure 4.11: a) Example output and reconstructed inputs, with the reference shown right.
Only RRA successfully recovers the input, StdA produces a black image, while
PreA fares poorly. b) L2 loss comparisons for two different generative transfer
learning tasks (averaged across 5 runs each). The RR models show the best
performance for both tasks.

clearly outperforms the Pre variants. Within this series of tests, the RR performance
for task B2 is especially encouraging, as this task represents a synthetic to real transfer.

4.4.2 Weather Prediction

Pretraining is particularly attractive in situations where the amount of data for training
is severely limited. Weather forecasting is such a case, as accurate, real-world data for
many relevant quantities are only available for approximately 50 years. We use the
ERA dataset [145] consisting of assimilated measurements, and additionally evaluate
our models with simulated data from the CMIP database [185]. We replicate the
architecture and training procedure of the WeatherBench benchmark [186]. Hence we
use prognostic variables at seven vertical levels, together with some surface and constant
fields at the current time t as well as t − 6h and t − 12h as input, and target three-
day forecasts of 500 hPa geopotential (Z500), 2-meter temperature (T2M), and 850
hPa temperature (T850). We use a convolutional ResNet architecture with 19 residual
blocks and 6.36M trainable parameters, with a latitude-weighted root mean squared
error (RMSE) as loss functions for training. For the worldwide observations dataset
ERA (six-hour intervals with a 5.625◦ resolution.), we train the models with data from
1979 to 2015 and evaluate performance with RMSE measurements across all data points
from the years 2017 and 2018. For the historical simulation dataset CMIP, the years
1850 to 2005 are used as training data, while performance is measured with the years
2006 to 2014.

We show comparisons between the regular model Std and RR for both ERA and
CMIP datasets. As Rasp et al. [186] relied on dropout regularization, we additionally
train and evaluate models for both datasets with and without dropout. Following their
methodology, L2 regularization is applied for all tests. As regular pretraining does not
support residual connections, we omit it for the weather forecasting tests.
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Figure 4.12: Latitude-weighted RMSE comparisons between Std and RR for ERA and CMIP
datasets. Models trained with RR pretraining significantly outperform state-of-
the-art Std for all cases. The minimum performance improvements of RR is 5.7%
for the case with ERA dataset and dropout regularization.

Performance comparisons are shown in Figure 4.12. Across all cases, irrespective of
whether observation data or simulation data is used, the RR models clearly outperform
the regular models and yield consistent improvements. This also indicates that our
approach is compatible with other forms of regularization, such as dropout and L2

regularization. The RR models yield performance improvements of 6% ˜8% for the
CMIP cases, and the ERA case with dropout. Here the re-trained Std version is on-par
with the data reported in [186], while our RR model exhibits a performance improvement
of 6.3% on average. For the ERA dataset without dropout regularization, the RR model
decreases the loss even more strongly by 13.7%.

Visualizations of an inference result for 9 Aug. 2019 22:00 for the ERA dataset
without dropout regularization are shown in Figure 5.1 and Figure 4.13(a). Predictions
of RR yield lower errors, and are closer to the reference. The same conclusions can be
drawn from the example at 26 June 2014 0:00 from the CMIP dataset without dropout
regularization in Figure 4.13(b).

4.5 Discussion and Conclusions

We have proposed a novel pretraining approach inspired by classic methods for unsuper-
vised autoencoder pretraining and orthogonality constraints. In contrast to the classical
methods, we employ a constrained reverse pass for the full non-linear network structure
and include the original learning objective. Weight matrix SVD is applied to visually
analyse and interpret that our proposed method is more capable of extracting dominant
features from the training dataset. We have shown for a wide range of scenarios, from
mutual information, over transfer learning benchmarks to weather forecasting, that the
proposed pretraining yields networks with improved performance and better generaliz-
ing capabilities. Our training approach is general, easy to integrate, and imposes no
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Figure 4.13: a) Comparisons of predictions for T2M and T850 on 9 Aug. 2019, 22:00 for the
ERA dataset without dropout regularization. b) Prediction comparisons of three
physical quantities on 26 June 2014, 0:00 for the CMIP dataset without dropout
regularization. As confirmed by the quantified results, RR predicts results closer
to the reference.

requirements regarding network structure or training methods. As a whole, our results
show that unsupervised pretraining has not lost its relevance in today’s deep learning
environment.

As future work, we believe it will be exciting to evaluate our approach in additional
contexts, e.g., for temporal predictions [187, 188], and for training explainable and in-
terpretable models [189, 177, 190].
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In Part III, we will explore natural video generation with GANs,
more specifically, pose-guided human video generation. Similar
to fluid flow generation in Part II, temporal coherence of
generated natural video is also crucial. But unlike flow data,
accurate dynamic information of the sequence, such as motion
velocity, and ground truth sequence are hard to access, which
increases the difficulties to generate the temporally coherent
sequence. On the other hand, for human video generation, how
to represent the human is also critical to the quality of the results.
In the following, we firstly improve the current popular human
representation, UV coordinate maps, and propose a method to
generate temporally coherent UV coordinate sequences for video
generation.
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5 Temporally Coherent UV Coordinate
Generation

In image or video generation tasks [105, 106] that involve people, it is crucial to obtain
accurate representations of the 3D human shape and appearance to efficiently gener-
ate modified content. In this context, UV coordinates are a popular 2D representation
that establish dense correspondences between 2D images and 3D surface-based repre-
sentations of the human body. UV coordinates go beyond skeleton landmarks to encode
human pose and shape, and are widely used in image/video editing, augmented reality,
and human-computer interaction [191, 192, 193]. In this chapter, we tackle video gener-
ation of people, with a focus on efficiency and capturing loose clothing. Unlike previous
works [132, 96, 194] which use large networks to capture motion and appearance, we
train a model to generate temporally coherent UV coordinates. We use a single, fixed
texture to store appearance information so that our model can solely focus on learning
UV dynamics.

Human body UV coordinates can be derived indirectly from estimates of 3D shape
models [110, 111, 112, 113] like SMPL [114]. Alternatively, direct estimation methods like
DensePose [16] and UltraPose [115] bypass intermediate 3D models to directly output
UV coordinates from a single RGB image. The convenience of direct methods has led to
DensePose being widely used in animation and editing applications [109, 116, 117, 118].
Nevertheless, the UV coordinates obtained from SMPL and DensePose approximate
only human body silhouettes in tight clothing. They do not capture loose clothing, such
as long skirts or wide pants (see comparisons in Figure 5.6 and 5.7). In addition, the
methods for UV estimation work only on individual images. For video inputs, they are
applied frame-by-frame [119, 120] without considering the temporal relationship between
frames. As such, the UV coordinates are inconsistent over time, so any re-targeted
sequences will shift and jitter.

In this chapter, we focus on improving the spatial coverage and temporal coherence of
UV coordinates generated from a sequence of 2D images. We target the ability to retain
the full body plus clothing silhouette for arbitrary styles of clothing. Our approach is
agnostic to the UV source, which we demonstrate via inputs from both DensePose [16]
and SMPL model estimates [113]. For temporal coherence, we aim at achieving the

73



Part III.

𝐼௧

𝑃௧
௥

𝐼௧
ᇱ

𝑃௧
௚

𝐼௧
ᇱ

𝑃௧
௚

𝑇௢ 𝐼௧೅೚
ᇱ

Improved Temporal Stability

𝑃௧
௚

Reuse 𝑃௧
௚ without rerunning 𝐺

Improved Spatial Quality

𝐺Generator

a) b)

c)

New Look

Synthesizing

Synthesizing

Figure 5.1: a) Our method generates temporally coherent UV coordinates that capture loose
clothing from off-the-shelf human pose UV estimates such as SMPL and Dense-
Pose [114, 16]. b) Generated UV coordinates allow us to recover entire sequences
from a constant texture map. c) Virtual try-on and modifications of the look can
be easily achieved with minimal computation via a simple lookup.

point-to-point correspondences among different frames via UV coordinate maps, so that
video sequences can be generated with one fixed texture.

A core challenge of learning a model for extended and temporally coherent UV co-
ordinates lies in the lack of data for direct supervision. Hence, we propose a novel
learning scheme that combines both supervised and unsupervised components. We first
pre-process a sequence of UV coordinates obtained from DensePose or SMPL via spatial
extension and temporal stabilization to obtain training data for an initial training stage.
We then shift the learning gradually from supervised, with the pre-processed data, to
unsupervised, driven by a differentiable UV mapping pipeline between the texture and
image space.

Our results demonstrate that using loss terms formulated in both UV and image
space are crucial for generating high-quality UV coordinates with temporal coherence.
As our generator does not take RGB images as input, the UV coordinates generated
from our trained model can be directly paired with different texture maps to generate
virtual try-on videos with a very simple lookup step. This is device-independent and
orders of magnitude more efficient than other methods, which generate video outputs
by evaluating neural networks.
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Figure 5.2: a) Example mapping from It to Tt via P r
t , and back to I ′t. P r

t cannot fully recover
the image, and misses skirt, hair, and shoulder parts. Besides, colours inside the
human body are also partially incorrect. b) Mapping results of P r

t with Tgrid as
input. Most quadrants are preserved, indicating that the corresponding features
are not destroyed after the UV mapping.

5.1 Preliminaries

5.1.1 Notation & definitions

An image It ∈ Rsx×sy×3 for frame t in a sequence stores RGB information at a location
x ∈ Rsx×sy . The appearance of a person in It can also be represented in a texture
Tt ∈ Rtx×ty×3 with locations u. The image It and texture Tt are related via the UV
coordinates Pt ∈ Rsx×sy , where

Pt(x) = u, s.t. It(x) = Tt(u). (5.1)

To ensure differentiability, we treat It, Pt and Tt as continuous functions in space via
a suitable interpolation operator; we use bi-linear interpolation in our work. In practice,
the three fields are represented as time sequences over t.

The corresponding texture Tt for an image It can be generated by warping It with
function W via the warping grid ωT (Pt); conversely, the image content can also be
recovered as I ′t from the texture Tt and UV coordinates Pt with warping grid ωI from
Tt to It (see Figure 5.2):

Tt = W(It, ωT (Pt)) and I ′t = W(Tt, ωI(Pt)). (5.2)

Note the warping function W(I, ω), for every location x in I, returns a bi-linear inter-
polation of I at location ω(x).

In our work, we refer to the UV outputs from DensePose [16] or unwrapped from
the 3D mesh of models like SMPL [113] as raw UV coordinates, denoted by P r

t for
frame t. Raw UV coordinates are typically restricted by the human body silhouette.
As such, loose clothing parts are cut off (see the missing skirt parts in Figure 5.1a and
Figure 5.2a. Additionally, the raw UV P r

t is not one-to-one. Multiple pixels x of It
may be mapped to the same u in Tt, leading to a loss of information in Tt. These two
shortcomings may result in extreme and undesirable differences between the original It
and the reconstructed I ′t (see example in Figure 5.2a. For a sequence of images over
time, the differences are further compounded. As P r

t can only be estimated frame-wise,
resulting textures Tt tend to lack correspondence over time.
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5.1.2 Problem formulation

Given the non-idealities of P r
t , we aim to develop a system that can output a sequence

of refined UV coordinates P g
t leading to faithful reconstructions I ′t = It. Additionally,

we aim for an independent and lightweight appearance representation in the form of a
single texture To, which is constant over time.

We start by defining a model G parameterized by θ to estimate refined UV coordinates
P g
t from raw UV P r

t :

P g
t = G(P r

t ; θ). (5.3)

For I ′t to be of high quality and for P g
t to be temporally stable, we consider appearance

and temporal loss functions

Lapp =
N∑
t=0

(||I ′t − It||2) =
N∑
t=0

(||W(Tt, ωI(P g
t )) − It||2),

Ltemp =
N∑
t=0

(||Tt − To||2) =
N∑
t=0

(||W(It, ωT (P g
t )) − To||2),

(5.4)

where N represents the sequence length and To a constant texture. Minimizing ||I ′t−It||2
leads to improvements of I ′t. Minimizing ||Tt−To||2 encourages a constant texture, which
in turn largely alleviates inconsistent correspondences over time.

5.2 Method

One could learn θ of model G if raw UV (P r
t ) were paired ground truth UV coordi-

nates fulfilling the constraints in Equation 5.4. Such ground truth data does not exist
in practice, so we are forced to consider indirect approaches. Naively applying an unsu-
pervised or self-supervised training is ill-conditioned and error-prone, due to the strong
non-linearities in mappings between It, Tt, and Pt. As such, we propose an approach to
combine both supervised and unsupervised learning.

We start with a data pre-processing step (Sections 5.2.1 to 5.2.3) that gradually refines
P r
t to establish “ground-truth”. It is worth noting that we handle the two parts of

Equation 5.4 separately due to the strong non-linearity and large distance between P r
t

and P g
t . After an initial training of G with the pre-processed data, we then incorporate

unsupervised losses from the image space (Section C.1) to train a final model G that
jointly improves spatial and temporal quality. The trained model G generates full-
silhouette UV coordinates for different poses.

Since appearance or RGB information is encoded only in the texture To, which is used
for the loss and preprocessing of the data but not a part of the network inputs, the
resulting UV coordinate sequence P g

t can be directly used for video generation with any
given texture. Subsequently, generating a new output sequence with changed colours or
patterns is highly efficient.
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5.2.1 UV extension

Raw UV inputs omit important details (see example in Figure 5.2a. First, we aim to
achieve full silhouette coverage for P r

t . To better understand the relationship between It,
P r
t and Tt, we visualize UV mapping results for a synthetic grid texture W(Tgrid, ωI(P r

t ))
in Figure 5.2b. Here, Tgrid contains an evenly distributed grid quadrants, which remain
well-preserved, suggesting that the UV mapping with P r

t retains a piece-wise regular
surface manifold, albeit with different scaling factors.

The grid structure suggests that neighbouring points in It remain neighbours in Tt,
and additional entries can be added to the raw UV coordinates P r

t via extrapolation from
neighbouring points. It is worth pointing out that for traditional UV generation, cutting
the object surface and minimizing surface distortion are two challenging steps [195].
The raw UV coordinates provide an initial unwrapping of the body, hence we focus on
solving the latter challenge of minimizing distortions when extrapolating content in the
UV coordinates.

In this chapter, we extend the UV coordinates through energy minimization, em-
ploying a virtual mass-spring system. Mass-spring systems are commonly used in the
simulation of clothing [196, 50]. Additionally, [197] and [198] have shown that the po-
tential energy of a mass-spring system is minimized at the equilibrium state. We map
the new extrapolated point from It to Tt and apply a virtual mass-spring system in Tt

to reduce the surface distortion. We assume that all neighbouring points O1, O2, ..., On

inside a region of size 40 × 40 are connected with this new extrapolated point O0 via
virtual springs in the texture. The pushing/pulling forces f1, f2, ..., fn from neighbour
points will drive O0 to the direction of

∑n
i=1 fi for every step until O0 arrives at an equi-

librium state with a new position, where
∑n

i=1 fn = 0. From our experience, we found
that applying pure pushing forces can generate valid results, since the parts that need
to be extended are always located at the outline of the body. After applying pushing
forces, we switch the forces to pulling in order to make the texture more compact. In
our formulation, springs naturally encode the area preservation constraints among new
extrapolated points and their neighbouring points in a small region of the texture map.
The spring forces drive the new extrapolated points to new positions until the system
finds an equilibrium state with reduced distortion.

We denote the UV coordinates after the extension with P e
t . An example result is

shown in Figure 5.3b. We can see that the missing parts from the raw UV coordinates
computed via DensePose are recovered successfully, such as the side of the dress.

5.2.2 UV optimization

After UV extension, artifacts in I ′t may remain (See Figure 5.3b). One cause of these
artifacts is duplicate UV coordinates in P r

t , as it is not constrained to be a one-to-one
mapping, especially for direct methods such as DensePose. To further improve Pt, we
directly minimize Lapp(Pt) via gradient descent, initializing Pt with the extended UV

map P e
t . The gradient

∂Lapp(Pt)
∂Pt

can be estimated via the intermediate warping grids
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Figure 5.3: a) Raw UV coordinates, b) with application of UV extension and c) optimization.
The UV extension allows missing parts such as the dress to be mapped into the
correct parts of Tt, while UV optimization makes I ′t closer to It.

ωT (P r
t ), and ωI(P r

t ). More Specifically, from Lapp(Pt) we will have

∂Lapp

∂Pt
=

∂Lapp

∂I ′t
× ∂I ′t

∂Pt
. (5.5)

We compute the gradient
∂I′t
∂Pt

via the intermediate warping grids ωT (P r
t ) and ωI(P r

t )
from UV mappings

Tt = W(It, ωT (Pt)) and I ′t = W(Tt, ωI(Pt)). (5.6)

And relationship between ωI(Pt) and Pt can be written as

ωI(Pt(x)) = x− Pt(x). (5.7)

This gives:
∂I ′t
∂Pt

=
∂I ′t
∂Tt

× ∂Tt

∂Pt
+

∂I ′t
∂ωI(Pt)

× ∂ωI(Pt)

∂Pt
;

∂Tt

∂Pt
=

∂T

∂ωT (Pt)
× ∂ωT (d(It))

∂Pt
;

∂ωT (Pt)

∂Pt
=

ωT (Pt)

∂ωI(Pt)
× ∂ωI(Pt)

∂Pt
.

(5.8)

In an implementation, we can conveniently obtain ∂ωT (Pt)
∂Pt

via

∂ωT (Pt)

∂Pt
= W(

∂ωI(Pt)

∂Pt
, ωT (Pt)), (5.9)

and ∂ωI(Pt)
∂Pt

can be computed via Equation 5.7. This provides
∂I′t
∂Pt

for optimization and
learning steps.
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Figure 5.4: Overview and results of temporal UV generation. a) Approximate feature matching
is achieved via the optical flow (OF) from To to Tt. b) RGB matching is applied
to correct the coordinates resulting from errors in OF. Images in c) are generated
with P o

t and To, i.e., I ′tTo
= W(To, ωI(P o

t )). Images in d) are similarly generated

with P f
t . Green and blue arrows are shown here to track the two patterns in the

images. After the temporal relocation step, results are more temporally coherent.

Following common practice in non-linear settings, we add a gradient and Laplacian
regularizer to encourage smooth solutions [199] and minimize Lapp + Lr, where

Lr = α1(||∇Pt||2F ) + α2

∑
i,j=0,1

||Hij(Pt)||2F , (5.10)

H is the Hessian and || · ||F denotes the Frobenius norm. It is visible in Figure 5.3c that
most of the artifacts in I ′t have been removed by the optimization procedure, and the
image content is significantly closer to the reference. We denote the optimized UVs with
P o
t .

We apply a gradient descent optimizer with α1 = 100 and α2 = 10 for regularizer Lr.
Due to the large distance between P e

t and P o
t , we use a large learning rate, such as

10.0, to accelerate the optimization procedure. We found that promising results can be
obtained after ca. 16500 steps. UV optimization takes about 75s/frame, measured for
resolution 1200 × 800 with a NVIDIA RTX 2080 Ti GPU. All frames can be optimized
in parallel.

5.2.3 UV temporal relocation

Minimizing Ltemp in Equation 5.4 will improve the temporal stability of the texture
maps. To do so, we find point correspondences Qt(u) between Tt and To so that Tt(u) =

To(Qt(u)). The correspondences allow new UV coordinates P f
t to map It back to the

constant To instead of Tt. For simplicity, we assign as the constant To the texture from
frame 0 of a sequence, i.e., To = T0.
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We initialize the point correspondences with optical flow from To to Tt, i.e., OF (To, Tt),
as shown in Figure 5.4a. An approximate correspondence between Tt and To can be
written as Qr

t (u) = W(Q0(u), OF (To, Tt)). In theory, the reconstruction T ′
t can then be

reconstructed from To and Qr
t (u) via a lookup step, i.e., T ′

t(u) = To(Q
r
t (u)).

Note that errors in OF (To, Tt) makes Qr
t (u) only an approximate correspondence,

and there are still differences between the reconstructed T ′
t and the true Tt. To correct

these errors, we remove the coordinates in Qr
t (u) where the texture content does not

match, i.e., T ′
t(u) ̸= Tt(u). We then fill them in with regions from To to obtain the

final Qt(u). The filling is based on a simple similarity measure of the RGB values.
Specifically, we assume that similar, nearby texture patches in T0 and Tt will have the
same correspondences in Q0 and Qt. For a missing area A in Qc

t , as shown in Figure 5.4,
we locate the region with the same position as A in Tt. We record the values of Qc

t and
Tt inside region A with [Qc

t ]A and [Tt]A, respectively. Then we can find a region B in T0

via

min ||[Tt]A − [T0]B||2F , (5.11)

and [Q0]B are used to fill in [Qc
t ]A to obtain Qt.

Afterwards, Qt can be mapped to Qimg
t in the image space via P o

t . Qimg
t (u) is directly

our P f
t if P r

t is represented with the same coordinates system as u, such as the P r
t

unwrapped from the SMPL model. But for the P r
t from the DensePose model, which

uses a different coordinate system from u, we additionally transform Qimg
t (u) into P f

t .

Comparisons of results before and after the temporal relocation step are shown in
Figure 5.4c-d. The images I ′tTo recovered from To are more temporally coherent after
the relocation step.

5.2.4 Temporal UV model training

So far, we have improved the spatial and temporal quality of the raw UV P r
t separately.

We now consider the two objectives jointly in a spatio-temporal manner and apply an
adversarial training for G from Equation 5.3. The learned G can then generate complete
UV coordinates P g

t at test time given raw UV coordinates P r
t . Below, we define several

unsupervised loss terms in both the UV and RGB image space to guide the training and
produce high-quality outputs.

Spatial loss (UV space). Recall that P f
t is now the UV coordinates that relate image

It to the constant texture To based on the UV relocation step in Sec. 5.2.3. We make
use of a supervised L2 loss

L2 =
∥∥∥G(P r

t ) − P f
t

∥∥∥2
F

(5.12)

and adversarial loss via a discriminator Ds:

Luv
s = −log(Ds(G(P r

t ))),

LDs = −logDs(P
f
t ) − log(1 −Ds(G(P r

t ))).
(5.13)
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Figure 5.5: Comparisons of three successive frames, (I ′t−1To
, I ′tTo

, I ′t+1To
), among results of P r

t ,
V1, V2, and V3. We show examples of the same region in the image to illustrate the
temporal coherence of the generated videos. We can see that V1 is more coherent
than P r

t because of the temporal relocation when preparing the training data. V2

and V3 show further improvements due to the temporal stability losses in UV and
image spaces.

Temporal stability loss (UV space). We consider a smoothing loss between neighbour-
ing frames t− 1 and t + 1:

Lsmo =
∥∥G(P r

t−1) −G(P r
t )
∥∥2
F

+
∥∥G(P r

t ) −G(P r
t+1)

∥∥2
F

+
∥∥G(P r

t−1) − 2 ×G(P r
t ) + G(P r

t+1)
∥∥2
F
,

(5.14)

and add an unsupervised adversarial loss via a second discriminator network Dt:

Luv
t = − log(Dt(G(P r

t−1), G(P r
t ), G(P r

t+1))),

LDt = − log(Dt(P
f
t−1), f(P f

t−1), f(f(P f
t−1)))

− log(1 −Dt(G(P r
t−1), G(P r

t ), G(P r
t+1)),

(5.15)

where f are randomized geometric transformations (e.g., translation, rotation or scaling).
Note that ground truth over time is not available in our setting. We synthesize ground
truth by randomly choosing a transformation f and applying it to P f

t−1. This yields
a reference for time t; applying the transformation again at t+1 yields an additional
reference to form a synthetic triplet. The triplets serve as ground truth for the adversarial
training of Equation 5.15 and guide the generation of smooth UV coordinates over time.

Spatial loss (image space). With the mapping pipeline from UV coordinates to images,
an image-based L2 loss is applied at training time:

Limg
s =∥Igt−It∥2F , where Igt =W(To, ωI(G(P r

t ))). (5.16)
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Temporal stability loss (image space). Similar to the UV space, we define a temporal
adversarial loss via an additional discriminator Dimg in image space:

Limg
t = − logDimg(Igt−1 , Igt , Igt+1),

LDimg = − logDimg(It−1, It, It+1)

− log(1 −Dimg(Igt−1 , Igt , Igt+1)).

(5.17)

To summarize, the full loss of G is given by

LG =λ2L2 + λuv,sL
uv
s + λsmoLsmo

+ λuv,tL
uv
t + λimg,sL

img
s + λimg,tL

img
t .

(5.18)

In practice, we found it difficult to keep the losses in image space stable at the beginning
of the training. Hence, we train G first with the partial loss LG1 , where

LG1 = λ2L2 + λuv,sL
uv
s + λsmoLsmo + λuv,tL

uv
t , (5.19)

for 5 × 104 steps. We freeze G, and only train Dimg for 5 × 104 steps to ensure that
Dimg is commensurate with G. We then train all networks jointly with the full loss LG

for another 10 × 104 steps. Generator G is built with ResNet architecture, using 30
(for DensePose P r

t ) or 20 (for SMPL P r
t ) residual blocks. All of our discriminators Ds,

Dt, and Dimg follow the same encoder structure using 5 convolutional layers followed
by a dense layer. Details of our network architectures can be found in Appendix C. We
use 120 continuous frames without background from the Fashion dataset [120] as the
training data. For every step, we randomly crop small regions of size 32×32 from P r

t

to be used as input. The Adam optimizer is applied for training. Other learning details
are given in the Supplementary.

Model inference. After the training, UV coordinates P g
t with full clothing silhouettes

can be generated via G. We can achieve pose-guided generation when a sequence of
raw target poses is provided. Since we focus on the UV coordinates and inputs to G,
which do not include texture information, virtual try-on can also be easily achieved in
our pipeline by changing texture maps to which the UV coordinates are applied. Once
P g
t is generated, the image sequence I ′t requires a minimal number of calculations to be

produced (essentially, only one texture lookup per output pixel). As we will demonstrate
below, this is vastly more efficient than, e.g., evaluating a full CNN.

5.3 Ablation study

This section shows how different parts of Equation 5.18 influence the generated results.
We start with a basic model trained with the losses L2 and Luv

s and denote this V1. We
then add temporal losses in the UV space, Lsmo and Luv

t , for training and denote this
as V2. The full model trained with LG is denoted as V3.
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PSNR↑ LPIPS↓
×10−2

tOF↓
×104

tLP↓
×10−2

T-diff↓
×105

P r
t 22.1 8.1 1.69 1.0 5.42

V1 23.1 7.9 1.84 1.4 3.93

V2 23.1 7.6 1.70 0.9 4.33

V3 22.9 7.7 1.65 1.0 4.19

Table 5.1: Quantitative comparisons between P r
t and our three different versions, V1, V2, and

V3. For a fair comparison, the body shapes of V1, V2, and V3 are cropped to be in
line with P r

t . Our method shows significant improvements on both spatial (PSNR
and LPIPS) and temporal (tOF, T-diff) evaluation metrics.

Figure 5.5 shows two qualitative comparisons. All three versions successfully fill in
the missing parts of the DensePose UV map and are close to the reference (green patch,
skirt edge). To evaluate the temporal coherence, we zoom in on the motion of the flower
patterns (blue patch). Results from the raw UV coordinates P r are unsteady since its
temporally unstable UV content leads to a misalignment of the texture over time. V1

has better coherence due to the UV relocation (Sec. 5.2.3) applied to the training data.
V2 and V3 show progressive improvements thanks to the temporal stability losses and
the image space losses.

As quantitative evaluation of the spatial performance, we compute peak signal-to-noise
ratio (PSNR) and perceptual LPIPS [147]. For temporal stability, we follow [99] and esti-
mate the differences of warped frames, i.e., T-diff = ∥Igt ,W(Igt , vt)∥1, where vt typically
denotes the intra-frame motion computed by optical flow. In our setting we use the UV
coordinates for vt instead (details in the Supplementary Material). Additionally, we eval-
uate with two temporal coherence metrics [200]: tOF :

∥∥OF (It, It+1) −OF (Igt , Igt+1)
∥∥
1

and tLP :
∥∥LPIPS(It, It+1) − LPIPS(Igt , Igt+1)

∥∥
1
. Except for PSNR, lower values are

better for all metrics.
From Table C.1, we see that that V1 has the worst results in terms of tOF and tLP.

Its LPIPS is also worse than V2 and V3 because V1 is trained purely with spatial losses
in the UV space. Hence, supervision via preprocessed data P f

t is insufficient. Note,
however, that V1 shows the best T-diff score, as T-diff mainly relies on the calculation of
vt and is easily “fooled” by overly smooth content. V2 and V3 add temporal constraints
and show better temporal behaviour in terms of tOF and tLP. Compared with V2, V3

exhibits a similar spatial performance though it yields better temporal stability. This is
especially the case if we evaluate without cropping to fit P r

t (see Supplementary). This
also verifies that loss functions from the image space can be successfully applied to guide
the training.

Optimized UVs (P o
t ). In addition to Figure 5.3c in Sec. 5.2.2, more samples of the

optimized UVs P o
t are shown in Figure 5.6 and the Supplementary. The comparison of

PSNR and LPIPS scores in Figure 5.6 verifies that our optimization pipeline significantly
improves the spatial content. Similar conclusions can be drawn for the UV coordinates
derived from SMPL (see Figure 5.7).
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Figure 4
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Figure 5.6: Comparisons between DensePose UVs P r
t and optimized UVs P o

t . Here, we only
show examples of the skirt part in Tt to clarify the differences. We can see that
P o
t can preserve most of the skirt information in Tt, and I ′t of P o

t are closer to It
than that of P r

t . The quantitative evaluation also shows that our results after UV
optimization (described in Sec. 5.2.2) are closer to the reference.
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Figure 5.7: Comparisons between P r
t from SMPL and P o

t . We can see that after optimization,
P o
t preserves more of the loose clothing and I ′t closely matches It. Quantitative

evaluations also show that our results are much closer to the reference.

5.4 Results and evaluation

Direct comparison of P g
t . We provide a direct comparison between raw UVs P r

t and
those generated by our approach P g

t in Figure 5.8. Apart from the body itself, it is visible
that our outputs I ′t, generated with UVs from both SMPL and DensePose models, also
recover the hair, sleeves, and the skirt. Hence, we have fulfilled the goal of capturing
the full appearance of a person, rather than the body silhouette.

Comparison with state of the art. In Figure 5.9, we compare with the closest method
DwNet, which also focuses on video generation from a single image with UV coordinates.
DwNet smoothes the texture of the clothing as the quality of its output is limited by
the accuracy of the warping module. However, our method focuses on UV coordinates,
and obtains the appearance information directly from the texture map, so our results
are significantly sharper. Our results are also closer to the reference images, leading
to better spatial evaluations like PSNR and LPIPS. For temporal quality, the tOF and
tLP values indicate that our results have better temporal stability than DwNet. We also
conducted a user study to evaluate coherence (see Figure 5.10. Raw DensePose P r

t is the

baseline, while models V1 and V3 are trained with P f
t , without and with temporal losses,

respectively. V3 gives significantly improved evaluations from the participants. We also
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Figure 5.8: Comparison between P g
t and P r

t . P g
t in (a) and (b) are generated from DensePose

and SMPL model, respectively. Our I ′t are closer to the reference It, which indicates
that P g

t has better capacity to preserve more information of It.

LPIPS

OursDwNet Reference

DwNet

Ours

PSNR tOF FPOtLP

22.02

23.23
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1.48

1.21
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𝐼௧

Figure 5.9: Comparison with state-of-the-art method DwNet. Our results are closer to the
reference, which is also supported by the evaluation metrics below. Additionally,
we also compare the number of floating point operations (FPO) for every pixel
during video generation. Without rerunning trained models, our method shows a
significant reduction of computation.

outperform DwNet with high confidence, confirming the effectiveness of the temporal
losses and the tOF and tLP evaluations.

We note that the DwNet model needs to be rerun once the texture is changed. In
contrast, once the UV coordinates of a sequence have been generated, our method can
re-texture a sequence without evaluating any trained models. Instead, we simply map
the updated texture via our UV coordinates; this is a simple lookup that is several orders
of magnitude fewer in operations than DwNet. Such a low computational load would,
e.g., allow for running a virtual try-on pipeline in real-time on otherwise low-performance
end-devices.
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Figure 5.10: User study for the red-black dress case. Our full version V3 significantly improves
over V1 and DwNet.

Generated video with different textures. Our generation network completely separates
the UV representation from the RGB appearance information, which is only encoded in
the constant texture To. As such, the UV coordinates generated from our model are
compatible with any other texture that aligns with the arrangement of the original To.
This makes it easy to create virtual try-on applications by modifying the texture. In
particular, the source clothing can be obtained from any image source, e.g., another
photo or a texture image. We show re-textured examples in Figure 5.1, Figure 5.12 and
the Supplementary. Note that as our focus is on capturing clothing, hence we reuse
the texture of the human parts (face, hands and legs) from the source videos for these
virtual try-on results. Our pipeline can also be applied to datasets containing more
diverse motions and complex backgrounds, such as the Tai-Chi dataset (see results in
Figure 5.11a). Results are in line with the conclusions of our previous results: our
optimization result P o

t successfully recovers the missing UV coordinates and generates
full images I ′t. After training, our synthesized result (P g

t + To) is closer to the reference
than DensePose (P r

t + To) for temporal and spatial evaluations. Lastly, our models are
specific to garment silhouettes, not individual videos. Retraining is only necessary if the
silhouette changes. E.g. in Figure 5.11b, the model is trained with the sequence B (with
sleeveless dress) and can be conditioned on poses in A (with long sleeves) to generate C.
We aim for this direction since the silhouettes of common clothes are limited.

5.5 Conclusions

Limitations. Our method generates an entire video via P g
t and To. Currently, we sim-

ply choose T0 for To. However, T0 may not have sufficient coverage for some situations,
e.g., the backside of the clothing. This could be improved by incorporating additional
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Figure 5.11: a) Results of the Tai-Chi dataset. b) Pose-guided generation application. Our
model is generalized to different poses from different videos.

steps for texture completion [201, 202]. RevisionAnother limitation arises from bound-
ary occlusions. While we aim at coherent point correspondence among different frames,
occlusions occurred in the boundary areas make it impossible to find the obscured point
at frame t + 1 for the corresponding point at frame t, which brings a noticeable degree
of high-frequency noise near the boundaries during fast motions of the body or clothing.
But quantitative metrics and our user study show that our results yield better tempo-
ral coherence than state-of-the-art methods. Besides, this problem could benefit from
additional image space smoothing over time.

Conclusion. We have presented a novel algorithm to generate stable UV coordinates
for image sequences that capture the full appearance of a human body, including loose
clothing and hair. Central in arriving at this goal are a custom pre-computation pipeline
and a spatio-temporal adversarial learning approach. Our method allows for high-quality
video generation and also enables very quick turnaround times for style modifications.
Based on the one-time process to generate a UV coordinate sequence, our method allows
for the repeated synthesis of output videos via a single underlying texture with vastly
reduced computations compared to existing approaches. RevisionCurrently, we primarily
focus on clothing, because the complicated textures and various poses of the body make
it a challenging application. It provides an appropriate test bed that encapsulates the
capabilities of our pipeline. However, our pipeline can be potentially generalized to UVs
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of other objects, e.g., animals, cars and furniture. This enables us to achieve video
generation and texture editing of arbitrary objects easily in our future work.

Chapter 5. 89



Part III.

New Look Synthesized Results for Various Poses

Figure 5.12: P g
t is compatible with different textures to generate a desired target sequence. (a)-

(c) are generated using DensePose UV coordinates, while (d) uses SMPL UVs.
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“Wherever you go, go with all your heart.”
Confucius

6 Temporally Coherent Video
Generation

Keeping generated sequences temporally coherent is a crucial goal of video generation.
In Part II, we have presented a temporally coherent SR algorithm for fluid flow. We pro-
posed a novel temporal discriminator to improve the temporal coherence of the generated
flow sequence. Besides, we proposed a novel regularizer to improve the generalization of
trained models, then pre-trained models can be efficiently reused for related tasks. In
Part III, we achieved differentiable transformations among RGB image, texture, and UV
coordinate maps. TemporalUV algorithm was introduced to generate temporal coherent
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Figure 6.1: The pipeline of the proposed multi-pass GAN. After an up-sampling along z, we
process two orthogonal directions with two adversarially trained generator networks
G1 and G2. The initial up-sampling ensures that all unknowns are processed evenly
by the networks.

UV coordinate maps. In this chapter, we will continue the discussion in Part II and Part
III, and address different sequence generation problems with GANs.

In Part II, we achieved SR of the fluid flow with a scaling factor of four, which is hard
to be increased under the architecture of tempoGAN because of the large volume data
size. We propose a novel method to up-sample volumetric functions with GANs using
several orthogonal passes. Our method decomposes generative problems on Cartesian
field functions into multiple smaller sub-problems that can be learned more efficiently.
Specifically, as shown in Figure 6.1, we utilize two separate generative adversarial net-
works: the first one up-scales slices which are parallel to the XY-plane, whereas the
second one refines the whole volume along the Zaxis working on slices in the YZ-plane.
In this way, we obtain full coverage for the 3D target function and can leverage spatio-
temporal supervision with a set of discriminators. Additionally, we demonstrate that our
method can be combined with curriculum learning and progressive growing approaches.
We arrive at a first method that can up-sample volumes by a factor of eight along each
dimension, i.e., increasing the number of degrees of freedom by 512. Large volumetric
up-scaling factors such as this one have previously not been attainable as the required
number of weights in the neural networks renders adversarial training runs prohibitively
difficult. Despite making it possible to achieve large up-scaling factors, our method also
reduces training time. Training our 4× multi-pass network took approximately 3 days
for the first generator and 2 days for the second. This is almost twice as fast as training
a 3D model reported in previous work [203]. We additionally only employed a single
GTX 1080 Ti instead of two GPUs. Training the progressively growing network for an
8× up-scaling took about 8 and 5 days for the first and second generator network, re-
spectively. As this scale is not feasible with previous work, we cannot compare training
times for the 8× case. Similar to previous work, the memory available in current GPUs
can be a bottleneck when applying the trained networks to new input and can make it
necessary to subdivide the inputs into tiles. Regarding our implementation, we can deal
with full slices of up to approximately 2563, i.e., do not need to apply tiling. Example
results are shown in the teaser image (the bottom part) of this chapter.
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c

Figure 6.2: a) The frame-recurrent VSR Generator. b) Conditional VSR Ds,t. c) The UVT
cycle link formed by two recurrent generators. d) Unconditional UVT Ds,t.

Except for fluid flow, temporal self-supervision is also applied to GAN-based video-to-
video transformation, such as video SR and unpaired video translation. For the former,
state-of-the-art methods often favor simpler norm losses such as L2 over adversarial
training. However, their averaging nature easily leads to temporally smooth results with
an undesirable lack of spatial detail. For unpaired video translation, existing approaches
modify the generator networks to form spatio-temporal cycle consistencies. In our work,
we propose a novel adversarial learning method for a recurrent training approach that
supervises both spatial contents as well as temporal relationships, as shown in Fig-
ure 6.2. With no ground truth motion available, the spatio-temporal adversarial loss
and the recurrent structure enable our model to generate realistic results while keeping
the generated structures coherent over time. For both tasks, we show that temporal
adversarial learning is key to achieving temporally coherent solutions without sacrificing
spatial detail. In addition to the adversarial network which supervises the short-term
temporal coherence, long-term consistency is self-supervised using a novel bi-directional
loss formulation, as shown in Figure 6.3, which we refer to as “Ping-Pong” (PP) loss
in the following. The PP loss effectively avoids the temporal accumulation of artifacts
without depressing detailed features, which can potentially benefit a variety of recur-
rent architectures. Additionally, We also note that most existing image metrics focus
on spatial content only. We propose a first set of metrics to quantitatively evaluate
the accuracy as well as the perceptual quality of the temporal evolution, which mea-
sures the perceptual similarity over time and the similarity of motions with respect to
a ground truth reference. A series of user studies confirm the rankings computed with
these metrics. Example results are shown in the teaser image (the upper part) of this
chapter.

In this chapter, we discussed more generative tasks and discussed our solutions with
GANs. Explorations in different tasks and datasets show us the capability of GANs to
generate temporally coherent sequences with promising details. In the next chapter, we
will summarize all the methods illustrated in this dissertation, present our experience of
video generation with GANs, and discuss the limitations and potential future directions
of our work.
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Figure 6.3: a) Result without PP loss. The VSR network is trained with a recurrent frame-
length of 10. When inference on long sequences, frame 15 and latter frames of the
foliage scene show the drifting artifacts. b) Result trained with PP loss. These
artifacts are removed successfully for the latter. c) When inferring a symmetric PP
sequence with a forward pass (Ping) and its backward counterpart (Pong), our PP
loss constrains the output sequence to be symmetric. It reduces the L2 distance
between gt and g′t, the corresponding frames in the forward and backward passes,
shown via red circles with a minus sign. The PP loss reduces drifting artifacts and
improves temporal coherence.
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“The future belongs to those who prepare for it today.”
Malcolm X

7 Conclusion and Future Work

In this dissertation, we primarily focus on temporally coherent video generation with
GANs, including fluid flow and natural video generation. In this chapter, we will start
with a summary of all the methods introduced in previous chapters. Then, we will
discuss the limitation of those methods and potential future directions.

7.1 Method Summary

In previous chapters, we introduced our GAN-based sequence generation algorithms
among different scenarios, such as fluid flow, and natural videos. Discriminator from a
standard GAN receives one single image as input, which purely provides spatial feedback
for the generator. However, tiny changes in the input can bring significant differences in
the output. Thus, temporal coherence of the results cannot be constrained via normal
GANs. Instead, we proposed spatio-temporal adversarial training, and used multiple
temporally adjacent frames as input of the discriminator, then feedback of the temporal
dimension can be transferred from the discriminator to the generator.

In Figure 7.1, we summarized the connections among the proposed algorithms, which
are repeated from Figure 1.3. Practical experience is summarized as follows. Standard
GAN training is good at generation problems with multi-modality, such as image SR, and
results yield high perceptual quality. But temporal coherence of the results is still out
of consideration. Low-level temporal losses, such as L2, can bring limited improvements
in the temporal dimension. Our proposed spatio-temporal adversarial methods offer
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Temporally Coherent Video Generation with GANs

GANs for Fluid Sequence GANs for Natural Sequence
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Figure 7.1: Connections between different algorithms.

promising coherent sequences with realistic details. On the other hand, we find that
motion compensation helps improve the temporal coherence, e.g., the velocity of the
fluid flow and optical flow of the natural sequence. Besides, the recurrent structure can
reuse information from the previous results, which simplifies the generative problem and
yields better temporal coherence. However, artifacts in the previously generated frames
may also be amplified in the later frames, which can be improved with our proposed Ping-
Pong loss. Furthermore, for complicated problems like sequence generation, curriculum
learning takes the strategy to break down the problem into smaller sub-problems, which
allows us to start from a simpler sub-problem and increase the complexity step by step.
In our case, we start from a low scaling factor for the SR task and increase the scaling
factor gradually. For GAN training, keeping both generator and discriminator at a
balanced level is critical. We find that the dynamic training strategy is helpful, i.e.,
stopping the training of the discriminator when the discriminator is stronger than the
generator, and restarting the training again when the generator becomes stronger.

7.2 Limitations and Future Work

In this dissertation, we introduced GAN-based sequence generation algorithms for vari-
ous tasks in computer graphics and vision. However, as mentioned in previous chapters,
our proposed algorithms exhibit specific limitations in specific scenarios.

GANs for Fluid Flow Our fluid flow SR algorithms did not consider the physical rela-
tionship between low- and high- resolution data. According to the physical formulation,
the energy dissipation rate will be changed under different resolutions, i.e., even with
the same initial parameters, the shape of the flow should be changed for simulations
with different resolutions. However, in our fluid flow SR algorithms, we purely increase
the resolution while preserving the shape of the flow. In this case, our algorithms are
good at designing the required HR flow shape, since we can efficiently adjust the flow
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shape at LR before increasing the resolution. On the other hand, our algorithms only
considered the density and velocity as the inputs of the generator, which can achieve
limited control of the results.

GANs for Natural Videos Our temporalUV algorithm achieved temporal coherent
UV coordinate maps generation. However, in this algorithm, we purely synthesize the
foreground part, i.e., the human body, and the background is out of consideration. On
the other hand, lighting condition is also not part of the model. Thus, it would be hard
to adjust the lighting in the results with our model.

7.3 Future Work

From our proposed algorithms and results, we can see the power of deep learning methods
for sequence generation. These directions are worth further exploring in the future.

Fluid Flow Generation To correct the physical rules in the generated results, one pos-
sible solution is to map dynamic parameters to the density outputs directly, such as
[35, 204]. Then outputs can be controlled via the input parameters. However, physical
constraints, e.g., boundary conditions, still cannot be applied during training. On the
other hand, we could apply physical constraints in the loss functions, such as [205], or
apply a differentiable PDE solver [206] as part of our pipeline. Currently, we only focus
on single-phase fluid flow generation. However, multi-phase fluid flow is more common
in our daily life. Thus, applying our algorithms for multi-phase fluid flow generation
would also be an interesting direction.

Except for fluid data generation, result rendering is another step that consumes most
of the time and computational resources. Deep learning, as a powerful tool, has also
been applied in image rendering, such as NeRF [207]. However, NeRF primarily works
on solid static objects. We think it would be interesting to achieve fluid volume data
rendering with deep learning methods.

Pose-Guided Human Video Generation Currently, our temporalUV algorithm purely
used 2D RGB images as source images. In the future, we could also take the depth
information as part of our inputs, since depth cameras are now common setups in the
customer products, e.g., mobile phones. With the depth information, the foreground
and background can be easily separated. Then, full background can also be synthesized,
such as [126]. Besides, lighting effects can also be beneficial from the depth information
and make it possible to adjust the lighting effects for the foreground and background
objects.

Now we only apply our algorithm with human video generation, since we think this
is a tough task with complicated motions. However, UV coordinate maps are widely
used in various applications. In the future, we will also extend our algorithm for other
objects, such as cars, animals, furniture, etc.
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In summary, sequence generation is an important application, which is closely con-
nected to our daily life. Our algorithms and results demonstrate that deep learning
methods are powerful in dealing with sequence generation problems and yield state-of-
the-art results. Applying deep learning methods for sequence generation is worth further
exploration. Beyond tasks we discussed above, we hope that the works introduced in
our dissertation can provide some insights and inspiration for other related tasks, such
as frame interpolation, video enhancement, and video editing.
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coherence via self-supervision for gan-based video generation. ACM Transactions
on Graphics (TOG), 39(4):75–1, 2020.

[201] J. Chibane and G. Pons-Moll. Implicit feature networks for texture completion
from partial 3d data. In European Conference on Computer Vision, pages 717–
725. Springer, 2020.

[202] A. Grigorev, A. Sevastopolsky, A. Vakhitov, and V. Lempitsky. Coordinate-based
texture inpainting for pose-guided human image generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12135–12144, 2019.

[203] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempogan: A temporally coherent,
volumetric gan for super-resolution fluid flow. ACM Transactions on Graphics
(TOG), 37(4):95, 2018.

[204] M. Chu, N. Thuerey, H.-P. Seidel, C. Theobalt, and R. Zayer. Learning meaningful
controls for fluids. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.

[205] Q. He and A. M. Tartakovsky. Physics-informed neural network method for for-
ward and backward advection-dispersion equations. Water Resources Research,
57(7):e2020WR029479, 2021.

[206] P. Holl, V. Koltun, and N. Thuerey. Learning to control pdes with differentiable
physics. arXiv preprint arXiv:2001.07457, 2020.

[207] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European conference on computer vision, pages 405–421. Springer, 2020.

116 Chapter 7.



Part IV.

[208] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical
harmonic representation of 3 d shape descriptors. In Symposium on geometry
processing, volume 6, pages 156–164, 2003.

[209] N. Thuerey and T. Pfaff. MantaFlow, 2018. http://mantaflow.com.

[210] S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey.
Weatherbench: A benchmark dataset for data-driven weather forecasting. arXiv
preprint arXiv:2002.00469, 2020.

Chapter . 117





A Appendix of Chapter 3

A.1 Details of Architectures

To clearly specify our networks, we use the following notation. Let in(resolution,
channels), out(resolution, output) present input and output information; NI(output-
resolution) represent nearest-neighbor interpolation; C(output-resolution, filter size, output-
channels) denote a convolutional layer. Our resolutions and filter sizes are the same for
every spacial dimension for both 2D and 3D. Resolutions of feature maps are reduced
when strides >1. We use RB to represent our residual blocks, and use CS for adding
residuals in a RB. E.g., RB3 : [CA,ReLU, CB] + [CS ],ReLU means [(input → CA →
ReLU → CB) + (input → CS)] → ReLU, where + denotes element-wise addition. BN
denotes batch normalization, which is not used in the last layer of G, the first layer of
Dt and the first layer of Ds [65]. In addition, — denotes concatenation of layer outputs
along the channel dimension.

Architectures of G, Ds and Dt:

G:

in(16, 4)

NI(64, 4)

RB0 : [CA(64, 5, 8), BN,ReLU, CB(64, 5, 32), BN ] + [CS(64, 1, 32), BN ],ReLU

RB1 : [CA(64, 5, 128), BN,ReLU, CB(64, 5, 128), BN ] + [CS(64, 1, 128), BN ],ReLU

RB2 : [CA(64, 5, 32), BN,ReLU, CB(64, 5, 8), BN ] + [CS(64, 1, 8), BN ],ReLU

RB3 : [CA(64, 5, 2),ReLU, CB(64, 5, 1)] + [CS(64, 1, 1)],ReLU

out(64, 1)
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Ds: Dt:

inx(16, 1) , the conditional density 2*iny(64, 3), the 3 high-res frames to classify

NI(64, 1)|iny(64, 1) , the high-res input to classify

C(32, 4, 32), leaky ReLU C(32, 4, 32), leaky ReLU

C(16, 4, 64), BN, leaky ReLU C(16, 4, 64), BN, leaky ReLU

C(8, 4, 128), BN, leaky ReLU C(8, 4, 128), BN, leaky ReLU

C(8, 4, 256), BN, leaky ReLU C(8, 4, 256), BN, leaky ReLU

Fully connected, σ activation Fully connected, σ activation

out(1, 1) out(1, 1)

A.2 Parameters & Data Statistics

Below we summarize all parameters for training runs and data generation. Note that the
model size includes compression, and we train the individual networks multiple times
per iteration, as indicated below.

Details of generated results:

test input size
tile (343)
number

output size time

Figure 3.14 a) 1282 - 5122 0.064s/frame

- 343 1 1363 2.2s/frame

Figure 3.8 b) 643 8 2563 17.9s/frame

Figure 3.9 150 × 100 × 100 96 600 × 400 × 400 234.48s/frame

Figure 3.10 256 × 180 × 180 441 1024 × 720 × 720 1046.07s/frame

Details of training runs for different models are listed in the following table. Our stan-
dard models that are used unless otherwise indicated are marked with a (∗):
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Train. iters
data: no. of sims,
total frames

training and
testing frames

low-
res

,
high-
res

,
input
tiles

λL1 λ1,...,4
f

2D, Figure 3.14 a)(∗) 20, 4000 160, 40 3*642, 2562, 162 3*5 −10−5 for all

2D, Figure 3.14 b) 20, 4000 160, 40
10−4/3,−10−4/3,
−10−4/3, 10−4/3

2D, Figure 3.16 b) 20, 2400 320, 80 10−5 for all

3D, Figure 3.8 b)(∗) 20, 2400 96, 24 2*643, 2563, 163 2*5 −10−6/3 for all

3D, Figure 3.15 b) 20, 2400 96, 24
10−6/3,−10−6/3,
−10−6/3,−10−6/3

Table Cont.
Trainings
per step

Training
steps

,
Batch
size

Model
weights

Model
size (Mb)

Training
time (min)

2D, Figure 3.14 a)(∗) 3*
2 for Ds,
2 for Dt,
2 for G

3*40k, 16 3*
G, 634214
Ds, 706017
Dt, 706529

36.88 798.65

2D, Figure 3.14 b) 42.73 905.72
2D, Figure 3.16 b) 43.45 877.59

3D, Figure 3.8 b)(∗) 2*
16 for Ds,
16 for Dt,
16 for G

2*7k, 1 2*
G: 3148014
Ds: 2888161
Dt: 2890209

134.93
12636.22
2 GPUs

3D, Figure 3.15 b) 140.79
18231.97
2 GPUs
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B Appendix of Chapter 4

Below we give details for the tests in Chapter 4.

Peak Test For the Peak test we generated a dataset of 110 images shown in Figure B.1.
55 images contain a peak located in the upper left corner of the image. The other 55
contain a peak located in the bottom right corner. We added random scribbles in the
images to complicate the task. All 110 images were labeled with a one-hot encoding
of the two possible positions of the peak. We use 100 images as the training dataset,
and the remaining 10 for testing. All peak models are trained for 5000 epochs with a
learning rate of 0.0001, with λ = 1e− 6 for RRA. To draw reliable conclusions, we show
results for five repeated runs here. The neural network in this case contains one fully
connected layer, with BN and ReLU activation. The results are shown in Figure B.2,
with both peak modes being consistently embedded into the weight matrix of RRA,
while regular, autoencoder pretraining and orthogonal training show primarily random
singular vectors.

We also use different network architectures in Figure B.3 to verify that the dominant
features are successfully extracted when using more complex network structures. Even
for two layers with BN and ReLU activations, our pretraining clearly extracts the two
modes of the training data. The visual resemblance is slightly reduced in this case, as
the network has the freedom to embed the features in both layers. Across all three cases,
our pretraining clearly outperforms regular training and the orthogonality constraint in
terms of extracting and embedding the dominant structures of the training dataset in
the weight matrix It also yields lower LPIPS evaluations than autoencoder pretraining,
which indicates features embedded in RR models represent the training data better.

MNIST Test We additionally verify that the column vectors of Vm of models from RR
training contain the dominant features of the input with MNIST tests, which employ
a single fully connected layer, i.e. d2 = M1d1. In the first MNIST test, the training
data consists only of 2 different images. All MNIST models are trained for 1000 epochs
with a learning rate of 0.0001, and λ = 1e− 5 for RRA. After training, we compute the
SVD for M1. SVDs of the weight matrices of trained models can be seen in Figure B.4.
The LPIPS scores show that features embedded in the weights of RR are consistently
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training data test data

Figure B.1: Dataset used for the peak tests
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Figure B.2: Five repeated tests with the peak data shown in Sec. 3 of the main paper. RRA

robustly extracts dominant features from the dataset. The two singular vectors
strongly resemble the two peak modes of the training data. This is confirmed by
the LPIPS measurements

closer to the training dataset than all other methods, i.e., regular training Std, classic
autoencoder pretraining Pre, and regularization via orthogonalization Ort. While the
vectors of Std and Ort contain no recognizable structures.

Overall, our experiments confirm the motivation of our pretraining formulation. They
additionally show that employing an SVD of the network weights after our pretraining
yields a simple and convenient method to give humans intuition about the features
learned by a network.

B.1 Mutual Information

This section gives details of the mutual information and disentangled representation tests
from Sec. 4.2 of the main paper.
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Figure B.3: Right singular vectors of M1 for Across the three architectures, RRA successfully
extracts dominant and salient features

B.1.1 Mutual Information Test

Mutual information (MI) measures the dependence of two random variables, i.e., higher
MI means that there is more shared information between two parameters. More formally,
the mutual information I(X;Y ) of random variables X and Y measures how different the
joint distribution of X and Y is w.r.t. the product of their marginal distributions, i.e.,
the Kullback-Leibler divergence I(X;Y ) = KL[P(X,Y )||PXPY ], where KL denotes the
Kullback-Leibler divergence. Let I(X;Dm) denote the mutual information between the
activations of a layer Dm and input X. Similarly I(Dm;Y ) denotes the MI between layer
m and the output Y . We use MI planes in the main paper, which show I(X;Dm) and
I(Dm;Y ) in a 2D graph for the activations of each layer Dm of a network after training.
This visualizes how much information about input and output distribution is retained at
each layer, and how these relationships change within the network. For regular training,
the information bottleneck principle [174] states that early layers contain more infor-
mation about the input, i.e., show high values for I(X;Dm) and I(Dm;Y ). Hence in
the MI plane visualizations, these layers are often visible at the top-right corner. Later
layers typically share a large amount of information with the output after training, i.e.
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Figure B.4: SVD of the M1 matrix for five tests with random two digit images as training data.
LPIPS distances [147] of RR are consistently lower than Std and Ort

show large I(Dm;Y ) values, and correlate less with the input (low I(X;Dm)). Thus,
they typically show up in the top-left corner of the MI plane graphs.

Training Details We use the same numerical studies as in [176] as task A, i.e. a
regular feed-forward neural network with 6 fully-connected layers. The input variable
X contains 12 binary digits that represent 12 uniformly distributed points on a 2D
sphere. The learning objective is to discover binary decision rules which are invariant
under O(3) rotations of the sphere. X has 4096 different patterns, which are divided
into 64 disjoint orbits of the rotation group, forming a minimal sufficient partition for
spherically symmetric rules [208]. To generate the input-output distribution P (X,Y ),
We apply the stochastic rule p(y = 1 | x) = Ψ(f(x) − θ), (x ∈ X, y ∈ Y ), where Ψ is
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a standard sigmoidal function Ψ(u) = 1/(1 + exp(−γu)), following [176]. We then use
a spherically symmetric real valued function of the pattern f(x), evaluated through its
spherical harmonics power spectrum [208], and compare with a threshold θ, which was
selected to make p(y = 1) =

∑
x p(y = 1 | x)p(x) ≈ 0.5, with uniform p(x). γ is high

enough to keep the mutual information I(X;Y ) ≈ 0.99 bits.

For the transfer learning task B, we reverse output labels to check whether the model
learned specific or generalizing features. E.g., if the output is [0,1] in the original dataset,
we swap the entries to [1,0]. 80% of the data (3277 data pairs) are used for training and
rests (819 data pairs) are used for testing.

For the MI comparison in figure 4, we discuss models before and after fine-tuning
separately, in order to illustrate the effects of regularization. We include a model with
greedy layer-wise pretraining Pre, a regular model StdA, one with orthogonality con-
straints OrtA, and our regular model RRA, all before fine-tuning. For the model RRA

all layers are constrained to be recovered in the backward pass. We additionally include

the version RR1
A, i.e. a model trained with only one loss term λ1

∥∥∥d1 − d
′
1

∥∥∥2
2
, which

means that only the input is constrained to be recovered. Thus, RR1
A represents a sim-

plified version of our approach which receives no constraints that intermediate results of
the forward and backward pass should match. For OrtA, we used the Spectral Restricted
Isometry Property (SRIP) regularization [166],

LSRIP = βσ(W TW − I), (B.1)

where W is the kernel, I denotes an identity matrix, and β represents the regularization
coefficient. σ(W ) = supz∈Rn,z ̸=0

∥Wz∥
∥z∥ denotes the spectral norm of W .

As explained in the main text, all layers of the first stage, i.e. from RRA, RR1
A, OrtA

, PreA and StdA are reused for training the fine-tuned models without regularization,
i.e. RRAA, RR1

AA, OrtAA , PreAA and StdAA. Likewise, all layers of the transfer task
models RRAB, RR1

AB, OrtAB , PreAB and StdAB are initialized from the models of the
first training stage.

Analysis of Results We first compare the version only constraining input and output
reconstruction (RR1

A) and the full loss version RRA. figure 4 (b) of the main paper shows
that all points of RRA are located in a central region of the MI place, which means that
all layers successfully encode information about the inputs as well as the outputs. This
also indicates that every layer contains a similar amount of information about X and Y ,
and that the path from input to output is similar to the path from output to input. The
points of RR1

A, on the other hand, form a diagonal line. I.e., this network has different
amounts of mutual information across its layers, and potentially a very different path for
each direction. This difference in behavior is caused by the difference of the constraints
in these two versions: RR1

A is only constrained to be able to regenerate its input, while
the full loss for RRA ensures that the network learns features which are beneficial for
both directions. This test highlights the importance of the constraints throughout the
depth of a network in our formulation. In contrast, the I(X;D) values of later layers
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for StdA and OrtA exhibit small values (points near the left side), while I(D;Y ) is
high throughout. This indicates that the outputs were successfully encoded and that
increasing amounts of information about the inputs are discarded. Hence, more specific
features about the given output data-set are learned by StdA and OrtA. This shows that
both models are highly specialized for the given task, and potentially perform worse
when applied to new tasks. PreA only focuses on decreasing the reconstruction loss,
which results in high I(X;D) values for early layers, and low I(D;Y ) values for later
layers.

During the fine-tuning phase for task A (i.e. regularizers being disabled), all models
focus on the output and maximize I(D;Y ). There are differences in the distributions
of the points along the y-axis, i.e., how much MI with the output is retained, as shown
in figure 4 (c) of the main paper. For model RRAA, the I(D;Y ) value is higher than
for StdAA, OrtAA, PreAA and RR1

AA, which means outputs of RRAA are more closely
related to the outputs, i.e., the ground truth labels for task A. Thus, RRAA outperforms
the other variants for the original task.

In the fine-tuning phase for task B, StdAB stands out with very low accuracy in figure
5 of the main paper. This model from a regular training run has large difficulties to adapt
to the new task. PreA aims at extracting features from inputs and reconstructing them.
PreAB outperforms StdAB, which means features helpful for task B are extracted by
PreA, however, it’s hard to guide the feature extracting process. Model OrtAB also per-
forms worse than StdB. RRAB shows the best performance in this setting, demonstrating
that our loss formulation yielded more generic features, improving the performance for
related tasks such as the inverted outputs for B.

We also analyze the two variants of our pretraining: the local variant lRRA and the
full version RRA in terms of mutual information. Figure B.5 shows the MI planes for
these two models, also showing RR1

A for comparison. Despite the local nature of lRRA

it manages to establish MI for the majority of the layers, as indicated by the cluster of
layers in the center of the MI plane. Only the first layer moves towards the top right
corner, and the second layer is affected slightly. I.e., these layers exhibit a stronger
relationship with the distribution of the outputs. Despite this, the overall performance
when fine-tuning or for the task transfer remains largely unaffected, e.g., the lRRA still
clearly outperforms RR1

A. This confirms our choice to use the full pretraining when
network connectivity permits, and employ the local version in all other cases.

B.1.2 Disentangled Representations

The InfoGAN approach [177] demonstrated the possibility to control the output of gener-
ative models via maximizing mutual information between outputs and structured latent
variables. However, mutual information is very hard to estimate in practice [178]. The
previous section and figure 4 (b) of the main paper demonstrated that models from our
pretraining (both RR1

A and RRA) can increase the mutual information between network
inputs and outputs. Intuitively, the pretraining explicitly constrains the model to re-
cover an input given an output, which directly translates into an increase of mutual
information between input and output distributions compared to regular training runs.
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Figure B.5: MI plane comparisons for local (lRRA) versus full models (RRA). Points on each
line correspond to layers of one type of model. a) MI Plane for task A. All points
of RRA and the majority of points for lRRA (five out seven) are located in the
center of the graph, i.e., successfully connect in- and ouput distributions. b, c)
After fine-tuning for A/B. The last layer D7 of RRAA builds the strongest rela-
tionship with Y . I(D7;Y ) of lRRA is only slightly lower than RRAA. d) Accuracy
comparisons among different models: RRAA yields the highest performance, while
lRRA performs similarly with RRAA

For highlighting how our pretraining can yield disentangled representations (as discussed
in the later paragraphs of Sec. 4 of the main text), we follow the experimental setup of
InfoGAN [177]: the input dimension of our network is 74, containing 1 ten-dimensional
category code c1, 2 continuous latent codes c2, c3 ∼ U(−1, 1) and 62 noise variables.
Here, U denotes a uniform distribution.

Training Details As InfoGAN focuses on structuring latent variables and thus only
increases the mutual information between latent variables and the output, we also focus
the pretraining on the corresponding latent variables. I.e., the goal is to maximize their
mutual information with the output of the generative model. Hence, we train a model
RR1 for which only latent dimensions c1, c2, c3 of the input layer are involved in the loss.
We still employ a full reverse pass structure in the neural network architecture. c1 is a
ten-dimensional category code, which is used for controlling the output digit category,
while c2 and c3 are continuous latent codes, to represent (previously unknown) key
properties of the digits, such as orientation or thickness. Building relationship between
c1 and outputs is more difficult than for c2 or c3, since the 10 different digit outputs
need to be encoded in a sinlge continuous variable c1. Thus, for the corresponding loss
term for c1 we use a slightly larger λ factor (by 33%) than for c2 and c3. Details of our
results are shown in Figure 4.6. Models are trained using a GAN loss [57] as the loss
function for the outputs.

Analysis of Results In Figure 4.6 we show results for the disentangling test case. It is
visible that our pretraining of the RR1 model yields distinct and meaningful latent space
dimensions for c1,2,3. While c1 controls the digit, c2,3 control the style and orientation of
the digits. For comparison, a regular training run with model Std does result in mean-
ingful or visible changes when adjusting the latent space dimensions. This illustrates
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Figure B.6: Separate per-class test accuracies for the four model variants. The RRTS model
exhibits a consistently high accuracy across all 16 classes

how strongly the pretraining can shape the latent space, and in addition to an intuitive
embedding of dominant features, yield a disentangled representation.

B.2 Details of Experimental Results

To ensure reproducibility, source code and data for all tests will be published. Runtimes
were measured on a machine with Nvidia GeForce GTX 1080 Ti GPUs and an Intel
Core i7-6850K CPU.

B.2.1 Texture-shape Benchmark

Training Details All training data of the texture-shape tests were obtained from [180].
The stylized data set contains 1280 images, 1120 images are used as training data, and
160 as test data. Both edge and filled data sets contain 160 images each, all of which
are used for testing only. All three sets (stylized, edge, and filled) contain data for 16
different classes.

Analysis of Results For a detailed comparison, we list per-class accuracy of stylized
data training runs for OrtTS, StdTS, PreTS and RRTS in Figure B.6. RRTS outperforms
the other three models for most of the classes. RRTS requires an additional 41.86% for
training compared to StdTS, but yields a 23.76% higher performance. (Training times
for these models are given in the supplementary document.) All models saturated, i.e.
training StdTS or OrtTS longer does not increase classification accuracy any further.
We also investigated how much we can reduce model size when using our pretraining
in comparison to the baselines. A reduced model only uses 67.94% of the parameters,
while still outperforming OrtTS.

B.2.2 Smoke Generation

Training Details The data set of the smoke simulation was generated with a Navier-
Stokes solver from an open-source library [209]. We generated 20 randomized simulations
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Figure B.7: Example outputs for PreAB1
, StdAB1

, RRAB1
. The reference is shown for compar-

ison. RRAB1
produces higher quality results than StdAB1 and PreAB1

𝐸ோோಲಳమ𝐸ௌ௧ௗಲಳమ𝐸௉௥௘ಲಳమ : 3.78: 4.16: 21.51 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Outputs

MAE

Figure B.8: Mean Absolute Error (MAE) comparisons for smoke task B2 models. RRAB2
shows

the smallest error, and additionally achieves the best visual quality amongst the
different models

with 120 frames each, with 10% of the data being used for training. The LR data were
down-sampled from the HR data by a factor of 4. Data augmentation, such as flipping
and rotation was used in addition. As outlined in the main text, we consider building
an autoencoder model for the synthetic data as task B1, and generating samples from
a real-world smoke data set as task B2. The smoke capture data set for B2 contains
2500 smoke images from the ScalarFlow data set [183], and we again used 10% of these
images as training data set.

Task A: We use a fully convolutional CNN-based architecture for generator and dis-
criminator networks. Note that the inputs of the discriminator contain high resolution
data (64, 64, 1), as well as low resolution (16, 16, 1), which is up-sampled to (64, 64, 1) and
concatenated with the high resolution data. In line with previous work [203], RRA and
StdA are trained with a non-saturating GAN loss, feature space loss and L2 loss as base
loss function. All generator layers are involved in the pretraining loss. As greedy layer-
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wise autoencoder pretraining is not compatible with adversarial training, we pretrain
PreA for reconstructing the high resolution data instead.

Task B1: All encoder layers are initialized from RRA and StdA when training RRAB1

and StdAB1 . It is worth noting that the reverse pass of the generator is also constrained
when training PreA and RRA. So both encoder and decoder are initialized with pa-
rameters from PreA and RRA when training PreAB1 and RRAB1

, respectively. This is
not possible for a regular network like StdAB1 , as the weights obtained with a normal
training run are not suitable to be transposed. Hence, the de-convolutions of StdAB1 are
initialized randomly.

Task B2: As the data set for the task B2 is substantially different and contains RBG
images (instead of single channel gray-scale images), we choose the following setups for
the RRA, PreA and StdA models: parameters from all six layers of StdA and RRA are
reused for initializing decoder part of StdAB2 and RRAB2

, parameters from all six layers
of PreA are reused for initializing the encoder part of PreAB2 . Specially, when initializing
the last layer of PreAB2 , StdAB2 and RRAB2

, we copy and stack the parameters from
the last layer of PreA, StdA and RRA, respectively, into three channels to match the
dimensions of the outputs for task B2. Here, the encoder part of RRAB2

and the decoder
of PreAB2 are not initialized with RRA and PreA, due to the significant gap between
training data sets of task B1 and task B2. Our experiments show that only initializing
the decoder part of RRAB2

(avg. loss:1.56e7, std. dev.:3.81e5) outperforms initializing
both encoder and decoder (avg. loss:1.82e7 ± 2.07e6), and only initializing the encoder
part of PreAB2 (avg. loss:4.41e7 ± 6.36e6) outperforms initializing both encoder and
decoder (avg. loss:9.42e7 ± 6.11e7). We believe the reason is that initializing both the
encoder and decoder parts makes it more difficult to adjust the parameters for the new
data set that is very different from the data set of the source task.

Analysis of Results Example outputs of PreAB1 , StdAB1 and RRAB1
are shown in Fig-

ure B.7. It is clearly visible that RRAB1
gives the best performance among these models.

We similarly illustrate the behavior of the transfer learning task B2 for images of real-
world fluids. This example likewise uses an autoencoder structure. Visual comparisons
are provided in Figure B.8, where RRAB2

generates results that are closer to the refer-
ence. Overall, these results demonstrate the benefits of our pretraining for GANs, and
indicate its potential to obtain more generic features from synthetic data sets that can
be used for tasks involving real-world data.

B.2.3 Weather Forecasting

Training Details The weather forecasting scenario discussed in the main text follows
the methodology of the WeatherBench benchmark [210]. This benchmark contains 40
years of data from the ERA reanalysis project [145] which was re-sampled to a 5.625◦

resolution, yielding 32 × 64 grid points in ca. two-hour intervals. Data from the year of
1979 to 2015 (i.e., 324192 samples) are used for training. The benchmark also contains
165 years of historical simulation data from [185], and data from the year 1850 to 2005
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Figure B.9: MAE value comparisons between RR and Std(ERR for RR and EStd for Std).
RR consistently yields lower errors than Std. The predictions inferred by the RR
model are closer to the observed references

(i.e., 224672 samples) are used for training. All RMSE measurements are latitude-
weighted to account for area distortions from the spherical projection.

The neural networks for the forecasting tasks employ a ResNet architecture with 19
layers, all of which contain 128 features with 3 × 3 kernels (apart from 7 × 7 in the first
layer). All layers use batch normalization, leaky ReLU activation (tangent 0.3), and
dropout with strength 0.1. As inputs, the model receives feature-wise concatenated data
from the WeatherBench data for 3 consecutive time steps, i.e., t, t − 6h, and t − 12h,
yielding 117 channels in total. The last convolution jointly generates all three output
fields, i.e., pressure at 500 hPa (Z500), temperature at 850 hPa (T850), and the 2-meter
temperature (T2M). Following [186], the learning rate was decreased by a factor of 5
when the loss did not decrease for two epochs, and the training is terminated after 5
epochs without improvements.

Analysis of Results In addition to the quantitative results given in the main text,
Figure B.9 contains additional example visualizations from the test data set. A visu-
alization of the spatial error distribution w.r.t. ground truth results is also shown. It
becomes apparent that our pretraining achieves reduced errors across the whole range
of samples. Both temperature targets contain a larger number of smaller-scale features
than the pressure fields. The improvements of MAE from our pretraining approach are
significant (c.a. 3% ˜10% across all cases), which represents a substantial improvement.
The learning objective is highly non-trivial, and the improvements were achieved with
the same limited set of training data. Being very easy to integrate into existing train-
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ing pipelines, these results indicate that the proposed pretraining methodology has the
potential to yield improved learning results for a wide range of problem settings.
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C Appendix of Chapter 5

C.1 Training details

In this section, more details about temporal UV model training (section 5.2.4 of the
main paper) will be illustrated. The DensePose model outputs UV coordinates with an
extra I channel to classify different body parts. Below, we use I subscripts to denote
the I channel of a UV coordinate, e.g., GI(P r

t ) refers to the I channel of G(P r
t ). Then,

for P r
t from the DensePose model, we use an extra cross-entropy loss

LI = −e
[P f

t ]I
logGI(P r

t ) (C.1)

for I channel constraint, where −e
[P f

t ]I
is a one-hot vector indicating the [P f

t ]thI I channel

with −e
[P f

t ]Ij
= 1 if j = [P f

t ]I . We train G for DensePose P r
t with the architecture shown

in Figure C.1, and all of the discriminators Ds, Dt, and Dimg follow the same encoder
structure, as shown in Figure C.2. For UV data without an I channel, e.g., P r

t generated
from SMPL models, our pipeline is still applicable by training without Li and removing
the I channel part in G.

We apply gradient clipping for the gradients from Limg
s and Limg

t to stabilize the
training of G. Parameters λ2 and λuv,s start from 200 and 10, respectively. They are
decreased with rate 0.99 for every 1000 steps. On the other hand, λimg,s, λsmo, λuv,t,
and λimg,t start from 0.001, 0.1, 1, and 1, respectively, but they are gradually increased
with rate 1.01 for every 1000 steps.

C.2 Evaluation of results

In section 5.4 of the main paper, we follow [99] to evaluate temporal coherence of the
results and estimate the differences of warped frames, i.e., T-diff = ∥Igt ,W(Igt , vt)∥1.
In our setting, we use the UV coordinates to calculate vt, so that T-diff will purely be
influenced by Pt. We first warp all the point coordinates x in Igt to the texture space,
then we can calculate the displacement of all the points from Igt to Igt+1 :

vtexturet = W(cimg, ωT (P g
t+1)) −W(cimg, ωT (P g

t ))), (C.2)
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Figure C.1: Generator structure for training with P r
t from the DensePose model. The corre-

sponding part of I channel will be removed when training with P r
t generated from

the SMPL model.

Figure C.2: Architecture of the discriminator networks, such as Ds, Dt, and Dimg. Input
channels inc for Ds, Dt, and Dimg are 2, 6, and 9, respectively.
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PSNR↑ LPIPS↓
×10−2

tOF↓
×104

tLP↓
×10−2

T-diff↓
×105

P r
t 22.1 8.1 1.69 1.0 5.42

V1 23.8 7.0 1.95 1.7 4.33

V2 23.9 6.7 1.76 1.3 4.67

V3 23.6 6.8 1.68 1.2 4.55

Table C.1: Quantitative comparisons between P r
t and our different versions without cropping

to fit =P r
t . Our method show significant improvements for both spatial (PSNR and

LPIPS) and temporal (tOF, T-diff) evaluation metrics. Evaluations with full shape
lead to further improved PSNR and LPIPS evaluations for our results.

where cimg(x) = x. Then vt can be obtained with:

vt = W(vtexturet , ωI(P g
t+1)). (C.3)

In Table 5.1 of the main paper, we show quantitative comparisons between P r
t and

our different versions, which are made fair by cropping to fit =P r
t . These results show

improvements for both spatial and temporal evaluations. Here, we also show comparisons
of those versions without cropping in Table C.1. We can see that our versions outperform
P r
t even further in terms of spatial quality. P r

t performs the best with tLP, as P r
t

cannot generate the extended skirt and hair parts, which significantly decreases the area
for evaluation. Here, we also can see that V3 shows similar spatial quality as V2 but
an improved temporal coherence. Please refer to the supplementary video to see the
improved temporal coherence of the synthesized sequence.
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