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Abstract
This article presents a new formulation for model-free robust optimal reg-
ulation of continuous-time nonlinear systems. The proposed reinforcement
learning based approach, referred to as incremental adaptive dynamic program-
ming (IADP), utilizes measured input-state data to allow the design of the
approximate optimal incremental control strategy, stabilizing the controlled sys-
tem incrementally under model uncertainties, environmental disturbances, and
input saturation. By leveraging the time delay estimation (TDE) technique, we
first use sensor data to reduce the requirement of a complete dynamics, where
input-state data is adopted to construct an incremental dynamics which reflects
the system evolution in an incremental form. Then, the resulting incremental
dynamics serves to design the approximate optimal incremental control strategy
based on adaptive dynamic programming, which is implemented as a simplified
single critic structure to get the approximate solution to the value function of
the Hamilton–Jacobi–Bellman equation. Furthermore, for the critic neural net-
work, experience data are used to design an off-policy weight update law with
guaranteed weight convergence. Rather importantly, we incorporate a TDE error
bound related term into the cost function, whereby the unintentionally intro-
duced TDE error is attenuated during the optimization process. The proofs of
system stability and weight convergence are provided. Numerical simulations
are conducted to validate the effectiveness and superiority of our proposed IADP,
especially regarding the reduced control energy expenditure and the enhanced
robustness.

K E Y W O R D S

incremental adaptive dynamic programming, reinforcement learning, robust optimal regulation,
time delay estimation

1 INTRODUCTION

Reinforcement learning (RL) provides a mathematical formulation for learning-based control strategies and has shown
superior performance in multiple scenarios, such as humanoid robotics,1 unmanned aerial vehicles,2 and autonomous
driving.3 Although the distinguishable model-free feature of RL overcomes the difficulty of applying traditional
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model-based control methods to the unknown (or hardly modeled) plants, the rigorous system stability analysis is not
provided in most of the related works, see the works of Recht,4 Buşoniu et al,5 and the references therein. A system
without stability guarantee is potentially dangerous.6 Recently, synchronous adaptive dynamic programming (ADP),7-9

where actor and critic neural networks (NNs) update simultaneously in real-time, emerges as a promising
control-theoretic RL subfield featured for available system stability proofs. However, its provided stability proof compro-
mises the attractive model-free feature of RL since a mathematical form of dynamics is required to present the rigorous
system stability analysis. Even though the required explicit knowledge of dynamics could be avoided by using add-on
techniques such as NNs,10-12 fuzzy models,13 Gaussian process (GP),14 or observers,15 the accompanying identifica-
tion processes further increase computational complexity and parameter tuning efforts. This motivates us to develop a
novel, computationally simple RL-based control strategy, which exhibits both a model-free feature and a provable system
stability guarantee, to accomplish the robust optimal stabilization of continuous-time nonlinear systems.

Many attempts have been conducted to enhance the robustness of synchronous ADP. To approximately solve
the robust optimal stabilization problem of a completely known dynamics perturbed by an unknown but bounded
additive disturbance, existing synchronous ADP related approaches are mainly divided into two categories: the
-infinity control method formulated as a zero-sum game,16 and the transformed optimal control method through a
well-designed utility function.17 However, both methods require accurate model information to construct the corre-
sponding Hamilton–Jacobi–Issac (HJI) or Hamilton–Jacobi–Bellman (HJB) equations. Moreover, the utilized worst-case
disturbance related terms in cost functions usually result in conservative control policies that lead to reduced perfor-
mance. In addition, the transformed optimal control method17 requires the knowledge of the disturbance, for example,
the disturbance bound. To obviate the requirement of an accurate drift dynamics, by using the defined integral rein-
forcement, integral RL is developed to allow the design of a partially model-free approximate optimal control strategy.18

However, the complete knowledge of the input dynamics is still demanded. A further step to get rid of model infor-
mation is to utilize NN based approximation schemes such as radial basis function neural networks (RBFNNs),11 and
recurrent neural networks (RNNs),12 where the dynamics is approximated by a linear weighting of handpicked basis
sets. Although the model-free control is achieved based on the universal approximation ability of NNs, it is not trivial
to get a high-quality approximated model based on an additionally introduced weight update law. The control strategy
designed based on inaccurate approximated models might lead to performance degradation or even instability. More-
over, the effectiveness of these plug-in methods10-12 mentioned above highly relies on prior knowledge. For example,
the center and width of each chosen radial basis function are determined a priori by considering the whole working
space of the investigated system.11 The aforementioned high reliance on prior experience also exist in the fuzzy model
based work13 to avoid using model information. In addition, GP14 or observer15 based methods are also widely used to
deal with model uncertainties and/or environmental disturbances. Although efficient, these methods14,15 suffer from
high computation complexity and parameter tuning efforts. The counterpart to our mainly focused synchronous ADP
is the so-called iterative ADP,19-21 which sequentially updates actor and critic NNs (i.e., one NN is tuned, and the other
holds constant). Although this method enjoys the model-free property for discrete-time systems, however, its extension
to continuous-time systems entails challenges in proving system stability and ensuring that the algorithm is online and
model-free.10

Among the aforementioned robust synchronous ADP related works, either complete16,17 or partial model knowledge18

is required. The desired model-free control is accomplished by introducing additional techniques, such as NNs,10-12

fuzzy models,13 GP,14 or observers,15 where the dynamics is required to be identified online explicitly. Unlike these
computation-intensive approaches, time delay estimation (TDE)22,23 is a fundamentally different mechanism to design
model-free control strategies, where an incremental dynamics constructed by time-delayed signals is used to reflect the
system evolution of the controlled plant incrementally without introducing any online identification processes. However,
despite TDE’s promising robustness feature and beneficial computation simplicity, the optimality property of TDE based
methods remains to be investigated. Besides, the implementation of TDE unintentionally introduces the TDE error, which
denotes the gap between the real system and the constructed incremental dynamics. Although the boundness property of
this TDE error is analyzed in traditional TDE related works,22,23 its influence on the controller performance is overlooked.
A fundamental problem about addressing the TDE error has yet to be properly established. The idea of using sensor data
to facilitate the model-free approximate optimal control strategy originates in works24-26 where the Taylor series expan-
sion based incremental control technique is used to reduce dependence on the explicit knowledge of dynamics. However,
no system stability is presented in related works.24-26 Besides, although identifying a global system model is avoided, a
recursive least square method is still required to identify local system transition matrices, which introduces additional
computation load.
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F I G U R E 1 Schematic of incremental adaptive dynamic programming

This article proposes an alternative approach to achieve model-free control with guaranteed stability and optimality,
as summarized in Figure 1. This is accomplished by first leveraging TDE to get an equivalent incremental dynamics (no
explicit model knowledge but measured input-state data is used) to the investigated system. Thereby, we sidestep the
online identification process, as well as its accompanying computation complexity and parameter tuning efforts. Then, the
resulting incremental dynamics serves as a basis to allow the design of the model-free approximate optimal incremental
control strategy. Furthermore, current and experience data are used to support the online NN weight learning of the critic
agent. The contribution of this work is summarized as follows.

1. We develop a novel RL augmented control approach, which is called IADP, that enjoys both model-free feature and
guaranteed closed-loop system stability. More importantly, IADP accomplishes a significant reduction in the control
energy expenditure, which enables it to be favorable to energy-limited platforms.

2. Under an optimization framework, performance indexes regarding state deviations and control energy expenditures
are considered. Thus, we endow TDE based methods with the optimality property. Besides, by incorporating a TDE
error bound related term into the cost function, we novelly attenuate the TDE error during an optimization process.

The remainder of this article is organized as follows: problem formulation of the robust stabilization problem, problem
transformation to the optimal incremental control problem, and problem equivalence proofs are provided in Section 2.
Thereafter, we present the approximate optimal solution in Section 3. Numerical simulation results shown in Section 4
demonstrate the effectiveness and superiority of IADP. Finally, Section 5 concludes this work.

Notations: Throughout this article, R (R+) denotes the set of real (positive) numbers; Rn is the Euclidean space of
n-dimensional real vector; Rn×m is the Euclidean space of n × m real matrices; Im×m represents the identity matrix with
dimension m × m; 𝜆min(M) and 𝜆max(M) are the minimum and maximum eigenvalues of a symmetric matrix M, respec-
tively; diag(a1,… , an) is the n × n diagonal matrix with the value of main diagonal as a1,… , an; The ith entry of a vector

x = [x1,… , xn]⊤ ∈ Rn is denoted by xi, and ‖x‖ =
√∑N

i=1|xi|2 is the Euclidean norm of the vector x; The ijth entry of a

matrix D ∈ Rn×m is denoted by dij, and ‖D‖ =
√∑n

i=1
∑m

j=1|dij|2 is the Frobenius norm of the matrix D. For notational
brevity, time-dependence is suppressed without causing ambiguity.

2 PROBLEM FORMULATION

Considering the following continuous-time control-affine nonlinear system:

ẋ = f (x) + g(x)u(x) + d(t), (1)

where x ∈ Rn, u(x) ∈ Rm are system states and inputs, respectively. f (x) ∶ Rn → Rn, g(x) ∶ Rn → Rn×m are continuous and
locally Lipschitz drift and input dynamics, respectively. d(t) ∈ Rn represents a bounded time-varying external disturbance.
Assume that no knowledge of dynamics (1) is available except for the dimensions of system states and inputs.
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The main objective of this article is to tackle the robust stabilization problem of the highly uncertain dynamics (1)
that operates in a disturbed environment, which is formulated as Problem 1.

Problem 1. Design a control strategy u(x) such that the system (1) perturbed by a bounded disturbance d(t) is stable
under input saturation Uj =

{
uj ∈ R ∶ ||uj|| ≤ 𝛽

}
, j = 1,… ,m, where 𝛽 ∈ R+ is a known saturation bound.

Remark 1. Although the explicit form of the controlled plant (1) is provided here, which is introduced for the analytical
purpose and facilitates the controller design as well as the stability analysis in the following sections, our developed
control approach relies on neither model parameters nor environmental information.

2.1 Incremental dynamics

The highly uncertain dynamics (1) cannot be directly used to design a controller to solve Problem 1. Therefore, based on
measured input-state data, this section leverages the TDE technique to get an incremental dynamics that is an equiva-
lent of (1). This formulated incremental dynamics reflects the system response of the controlled plant (1) incrementally
without using explicit model parameters, or preceding identification procedures. Here, the attempt to relieve dependence
on the accurate knowledge of dynamics departs from existing works where additional computation-intensive tools such
as NNs,10-12 fuzzy models,13 GP,14 or observers15 are required to address model uncertainties and/or environmental dis-
turbances. The constructed incremental dynamics in this section serves as a basis for the development of the desired
model-free control strategy and the rigorous closed-loop system stability analysis in the following sections.

Before proceeding, the following assumption is provided to facilitate the formulation of an incremental dynamics.

Assumption 1 (8). The input dynamics g = [g1, g2,… , gm] is bounded, and its columns g1, g2,… , gm ∈ Rn are linearly
independent. The function g† = (g⊤g)−1g⊤ ∶ Rn → Rm×n is bounded and locally Lipschitz continuous.

Remark 2. Assumption 1 is common in ADP related works.8,27 Here, g(x) is assumed to be full column rank such that its
pseudo inverse g† could be expressed as a simple algebraic formula (the inverse of g⊤(x)g(x) exists). The introduced g† is
used to extend the TDE method usually applied to the Euler–Lagrange equation22,23 to the control-affine nonlinear system
(1). Note that it is a common assumption that the input dynamics g is bounded. This property is widely observed in many
physical systems, such as robot manipulator systems,28 vehicle dynamics,29 and aircraft models30 fulfill such a property.

To get the incremental dynamics, we start with introducing a constant matrix g ∈ Rn×m and multiply g† on the
dynamics (1),

g†ẋ = g†f (x) + g†g(x)u(x) + g†d(t) = H(x, ẋ) + u(x), (2)

where H(x, ẋ) = (g† − g†(x))ẋ + g†(x)f (x) + g†(x)d(t) ∶ Rn × Rn → Rm. It is a lump term that embodies all the unknown
model knowledge (i.e., f (x), g(x)) as well as external disturbances (i.e., d(t)).

Then, with a sufficiently high sampling rate, based on the TDE technique,22,23 the unknown H(x, ẋ) in (2) could be
estimated by time-delayed signals as

Ĥ(x, ẋ) ∶= H(x0, ẋ0) = g†ẋ0 − u0, (3)

where x0 = x(t − L), u0 = u(x(t − L)). L ∈ R+ is the delay time which is chosen as one or several sampling periods in
practical digital implementations. Given that the smallest achievable L in digital devices is the sampling period,31 thus
we finally take the delay time L to be the same as the sampling period to get an accurate estimation of H(x, ẋ) in (3). In
other words, x0, u0 are the values of states and inputs at the previous sampling period.

Finally, by substituting (3) into (2), we get the incremental dynamics as

Δẋ = gΔu + g𝜉, (4)

where Δẋ = ẋ − ẋ0 ∈ Rn and Δu = u(x) − u0 ∈ Rm are incremental states and control inputs, respectively. 𝜉 = H(x, ẋ) −
Ĥ(x, ẋ) ∈ Rm denotes the so-called TDE error, which is proved to be bounded as given in Lemma 1. Here, with a predefined
g, the measured input-state data (i.e., ẋ, ẋ0, u, and u0) are adopted to reflect the system response in an incremental way
without using model or environmental information.
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Remark 3. The so-called sufficiently high sampling rate, which is a prerequisite for estimating the unknown H(x, ẋ) by
reusing past measured input-state data, can be chosen as the value that is larger than 30 times the system bandwidth.31,32

In this setting, a digital control system can be regarded as a continuous system so that H(x, ẋ) in (2) does not vary
significantly during the sampling period. Thus, the TDE error 𝜉 in (4) is sufficiently small.

Remark 4. The TDE technique, which is usually used in the robotic field,22,23 is extended to the continuous-time
control-affine nonlinear system (1) in this section. From a practical perspective, the applied TDE technique enables us to
switch from the requirement of accurate mathematical models to sensor capabilities of providing accurate measurements
of Δẋ (constructed from ẋ and ẋ0) and Δu (constructed from u(x) and u0). Though the derived incremental dynamics (4)
suffers a practical utility problem given that state derivatives, or even partial state variables are not directly measurable
for certain cases, authors argue that state derivative estimation techniques,33,34 numerical differential techniques,35 or
state observer36 could help. These potential solutions mentioned above deviate from the main objective of this article and
thus remain as future works.

However, although an equivalent of (1) is provided in (4) without using explicit knowledge of dynamics, the
unknown TDE error 𝜉 hinders us to directly utilize (4) to design controllers. Therefore, a method will be developed to
address the TDE error 𝜉 in the next section. Before proceeding, here we first provide the theoretical analysis about the
boundness property of 𝜉, which facilitates the method to tackle the TDE error 𝜉 under an optimization framework in
Section 2.2.

Lemma 1. Given a sufficiently high sampling rate, ∃𝜉 ∈ R+, there holds ‖𝜉‖ ≤ 𝜉.

Proof. Combining (2) with (3), the TDE error follows

𝜉 = H(x, ẋ) − Ĥ(x, ẋ) = H(x, ẋ) − H(x0, ẋ0)

= (g† − g†(x))(ẋ − ẋ0) + (g†0 − g†(x))ẋ0 + g†(x)f (x) − g†0f0 + g†(x)d(t) − g†0d0

= (g† − g†(x))Δẋ + (g†0 − g†(x))ẋ0 + g†(x)(f (x) − f0) + (g†(x) − g†0)f0 + g†(x)(d(t) − d0) + (g†(x) − g†0)d0. (5)

Besides, based on the system (1), we get

Δẋ = f (x) + g(x)u(x) + d(t) − f0 − g0u0 − d0

= g(x)Δu + (g(x) − g0)u0 + f (x) − f0 + d(t) − d0. (6)

Then, substituting (6) into (5) yields

𝜉 = (g† − g†(x))g(x)Δu + (g† − g†(x))[(g(x) − g0)u0 + f (x) − f0 + d(t) − d0] + (g†0 − g†(x))ẋ0

+ g†(x)(f (x) − f0) + (g†(x) − g†0)f0 + g†(x)(d(t) − d0) + (g†(x) − g†0)d0

= (g†g(x) − Im×m)Δu + 𝛿1, (7)

where 𝛿1 = g†(g(x) − g0)u0 + g†(f (x) − f0) + g†(d(t) − d0).
For a sufficiently high sampling rate, the gap between successive states is sufficiently small. Thus, it is reason-

able to assume that there exists a positive constant 𝛿1 ∈ R+ such that ‖𝛿1‖ ≤ 𝛿1. In addition, the bounded control
input u implies that ‖Δu‖ ≤ 2𝛽 holds. By choosing a suitable g such that ‖‖‖g†g(x) − Im×m

‖‖‖ ≤ c establishes, then we
get

‖𝜉‖ ≤ ‖‖‖g†g(x) − Im×m
‖‖‖ ‖Δu‖ + ‖𝛿1‖

≤ c ‖Δu‖ + 𝛿1 ≤ 2𝛽c + 𝛿1 = 𝜉. (8)

This concludes the proof. ▪

Remark 5. By using the Taylor series expansion based incremental control technique, previous works24-26,37,38 attempt
to provide the incremental dynamics by offering the first-order approximation of ẋ in the neighborhood of [x0,u0]. It
follows
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ẋ = f (x) + g(x)u(x)

= f0 + g0u0 +
𝜕[f (x) + g(x)u(x)]

𝜕x
||||x=x0,u=u0

(x − x0) +
𝜕[f (x) + g(x)u(x)]

𝜕u
||||x=x0,u=u0

(u − u0) +.. .

≅ ẋ0 + F[x0,u0]Δx + G[x0,u0]Δu,

where F[x0,u0] = [𝜕(f (x) + g(x)u(x))∕𝜕x]|x=x0,u=u0 ∈ Rn×n is the system matrix, and G[x0,u0] = [𝜕(f (x) +
g(x)u(x))∕𝜕u]|x=x0,u=u0 ∈ Rn×m is the control effectiveness matrix. However, the approximation error resulting from the
high order term .. is directly omitted without considering its influence on the controller performance. Furthermore,
a recursive least square method is demanded to search for suitable gain matrices F[x0,u0] and G[x0,u0] to construct
the incremental dynamics.24-26 This required online identification of F[x0,u0] and G[x0,u0] introduces additional
computational burden.

2.2 Problem transformation to optimal incremental control

To address the unknown TDE error in the incremental dynamics (4), here we attempt to investigate the original robust
stabilization problem shown as Problem 1 from an optimal control perspective, whereby the TDE error could be reflected
in the performance index and further be attenuated during the optimization process. This departs from existing TDE
related works22-26,37,38 that directly ignore the influence of the TDE error on the controller performance. Moreover, the
effort to solve Problem 1 under an optimization framework enables us to take the desired performance indexes regarding
state deviations and control energy expenditures into consideration. These considered performance indexes endow the
resulting TDE based model-free control strategy with guaranteed optimality.

The TDE error 𝜉 in (4) is unknown. Thus, the available incremental dynamics to design a controller to solve Problem 1
follows

Δẋ = gΔu. (9)

To attenuate the TDE error 𝜉 that is overlooked in (9), as well as to optimize the performance of states and control
inputs, we consider the cost function of (9) as

V(x(t)) = ∫
∞

t
r(x(𝜏),Δu(𝜏)) d𝜏, (10)

where r(x,Δu) = x⊤Qx +(u0 + Δu) + 𝜉
2
o ∶ Rn × Rm → R+. The common quadratic positive definite term x⊤Qx reflects

users’ preference for the controller performance concerning state deviations, where Q ∈ Rn×n is a positive definite matrix.
The nonquadratic positive definite control penalty function (u0 + Δu), which relates to the measured u0 and to be
designed Δu, is introduced to enforce the control limit on u(x) based on the bounded tanh function. The explicit form of
this part follows39

(u0 + Δu) = 2
m∑

j=1
∫

u0j
+Δuj

0
𝛽tanh−1(𝜗j∕𝛽) d𝜗j, (11)

where 𝜗j ∈ Rm. Originally, we could incorporate the quadratic TDE error bound 𝜉
2

into r(x,Δu) to attenuate the TDE
error 𝜉 during the optimization process. However, according to (8) of Lemma 1, the explicit value of 𝜉 is unknown. Thus,
we seek for a bounded 𝜉

2
o, where 𝜉o = c ‖Δu‖ and c ∈ R+ is chosen as illustrated in Theorem 1, to replace 𝜉

2
to accomplish

the same goal. It is worth noting that the designed utility function r(x,Δu) here enables us to perform the optimization
of incremental control inputs. This achievable optimization of incremental control inputs enables IADP to enjoy con-
trol effort reductions, which will be verified in the simulation part. This is one distinguishing feature of our proposed
IADP.

Remark 6. Note that there exist other options to address the TDE error 𝜉. For example, by treating the unknown TDE error
𝜉 in (4) as a kind of disturbance, we can introduce the widely used disturbance-observer based methods40 or sliding mode
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control methods41 to compensate the TDE error 𝜉. Comparing to these add-on methods, our strategy enjoys computation
simplicity.

The aforementioned settings allow us to formulate an optimal incremental control problem presented as Problem 2,
whose equivalence to Problem 1 will be later proved in Theorem 1.

Problem 2. Given Assumption 1 and Lemma 1, consider the incremental dynamics (9), find an incremental control
strategy Δu to minimize the cost function defined as (10).

Before proceeding to formally solve Problem 2, by following Reference 39, Definition 1, where admissible controls are
defined based on (1), here we define the set of incremental control inputs that are considered admissible for Problem 2
dealt with in this section. The admissible incremental control defined in Definition 1 facilitates the following derivation
of the closed-form optimal incremental control strategy.

Definition 1 (Admissible incremental control). An incremental control Δ𝜇(x) is defined to be admissible with respect
to (10) on Ω ⊆ Rn, denoted by Δ𝜇(x) ∈ Ψ(Ω), if Δ𝜇(x) is continuous on Ω, Δ𝜇(0) = 0, Δu(x) = Δ𝜇(x) stabilizes (9) on Ω,
and V(x) is finite ∀x ∈ Ω.

For any admissible incremental control policies Δu ∈ Ψ(Ω), using Leibniz’s rule42 to differentiate V in (10) yields the
following relation

0 = r(x,Δu) + ∇V Tẋ = r(x,Δu) + ∇V T(Δẋ + ẋ0) = r(x,Δu) + ∇V T(gΔu + ẋ0), (12)

where the operator ∇ denotes the partial derivative with regard to x, that is, 𝜕(⋅)∕𝜕x.
Define the Hamiltonian function as

H(x,Δu,∇V) = r(x,Δu) + ∇V T(gΔu + ẋ0). (13)

Let V∗(x) be the optimal cost function defined as

V∗(x) = min
Δu∈Ψ(Ω)∫

∞

t
r(x(𝜏),Δu(𝜏)) d𝜏. (14)

Combining with (13), V∗(x) satisfies the HJB equation

0 = min
Δu∈Ψ(Ω)

[H(x,Δu,∇V∗)]. (15)

Assume that the minimum on the right side of (15) exists and is unique.7 By using the stationary optimality condition,
that is, 𝜕H(x,Δu,∇V∗)∕𝜕Δu = 0, we get the closed-form optimal incremental control strategy as

Δu∗ = −𝛽 tanh
(

1
2𝛽

g⊤∇V∗
)
− u0. (16)

Then, we could construct the corresponding optimal control strategy as

u∗ = u0 + Δu∗ = −𝛽 tanh
(

1
2𝛽

g⊤∇V∗
)
. (17)

Departing from traditional ADP related works7,8 where the total optimal control input u∗ is directly designed, here
we first get the theoretically derived incremental optimal control strategy Δu∗ in (16), and then construct u∗ based on
the measured u0 and the designed Δu∗. This difference lies in that Problem 2 is formulated based on the incremental
dynamics (9) that relates to incremental states and control inputs.

Remark 7. Alternatively, we could replace (u0 + Δu) in r(x,Δu) with (Δu) = 2
∑m

j=1∫ Δuj
0 𝛼tanh−1(𝜗j∕𝛼) d𝜗j. This

enforces the constraint satisfaction of the incremental control inputs, which is denoted as −𝛼 ≤ Δuj ≤ 𝛼, 𝛼 ∈ R+,
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j = 1,… ,m. By following the aforementioned derivation processes (14)–(17), the corresponding optimal incremen-
tal control follows Δu∗ = −𝛼 tanh( 1

2𝛼
g⊤∇V∗). Then, the resulting optimal control is u∗ = u0 + Δu∗. However, in this

case, the control limit on u(x) cannot be addressed. Given that input saturation is common in real life and violations
of it might lead to serious consequences, we prefer to incorporate (11) into r(x,Δu) to enforce the control limit on
u(x).

To get Δu∗ (16) and u∗ (17), ∇V∗ remains to be determined. We defer the explicit method to acquire ∇V∗ in Section 3,
and focus now on the equivalence proof to show that after solving Problem 2, the resulting u∗ (17) constructed from the
designed Δu∗ (16) is the robust stabilization solution to Problem 1.

Theorem 1. Given Assumption 1 and Lemma 1, consider the system described by (1), if there exists a scalar c ∈ R+ such that

𝜉 < c ‖Δu‖ , (18)

the system (1) is robustly stabilized by the optimal control strategy (17) with the optimal incremental control
strategy (16).

Proof. Given that V∗(x = 0) = 0, and V∗ > 0 for ∀x ≠ 0, V∗ defined in (14) could serve as a Lyapunov function candidate
for the stability proof. Taking time derivative of V∗ along the incremental dynamics (4), which is an equivalent of the
original dynamics (1), we get

V̇∗ = ∇V∗⊤(Δẋ + ẋ0) = ∇V∗⊤(gΔu∗ + g𝜉 + ẋ0) = ∇V∗⊤(gΔu∗ + ẋ0) + ∇V∗⊤g𝜉. (19)

According to (15) and (16), the following equations hold:

∇V∗⊤(gΔu∗ + ẋ0) = −x⊤Qx −(u0 + Δu∗) − 𝜉
2
o, ∇V∗⊤g = −2𝛽 tanh−1

(
u0 + Δu∗

𝛽

)
. (20)

Substituting (20) into (19) reads

V̇∗ = −x⊤Qx −(u0 + Δu∗) − 𝜉
2
o − 2𝛽 tanh−1

(
u0 + Δu∗

𝛽

)
𝜉. (21)

As for (u0 + Δu∗) in (21), based on the explicit form in (11) and by setting 𝜍j = tanh−1 (𝜗j∕𝛽
)
, it follows

(u0 + Δu∗) = 2𝛽
m∑

j=1
∫

u0j
+Δu∗

j

0
tanh−1(𝜗j∕𝛽) d𝜗j = 2𝛽2

m∑
j=1

∫
tanh−1

(
u0j +Δu∗j

𝛽

)
0

𝜍j(1 − tanh2(𝜍j)) d𝜍j

= 𝛽2
m∑

j=1

(
tanh−1

(
u0j + Δu∗

j

𝛽

))2

− 𝜖u, (22)

where 𝜖u = 2𝛽2∑m
j=1∫

tanh−1
(

u0j +Δu∗j
𝛽

)
0 𝜍jtanh2(𝜍j) d𝜍j. Based on the integral mean-value theorem, there exists a series of

𝜃j ∈ [0, tanh−1
(

u0j
+Δu∗

j

𝛽

)
], j = 1,… ,m, such that

𝜖u = 2𝛽2
m∑

j=1
tanh−1

(
u0j + Δu∗

j

𝛽

)
𝜃jtanh2(𝜃j). (23)

Based on (20) and the fact 0 ≤ tanh2(𝜃j) ≤ 1, it follows

𝜖u ≤ 2𝛽2
m∑

j=1

(
u0j + Δu∗

j

𝛽

)
𝜃j ≤ 2𝛽2

m∑
j=1

(
tanh−1

(
u0j + Δu∗

j

𝛽

))2

= 1
2
∇V∗⊤gg⊤∇V∗. (24)
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The definition of admissible incremental control in Definition 1 concludes that V∗ is finite. Additionally, there exists
b∇V∗ ∈ R+ such that ‖∇V∗‖ ≤ b∇V∗ . Thus, we could rewrite (24) as

𝜖u ≤ b𝜖u = 1
2
‖‖g‖‖2b2

∇V∗ . (25)

Then, substituting (22) and (25) into (21) yields

V̇∗ ≤ −x⊤Qx − (𝜉
2
o − ‖𝜉‖2) − [𝛽tanh−1

(
u0 + Δu∗

𝛽

)
+ 𝜉]2 + b𝜖u . (26)

By choosing 𝜉o = c ‖Δu‖, and c is chosen to satisfy c ‖Δu‖ > 𝜉, where 𝜉 is defined in (8), the following inequality holds

V̇∗ ≤ −x⊤Qx + b𝜖u . (27)

Thus, V̇∗
< 0 holds if −𝜆min(Q)‖x‖2 + b𝜖u < 0. Finally, it concludes that states converge to the residual set

Ωx = {x| ‖x‖ ≤
√

b𝜖u∕𝜆min(Q)}. (28)

The aforementioned proof means that based on the optimal cost function (14), the derived optimal incremental control
policy (16) of the system (9) robustly stabilizes the system (4). Given the equivalence between (1) and (4) clarified in
Section 2.1, thus the optimal control input (17), which is constructed from the designed (16), robustly stabilizes the system
(1). This concludes the proof. ▪

We have proved in Theorem 1 that the optimal incremental control problem clarified in Problem 2 is equivalent to
the robust stabilization problem shown as Problem 1. Thus, to stabilize the highly uncertain dynamics (1) operating in a
disturbed environment, the following article devotes to solving Problem 2.

3 APPROXIMATE OPTIMAL SOLUTION

To solve Problem 2, this section seeks for the approximate solution to the value function of the HJB equation (15) that
is hard to solve directly. Departing from common ADP related works7,8 using an actor-critic structure, we introduce a
single critic structure here, which decreases the computational burden and simplifies the theoretical analysis. In addition,
we observe that the adopted critic NN for approximating the value function is in essence a linear approximator. This
enables us to transform the critic NN weight learning problem into a parameter identification problem. Then, by further
using the collected experience data to provide the sufficient excitation required for the weight convergence, we design
a simple yet efficient off-policy weight update law with guaranteed weight convergence. Our approach is favorable to
practical applications comparing to common methods that often directly add external noises to control inputs to meet the
persistence of excitation (PE) condition required for the weight convergence,7,43 which results in undesirable oscillations
and additional control efforts.

3.1 Value function approximation

Based on the Weierstrass high-order approximation theorem,44 for x ∈ Ω with Ω ⊂ Rn being a compact set, the optimal
value function is approximated as7

V∗(x) = W∗⊤Φ(x) + 𝜖(x), (29)

where W∗ ∈ RN is a weighting matrix, Φ(x) ∶ Rn → RN represents the activation function, and 𝜖(x) ∈ R denotes the
approximation error. The corresponding partial derivative of V∗(x) follows
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∇V∗(x) = ∇Φ⊤(x)W∗ + ∇𝜖(x), (30)

where ∇Φ(x) ∈ RN×n, ∇𝜖(x) ∈ Rn. As N → ∞, both 𝜖(x) and ∇𝜖(x) converge to zero uniformly. Without loss of generality,
the following assumption is given, which is common in ADP related works.

Assumption 2 (7). There exist constants b𝜖, b𝜖x, bΦ, bΦx ∈ R+ such that ‖𝜖(x)‖ ≤ b𝜖 , ‖∇𝜖(x)‖ ≤ b𝜖x, ‖Φ(x)‖ ≤ bΦ, and‖∇Φ(x)‖ ≤ bΦx.

Considering a fixed incremental control input Δu, inserting (30) into (15) yields

W∗⊤∇Φ(gΔu + ẋ0) + r(x,Δu) = 𝜖h, (31)

where the residual error follows 𝜖h = −∇𝜖⊤(gΔu + ẋ0) ∈ R. Assume that there exists b𝜖h ∈ R+ such that ‖𝜖h‖ ≤ b𝜖h . By
focusing on the NN parameterized (31), we rewrite it into the following linear in parameter (LIP) form

Θ = −W∗⊤Y + 𝜖h, (32)

where Θ = r(x,Δu) ∈ R, and Y = ∇Φ(gΔu + ẋ0) ∈ RN . Given that Θ and Y could be obtained from real-time data,
this formulated LIP form enables the learning of W∗ to be equivalent to a parameter identification problem of an
LIP system from the perspective of adaptive control, wherein Y and W∗ could be treated as the known regres-
sor matrix and the unknown parameter vector to be determined, respectively. The applied novel transformation
here allows us to design a simple weight update law with guaranteed weight convergence in the subsequent
section.

3.2 Off-policy weight update law

By denoting the estimate of the ideal critic weight W∗ in (32) as Ŵ ∈ RN , then we get

Θ̂ = −Ŵ⊤Y , (33)

where Θ̂ ∈ R is the estimate of Θ. Denoting the weight estimation error as W̃ = Ŵ − W∗ ∈ RN , and subtracting (33) from
(32), we get the approximation error Θ̃ ∈ R as

Θ̃ = Θ − Θ̂ = W̃⊤Y + 𝜖h. (34)

To achieve Ŵ → W∗, Ŵ should be updated to minimize E = 1
2
Θ̃⊤Θ̃. Furthermore, to guarantee the weight convergence

while minimizing E, experience data are used to provide the required sufficient excitation. Finally, a simple yet efficient
off-policy weight update law of the critic agent is designed as

̇̂W = −ΓkcYΘ̃ −
P∑

l=1
ΓkeYlΘ̃l, (35)

where Θ̃ = Θ + Ŵ⊤Y according to (33) and (34), which is available based on measurable Θ and Y defined in (32).
Γ ∈ RN×N is a constant positive definite gain matrix. kc, ke ∈ R+ are constant gains to balance the relative impor-
tance between current and experience data to the online learning process. The regressor matrix Yl ∈ RN and the
approximation error Θ̃l ∈ R denote the lth collected data of the corresponding experience buffers 𝔅 and 𝔈, respec-
tively. P ∈ R+ is the volume of the experience buffers 𝔅 and 𝔈, that is, the maximum number of recorded data
points.

Before proceeding to the guaranteed weight convergence proof based on (35), we first clarify a rank condition about
the experience buffer 𝔅 in Assumption 3. This rank condition serves as a richness criterion of the recorded experience
data and facilitates the guaranteed weight convergence analysis in Theorem 2.

Assumption 3. Given an experience buffer 𝔅 = [Y1,… ,YP] ∈ RN×P, there holds rank(𝔅) = N.
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Departing from the traditional PE condition,7,43 the rank condition in Assumption 3 provides an online check-
able index about the data richness required for the weight convergence, which is favorable to controller designers.
Assumption 3 is not restrictive, which could be easily satisfied by sequentially reusing experience data.

Based on the collected sufficient rich experience data illustrated in Assumption 3, here we provide the guaranteed
weight convergence proof based on the off-policy weight update law (35).

Theorem 2. Given Assumption 3, the weight learning error W̃ converges to a small neighborhood around zero.

Proof. Consider the following candidate Lyapunov function

VW = 1
2

W̃⊤Γ−1W̃ . (36)

The time derivative of VW follows

V̇ W = W̃⊤Γ−1(−ΓkcYΘ̃ −
P∑

l=1
ΓkeYlΘ̃l) = −kcW̃⊤YΘ̃ − W̃⊤

P∑
l=1

keYlΘ̃l ≤ −W̃⊤BW̃ + W̃⊤
𝜖W̃ , (37)

where B =
∑P

l=1keYlY⊤

l ∈ RN×N , and 𝜖W̃ = −kcY𝜖h −
∑P

l=1keYl𝜖hl ∈ RN . The boundness of Y and 𝜖h results in bounded 𝜖W̃ .
Thus, there exists 𝜖W̃ ∈ R+ such that ‖𝜖W̃‖ ≤ 𝜖W̃ . According to Assumption 3, B is positive definite. Thus, (37) could be
rewritten as

V̇ W ≤ − ‖‖W̃‖‖ (𝜆min(B) ‖‖W̃‖‖ − 𝜖W̃ ). (38)

Therefore, V̇ W < 0 if ‖‖W̃‖‖ >
𝜖W̃

𝜆min(B)
. Finally, it concludes that the weight estimation error of the critic NN will converge

to the residual set

ΩW̃ =
{

W̃ | ‖‖W̃‖‖ ≤ 𝜖W̃

𝜆min(B)

}
. (39)

This completes the proof. ▪

With a sufficiently large N, 𝜖W̃ converges to zero. Then, according to (38), we get V̇ W ≤ −𝜆min(B)‖‖W̃‖‖2, that is, W̃ → 0
exponentially as t → ∞. Thus, it concludes that Ŵ guarantees convergence to W∗.

Unlike common actor-critic structure based works,7,8 the guaranteed weight convergence of Ŵ to W∗ in Theorem 2
permits us to adopt a simplified single critic structure, where the estimated critic NN weight Ŵ could be directly used
to construct the approximate optimal incremental control strategy. Therefore, based on the optimal incremental control
strategy in (16), the approximate optimal incremental control strategy follows

Δû = −𝛽 tanh
(

1
2𝛽

g⊤∇Φ⊤Ŵ
)
− u0. (40)

Accordingly, the approximate optimal control strategy applied at the plant (1) follows

û = u0 + Δû = −𝛽 tanh( 1
2𝛽

g⊤∇Φ⊤Ŵ). (41)

Remark 8. From a practical perspective, our designed model-free approximate optimal incremental control strategy (40)
only requires one manually tuned constant matrix g. This feature of IADP decreases the required parameter tuning
efforts comparing to existing identification based methods to fulfill model-free control strategies,10-15 where multiple
hyperparameters or gains need to be tuned.

Based on the off-policy weight update law (35), and the approximate optimal incremental control strategy (40)
mentioned above, we provide the main conclusions of this article in Theorem 3.
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Theorem 3. Consider the incremental dynamics (9), the off-policy weight update law of the critic NN in (35), and the
approximate optimal incremental control policy (40). Given Assumptions 1–3, for a sufficiently large N, the approximate
optimal incremental control policy (40) stabilizes the incremental dynamics (9), and the critic NN weight learning error W̃
is uniformly ultimately bounded (UUB).

Proof. Consider the following candidate Lyapunov function

J = V∗(x) + 1
2

W̃⊤Γ−1W̃ . (42)

By denoting L̇V = V̇∗(x) and L̇W = W̃⊤Γ−1 ̇̂W , the time derivative of (42) reads

J̇ = L̇V + L̇W . (43)

The first term L̇V follows

L̇V = ∇V∗⊤(gΔû + g𝜉 + ẋ0) = ∇V∗⊤(gΔu∗ + ẋ0) + ∇V∗⊤g𝜉 + ∇V∗⊤g(Δû − Δu∗). (44)

Then, substituting (20) into (44) gets

L̇V = −x⊤Qx −(u0 + Δu∗) − 𝜉
2
o − 2𝛽tanh−1

(
u0 + Δu∗

𝛽

)
𝜉 − 2𝛽tanh−1

(
u0 + Δu∗

𝛽

)
(Δû − Δu∗). (45)

According to (22)–(24), (45) follows

L̇V ≤ −x⊤Qx − (𝜉
2
o − ‖𝜉‖2) − [𝛽tanh−1

(
u0 + Δu∗

𝛽

)
+ 𝜉]2 + 1

2
∇V∗⊤gg⊤∇V∗ − 2𝛽tanh−1

(
u0 + Δu∗

𝛽

)
(Δû − Δu∗). (46)

The term −2𝛽tanh−1
(

u0+Δu∗

𝛽

)
(Δû − Δu∗) in (46) follows

− 2𝛽tanh−1
(

u0 + Δu∗

𝛽

)
(Δû − Δu∗) ≤ 𝛽2

‖‖‖‖‖tanh−1
(

u0 + Δu∗

𝛽

)‖‖‖‖‖
2

+ ‖Δû − Δu∗‖2
. (47)

By using (16), (30), and the mean-value theorem, the optimal incremental control is rewritten as

Δu∗ = −𝛽 tanh
(

1
2𝛽

g⊤∇Φ⊤W∗
)
− 𝜖Δu∗ − u0, (48)

where 𝜖Δu∗ = 1
2
(1 − tanh2(𝜂))g⊤∇𝜖, and 𝜂 ∈ Rm is chosen between 1

2𝛽
g⊤∇Φ⊤W∗ and 1

2𝛽
g⊤∇V∗, 1 = [1,… , 1]⊤ ∈

Rm. According to ‖∇𝜖‖ ≤ b𝜖x in Assumption 2, ‖𝜖Δu∗‖ ≤ 1
2
‖‖g‖‖ b𝜖x holds. Then, by combining (40) with (48), we

get

Δû − Δu∗ = 𝛽

(
tanh

(
1

2𝛽
g⊤∇Φ⊤W∗

)
− tanh

(
1

2𝛽
g⊤∇Φ⊤Ŵ

)
+ 𝜖Δu∗ . (49)

For simplicity, denoting 𝒢 ∗ = 1
2𝛽

g⊤∇Φ⊤W∗ and 𝒢̂ = 1
2𝛽

g⊤∇Φ⊤Ŵ , where 𝒢̂ = [𝒢̂ 1,… , 𝒢̂m] ∈ Rm with 𝒢̂ j ∈ R, j =
1,… ,m. Based on (16) and (40), the Taylor series of tanh (𝒢 ∗) follows

tanh (𝒢 ∗) = tanh(𝒢̂ ) + 𝜕 tanh(𝒢̂ )
𝜕𝒢̂

(𝒢 ∗ − 𝒢̂ ) + O((𝒢 ∗ − 𝒢̂ )2) = tanh(𝒢̂ ) − 1
2𝛽

(Im×m −𝒟 (𝒢̂ ))g⊤∇Φ⊤W̃ + O((𝒢 ∗ − 𝒢̂ )2),

(50)
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where 𝒟 (𝒢̂ ) = diag(tanh2(𝒢̂ 1),… , tanh2(𝒢̂m)), and O((𝒢 ∗ − 𝒢̂ )2) is a higher order term of the Taylor series. By
following [ 45, Lemma 1], this higher order term is bounded as

‖‖‖O((𝒢 ∗ − 𝒢̂ )2)‖‖‖ ≤ 2
√

m + 1
𝛽
‖‖g‖‖ bΦx ‖‖W̃‖‖ . (51)

Based on (50), we rewrite (49) as

Δû − Δu∗ = 𝛽(tanh (𝒢 ∗) − tanh(𝒢̂ )) + 𝜖Δu∗ = −1
2
(Im×m −𝒟 (𝒢̂ ))g∇Φ⊤W̃ + 𝛽O((𝒢 ∗ − 𝒢̂ )2) + 𝜖Δu∗ . (52)

According to Reference 45, ‖‖‖Im×m −𝒟 (𝒢̂ )‖‖‖ ≤ 2 holds. Then, by combining (51) with (52), ‖Δû − Δu∗‖2 in (47)
follows

‖Δû − Δu∗‖2 ≤ 3𝛽2‖‖‖O((𝒢 ∗ − 𝒢̂ )2)‖‖‖2
+ 3‖𝜖Δu∗‖2 + 3‖‖‖− 1

2
(Im×m −𝒟 (𝒢̂ ))g⊤∇Φ⊤W̃‖‖‖2

≤ 6‖‖g‖‖2b2
Φx
‖‖W̃‖‖2 + 12m𝛽2 + 3

4
‖‖g‖‖2b2

𝜖x + 12𝛽
√

m ‖‖g‖‖ bΦx ‖‖W̃‖‖ . (53)

Based on (20), (30), Assumption 2, and the fact that ‖W∗‖ ≤ bW∗ , ‖‖‖tanh−1((u0 + Δu∗)∕𝛽)‖‖‖2
in (47) follows

‖‖‖‖‖tanh−1
(

u0 + Δu∗

𝛽

)‖‖‖‖‖
2

=
‖‖‖‖ 1

4𝛽2 ∇V∗⊤gg⊤∇V∗‖‖‖‖ ≤ 1
4𝛽2

‖‖g‖‖2b2
Φxb2

W∗ +
1

4𝛽2 b2
𝜖x‖‖g‖‖2 + 1

2𝛽2
‖‖g‖‖2bΦxb𝜖xbW∗ . (54)

Using (53) and (54), (47) reads

− 2𝛽tanh−1
(

u0 + Δu∗

𝛽

)
(Δû − Δu∗) ≤ 1

4
‖‖g‖‖2b2

Φxb2
W∗ +

1
4

b2
𝜖x‖‖g‖‖2 + 1

2
‖‖g‖‖2bΦxb𝜖xbW∗

+ 6‖‖g‖‖2b2
Φx
‖‖W̃‖‖2 + 12m𝛽2 + 3

4
‖‖g‖‖2b2

𝜖x + 12𝛽
√

m ‖‖g‖‖ bΦx ‖‖W̃‖‖ . (55)

Substituting (55) into (46), finally the first term L̇V follows

L̇V ≤ −x⊤Qx − (𝜉
2
o − 𝜉⊤𝜉) − [𝛽tanh−1

(
u0 + Δu∗

𝛽

)
+ 𝜉]2 + 3

4
‖‖g‖‖2b2

Φxb2
W∗ +

3
4

b2
𝜖x‖‖g‖‖2 + 3

2
‖‖g‖‖2bΦxb𝜖xbW∗

+ 6‖‖g‖‖2b2
Φx
‖‖W̃‖‖2 + 12m𝛽2 + 3

4
‖‖g‖‖2b2

𝜖x + 12𝛽
√

m ‖‖g‖‖ bΦx ‖‖W̃‖‖ . (56)

As for the second term L̇W , based on (35) and (37), it follows

L̇W ≤ −W̃⊤BW̃ + W̃⊤
𝜖W̃ . (57)

Finally, as for J̇, substituting (56) and (57) into (43), we get

J̇ ≤ − − ‖‖W̃‖‖2 +  ‖‖W̃‖‖ +, (58)

where  = x⊤Qx + (𝜉
2
o − 𝜉⊤𝜉) + [𝛽tanh−1

(
u0+Δu∗

𝛽

)
+ 𝜉]2,  = 𝜆min(B) − 6‖‖g‖‖2b2

Φx,  = 12𝛽
√

m ‖‖g‖‖ bΦx + 𝜖W̃ , and  =
3
4
‖‖g‖‖2b2

Φxb2
W∗ + 3

2
b2
𝜖x
‖‖g‖‖2 + 3

2
‖‖g‖‖2bΦxb𝜖xbW∗ + 12m𝛽2. Let the parameters be chosen such that  > 0. Since  is positive

definite, the above Lyapunov derivative (58) is negative if

‖‖W̃‖‖ >


2 +
√ 2

42 + 
 . (59)

Thus, the critic weight learning error converges to the residual set
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Ω̃W̃ =

{
W̃ | ‖‖W̃‖‖ ≤ 

2 +
√ 2

42 + 

}

. (60)

This completes the proof. ▪

4 NUMERICAL SIMULATION

This section conducts multiple comparative numerical simulations to validate the effectiveness and superiority of our
proposed IADP, especially in terms of the reduced control energy expenditure shown in Section 4.1, and the enhanced
robustness illustrated in Section 4.2. Besides, the influence of different sampling rates on IADP’s performance is investi-
gated in Section 4.3. Here, we choose the widely investigated pendulum in ADP related works19,46 as a benchmark. The
dynamics of the pendulum follows {

d𝜃
dt

= 𝜗 + d,
J d𝜗

dt
= u − Mgl sin 𝜃 − fd

d𝜃
dt
,

(61)

where 𝜃, 𝜗 ∈ R denote the angle and the angular velocity of the pendulum, respectively. M = 1∕3 kg and l = 3∕2 m are
the mass and length of the pendulum, respectively. Let g = 9.8 m s2 be the gravity, J = 4∕3Ml2 kg m2 be the rotary inertia,
and fd = 0.2 be the frictional factor. Here d represents an external disturbance.

4.1 Validation of the reduced control effort of IADP

This section compares IADP with the zero-sum game based ADP (ZSADP)16 and the transformed optimal control based
ADP (TADP)17 to verify the superiority of IADP regarding the reduced control effort. Note that among existing ADP
related works, model-based ZSADP and TADP are the two most widely adopted methods to deal with the robust stabi-
lization problem illustrated as Problem 1. First, to conduct convincing comparative simulations, an often used vanishing
(state-dependent) disturbance in ZSADP and TADP related works16,17 is deliberately chosen in Section 4.1.1 to fully show
the performance of ZSADP and TADP. Then, in Section 4.1.2, except for the vanishing disturbance used in Section 4.1.1, we
make a step further by additionally introducing measurement noises, non-vanishing disturbances, and sudden physical
changes into the simulation environment. The conducted comparative simulations under multiple sources of uncertain-
ties and disturbances further exemplify the advantage of our proposed IADP in terms of the reduced control effort. The
numerical simulations in this subsection are conducted under a sampling rate chosen as 1000 Hz.

4.1.1 Validation under the vanishing (state-dependent) disturbance

In this subsection, by following Reference 47, the state-dependent disturbance is chosen as d1 = 𝜔1𝜃 sin(𝜔2𝜗), where
𝜔1 and 𝜔2 are randomly generated within the scope [−

√
2∕2,

√
2∕2] and [−2, 2], respectively. Let x1 = 𝜃 and x2 = 𝜗, the

original pendulum system (61) is rewritten as[
ẋ1

ẋ2

]
= fx)

[
x2

− 4.9 sin x1 − 0.2x2

]
+ gx)

[
0

0.25

]
u + kx)

[
1

− 0.2

]
d1x)𝜔1x1 sin(𝜔2x2). (62)

To drive the pendulum (62) to the equilibrium point even under input saturation (𝛽 = 2) and the external disturbance
d1(x), the detailed simulation settings for IADP, ZSADP, and TADP are as follows.

For IADP, we choose g = [0, 0.1]⊤. Its cost function is considered as

VI = ∫
∞

t
x⊤Qx +(u0 + Δu) + 𝜉

2
o d𝜏, (63)
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F I G U R E 2 The estimated weight trajectories of IADP (ŴI), ZSADP (ŴZ), and TADP (ŴT) under the disturbance d1(x)

where Q = I2×2, (u0 + Δu) = 2𝛽(u0 + Δu)tanh−1((u0 + Δu)∕𝛽) + 𝛽2 log(1 − (u0 + Δu)2∕𝛽2), and 𝜉o = 2 ‖Δu‖. The
approximate optimal incremental control Δû and the approximate optimal control û follow (40) and (41), respectively.
IADP requires neither explicit model nor environmental information except for a predefined constant matrix g.

For ZSADP, by following Reference 16, its cost function is

VZ = ∫
∞

t
x⊤Qx +(uZ) − 𝛾d⊤

Z dZ d𝜏, (64)

where (uZ) = 2𝛽uZtanh−1(uZ∕𝛽) + 𝛽2 log(1 − u2
Z∕𝛽

2), 𝛾 = 1. For this case, the approximate optimal control policy fol-
lows ûZ = −𝛽 tanh( 1

2𝛽
g⊤∇Φ⊤ŴZ), and the approximate worst-case disturbance policy is d̂Z = 1

2𝛾2 k⊤∇Φ⊤ŴZ. Here ûZ and

d̂Z depend on the concert g(x) and k(x) in (62), respectively.
For TADP, according to Reference 17, the corresponding cost function follows

VT = ∫
∞

t
x⊤Qx +(uT) + 𝜌v⊤T vT + l2

M + d2
M d𝜏, (65)

where 𝜌 = 0.1. The chosen disturbance satisfies ‖d(x)‖ ≤ √
2∕2 ‖x‖. Thus, dM =

√
2∕2 ‖x‖ and lM = 0.4

√
2 ‖x‖ are cho-

sen to address the disturbance d1(x). Much more details are referred to the work.17 The approximate optimal control
follows ûT = −𝛽 tanh( 1

2𝛽
g⊤∇Φ⊤ŴT), and the approximate pseudo control follows v̂T = − 1

2𝜌
h⊤∇Φ⊤ŴT , where h = (I2×2 −

gg†)k. For TADP, the explicit knowledge of g(x) and k(x) in (62) is required to construct ûT and v̂T .
The aforementioned IADP, ZSADP, and TADP all adopt the single critic structure and our developed off-policy

weight update law (35). To achieve a fair comparison, simulation parameters for three methods are set as same,
which is detailly clarified as follows. To get the approximate solutions to the above value functions (63)–(65), Φ(x) =
[x2

1 , x1x2, x2
2 , x3

2 , x1x2
2 , x2

1x2]⊤ is chosen. To guarantee the weight convergence, parameters are set as P = 8, Γ = 10−4I6×6,
kc = 5, and ke = 3. The initial values are chosen as x(0) = [2,−2]⊤, û(0) = 0, d̂Z(0) = 0 (for ZSADP), and v̂T(0) = 0 (for
TADP). Note that to achieve a fair comparison, we also fix the values of 𝜔1 and 𝜔2 in d1(x) as a set of randomly selected
values: 𝜔1 = −0.3906, 𝜔2 = 1.0051.

The critic NN weigh convergence results for IADP, ZSADP, and TADP are displayed in Figure 2. Based on our devel-
oped off-policy weight update law (35), the weight convergence is guaranteed without adding external noises to control
inputs to achieve the required sufficient exploration.

The state and control trajectories of three cases are shown in Figure 3, where the pendulum is successfully driven
to the equilibrium point without violating input constraints. However, regarding the peak points of state and control
trajectories, the fluctuation range of IADP is smaller than ZSADP and TADP.

To reveal the superiority of IADP over ZSADP and TADP, we display their corresponding control energy expenditure
Eu = ∫ ∞

0 ‖û‖2 d𝜏, and state deviation Ex = ∫ ∞
0 ‖x‖2 d𝜏 in Figure 4. It is observed in Figure 4 that IADP enjoys a noticeable

reduction in utilized control effort, that is, energy efficiency is highly improved. This makes IADP a more suitable choice
for energy-limited platforms. This significant decrease in the control effort comes from the achievable optimization of
the incremental control inputs. Specifically, given û(0) = 0 and IADP prefers a small Δû at each optimization step, a
small û is generated to stabilize the pendulum. Thus, we finally get a small Eu, which is a cumulative sum of quadratic
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F I G U R E 3 The state and control trajectories of IADP, ZSADP, and TADP under the vanishing disturbance d1(x)

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7
10 4

F I G U R E 4 The performance comparison between IADP, ZSADP, and TADP under the vanishing disturbance d1(x)

û. The performance analysis shown in Figure 4 also clarifies the conservativeness of ZSADP and TADP. Although the
worst-case disturbance related terms (i.e., d⊤

Z dZ for ZSADP, v⊤T vT , l2
M , and d2

M for TADP) incorporated into the cost functions
(64)–(65) allow controller designers to address the additive disturbance d1(x), these additionally introduced terms trade
off the desired performance indexes of control efforts and state deviations. Thus, a performance compromise problem
arises.

Given the aforementioned simulation results, we know that, even though model-based ZSADP and TADP could pro-
vide the rigorous robustness guarantee under worst-case disturbances, they perform poorly than our proposed model-free
IADP, especially regarding the control energy expenditure.

4.1.2 Validation under the non-vanishing disturbance, measurement noise, and physical change

To further validate the superiority of our proposed IADP over ZSADP and TADP, this section conducts comparative
simulations under the vanishing disturbance used in Section 4.1.1, as well as the newly introduced non-vanishing distur-
bance, measurement noise, and sudden physical change. It is worth noting that ZSADP16 and TADP17 can only deal with
state-dependent disturbances in a closed-loop form. Thus, here the amplitudes of the chosen non-vanishing disturbance,
measurement noise, and physical change are purposely set to be the level that could be tackled by the inherent robustness
of ZSADP and TADP.

Here we follow the time-varying non-vanishing disturbance from Reference 48, which is denoted as d2(t) and set as a
square wave with amplitude 0.2 and period 5 s. The measurement noise is chosen as a white Gaussian noise with 50 dBW.
We add d2(t) and the measurement noise into the simulation environment during the time from 20 to 60 s. To simulate a
sudden physical change, for example, parameter perturbations due to unknown loads put on the pendulum, at t = 20 s,
the dynamics of pendulum (62) is randomly reset as
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F I G U R E 5 The state trajectories of IADP, ZSADP, and TADP under the non-vanishing disturbance d2(t)
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F I G U R E 6 The performance comparison between IADP, ZSADP, and TADP under the non-vanishing disturbance d2(t)

[
ẋ1

ẋ2

]
= fx)

[
x2

− 2 sin x1 − 0.1x2

]
+ gx)

[
0

0.1

]
u + kx)

[
1

− 0.1

]
d1(x). (66)

The parameter settings for IADP, ZSADP, and TADP are the same as the settings in Section 4.1.1.
Under the vanishing disturbance d1(x), the non-vanishing square wave disturbance d2(t), the white Gaussian mea-

surement noise, and the sudden physical change from (62) to (66), the simulation results are shown in Figures 5 and
6. The state trajectories displayed in Figure 5 reveal that three methods all successfully stabilize the pendulum without
retuning parameters, that is, these three methods possess inherent robustness to the aforementioned uncertainties and
disturbances in certain amplitudes.

The performance comparison shown in Figure 6 further validates the significant control energy deduction of our
developed IADP. Comparing to Figure 4 in Section 4.1.1, the increased control effort of IADP results from the required
additional control energy to deal with the newly introduced uncertainties and disturbances. Besides, Figure 6 also displays
that IADP outperforms ZSADP and TADP in terms of the state deviation Ex.

4.2 Validation of the enhanced robustness of IADP

To highlight the enhanced robustness of our proposed IADP, this section conducts numerical simulations under a more
complex simulation environment comparing to Section 4.1.2. The details are as follows: during the time from 20 to 60
s, the added non-vanishing disturbance d3(t) is a square wave with amplitude 0.5 and period 1 s, whose amplitude and
frequency are both improved comparing to d2(t) used in Section 4.1.2; the incorporated measurement noise is set as a
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F I G U R E 7 The estimated weight trajectory of IADP and the control trajectories of IADP, ZSADP, and TADP

F I G U R E 8 The state trajectories of IADP, ZSADP, and TADP under a complex simulation environment

white Gaussian noise with 10 dBW, whose magnitude is 5 times larger than the one chosen in Section 4.1.2. Besides, to
model a significant physical change, at t = 20 s, the pendulum (62) is reset as[

ẋ1

ẋ2

]
= fx)

[
− x2

4.9 sin x1 − 0.2x2

]
+ gx)

[
0

− 0.25

]
u + kx)

[
1

− 0.2

]
d1(x). (67)

Comparing to Section 4.1.2, the simulated physical change here is more aggressive by inverting the sign of model
parameters. The parameter settings for IADP, ZSADP, and TADP follow the settings in Section 4.1.1. The sampling rate is
chosen as 1000 Hz.

The estimated weight trajectory of IADP shown in Figure 7 illustrates that under multiple sources of uncertainties
and disturbances, our proposed off-policy weight update law (35) enables us to collect real-time data in time and finally
achieve weight convergence. The control trajectories shown in Figure 7, and the state trajectories displayed in Figure 8
clarify the enhanced robustness of IADP. Specifically, IADP successfully stabilizes the pendulum under multiple sources
of uncertainties and disturbances, however, the robustness of ZSADP and TADP are not enough to tackle such a complex
environment. Thus, the control inputs and states of ZSADP and TADP diverge far away immediately when the simulation
environment significantly changes at t = 20s.

4.3 Validation of the performance of IADP under different sampling rates

This subsection conducts multiple comparative numerical simulations to investigate the influence of different sampling
rates on IADP’s performance. Since we directly chooses the delay time L as the sampling period, this subsection also
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F I G U R E 9 The state and control trajectories of IADP under different sampling rates

investigates the effect of different delay time L on the controller performance. Note that except for different values of
the sampling rate, the conducted simulations in this subsection follow the same simulating environment and parameter
settings as Section 4.1.1.

The evolution trajectories of states x1, x2 and control input u under different sampling rates are displayed in Figure 9. It
is shown that a higher sampling rate leads to better performance. Specifically, for the considered robust optimal regulation
control task, the sampling frequency of 50 Hz is enough to achieve satisfying performance. However, a system working
under a higher sampling rate is more sensitive to measurement noises, requires faster converters and more storage, and
consumes more computing resources. Thus, in practical applications, practitioners need to be aware of the trade-offs
mentioned above and choose a suitable sampling rate accordingly.

5 CONCLUSION

This article presents an efficient and low-cost model-free control strategy for robust optimal stabilization of
continuous-time nonlinear control-affine systems. To reduce dependence on accurate mathematical models, the TDE
technique permits us to obtain a measured input-state data based incremental dynamics, which is an equivalent of
the original dynamics, without requiring explicit model knowledge or tedious identification procedures. Then, the HJB
equation, which is constructed based on the incremental dynamics, is approximately solved through a single critic
structure. The resulting approximate optimal incremental control strategy stabilizes the controlled plant incrementally.
Besides, by transforming the critic NN weight learning as a parameter identification process and further using the col-
lected experience data, we develop an efficient weight update law with guaranteed weight convergence. The following
properties of our proposed IADP are promising for practical applications: the simultaneous consideration of stability, opti-
mality and robustness, the utilized simplified single critic structure, and the easily implemented off-policy weight update
law. Multiple conducted numerical simulations have shown that IADP outperforms common ADP methods in terms of
reduced control efforts and enhanced robustness. The proposed IADP builds on the assumption that the full internal states
and their derivatives are available, which restricts IADP’s generality and practicality. Thus, future works attempt to com-
bine state observer and state derivative estimation techniques with IADP to address the scenario when internal states and
their derivatives are not measurable. In addition, since the efficacy of IADP depends on accurate sensor measurements,
we will investigate and address the influence of sensor biases or delays on our developed IADP.
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