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Abstract: Novel profiling methodologies are redefining the diagnostic capabilities and therapeutic
approaches towards more precise and personalized healthcare. Complementary information can be
obtained from different omic approaches in combination with the traditional macro- and microscopic
analysis of the tissue, providing a more complete assessment of the disease. Mass spectrometry
imaging, as a tissue typing approach, provides information on the molecular level directly measured
from the tissue. Lipids, metabolites, glycans, and proteins can be used for better understanding
imbalances in the DNA to RNA to protein translation, which leads to aberrant cellular behavior.
Several studies have explored the capabilities of this technology to be applied to tumor subtyping,
patient prognosis, and tissue profiling for intraoperative tissue evaluation. In the future, intercenter
studies may provide the needed confirmation on the reproducibility, robustness, and applicability of
the developed classification models for tissue characterization to assist in disease management.

Keywords: mass spectrometry imaging; proteomics; pathology; personalized medicine; cancer
research; tissue typing

1. Introduction

As more information about disease development and particularly neoplasias is gath-
ered, it becomes more evident that there are individual differences that set the course for
disease development and treatment outcome. These individual differences are continuously
being reported, and as a result, new tumor entities are defined. As a consequence, the
number of tumor entities described over the last few years has increased drastically, and
alongside it, the number of tests for its identification [1–4]. The successful identification of
the tumor particularities at the time of diagnosis can set the course of the treatment and
directly impact the patient’s quality of life. However, recognizing microscopic differences
in some tumor entities is not straightforward, even for very experienced medical profession-
als. As a conservative approach, unknown subentities or inconclusive diagnoses are often
inadequately treated, carrying a heavy burden on the patient’s mental and physical health.

Human bodily functions are dictated by the balanced translation of DNA to RNA to
proteins. During that translation, errors can occur, which result in amino acid polymor-
phisms, protein isoforms, and post-translational modifications (PTMs). These proteoforms
have distinct molecular activity and can modulate different cellular functions, driving the
cell processes and signals to malfunction. This can result in, for example, the misfolding
of proteins, which is associated with various diseases such as cancer and Alzheimer’s
disease [5–7]. Further insight into these modifications has led to major breakthroughs in
comprehending disease evolution, namely, cancer growth and development [8–10]. There-
fore, studying proteins in the context of cancer is required to further understand the biology
and molecular subtleties of a certain cancer subtypes, and predict their development and
response to therapy. In clinical pathology, the diagnosis is usually carried out with the use
of a wide range of tests and technologies (e.g., immunohistochemistry staining) based on
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the proteomic activity of the resected tissue specimen. However, the current approaches
can be ambiguous, time-consuming, financially expensive, and require a significant amount
of tissue to obtain a complete diagnosis.

To analyze and quantify proteins, the favored methodology is mass spectrometry [11,12].
Due to its high precision, reproducibility, and robustness, this approach has been part of
proteomics research laboratories for many decades. While obtained results from traditional
mass spectrometry are very accurate and reproducible, to analyze tissue samples, a prelim-
inary evaluation is required to identify the tissue’s regions or cell population of interest,
followed by laborious sample preparation. As an alternative, mass spectrometry imaging
(MSI) has been proposed.

2. Mass Spectrometry Imaging (MSI)

Less invasive approaches such as blood and urine collection would ideally be used for
the assessment of diseases. However, when it comes to tumor analysis, it is important to
directly evaluate the tissue, as protein and metabolite concentrations can largely vary at
the different locations in the tissue, and such discrepancies are not always translated to the
urine or the plasma. Furthermore, the analysis of the tumor microenvironment plays an
important role in tumor development and particularly in local resistance, immune escaping,
and the occurrence of distant metastasis [13,14]. In addition, tissues, and notably tumors,
are spatially complex leading to intra- and intertumoral heterogeneity. Linking molecular
information and spatial distribution with tissue morphology is essential for a correct and
concise biological interpretation [15,16]. To this end, MSI can be an omnipotent approach,
since it has been developed with the purpose of evaluating analytes directly from tissue
sections without the need for a previous microscopic investigation of the tissue or complex
sample preparation protocols, and to allow for the correlation of molecular signatures with
tissue morphology (Figure 1).

Life 2022, 12, x FOR PEER REVIEW 2 of 16 
 

 

[8–10]. Therefore, studying proteins in the context of cancer is required to further under-

stand the biology and molecular subtleties of a certain cancer subtypes, and predict their 

development and response to therapy. In clinical pathology, the diagnosis is usually car-

ried out with the use of a wide range of tests and technologies (e.g., immunohistochemis-

try staining) based on the proteomic activity of the resected tissue specimen. However, 

the current approaches can be ambiguous, time-consuming, financially expensive, and 

require a significant amount of tissue to obtain a complete diagnosis. 

To analyze and quantify proteins, the favored methodology is mass spectrometry 

[11,12]. Due to its high precision, reproducibility, and robustness, this approach has been 

part of proteomics research laboratories for many decades. While obtained results from 

traditional mass spectrometry are very accurate and reproducible, to analyze tissue sam-

ples, a preliminary evaluation is required to identify the tissue’s regions or cell population 

of interest, followed by laborious sample preparation. As an alternative, mass spectrome-

try imaging (MSI) has been proposed. 

2. Mass Spectrometry Imaging (MSI) 

Less invasive approaches such as blood and urine collection would ideally be used 

for the assessment of diseases. However, when it comes to tumor analysis, it is important 

to directly evaluate the tissue, as protein and metabolite concentrations can largely vary 

at the different locations in the tissue, and such discrepancies are not always translated to 

the urine or the plasma. Furthermore, the analysis of the tumor microenvironment plays 

an important role in tumor development and particularly in local resistance, immune es-

caping, and the occurrence of distant metastasis [13,14]. In addition, tissues, and notably 

tumors, are spatially complex leading to intra- and intertumoral heterogeneity. Linking 

molecular information and spatial distribution with tissue morphology is essential for a 

correct and concise biological interpretation [15,16]. To this end, MSI can be an omnipo-

tent approach, since it has been developed with the purpose of evaluating analytes di-

rectly from tissue sections without the need for a previous microscopic investigation of 

the tissue or complex sample preparation protocols, and to allow for the correlation of 

molecular signatures with tissue morphology (Figure 1). 

 

Figure 1. In order to better predict how a patient would respond to a treatment, it is important to
precisely evaluate the patient information, which goes beyond the histomorphological characteristics
of the tissue. Pathological evaluation with omics approaches, which entail genomics, transcriptomics,
proteomics, and metabolomics, gives a more complete understanding of the disease, helps in predict-
ing the response to treatments, and overall improves the patient recovery journey. For the molecular
evaluation of tumors, mass spectrometry imaging has been proving its capabilities, ease of integration
with histology, digital pathology, and fast measurement times.
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It is common practice in the clinic that samples are fixated in formalin immediately af-
ter material resection even before reaching the pathology lab for evaluation. For this reason,
MSI protocols have been adapted to be integrated into the general clinical workflow, keep-
ing a simple yet reproducible sample preparation for formalin-fixed paraffin-embedded
(FFPE) samples [17].

In mass spectrometry approaches, the instrumentation is composed of three main
modules: the ionization source, the mass analyzer, and the ion detector [18]. What sets
MSI apart from traditional mass spectrometry analysis is that the precise position of the
ionized analytes is recorded, and a mass spectrum is generated (Figure 1). This facilitates
the correlation between the histological features and the precise location of the analytes in
the tissue. In the first data acquisition step, analytes are ionized and separated according
to their mass to charge (m/z), from where the molecular weight can be derived before
reaching a detector, where the resulting ions are counted. By the end of the run, the user
obtains a mass-spectrum derived from the x,y position where the molecules were ionized
(the laser acquired the spectrum) within the sample [18]. The same information can also
be recorded as a matrix, where the intensity of the individual molecular ions and their
position in the tissue are saved by the collected measurement region or pixel (Figure 2).
The distribution of a specific m/z value in the tissue can be visualized by generating an
intensity map of the intended region. In addition, it is possible to compare the intensity of
a particular molecular ion in different regions of the tissue (Figure 2e). Subsequently, the
molecules of interest can be identified by tandem mass spectrometry and data comparison
with established databases or by de novo sequencing.
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Figure 2. Mass spectrometry imaging from data acquisition to data analysis. (a) The selected tissue,
after undergoing a sample preparation procedure, is measured directly by mass spectrometry where
the defined resolution results in a measurement area or pixel. (b) Per each measurement pixel, (c) one
mass spectrum is recorded. Data are then preprocessed and can be translated into a matrix table
(d) to facilitate data analysis. The distribution of the intensity of different m/z values can be easily
visualized over the measurement regions using dedicated programs or applications (in this case,
SCiLS Lab (Bruker Daltonics, Bremen, Germany) was employed), (e) and specific m/z features can be
extracted and further characterized.

There is a growing number of MSI approaches, in particular with regards to ambi-
ent ionization techniques, utilizing different desorption and ionization sources that offer
varying resolutions and analyte classes [19].

MSI has been achieving major developments in different fields with a wide array of
applications that are not limited to medicine. For instance, it has been employed for the
visualization of the distribution of food components and identifying food factors, leading
to higher quality assurance, better food safety, and more accurate nutritional analysis [20].
In plant biology, MSI has been making great progress over the last decade, where diverse
studies have been carried out to further understand the fundamental plant biology [21]. In
the field of forensic sciences, MSI has been utilized for the direct analysis of fingerprints
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for the identification of dermal contact with drugs, cosmetics, or specific foods [22,23].
However, most efforts have been directed to medical research, namely, tumor analysis.

2.1. Mass Spectrometry Imaging for Proteomic Profiling of Cancer

Notwithstanding the breakthroughs in understanding cancer, diagnosis, and disease
management over the last couple of decades, the disease evolution remains to a great extent
a mystery [24–26]. The mechanisms of cancer development and disease progression are
still not fully comprehended [27–29]. The number of identified cancer subtypes is ever
increasing due to the discovery of new singularities such as a genetic mutation or a disease-
specific biomarker. As a consequence, a more precise diagnostic and subsequent treatment
course can be devised. Typically, to reach a precise diagnosis, a series of immunohistological
tests are required, followed by a detailed evaluation by a pathologist, which is often very
time-consuming, delaying the start of the time-sensitive treatment. On top of that, the
process can require a significant amount of tissue for the analysis, which is often not
available in tumor biopsy samples.

For proteomic profiling using mass spectrometry imaging, the amount of required
tissue is very small, namely, a single 2–3 µm thick tissue section that can afterwards still
be used for histological or immunohistochemical evaluation, DNA analysis, or further
proteomic investigation [30–33]. Additionally, the number of measured analytes in a single
run is considerably higher when compared to current methods where one or a small set of
protein signatures is evaluated in one measurement. For these reasons, a significant part
of efforts has been directed towards training machine-learning (ML) methods using the
proteomic or metabolomic profiles obtained directly from the tissue by MSI. ML algorithms
look for traits in the data that can categorize the information in subgroups or classes either
by employing unsupervised machine learning where the data are grouped by their affinity
without requiring any preliminary analysis of the sample or through the use of supervised
ML algorithms where previously acquired information (e.g., tumor diagnosis, staging,
or treatment outcome) is used to train the algorithms. In the unsupervised approach,
the outcome is the division of the data into clusters, with the significance of the division
being given by the analyst; in the supervised approach, the outcome is already given
by the algorithm on the basis of input information. Both approaches have yielded very
good results. For instance, unsupervised ML often performs very well in distinguishing
normal tissue from tumor tissue. However, when it comes to disease prognosis and
closely resembling tumor entities, supervised machine learning seems to generate more
accurate predictions.

One of the clinical applications of MSI is to assist in intraoperative consultation for
the assessment of tumor margins to guarantee complete tumor resection [34–36]. One of
the hallmarks in tissue diagnosis is the development of small devices that can quickly
differentiate tumor from normal tissue, such as the iKnife and MasSpec Pen. These devices
guide the surgeons by quickly classifying the tissue while performing resection surgery
of various organs (such as the colon, breast, stomach, liver, lung, and brain) [37–40]. The
apparatus relies on mass spectrometry measurements associated with ML algorithms to
discriminate the tissue material from frozen tissue sections or directly in vivo [41–43]. As
an example, King et al. utilized ambient ionization mass spectrometry to ionize samples ex
vivo to assist in the differentiation of tumor resection margins of pancreatic ductal adeno-
carcinoma (PDAC) (n = 53) from the bile duct (n = 23) and nontumor samples of pancreatic
tissue (n = 58). Samples collected prospectively were measured using the MasSpec Pen
technology, and used for training and testing the least absolute shrinkage and selection
operator (lasso) classifiers. The method yielded over 98% agreement with histological
evaluation when classifying normal pancreas and PDAC in the training set (78 tissue
analyses; PDAC samples with >70% tumor cells) and 78.8% in the validation set (33 tissue
analyses; samples with mixed cellularity and low epithelial tumor cell concentration) [44].
A second lasso classifier was employed to differentiate bile duct (n = 16) and PDAC (n = 27)
with accuracy of 98% in the training set, and accuracy of 91% in the validation set (bile
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duct, n = 7; PDCA, n = 17; PDAC invading bile duct, n = 8). Classifiers built on ex vivo
samples were then utilized to classify tissue in the operating room in vivo and ex vivo
(64 analyses), achieving an overall agreement of 93.8%. These studies consolidate that
molecular signatures detected by MSI can be applied in real time to discern tumor margins
and tissue with different provenience within approximately only 3 seconds [45].

The differentiation between malignant and benign skin lesions also presents a chal-
lenge that can be addressed by MSI characterization. Margulis et al. applied DESI–MSI to
measure the lipid and metabolite profile of basal cell carcinoma (BCC), a common skin can-
cer, and normal skin, with the objective of identifying micrometer-sized tumor aggregates of
malignant skin lesions [46]. Arachidonic acid and glycerophosphoglycerol were markedly
abundant in BCC compared to normal skin regions [46]. In this study, a lasso regression
based on solely 24 mass features was able to discriminate BCC aggregates from adjacent nor-
mal skin. The authors reported that this approach could be employed as a fast intraoperative
process during Mohs surgeries, complementing the histopathological evaluation.

Due to the histological similarities between some tumor entities and the lack of spe-
cific markers, it can be challenging and very time-consuming for pathologists to reach a
diagnosis. Medulloblastoma and pineoblastoma share clinical features and show identical
histological characteristics [47]. The analysis of the lipid profile of pediatric medulloblas-
toma and pineoblastoma indicated that MALDI–MSI could be a suitable tool to support the
diagnosis. To further understand both tumor types, the authors of this study performed
receiver operating characteristic (ROC) analysis of the mass spectrometry features, conclud-
ing that glycerophosphoglycerols and glycerophosphocholines exhibited higher intensity,
and could, therefore, become potential markers for medulloblastoma, while sphingolipids
showed higher expression in pineoblastoma [47].

Another diagnostic conundrum in clinical pathology is to correctly characterize chro-
mophobe renal cell carcinoma (chRCC) from renal oncocytoma (RO). RO is a benign kidney
lesion that, from a histomorphological perspective, closely resembles the malignant neopla-
sia chRCC. This can result in the overtreatment of RO patients. On the basis of metabolite
and lipid profiles obtained by the DESI–MSI of 71 patients with renal cell neoplasia, Zhang
et al. were able to discriminate benign from malignant tumors with 100% accuracy [48].

PDAC also exhibits close morphology and histological resemblance to cholangio-
carcinoma (CC). Both entities arising from the epithelium of the pancreaticobiliary tree
have aggressive behavior, and an incorrect diagnosis can have strong implications on the
patient’s prognosis and therapeutic course. Bollwein et al. utilized the proteomic profile of
82 patients measured by MALDI–TOF to train and test classification algorithms to differen-
tiate between the two tumor types with accuracy of approximately 90% [49]. The authors
also advanced a feature importance list calculated by the mean decrease in the impurity
of gradient-boosting classification, which revealed that histone H2A and the collagen α-1
(I) chain are more intensely expressed in PDAC when compared with CC, which could be
disease-related biomarkers [49].

MSI has matured and is taking confident strides in assisting in tumor diagnosis by
either providing further understanding of the molecular composition of complex tumor
structures or merely helping in simpler tasks such as the identification of tumor regions;
studies applying MSI have presented encouraging results that it could be the clinicians’
right hand for tumor analysis and classification [31,50].

2.2. Prognosis Studies of Tumor Using Mass Spectrometry Imaging

An essential part of the clinical diagnosis of tumors is to predict how the tumor affects
the patient’s outcome, and to predict the patient’s response to a certain treatment. For that,
assessing the development stage of the disease is imperative, but it is also necessary to
characterize the predictive molecular variation within the patient’s tumor to foresee the
reactivity of a certain treatment.

MSI-based models were explored as a tool to accurately evaluate predictive molecular
variations [51–53]. In a recent study by Erlmeier et al., MALDI–MSI was used in correlation
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with Kaplan–Meier curves to estimate predictive metabolic profiles for the prognosis of
renal cell carcinoma (RCC) [54]. An increase in nucleotides (namely, cyclic guanosine
monophosphate) was associated with a poor prognosis. The authors were also able to
detect some metabolic pathways specific to some tumor types, particularly the glutathione
metabolism, which is increased in late-stage clear cell RCC and associated with poor
outcomes [54].

As the range of molecules characterized by MSI is not restricted to metabolites, prog-
nostic studies based on glycan, protein, and lipid activity were carried out as well. One of
these studies was performed by Phillips and coworkers, where prognostic features of triple-
negative breast cancer (TNBC) were evaluated through the analysis of tryptic digested
proteins utilizing a MALDI–TOF–TOF instrument [55]. The authors were able to identify
14 proteins that distinguish TNBC from benign lesions, and the correlation between these
proteins and the Kaplan–Meier curves showed that COL1A1, COL1A2, COL6A3, ATIC,
CCDC24, PLEKHG2, SOX11, and UBR4 are correlated with poor patient outcomes [55].
The results are supported by the literature, as COL1A1 and COL1A2, two components of
Type I collagen, are upregulated in invasive breast cancer, with a potential role in spinal
metastasis [56]. Aminoimidazole carboxamide ribonucleotide transformylase/inosine
monophosphate cyclohydrolase (ATIC) is also necessary for cell proliferation [57], and
SOX11 plays a role in breast cancer growth and invasion, and in regulating the basal-like
phenotype [58].

The diagnosis and prognosis of prostate cancer are performed on the basis of histo-
logical evaluation following the Gleason scoring system. The Gleason score (GS) is based
on the evaluation of changes in the morphology of tumor glands, but it does not provide
any information about the metabolic pathways that caused the alteration. To explain the
metabolic alterations, studies correlating the GS and molecular features have been carried
out. The tryptic digestion of the tissue microarrays of 729 human prostate cancer specimens
measured by MALDI–TOF–MSI identified four molecular signatures associated with a low
Gleason score, early disease stage, and low proliferation marker Ki-67. One molecular
feature was associated with high Ki-67, and another signal could be correlated with a
prolonged time for prostate-specific antigen (PSA) recurrence [59]. In an independent pilot
study, the lipid profile of prostate cancer samples was correlated with the Gleason score.
The authors showed that phosphatidylcholines, phosphatidic acids, phosphatidylserines,
phosphatidylinositols, and cardiolipins were overexpressed in GS (4 + 3), suggesting their
involvement in the disease progression, and the possibility for them to be utilized as
markers of prostate cancer aggressiveness [60]. The results from this study agree with the
outcome of another pilot study by Wang and coworkers [61].

The glycan analysis of pancreatic ductal adenocarcinoma (PDAC) measured by
MALDI–Fourier-transform ion cyclotron resonance (FT–ICR) MSI revealed 8 glycan frag-
ments uniquely expressed in the stroma, and 18 glycan fragments exclusively present
in PDAC tumor cells [62]. Sun et al. reported that hyaluronan and chondroitin sulfate
overexpression was correlated with worse survival rates, higher concentrations of HexS
in stroma were associated with better prognosis, while HexNAcS and HexAHexNAcS
abundance predicted worse survival [62].

González de Vega et al. demonstrated that laser ablation inductively coupled plasma
(LA–ICP) MSI could be used for the detection of matrix metalloproteinase-11 (MMP-11)
to differentiate between the metastatic and nonmetastatic lesions of human breast cancer
as a complement to the current approaches. The authors employed prelabelled antibodies
with nanoparticles to increase the sensitivity and to facilitate the direct correlation with
immunohistochemistry markers [63].

The complexity of the disease renders diverse molecular imbalances, so different
studies proceeded to target different molecular classes using a wide range of mass spec-
trometers. These efforts, such as the ones described here and many others, provide concrete
and complementary information to perceive the metabolism of cancer progression.
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2.3. Mass Spectrometry Imaging in Clinical Diagnosis

From identification of disease-specific markers, prognostic markers, and implementa-
tion with machine learning approaches to assist with clinical assignments, mass spectrome-
try imaging studies provide meaningful contributions to the understanding of the different
tumors at the molecular level. However, the methodology is not yet approved for clinical
use. We address the current limitations and barriers that need to be overcome before the
technology can be accepted into clinical practice in Section 3. Nonetheless, in this section,
we discuss recent efforts that showcase the great promise of the technology as a potential
tool in routine laboratories.

As previously discussed, the amount of tissue used for diagnosis is limited and often
not enough to run the immunohistochemical panels and additional molecular analyses
required for a complete diagnostic work up. Especially in biopsy samples, the amount
is very limited, and the tumor content present is also sometimes scarce. For this reason,
multiplexed approaches where different analytes can be detected from the same sample
section are highly attractive. MSI measurements can detect metabolites, peptides/proteins,
glycans, and lipids; however, most of the studies consider only one class of analytes. Efforts
on maximizing the amount of information obtained from one slide yielded robust protocols
that facilitate the measurement of several analytical groups using the same slide [64–67].
Clift et al. developed a multienzyme workflow for the measurement of extracellular matrix
constitution of a single section of FFPE tissue [68]. In this study, sequential digestions
with chondroitinase ABC, PNGaseF, elastase, and collagenase Type III were performed.
Following each digestion, a matrix was applied, and the sample was measured by MALDI–
FT–ICR–MSI [68]. Furthermore, as it is a nondestructive methodology, it is still possible to
use the very same section for pathology analysis via histology. The importance of devising
such protocols also exceeds the mere fact of saving tissue in routine diagnosis; it opens an
unprecedented opportunity to easily colocalize different types of analytes in the very same
tissue section, and better understand the biology supporting the molecular changes.

Metal conjugated antibodies have been employed to study the spatial distribution
of proteins in the tissue with high spatial accuracy and sensitivity, which is ideal for
the quantification of proteins, especially when only residual expression is detected, and
therefore to predict the response of a patient to chemical treatment. Along these lines,
Bishop et al. resorted to LA–ICP–MSI to simultaneously quantify and localize dystrophin
in muscle sections [69]. Duchenne muscular dystrophy is characterized by the absence or
decreased expression of dystrophin; to evaluate therapy efficacy, it is necessary to quantify
and locate dystrophin in skeletal muscle, but the current methods lack reproducibility and
sensitivity. MSI outperformed current techniques with increased sensitivity and using less
amount of a sample, which reduces the need for invasive surgical biopsies [69].

The high sensitivity of MSI approaches was also explored for single-cell analysis [70–73].
While most of the ongoing single-cell studies could provide more information about disease
progression, intracellular mechanisms, and novel treatment targets, we can foresee that
this level of detail could also be useful in the clinic, especially for early on-set diagnosis,
treatment choice, and disease prognosis, for example, to further assess the response of
immune cells to a specific treatment, or in the diagnosis of small sections or sections
with a low number of tumor cells present, e.g., in small precursor lesions. Using single-
cell proteomic characterization, Brunner and coworkers showed that quantifying cellular
heterogeneity following targeted perturbation enables the direct analyses of drug responses
in single-cell hierarchies on the proteomic level [71]. The study also highlighted the stability
of the proteome when compared to single-cell RNA [71]. Further single-cell characterization
utilizing MSI was recently reviewed elsewhere [72,74,75].

Another very exciting prospect of this technology was covered in a report by Neuman et al.,
where they describe the integration of MSI with orthogonal approaches to maximize the in-
formation of each experiment [76]. The combination of MSI with microscopy, spectroscopy,
transcriptomics, and electrochemistry adds a new layer of information and an exponentially
better understanding of the sample. Likewise, achievements in the integration of MSI with
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spatially targeted tandem MS, the combination of different ionization methods, microex-
traction, and ion mobility separation are achieving a high level of resolution and opening
new possibilities for the technology [76]. While some of the aforementioned multimodal
MSI techniques are more useful from a research perspective, others, such as the integration
with transcriptomics and microscopy, can revolutionize the way in which clinical diagnosis
is conducted.

2.4. Mass Spectrometry Imaging for Personalized Medicine

Personalized medicine for tumor assessment has understanding the tumor biology of
one person as the main objective. As individual and unique as our DNA, disease expression
can also be different from patient to patient, and that is also translated to the response
to the treatment. Personalized medicine is devised to maximize the efficiency of disease
management considering individual variabilities such as genetics, protein expression, and
lifestyle. By utilizing the most state-of-the-art approaches within a relatively short time,
accurate diagnosis, prognosis, and therapeutic options are provided to the patient [77,78].

As addressed in Section 2.1, mass spectrometry imaging was utilized to elucidate
questions relating to tumor diagnosis and stratification, diagnostic prediction, intratumor
heterogeneity characterization, biomarker discovery, and intraoperative consultation. Since
the technique allows for such a diverse yet complete overview of tissue composition, MSI
has been capturing attention as a convenient approach for personalized medicine.

As the technology is not fully ready to do that just yet, approaches that allow for
the integration of current histopathology evaluation and MSI in a single slide can help in
moving it toward that direction. The so-called immunohistochemical MSI resorts to photo-
cleavable linkers connected to antibodies that facilitate fluorescent immunohistochemistry
(IHC) analysis before performing targeted MSI [79]. An untargeted measurement of the
sample is also possible, and it should be performed before adding the antibodies to the
sample [79]. Highly multiplexed IHC reduces the number of tissue sections required for a
diagnosis. When coupling it to MSI, it is possible to retrieve molecular information directly
from the tissue and associate it with high-precision IHC.

3. Future Perspectives

There is still much traction to the implementation of more recent technologies in clinical
diagnosis, especially when there is integration with machine learning. That resistance is
often the result of a lack of understanding on how the said technology works. Machine
learning and artificial intelligence (AI) have generally been regarded as competition for
human labor and perhaps knowledge for several decades. However, as applications
exponentially grow, and their benefits are more palpable, the general acceptance of ML
as a reliable aid is also growing. Additionally, the declining number of practicing board
certified pathologists in the U.S., Canada, and Europe stands in sharp contrast to a growing
demand due to general population growth, an increase in disease incidence, and more
complex diagnostics [80–82]. Nonetheless, there are still several points that need to be
addressed before MSI as a diagnostic technology is able to move forward in the clinic:
systematic protocols need to be established and approved for sample preparation and data
analysis; more complete and reliable classifiers; user-friendly software; comprehensible
outcome of the analysis; and subsequent approval by the competent authorities, such
as the European Medicines Agency (EMA) or the Food and Drug Administration (FDA).
Additionally, the scientific and medical communities need to work together and combine
efforts to vastly increase sample variability that would render this technology applicable
across different institutions. As most of the developed classification models are based
on samples that are collected and prepared at one institution, an a priori technical bias is
introduced. Despite efforts in establishing intercenter studies [80–88], it is still necessary
to collect samples prepared and measured at different institutions for testing models that
were trained independently and achieved similar results.
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The majority of developed models have a predefined number of classes, and the
outcome of the tissue classification is also one of those classes, as the classification model
can only decide between the classes on which the model was trained. For instance, if a
sample of gastric cancer would accidentally be classified by a model trained on breast
cancer, it would not be able to let the user know that it is not breast cancer. In fact, the
outcome infers its breast cancer properties depending on the purpose of the model, even
if the sample does not match any of the classes. Hence, it would be important to instate
models that can generate another class as an outcome, for example, an “I do not know” or
“Are you sure you have selected the right model?” class. The same could also be applied to
rarer conditions, or conditions that may have a particular molecular composition. These
cases could then be analyzed by a pathologist, who in turn can give the information to
further adapt the model. Consequently, this helps in mitigating what we foresee as being
another hurdle—the continuous effort to maintain and adapt machine-learning models
to the ever-growing number of identified neoplasias, patient prognosis, clinical data, and
treatment outcome. The updated datasets used for model training also require strict quality
control, especially when the technology is approved for medical diagnosis, to assure the
updated model is in line with the applications approved by the competent authorities.

The protocol of a clinical trial plays a key role in the interpretation, management,
inspection, and approval to the dissemination of the results. That also should be applied
to protocols involving AI to support the assessment of the scientific, ethical, and security
issues. To standardize the reporting of AI in clinical trials, SPIRIT-AI has been developed,
which provides guidelines for a detailed description of the scope of the trial and the setting
in which the trial is evaluated [89,90].

Precision medicine requires, as we demonstrated, the generation of complex data,
which also means generation of large datasets, demanding a safe storage solution, compu-
tational capabilities for data processing, and reliable data transfer, which is financially very
expensive. Nonetheless, the heavy investment should be mitigated over time with a huge
benefit for the patient. Associated with data storage limitations are also data protection and
ethical guidelines that need to be discussed by the different governmental authorities [91].
In Switzerland, the government took the initiative of creating the Swiss Personalized Health
Network (SPHN), which aims to standardize the healthcare information system, and data
types between collaborating hospitals and research institutions, to facilitate nationwide
health data exchange for health research [92]. The SPHN collaborates with BioMedIT which
provides researchers, working in national institutions, with access to a secure and protected
computing environment, facilitating the analysis of sensitive data [92]. Further involve-
ment from the government to standardize data collections, and incentivize collaboration
between hospitals and research institutions, while keeping data privacy a priority might
be the necessary solution. Alternatively, privately owned AI-based imaging approaches
are also being approved to provide some patients with a more complete and personalized
diagnosis [93]. Arterys received the first-ever US FDA clearance for leveraging cloud
computing and deep learning in a clinical setting. They provide a computing cloud with
AI-based solutions for analysis of imaging data [94]. Most of the opportunities currently
available for AI-based diagnostic approaches are focused on imaging data. While images
are an essential part of the diagnosis, it still does not uncover the whole picture, and for
that reason, more opportunities could arise for computing of genetic, mass spectrometry
imaging, and imaging data using the same interface.

In mass spectrometry, and especially mass spectrometry imaging, a vendor-independent
file format, imzML, has been implemented in the scope of the European Union-funded
project COMPUTIS [95–98]. This format facilitates the exchange of MSI data. There are
also a few data repositories for MSI: for proteomic data, the Proteomics identification
database (PRIDE) has been developed in cooperation with ProteomeXchange (PX) con-
sortium [99,100]; and METASPACE was developed as a metabolite data repository with
high-throughput annotation [101,102] and it also contains glycan and lipid databases. The
curation of these databases is essential as it allows for faster analysis and an agile compari-
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son between datasets. Moreover, the public availability of the data collected at different
institutions has the potential for the creation of more robust classifiers.

While MSI associated with ML tools can provide a large amount of information, it still
does not cover all biological interactions in each individual. To have a more complete image,
MSI data could be integrated with other approaches with complementary information,
such as genomics and transcriptomics (Figure 3) [103,104]. However, data integration
is not trivial and requires data repositories carefully curated. Several integration tools
are continuously being developed and improved (a summary of the available tools was
conducted by Subramanian et al. [103]. Graw et al. also highlighted some of the tools
available for integration of biological systems and disease [104]), but deciding which the
best tool is for the type of data collected is yet another dilemma. Due to the lack of
golden standards and standardized protocols, it is difficult to evaluate the quality of the
collected data. In addition, the user needs to consider the compatibility between data
types and decide if the process of data normalization and filtering is adequate [104]. This
last step requires some knowledge of bioinformatics and data integration tools. Success
in creating user-friendly software that facilitates data integration has been limited, as
the majority of the available tools are only accessible to researchers with a significant
bioinformatics background. In a methodical study to evaluate accuracy, robustness, and
computational efficiency of different integration protocols, Duan and coworkers employed
10 integration methods for cancer datasets [105]. The authors also evaluated the influence
of combining different omics data types and concluded that integrating multiple datasets
does not always result in a better performance for tumor subtyping [105]. The results
obtained in this study demonstrate that multiomic data integration shows great promise,
and that a better understanding of the types of data to be integrated and the methods
employed should be carefully considered, highlighting the demand for further studies on
omic data integration.
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Figure 3. Omic data integration is perceived as the key to unlocking an unprecedent level of
knowledge on how different tumor entities develop, better evaluating each individual, and providing
a more concrete diagnosis and personalized treatment.

4. Conclusions

We are experiencing the beginning of an exciting revolution in medicine, where novel
methodologies are being applied in favor of a precise, individual, and fast diagnosis. Mass
spectrometry imaging facilitates the direct molecular characterization of tissue without the
need for external targets. MSI protocols have also been expanded to include the measure-
ment of several analytes, still using the same sample tissue, vastly increasing the amount
of information obtained from one single slide. Complementarily, integration between
different omics approaches, such as genomics, transcriptomics, miRNAomics, proteomics,
and metabolomics, provides complementary information toward a more complete under-
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standing of the disease. By carrying out the tissue typing of patient tissue, we envision that
MSI would provide a reliable molecular overview of the tissue, find specific therapeutic
markers, and assess the response utilizing a very small amount of sample.

The developments considered herein move the technology to a pivotal position for
personalized medicine. There are still several challenges to be overcome before the tech-
nology can be implemented in medical institutions, but with the great combined effort
from the scientific and medical communities, within a few years, the technology could
be used to assist in patient diagnosis and prognosis. New endeavors should focus on
establishing nationwide guidelines for standardized data collection and facilitate the data
transfer between researchers without compromising the patient’s privacy. Furthermore, the
integration of proteomic analysis, namely, MSI, with other databases that are being built
to advance digital pathology enables a broader understanding of the disease progression,
allows for better markers to be developed, and consequently better therapy, while expand-
ing the available machine-learning tools to keep improving the personalized care for every
individual patient.
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