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Abstract— Localization in the environment is an essential
navigational capability for animals and indoor robotic vehicles.
In indoor environments, it is still challenging to perfectly solve
the global localization problem using probabilistic methods.
However, animals are able to instinctively localize themselves
with much less effort. Therefore, an intriguing and promising
approach is to seek biological inspiration from animals. In
this paper, we present a biologically-inspired global localization
system using a LiDAR sensor that utilizes a hippocampal model
and a landmark-based relocalization approach. The experiment
results show that the proposed method is competitive with
Monte Carlo Localization, and the results demonstrate the
high accuracy, applicability, and reliability of the proposed
biologically-inspired localization system in various localization
scenarios.

I. INTRODUCTION

As essential prerequisites for most autonomous driving tasks,
robot localization and position tracking based on sensory data
have been extensively investigated [1], [2]. Global navigation
satellite systems (GNNS) are generally effective for outdoor
environments due to the reliable external reference sources
for global localization. However, in indoor environments,
GNNS-based localization is much less robust given the
weaker accessibility of the satellites. Existing research on
global localization for indoor environments extensively relies
on probabilistic models to cope with the uncertainty of the
environment and sensors. Probabilistic methods for locali-
zation become dominant in indoor applications by offering
a relatively robust and generic solution for the localization
problem based on robot perception [2]. Characterized and
distinguished by the problems being solved, probabilistic
models such as the extended Kalman filter (EKF) are
utilized to tackle position tracking for local movements
with a known starting point [2], [3], and Monte Carlo
Localization (MCL) [4] focuses on the global localization
problem without having knowledge of the initial position
of the robot. However, probabilistic methods can entail a
high computational overhead for the robot system, and the
runtime performance can be subsequently subject to the
computational resources on a power-constrained robot.

On the other hand, without the need for high compu-
tational resources, many animals are naturally born with
powerful and efficient navigation skills, such as echolocation
by bats, magnetic-based location by migratory birds, and
the most common one, vision-based navigation. Although
animals only rely on a collection of imprecise and imperfect
perceptions, their various navigation skills still outperform
state-of-the-art artificial technologies. Studies from neuro-
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science have revealed that the hippocampus in the brain
plays an important role in spatial navigation by coordinating
several types of neurons with different functionalities, such
as head direction cells, grid cells, and place cells [5].
Therefore, an intriguing and likely promising approach is
to seek inspiration from the navigation system of animals.

With neuroscience findings, various biological inspirations
have been leveraged to solve sensory perceptions [6]–[8],
path integration [9], [10], navigation tasks [11]–[14], and the
spatial mapping task by building not strictly Cartesian repre-
sentations but topologically consistent representations for the
environments [15]–[17]. However, the global localization
problem is rarely investigated based on biologically-inspired
models. In addition, most of the existing biologically-
inspired approaches perceive the environment based on
vision sensors. However, vision sensors are usually very
sensitive to changes in lighting conditions and atmospheric
effects of the environment, making them an unreliable so-
lution for more advanced navigation tasks. Light detection
and ranging (LiDAR) technology, on the other hand, can be
more reliable because it is independent of ambient lighting
conditions and is more accurate and robust than cameras [18].
A similar sensory principle regarding LiDAR in nature can be
found in bats, who emit brief ultrasound pulses and capture
the echoes reflected from surrounding objects in a cave to
perform localization. Hence, there is significant potential in
investigating biologically-inspired localization using LiDAR.

In this study, we propose a biologically-inspired global
localization system using a LiDAR sensor that utilizes the
hippocampal model and employs a landmark-based relocali-
zation mechanism. The proposed global localization system
adapts and implements the pose cell model and the local view
cell model, which are inspired by the place cells and head
direction cells in the hippocampus. The models build a loca-
tion representation in the space and perform the localization
iterations with excitatory and inhibitory activity dynamics.
The landmark-based relocalization is used to recover from
localization failures with the cues of familiar scenes.

Compared with conventional probabilistic localization
methods, we propose a biologically-inspired method that
closely mimics the navigation system of mammals and their
relocalization strategy based on the sparse landmarks in
the environment. Therefore, the proposed method is less
dependent on probabilistic models that are used to model
uncertainties, such as the sensory noise. The landmark-based
relocalization enables the localization system to recover
from localization failures and solve the kidnapped robot
problem faster and more efficiently compared to Monte Carlo
Localization. Simulation and real-world experiments show



that the proposed method can greatly reduce the localization
errors by 40% - 50% compared with MCL. The experimental
results also demonstrate the high applicability and reliability
of the proposed biologically-inspired localization system in
various scenarios. In addition, with the development of neu-
romorphic hardware platforms [19], [20], the biologically-
inspired localization algorithm has the potential to be imple-
mented and deployed on neuromorphic hardware to lower
the computational costs for biomimetics robots [21], [22].

II. RELATED WORK

Since global navigation satellite systems are a reliable source
for global localization for outdoor environments, there is a
substantial body of research on using multi-sensor fusion to
improve the localization robustness based on GNNS [23].
Similarly, many studies on global localization for indoor
environments aim to provide an external reference system
for global robot positioning, such as WLAN-based meth-
ods [24]–[26]. These systems, however, usually require pre-
deployment in the environment, and the runtime performance
can be subject to signal interference.

A large amount of literature has investigated the global
localization problem based on probabilistic methods, many
of which have been successfully deployed on robots for
outdoor and indoor scenarios [4], [27], [28]. Monte Carlo
Localization (MCL) [4] is one of the most commonly used
global localization solutions for indoor environments [2].
Proposed by Dellaert, Fox, et al. Monte Carlo Localization
utilizes the particle filter to sample the posterior belief of
the robot’s position in the grid-based representation for the
environment. MCL is more efficient compared to grid-based
localization [4], and there are existing studies focusing on
improving the efficiency by enhancing the flexibility of
particle sampling [29]. However, the performance of MCL
is still dependent on the number of sampling particles in
the iterations, and one of the main disadvantages of MCL
is that it can be hard for MCL to solve the kidnapped robot
problem, and thereby recover from localization failures [27].

There is very little literature with regard to global locali-
zation algorithms based on biological inspiration. Although
biologically-inspired hippocampal models are proposed by
Milford et al. [15], [16] and Yu et al. [30] to solve the
simultaneous localization and mapping (SLAM) problem,
these methods are not able to solve the global localization
problem without having knowledge of the initial position.
Siagian et al. proposed a visual localization system for
outdoor environments based on Monte Carlo localization and
a camera sensor, which focuses on the pre-processing of
visual landmarks to mimic the human visual capabilities of
visual feature extraction using a two-stage method that first
extracts the gist of scene and then refines the coarse results
by locating salient landmark regions in the scene [31]. The
method is still MCL-based, and the accuracy of the visual
localization system can be diminished in indoor applications
without abundant visual features. There are rare studies
that are concerned with biologically-inspired localization in
indoor environments based on the LiDAR sensor.

III. METHODOLOGY

In this section, we first describe the architecture of the
proposed method and present the model of each component:
the pose cell network and the local view cell module.

The proposed localization system consists of two main
components: the pose cell network and the local view cell
module. The pose cell network mimics and implements the
place cells and head direction cells in the hippocampus to
build the location representation in the space and perform
the localization iterations with the excitatory and inhibitory
activity dynamics. In the localization iterations, the location
hypotheses in the pose cells are redistributed based on the
robot motions and sensor observations, and further converge
to the best estimate. The local view cell module is used to
memorize and store a sparse set of landmarks during the
process of mapping and real-time localization. The local view
cell module aims to activate the associated cell in the pose
cell network when the robot revisits a recorded place, which
allows us to boost the localization progress and help recovery
from localization failures.

In the framework of mobile robot localization, the global
localization system aims to solve the problem of estimating
the real-time pose of a robot on a given map of the environ-
ment based on the motion data and sensory measurements
from the robot, without or with having rough knowledge of
its initial position. For the 2D localization problem for indoor
environments, the pose state of the robot is represented by a
three-dimensional vector that describes the position and the
heading direction: p = (x, y, θ)T .
A. Pose Cell Network
The pose cell network is a 3D continuous attractor network
model [15], [32]. In this study, the pose cell model is adapted
and implemented to maintain multiple location hypotheses
in the space and perform real-time localization based on the
sensor measurement input and the relocalization activities
from the local view cells. The confidences of the maintained
location hypotheses are described as the activity levels of the
pose cells. The cells in the pose cell network are connected
with their nearby cells with excitatory and inhibitory con-
nections, which enable the location hypotheses to distribute
and be filtered in the form of pose cell activities.

The pose cell network can be denoted as a 3D matrix of
the cell activity levels: PCx′,y′,θ′ , x′, y′, θ′ ∈ N. Each of
the three dimensions in the pose cell network is a discrete
representation for the three respective dimensions of the
robot pose p = (x, y, θ)T in R3. The R3 space to the pose
cell coordinates is mapped by the transformation described
as follows: 

x′

y′

θ′

 =


⌊
x/kxy +Nxy/2

⌋
⌊
y/kxy +Nxy/2

⌋
⌊
θ/kθ +Nθ/2

⌋
 , (1)

where kxy and kθ are the constant metric sizes of a single
cell in the x, y and θ dimensions, which can be also referred
to as the resolution of the pose cells. Nxy is the size in
cells of the x′ and y′ dimensions of the pose cell network,



and Nθ is the size in cells of the θ′ dimension. Therefore, a
coordinate (x, y, θ)T in R3 is scaled and shifted based on the
resolution and the network size, to be represented by the pose
cell network. To cope with the loss of accuracy due to the
quantification, methods detailed in the following subsections
are proposed to alleviate the quantification effect.

1) Initial Estimate for Localization
In the initial stage of the localization process, in the first

step, the pose cell network should be initialized with an
initial distribution of activity. At the beginning of the global
localization, without having any knowledge of the robot’s
location, the robot can be placed in any position in the free
space. In the case with a given initial estimate with a pose
p0 and a variance σ2, an initial activity distribution can be
created by sampling n number of random cells PCx′,y′,θ′

from the Gaussian distribution N (p0, σ
2) and injecting the

selected cells with an initial amount of energy 1/n.
Without a given initial estimate, the pose cells can also

be initialized with a higher variance σ2 and a higher sample
number n to cover a larger range of space from the center
of the pose cells, which can possibly cause a high resource
overhead and performance issue. However, with the help of
the local view cells to directly activate the associated pose
cells when a landmark is detected, the proposed localization
system relies much less on initial estimates to quickly start
localization and enable recovery from localization failures
than the conventional probabilistic localization algorithms.

2) Path Integration
When the robot moves, the pose cell network performs

path integration [15] to keep the track of the pose changes
of the robot, which also enables the pose cells to update
the localization estimates and subsequently redistribute the
activity based on the LiDAR sensor observation. Given a
motion input from the odometry sensor on the robot, which
can be denoted as a pose change ∆p = (∆x,∆y,∆θ)T , the
activity update in the pose cells is defined as

∆PCx′,y′,θ′ =

δx+1∑
i=δx

δy+1∑
j=δy

δθ+1∑
k=δθ

rijk·PCx′+i, y′+j, θ′+k ,

δx = ⌊∆x/kxy⌋, δy = ⌊∆y/kxy⌋, δθ = ⌊∆θ/kθ⌋,
rijk = (1− |i−∆x/kxy|)(1− |j −∆y/kxy|)(1− |k −∆θ/kθ|).

(2)
For each pose cell PCx′,y′,θ′ , the activity is shifted based on
the scaled movements δx, δy , and δθ along three dimensions.
In addition, to reduce the accuracy loss by quantification,
the pose change is not quantified during the path integration
process. Instead, by taking the decimal parts of the scaled
pose changes into account, for each dimension, the shifted
activity will be spread in a unit of two adjacent cells
proportionally based on the residual. With path integration,
the pose cell network is able to track the movements of the
robot. However, due to the noise in the odometry sensor,
position errors can accumulate in this process. To cope
with the problem, local excitation is introduced in the next
subsection to help improve the accuracy and stability of the
pose cell network.

3) Attractor Dynamics

In the proposed method, the 3D pose cell attractor net-
work employs observation updating, excitatory activity, and
inhibitory activity to self-update the activity levels in the
pose cells over time to perform the global localization. The
stable state of the pose cell network, in which the active cells
are clustered as an activity packet, yields the localization
estimate p as the centroid of the activity packet.

Upon receiving the real-time observation from the LiDAR
sensor, the activity in the pose cells is updated to evaluate
the confidence changes of the encoded location hypotheses
based on the sensor measurement. Given a LiDAR scan
measurement z for time t, the new activity level for each
active pose cell is computed as follows:

PC t+1
x′,y′,θ′ = p(p′|zt)·PC t

x′,y′,θ′ ,

p′ = (x′, y′, θ′)T ,
(3)

where p(p′|zt) is a conditional probability describing the
likelihood of the location hypothesis p′ for a pose cell
matching the current LiDAR observation zt. For a 2D LiDAR,
a complete scan measurement is a point cloud consisting of a
series of endpoint distances with a static angle increment, and
can be defined as a sequence z = {⟨di, θi⟩, i = 1, ..., Nz},
in which di is the distance for the i-th endpoint and θi
is the corresponding scanning angle, while Nz denotes the
size of the LiDAR measurement. To evaluate the likelihood
of a location hypothesis, in this study, a given pre-built
map for the environment is used to match with the LiDAR
observation. The map M is defined as a 2D occupancy grid
map M(x′, y′), which is the most common form of 2D maps
used in indoor environments [2], [33]. Thus, given the map
M and the LiDAR point cloud zt, the likelihood for each
active pose cell is computed as follows:

p(p′|zt) = 1

Nz
·
Nz∑
i

max
ϵ1,ϵ2∈{− kxy

2
,
kxy
2

}
M

(
⌊x′

i + ϵ1⌋, ⌊y′
i + ϵ2⌋

)
,

x′
i = x′ + di/kxy· cos

(
θi + kθ(θ

′ −Nθ/2)
)
,

y′
i = y′ + di/kxy· sin

(
θi + kθ(θ

′ −Nθ/2)
)
.

(4)
In the process, the LiDAR point cloud is first scaled and
transformed into the pose cell space, in which the positions of
the endpoints are shifted and rotated based on the position of
the pose cell. Note that to simplify the expression, we assume
the map and the pose cell network share the same resolution
kxy . With the given grid map M, the occupancies for the
positions of the transformed endpoints are accumulated, in
order to alleviate the quantification effect for the LiDAR point
cloud and the pose cell network, the 2 × 2 adjacent grids
in the map are taken into account in the matching process.
The aggregate matching occupancy then is normalized to
evaluate how the current LiDAR observation matches the
map at the specific pose cell’s position, which can reflect
the confidence of the location hypothesis, by applying to the
pose cell activity.

After updating the activity in the pose cell based on
the sensor observation, the excitation and inhibition are
introduced in the pose cell network to distribute and diminish



the pose cell activity to complete the localization iteration.
To distribute and generate new activity around high con-

fidence hypotheses, the local excitation is performed to
improve the localization accuracy. The activity update in the
process of local excitation is given as follows:

∆PCx′,y′,θ′ =

Nxy∑
i

Nxy∑
j

Nθ∑
k

Ge(i− x′, j − y′, k − θ′)·PCi,j,k

(5)
in which Ge is a 3D Gaussian distribution to weigh the
nearby activity levels based on the distances to them. Each
active cell excites the nearby cells and distributes the pose
cell activity. By exciting and reinforcing the cells around
the active cells with higher localization confidences, local
excitation redistributes the location hypotheses, which can
reduce the accumulated errors introduced in path integration
and the observation matching errors caused by the noise from
the LiDAR sensor and also further improves the stability and
accuracy of the proposed localization system.

To stabilize the activity in the pose cell network over a
long period of time, local inhibition is involved to curb the
activity expansion entailed by the local excitation. Similarly,
local inhibition is performed in a negative form of local
excitation with a different Gaussian distribution variance and
coefficient. Therefore, each cell inhibits nearby cells to stabi-
lize the activity packet [15], [32] and make cells with a low
activity level be less and less active over time, which leads
to the location hypotheses with lower confidence able to be
diminished and filtered based on the LiDAR observations.
Note that by setting the variances and coefficients, the local
excitation is tuned to be slightly dominant in this process, in
order to ensure that the cell activity is able to distribute when
the average location confidence is low, instead of falling into
local optima.

Besides local inhibition, global inhibition is performed to
introduce a fix-rate slow decay for all the active cells in the
pose cell network, in which the activity update is defined as:

∆PCx′,y′,θ′ = −min(PCx′,y′,θ′ , sg), (6)
where sg is a constant factor as the decay rate in each
iteration. Therefore, the activity of each active pose cell
slightly decays in every localization iteration, which enables
the pose cell network to diminish and clear insignificant
but non-zero hypotheses, to improve the performance of
the localization system over a long period of time. After
local and global inhibition, activity normalization among the
whole pose cell network is performed to scale and normalize
the activity of each active cell to [0, 1] based on its weight on
all active pose cells. Normalization at the end of the iteration
ensures that pose cells with high activity levels will not be
affected by the inhibition over a long period of time.

With path integration, observation updating, activity ex-
citation, and inhibition, the proposed localization system
is able to complete the localization iteration based on the
motion data and LiDAR observations from the robot. When
the activity in the pose cell network converges as a single
activity packet, the averaged centroid of the dominant activity
packet is identified to be the best pose estimate for the robot.

B. Local View Cells
The local view cell module is adapted to extract and maintain
landmarks from the LiDAR observations in the proceeding
mapping process and the global localization process, and
to associate the landmarks with the pose cells to perform
relocalization when the landmarks are detected in the process
of global localization.

Given a LiDAR point cloud z = {⟨di, θi⟩, i = 1, ..., Nz}
from the sensor measurement, the local view cell module
first downsamples and quantifies the point cloud to reduce
the data scale and also diminish the noise effect from the
LiDAR sensor. With the pre-processed LiDAR point cloud, a
landmark is generated by extracting the corner points in the
point cloud as the geometry feature of the current LiDAR
observation, which reduces the complexity of the landmarks
and enables the local view cell module to perform the fast
landmark detection. The generated landmark, which consists
of a sparse set of key points, is then registered as a new
local view cell Vi and associated with the current state of
the pose cell network, in which the connectivity between the
local view cells and the pose cells is defined as a sparse
adjacency matrix A. When a landmark is detected in the
process of global localization, the corresponding local view
cell is therefore activated, injecting a relocalization activity
into the pose cell network to provide a location hypothesis.
The activity of the associated pose cell is updated based on
the activity of local view cells V , which can be described as
follows:

∆PCx′,y′,θ′ = sv ·
∑
i

Ai,x′,y′,θ′ · Vi, (7)

where sv is the constant coefficient for the activity injection.
In the process, for all the local view cells, the activity is
injected only if the local view cell Vi is active and there is
a connection Ai,x′,y′,θ′ from Vi to the pose cell PCx′,y′,θ′ .

Given the LiDAR landmark cues from the local view cells,
the pose cell network is able to generate and distribute more
location hypotheses when the average localization confidence
is low. Due to the potential landmark ambiguity, the activity
from the local view cells is not injected as a dominant activity
packet in the pose cell network, but rather to provide a loca-
tion hypothesis to compete with the others. The landmark-
based relocalization enables the proposed localization system
to boost the localization progress at the beginning without
the help of initial estimates and facilitates fast recovery from
localization failures, such as the kidnapped robot problem, in
which the localization loses the track of the robot’s location
because the robot is moved to an arbitrary location [34].

IV. EXPERIMENTS

To evaluate the performance of the proposed localization
system, experiments in a simulator and a real-world indoor
environment were conducted. Using the same sensor settings
and computational resources, the localization was tested
in comparison with the Adaptive Monte Carlo localization
(AMCL) algorithm [29], which is a commonly used MCL
implementation for indoor scenarios with LiDAR sensors.
In the experiments, we evaluated the results of global
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Fig. 1. Schemes and trajectories for simulation and indoor experiments

localization with and without initial estimates as well as
the performance of the recovery from artificial localization
failure situations such as the kidnapped robot problem in
order to show the effectiveness of the proposed method and
its capability to generalize to different localization scenarios.
A. Experimental Setup
To provide simple and configurable environments to test the
proposed localization method, we set up a simulated scene
based on the Robot Operating System framework [35], as
shown in Fig. 1a. The maze-like environment consists of a
collection of identifiable geometry features and symmetri-
cal scenes, which can be challenging for the localization
algorithms with the environment ambiguities. The trajectory
shown in Fig. 1b reflects the robot’s movements during the
simulation experiments. The robot was manually operated to
explore the environment, starting from the position of the
yellow marker and ending at the red marker.

To examine the practical capability of the proposed
method, we also construct a real-world maze environment.
Fig. 1c and Fig. 1d show the maze scheme and environment
settings for the indoor scenario. In the real-world indoor ex-
periments, a mobile robot platform was remotely controlled
to navigate the environment, which is equipped with an
embedded IMU sensor and a 2D LiDAR sensor. To provide
a localization ground truth, a bird view camera is used to
acquire the position of the agent in real time, which will be
subsequently utilized to evaluate the localization accuracy.
B. Localization Results
To evaluate the effectiveness of the proposed localization
system, we first report the accuracy of the localization results.
Fig. 2 reveals the absolute translation errors over time in
the localization process during the simulation experiments.
As shown in the figure, the proposed biologically-inspired
method has a lower level of localization errors during the
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Fig. 3. Localization errors in the indoor experiments

experiment process in comparison to the conventional MCL
algorithm. The mean error and the root-mean-square error
(RMSE) of the relative pose error (RPE) [36] for the pro-
posed method are 0.0319m and 0.0366m respectively. The
errors are reduced by 50.9% and 49.2%, respectively, com-
pared to the MCL errors, which are 0.065m and 0.0720m.
The results show that the proposed method is more accurate
and more stable compared to MCL in the simulation.

Fig. 3 plots the localization errors of the experiments in
the indoor maze scenario. Due to the limitation of the field
of view and the installation height of the bird view camera,
which provides localization ground truth in the experiments,
the maze setting in the indoor experiments has a more
constrained size in comparison to the simulation experiments.
However, the scenario can be more challenging, because in
such scenario the localization algorithms are more sensitive
to the measurement noise and latency from sensors. The
localization errors in Fig. 3 for both the proposed localization
system and MCL are at a slightly higher level than in the
simulation experiments due to the complexity of the realistic
environment, partial ambiguities in the maze setting, and the
indeterministic noise and latency of the imperfect IMU and
LiDAR sensor. However, as shown in the graph, the proposed
biologically-inspired method still outperformed MCL with

TABLE I
LOCALIZATION ERRORS

Simulation Xmean Ymean RPEmean RPErmse ATErmse

Proposed 0.0192 m 0.0215 m 0.0319 m 0.0366 m 0.0318 m
MCL 0.0471m 0.0364m 0.065m 0.0720m 0.0656 m

Indoor Xmean Ymean RPEmean RPErmse ATErmse

Proposed 0.0319 m 0.0337 m 0.0532 m 0.0681 m 0.0568 m
MCL 0.0672m 0.0612m 0.1033m 0.1144m 0.0926 m



0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8
L

oc
al

iz
at

io
n

E
rr

or
(m

) Proposed Method
MCL

Fig. 4. Localization errors without initial estimates

less average errors in the localization process. Compared
with the result of MCL, the RPE mean of the proposed
method is reduced by 48.5%, from 0.1033m to 0.0532m,
and the RPE RMSE is reduced by 40.5%, from 0.1144m
to 0.0681m. In the curve, the error surged many times
due to the repetitive stalled status and fast starts of the
robot. However, the spikes in the error curve reveal that
the proposed method has the capability of quickly correct-
ing and recovering from the cumulative localization errors
introduced by the sensor noise and latency. In TABLE I,
we list the localization errors in the simulation and indoor
experiments, including the translational errors in the x and
y axes respectively, means and the root-mean-square errors
(RMSE) for the relative pose error (RPE), and the RMSE
for the absolute trajectory error (ATE) [36]. The proposed
method outperformed the conventional MCL algorithm with
less errors in all the evaluated terms, which means it has not
only higher accuracy but also greater stability.

In the experiments, we also evaluate the global localization
algorithms without the initial estimates. Global localization
without initial estimates can entail a higher workload for
the localization system, with a larger initial distribution of
location hypotheses. Fig. 4 illustrates the localization for
an experiment without initial estimates and the proposed
relocalization. The result reveals that during the localization
process, the proposed method quickly produced an accurate
pose estimate as the error dropped dramatically to a low level
in 7 s at the beginning. In comparison, the redistribution of
the particles in MCL is driven by the robot motions, resulting
in the slow decline of the estimation error during the process.

The localization results show that the proposed
biologically-inspired method with the pose cell network
is capable of tracking the robot movements, quickly
distributing and updating location hypotheses, and yielding
accurate pose estimates for the global localization process.
In addition, the results also reflect that the proposed method
can generalize well to real-world indoor environments.
C. Recovery from Artificial Localization Failures
We assess the landmark-based relocalization approach of the
proposed method by conducting localization recovery exper-
iments in the situation of artificial failures. Fig. 5 portrays
the results of two complete test cases of localization failure
recovery. In the beginning, the errors for both methods are
around 0m, indicating the robot was successfully located and
tracked. As shown in the graph, around 50 s, a short-distance
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robot kidnapping was enforced by instantly moving the robot
to a nearby place, which can be identified in the figure with
the instant position change in the x, y curves. The second
artificial failure was introduced around 150 s by placing the
robot at a position far away from its prior position. The
localization errors in the upper part of the graph show that
the MCL algorithm recovered from the first short-distance
failure with a long relocalization process which lasted for
60 s, and it was not able to relocalize the robot in the second
long-distance artificial failure. The landmark curve reflects
the activity injections from the local view cell module to
the pose cell network when localization failures happened,
in which two landmarks were detected and the activity was
injected around 50 s and 150 s. The quickly dropping spikes
in the error curve of the proposed method show that the
robot was successfully relocalized from both the short and
long-distance failures, with much less time spent on the
relocalization process. The result demonstrates that with the
proposed landmark-based relocalization, the system is more
reliable and capable of swiftly recovering from localization
failures and solving the kidnapped robot problem.

V. CONCLUSION

In this paper, we present a biologically-inspired global
localization system using a LiDAR sensor that consists of
the pose cell network and the local view cell module. The
pose cell network mimics the place cells and head direction
cells in the hippocampus to build a spatial representation
and maintain, distribute, and filter the location hypotheses
with the excitatory and inhibitory activity dynamics. The
local view cell module memorizes and stores landmarks
and activates the associated pose cell when the identical
landmark is detected, which can facilitate recovery from
localization failures, and solve the kidnapped robot problem.
The experimental results demonstrate the high accuracy,
applicability, and reliability of the proposed biologically-
inspired localization system in various localization scenarios.
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S. Renaud et al., “Neuromorphic silicon neuron circuits,” Frontiers in
neuroscience, vol. 5, p. 73, 2011.

[21] R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, “Pose
estimation and map formation with spiking neural networks: towards
neuromorphic slam,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 2159–2166.

[22] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[23] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song,
“Robust and precise vehicle localization based on multi-sensor fusion
in diverse city scenes,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 4670–4677.

[24] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor locali-
zation systems and technologies,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.

[25] J. Torres-Sospedra, R. Montoliu, A. Martı́nez-Usó, J. P. Avariento,
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