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Abstract

This dissertation contributes three essays to tackle the challenges of integrating renewable en-

ergy sources. Renewable energy sources like photovoltaic power or wind energy could replace

fossil fuels and by that reduce carbon emissions. The first essay uncovers structural barriers to

residential demand side management with household devices. By simulating different taxation

schemes, I can show that a dynamic tax mechanism could increase the incentives for households

to participate in ecologically beneficial load shifting. The second essay shows that power suppli-

ers could help decentralized storage systems to improve their charging strategy by taking over a

few hours of price risk. By pre-announcing prices, power suppliers could utilize the storage ca-

pacities to balance renewable over- and underproduction and further integrate a higher share of

renewable energy sources. The third essay contributes a method to calculate the value of carbon

savings and innovation coming from subsidizing green technologies. The essay shows that the

innovation effects of subsidizing electric vehicles are significant. However, the ecological value

can not solely justify the corresponding government spending of the subsidy. My dissertation ex-

tends existing economic literature, specifically in the fields of sustainability and policy design by

investigating regulations, subsidies and taxes in the energy and transportation sector. The three

independent essays within this dissertation offer solutions and clarifications for policymakers to

derive measures that efficiently foster the integration of renewable energies. By that, I hope to

make a contribution in fighting climate change and enabling a quicker and broader adaption of

renewable technologies for a sustainable future.

Maximilian Josef Blaschke
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1 | Introduction

1.1 Motivation and Background

"...the world is reaching the tipping point beyond which climate change may

become irreversible. If this happens, we risk denying present and future gen-

erations the right to a healthy and sustainable planet - the whole of humanity

stands to lose. On the other hand, climate change is an unprecedented op-

portunity for governments, investors, firms and citizens to work together to

develop and deploy low-carbon technologies, which can sustain growth within

our planetary boundaries. Shifting towards low-carbon energy systems can

avert climate catastrophe while creating new opportunities for investment,

growth and employment."

Kofi Annan, Former Secretary-General of UN in an interview within

"The Guardian" published on the 3rd of May 2015 (The Guardian &

Annan, 2015).

"We are the first generation to feel the effect of climate change and the last

generation who can do something about it."

Barack Obama, President of the United States of America published

via Twitter on 23rd of September 2014 (Obama, 2014).

Climate change and the corresponding global warming are one of the biggest threats to our

planet. The fatal consequences of global warming might extinct thousands of species (see for

example Root et al., 2003 or Bellard et al., 2012) around the globe and cause human deaths

and health issues (see for example Patz et al., 2005). Resulting in economic and agricultural

1



1 Introduction 2

catastrophes, the consequences of global warming are a serious threat especially for developing

countries (see Rosenzweig & Parry, 1994, Wheeler & von Braun, 2013, Tol, 2018). However, as

the above quotes state, there are measures and solutions to this threat as long as mankind reacts

now and not later.

Especially politicians have the duty to consider future generations and act far-sighted as the

development of low-carbon technologies might need decades, long after their political career,

to finally pay off. Without pointing out these long-term effects to politicians and the public,

our societies might have simply continued with the status-quo risking the planet as a home

for our children and grandchildren. However, paving the way towards carbon neutrality now is

essential in order to have a chance to trigger changing processes in time. Therefore, it is of major

importance that research enriches our understanding of the effects of current political measures in

tackling carbon emissions. By uncovering political or structural problems and showing potential

solutions, I dedicated myself and this dissertation towards assisting politicians and the regulatory

landscape on our way to a more sustainable future.

Politicians and the regulatory landscape already recognized the urgency of policy actions in

climate matters. Under this urgency, the Paris Agreement of 2015 marked a global milestone in

the international efforts to fight global warming. 196 countries signed this treaty to significantly

reduce green house gas emissions in order to keep temperature rising below 1.5− 2◦C compared

to pre-industrial levels (United Nations Climate Change, 2015). Just recently, the Glasgow

climate conference in 2021 affirmed this political will with stricter goals and more detailed

targets to reduce green house gas emissions (BBC, 2021). Green house gas emissions have

various sources. As mentioned by Kofi Annan in the quote at the beginning of this chapter (The

Guardian & Annan, 2015), the energy systems are the main sources of green house gases. As

illustrated in Figure 1.1, burning fuel for generating electricity as well as to power vehicles in the

transport sector are the two largest carbon emitting factors within the United States (United

States Environmental Protection Agency, 2020). Having that detrimental impact, the electricity

sector as well as mobility and transport emissions are frequently discussed in political and public

debates.

The electric vehicle has emerged as a promising solution with the potential to decarbonize the

mobility sector. With the latest electric vehicle sales numbers skyrocketing, electric drivetrains

are already of major importance for individual mobility in many countries around the world (see

for example International Energy Agency, 2021). The technology might further also decarbonize



1 Introduction 3

Figure 1.1: Illustration based on data of United States Environmental Protection Agency (2020) showing the
share of human caused carbon emissions distinguished by economic sectors within the United States.

public and (in the long run) heavy transport. Without any tailpipe emissions, the electric vehicle

only depends on a low-carbon electricity supply to keep a small carbon footprint (McCarthy &

Yang, 2010, Doucette & McCulloch, 2011, Hawkins et al., 2013, Faria et al., 2013, Graff Zivin

et al., 2014, McLaren et al., 2016, Nocera & Cavallaro, 2016, Rupp et al., 2019). Hence, a

low-carbon electricity supply with renewable energy sources could be key for both decarbonizing

transportation and decarbonizing electricity consumption. Therefore, political measures and

regulations to foster a transition towards integrating a higher share of renewable energy sources

are tremendously important to solve the challenges within the electricity and the transportation

sector.

Integrating a higher share of renewable power sources comes with multiple challenges. The

output of these renewable power sources fluctuates with the weather and daytimes and cannot

be rescheduled or terminated. Since supply is therefore inherently inflexible, balancing demand

and supply becomes increasingly difficult. To overcome these difficulties, additional flexibility

measures like grid enhancements, energy storage or demand side management need to be installed

(Lund et al., 2015, Cruz et al., 2018, Zappa et al., 2019).

Grid enhancements help to diversify the power supply between different locations and integrate

a higher share of renewable energy sources (see Bayer et al., 2018, Allard et al., 2020). Especially

windy or sunny regions could then supply power to regions currently lacking renewable power

production. However, grid enhancements can not shift power across time and have therefore

limited flexibility potential. Contrary, energy storage systems can shift electric power from

times of renewable overproduction to times of high demand without renewable energy. Therefore,

energy storage systems are frequently evaluated in academic literature (see for example Yekini



1 Introduction 4

Suberu et al., 2014, Luo et al., 2015, Gallo et al., 2016, Yang et al., 2018, Comello & Reichelstein,

2019). The third measure, demand side management, is shifting demand from times of low

renewable production to times of high renewable production (see for example Finn et al., 2013,

Caprino et al., 2014, Shrouf et al., 2014, Finn & Fitzpatrick, 2014, Behrangrad, 2015, Blaschke,

2022, Leinauer et al., 2022).

All three measures combined could provide apparent ways to align supply and demand even

with an inflexible supply. Therefore, all options likely provide efficient solutions to increase the

share of renewable energies. Figure 1.2 illustrates the electricity system including challenges and

flexibility measures. Concluding from that, the integration of higher shares of renewable energy

requires policies and regulations to not only foster the installation of renewable energies but also

the installation of flexibility measures.

To foster the installation of flexibility measures, policy systems and regulations aim to increase

the attractiveness and profitability of these flexibility measures. Economic profitability is es-

sential when it comes to trigger investments in green alternatives accordingly. Incentivizing

investments in green alternative technologies is required to allow consumers to act in a more en-

vironmentally friendly way. Only if policies create green alternatives and incentivize consumers

to use these alternatives, carbon emissions can be decreased significantly. Whether these mech-

anisms work, whether they incentivize efficiently, and whether consumers react accordingly is of

major importance for a successful energy transition. Hence, research within this field is of major

importance for a sustainable future of our planet. Therefore, I dedicate this thesis to policy

issues and regulatory measures within this field. In the following subchapter, I give an overview

of the related research.
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Figure 1.2: Symbolic illustration of the problems of integrating renewable energy and the flexibility measures
to enable a higher share of renewable energy within the electricity grid and the mobility sector.
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1.2 Objectives and Literature

I build my dissertation across various disciplines including technical as well as socio-economic

research streams. These research streams are very multi-facetted with varying methods and

perspectives: Some papers might use a very technical approach with complex system models

while other politically motivated macroeconomic papers might use for example game theory to

investigate problems within the energy sector. Some papers might investigate a rural micro-grid

while other papers investigate the infrastructure within a whole continent. Hence, approaches

and solutions change with the technical and geographic scope as well as the perspectives taken.

Additionally, approaches and solutions interact with each other making the underlying problems

dependent on multiple variables and measures within the system. Therefore, there are multiple

ways and combinations of flexibility measures that might solve a problem. The most prominent

flexibility measures frequently suggested to manage high renewable energy systems are grid

enhancement, energy storage and demand side management (see for example Lund et al., 2015,

Cruz et al., 2018, Zappa et al., 2019).

Grid enhancement aims to integrate a higher share of renewable energy across regions (see papers

like Bayer et al., 2018 or Allard et al., 2020). Renewable sources within one region share the

same weather. Balancing local over- or under-production with connections between local grids

tackles local supply problems. Tackling this local supply problems could allow to integrate

more renewable energies as the need for conventional power sources to balance times of lower

production shrinks.

Other papers focus on the flexibility provided by storage systems (see for example Yekini Suberu

et al., 2014, Luo et al., 2015, Gallo et al., 2016, Yang et al., 2018, Comello & Reichelstein, 2019).

While storage systems are probably the most obvious solution for balancing fluctuations and over-

or under-production of renewable energy, they require a lot of expensive material, production

and installation cost. Therefore, many papers evaluate the cost efficiency or discuss different

technologies and sizes. Tackling cost issues and finding an affordable path to integrate higher

shares of renewable electricity is frequently in the focus of these studies.

This is probably a reason why demand side management is so popular in academic research.

At first sight, demand side management does not require huge upfront investments as it only

needs consumers to change their demand. However, to enable consumers to actively participate
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in load shifting activities, new metering, communication and information infrastructure needs

to be installed (Strbac, 2008). Rescheduling loads is very complex and comes with certain

costs and disutility for the consumer. Therefore, incentive schemes and suitable business models

must compensate the consumers for their efforts, for example with reduced electricity costs (see

Behrangrad, 2015, Blaschke, 2022, Leinauer et al., 2022). However, in both households (see for

example Finn et al., 2013, Caprino et al., 2014, Blaschke, 2022) as well as industry (see for

example Shrouf et al., 2014, Finn & Fitzpatrick, 2014), demand side management could be an

effective measure to utilize a higher share of renewable energies.

The transition of the energy sector towards more sustainable alternatives is a complex and

multi-faceted task with almost endless topics and subtasks. A thorough literature review within

the very prominent fields of demand side management, energy storage and mobility transition

unveiled the research gaps for three different essays numbered I-III. In the following, I give

an overview of the literature, the research gaps as well as the corresponding objectives used

within the essays. I start off with essay I in the field of residential load shifting with household

appliances.

The first essay builds on literature evaluating the opportunities of demand side management,

in particular the concepts of dynamic electricity prices. The concepts as described for example

by Finn et al. (2011), Di Giorgio & Liberati (2014) or Miller et al. (2017) use dynamic electric-

ity prices to incentivize consumers to shift loads to times with renewable overproduction and

when energy is cheap. In this essay, I simulate different household devices similar to Gottwalt

et al. (2011), Katz et al. (2018) and Voulis et al. (2019) to uncover the potential savings of the

household if a smart controller would take over the task of shifting loads. Following pricing sig-

nals from the energy exchange, dynamic tariffs would enable the residential household sector to

make a contribution to the energy transition and further integrate a higher share of intermitting

renewable electricity like photovoltaic power and wind energy.

The concept, however, is controversially discussed for example by Allcott & Rogers (2014),

Bradley et al. (2016), Goulden et al. (2018), Frontier Economics Ltd & BET Büro für En-

ergiewirtschaft und technische Planung GmbH (2016). Papers like Bradley et al. (2016) and

Goulden et al. (2018) question that consumers would be willing to steadily monitor the energy

prices for inconvenient manual load shifts. Allcott & Rogers (2014) find that consumers would

most certainly let manual energy saving actions decay after some time.



1 Introduction 8

Since consumers are unwilling to manually shift loads, automatic control units and smart appli-

ances will probably take over the task of shifting power consumption based on pricing signals

(Gottwalt et al., 2011, Di Giorgio & Pimpinella, 2012). Hence, it is of major importance to

ensure cost savings on the electricity bill outweigh the cost of installation of smart technology.

However, the savings of shifting loads highly depend on the volatility of prices the households

face. If the price changes are only within the range of a few cents, the incentive for households

to invest in automatic load shifting technology is low.

According to research of O’Connell et al. (2014), Jansen et al. (2015) and Eid et al. (2016), low

price volatility is especially a problem when ‘per-unit’ taxation further decreases the relative

volatility. These taxes - some of them introduced to foster the uptake of renewable energy

production - are charged on a ‘per-unit’ basis. ‘per-unit’ taxation means that taxes are charged

in a static manner independent from exchange prices and current renewable energy production.

If taxes charged independent from the renewable energy production, the volatility of retail prices

is reduced as major shares of the retail electricity prices are due to taxes and levies. Even in the

case of high price volatility on the energy exchange, the volatility impacts retail energy prices

far less than proportional.

While these taxes and levies generally aim to fund and foster renewable energy production and

improve their integration into the grid, the current status-quo of ‘per-unit’ taxation schemes

reduces price volatility and weakens the pricing signal for residential consumers (O’Connell et al.,

2014, Jansen et al., 2015, Eid et al., 2016). If pricing signals decrease, there are less incentives for

consumers to invest in automatic load shifting technologies. By decreasing the saving potential of

automatic load shifting, the taxes meant to foster the renewable energy transition could actually

curb their adoption. By curbing the adoption of load shifting, ‘per-unit’ taxation also curbs the

integration of more renewable energy.

Following this literature, Katz et al. (2018) and Voulis et al. (2019) brought up the opportuni-

ties of ‘ad-valorem’ taxation. ‘Ad-valorem’ taxation is based on prices at the energy exchange

and moves up and down dependent on current prices driven by demand and conventional and

renewable power supply. The higher the prices, the higher the taxes charged. Hence, the taxes

increase incentives for load shifting if they dynamically increase relative to electricity exchange

prices.
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Frontier Economics Ltd & BET Büro für Energiewirtschaft und technische Planung GmbH

(2016) question the effectiveness of ‘ad-valorem’ taxation for small consumers as the minimum

price incentive to foster load shifting behavior with price insensitive consumers would be un-

known. However, they do not consider automatic load shifting devices that could be perfectly

price elastic. Perfectly price elastic automatic devices could react already to the slightest changes

in electricity prices. However, the costs of smart load shifting technology still need to be covered

with these savings.

Previous literature did not investigate whether installing automatic control units to introduce dy-

namic pricing with smart appliances would actually be profitable from a consumer’s perspective.

Additionally, the effect of the taxation scheme on the profitability of automatic load shifting is

still not clear. This lays the ground for the following new research questions: First, what extent

of price volatility on the energy exchange would be required to compensate for additional costs

of smart metering within households? Second, could ‘ad-valorem’ taxation lead to a sufficient

increase in retail price volatility to promote load shifting within households? And third, what

are financial risks imposed on the households with the introduction of a dynamic tariff in each

taxation regime?

Since a major share of the price components of residential electricity are due to taxes and levies,

I investigate the potential savings in these two different taxation settings: ‘ad-valorem’ taxation

and ‘per-unit’ taxation. The essay uncovers the saving potential for households but also offers

actionable tax recommendations and policy solutions. These tax recommendations and policy

solutions could make automated demand side management in households profitable. By mak-

ing automated demand side management with household devices profitable, households would

have a direct incentive to invest in such smart controlling technology. This smart controlling

technology could then enable residential households - one of the biggest electricity consuming

sectors (compare United States Environmental Protection Agency, 2020) - to participate and

contribute in the integration of a higher share of renewable energy and towards a sustainable

energy transition.

Essay II aims to optimize the operational charging strategies of residential battery storage sys-

tems within households. These residential storage systems could also be used to balance re-

newable production. Electricity providers could pre-announce electricity prices to incentivize

and control residential storage systems accordingly. Building on previous literature of Nottrott

et al. (2013), Hanna et al. (2014), Silvente et al. (2015), Lorenzi & Silva (2016), Yoon & Kim
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(2016), Abdulla et al. (2016) and Chitsaz et al. (2018), the essay could help to pave the way in

building tariff structures that enable decentralized storage systems to participate in load shifting

activities for the integration of a higher share of renewable electricity.

With the rise of photovoltaic technology, a large number of households use a photovoltaic roof to

reduce the electricity bill by self-consuming the generated power. Households with a photovoltaic

roof could additionally use a battery storage system to further increase self-consumption. A

battery storage system could store excess energy of the photovoltaic unit in times of low demand

to satisfy demand and increase self-consumption at later times when photovoltaic generation is

low (see for example Matallanas et al., 2012, Di Giorgio & Liberati, 2014, Ratnam et al., 2015).

Hence, more and more households might be willing to install such residential battery storage

systems creating a significant amount of residential storage capacity.

This residential storage capacity might be used by energy providers to balance renewable pro-

duction and integrate a higher share of renewable energy. However, energy providers would

have to adapt the operational charging strategy of these decentralized battery storage systems

to balance renewable over- or under-production. To incentivize such changes in the operational

charging strategy, electricity providers would have to offer some economic benefits to households.

The general economic benefits of residential battery storage systems are a frequently researched

topic (see for example Weniger et al., 2014, Hoppmann et al., 2014, Li & Danzer, 2014, Naumann

et al., 2015, Muenzel et al., 2015, Matallanas et al., 2012, Di Giorgio & Liberati, 2014). Papers

like Sani Hassan et al. (2017), Erdinc (2014), Babacan et al. (2017), Dufo-López (2015) and

Klein et al. (2019) introduce dynamic pricing into the operational strategies of battery storage

systems. Within a dynamic electricity tariff, the battery may additionally consider charging in

times of low prices and discharge in times of high prices to further minimize the electricity bill.

To optimally exploit these price fluctuations, the battery requires information on future prices,

load demand and photovoltaic production. If this information is lacking, the battery may not

respond to the pricing signals of the power provider appropriately. Information on future prices,

load demand and photovoltaic production, however, is either not available or frequently deviates

from forecasts.

Some papers propose real-time charging strategies in dynamic models that account for prediction

errors or missing information a battery strategy is based on (see Di Giorgio et al., n.d., Bao et al.,

2012, Bedi et al., 2017, Di Giorgio et al., 2017, Li et al., 2016). Lujano-Rojas et al. (2017) use
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an autoregressive moving-average model (ARMA) to evaluate the effects of forecasting errors

in energy prices with stand-alone lead-acid batteries. Other papers like Nottrott et al. (2013),

Silvente et al. (2015), Lorenzi & Silva (2016), Yoon & Kim (2016), Abdulla et al. (2016), Hanna

et al. (2014) or Chitsaz et al. (2018) optimize battery strategies with a rolling forecast horizon

window. With the information of this rolling forecast horizon window, the battery adapts and

optimizes its charging strategy.

Power providers may pre-announce and guarantee prices within such a rolling horizon window

for a certain period of time, for example the next five hours. This would foster load shifting

through storage systems according to their pricing signals and allow the power provider to utilize

residential storages for load balancing. However, this would also require the power provider to

lift the risk of price changes on the energy exchange from its customers.

To avoid high risks due to unplanned price changes, the power provider intends to keep the

horizon for the pre-announcement as short as possible, but sufficiently long to enable beneficial

charging strategies. Further reducing the need for external information with a learning battery

that incorporates the production and consumption data of the last year could help to reduce risks

and improve the strategy of the battery. Previous literature could not yet answer whether there

is a minimum horizon of price pre-announcements required for a battery system to generate

significant savings via load shifting. Apart from that, it remains unclear how sensitive the

electricity costs of a household would be towards the length of the pre-announcement period.

With my second essay, I tackle the following questions: Is there a minimum horizon of price pre-

announcements required for a battery system to generate significant savings via load shifting?

How sensitive are the electricity costs of a household towards this length of the pre-announcement

period? By investigating different pre-announcement periods, this essay sheds light on the po-

tential of price guarantees within tariffs to improve the integration of renewable energy. Applied

to thousands or even millions of household storage systems, these pre-announcements could have

the potential to significantly provide flexibility and increase the share of renewable energy within

the system.

Essay III investigates the integration of renewable alternatives in the mobility sector following

a call of Gillingham & Stock (2018) to enrich our understanding of subsidy-induced innovation

especially for the case of electric vehicles. The essay builds on economic growth literature

combined with the learning concepts of Arrow (1962) applied to subsidies on electric vehicles.
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Electric vehicles are the most prominent alternative to conventional fuel powered vehicles and

one of the most promising measures to reduce carbon emission in the mobility sector.

Therefore, many governments either tax conventional vehicles or subsidize electric vehicles. Sub-

sidizing electric vehicles should increase the adoption and sales of the new technology. However,

subsidies in the mobility sector are frequently under public debate. Especially the United States,

China and Germany spend huge sums of money to foster the electric drivetrain and battery

technology. With governmental bonuses of up to $7.500 federal tax credit in the United States,

U22.500 in China or e9.000 in Germany 1 for purchasing an electric vehicle, critics claim these

subsidies to be inefficient and costly in abating carbon emissions considering the large gov-

ernmental spendings (see for example Holland et al., 2016, Sheldon & Dua, 2019, Xing et al.,

2021).

When calculating the expected carbon abatement during production and operation of an electric

vehicle (see for example Chandra et al., 2010, Doucette & McCulloch, 2011, Faria et al., 2013,

Messagie et al., 2014, Bickert et al., 2015, Rangaraju et al., 2015), the costs to subsidize an

electric vehicle per saved carbon ton are comparably uncompetitive (see Chandra et al., 2010,

Van Vliet et al., 2011, Michalek et al., 2011, Bollinger & Gillingham, 2014, Huse & Lucinda,

2014, Newbery, 2018, Yan, 2018). The costs of alternative carbon abatement measures, offsetting

carbon at the cap and trade systems or even the comparably high cost estimations of IWG (2021)

for the social costs of carbon are below the prices of reducing a ton of carbon emissions with an

electric vehicle subsidy. This could wrongfully lead to the conclusion that every vehicle subsidy

is inefficient. However, as pointed out by Gillingham & Stock (2018), subsidizing an electric

vehicle now might foster innovation and development, triggering a quicker and broader adoption

of many more electric vehicles in the future. Therefore, the value of the subsidy is not only

defined by the emission reductions of the subsidized vehicle but also by the innovation and the

following emission reductions in the future.

Following the growth models of Acemoglu et al. (2012) and Acemoglu et al. (2016), the evalu-

ations of Bollinger & Gillingham (2014) and Newbery (2018) or the work of Vogt-Schilb et al.

(2018), more costly investments in clean technology could have an especially high potential in

preventing carbon emissions. Investing in the more expensive carbon abatement measures now

could then be the optimal strategy as these measures would have a high abatement potential
1See respective subsidies 2020 in U.S. Department of Energy (2021), Ministry of Finance of the People’s Republic
of China (2020), Bundesministerium für Wirtschaft und Klimaschutz (2021).
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in the future. Investing now into these measures allows the technology to evolve and improve

earlier with cumulative experience and learning rates (see for example Spence, 1981, Fudenberg

& Tirole, 1983, Ghemawat & Spence, 1985). One of the core implications of this literature

stream for my case is that it could be beneficial to accept negative short-run marginal profits

with subsidies in order to gain technological improvements under positive learning rates.

Weiss et al. (2012), Matteson & Williams (2015), Nykvist & Nilsson (2015), Schmidt et al.

(2017), Kittner et al. (2017), Ziegler et al. (2021) and Ziegler & Trancik (2021) found promising

learning rates in battery technology and electric vehicles. Ziegler & Trancik (2021), for example,

found a price decrease of 20% upon a doubling of cumulative market size. Hence, subsidies could

speed up the cumulative production and the corresponding learning and technology development

if they trigger price elastic consumer responses as observed by many studies like Chandra et al.

(2010), Jenn et al. (2013, 2018), Palmer et al. (2018) or Yan (2018). Jenn et al. (2018), for

example, observed average sales increases of 2.6% for electric vehicles for every $1,000 offered as

a rebate or tax credit. However, it remains questionable whether the learning and technology

improvement for carbon abatement is worth spending these rebates and tax credits for electric

vehicles.

Therefore, it is worth looking into another stream of literature evaluating the emission reduc-

tion potential of electric vehicles (see Samaras & Meisterling, 2008, Stephan & Sullivan, 2008,

McCarthy & Yang, 2010, Van Vliet et al., 2011, Hawkins et al., 2013, Graff Zivin et al., 2014,

Archsmith et al., 2015, Holland et al., 2016, Knobloch et al., 2020). What almost all papers in

this discipline have in common is that they emphasize the dependency on clean power produc-

tion for an electric vehicle to be environmentally beneficial. A very prominent paper of Holland

et al. (2016), for example, finds environmental benefits of electric vehicles worth $2,785 with the

clean power production in California but huge environmental damages up to $4,964 in North

Dakota with electricity being produced from coal powered plants. A big stream of literature

(see for example Chandra et al., 2010, Van Vliet et al., 2011, Michalek et al., 2011, Bollinger &

Gillingham, 2014, Huse & Lucinda, 2014, Newbery, 2018, Yan, 2018) sets these emission reduc-

tions into perspective by investigating the efficiency of subsidies and the corresponding carbon

abatement cost.

However, as pointed out by Gillingham & Stock (2018), past studies on electric vehicle subsidiza-

tion did not include the effects of "learning by doing" and economies of scale within the subsidy,
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that provide additional value to technology development. The important question that arises

from this is whether subsidy-induced innovation could indeed justify governmental spending?

Within this third essay, I introduce a new method based on a simpler version of the Bass (1969)

adoption model for consumer durables in combination with the concept of "learning by doing"

of Arrow (1962). I calculate the value of innovation triggered by subsidies using price elasticities

and learning rates and showcase this method by evaluating the governmental subsidy programs

for electric vehicles in the United States, China and Germany. Calculating the value of innovation

triggered by a subsidy, this essay offers a method for policymakers to evaluate the efficiency of

subsidies in green technologies. With limited financial resources to foster the uptake of more

sustainable energy alternatives, this essay could be of major importance to channel investments

into the most promising technologies.

1.3 Methodologies

For every essay, I use a different method that I considered to be most appropriate to solve

the formal problem and answer the respective research questions. While all three essays used a

quantitative assessment with simulations, the specific models varied with the underlying problem

of the essay. In the following, I will summarize the method approaches chosen for each essay.

Essay I extends the models of Gottwalt et al. (2011), Katz et al. (2018) and Voulis et al. (2019)

to simulate load shifting with common household devices under different price volatilities and

taxation schemes. Therefore, I iterate through the different scenarios and adjust the underlying

residential electricity price inputs to reflect the hypothetical changes in volatility and taxation

scheme. Within every iteration, I individually minimize the electricity bill of 100 artificially

created household load patterns formulated as a deterministic mixed integer linear program over

a single year. Every household load pattern is composed from a set of household devices that

need to run under specific conditions dependent on the categorization of the device.

I categorize household devices regarding their need for direct interaction with the consumer into

‘manual’, ‘semi-automatic’ or ‘automatic’. Devices like the TV or a lightbulb are categorized as

‘manual’ and are not suited for automatic load shifting. Devices that do not require any user

interaction are categorized as ‘automatic’. ‘Automatic’ devices (for example fridge or freezer)

work with a thermal storage and simply operate within the pre-defined range of their operating
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temperature. Devices that do require user interaction but can switch on and off without are

categorized as ‘semi-automatic’.‘Semi-automatic’ devices require external data input and the

consumer needs to prepare their operation manually (for example loading the washing machine

or dishwasher).

Therefore, the automatic controller can shift the operation of these devices only within predefined

limits that have been drawn for each household according to usage statistics and power load

probability distributions. Letting the automatic controller shift only within these conditions,

reduces the load shifting potential but considers the inelasticity in electricity consumption as

consumers would most likely not accept utility losses with load shifts disrupting their daily

habits. Therefore, this essay provides a comparably realistic evaluation that is close to real

world application and reliable for policy recommendation.

Within essay II, I extend previous literature on optimizations under uncertainty (Nottrott et al.,

2013, Lorenzi & Silva, 2016, Yoon & Kim, 2016, Abdulla et al., 2016, Hanna et al., 2014, Chitsaz

et al., 2018). I formulate a deterministic mixed integer linear optimization program to find

the optimal charging strategy of a residential battery storage minimizing the total annual net

electricity bill of a household with a photovoltaic roof. For every hour over a year, I optimize the

setup to minimize the electricity costs over a rolling horizon of forecast information regarding

the photovoltaic production as well as the household’s load demand. After each timestep, new

forecasts appear within the rolling horizon and the actual values of the past timestep are included

in the learning set for the next forecast. The optimal battery charging strategy for the current

hour is actually carried out and used for further evaluation and learning.

With new forecasts and price data available, the charging strategy changes for the following

hours in the next iteration. With that, I create a highly realistic simulation of a storage system

in a household in which these parameters are also most likely to be unknown in advance. The

power provider announces future prices within a certain pre-announcement horizon. With this

additional information, the battery is able to change the charging strategy to optimally exploit

price changes, reduce pressure on the grid and integrate renewable energy according to the pricing

signals given. Within this essay, I value the efficacy of the resulting charging strategies by the

differences in the net electricity bills compared to the optimal deterministic strategy under perfect

information. The difference in electricity bills therefore represents the value of additional pre-

announced price information. With this focus, the essay provides insights into optimal dynamic
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tariff structures under uncertainty that could foster a more grid friendly operation of residential

battery storages and help to integrate more renewable energy into the grid.

Essay III introduces a new method to calculate the value of innovation triggered by subsidies.

By simulating the phase-out of a subsidy using price elasticities, I calculate the subsequent

sales decline. This sales decline slows down innovation with learning effects depending on the

cumulative sales and production (see cumulative experience and learning rates literature of

Arrow, 1962, Spence, 1981, Fudenberg & Tirole, 1983, Ghemawat & Spence, 1985). Given the

learning rates on cumulative sales and production (see Weiss et al., 2012, Matteson & Williams,

2015, Nykvist & Nilsson, 2015, Schmidt et al., 2017, Kittner et al., 2017, Ziegler et al., 2021,

Ziegler & Trancik, 2021), I can extract the subsidy-induced innovation within the projected

technology adoption curve. The projected technology adoption curve is fitted towards an S-

shaped curve following the adoption model for consumer durables by Bass (1969). Simulating

a scenario of the adoption curve with and one scenario without subsidy allows me to determine

the effects and, hence, the innovative value of the subsidy.

Within this essay, I showcase this method by evaluating the governmental subsidy programs for

electric vehicles in the United States, China and Germany. I consider changes in the electricity

mix, fuel and carbon certificate prices to accommodate for the changing energy systems and the

environmental footprint of installed power capacities in the future. With these inputs, I can

simulate each country’s hourly electricity production in a merit order to calculate the carbon

emissions of the marginal electricity demand of electric vehicles. Valued with the social cost of

carbon, the reduction of carbon emissions has societal ecological value. I discount these future

societal ecological values of carbon abatement and compare them to the costs of the current

subsidy programs. With this approach, the essay not only evaluates the subsidy programs of

electric vehicles in the most important automobile markets, but also offers a new method that

can be adapted to other subsidy programs that help to reduce carbon emissions and integrate

renewable energy.

1.4 Results and Contributions

The different simulations and policy studies within this dissertation offer important results that

advance our knowledge on how to construct tariff structures and policy incentivization schemes

for a successful energy transition. Based on my models and findings, researchers and policy
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makers could further improve current tariff, taxation and subsidy schemes to enable a higher

share of renewable energy within the grid. In the following, I provide an overview of the main

findings and contributions of each of the essays.

Essay I determines the price volatility necessary for automatic load shifting to cover the cost of

the associated smart metering within a household. The essay shows that current price volatility

does not allow sufficient savings to compensate for additional metering costs. The results of the

essay indicate that a change towards an ‘ad-valorem’ electricity taxation dependent on exchange

prices could make residential demand-side management profitable. A regulatory change towards

an ‘ad-valorem’ taxation regime would increase the retail price volatility and thereby enable

households to economically participate in automatic load shifting activities. Enabling households

to participate in load shifting activities could lift huge potential for further integrating renewable

energy capacities.

If a mandatory switch to dynamic tariffs were to be imposed by official regulation, households

with no smart devices would suffer only slightly higher total bills. Simulating worst case scenarios

for inflexible consumers, I can show that the potential price risk for consumers that do not react

to pricing signals because of a lack of smart devices, is almost negligible. As consumption

patterns suggest, these households consume in times of both high and low prices. With this

mix, the households could almost cancel out higher payments at peak times even without any

load shifts. This is a very important finding as these results help policymakers to anticipate the

effects of dynamic retail prices on electricity and derive the implications of different taxation

settings also from a social perspective of low-income households with less advanced devices.

This essay extends the models of Gottwalt et al. (2011), Katz et al. (2018) and Voulis et al.

(2019) to advance our knowledge of tariff structures for demand side management. The proposed

solution of automated load shifting under ‘ad-valorem’ taxation regime also contributes solutions

to the structural and consumer behavioral problems mentioned in previous literature (see for

example Allcott & Rogers, 2014, Bradley et al., 2016, Goulden et al., 2018). An ‘ad-valorem’

taxation regime could enable smart household appliances to profitably shift loads without the

need for consumer interaction. Hence, the proposed solution of this essay would allow even price

insensitive households to shift loads and thereby lift huge load shifting potential to integrate

further renewable energy sources.
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Essay II values pre-announced price information for a household with a photovoltaic roof and a

battery storage system. Without predictions for supply and demand, the battery storage would

not be able to adapt its charging strategy to optimally exploit renewable production. With this

essay, I can show that electricity suppliers would only have to pre-announce their prices for a 3-8

hour period in order to allow the battery storage to find an almost optimal charging strategy.

This finding is especially important as the number of residential storage systems might increase

in the future if more and more residential photovoltaic units are installed. With an increasing

number of residential storage systems, the potential to use these residential storages to balance

renewable overproduction grows day by day.

I argue that electricity suppliers and grid operators could therefore have an incentive to announce

certain prices in advance. By announcing prices in advance, the electricity suppliers could

control the charging strategy of residential battery storage systems that minimize the household’s

electricity bill. This essay shows, that even a short pre-announcement horizon could be sufficient

to integrate thousands and probably soon millions of residential storage systems into a smart

grid. These huge capacities could enable the integration of a higher share of renewable energy

within the grid.

Extending the previous research of Nottrott et al. (2013), Silvente et al. (2015), Lorenzi &

Silva (2016), Yoon & Kim (2016), Abdulla et al. (2016), Hanna et al. (2014) and Chitsaz et al.

(2018), my essay shows that pre-announcements beyond a 3-8 hour horizon would only have

a marginal impact on the resulting savings for consumers and would not change the battery

charging strategy. If energy providers would only have to take over the pricing risks for such

a short horizon in advance, influencing the charging strategy with electricity storages is not

that risky. My findings and the proposed model help households and electricity providers to

assess dynamic electricity tariffs and determine optimal structures for demand-side management.

Applying my findings to future electricity tariffs could enable electricity providers to integrate

huge balancing potential in form of residential storage systems and thereby contribute to a

successful renewable energy transition.

Essay III contributes a new method to calculate the ecological value of subsidy programs. Subsidy

programs on products usually increase their sales leading to economies of scale as well as new

innovations. New innovations improve the product and further accelerate the adoption with

cumulative experience and learning rates. Hence, subsidies offer additional societal value in

form of a quicker innovation of the desired good.
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To correctly evaluate current and future subsidy programs, it is very important to consider

subsidy-induced innovation. The essay presents a method to calculate this subsidy-induced

innovation and enables policymakers to foresee the innovation triggered. By valuing this inno-

vation, the method allows to measure and evaluate the efficiency of subsidy programs. Knowing

the true ecological and economical value of subsidy programs is key to decide and adapt poli-

cies. As these policies frequently cost billions of dollars (see U.S. Department of Energy, 2021,

Ministry of Finance of the People’s Republic of China, 2020, Bundesministerium für Wirtschaft

und Klimaschutz, 2021), this approach could have a tremendous economic and also ecological

impact considering the limited resources for sustainable measures.

I showcase this method by evaluating the governmental subsidy programs for electric vehicles

in the United States, China and Germany. Since these countries subsidize, produce and also

drive a major share of the electric vehicles worldwide, their subsidy programs and the induced

innovation have enormous impact on the development of electric vehicles in all other countries as

well. The essay shows that subsidizing an electric vehicle now could have positive effects for the

electric vehicle adoption in the near future. The underlying value of innovation within a subsidy

could even outweigh the value of the actual carbon savings of the subsidized vehicle. Hence,

this innovation effect justifies subsidies way higher than the value of carbon abatement by the

vehicle. However, at least in the case of the United States and Germany, the resulting value

of carbon reductions could not justify the expenses from a sole ecological perspective. Indeed,

the subsidy might still be justifiable for economic welfare reasons as all of these countries also

have major shares of the global vehicle production and need to secure jobs in that industry. By

considering the value of innovation induced by these subsidies, my essay could help policymakers

to a better understanding of the effects resulting from their subsidy decisions.

1.5 Structure of the Dissertation

I conducted three independent research projects with differing objectives and methods used.

Table 1.1 provides an overview over the three essays with their topics and main contributions.

Since all of these three essays are meant to be published in academic journals individually, every

essay is written independently. This includes the explanation of key concepts or definitions that

might be provided repeatedly in more than one essay. This allows the reader to either read this
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dissertation as provided or also review the essays in another order or outside of the dissertation

once the essays are published in journals.

Chapter 2 consists of Essay I (published in Energy Policy Vol. 164, May 2022, please see

https://www.sciencedirect.com/science/article/pii/S0301421522001033 for the format-

ted version). Here, I analyze the opportunities of demand side management in residential house-

holds under different taxation settings. Chapter 3 comprises Essay II that evaluates the horizon

dynamic tariff prices should be pre-announced in order to use distributed battery storage sys-

tems for balancing over- or under-capacities within the grid. Chapter 4 consists of Essay III that

develops and showcases a new method to calculate the value of subsidy-induced innovation of

fostering the uptake of electric vehicles. Within Chapter 5, I conclude my findings and suggest

new fields and topics for future research.

https://www.sciencedirect.com/science/article/pii/S0301421522001033
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2 | Dynamic Pricing of Electricity:

Enabling Demand Response in Domestic

Households

Fluctuations in retail energy prices may incentivize domestic households to adapt their load

pattern in order to minimize the cost of electricity. This paper determines the price volatility

necessary for automatic load shifting to cover the cost of the associated smart metering within

a household. This study shows that current price volatility does not allow sufficient savings to

compensate for additional metering costs. However, results indicate that a change towards an

‘ad-valorem’ electricity taxation dependent on exchange prices could make residential demand-

side management profitable. At the same time, the potential price risk for consumers that do not

react to pricing signals because of a lack of smart devices, is almost negligible. As consumption

patterns suggest, these households consume in times of both high and low prices, thereby almost

canceling out higher payments at peak times even without any load shifts. With these results,

policymakers can anticipate the effects of dynamic retail prices on electricity and derive the

implications of different taxation settings.

Keywords: Energy taxes, Demand response, Dynamic tariff, Smart meter, Smart appliances,

Residential, Taxation mechanism, Financial incentives.
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2.1 Introduction

Governments around the world promote the installation of renewable energy sources like wind

and solar energy. The output of these renewable power sources fluctuates with the weather

and daytimes and cannot be rescheduled or terminated. Since supply is therefore inherently

inflexible, shifting demand from times of low renewable production to times of high renewable

production is an apparent way to align supply and demand.

This alignment could be induced by dynamic tariffs that incentivize consumers to shift loads to

times with renewable overproduction and when energy is cheap (Finn et al., 2011, Di Giorgio

& Liberati, 2014, Miller et al., 2017). The generated savings hereby depend on the volatility

of retail prices. The higher the volatility, the higher the savings in shifting loads. This study

evaluates this volatility by comparing the savings and risks within a ‘per-unit’ to an ‘ad-valorem’

taxation of electricity in the light of potential smart load shifting from a household perspective.

A major share of retail electricity prices are due to taxes and levies, whereas many of these

taxes and levies aim to foster renewable energy production and improve their integration into

the grid. Since these taxes are charged on a ‘per-unit’ basis, even high price volatility on the

energy exchange impacts retail energy prices far less than proportional. Frequent and significant

changes in retail prices, however, are necessary to incentivize load shifting. The ‘per-unit’

taxation, therefore, actually weakens the pricing signal for residential consumers in proportional

terms (O’Connell et al., 2014, Jansen et al., 2015, Eid et al., 2016). In the way these taxes for

the renewable energy transition are imposed, they do actually curb the adoption of load shifting

and thereby the integration of renewable energy.

‘Ad-valorem’ taxation, on the other hand, is based on prices at the energy exchange. The

higher the prices, the higher the taxes charged. As a result, volatility in exchange prices has

a proportional influence on taxes and thereby a greater impact on the volatility of the retail

price passed on to domestic households. This taxation mechanism would strengthen the pricing

signal, incentivize load shifting accordingly and might justify investments in smart load shifting

technology.

These investments in smart technology are crucial for an adoption of load shifting in the do-

mestic household sector. Consumers want to avoid the steady monitoring of energy prices for

inconvenient load shifts (see for example Bradley et al., 2016, Goulden et al., 2018) and also let
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manual energy saving actions decay after some time (Allcott & Rogers, 2014). Therefore, auto-

matic control units and smart appliances likely take over the task of shifting power consumption

based on pricing signals (Gottwalt et al., 2011, Di Giorgio & Pimpinella, 2012). Given inelastic

demand and a competitive retail sector, the additional costs of these investments are presumably

to be borne by the consumers.

In the context of avoiding welfare losses, the following research questions are of major importance:

First, what extent of price volatility on the energy exchange would be required to compensate for

additional costs of smart metering within households? Second, could ‘ad-valorem’ taxation lead

to a sufficient increase in retail price volatility to promote load shifting within households? And

third, what are financial risks imposed on the households with the introduction of a dynamic

tariff in each taxation regime?

This study extends the models of Gottwalt et al. (2011), Katz et al. (2018) and Voulis et al. (2019)

to simulate common household devices and identify the price volatility necessary to compensate

for additional cost of smart metering in a German case study. This paper evaluates the potential

of ‘ad-valorem’ taxation and compares the price risks of dynamic tariffs in each taxation regime

to develop a policy recommendation. The results help legislators to better anticipate the effects

of a change towards ‘ad-valorem’ electricity taxation and the introduction of dynamic tariffs for

households per se. Additionally, producers of household appliances may use this approach to

evaluate the benefit of load shifting features within their products and, in so doing, assess the

demand for specific functions related to load shifting.

Jansen et al. (2015) discuss the introduction of ‘ad-valorem’ taxation but do not provide an

evaluation of the potential within households. Frontier Economics Ltd & BET Büro für En-

ergiewirtschaft und technische Planung GmbH (2016) question the effectiveness of ‘ad-valorem’

taxation for small consumers since the minimum price incentive to foster load shifting behavior

with price insensitive consumers would be unknown and unpredictable. However, they do not

specifically evaluate automatic load shifting, which is by nature perfectly price sensitive and

does not require a minimum price incentive besides coverage of additional costs of smart meter-

ing. Katz et al. (2018) suggest dynamic electricity taxes for households to overcome perceived

switching costs towards a dynamic tariff but do not provide a detailed evaluation of common

household devices or consider the costs of smart metering. Voulis et al. (2019) find increasing

incentives for load shifting with the introduction of ‘ad-valorem’ taxation in a case study of heat

pumps, yet they do not evaluate household devices or compare the savings to costs of smart
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metering. In summary, the previous literature emphasizes the necessity of smart metering tech-

nology but has not yet considered its operative costs. All of the above papers lack a detailed

evaluation of the specifics of common household devices and therefore cannot provide a clear

policy recommendation for the household sector.

The paper is organized as follows: Section 2.2 describes the general methodology and formally

sets out the optimization problem, for which the input parameters and assumptions are described

in section 2.3. Section 2.4 then presents and discusses the results, while section 2.5 offers a

conclusion.

2.2 Methodology and Problem Description

2.2.1 General Description

This study presents a deterministic mixed integer linear program to minimize the total yearly

electricity costs of 100 created household load patterns under different price volatilities. These

price volatilities result from either an increase in exchange price volatility within the ‘per-unit’

taxation or from a switch to ‘ad-valorem’ taxation. However, all simulated scenarios consume

the same amount of electricity. They only differ in terms of the time the electricity is consumed

and the respective price. As a solver, this study uses the inbuilt CPLEX solver of the General

Algebraic Modeling System (GAMS) optimization software (version 25.0.2 win64). Section 2.2.2

states the program while section 2.2.3 describes the approach to vary price volatility.

2.2.2 Problem Formalization

A household’s electricity consumption is driven by its devices and the consumer’s personal pref-

erences in using them. This minimization shifts the operation of electrical devices to periods

when energy is cheapest. The model limits the shifts of each individual device to its scope of

operation and a specific consumer usage pattern. By that, this paper determines a realistic load

shifting potential, which is realizable without changes in the consumer’s behavior. Table 2.1 lists

the symbols used in the optimization.
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Table 2.1: Symbols used in the mathematical formulation of the minimization problem.

Parameter Description

t Time-step
T Number of time-steps within a year
DA An automatically operating device
DS A semi-automatically operating device
Dall Set of all modeled devices
C Total electricity costs of the household with all modeled devices of the set

Dall

q(t) Total electric consumption of all devices Dall within time t
qTD Total yearly electricity consumption in kWh of a single device D
p(t) Price of electricity in e per kWh at time t
θD(t) Time proportion within time-step t while device D is operating
θTD Total yearly time a single device D is operating
ωD Wattage that device D consumes during operation
LDS Length of a single cycle of a semi-automatic device DS in hours
χDS

Yearly number of cycles of semi-automatic device DS

ρDS
(t) Flexibility indicator of semi-automatic device DS at time t

Υ1
DS

(t) Switch-on event of semi-automatic device DS: 1 = 1 =̂ On, 1 = 0 =̂ Off
τDA(t) Temperature of ‘automatic’ device DA at time t
∆τ0

DA
Temperature losses of ‘automatic’ device DA within one time step t

∆τ1
DA

Temperature gains via operation of device DA within one time step t
∆τCDA(t) Consumption of temperature for device DA at time t
τminDA

Minimum temperature of device DA

τmaxDA
Maximum temperature of device DA

τ initDA
Initial and final temperature of device DA in t = 0 and t = T

E(t) Energy in the battery of the electric vehicle at time t in kWh
Emin Minimum energy in the battery of the electric vehicle
Emax Maximum energy in the battery of the electric vehicle
ECharge Power in kWh the electric vehicle can charge within one timestep t
EConsumption Power consumption of the electric vehicle in kWh per km
EmaxC(t) Maximum charge the electric vehicle could have reached in time t
∆E(t) Consumption of the electric vehicle’s battery at time t
ρEV (t) Flexibility indicator whether the electric vehicle is plugged in at time t
d Driven distance of the electric vehicle of a single trip
dmax Maximum distance of the electric vehicle for a single trip
v Average speed of the electric vehicle
toff Time the electric vehicle leaves the household for a trip
ton Time the electric vehicle arrives back at the household from a trip
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Electricity costs C are calculated with the electricity consumption q(t) of the hour multiplied

by the respective price p(t). The objective function is defined as:

min
q(t)

C =
∑
t∈T

q(t) · p(t). (2.1)

The total electricity consumption is calculated by aggregating the loads of all simulated electrical

devices. The individual load of each device D is calculated with the wattage ωD of the device

and the status indicator θD(t), which indicates whether a device is operating during a timestep.

A device, which is currently off, has θD(t) = 0 and a operating device θD(t) = 1. A value

between 0 and 1 indicates that the device is operating for a percentage share of time within this

timestep:

q(t) =
∑

D∈Dall

θD(t) · ωD , θD(t) ∈ [0, 1]. (2.2)

To avoid utility losses to the consumer, the only devices considered for automatic load shifting

are those where the consumers do not face any, or only minor, changes to their lifestyle if the

devices are switched on and off automatically. Previous literature categorized devices according

to their need for interaction with the consumer, and hereby whether the devices are suitable for

being controlled by an automatic system or not (see Gottwalt et al., 2011).

Due to the need for direct interaction with the consumer, devices like the TV or a lightbulb

are categorized as ‘manual’ and are not suited for automatic load shifting. Devices that do

not require any user interaction are categorized as ‘automatic’. Devices that do require user

interaction but switch on and off without are categorized as ‘semi-automatic’.

In the following, this study introduces specific conditions for each device category suitable for

automatic load shifting. Section 2.2.2.1 states conditions for ‘automatic’ devices, while section

2.2.2.2 adds conditions applied to ‘semi-automatic’ devices. Section 2.2.2.3 adds the conditions

for an electric vehicle.

2.2.2.1 Conditions for ‘Automatic’ Devices

Within this study, the household devices categorized as ‘automatic’ work with a thermal storage

(for example fridge and freezer). They simply operate within the pre-defined range of their

operating temperature without the need for any consumer interaction (similar to Voulis et al.

(2019)). The model defines these ranges with the minimum τminDA
and maximum temperature
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τmaxDA
of the devices so that τminDA

≤ τDA(t) ≤ τmaxDA
is always valid. The simulation starts and

ends with the device at the initial temperature level τ initDA
. Current temperature τDA(t) is given

by temperature consumption ∆τCDA(t) (only for the hot water of the immersion heater and the

air conditioning in specific hours), temperature losses ∆τ0
DA

and temperature gains ∆τ1
DA

when

the device is operating:

τDA(t) = τDA(t− 1)−∆τCDA(t)−∆τ0
DA

+ ∆τ1
DA
· θDA(t). (2.3)

2.2.2.2 Conditions for ‘Semi-Automatic’ Devices

‘Semi-automatic’ devices require external data input and the consumer needs to prepare their

operation manually (for example loading the washing machine or dishwasher). However, within

the consumer’s given timespan, these ‘semi-automatic’ devices are able to operate in conjunction

with a smart controller. All ‘semi-automatic’ devices considered in this study cannot be disrupted

during their operation. Once they were started by the automatic controller, they will have to

operate and complete their cycle. Whether the device is operating within an hour is then given

by the switch on event Υ1
DS

(t) and the length LDS a cycle takes:

θDS(t) =

LDS+t∑
j=t

Υ1
DS

(t), j, LDS ∈ N,Υ1
DS

(t) ∈
[
0; 1
]
. (2.4)

To account for consumer preferences, the model limits the operation to the timespan between

simulated loading and deloading events as indicated by the flexibility state ρDS
(t):

θDS(t) ≤ ρDS
(t), ρDS

(t) ∈
[
0; 1
]
. (2.5)

If ρDS
(t) = 1, a device DS is prepared by the consumer and therefore ready to operate. If

ρDS
(t) = 0 the device DS needs to be finished with its operation. With another binary variable

during optimization, the program assures that the device does not switch on multiple times

without consumer interaction in between.

2.2.2.3 Conditions for an Electric Vehicle

The inbuilt battery of the electric vehicle offers the flexibility to pause charging when prices

increase and continue as soon as prices drop. The electric vehicle can only charge when the
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consumer is not driving, as stated in the first case of Equation 2.6. The current state of charge

E(t) of the battery can be described by the previous state of charge E(t− 1), the charging

rate ECharge and the indicator θDEV (t) whether the electric vehicle is currently charging with

θDEV (t) ∈ [0, 1].

Most electric vehicles recharge as soon as they are plugged in. With information on future trips,

a smart controller is able to schedule the charging to the cheapest hours. Thereby, it would be

sufficient to only charge the power needed for the next trip. However, consumers might prefer

a fully charged battery whenever they begin a journey to preserve some flexibility, even if it

reduces the potential savings made by the smart controller. For this reason, the second case of

Equation 2.6 states the condition to always fully charge the battery prior to the next trip. In

case of insufficient time for charging to full capacity, the smart controller would still maximize

the state of charge regardless of electricity prices at the time. The current maximum state of

charge EmaxC(t) is the benchmark to be reached, calculated as if the electric vehicle would

start recharging immediately after returning from a trip. The third case describes the electricity

consumption while the electric vehicle is in motion:

E(t) =


E(t− 1) + ECharge · θDEV (t) if ρDEV (t) > 0

min
[
Emax, EmaxC(t)

]
−∆E(t) if ρDEV (t)− ρDEV (t− 1) < 0

E(t− 1)−∆E(t) else.

(2.6)

The battery cannot discharge more than the energy E(t) it currently stores and cannot be

charged to more than its maximum capacity Emax so that Emin ≤ E(t) ≤ Emax is always valid.

2.2.3 Increasing Price Volatility

Short-term volatility in electricity prices is essential when it comes to generating savings via

load shifting with smart appliances. Within the ‘per-unit’ taxation setting, the moving average

price of 12 hours before and 12 hours after every timestep serves as a reference to measure

and manipulate this short-term volatility. Considering this time window, this moving average

includes a complete day-night shift spanning across the most likely load shifting window. Hence,

it is a suitable reference for the short-term price volatility the household could utilize when

shifting loads. The difference between this moving average and the current exchange price is

then used to relatively manipulate the price volatility. While prices above this moving average
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Figure 2.1: The process of increasing the short-term price volatility and the resulting volatility in retail prices.

(peaks) would be increased, prices below the moving average (valleys) would be decreased even

further. Fig. 2.1a illustrates this mechanism, while the following equation defines the price p(t)σ

for an increase in volatility σ:

p(t)σ = p(t) + σ ·

(
p(t) −

12∑
i=−12

p(t+ i)

)
(2.7)

In this ‘per-unit’ taxation setting, retail prices are solely influenced by changes in exchange price

volatility, while taxes stay constant. In the ‘ad-valorem’ taxation setting, the taxes dynamically

increase or decrease with the exchange market prices. The boxplots in Fig. 2.1b illustrate the

resulting variation in prices.

2.3 Input, Data and Assumptions

2.3.1 Input for Household Devices

Devices that have a low ownership rate or are insignificant due to their low consumption are not

considered within this study. This paper simulates German households as a case study. The

devices used as well as their operation habits should be representative for many other countries

as well. Table 2.2 lists electrical household devices with their particular category and their

ownership rate in the German market.
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Table 2.2: Statistics of common household devices in Germany: a device categorization based on consumer
interaction.

Device Categorya Ownership
rateb.

Fridge Automatic 99.9%

Freezer Automatic 51.6%

Immersion heater Automatic 38.4%

Air conditioning Automatic 3.14% - 8.21%

Dishwasher Semi-Automatic 71.5%

Washing machine Semi-Automatic 96.4%

Tumble dryer Semi-Automatic 42.2%

Electric vehicle Specific -

aThese categories depend on the parameters governing my simulations. Other studies might use different cate-
gories, probably due to different time-interval resolutions, as suggested by Beaudin & Zareipour (2015).

bThe ownership rates are based on Statistisches Bundesamt (2018) for all devices except the immersion heater,
which is stated from EnergieAgentur.NRW (2015), and the air conditioning taken from Kenkmann et al. (2019).

Washing machine and tumble dryer present a difficulty for load shifting, as the operation of the

latter is dependent on the former and requires intermediate consumer interaction. The ‘washer-

dryer’ combines a washing machine with a tumble dryer, so that additional user interaction is

omitted. For this reason, this paper simulates the washer-dryer instead of the two separate

devices as one of the common ‘semi-automatic’ devices in a future smart home.

The fridge, freezer, immersion heater and air conditioning are simulated as ‘automatic’ devices.

While the ownership rate of air conditioning is still comparably low in Germany, it is commonly

owned in warmer countries and thus worth to include in this study. Considering the expected

increase in future ownership rate and the significance regarding the power consumption, the

electric vehicle is part of these simulations as well. The following subsections describe the input

parameters for the ‘automatic’ and ‘semi-automatic’ devices and the electric vehicle.

2.3.1.1 Input for ‘Automatic’ Devices

This study uses the average technical specifications of devices labeled with at least a ‘good’

grading within the latest tests of Stiftung Warentest (2021) to create a representative fridge

(integrated and freestanding since 08/2018), freezer (since 09/2018) and air conditioning system
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(all fixed mounted split devices of the 06/2020 test) for these simulations. Table 2.3 states the

resulting average values together with the inputs for the immersion heater. These ‘automatic’

devices can shift their operation within the range of their internal temperature limits. The total

annual consumption qTDA of an ‘automatic’ device is the sum of the hourly loads over the year:

qTDA =

T∑
t

θDA(t) · ωDA . (2.8)

For reasons of simplicity, this study does not specifically simulate consumer events like opening

the fridge/freezer, placing warmer goods inside or the power consumption of small features like

the light or display. These losses, however, are included in the producer’s given statistics for

the annual consumption qTDA . Knowing the expected annual consumption qTDA and the wattage

ωDA , the yearly operating time θTDA can be calculated with:

θTDA = qTDA/ωDA . (2.9)

The temperature with operating and non-operating times is then defined in an equation as:

τ endDA
= τ initDA

+ θTDA ·∆τ
1
DA
− T ·∆τ0

DA
−

T∑
t

∆τCDA(t). (2.10)

The immersion heater loses substantial temperature as soon as the consumer uses hot water.

As a proxy for this energy consumption this study uses the reference tapping cycle of Energy

Saving Trust (2008). Given in kWh, the profile is converted with ωDA = m · c ·∆Temperature

into temperature changes in a 150 litre tank with mass m of water to be constant at 1kg/l and

specific heat capacity c to be 0.00116617kWh/kg.

For the air conditioning, this study uses outside air temperature data as a proxy for the heat load

within an hour. With the data of climate research stations provided by Deutscher Wetterdienst

(2021), this papers simulates air conditioning systems in or near the four biggest German cities

Berlin (dataset 433, in the east), Hamburg (dataset 1975, in the north), Munich (dataset 3379,

in the south) and Cologne (dataset 2968, in the west). Due to their geographical allocation and

population density, these citiy-areas should be representative for a large proportion of German

households and simultaneously project a good range of climatic differences.

The current room temperature τAC(t) changes according to the outside air temperature τairAC(t)

and the inertia factor βAC = 50%. This study assumes air conditioning in Germany to be solely
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Table 2.3: Input variables and assumptions for the fridge, freezer, immersion heater and air conditioning.

Variable Fridge Freezer Immersion
heater

Air
conditioning

Initial temperature τ initDA
+4◦C −21◦C +50◦C +18◦C

Maximum temperature τmaxDA
a +6◦C −16◦C +82◦C +24◦C

Minimal temperature τminDA
a +3◦C −27◦C +35◦C +18◦C

Temperature losses ∆τ0
DA

b +0.75◦C +0.46◦C −0.28◦C -

Temperature consumption ∆τCDA(t) c 0◦C 0◦C hourly hourly

Wattage ωDA of the device d 87 W 153 W 1600 W 2440 W

Yearly energy consumption
∑T

t q(t)[DA]
d

85.67 kWh 221 kWh - 95 kWh

Temperature change ∆τ1
DA

per t of op-
eration e

−6.64◦C −2.79◦C +9.15◦C −26.84◦C

a The temperature ranges for fridge and freezer are based on Pfeifroth et al. (2012). For the immersion heater,
this study refers to Nehrir et al. (1999). The ranges for the air conditioning are based on the recommendations
of World Health Organization (1990).

b For the fridge and freezer calculated with the temperature ranges of Pfeifroth et al. (2012) and a 4-hour /
24-hour storage capacity based on the power blackout food recommendations of United States Department of
Agriculture (2013). this study uses half of the observed average loss rate of Finn et al. (2011), as their system uses
twice the storage capacity used in this study. For the air conditioning, this paper uses hourly air temperature
data instead of constant losses.

c This paper does not consider specific consumption patterns for the fridge and the freezer. The consumption for
the immersion heater is based on Energy Saving Trust (2008). Air temperature data of Deutscher Wetterdienst
(2021) serves as a proxy for the air conditioning usage.

d Average specifications of fridges, freezers and air conditioning tested by Stiftung Warentest (2021). For the
immersion heater, this study assumes half the wattage of Finn et al. (2011).

e Calculated with Equation (2.10) for the fridge and freezer. For the immersion heater, the rising temperature
can be calculated with the wattage. For the air conditioning, this study uses the wattage, the yearly energy
consumption and the average heat load (see Equation 2.12) across the simulated cities. The average result is
equivalent to a 4.47°C decrease in temperature within 10 minutes of operating the air conditioning.

used for cooling, as heating would be highly inefficient and cost intensive at colder temperatures.

Hence, this study assumes the room temperature to always stay above the minimum temperature

τminAC :

τAC(t) = max
[
τAC(t− 1) · βAC + (1− βAC) · τairAC(t), τminAC

]
(2.11)

Since the outside air temperature τairAC(t) might be either heating up or cooling down the room, a

vector of the hourly heat loads ∆τCAC(t) is used in equation 2.3 similarly to the hourly changing

consumption of the immersion heater. By using this case distinction, this study assures that the
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problem itself remains feasible for every timestep:

∆τCAC(t) =


τAC(t)− τmaxAC + max [τAC(t)− τAC(t− 1), 0] if τAC(t) > τmaxAC

τAC(t)−min [τAC(t− 1), τmaxAC ] else.

(2.12)

2.3.1.2 Input for ‘Semi-Automatic’ Devices

Almost all households in Germany are charged based on a flat electricity tariff. Therefore,

consumers currently do not derive any advantage from load shifting. Hence, historic load profiles

are not distorted by incentivation and represent the maximum convenience load pattern of the

consumers. Peaks in a load pattern can be interpreted as the times during which the consumers

prefer to operate devices. In order to generate a common activity pattern, this study tests two

consumption profiles, a standard representative load profile for a household in 2017 provided by

EnergieNetze Bayern & BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (2018) as

well as an average profile created out of 74 German households provided by Tjaden et al. (2015).

The minimum load - representing the base load without user activity - within the profiles is

removed, so as to obtain an ‘activity-pattern’ of the consumers in every hour.

From this, a probability function is generated to determine the times where the consumers most

likely operate their ‘semi-automatic’ devices. The start and end events are distributed with

respect to this probability function until the number χDS
of cycles within a year is reached.

The algorithms create 100 annual household patterns for each device while ensuring that only

realistic and feasible flexibility windows are generated. A new cycle, for example, cannot be

commenced until the previous cycle finished. For reasons of simplicity and since the resulting

savings between the two consumption patterns did not significantly differ, this paper further

only presents the results with the consumption patterns based on the profile of EnergieNetze

Bayern & BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (2018). The input

variables for the dishwasher and washer-dryer are summarized in Table 2.4.

2.3.1.3 Input for the Electric Vehicle

To simulate the power consumption of the electric vehicle, this study uses driving data from year

2016 provided by the German Mobility Panel (Zumkeller et al., 2018). The data are filtered, so

that only records are used where the main vehicle is a car (Code 41 in the dataset) and where
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Table 2.4: The average specifications of the devices tested by Stiftung Warentest (2021) since 2019 with ‘good’
grading for the input parameters for the dishwasher and washer-dryer .

Variable Dishwasher Washer-dryer

Yearly power consumption
∑T

t θDS(t) 286 kWh 1224 kWh

Wattage ωDS 340 W 510 W

Number χDS
of cycles per year 280 200

Length LDS of each cycle 3 hours 12 hours

(a) Trips of vehicles leaving the household and return-
ing grouped by daytimes.

(b) Trips of vehicles grouped by distance of the trip.

Figure 2.2: Input data for simulating electric vehicle trips during the simulation after manual filtering.

the driver is either assumed to leave the household (Codes of purpose 1,3,4,5,6,11) or intends to

return to the household (Code 7). All records with a single distance greater than 120 km (round

trip) are excluded, since the simulation assumes a maximum range of 240 km and the household

to be the only place to charge the electric vehicle. The remaining 21,383 dataset records are used

to generate a distribution of the usage of the electric vehicle, this being configured in relation

to the likelihood of the vehicle departing from or arriving back at the household, as well as the

driven distance (see Fig. 2.2).

The algorithm first draws the time at which the car leaves the household and another one at

which it returns according to the probability distributions for a random day in the year. Its

return needs to be on the same day as its departure or within a period of 18 hours. By that,

the possible driving timeframes are usually limited to one day. By repeatedly drawing random

days and on and off times, the algorithm generates a boolean electric vehicle occupancy pattern,
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whereby ρDEV (t) = 1 indicates that the electric vehicle is plugged in and is capable of being

charged. ρDEV (t) = 0 indicates that the car is on a trip and cannot be charged.

For every journey undertaken by the electric vehicle the driving distance distribution is used

to draw a distance that is achievable within the previously configured timeframe. The possible

distances d within the distribution are limited by the timespan between leaving the household

toff and returning ton at average speed v as well as the the maximum distance dmax of the

electric vehicle:

d ≤ min

[
(ton − toff ) · v

2
,
dmax

2

]
. (2.13)

Once the vehicle returns at home, the state of charge of the battery is reduced by the electricity

consumed, based on the distance driven (two-way):

∆E(t) = d · 2 · EConsumption. (2.14)

This is repeated until the average distance of 10,300 km/year (Frenzel et al., 2015) for a battery

electric vehicle is either reached or exceeded. The resulting profiles are validated by checking

the maximum state of charge EmaxC(t) that the battery could have at any given time. If it is

greater than the electricity needed for the next trip, the profile is valid. The maximum state of

charge possible at a specific time t is defined by:

EmaxC(t)


min

[
EmaxC(t− 1) + ECharge, Emax

]
ifρDEV (t) > 0

EmaxC(t− 1)−∆E(t) else.

(2.15)

The assumptions of the vehicle attributes are derived from the most popular electric cars cur-

rently on the market. Based on these assumptions and driving data the algorithm generates

100 electric vehicle consumption patterns as described above. The input values for the electric

vehicle are summarized in Table 2.5.

2.3.2 Market Exchange Prices, Taxes and Levies

Retail electricity prices in Germany include the costs relating to electricity exchange, transport

and distribution, as well as approximately 55% of multiple taxes and levies (Bundesverband der

Energie- und Wasserwirtschaft e.V., 2018). This study uses the day-ahead spot prices of the

European Power Exchange (Epex Spot SE, 2018) of the year 2017 for the German market to
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Table 2.5: Input variables for the electric vehicle.

Variable Electric Vehicle

Charging power ECharge 11.00 kW

Maximum battery capacity Emax 31.00 kWh

Power consumption EConsumption 12.92 kWha

Initial battery state of charge E(t) for t = 0 15.50 kWh

Average speed in driving v 32.70 km/h b

Average distance per year 10,300 km c

aPer 100 km, assuming 240 km maximum distance with a 31 kWh battery.
bAverage speed of motorized individual traffic for cities as stated in Ahrens et al. (2016).
cBased on Frenzel et al. (2015).

create artificial dynamic prices. The spot prices of 2017 are cleared for the summer time shift and

adjusted to align them with the statistics of Bundesverband der Energie- und Wasserwirtschaft

e.V. (2018). This ensures that the consumer almost pays the same total bill as he would have in

a flat tariff. The static costs titled ‘purchasing and sales’ by Bundesverband der Energie- und

Wasserwirtschaft e.V. (2018) are replaced with dynamic spot market prices p(t)SPOT thereby

generating a dynamic tariff, where the taxes and levies pTL are added on top. The status quo

consists of adding the renewable energy fee (6.88 Cents/kWh), grid-fees (7.5 Cents/kWh) and

the other taxes and levies (4.514 Cents/kWh) on a per-unit basis. Value-added tax pV AT is then

charged with 19% on top:

p(t) = [p(t)SPOT + alignment+ pTL] · (1 + pV AT ) (2.16)

This ‘per-unit’ taxation is charged regardless of whether spot market prices on the energy ex-

change are positive or negative. An alternative approach would be to charge the taxes based on

the day-ahead prices of the spot market as suggested for the renewable energy fee by Frontier

Economics Ltd & BET Büro für Energiewirtschaft und technische Planung GmbH (2016). This

‘ad-valorem’ taxation is only charged when the prices on the spot market p(t)SPOT are posi-

tive. The tax rate is set by the historic proportion of taxes and levies pTL charged compared to

‘purchasing and sales’ costs pPS .

p(t) =

[
(p(t)SPOT + alignment) · pTL

pPS

]
· (1 + pV AT ). (2.17)
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2.3.3 Costs of Smart Metering

To incentivize load shifting, the associated costs need to be covered. Since the automatic con-

troller and the smart devices shift loads without any user interaction, it is assumed that con-

sumers do not face any disutility. However, smart devices, controllers and meters always require

some level of upfront investment and incur operating costs.

The study assumes annually fixed recurring costs for smart metering to be between 48€ and 88€

per year, based on the calculations of Liebe et al. (2015) for a household consuming 4,000 kWh -

6,000 kWh or more than 6,000 kWh per year. Similar to Liebe et al. (2015), this paper assumes

a household with an electric vehicle or an electric immersion heater to consume above the 6,000

kWh mark and charged with 88€ per year. Households without these devices are assumed to

be below the mark and therefore charged at 48€ instead of 88€ per year. This study does not

consider further maintaining costs or other operational expenses.

2.4 Results and Discussion

2.4.1 Load shifts with a Dynamic Tariff

Fig. 2.3 illustrates the average patterns of the devices simulated for a future smart household.

In a flat tariff, the fridge and freezer would constantly cool, leading to an evenly distribution

in usage. In a dynamic tariff, fridge and freezer use their thermal inertia to pre-cool and make

use of the hours with the cheapest electricity prices. Very similar to that, the immersion heater

pre-heats during the night to satisfy the hot water demand in the morning.

The air conditioning shows only minor load shifts within the simulation of German households.

The low number of hot days with air temperatures above 24°C leads to a low overall usage of

the air conditioning system limiting the opportunities to shift loads. This might be substantially

different in hotter climatic regions. However, if air temperatures rise to a level that forces the air

conditioning to almost run continuously, the flexibility potential to shift loads diminishes again.

Hence, it depends on the individual specifics of every region whether air conditioning systems

are a relevant device for a load shifting household.

In contrast to the previous devices, the dishwasher, washer-dryer and the electric vehicle allow

for delaying load shifts. Since these devices require the manual preparation by the consumer,
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(a) Average weekly pattern of the fridge. (b) Average weekly pattern of the freezer.

(c) Average weekly pattern of the immersion heating. (d) Average weekly pattern of the air conditioning.

(e) Average weekly pattern of the dishwasher. (f) Average weekly pattern of the washer-dryer.

(g) Average weekly pattern of the electric vehicle. (h) Average weekly pattern of all automatic and semi-
automatic devices as well as the electric vehicle.

Figure 2.3: Average weekly patterns of the individual devices either in a flat tariff without smart load shifting
or a dynamic tariff with smart load shifting.
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they can not pre-run their cycle but shift their operation to later times instead, when energy is

cheap.

The daily pattern of the aggregated load of all devices (see Fig. 2.3h) is largely influenced by

the load shifts of the immersion heater and the electric vehicle. While the daily pattern repeats

during the week, it slightly changes on the weekends due to differing consumer usage behaviour

and price changes.

2.4.2 Potential Savings: Flat Tariff vs. Dynamic Tariff

For the financial comparison with a flat tariff, this study assumes a constant electricity price of

29.23 Cents per kWh as charged to households on average in 2017 (Bundesverband der Energie-

und Wasserwirtschaft e.V., 2018). Since prices stay the same for the whole year, there is no

reason to shift loads from a consumer perspective. The dynamic tariff, on the other hand, allows

price minimizing shifts. Fig. 2.4 illustrates the average annual savings of every device with a

dynamic tariff.

While the washer-dryer consumes a major share of the electricity within the household, it cannot

offer flexibility. Since the device is simulated at 200 cycles per year with 12 hours per cycle,

the time remaining for shifted operation is somewhat limited. Thus, the potential savings are

rather meagre between 6.82€ and 11.94€ per year depending on the usage patterns. While the

dishwasher can offer more flexibility, it is not as significant regarding the power consumption,

leading to savings between 2.93€ and 4.23€ per year. Smart charging the electric vehicle leads to

savings between 16.80€ and 27.55€ per year depending on the driving patterns of the consumer.

The electric immersion heater offers the highest saving potential, but is one of the least common

devices due to cheaper substitutes like gas powered heaters.

Due to low electricity consumption, the automatic cooling devices show very little saving poten-

tial in absolute terms. The freezer offers a potential in savings of only 4€ per year. A smart

fridge would even undercut this with savings of less than 1€ per year. The air conditioning varies

depnding on the location with a range between 0.18€ in Hamburg (in the north of Germany)

to 1.39€ in Munich (in the south of Germany). Compared to the 19,992€ of average household

income in 2017 (1,666€ per month, see WSI Verteilungsmonitor, 2019) these savings are not

significant. In fact, on average, consumers would expect savings of 45€ (3.80€ per month) from
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Figure 2.4: Average savings of annual electricity costs incurred in the operation of common household devices
with a smart controller in a dynamic tariff compared to a flat tariff.

a smart fridge (Pfeifroth et al., 2012). This illustrates the enormous gap between the actual

potential in savings under current price volatility and the expectations of consumers.

As illustrated in Fig. 2.4, the current price volatility would not be sufficient to cover the fixed

costs of smart metering. Neither the combination of devices designed for the ‘small’ household

with metering costs of 48€, nor all of the devices together with metering costs of 88€ can

generate sufficient savings. In conclusion, households have no incentive to switch to a dynamic

tariff under current price volatility.

2.4.3 Sensitivity on Short Term Price Volatility and ‘Ad-Valorem’ Taxation

Since this study only considers automated load shifting with no or only minor user interaction,

there is no minimum price movement required to trigger load shifting. Whereas a human would

not react to every pricing signal, the automatic controller would consider even the smallest

changes in the prices to minimize the costs of electricity. Therefore, increasing price volatility

will not change the strategy of the smart controller per se. However, due to larger price gaps,

the strategy will have a more significant impact on the total electricity bill.

This study increases the price volatility in a constant ‘per-unit’ taxation regime and calculates

the potential savings compared to the flat tariff as illustrated in Fig. 2.5. A household with all

of the devices evaluated will cover the fixed metering costs of 88€ at approximately 6% higher

price volatility. The small household (with no electric vehicle or immersion heater) would need

approximately 235% higher price volatility and is therefore far from covering the 48€ in metering
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Figure 2.5: Comparison of average savings for the operation of common household devices with a smart
controller under a ‘per-unit’ taxation regime with different price volatility and ‘ad-valorem’ taxation regime.

costs. Thus, a switch to a dynamic tariff is less relevant for smaller households within a ‘per-unit’

taxation regime as their required increase in price volatility is unlikely to be achieved.

One way to achieve high price volatility is to change the taxation towards an ‘ad-valorem’

taxation regime as illustrated in the last bar of Fig. 2.5. If new regulations lead to a switch

towards this taxation regime, the saving potential of load shifting within households increases

considerably. The ‘ad-valorem’ taxation would thereby enable the smart controller to cover the

operating costs of 48€ or 88€ even at current observed price volatility levels. While a dynamic

tariff under ‘ad-valorem’ taxation would already pay off the 88€ with a single electric immersion

heater, households using all these smart devices would on average save 350€.

The simulations indicate that most households will not be able to generate the necessary savings

to cover metering costs under ‘per-unit’ taxation. Therefore, especially small households will not

switch to a dynamic tariff as long as the taxation regime is not changed in favor of ‘ad-valorem’

taxation. Unless this condition is met, smart features for load shifting in fridges, freezers,

dishwashers and washer-dryers as well as air conditioning systems will not find a market.

2.4.4 Risk Evaluation Within a Dynamic Tariff Under ‘Ad-Valorem’ Taxa-

tion

To conclude with a policy recommendation, it is necessary to evaluate the risks of ‘ad-valorem’

taxation in a setting where the consumer is subject to a dynamic tariff but might not operate

smart devices. Trivial devices would start their operation as soon as they are plugged in by
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the consumer, since they are not governed by any intelligent control systems. The operation

could then fall into more expensive hours and in so doing increase the electricity bill. A change

to ‘ad-valorem’ taxation might then be disadvantageous for the household. Therefore, these

simulations are run on the same inputs again, although every device is forced to commence

operating immediately.

Fig. 2.6 illustrates the difference in the electricity bill in a dynamic tariff compared to a flat

tariff whereas the households use either ‘trivial’ or ‘smart’ devices for both taxation regimes.

The range of the box plot marks the best case when the household is fully smart equipped as

well as the worst case when only trivial devices are used. A household using only trivial devices

would thereby face slightly increased costs in a dynamic tariff compared to a flat tariff.

While households with trivial devices might consume at times with higher prices, they also

consume electricity at times when it is cheap anyway. By consuming the energy when plugged

in, the resulting mix of cheap and expensive electricity only leads to very small cost risks. The

potential cost risks under ‘ad-valorem’ taxation are slightly higher since the taxes charged on the

prices have additional negative effects for households with trivial devices. However, these risks

could still be assumed to be negligible compared to the high advantages in potential savings if

households use smart devices.

The cost-optimal scheduling of a smart household, on the other hand, avoids almost any high-

priced times and explicitly shifts power to the cheapest hours. Hence, the resulting price mix

benefits more from short-term price movements. The potential savings up to 89€ and 366€

as indicated by the left side whiskers of the box plots by far outweigh the potential losses.

A mandatory dynamic pricing tariff would probably lead to slightly higher electricity bills for

households without smart devices. The potential benefits for households with smart devices, on

the other hand, offsets the risks by far, especially with ‘ad-valorem’ taxation.
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Figure 2.6: Difference in the annual electricity bill under a dynamic tariff compared to a flat tariff with scenarios
of no smart devices and all devices being smart.

2.5 Conclusions and Policy Implications

This paper evaluates the economic benefits of automated load shifting with common household

devices and investigates the effects of a change towards ‘ad-valorem’ taxation of electricity, based

on market prices. Historic electricity load profiles and driving patterns are used to create realistic

consumption patterns and to simulate the flexibility and saving potential of every device. The

simulations show that current price volatility is not sufficient to cover the additional costs of

smart metering technology. A regulatory change towards an ‘ad-valorem’ taxation regime would

increase the retail price volatility and thereby enable households to economically participate in

automatic load shifting activities.

If a mandatory switch to dynamic tariffs in a ‘per-unit’ taxation were to be imposed by official

regulation, households with no smart devices would suffer only slightly higher total bills. As

soon as the household devices react to prices, they generate some savings but will most likely not

offset the higher costs of smart metering technology in a ‘per-unit’ taxation. Only ‘ad-valorem’

taxation would elevate the potential savings to a level that would consequently incentivize load

shifting and investments in smart technology while the risks for households without smart devices

remain comparably low.

Further research could evaluate the consumer’s willingness to manually shift loads if an ‘ad-

valorem’ taxation regime leads to large price fluctuations. A welfare analysis and a tax-authorities’

perspective on a shift towards ‘ad-valorem’ taxation would be another interesting area for fol-

lowing research: As a fully smart equipped household consumes at times where market exchange

prices are approximately 35% lower, the taxes and levies paid by the household would also shrink

by approximately 20%. These losses in tax revenues might challenge the tax authorities and also
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distort the profitability and therefore the incentive for certain investments, for example in stor-

age or the grid. However, incentivizing load shifts with a changed taxation regime might pay

off, if the load shifting triggered leads to a higher share and cheaper integration of renewable

energy while reducing the need for extensive grid investments or storage facilities.



3 | How Households Benefit From Pre-

announced Electricity Price Information:

A Rolling Horizon SimulationWith a Bat-

tery Storage System

The operational strategy of a residential energy storage system in a dynamic electricity tariff

critically depends on the availability of information on future prices. If the storage charges

electricity in times of low prices and discharges in times of high prices, households can reduce their

electricity bill while potentially decreasing imbalances in the grid at the same time. Electricity

providers may pre-announce and guarantee prices for a certain time period, e.g. the next six

hours, to incentivize grid-serving use of storage systems. This paper aims to value pre-announced

price information for a household with a photovoltaic roof system and a battery storage in a

German case study. To determine the sensitivity of a household’s electricity bill towards limited

external information on future prices, I evaluate different pre-announcement periods for prices

with simulations in a rolling horizon approach. I use autoregressive integrated moving average

(ARIMA) forecasts to predict the photovoltaic production, the household’s consumption as well

as electricity prices beyond the information given by the provider. Results indicate that pre-

announced external price information of a 3-8 hour period is of major value for a statistically

trained system. Pre-announcements beyond this period only have a marginal impact on the

resulting savings for consumers. My findings and the proposed model help households and

electricity providers to assess dynamic electricity tariffs and determine optimal structures for

demand-side management.

Keywords: Dynamic Prices, Forecasts, Battery Storage, Arbitrage, Optimization.
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3.1 Introduction

A large number of households in Germany use a photovoltaic roof to either sell power to the grid

or to reduce the electricity bill by self-consuming the power. Some households using photovoltaic

systems save additional electricity costs by installing a battery system. The battery system

stores excess energy and increases self-consumption to further avoid costly purchases from the

electricity provider. Within a dynamic electricity tariff, the battery may charge in times of low

prices and discharge in times of high prices according to the pricing signals given by the provider.

To optimally exploit price fluctuations, the battery requires information on future prices, load

demand and photovoltaic production. Without these inputs, the battery may not respond to

the pricing signals of the electricity provider appropriately. Electricity providers may therefore

pre-announce and guarantee prices for a certain period of time, e.g. the next six hours, to

foster load shifting through storage systems according to their pricing signals. Thereby, the

electricity provider lifts the risk of price changes on the energy exchange from its customers.

Hence, the electricity provider intends to keep the horizon for the pre-announcement sufficiently

long to enable beneficial charging strategies yet as short as possible to avoid high risks due to

unplanned price changes.

This raises the following questions: What is the horizon of price pre-announcements required

for a battery system to generate significant savings via load shifting? How sensitive are the

electricity costs of a household towards this length of the pre-announcement period?

Previous literature already developed operational strategies for demand-side management with a

battery storage system together with photovoltaic units (see Matallanas et al., 2012, Di Giorgio

& Liberati, 2014, Ratnam et al., 2015) and their usage in dynamic pricing environments (for

example Sani Hassan et al., 2017, Erdinc, 2014, Babacan et al., 2017, Dufo-López, 2015, Klein

et al., 2019). Some papers like (Nottrott et al., 2013, Lorenzi & Silva, 2016, Yoon & Kim,

2016, Abdulla et al., 2016, Hanna et al., 2014, Chitsaz et al., 2018) optimize battery strategies

with a rolling forecast horizon window (usually 24 hours) to account for the lack of information,

but have a different focus than the horizon length with price information uncertainty. Silvente

et al. (2015) evaluate the effects of uncertainty in demand and production via a rolling horizon

optimization in a microgrid. Lujano-Rojas et al. (2017) investigate effects of forecasted errors in

energy prices with stand-alone lead-acid batteries. So far, it is unknown to what extent future
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price information enhances the profitability of a residential photovoltaic-plus-battery system

under a dynamic power tariff in a household setting.

I determine the additional saving potential by a battery of a household with a photovoltaic

roof receiving pre-announced dynamic electricity prices. Therefore, I create a linear cost mini-

mization program with a rolling horizon to simulate the charging strategy of a battery storage

system. The battery storage receives ARIMA predictions for photovoltaic production and load

demand whereas prices are pre-announced by the electricity provider for a limited horizon and

are forecasted beyond. I calculate the incremental savings a battery would realize with an ad-

ditional hour in the price pre-announcement horizon. By that, I value price information on the

consumer side and evaluate the sensitivity of battery savings towards the length of the price pre-

announcement horizon. This information is crucial to assure the effectiveness of pricing signals

in dynamic electricity tariffs and to evaluate and forecast the potential load shifting activities of

smart battery storage systems. My findings could help electricity providers and policy makers to

conceptualize regulations and dynamic tariffs with pre-announced prices. These pre-announced

dynamic tariffs could then enable millions of decentralized storage systems to participate in

the integration of a higher share of renewable energy. My results help electricity providers to

minimize the risk burden, that comes with these pre-announced prices.

Chapter 3.2 describes the setting and presents the formal optimization problem for the cost

minimizing approach. Chapter 3.3 describes the inputs used in the simulation. Chapter 3.4

presents and discusses the simulation results followed by a wrap up and conclusion in Chapter

3.5.
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Nomenclature

p− Return of selling electricity to the grid, e / kWh

p+(t) Price of buying electricity from the grid at time t, e / kWh

p+
AbsTax Static absolute tax and levies on electricity, e / kWh

p+
DynTax Dynamic tax rate in the electricity retail price, %

p+
Margin Margin of the power supplier on the electricity retail price, e / kWh

p+
Spot(t) Spot prices from the exchange market at time t, e / kWh

p+
Static Electricity price in a static tariff, e / kWh

p+
V AT Value added tax on electricity retail prices, %

SB Size of the battery storage system, kWh

SPV Size of the photovoltaic rooftop, kWp

t Index of the current time-step

T Number of time-steps in the optimization horizon, Hours

β(t) Capacity factor of installed photovoltaic system at time t, kWh / kWp

ε Feed-in limitation of the photovoltaic system, %

µ Charging losses by charging the battery, %

τ− Maximum charging power, kW

τ+ Maximum discharging power, kW

Υ Total net electricity costs of a household, e

χ+
B(t) Power inflow from the battery storage system at time t, kWh

χ−B(t) Power outflow to feed the battery storage system at time t, kWh

χ+
G(t) Power inflow from the grid at time t, kWh

χ−G(t) Power outflow to feed the grid at time t, kWh

χ−H(t) Power outflow to the household at time t, kWh

χ+
PV (t) Power inflow from the photovoltaic unit at time t, kWh

χ−W (t) Power wasted at time t, kWh

Ω(t) State of charge of the battery at time t, kWh
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3.2 Problem description and formalization

I formulate a deterministic mixed integer linear optimization program to minimize the total

annual net electricity bill of a household with a photovoltaic rooftop and a battery. The opti-

mization problem is solved iteratively for every hour in the year via a rolling horizon approach.

The inputs regarding photovoltaic production and load demand are forecasted.

Figure 3.1 illustrates the rolling horizon approach with an optimization horizon, a pre-announce-

ment horizon and an execution timestep. The optimization horizon comprises the price pre-

announcement and forecast information over which the battery determines the optimal charging

strategy. The electricity provider announces future prices only for the time of the pre-announce-

ment horizon. For the rest of the optimization horizon, the battery storage optimizes its op-

eration strategy according to ARIMA forecasts (see Chapter 3.3.3) instead of pre-announced

prices. The forecasts are updated after each timestep, as the actual values of the past timestep

are included in the learning set for the next forecast. Only the solution for the current hour is

actually executed and used for further evaluation (see execution timestep in Figure 3.1), while

the charging strategy for the following hours might be updated in the next iteration as soon as

new forecasts or price data are available. This ensures a highly realistic simulation of a storage

system in a household in which these parameters are also most likely to be unknown in advance.

Time (t)

1 2 3 4 .. 24 25 26

PH1OH1

ET1

PH2OH2

ET2

PH3OH3

IS2=FS1

IS3=FS2

OHi: optimization horizon at t=i
PHi: pre-announcement horizon at t=i
ETi: execution timestep at t=i
ISi: initial state at t=i
FSi: final state at t=i

Figure 3.1: Representation of the rolling horizon approach with price pre-announcement and optimization
horizon.

I distinguish between two settings: The first setting limits the optimization horizon to the

length of the pre-announcement horizon. The second setting uses price forecasts beyond the

pre-announcement horizon and optimizes 24 hours. By that, I isolate the additional value of

price information from the additional value gained via a longer optimization horizon that allows
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considering more sophisticated strategies. If the optimization horizon is longer than 24 hours

the forecast repeats itself until the vectors of all the inputs match in length.

Each optimization minimizes the net electricity costs Υ within the current optimization horizon.

The net electricity costs Υ include the costs of buying energy subtracted by the returns of selling

energy. The costs of buying energy are determined through the product of current power prices

p+(t) and load χ+
G(t) consumed from the grid. The energy χ−G(t) sold to the grid on the other

hand is valued with the contracted remuneration rate p−. Hence, the net electricity costs equal:

Υ =
T∑
t= 1

p+(t) · χ+
G(t)− p− · χ−G(t). (3.1)

The photovoltaic output χ+
PV (t) equals a given capacity factor β(t) multiplied by the size of

the photovoltaic system SPV :

χ+
PV (t) = SPV · β(t). (3.2)

The household’s load demand χ−H(t) is satisfied either by photovoltaic production χ+
PV (t),

purchases from the grid χ+
G(t) or previously stored power χ+

B(t) from the battery. Excess

power might be fed to the grid as χ−G(t), stored as χ−B(t) in the battery or simply wasted

as χ−W (t) if none of the previous options are applicable. To ensure that the total power of all

sources equals the total power used, I restrict the optimization problem with such condition:

χ+
PV (t) + χ+

B(t) + χ+
G(t) = χ−H(t) + χ−B(t) + χ−G(t) + χ−W (t),

where χ+
PV (t), χ+

B(t), χ+
G(t), χ−H(t), χ−B(t), χ−G(t), χ−W (t) ∈ Z+.

(3.3)

The power fed to the grid is limited to the current photovoltaic production χ+
PV (t) or the

regulatory feed-in-limit ε for the respective photovoltaic size SPV :

χ−G(t) ≤ min
(
χ+

PV (t);SPV · ε
)
. (3.4)

To prevent endless grid purchases at times of negative prices, the wasted electricity χ−W (t) is

limited to the overproduction of the photovoltaic unit that cannot be fed to the grid,

χ−W (t) ≤ χ+
PV (t)−min

(
χ+

PV (t);SPV · ε
)
. (3.5)

The battery state of charge Ω(t) is always larger than or equal to zero and cannot be above the
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battery‘s capacity SB. Power χ−B(t) that is stored into the battery is assumed to be subject to

charging losses µ. The state of charge Ω(t) a battery offers after t is defined as:

Ω(t) = Ω(t− 1)− χ+
B(t) + χ−B(t) · (1− µ) , Ω(t) ∈ [0, SB]. (3.6)

The formalized problem technically allows to simultaneously charge and discharge the battery

at the cost of loosing power due to charging losses. Indeed, this enables the battery to get

rid of a small amount of previously stored energy when it wants to maximize power purchases

from the grid in periods of negative prices. Since these earnings are negligibly small, I do not

introduce a condition to prevent this in order to keep the problem linear instead of quadratic.

The power χ−B(t) charged to the battery and the power χ+
B(t) discharged from battery within

one timestep are limited by the net effective charging power τ− and discharging power τ+:

χ−B(t) ∈ [0, τ−], χ+
B(t) ∈ [0, τ+]. (3.7)

While the rolling horizon approach optimizes the charging strategy for a limited optimization

horizon, the battery continues operation beyond that horizon. To prevent the battery from

discharging completely towards the end of each optimization horizon, I value the remaining

power stored Ω(T ) with the mean of the current horizon’s electricity prices. If situations arise

where the optimization program is indifferent to storing energy earlier or later, I incentivize the

optimization program with a minor additional return to store energy immediatly. This enables

the battery to consider the uncertainty of future photovoltaic production with a preference for

a positive net charging energy (battery inflow χ−B(t) - battery outflow χ+
B(t)) in otherwise

indifferent strategy decisions. The objective function is then defined as:

min Υ−

[
Ω(T ) ·

∑T
t= 1 p

+(t)

T

]
−

[
T∑
t= 1

(
χ−B(t)− χ+

B(t)
)
· 1

t · 105

]
. (3.8)

For each length of the price pre-announcement horizon, I use the resulting operational strategies

to determine the net electricity bill over the whole year. The differences in the net electricity

bills represent the value of additional pre-announced price information. Because the focus of

this study is on the economic aspects of price pre-announcements, I refrain from considering

technical details such as losses of the inverters, battery degradation and solar panel aging.
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3.3 Input and Assumptions

3.3.1 Photovoltaic roof, storage system and household consumption

For the photovoltaic production of the household, I use hourly capacity factors from the MERRA-

2-dataset for 2018 with the common photovoltaic default values for system loss (10%), Tilt (35◦)

and Azimuth (180◦) and query the capacity factors on renewable.ninja for the location of the

Technical University of Munich, Germany (Latitude of 48.1496, Longitude of 11.5678). I insert

one hour with a production of 0 kW at the beginning and delete the last hour of the data in

order to align the UTC time of the dataset to the German time. The size of the photovoltaic roof

is based on an own analysis of the publicly available databases of German transmission system

operators (Netztransparenz.de, n.d.). On average, the installed photovoltaic roofs since August

2014 until 2018 below a size of 10 kWp - as required for the remuneration - have a nominal

capacity of 6.65 kWp with a median of 6.48 kWp.

The power from the photovoltaic roof sold to the grid is compensated with a feed-in remuner-

ation based on the photovoltaic remuneration for small rooftop installations in April 2018 in

Germany (Bundesnetzagentur, 2019). I limit the feed-in into the grid relative to installed photo-

voltaic power as legally required according to §6 (2) of the Renewable Energy Act (Erneuerbare-

Energien-Gesetz - EEG) in Germany.

The battery size is derived from the monitoring of installations of residential battery systems in

Germany with an average of 1 kWh usable capacity per kWp of photovoltaic power (Figgener

et al., 2018). For the load profile of the household, I use the dataset 37 provided by Tjaden

et al. (2015) with a total yearly demand of 3,466 kWh as this total demand should represent a

common single family household.

Table 3.1 lists the input parameters for the simulation.

3.3.2 Electric power prices

To simulate the pricing signals of the electricity provider, I generate a dynamic electricity retail

rate that is linked to exchange prices and add margin and taxes on top of these. I use the

2018 epexspot DE/AT and DE/LU day-ahead data (Epex Spot SE, 2019) as an indicator for



3 How Households Benefit From Pre-announced Electricity Price Information 54

Table 3.1: Input parameters and assumptions for the photovoltaic roof and the storage system as well as the
applied settings for the remuneration of photovoltaic feed-in into the grid.

Parameter Description Value
SPV System size of the photovoltaic roof 6.5 kWp
SB System size of the battery 6.5 kWh
p− Feed-in remuneration of photovoltaic power 0.122 e/kWh
ε Limit of the feed-in into the grid 70%
τ− Maximal charging power of the battery 6.5 kW
τ+ Maximal discharging power of the battery 6.5 kW
µ Charging losses of the battery 5%

price fluctuations within the dynamic electricity tariff. I add a 0.02 e/kWh margin p+
Margin

for the retailer and 0.0474 e/kWh of absolute charged taxes p+
AbsTax on a per-unit basis (see

(Bundesnetzagentur & Bundeskartellamt, 2018)). As recommended by Jansen et al. (2015), the

renewable energy surcharge and the grid fees increase and decrease as an ad-valorem dynamic

tax based on the prices p+
Spot(t) of the exchange market. The value added tax p+

V AT of 19% is

added on top. The dynamic retail price p+(t) is then calculated by:

p+(t) =
[
p+
Spot(t) ·

(
1 + p+

DynTax

)
+ p+

AbsTax + p+
Margin

]
·
(
1 + p+

V AT

)
(3.9)

To determine an appropriate overall relative tax rate, I solve for the dynamic tax rate p+
DynTax to

let the household pay the equal amount as it would do in a static setting with a static electricity

price p+
Static over the whole 8760 hours. Therefore, the following equation must be valid:

8760∑
t= 1

p+
Static · χ

−
H(t) =

8760∑
t= 1

p+(t) · χ−H(t) (3.10)

Negative values on the spot market prices p+
Spot(t) do not result in negative taxes but simply

lead to no dynamic tax for that specific timestep.

3.3.3 Forecasts

Seasonal ARIMA forecasts within a 24 hour rolling horizon predict the photovoltaic production,

the load pattern of the household as well as the price fluctuations on the energy exchange.

By minimizing the Akaike information criterion (AIC), I fit the ARIMA model to the training
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data of the previous year 2017. I argue that a freshly installed storage controller would most

probably have no data of the previous load pattern of the specific household but might be trained

with a standardized load pattern instead. Therefore, I use a synthetic standard H0 profile by

Bundesverband der Energie- und Wasserwirtschaft (2018) for a household located in Bavaria,

Germany. The resulting seasonal ARIMA parameters are stated in Table 3.2.

Table 3.2: Seasonal ARIMA model parameters with the autoregressive order p, the difference order d and the
moving average order q. The seasonal elements of the model are stated with the the seasonal autoregressive order
P, the seasonal difference order D and the seasonal moving average order Q. The mean absolute percentage errors
(MAPE) measure the quality of the forecast by adding up the errors of the predicted values within the 24 hour
rolling horizon for each of the 8760 hours.

Parameter p d q Seasonality P D Q MAPE
Pattern of the household load demand 5 1 1 week 0 1 0 5558.7
Pattern of the photovoltaic production 4 0 0 day 2 1 0 8963
Pattern of exchange price fluctuations 2 0 1 day 2 1 0 2596.4

3.4 Results and discussion

Figure 3.2 illustrates the savings of price pre-announcements as the difference in the total elec-

tricity bill compared to the setting when no future prices or forecasts are known to the system

and only the current values are used to determine a strategy (when optimization horizon =

1). I compare the scenarios with and without photovoltaic unit and distinguish between the

savings with an optimization horizon equal to the pre-announcement horizon and the savings in

an optimization with a minimum optimization horizon of 24 hours.

The solid lines show the savings where the optimization horizon is limited to the length of the

price pre-announcement, meaning that photovoltaic and demand forecasts are limited to the

length of price information. The bold dotted lines show the savings with a 24 hour optimization

horizon where the missing price information is forecasted similar to the photovoltaic production

and load demand.

With an increasing pre-announcement horizon, the savings gradually increase and converge to

the value of the optimal strategy with perfect price information (pre-announcement horizon =

8760). The optimal strategy with perfect price information, however, is still not optimal in

retrospect since photovoltaic data and load demand were still forecasted with errors.
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Figure 3.2: Savings realized by the adaption of the battery strategy according to external price information
depending on the price pre-announcement horizon.

With potential savings of approximately 303 e in case of perfect price information, the storage

with a photovoltaic system seems to offer a higher saving potential compared to the 197 e

without the photovoltaic system. However, these higher potential savings for a storage system

with a photovoltaic unit mainly arise from the initially low performing battery strategy at a

short optimization horizon. If the optimization horizon is too short, the optimal strategy might

not consider storing the photovoltaic output for later usage. Consuming the power within the

household, however, is usually the return maximizing strategy but requires longer optimization

horizons. Therefore, it is necessary to distinguish between the savings that result from a longer

optimization horizon and the savings that result from additional price information.

Figure 3.3 illustrates the savings with a 24 hour minimum optimization horizon and by that

isolates the savings of additional price information. The system with a photovoltaic unit then

generally realizes fewer savings than the system without photovoltaic unit. While the total

savings in a perfect price information setting with a photovoltaic unit would only add up to

20.37 e, the system without photovoltaic unit generates savings up to 65.38 e. The lower effect

of price information is due to the added uncertainty of photovoltaic production. Due to the

uncertainty of photovoltaic production, the strategy with a photovoltaic unit is more vulnerable
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Figure 3.3: The value of price information of an additional hour within the optimization horizon.

to forecast errors. Additional price information then offers less saving potential, since forecast

errors in photovoltaic production might lead to unprofitable strategies in the first place.

Different horizon lengths allow different strategy considerations. Whereas short horizons might

be sufficient for storage strategies with only a few hours (e.g. to store afternoon photovoltaic

production for use in the early evening hours), longer horizons allow the optimization with

storing throughout the night or even for days. Depending on the timespan where the storage

can supplant purchases from the grid, the system is able to bridge high price periods. The

information when the high price period ends is essential to evaluate whether the storage can

satisfy the demand until that point. Therefore, different hours in the horizon are of different

value and the increments in value are neither constant nor strictly increasing or decreasing for

every additional hour. This is indicated by Figure 3.3 in hour 12 of the setting without a

photovoltaic unit. While the additional savings were already lower at hour 11, the following

hours add again more value to the strategy. To decide whether the battery should charge for the

next day as well, the system might even require pre-announcement horizons above 24 hours to

compare the prices for both days. By that, price information further down in the optimization

horizon might be more critical than the information of the early optimization period. However,

the simulations show that the system usually optimizes its strategy within shorter horizons and

reaches the majority of savings with far fewer hours of pre-announced information.
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Fifty percent of potential savings are realized if the electricity provider announces the prices

for 3 hours in advance. With 4 hours of pre-announcing prices, 75% of related savings can be

realized. The system with a photovoltaic unit then exceeds the 90% mark after 6 hours whereas

the system without photovoltaic unit requires 8 hours to reach this level. The values beyond the

100% mark result out of "lucky bets" on the production and demand forecasts where the limited

price information leads the optimization program to follow a strategy that in the end turns out to

be more profitable. With a longer price pre-announcement, however, the optimization program

would choose a different strategy that turns out to be unprofitable when forecast errors for the

photovoltaic output become apparent.

3.5 Conclusion

This paper determines the value of price information for a household in a dynamic electricity

price tariff. I use a common domestic household load pattern together with photovoltaic data

to generate ARIMA forecasts. Based on these forecasts and pre-announced price information by

the electricity provider, the battery storage system schedules charging and discharging actions in

a rolling horizon optimization. I iteratively increase the pre-announcement horizon and compare

the resulting savings of the battery storage system. While the battery storage system would

require perfect information of photovoltaic production, household load demand and electricity

prices upfront to derive a perfect strategy, sufficiently good charging strategies could already be

determined with a rather short pre-announcement period and forecasts. My results indicate that

a price pre-announcement horizon of 3 hours by the electricity provider would be sufficient to

realize 50% of potential savings. A maximum of 8 hours would be required to develop charging

strategies with 90% of the maximal saving potential.

These findings contribute to our understanding of the potential of dynamic tariff concepts and

charging strategies for battery storage systems under uncertainty. This study showcases the

low information dependency if charging controllers are fed with past supply and demand data

to generate forecasts, for example with an ARIMA approach. ARIMA forecasts might become

less reliable in the future once renewable production pattern become more extreme and volatile

due to climate change. While this could require more sophisticated forecasting methods, for

example with learning from external weather forecasts, the general findings of this study should

hold strong: Electricity providers could enable decentralized battery storage systems to balance
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renewable over- and underproduction by only taking over a few hours of price risk. Therefore, my

findings are particularly important for the design of pricing tariffs and deliver valuable insights for

electricity providers offering dynamic electricity tariffs. Households or consumer representatives

might use my approach to determine the saving potential of their decentralized storage system

once dynamic tariffs are introduced in the residential sector. Future research may determine a

welfare maximizing price pre-announcement horizon by assessing electricity providers’ benefits

of favorable load shifting that is incentivized by price pre-announcements.



4 | Innovation Trigger or Political Symbol-

ism: How Green are Subsidies in Electric

Vehicles?

Subsidizing technology fosters product innovation that might lead to a quicker technology adop-

tion. This innovation effect could justify subsidy expenses beyond the directly related social

value of the subsidized good during its lifetime. This paper proposes a method to calculate the

underlying value of innovation within a subsidy. The proposed calculation method uses price

elasticities and learning rates to correct for effects that depend on the number of products sold,

e.g. market saturation and learning. Correcting for these effects allows me to compare scenarios

with and without subsidy and draw conclusions about the innovation effects. I showcase this

method by evaluating the governmental subsidy programs for electric vehicles in the United

States, China and Germany. The evaluation shows that the underlying ecological value of inno-

vation within a subsidy might outweigh the value of the directly related carbon savings of the

subsidized vehicles. At least for the federal subsidy programs in the United States and Germany,

however, the ecological value could not justify the expenses.

Keywords: Subsidy Efficiency, Innovation, Learning, Electric Vehicles
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4.1 Introduction

Reducing carbon emissions is on top of almost all developed countries’ agendas. To reach

their agendas’ goals, many governments either tax pollution or subsidize cleaner alternatives.

Subsidizing alternatives takes effect via increasing the adoption and sales of new technologies

like photovoltaic power or alternative fuels. However, policymakers and economists discuss such

political measures controversially.

In particular, subsidies in the mobility sector are currently in the spotlight of public debate:

The electric vehicle is the symbol for the transition towards a clean mobility sector. Given

governmental bonuses of up to $7.500 federal tax credit in the United States, U22.500 in China

or e9.000 in Germany 2 for purchasing an electric vehicle, critics highlight the large governmental

spendings and claim these subsidies rather inefficient means to reduce carbon emissions (see for

example Holland et al., 2016, Sheldon & Dua, 2019, Xing et al., 2021). However, current subsidies

might foster innovation and development, triggering a quicker and broader adoption of electric

vehicles in the future. Therefore, can subsidy-induced innovation justify governmental spending

and silence the critics?

In this paper, I introduce a new method to calculate the value of innovation triggered by subsidies.

By using price elasticities I simulate the sales decline following the phasing-out of a subsidy. This

sales decline leads to a slow-down in innovation assuming that learning mostly depends on the

cumulative sales and production. Calculating this innovation decline with learning rates, I can

extract the subsidy-induced innovation within the projected technology adoption curve. The

comparison of the technology adoption curves with and without subsidies uncovers the value of

innovation created by the subsidy.

Within this study, I showcase this method by evaluating the governmental subsidy programs

for electric vehicles in the United States, China and Germany. I simulate each country’s hourly

electricity production in a merit order considering changes in the electricity mix, fuel and car-

bon certificate prices to accommodate for the changing energy systems and the environmental

footprint of installed power capacities. Together with the hourly national electricity demand, I

calculate the carbon emission of the marginal electricity demand of electric vehicles. I consider
2See respective subsidies 2020 in U.S. Department of Energy, 2021, Ministry of Finance of the People’s Republic
of China, 2020, Bundesministerium für Wirtschaft und Klimaschutz, 2021.
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all these long-term developments in energy systems to predict the ecological value of future elec-

tric vehicle purchases induced by current subsidies. By discounting the future ecological value,

I draw conclusions about the economic efficiency of current subsidy programs.

Considering innovation effects in the evaluation of subsidy programs might justify subsidies

into technologies with negative short-run effects but great potential in the long-run. My findings

indicate that subsidy-induced innovation might add substantial value on top of the direct related

positive externalities of the subsidized good. However, the innovation induced by governmental

subsidy programs for electric vehicles in the United States and Germany could not justify the

governmental spendings from a sole ecological perspective. The additional economic effects

like securing local jobs, defending market power or tax revenues following the increased sales,

however, might indeed close the gap and justify the governmental spendings accordingly. My

method allows policymakers to calculate the ecological value of innovation and evaluate the

innovative potential of subsidy programs. To the best of my knowledge this paper is the first to

calculate the ecological value of innovation induced by a subsidy.

The paper is structured as follows: Chapter 4.2 gives an overview of the underlying literature.

Chapter 4.3 states the problem formalization while Chapter 4.4 describes the assumptions and

inputs. Chapter 4.5 states and discusses the results before Chapter 4.6 gives a final conclusion.

4.2 Literature

At the heart of this paper lies the notion that costly investments in clean technology could pay

off with comparably lower carbon abatement costs in the future (see growth models of Acemoglu

et al., 2012 and Acemoglu et al., 2016, evaluations of Bollinger & Gillingham, 2014 and Newbery,

2018 or the work of Vogt-Schilb et al., 2018). For example Vogt-Schilb et al. (2018) argue, that

investing in more expensive carbon abatement measures now could be the optimal strategy as

these measures would have a high abatement potential in the future.

This high abatement potential might open up, if technology improves or prices decline with

innovation, economies of scale, or, due to learning rates. Following the concept of learning

by doing of Arrow (1962), a series of prominent research discussed the effects of cumulative

experience and learning rates (e.g. Spence, 1981, Fudenberg & Tirole, 1983, Ghemawat &

Spence, 1985). Specifically, Spence (1981) analyzed the competition within a market in which
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unit costs decline with cumulative production. Most notably, it could be beneficial for a firm

to accept negative short-run marginal profits in order to gain market dominance in the future.

The same effect might be drawn upon by governments when subsidizing certain technologies like

electric vehicles under learning rates. Subsidies, that show negative short-run marginal effects as

their direct carbon reductions are low and corresponding governmental spendings are high, might

still be efficient. The subsidy might still pay off in the future if the total carbon saving potential

of the technology is big enough, the price elasticity triggered by the subsidy is significant and

the technology is showing promising learning rates.

Indeed, promising learning rates were found for battery technology and the electric vehicles

these batteries will be used for (see Weiss et al., 2012, Matteson & Williams, 2015, Nykvist &

Nilsson, 2015, Schmidt et al., 2017, Kittner et al., 2017, Ziegler et al., 2021, Ziegler & Trancik,

2021). Weiss et al. (2012) create ex-post learning rates and ex-ante price forecasts to discuss

the price development of hybrid and battery electric vehicles. Nykvist & Nilsson (2015) analyze

cost estimates for battery packs and find learning rates between 6-9% following a cumulative

doubling of production. Kittner et al. (2017) develop a factor learning curve model to analyze

the impact of innovation and deployment policies on the cost of energy storage technologies.

Schmidt et al. (2017) use learning rates to project the future costs of electrical energy storage

systems. A recent study of Ziegler & Trancik (2021) found a price decrease of 20% upon a

doubling of cumulative market size.

Speeding up learning by increasing cumulative production with subsidies requires a price elastic

consumer response. For my case of electric vehicles, previous literature already found such

consumer response for subsidy programs or price declines (see Chandra et al., 2010, Jenn et al.,

2013, 2018, Palmer et al., 2018, Yan, 2018). For example, Jenn et al. (2018) observed average

sales increases of 2.6% for electric vehicles for every $1,000 offered as a rebate or tax credit.

Whether these rebates and tax credits are worth spending obviously depends on the carbon

reductions associated with electric vehicles.

Over the years, many studies evaluated the emission reductions of electric vehicles with various

different approaches and results (see Samaras & Meisterling, 2008, Stephan & Sullivan, 2008,

McCarthy & Yang, 2010, Van Vliet et al., 2011, Hawkins et al., 2013, Graff Zivin et al., 2014,

Archsmith et al., 2015, Holland et al., 2016, Knobloch et al., 2020). However, all studies em-

phasize the dependency on clean power production for an electric vehicle to be environmentally

beneficial. Holland et al. (2016), for example, find environmental benefits of electric vehicles
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worth $2,785 with the clean power production in California but huge environmental damages

up to $4,964 in North Dakota with electricity being produced from coal powered plants. Hence,

the subsidies they propose vary drastically.

Some papers investigated the carbon abatement costs for certain subsidies in green technologies

and electric vehicles (see e.g. Chandra et al., 2010, Van Vliet et al., 2011, Michalek et al.,

2011, Bollinger & Gillingham, 2014, Huse & Lucinda, 2014, Newbery, 2018, Yan, 2018). Huse

& Lucinda (2014) investigate the Swedish Green Car Rebate and find costs of $109 per carbon

ton to abate with less emitting vehicles. Van Vliet et al. (2011) calculate the costs for a battery

electric vehicle in the Netherlands to be e1,900 per carbon ton at the time of their study and

project e300-800 per ton in the future. van Benthem et al. (2008) and Bollinger & Gillingham

(2014) investigate photovoltaic installation cost reductions in California induced by subsidies.

Their results indicate that due to very low learning spillovers, the localized learning by doing

could not justify the incentive program in the short-run. Newbery (2018) proposes a method

to determine the justified subsidies for photovoltaic units and finds arguments to accelerate

technology development with subsidies due to beneficial learning rates.

However, as pointed out by Gillingham & Stock (2018), past studies on electric vehicle subsidiza-

tion did either not incorporate the changes in the electricity sector or the dynamics of innovation,

learning by doing and economies of scale, that might be triggered by subsidizing electric vehi-

cles. With the grids becoming cleaner every day, these dynamic innovation mechanisms might

show a growing effect on the carbon reductions of the future that previous literature fails to

incorporate. To the best of my knowledge, this paper is the first to address these innovation

effects in a ceteris-paribus manner and to evaluate existing subsidy programs with the dynamics

of induced future carbon reductions.

4.3 Problem Description and Formalization

4.3.1 Value of Innovation and Learning

My model uses price elasticities and learning rates to calculate the electric vehicle adoption in

two scenarios: I simulate one scenario with subsidy and one scenario as if the subsidy would have

been cancelled on December 31st 2019. Hence, I use 2020 as the year of reference to calculate
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the value V of the subsidy S including innovation and learning effects as the net present value

of additional carbon reductions triggered by the subsidy in 2020 and later.

Therefore, I compare the emission reductions ∆eSt of the electric vehicle stock NS
t in a scenario

with a subsidy to the emission reductions ∆et of the stock N t of electric vehicles in a scenario

without subsidy. The value of the subsidy is then computed as the γt discounted social cost of

carbon δt in year t of the additional carbon reductions:

V =
∑
t∈T

(∆eSt ·NS
t −∆et ·N t) · δt · γt. (4.1)

The electric vehicle sales within a country are assumed to be a product of multiple factors (e.g.

a better charging infrastructure, increased environmental awareness, higher taxes on gasoline

or the subsidy). I assume that the product of these factors is politically constructed in a way

to accomplish the underlying political electrification targets. The total number of cars Nmax

(conventional + electric) registered within each country remains the same and will be fully

substituted with electric cars until 2050. While this is highly speculative, it is indeed a valid

assumption as the governments frequently tighten their goals as well as many automobile man-

ufacturers themselves announced to stop producing conventional vehicles until 2035. I fit these

political electrification targets and past electric vehicle sales from 2010-2020 (see International

Energy Agency, 2021) to a S-shaped adoption curve using a simpler version of the Bass (1969)

adoption model for consumer durables. The S-shaped curve fitted by the variables k, n and

y predicts the number N t of electric vehicles on the road in year t under the current political

measures and subsidies within a country:

N t = Nmax · (1− e−k∗(t−2010)n) + y. (4.2)

I assume that people will most likely switch to an electric vehicle when their old vehicle needs

to be replaced. Hence, the number of electric vehicle sales within a year is limited by the

replacements within the vehicle stock considering the lifetime of vehicles. However, I assume a

20% tolerance rate of the sales infrastructure and market fluctuations to account for the flexibility

and potential of the vehicle sales markets in very optimistic years.

From this fitted S-curve (and the real vehicle sales data until 2020), I calculate the total growth

factor F t in year t as the change of electric vehicle sales ∆N t (without replacements) between
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two years:

F t =
∆NS

t

∆NS
t−1

. (4.3)

This total growth includes the learning effects as well as market saturation effects that both

depend on the number of electric vehicles already sold. If the number of electric vehicles sold

changes due to the subsidy expiring, the total growth will be influenced by these two factors

accordingly. Hence, I decompose the change in electric vehicle sales as a product of the learning

factor F λt , the market saturation factor FMt and the other independent trend factors FOt of the

respective year:

F t = F λt · FMt · FOt . (4.4)

I assume the consumers to react on the subsidy with static price elasticity. By removing the

subsidy, the number of vehicle purchases therefore decreases accordingly. Indeed, the effect of

price decreases due to learning and price decreases due to governmental subsidization might

differ, e.g. as consumers might consider subsidies as a gift. For reasons of simplicity, however,

I do not distinguish whether price changes result from governmental subsidization or economies

of scale, learning by doing or anything else. The subsidy is expected to be fully deducted from

the price of the vehicle without any appropriation by the producer.

I simulate a scenario with the subsidy and one as if the subsidy would have been cancelled.

The vehicles electrified in 2020 without a subsidy are simply the actual historic electric vehicle

purchases of 2020 diminished by the effect of the price elasticity ε due to the vehicle price P t

increasing with the expiration of the subsidy S (see first case of equation 4.5).

This decreased number of purchases will also decrease the learning and innovation for the upcom-

ing years, leading to a slower adoption of electric vehicles as prices decline less and technology

evolves slower. Market saturation, on the other hand, counteracts the adoption with an increas-

ing share of electric vehicles as there are less vehicles left to be electrified. In a scenario without

subsidy market saturation and the corresponding effects would kick in slower as there are less

purchases without the subsidy incentive. Apart from that, assuming a lifetime of τ for every

electric vehicle, the number of electric vehicles being replaced in a specific year will change as

well. By correcting for these effects, I can calculate the lag within the S-curve resulting from

the slowed down adoption in the scenario without subsidies.

Therefore, I reduce the growth factors F t by their initial learning factors F λ,St and initial market
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saturation effects FM,S
t under subsidies in a ceteris paribus manner and multiply with the ad-

justed learning F λt and adjusted market saturation FMt of the new vehicle stock without subsidies

instead (see second case of equation 4.5):

∆N t =


∆NS

t

1+ S
P t
·ε if t = 2020

∆N t−1 · F t ·
Fλt
Fλ,St

· FMt
FM,S
t

else.

(4.5)

The learning factor F λt is the effect of innovation resulting from a doubling of cumulative produc-

tion CPt. I cumulate all vehicle electrifications ∆N t together with the already replaced electric

vehicles ∆N t−τ after their lifetime τ to calculate the cumulative production CPt until year t

like the following:

CPt =
t−1∑

i=2010

∆N i + ∆N i−τ (4.6)

I then compare the cumulative production CPt of the current year to the cumulative production

CP2019 of December 31st in 2019 before the scenarios diverge. The logarithm to the base of 2

states how often the cumulative production doubled since then. By multiplying the resulting

cumulative doubling with the learning rate λ and the elasticity ε, I incorporate the increase of

purchases due to price decreases and product improvements:

F λt = 1 + ε ·
[
1− (1− λ)log2

CPt
CP2019

]
(4.7)

The market saturation factor FMt incorporates the share of electric vehicles on the road relative

to the country’s total vehicle stock Nmax of all conventional and electric vehicles. Hence, the

factor indicates the remaining fleet to be electrified. It is important to include this saturation

factor to receive the desired S-shaped curve. Otherwise, product innovation and decreasing

prices would skyrocket vehicle sales every year without any limit. As soon as all vehicles are

electrified, however, market saturation should prevent further growth of the electric vehicle sales:

FMt = 1 + (1−
∑t−1

i ∆N i

Nmax ). (4.8)

For reasons of simplicity, I do not consider non-linear effects like demand uncertainty or mis-

conception in costs (see Cohen et al., 2016, Andor et al., 2020) that would also impact the

adoption.
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4.3.2 Calculation of Emission Reductions

The carbon emission reductions ∆et are the difference between the emissions of operating an

electric vehicle EV compared to a conventional vehicle CV in a specific year:

∆et = eEVt − eCVt . (4.9)

I only consider operating emissions and neglect differences in the manufacturing process for sim-

plicity reasons. The yearly operating emissions eEVt of the electric vehicle are simply calculated

as the sum of all hourly emissions eEVt (h) by the electric vehicle within the respective year:

eEVt =
∑
h∈H

eEVt (h). (4.10)

I calculate the hourly emissions eEVt (h) as the marginal emissions of electricity production for an

electric vehicle. The marginal emissions eEVt (h) depend on the power sources Π used and their

respective emission factors ξπ. The increase in electricity demand caused by a high number of

electric vehicles charging might require additional power sources to switch on their production.

Hence, I use the marginal emissions not only of one car but the total electric vehicle stock N t

on the road and currently charging. The difference in produced electricity ωEVπ (h) in a scenario

with electric vehicles compared to the electricity production ωπ(h) in a scenario without electric

vehicles determines the marginal emissions of all electric vehicles. By dividing by the number

of vehicles within the electric vehicle stock N t, I receive the average marginal emissions of an

electric vehicle charging at a specific time:

eEVt (h) =

∑
π∈Π ξπ ·

[
ωEVπ (h)− ωπ(h)

]
N t

. (4.11)

The marginally used power sources for ωEVπ (h) with electric vehicles and the used power sources

for ωπ(h) without electric vehicles are both determined by an optimization for every time-step

h. Hereby, I minimize the marginal costs of electricity production considering fuel costs θπt and

certificate prices θCt of each power source π to simulate a cost minimizing merit order for every

hour:

min
ωπ(h)

ωπ(h) ·
[
θπt + θCt

]
. (4.12)
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As a general condition, the electricity demand ψ(h) needs to be satisfied by equivalent production

for every hour: ∑
π∈Π

ωπ(h) = ψ(h). (4.13)

I limit the power production of a single power source by the installed capacities Ωπ
t and a ca-

pacity factor ηπ(h). Conventional power plants like coal and gas can be dispatched according to

the demand and are therefore assumed to produce flexibly up to the total installed production

capacities Ωπ
t . Intermittent power sources like photovoltaic systems and wind turbines addition-

ally rely on the capacity factor ηπ(h) representing the weather conditions and daytime within a

specific hour:

0 ≤ ωπ(h) ≤ Ωπ
t · ηπ(h). (4.14)

When deciding whether to replace an existing conventional vehicle with an electric vehicle, the

marginal emissions seem the intuitive measure to compare both options. By speeding up the

electric vehicle adoption with a subsidy, the corresponding energy production increases by this

additional electricity demand. At least in the short run, this additional electricity demand

might require more conventional power plants to switch on at times when electric vehicles need

to charge. Therefore, as long as simply replacing a vehicle with another conventional vehicle is

the standard, the arguments of a marginal evaluation of both options seem fair.

The arguments however turn as soon as the electric vehicle becomes the standard: The ecological

footprint of an electric oven, for example, is most likely evaluated with the average electricity mix

and not the marginal electricity consumption as burning wood is outdated and not an alternative

any longer. Similarly, perceiving the electricity demand of electric vehicles as additional marginal

demand becomes debatable in the long run as it will establish as the standard. All electric

appliances within a grid simply share the same electricity mix and have no real order in which

they are supplied with electricity. Using an average or a marginal approach might have strong

effects as the marginal electricity consumption is served from the currently most expensive and

usually more carbon intensive power sources at the end of the merit order.

Therefore, I use a mixed approach. For the short-run until 2030 I stick to the marginal emissions

along with previous literature comparing emissions of vehicles (see Holland et al., 2016). For the

years after 2030 I linearly decrease the emissions of 2030 to zero until 2050 or 2060 considering the

governmental targets of carbon neutrality within the electricity sector as described in Chapter

4.4.1.
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Figure 4.1: Development of the installed capacities from 2020 to 2030 for the United States, China & Germany
based on United States Energy Information, 2020, Energy Research Institute of Academy of Macroeconomic
Research/NDRC, 2020, SMARD Bundesnetzagentur, 2021, Drees et al., 2021.

4.4 Input and Assumptions

4.4.1 Electricity supply and carbon emissions

For the energy production, I use current and projected production capacities installed in each

country. I distinguish these capacities into dispatchable and undispatchable power sources. All

conventional power plants within this simulation are dispatchable and fully flexible to decrease

or increase their power production up to 100% of the installed capacity. Solar and wind ca-

pacities, however, rely on the time, weather and the season. To simulate the intermittency and

account for seasonal variation of wind and solar power, I use a yearly pattern of 8760 hourly

capacity factors ηπ(h) (deleting the 29th February from leap years) normalized by the installed

capacity in the respective years. By normalizing with the installed capacities, I can adjust the

production patterns to the planned installations in future scenarios as planned by the respective

governments. To derive a reference demand curve without electric vehicles, I add up all power

production and deduct the demand curves of electric vehicles on the road in 2020. Hence, I

neglect electricity imports or exports and solely focus on the production within the country. A

detailed description of the used datasets for each country is stated in A.4. Figure 4.1 illustrates

the change in installed capacities.

I use yearly fuel price projections θπt for the fuel the conventional power plants burn. By burning

fuel, these conventional power plants emit carbon according to their respective efficiency / carbon
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emission factors ξπ. To offset these carbon emissions, some power plants additionally acquire

carbon certificates with rates θCt . These rates come on top of the fuel costs and are therefore

influencing the merit order of marginal costs of production. A.5 states the specifics of generating

the merit order of electricity production for each respective country.

4.4.2 Electric Vehicle Consumption Patterns

To derive technical specifications for the electric vehicle that are representative for the respective

country, I base my assumptions on electric vehicle registration data. For electricity consumption

of respective electric vehicles, I use country specific measurement and testing data as a reference.

I weight the consumption data by the local market share of the specific model to calculate the

country specific average power consumption per 100 miles. While differences in the measurement

procedures do not allow for comparisons across countries, it is a good approach to incorporate also

the specifics of the driving behavior within the respective country. I consider the workplace and

the private residence as the places to charge. Hence, I stick to a charging power Wmax of 11kW

in all countries as it is frequently available also with AC charging at almost any charging location

and very common across many car manufacturers. A summary of the technical specifications

and assumption for the electric vehicles can be found in Table A.1.

I use datasets of car trips to generate representative charging patterns for each country. The

distance d driven during each trip and the consumption ψ per 100 miles determine the charging

demand (= d
100 · ψ) after the journey. The charging power Wmax ultimately determines the

timespan the vehicle needs to charge after the trip. I aggregate all charging actions into a

weekly charging pattern and normalize it with the average weekly distance (= dt/52) to receive an

average weekly demand curve for a single vehicle. Figure 4.2 illustrates the resulting consumption

profiles. A.6 describes the generation of the driving pattern and the corresponding electricity

consumption in more detail.

4.4.3 Number of Vehicles, Learning Rates & Subsidies

I assume the total number of vehicles on the road to remain at the same level. Hence, I use current

vehicle registration data and interim targets to derive the likely electric vehicle uptake curve.

U.S. Department of Transportation Federal Highway Administration (n.d.) reports 107.180.635

registered vehicles in 2019 within the United States. The State Council of the People’s Republic
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Figure 4.2: Average consumption profile of an electric vehicle in kWh based on vehicle driving data generated
on data of U.S. Department of Transportation Federal Highway Administration (2017) for the United States and
China as well as Zumkeller et al. (2018) for Germany.

of China (2021) report a total of 270.000.000 motor vehicles at the end of 2020 in China. For

Germany, I calculate with a total number of 48.248.584 passenger cars (see registered passenger

cars on the first of January 2021 by Kraftfahrt-Bundesamt, 2021 ). Additionally, the recently

elected government announced an interim target of 15 million fully electrified vehicles until 2030

within their coalition agreement (see SPD & Die Grünen & FDP, 2021).

As previous literature shows, electric vehicles (specifically the battery packs as one of the main

cost drivers) underly learning rates dependent on the cumulative production. Nykvist & Nilsson

(2015) identify a learning rate of 6-9% following the cumulative doubling of production. Kittner

et al. (2017) find a learning rate of 16.9%. Matteson & Williams (2015) assume learning rates

between 9.5-22% found for consumer electronics to be applicable for batteries. A recent study of

Ziegler & Trancik (2021) found a price decrease of 20% upon a doubling of cumulative market

size. Within this study, I use a learning rate of 22% to illustrate the maximum range of innovation

value within technology deployment via subsidies.

These learnings have a bigger influence if price elasticity is high, as the initial price increase

when the subsidy ends leads to a stronger reduction in sales. Jenn et al. (2018) observed average

sales increases of 2.6% for electric vehicles for every $1,000 offered as a rebate or tax credit. I

convert their finding into a relative measure by using the average list prices of electric vehicles

sold in 2020 within the United States, I receive a price elasticity of ε = 2.6%
$1000
P2020

= 1.32. The

elasticity could differ between countries. For reasons of simplicity, however, I use this measure
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for all countries when prices increase or decrease and assume the purchasing behavior to be

independent from the absolute prices.

For the United States, I simulate a termination of the federal tax credit with $7500 for battery

electric vehicles (see U.S. Department of Energy, 2021) without additional state level subsidies.

In China, cars with a range higher than 400km qualify for U22.500 while cars below would

only receive U16.200 if they fulfill the other criteria (see Now-gmbh, 2020). I simply assume

a homogeneous subsidization of U19.000 per car. Within Germany the programs distinguish

according to the net list price. While battery electric vehicles above e40.000 qualify for e7.500

in subsidies, vehicles below even receive e9.000 in subsidies. For reasons of simplicity, I assume

a homogeneous subsidy of e8.000 in Germany and do not consider tax effects. For the scenario

with subsidization, I assume all these subsidies to be paid constantly for every vehicle before

completely fading out in 2025.

4.4.4 Social Cost of Carbon & Discount Rate

To evaluate the economic efficiency of subsidies, I compare their carbon abatement costs to the

social cost of carbon. The social cost of carbon are the marginal costs of climate damages caused

by the emission of an additional carbon ton. Therefore, they are a good measure to quantify the

societal value of avoiding emissions. Reinstalled by the Biden administration, the social cost of

carbon became a tool now frequently used to shape and challenge federal decision making. The

Interagency Working Group issued the latest social cost of carbon calculations for 2020 dollars

as a baseline (see IWG, 2021). I use the values with a 3% discount rate as suggested by IWG,

2021 and assume linear steps between their 5-year cost estimations.

4.5 Results and discussion

In the first step I calculate the share of electric vehicles both in the scenario with and without the

subsidy as indicated in figure 4.3. The curves diverge as the reduced learning effect in the scenario

without subsidy slows down the adoption of electric vehicles. By slowing down the adoption, the

learning and product improvements develop slower as well, which makes the difference between

the two scenarios greater every year. However, due to the constraint of a saturating market for

vehicles, my model assumes the curves to converge again with increasing market saturation.The
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Figure 4.3: The electrification of passenger vehicles in the United States according to the political targets and
the scenario corrected for the subsidy-induced learning, market saturation and replacements of vehicles taken out
of service.

market saturation should counteract the learning effect as the share of conventional vehicles

decreases and hence the number of vehicles to be electrified becomes smaller and smaller. In the

scenario without subsidy, this market saturation effect kicks in with a delay but ultimately leads

both curves to converge at the maximum of 100% electrification. By using a learning rate of

22%, I showcase the highest learning rate discussed in previous literature. Therefore, the curve

without subsidy illustrates the highest effect the reduced learning without subsidy could result

into. All the following illustrations and innovation values showcase the maximum innovation

potential of the subsidy.

In a second step, I simulate both scenarios with the electricity production within the respective

countries, allowing me to determine the additional carbon savings induced by the subsidy. The

bars in figure 4.4 indicate the expenses and the corresponding social value of carbon abatement

that can be attributed to the subsidy. I hereby assume, that the United States and Germany

will continue to grant the subsidy for electric vehicles from 2020 until 2025 before the purchases

of electric vehicles stabilize without these governmental subsidies. China however is optimistic

to cut the subsidies already at the end of 2022 and still meeting electrification targets as the

country invested from early on and has already a significant electric vehicle stock. The expenses

in 2021 are exceptionally high in all three countries as the vehicle stocks are below the targeted

S-curves and the algorithm needs to catch up to meet these targets.

The value of the subsidy indicated by the grey bars mainly depends on three factors. First, the

value of the subsidy is almost perfectly linked to the difference between the two curves of the
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electric vehicle stock. The greater the difference of electric vehicles between the scenarios with

and without subsidy, the higher is the value of the subsidy. Another driver are the marginal

emission reductions of the electric vehicle depending largely on the emissions of the conventional

vehicle. With comparably low fuel efficiency, conventional vehicles within the United States and

China are predestined to be replaced by electric vehicles. The German electric cars show less

marginal benefits as the conventional alternative is already comparably more efficient. The last

big factor are the carbon emissions of the electricity production during the lifetime of the vehicle.

The future electricity production emits less carbon due to a higher share of renewable energy.

However, the marginal electricity production for electric vehicles is served by production facilities

that are able to provide the additional electricity at the time the vehicles charge, e.g. the evening

hours. Hence, the additional demand is frequently served by conventional power plants. Figure

4.5 illustrates the resulting yearly emissions of operating an electric vehicle.

In the United States, the huge natural gas capacities completely satisfy the additional demand

leading to constant emissions per electric vehicle in the next years. With no changes in the

merit order (see A.1a), this is not about to change soon. In China, the adoption of more

renewable capacities and the merit order changes (see A.1b) between 2025-2027 decrease the

marginal emissions significantly. Despite the very high share of renewable energy in Germany,

the marginal emissions are quite high resulting from the unfavorable marginal production via

coal powered plants. Beginning with the nuclear phase-out, more and more marginal energy will

be served by gas powered plants with a lower carbon footprint than the coal powered plants.

While the total emissions might increase due to the nuclear phase out, the average marginal

emissions of the electricity used for electric vehicles decrease. With growing prices for carbon

certificates and the resulting shifts in the merit order (see A.1c), Germany can decrease the

marginal emissions significantly over time.

By discounting the expenses and the value of the corresponding carbon savings, I can determine

the ecological net present value of each subsidy. As illustrated in figure 4.6, the value of subsidy-

induced innovation exceeds the value of direct carbon savings of the subsidized vehicle in all

three countries. However, the total ecological value of the subsidy can neither in the United

States nor in Germany justify the current subsidy expenses. In the case of China, the ecological

value by far outweighs the current costs of the subsidy. With only U19.000 (≈ $2980), the

subsidy is comparably low and already expected to fade out at the end of 2022. Assuming that

the electric vehicle sales develop according to the political electrification targets in China even
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(a) The electrification of passenger vehicles in the United States with the subsidy-induced value and costs of carbon
abatement.

(b) The electrification of passenger vehicles in China with the subsidy-induced value and costs of carbon abatement.

(c) The electrification of passenger vehicles in Germany with the subsidy-induced value and costs of carbon abatement.

Figure 4.4: The share of battery electric vehicles as well as the subsidy-induced value and costs of carbon
abatement within the respective countries.
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Figure 4.5: The emissions of the marginal electricity demand of operating an electric vehicle in the subsidized
scenario.

without subsidy after 2022, the value of the current subsidy exceeds the expected costs between

2020-2022. Previous subsidies for electric vehicles, however, are not part of this calculation and

probably a reason why China is confident to be able to stop subsidizing after 2022. Technological

and innovation spill-over effects to other countries might increase the ecological value of the

subsidy additionally.

The expenses exceeding the total ecological value could serve as a measure for environmental

inefficiency since they can not be justified with current and future emission reductions. While

the ecological benefits can not justify the expenses in the United States and Germany, this

does not necessarily mean that these governments per se over-subsidize their vehicles. It might

still be legitimate to grant these subsidies from an economic welfare perspective, for example

to support the automobile industry. Assuming that these subsidies are needed for the industry

to secure jobs and economic welfare, the economic benefits might make up for the discrepancy.

However, it is still arguable whether restricting these subsidies to electric vehicles is efficient

from an economic welfare perspective. I argue that car manufacturers could allocate subsidies

best, if these subsidies would not be fully tied to electric vehicles. Subsidizing technologies like

automated driving might be of greater economic value for the car manufacturing industry than

economic subsidies hidden in environmental bonuses that are tied towards a specific drivetrain

technology. This constraint towards a specific drivetrain technology limits the options for the

automobile manufacturers to innovate with this subsidy efficiently. However, since political

reasons might prevent subsidies for other technologies unrelated to carbon efficiency, it might

be the politically best way to stabilize the automotive industry via ecological subsidies. This,
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Figure 4.6: Comparison of the subsidy costs to the net present value of subsidy-induced carbon savings distin-
guished by the associated carbon abatements of the subsidized electric vehicle and the carbon abatements of the
subsidy-induced electric vehicle adoption including innovation and learning effects.

however, would require the automotive industry to appropriate parts of the subsidy for economic

reasons and not hand over the subsidies to the consumers, leading to an even lower ecological

value.

Assuming that other measures would be cheaper to decrease carbon emissions, electric vehicles

in the United States and Germany are over-subsidized. As long as the marginal ecological effects

of subsidizing above the ecological value are positive, the expenses are still effective but probably

not efficient from an environmental perspective.

4.6 Conclusion

This study aims to reveal the underlying value potential of innovation induced by a product sub-

sidy. A subsidy might foster product innovation and development leading to a quicker adoption

of the subsidized technology. I use price elasticities and learning rates from previous research

to correct for effects that depend on the number of products sold in the past (market satura-

tion, learning and replacements of products taken out of service). With that, I can compare a

scenario without subsidies to the political targets the subsidies are installed to achieve. From

the difference between the adoption curves with and without subsidy, I can value the underlying

innovation effects. While this method does not allow to find effects resulting from subsidies, it

does uncover policy inconsistencies under the assumption that the subsidies have the politically

desired effects. These results might be of major importance for policy makers when drafting
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future subsidy programs. I showcase my method by evaluating subsidy programs to support the

electric vehicle adoption in United States, China and Germany.

For each country, I compare the share of electric vehicles in scenarios with and without subsidy

valued with the social cost of carbon saved. Hereby, I use a dynamic hourly merit order simulation

considering carbon and fuel prices, available production capacities and renewable production

data on country specific driving patterns to calculate the marginal emission reductions of the

respective electric vehicles. With this approach, I can calculate the carbon savings of electric

vehicles now and in future electricity mixes. By discounting these carbon savings, I determine

the ecological value of the subsidy and compare it to the corresponding expenses.

Subsidizing an electric vehicle now could have huge effects for the electric vehicle adoption in

the near future. I can show that the underlying value of innovation within a subsidy could

outweigh the value of the actual carbon savings of the subsidized vehicle. By ignoring these

innovation effects, many critics of subsidies might undervalue the beneficial effect that comes

with these subsidies. However, at least in the case of the United States and Germany, the

resulting ecological values could still not justify the expenses even with the highest learning

rates. As discussed, the subsidy might still be justifiable for economic welfare reasons. However,

since the subsidy is tied towards a specific drivetrain technology it will not necessarily foster

a quicker development in technologies like automated driving that might be economically more

attractive. Future research could adopt this model to other subsidies for example in residential

renewable energy generation or the construction industry.

Concluding my findings, subsidies trigger innovation that could be of higher environmental value

than many critics would assume. In the case of electric vehicles, the efficiency from an ecologic

and as well as from an economic welfare perspective, is debatable. Hence, the subsidy schemes

for electric vehicles in the United States and Germany might be at least partly due to political

symbolism.
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5.1 Summary of Research Findings

This dissertation consists of three essays elaborating political or structural barriers towards the

integration of more renewable power in the energy and transportation sector. In the following,

I summarize these three essays.

In essay I, I propose changing the taxation of electricity. As more and more renewable energy

sources feed in power intermittently, incentivizing households with dynamic electricity prices to

participate in load shifting activities could have immense potential. Fluctuations in dynamic

energy prices may - if volatile enough - incentivize domestic households to adapt their load

pattern in order to minimize the cost of electricity. This study shows that current price volatility

does not allow sufficient savings to compensate for additional metering costs occurring with the

introduction of dynamic prices. The taxation mechanism has strong effects on the volatility of

electricity prices. My results indicate that a change towards an ‘ad-valorem’ electricity taxation

dependent on exchange prices could make residential demand-side management profitable.

I additionally check the potential price risk for consumers that do not react to pricing signals,

for example because of a lack of smart devices. Their risk of facing dynamic electricity prices

is almost negligible as consumption patterns suggest that they consume in times of both high

and low prices canceling out higher payments at peak times even without any load shifts. With

these results, policymakers can anticipate the effects of dynamic retail prices on electricity and

derive the implications of different taxation settings.

Essay II investigates a more technical and structural issue for decentralized storage systems to

actively participate and balance renewable over- and underproduction. The operational strategy

of a decentralized energy storage systems critically depends on the availability of information
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on future prices, future renewable production and future demand. If storage systems do not

have this information, they can not adapt their charging strategy to optimally exploit renewable

energy production. Therefore, electricity providers may pre-announce and guarantee prices for

a certain time period, e.g. the next five hours, to incentivize grid-serving use of storage systems.

By incentivizing grid-serving use of storage systems, electricity providers may indirectly control

the charging pattern of thousands or even millions of residential battery systems and by that

lift huge potential to balance the intermittency of renewable production.

I value pre-announced price information for a household with a photovoltaic roof system and a

battery storage in a German case study. To determine the sensitivity of a household’s electricity

bill towards limited external information on future prices, I evaluate different pre-announcement

periods in a rolling horizon approach. I use autoregressive integrated moving average (ARIMA)

forecasts to predict the photovoltaic production, the household’s consumption as well as electric-

ity prices beyond the information given by the provider. My results indicate that pre-announced

external price information of a 3-8 hour period is of major value for a statistically trained system.

Pre-announcements beyond this period only have a marginal impact on the resulting savings for

consumers. With 3-8 hour periods, the risk electricity providers would have to take in order to

control the charging patterns of decentralized battery storage systems is comparably small. My

findings help both, households and electricity providers to assess dynamic tariff structures and

optimize the usage of renewable power.

Essay III evaluates the efficiency of certain green technology fostering subsidies. These subsidies

foster product innovation in green technologies that might lead to a quicker technology adoption.

If green technology adapts earlier, governments could reduce probably millions of carbon tons by

subsidizing promising green technologies now hoping for innovation effects in the future. These

innovation effects could then justify subsidy expenses beyond the directly related social value of

the current subsidized good. This paper proposes a method to calculate the underlying value

of innovation within a subsidy. The proposed calculation method uses price elasticities and

learning rates to correct for effects that depend on the number of products sold, e.g. market

saturation and learning. Correcting for these effects allows me to compare scenarios with and

without subsidy and draw conclusions about the innovation effects.

Within this essay III, I showcase this method by evaluating the governmental subsidy programs

for electric vehicles in the United States, China and Germany. The evaluation shows that the

underlying ecological value of innovation within a subsidy might outweigh the value of the directly
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related carbon savings of the subsidized vehicles. At least for the federal subsidy programs in

the United States and Germany, however, the ecological value could not justify the expenses.

Either way, this innovation valuing method could help policymakers to decide upon technologies

considering their expected innovation potential. My findings could legitimize subsidies in very

promising technologies that do not pay off in short-term but have huge potential in the future.

5.2 Future Research

All three essays provide important contributions to existing literature in the field of sustainabil-

ity, economics and energy. Tackling policy and structural issues, however, is very complex and

frequently shows effects on multiple parties within the whole economic and ecological system.

While my essays provide answers within their specific economic or ecological area, various related

questions remain open for future research. Therefore, investigating effects from a different view-

point could add more insights into the issues related with certain structural and policy issues.

In the following, I will shortly discuss further open questions related to each essay.

In essay I, I suggest shifting towards ‘ad-valorem’ electricity taxation dependent on the price on

the energy exchange. While I can show the direct effects on the electricity bill of participating

households, the corresponding change in tax income from a governmental perspective remains

unanswered. Hence, a welfare analysis and a tax-authorities’ perspective on a shift towards

‘ad-valorem’ taxation would be a very interesting area for following research. Further research

could evaluate the consumer’s willingness to manually shift loads if an ‘ad-valorem’ taxation

regime leads to large price fluctuations. Previous papers like Bradley et al. (2016) and Goulden

et al. (2018) question that consumers would be willing to steadily monitor the energy prices

for inconvenient load shifts. Therefore, I expect consumers to not manually shift loads but let

smart controllers take over this task. Smart controllers do not require a minimum price change

to react to pricing signals.

However, these smart controllers can shift loads only with automatic and semi-automatic devices

but can not change the consumer usage of manually operated devices. Therefore, I did not

consider any price elasticity and behavioral changes from the consumers. If the price changes

would increase with ‘ad-valorem’ taxation, some consumers might indeed change their behavior.

Replicating behavioral studies like Allcott & Rogers (2014) under different taxation schemes
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would be interesting to consider the additional potential in load shifting coming from the price

elasticity of the consumer.

In essay II, I evaluate the marginal improvements in the charging strategy of a decentralized

battery when electricity providers would pre-announce future electricity prices for a few hours. I

can show that a 3-8 hour pre-announcement horizon would already be sufficient for the battery

to calculate an almost optimal charging strategy. This is a very important information for the

electricity provider to incentivize and control the charging strategy of residential storage systems.

However, further research could quantify the risks the electricity providers would bear with this

3-8 hour price pre-announcement. For the electricity providers it could be of major importance

to evaluate those risks against the potential returns of price pre-announcements. The returns

of price pre-announcements could be calculated as the reduction in costs for balancing grids

or hedging certain price peaks and valleys that would otherwise occur. Future research may

determine a welfare maximizing price pre-announcement horizon by assessing power providers’

benefits of favorable load shifting that is incentivized by price pre-announcements.

Essay III provides a method to calculate the value of innovation induced by a subsidy. While I

showcase this method for the subsidy of electric vehicles, future research could adopt this model

to other subsidies in different sectors. The subsidization of photovoltaic rooftops, for example,

would be an interesting application and could add further insights on top of the contributions

of van Benthem et al. (2008) and Gillingham & Stock (2018). Another example could be sub-

sidies within the construction industry using similar purchase incentive schemes to foster the

installation of thermal insulation or less carbon intensive heating technologies. As these tech-

nologies might improve and become cheaper due to learning rates, subsidizing these technologies

now might pay off with increasing purchases and installations in the future. Basically, future

research could use my method with learning rates and price elasticities to calculate the value of

innovation in almost any purchase incentivized subsidy-scheme. However, my proposed method

does not consider spill-over effects to other countries. Other countries profit from these subsidies

as well as the subsidy-induced innovation most likely does not stop at the border and could de-

crease prices and improve products also for the export. Since emissions and climate change are

a global threat, determining the ecological value from a global perspective considering spill-over

effects would be another very interesting area for future research.

All three essays contribute insights into current issues or barriers towards a more sustainable

future. The essays answer specific research questions and open up solutions that could have
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tremendous impact on the energy transformation and a higher usage of renewable energy. These

solutions, however, would benefit from perspectives considering tax-authorities, electricity sup-

pliers and the consumers within households and industry.

5.3 Concluding Remarks

This dissertation contributes new knowledge and solutions for the integration of a higher share

of renewable energy. Based on a thorough literature review, I uncover and tackle regulatory

problems in residential electricity consumption and transportation. Electricity and transporta-

tion are two of the main sources for carbon emissions. Solving regulatory problems within these

two fields could significantly reduce emissions and global warming. Considering the potential of

integrating renewable alternatives, the essays within this dissertation focus on flexibility mea-

sures that could be accomplished with a smart grid in the electricity sector and subsidies to

foster a higher share of electric vehicles within the individual transport sector.

Within the electricity sector, digitalization could open up great potentials in the integration of

more renewable energies. Essay I and II within this dissertation directly elaborate on flexibility

measures that might be improved by a digitalized smart grid with dynamic prices. With demand

side management of automatic devices as well as optimizing charging strategies of battery storage

systems, I research on flexibility potential in the residential sector that remained unused so far.

My research contributes to lift this unused potential and integrate a higher share of renewable

energy within the electricity mix.

With a higher share of renewable energy within the electricity mix, further opportunities in

the transportation sector arise. With electricity becoming less carbon intensive, electrifying

individual transport becomes a major factor in the decarbonization of mobility. This is another

important matter within the political discussion that I contribute to. With my research I provide

valuable insights to efficiently electrify individual transport with subsidies. I can show that

there is significant value in subsidy-induced innovation beyond the direct related carbon savings

of subsidized vehicles. This might justify subsidies in technologies with great carbon saving

potential in the future.

My essays provide policymakers, consumers and other researchers with promising approaches

to (1) incentivize households to participate in load shifting activities, (2) utilize decentralized
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storage systems to balance the intermittency of renewable energy production and (3) evaluate the

ecological efficiency of subsidy programs fostering innovation in green technologies. With these

contributions, I hope to enrich research as well as the political and regulatory landscape with

new insights helping to tackle climate change and transform the energy systems for a sustainable

future.



Appendix

A.4 Electricity supply and carbon emissions

For the United States, I use the net summer capacity from United States Energy Information

(2020) for 2019 and their outlook of power plant builds and dismantles to determine the capacities

until 2030. I assume petroleum capacities to decrease similarly to coal. For the hourly capacity

factors I use the data of 2020 aggregated along all balancing authorities but exclude other non

distinguished sources like pumped storage and reduce the reference demand accordingly. I clear

out obvious outliers (hours 8303, and 2443-2446) by replacing them with the average of the two

enclosing hours and remove the negative values within the photovoltaic production. Following

the recent governmental announcements, I assume carbon neutral electricity until 2050.

For the installed capacity within China, I linearly interpolate the values taken from Energy

Research Institute of Academy of Macroeconomic Research/NDRC (2020) between the years

2020 until 2030 without ocean power as it is only of minor importance due to its low total

installed capacity. For the hourly data, I use the installed capacities within the provinces (taken

from Thewindpower.net, 2021) and collect sample specifications and coordinates of power plants

for each province. For these coordinates, I load the respective wind capacity factors from the

MERRA-2 (global) database with renewables.ninja. I then calculate a weighted average hourly

wind production pattern. I repeat this procedure with the solar installations in the provinces

taken from Chinaenergyportal.org (2020) matched with coordinates taken from the global energy

observatory by Google and various other web sources. Despite the petroleum plants, I assume

the same utilization of conventional power-plants (coal utilization is derived from the weighted

average in hard coal and lignite utilization) as in Germany to derive the reference demand curve

without electric vehicles. For petroleum, I use the United States capacity utilizations. I assume

carbon neutral electricity until 2060 due to the latest governmental statements.
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For Germany, I calculate the installed capacities in 2020 as the average of the 1st of January 2020

and the 1st of January 2021 with the German grid authority data SMARD Bundesnetzagentur

(2021). I exclude the pumped water storage as an energy source as it does not produce energy by

itself as well as the other non-specified energy sources. The projections for the capacities until

2030 are calculated with a linear change towards the scenario B of Drees et al. (2021). Nuclear

power sources are completely faded out after 2022 due to governmental regulatories. I derive

the hourly capacity factors ηπ(h) as the average electricity production patterns in years 2016 to

2020 taken from SMARD Bundesnetzagentur (2021). I assume carbon neutral electricity until

2050 as stated in some governmental projections and roadmaps.

A.5 Development of the Merit Order with Electricity Prices

For the United States, I use the net electricity production, the fuel consumption, the carbon

emissions and fuel price data of United States Energy Information (2020) for 2019 to derive

the production costs per MWh for each power source. At the time this paper was written,

eleven states in the United States had formed the "Regional Greenhouse Gas Initiative" (RGGI)

to decrease carbon emission with a cap and trade mechanism. Assuming that more and more

states might either join or build up similar systems, I calculate with an average carbon emission

price of $7.50 with an annual price growth of 10%. Since the cleanest power source being natural

gas is also the cheapest, I do not assume big changes in the merit order as the ranking in fuel

prices might stay roughly the same.

In the past, China dispatched the generation hours amongst the installed capacities. For the

future, I assume a change towards a merit order dispatching system as well as a more competitive

cap and trade system. Regarding the carbon price forecasts I follow the projections of Lin (2021)

with a linear increase up to U160 until 2030. Due to a lack of fuel price forecasts for China, I

assume the same fuel prices for petroleum and the same emission factors of all power plants as

in the (converted with the exchange rate U6,37 / $ of the time this paper was written). For the

coal and natural gas prices I take the fuel prices of the German forecasts (converted with U7,20

/ e) as I see more parallels to the German case without cheap wrecking gas.

In Germany, I generate merit order projections for electricity based on the fuel price projections,

power plant efficiency factors and interpolated average carbon projections of Fraunhofer ISE
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(2021) considering the emission factors of Icha & Kuhs (2020). Figure A.1 illustrates the changes

in the pricing in the respective countries.
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(a) The estimated fuel costs for the United States based on United States Energy Information (2020) with an average
carbon emission price of $7.50 with an annual price growth of 10%.

(b) The estimated fuel costs for the most important conventional power sources in China based on petroleum prices and
carbon emission factors of United States Energy Information (2020), coal and gas prices of Fraunhofer ISE (2021) and
carbon emission prices of Lin (2021).

(c) The estimated fuel costs for Germany based on price projections of Fraunhofer ISE (2021) considering the emission
factors of Icha & Kuhs (2020).

Figure A.1: Price development of the most important conventional energy sources within the respective countries
until 2030 indicating the general merit order projections.
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A.6 Generating consumption profiles of electric vehicles

U.S. Department of Transportation Federal Highway Administration (2017) offers a large dataset

of trips for the United States, that I filter for private car trips. (TRPTRANS = 3,4,5,6 and

DRVFLAG = 1). I aggregate all routes until the destination is either the home or the workplace

of the driver (HHSTFIPS = 1,2,3,4). The cars are assumed to immediately begin charging with

the given charging power Wmax, creating a hourly charging pattern. With day and time given, I

create a weekly profile that I repeat for a whole year and normalize to a single averaged electric

vehicle consumption profile. As there are no publicly available trip databases for China, I reuse

the American driving behavior also for China. However, I adjust for the average annual distance

as well as the average consumption per mile. For Germany, Zumkeller et al. (2018) provides a

representative dataset of individual trips that I filter for cars. I accumulate journeys that have

been taken in a sequence until the consumer either reaches her workplace (purpose code 1) or

returns back home (purpose code 7).

Table A.1: Assumptions for the electric vehicle inputs within the simulation.

Variable United States China Germany

Average yearly distance dt in miles 11599 a 7691 b 8452 c

Power consumption ψ per 100 miles in kWh d 24.78 26.54 25.84

Electric vehicles on the road 2020 (N2020)e 1.138.654 3.512.477 330.780

Average electric vehicle price (P 2020)f $50,725.67 U171,708.88 e38,477.38

Carbon emissions per mile of conventional ve-
hicles in gCO2

g
358 373 333

aAccording to 2019 statistics of the Federal Highway Administration of the U.S. Department of Transportation
(see U.S. Department of Transportation Federal Highway Administration, n.d.)

bcalculated from 12377 kilometers as stated by Ou et al. (2020).
ccalculated from 13602 kilometers as stated by the German governmental agency for traffic (Kraftfahrt-
Bundesamt, 2020)

dWeighted average WLTP consumption of all listed battery electric vehicles sold in 2020 where technical spec-
ifications were available within the dataset of EVVolumes (2021). Data that was not available in EU WLTP
but in CN GB is multiplied with a factor of 1.18 to adjust with the average discrepancy in the measurement
procedures of those vehicles which had both measures given.

eElectric vehicle stock 2020 taken from International Energy Agency (2021)
fI use the databases of EVVolumes (2021) to derive the average list prices before subsidies of the electric vehicles
purchased in 2020 within each respective country.

gBased on expected average well to tank and tank to wheel emissions of medium sized passenger cars in the
respective countries between 2020 and 2030 according to Bieker (2021).
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