
Preprint

Why Did the Test Execution Fail? Failure
Classification Using Association Rules

1st Claudius Jordan
Technical University of Munich

Munich, Germany
0000-0002-4341-8701

2nd Philipp Foth
Technical University of Munich

Munich, Germany
0000-0003-4753-1979

3rd Matthias Fruth
TraceTronic GmbH
Dresden, Germany

matthias.fruth@tracetronic.de

4th Alexander Pretschner
Technical University of Munich

Munich, Germany
0000-0002-5573-1201

Abstract—Testing automotive electronic control units and their
software, the system-under-test (SUT) in our context, requires
complex test infrastructure setups. As those setups are developed
in parallel to the SUT, often a problem in the test infrastructure
instead of the SUT causes a failed test case execution (TCE). We
call such unexpectedly failing TCEs invalid. As there are several
reasons that lead to such invalid test failure, failed TCEs are
manually analyzed and categorized. This failure classification
is a time-consuming task. Thus, automatic classification could
significantly reduce overall development time and cost. A pre-
vious study suggests using association rule learning (ARL) to
classify failed TCEs as valid or invalid based solely on test step
information. In this work, we extend this ARL-based approach to
our multi-class setting and evaluate its application on data from
five running verification & validation projects in the automotive
industry. In total, we predict the defect classes of more than
85k TCEs and achieve an overall precision up to 86.7% with an
overall recall up to 57.4%. With this work, we offer evidence
that the application of said approach, originally presented in
the context of information systems, can be fruitful in automotive
integration- and system-level testing contexts as well.

Index Terms—hardware-in-the-loop, system testing, integra-
tion testing, failure classification, association rule mining, test
infrastructure, automotive

I. INTRODUCTION

The increasing share of embedded software in modern
automotive systems magnifies the ever growing need for
systematic and automated support throughout all phases of
the development cycle, especially the testing activities. Due to
the complex functionality and the variant diversity of modern
vehicles, the required test infrastructures, which are used for
integration- and system-level testing, necessarily also grow
in their complexity. Such test infrastructures are built up
and continuously evolve in parallel to the system-under-test
(SUT) development. We consider every component involved
in the testing process – hence, everything apart from the
SUT – to be part of the test infrastructure: In particular,
there are the hardware-in-the-loop test benches (HiLs) that are
composed of hardware as well as software components, e.g. for
simulation purposes, and there are several different software
tools needed to enable the test automation. In practice, not only
hardware components suffer from sporadic malfunctioning
but also involved software tools [1]–[5]. The fact that test
infrastructures also need to be considered error-prone only

recently gained attention in the literature [2], [4], [5]. This
leads to tests failing because of a test infrastructure issue rather
than a defect in the SUT.

The resulting problem is that produced test results cannot be
regarded reliable. Therefore, practitioners manually investigate
the causes for failed test case executions (TCEs) and, most
importantly, determine whether the test results are trustworthy.
In other words, they decide whether a failed TCE is valid, i.e.,
a flaw in the SUT has been discovered, or invalid, i.e., the test
case fails for any other reason. As domain experts report, a
substantial portion of the daily work load is associated with
this investigation and, thus, is an important cost factor for val-
idation & verification (V&V) projects in the studied context.
In fact, in a recent study [5] from the automotive domain, it is
reported that up to 91% of failed TCEs are invalid. There,
the authors distinguish between sporadic test infrastructure
induced failures and other causes, which include test case
implementation errors and incorrect test specifications. Given
the magnitude of the problem, it becomes apparent that reduc-
ing the burden for the experts to manually analyze the TCEs
leads to a significant productivity gain. Hence, the technical
challenge addressed in this work is the automatic classification
of failed TCEs in automotive integration- and system-level
black-box regression testing setups.

In the context of business information systems, Herzig
and Nagappan [6] suggest to use association rule learning
(ARL) [7] to detect patterns of failing test steps that allow
to automatically distinguish valid from invalid test results. For
our context, however, it is not sufficient to perform such a
binary classification because there are distinct reasons why
invalid test failures occur, and in our context it is critical
to discriminate between them: Depending on the underlying
failure cause, the appropriate action is to be performed, i.e.,
the respective stakeholder is identified who is responsible to
take care of the revealed problem. If, e.g., a test fails due to
misconfiguration, a tester can react and correct the mistake. If,
however, the simulation environment is flawed, the respective
expert needs to be informed. Likewise, if an actual flaw in
the SUT is identified the developers are informed. While
other approaches that distinguish failure categories depend on
context-specific test log processing, e.g. [8], we rely solely on
test step data, i.e., verdicts of separable steps a test case is
composed of, which in our context are readily available.

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright
law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code
is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights
Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2022 by IEEE.

Preprint

For this practical experience report, we hence borrow the
idea of ARL based on test step information for our multi-class
failure classification problem. Concretely, we shed light on the
transferability of said approach to our context and answer the
following question: How well can failed TCEs in automotive
testing setups be classified according to their failure cause
using test step-based ARL?

In summary, we make the following contributions:
• We extend the failed TCE classification approach by

Herzig and Nagappan [6] to a multi-class setting for
multiple failure categories. Additionally, we apply rule
pruning strategies [9].

• We report our practical experiences and lessons learned
with the ARL-based failure classification in a new do-
main.

• We collected data from five real-life projects in the
automotive domain containing more than 85k labeled
failed TCEs. We achieve an overall precision up to 86.7%
with an overall recall up to 57.4%, which are similar to
the results reported in [6].

• In addition, we analyze the impact of the minimum
confidence parameter as well as limiting the training data.
We find that time windows between 30 to 90 days deliver
the best results for the studied projects. This indicates that
already data from around one to three months is sufficient
to fruitfully apply the ARL-based approach.

II. ASSOCIATION RULE LEARNING AND CLASSIFICATION

ARL [7] is a machine-learning method that learns statistical
connections in the form of implications between items i within
a set of items I in a dataset D. Such statistical connections
are encoded as so-called association rules – hence the name
association rule learning. These association rules r can be
used for classification tasks as we will see in the following.

A. Preliminaries

In general, ARL can be applied to a dataset D that can
be represented as a list of N itemsets: D = [I1, ..., IN]. For
any j, itemset Ij ⊆ I consists of any number of all available
items i ∈ I. A popular example for ARL deals with grocery
shopping, where the set of items I are the products that can be
bought in a store, e.g., bread, milk and eggs, and the dataset
D is represented as a list of shopping carts Ij each containing
a subset of such items.

As mentioned before, we are interested in statistical con-
nections between items i in the dataset that can be encoded
as implications. Such an implication, an association rule r,
consists of a set of antecedent items A ⊆ I, and a single
consequent item c ∈ I \ A. A rule can then be interpreted
and written as follows: For a given itemset Ij , if it contains
a certain combination of antecedent items A, this implies that
it is likely to also contain the consequent item c:

r = (A⇒ {c})

In order to measure the quality of such rules, there are two
important parameters that specify the minimum requirements

for a rule to be learned: minimum support and minimum
confidence. The support of an association rule r quantifies the
relative frequency of the rule itemset R in the entire dataset,
where R = A ∪ {c}:

supp(r) = supp(R) =
|{Ij ∈ D|R ⊆ Ij}|

|D|

Here, {Ij ∈ D|R ⊆ Ij} are those itemsets Ij ∈ D that contain
the rule itemset R. It acts as a sort of statistical significance
measure, and by setting a minimum value, it limits which
itemsets are to be considered for rule learning. Besides, a limit
for the maximum antecedent set size can also be introduced.
Both can drastically reduce the number of sets to consider,
and as a result reduce the computational cost.

The confidence of an association rule quantifies how often
the antecedent set appears together with the consequent, rela-
tive to with or without the consequent:

conf(r) =
supp(R)

supp(A)
=
|{Ij ∈ D|R ⊆ Ij}|
|{Ij ∈ D|A ⊆ Ij}|

This is a measure of how strongly the antecedent is connected
to the consequent. By setting a minimum value only rules with
a larger statistical confidence in the connection they represent
are learned. Additionally, it is possible to restrict learning rules
to those with a consequent from a given set of consequent
items. This is necessary in our use case, because we use
the association rules for classification. If there is a learned
association rule r that applies to a set of antecedents Ã the
corresponding consequent c can be assigned as the label to Ã.

B. Association Rules based on Test Steps – An Example

For our purposes, we use ARL to find statistical connections
between test step verdicts of failed TCEs and failure causes.
Hence, the dataset D is the history of TCEs. Each TCE
consists of test steps and a so-called defect class. For the
itemset Ij , we use as step items the test step denominations
joined with their respective verdict and the defect class is used
as the consequent c. Hence, for a any labeled failed TCE its
itemset Ij in our dataset D consists of step items and the
defect class label.

Note, in our context, a test step is an operation, e.g., reading
or writing a value or carrying out calculations or comparisons.
Consequently, each test step has a corresponding verdict
depending on the test case implementation, which can be one
of Passed (P), Inconclusive (I), Failed (F), Error (E), or
None (N). In general, Passed indicates that the expectations
of the test step are met, respectively Failed indicates that
they are not. The verdict Inconclusive is assigned when the
expectation cannot be evaluated, e.g., if a precondition for a
check is not met. A test step is assigned the verdict Error,
e.g., when the test step as such cannot be performed correctly.
None is used as the default verdict, if no particular other
verdict is assigned, e.g., if there is no expectation associated
with a test step.

Have a look at an exemplary dataset D consisting of five
failed TCEs (D = [I1, ..., I5]) from the same test case:

2

Preprint

[TCE id 1 : { step1=E , step2=P , step3=E , label=Hardware } ,
TCE id 2 : { step1=E , step2=P , step3=F , label=Hardware } ,
TCE id 3 : { step1=E , step2=F , step3=P , label=Hardware } ,
TCE id 4 : { step1=E , step2=F , step3=E , label=CodeDefect } ,
TCE id 5 : { step1=F , step2=F , step3=P , label=CodeDefect }]

The exemplary test case consists of three generic steps and,
depending on the TCE, these steps are assigned respective
verdicts. In addition, each TCE is also assigned a label.
In the example the labels are Hardware or Code Defect,
meaning TCEs with Ids 1-3 failed due to some problem
with the hardware and the ones with Ids 4-5 revealed an
actual code defect in the SUT. Thus, for this example
I={step1=E, step1=F , step2=P , step2=F , step3=E,
step3=P , label=Hardware, label=CodeDefect}. Now,
given an exemplary minimum support of 0.4 and a minimum
confidence of 0.66, the following four rules are learned:

Id conf supp Rule
1 1.0 0.4 {step2=P} ⇒ {label=Hardware}
2 1.0 0.4 {step1=E, step2=P} ⇒ {label=Hardware}
3 0.75 0.6 {step1=E} ⇒ {label=Hardware}
4 0.67 0.4 {step2=F} ⇒ {label=CodeDefect}

Note, the learned rules can be interpreted by humans,
however they do not necessarily represent causal relationships.
Rule 1, for instance, has a confidence of 100% and implies
that any TCE including step item step2=P (meaning step2
is assigned the verdict Passed) fails because of a test infras-
tructure hardware problem. Intuitively, a passing step is not
expected to be an indicator for any type of failure. Yet, for
the given dataset of only failed TCEs, the Passed verdict for
this step happens to be sufficient (statistically speaking) to
distinguish hardware problems from other failure causes.

Given a TCE with Ã = {step1=E, step2=E, step3=P}.
As rule 3 applies, the ARL-based classifier assigns label
Hardware.

C. Pruning Strategies

To construct a classifier based on ARL, we follow the main
ideas of Liu et al. [9]. ARL often generates an extremely large
number of rules for classification data due to combinatorial
explosion. So after rule generation, we prune the rule set as a
post-processing step with what we refer to as data coverage
pruning. As in [9], we sort the rules by highest confidence,
highest support, and smallest antecedent rule set size. Then
we iterate through the rules and apply them to all samples in
the training dataset. Each training sample that gets correctly
classified by a rule is flagged. If a rule (further down the
list) fails to correctly classify at least one unflagged training
sample, it is removed from the rule set. In the example above,
only Rule 2 is removed because Rule 1 already correctly
classifies all of the TCEs that Rule 2 also does. In practice
this drastically reduces the size of the rule set while often even
slightly improving the classification performance [9]. We also
observe this performance improvement in our case study as
we report in Sec. V-B.

In general, a classifier is expected to predict a label for
each given input sample. Therefore, Liu et al. [9] suggest to
add a default rule to the very end of the rule set. A default

rule consists of an empty antecedent set, such that it applies
to every possible input. The consequent is set to the majority
class of the unflagged training samples, i.e., the samples for
which none of the learned rules applies. Therefore, even if
no learned rule applies to an input sample, a class can still
be predicted. This also makes it possible to use default rule
pruning which substitutes learned rules by a default rule, if
this leads to less misclassifications on the training data.

III. CASE STUDY

In the case study, we investigate how well the ARL-
based classification approach motivated in [6] performs in
automotive integration- and system-level black-box regression
testing setups. Therefore, we first introduce the study objects
(Sec. III-A), then we discuss how we collected the data
(Sec. III-B), and finally, we present the datasets (Sec. III-C).

A. Subject Systems

Data used throughout this work is provided by our industry
partner. In the running V&V projects they are involved in,
the SUTs are system-level customer-functions that deal with
various car sub-systems such as the power train or the on-board
supply system, e.g., automatic motor stop at traffic lights.

In such black-box settings, testers do not have access to any
source code or models. On the contrary, they only have access
to testing code and machinery, which is composed of various
different software tools and components, i.e., real hardware
as well as other software components. Hence, the only source
of information are test cases and their history of execution,
which is stored in a test report database.

In those projects the test experts’ workflow envisages that
test executions with a result other than passed need to be
reviewed and manually assessed. This manual assessment
(also referred to as reassessment) consists of diagnosing the
failure cause and documenting it in a review comment plus
assigning a so-called defect class, which is a project-specific
failure category. Hence, we can directly use those defect
classes as the labels for our classification task. That said, all
necessary information for the application of the ARL-based
failure classification approach are readily available in projects
in this context.

Each test case can be considered as a test scenario, in which
a sequence of test steps is executed to complete the scenario.
In many cases, after the actual test scenario additional analysis
steps are appended, which are also treated as test steps for our
purposes. Consequently, the failure of any test step results in
a failed TCE. In the projects (except D) on average there are
between 35 and 45 test steps in each test case; for D there are
on average even around 110 test steps.

In Fig. 1, a snippet from an exemplary TCE report is
displayed consisting of the following actions encoded in test
steps: Set the vehicle state to ‘driving’ and accelerate to 30
km/h. Then check a qualifier as well as some control messages.
Afterwards come to a stop, again check the qualifier and set
the vehicle state to ‘idle’.

3

Preprint

Fig. 1: Data collection and test step encoding

From the example, one can see that in our context a
failed1 test step does not necessarily terminate the running
test execution. On the contrary, only in specific cases the
execution is aborted. Thus, test cases regularly report multiple
test step failures that may indicate the underlying problem. In
fact, depending on the project between 30% up to 65% of all
test steps are assigned verdicts other than None. Compared
to other contexts, where only the TCE verdicts are available,
we have more fine-grained information readily available.

B. Data Collection

The projects included in this study were not specifically
selected. We only excluded projects from the study that did
not offer the required information, namely the failure cate-
gories.The used test report database provides unique identifiers
of the TCEs, test steps including their verdicts, and the manual
assessments including the assigned defect classes.

The data collection is depicted in Fig. 1. In the test report
database the history of the TCEs including their verdicts
and assessments (if available) are stored. In each row the
TCEs of the same test case are represented as colored tiles.
The assessment (if available) is depicted as a bar above the
corresponding TCE tile. As can be seen, not all TCEs have
received a reassessment. For each TCE the individual test steps
and their respective verdicts are available. For example, in
Fig. 1 there are steps with verdicts Passed (first time ‘Set
Vehicle State‘ and two times step ‘Check Qualifier’), None
(the ‘Set Velocity‘ steps), Error (‘Check Control Messages‘)
and Failed (second time ‘Set Vehicle State‘). Accordingly,
this information is stored in a local database, where the test
steps including their verdicts are encoded as test step items,
complemented with the defect class label (cf. Sec. II-B).

C. Datasets

At the core of this study are five ongoing industry projects
from our industry partner, where we collected data. As can be

1Recall, we use the term failed and also mean verdict Error here.

found in the upper part of Tab. I the datasets vary in terms of
the number of test cases (from 0.2k to 2k) and TCEs. Also
the portions of failed TCEs and the ones that we use in our
study, the so-called labeled TCEs, vary significantly. Recall
that the labeled TCEs are the failed TCEs, which the testers
have reassessed and assigned a (meaningful)2 defect class. In
our datasets they range from 2k up to 40k over time spans
of nine to 28 months. Despite the comparable time duration,
the amount of data in terms of TCEs and labeled TCEs vary
drastically. E.g., projects A and C have a very low ratio of
labeled TCEs compared to the other projects.

As can be seen in the lower part of Tab. I, we group the
defect classes into three categories: code defects (CD), test
infrastructure issues (TI) and other causes for failures (OC).
TI includes hardware and software failures, e.g., defective
components, incorrect simulation models, and unstable testing
software tools. OC includes configuration mistakes, test case
implementation problems, incorrect or outdated test specifica-
tions, issues with the configuration of either the HiL or the
test case, and other human-dependent failures.

The number of defect classes varies among the projects and
range from four up to eight. As can be seen from the label
distribution in Tab. I, the dataset is highly unbalanced and there
are some dominant defect classes, e.g., the class ‘Testcase’
in projects B and D, while others are very rarely assigned,
e.g., ‘Config’ in project B or ‘Hardware-2’ in project E. In
summary, the portion of invalid test failures ranges from 77%
up to 91% of all labeled failed TCEs.

IV. EXPERIMENT

As the approach used in this study is based on [6], we
generally follow their experimental setup. For learning the
association rules we use the apriori algorithm.In addition,
we implemented rule pruning concepts for the ARL-based
classification as described in Sec. II-C. Moreover, we adopt
the default values for the minimum confidence and minimum
support of 0.8 and 0.03 from [6]. We justify the choice of
parameters and its influence on the classification performance
in Sec. V-C.

A. Incremental Learning

We follow the incremental learning paradigm for backtest-
ing [6], [10] with an initial training set with 10% of the
available data. This means we simulate how the ARL-based
classification approach would have performed if it had been in
use during the time for which we have collected labeled data.
Of course, it is important that at each simulated prediction
in the past, the classifier only has access to data that would
have actually been available at that time. To simulate this
accurately, we use two types of timestamps: the execution-
timestamps and the review-timestamps. We predict the defect
class to aid the tester with failure diagnosis as soon as the
test has been executed. Hence, a prediction is made at each

2Through discussions with experts we found that some defect classes are
not meaningful to predict as they do not actually distinguish different failure
categories but are rather used as catch-all oddments tray.

4

Preprint

TABLE I: Summary of datasets and average classification performance in total and of each label, for each project.

Project A Project B Project C Project D Project E

Time span (months): 10 28 10 12 9
Test Cases: 200 2.000 1.000 1.000 500
Avg. # test steps: 35 45 45 110 35
TCEs: 136.000 1.500.000 3.000.000 30.000 100.000
failed TCEs: 18.000 100.000 70.000 8.000 50.000
labeled TCEs: 2.000 40.000 8.000 5.000 20.000

Performance: Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Total .792 .360 Total .867 .574 Total .675 .321 Total .653 .289 Total .544 .320

Labels: Label freq. (%) Label freq. (%) Label freq. (%) Label freq. (%) Label freq. (%)

CD: CD 22.9 .925 .723 CD 13.4 .854 .488 CD-1 1.2 .623 .413 CD 21.1 .831 .453 CD 10.9 .359 .143
CD-2 7.3 .591 .432

TI: Hardware 9.9 .434 .162 Hardware 3.5 .790 .671 Hardware 3.3 .213 .050 Hardware 18.5 .452 .162 Hardware-1 0.6 .000 .000
Model-1 32.1 .788 .480 Model 23.9 .829 .589 Model 21.2 .611 .254 Tool 11.2 .510 .175 Hardware-2 1.4 .067 .012
Model-2 13.7 .571 .084 Tool 5.8 .768 .132 Tool 2.1 .353 .111
Tool 2.4 .000 .000 Model 43.5 .695 .297

Memory 1.2 .617 .407

OC: Testcase 19.0 .574 .063 Testcase 46.3 .912 .636 Testcase 36.8 .701 .321 Testcase 49.2 .648 .293 Misc. 14.4 .377 .258
Spec. 6.1 .734 .631 Config 30.2 .747 .371 Config 26.0 .523 .524
Config. 0.9 .742 .190

execution-timestamp, based on the data available up to that
point.3 Yet, the label (ground truth) of an execution only
becomes available when its review-timestamp is reached. As
a result, it can only be included in the training data when a
tester has already manually checked the failed execution and
submitted a review containing the defect class. The rationale
behind this procedure is, that in the context of the studied
V&V projects, generally, tests are executed over night and,
if they fail, they are classified. However, only later, they are
added to the labeled training data during the following day(s)
once they have been reviewed.

Lastly, we can limit the training data at each given times-
tamp with a time window. In the backtesting simulation,
instead of using all reviewed executions of the past up to the
current point in time for training, only the most recent ones are
used. The rationale behind the time window is that more data
is not necessarily better as identified problems eventually get
fixed over time and, hence, might lead to outdated training
data. Since the test environment and test objects are both
under development and constantly updated, old data may
become useless or even detrimental for current predictions.
We further elaborate on this rationale when reflecting on the
observations made regarding the lifetime of association rules
in Sec. V-B. In our experiments, a time window length of
60 | 90 | 120 | 60 | 30 days is used for project A | B | C | D | E
respectively. In particular, in Sec. V-C, we discuss the influ-
ence of this parameter on the classification performance.

B. Evaluation Metrics

With the classifier we predict the defect class of failed
TCEs. In order to evaluate how good the predictions made by
the ARL-based classifier are, we calculate precision and recall,
which allow for an intuitive interpretation. As such, precision
indicates which proportion of performed predictions provide
the correct defect class, and recall indicates the proportion of
the actual defect classes correctly classified.

3Note that the classifier is simply retrained before each prediction, i.e., the
association rules are learned on the current simulated training dataset.

An important difference to other classification techniques is
that for our ARL-based classifier it is a valid output to not
predict a defect class for a given TCE. For our purpose and
context, we decide not to use default rules (cf. Sec. II-C), as in
our context the classification is intended as a support tool and
does not have the requirement that each input gets a prediction.
It is considered more favorable to sometimes not get a defect
class prediction rather than having a higher chance of getting
an incorrect prediction. This is because we prioritize precision
over recall. In the case of our studied projects, by not using
default rules, on average, the precision is 10 percentage points
(pp) higher and the recall 11 pp lower.

As we deal with multi-class classification, we calculate
the performance per label following a one-vs-rest approach:
We consider true positives (TP) as the predictions that have
correctly assigned the ground truth label, false positives (FP)
for falsely assigned labels, and false negatives (FN) for labels
that are not predicted. The precision can then be calculated as
TP/(TP + FP) and the recall as TP/(TP + FN) respec-
tively. The overall performance is then the result of the total
amount of predictions, i.e., we use the sum of TP, FP and FN
over all labels to calculate the total precision and recall. As a
consequence, the performance of more frequent labels have a
higher impact on the overall performance.

V. RESULTS

As discussed in Sec. IV, we run the backtest experiment for
the five projects from our industry partner. In the following,
we discuss how well the ARL-based classification performs
and put the results into context. Therefore, in Sec. V-A
we present our findings regarding the overall classification
performance on all projects and have a look at the prediction
performances for the individual class labels. In Sec. V-B, we
discuss our observations regarding the lifetime of association
rules. Afterwards, we report the influence of the parameters
minimum confidence and time window in Sec. V-C, before we
talk about the limitations of our study in Sec. V-D. Finally we
compare the results to baseline classifiers in Sec. V-E.

5

Preprint

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

Relative Time Progress0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Project A - total
Project B - total
Project C - total
Project D - total
Project E - total

Fig. 2: Overall precision and recall values over the relative
time progress for the different projects.

A. Overall Performance

The overall performance over time of the ARL-based clas-
sification is depicted in Fig. 2. Despite all the differences, the
results appear similar to what has been reported in [6]. The
exact values for the total precision and recall of all predictions
for each project are listed in the lower part of Tab. I. Clearly,
the results vary a lot between the projects. This seems to
indicate that the performance of the approach depends on
the project characteristics represented in the data, e.g., the
structure of the implemented test cases or the reassessment
practices including the choice of defect classes to differentiate.

The best precision (.867) and recall (.574) are achieved for
project B. This is the project that uses the reassessment and in
particular the defect class assignment for the longest time and,
hence, the most data from the longest time span are available.
However, since we use a similar time window to limit the
training data in all projects, the larger dataset should not be
the only reason for the better results. This is further shown by
the other projects, which have varying amounts of data, yet a
larger dataset size does not lead to better results: E.g., project
A has the smallest dataset and the second best overall results.

The most noticeable trend for the results per defect class is
that the performance seems to be correlated with the class label
frequency in the datasets, shown in Tab. I. The predictions are
(usually) better for the more frequent labels, and worse for the
more uncommon labels. For the very infrequent defect classes
‘Tool’ in project A, and ‘Hardware-1’ in project E not even a
single correct prediction was made.

Regarding the broader defect class categories, the CD
predictions perform relatively good compared to the others
considering the low relative frequency of occurrence in the
datasets. One hypothesis for why that may be, is that the test
cases are specifically constructed to test for SUT defects, and
presumably fail at the expected test step(s). Failures caused

by, e.g., sporadic test infrastructure errors, however, may be
reflected unexpectedly in various different test steps.

Regarding the defect classes of the other two categories, TI
and OC, the performance is mixed. The performance varies
even within the projects. More specifically, model related
failures seem to be reasonably well classified. One reason
might be that problems with simulation models need to be
fixed by the corresponding supplier and are only updated
once in a while. If such problems only occur sporadically,
they might be even tolerated without getting fixed, and can
therefore be recognized reasonably well. In project E, e.g., the
defect class ‘Memory’ captures such a frequently reoccurring
sporadic failure that is tolerated and the classifier performs
comparably well (prec. 0.617, rec. 0.407) despite the relatively
low label frequency of 1.2%. In projects B, C and D this also
seems to hold for issues related with the test cases themselves.
In summary, in these cases the same problems occur frequently
in various TCEs and are, thus, often predicted correctly.

B. Lifetime of association rules

For the different projects A | B | C | D | E a total of
around 0.2k | 4k | 1.2k | 1k | 0.8k distinct rules have been
learned over the course of the simulation experiments. Note,
those are the numbers after pruning (cf. Sec. II-C). When not
applying the pruning strategies the numbers are higher by a
factor of roughly 250. At the same time for all projects except
E the precision increased by around 2 pp whereas the recall
decreased by between 1 to 3 pp. For project E the precision
decreased by 2 pp and the recall dropped by 7 pp.

In fact, new rules are applied for the classification during the
entire time. This means the set of association rules constantly
changes in order to adapt to current developments in the testing
infrastructure and SUT. On average across the projects, a
single rule is used for only around 10 predictions, i.e., for
about every 10th failed TCE a completely new rule is used.

For each prediction only one rule is used, however, multiple
rules can be learned before each prediction. Yet, as can be seen
in Fig. 3, only very few rules are even learned in more than
20% of the development weeks.

Another way to look at the transience of rules is depicted
in Fig. 4, where the maximal difference between the first time
and last time the same rule has been used for a prediction is
shown for the different projects. Only very few rules surpass
half the experiments’ duration in that sense. For the rest, the
usage is confined to a rather limited time period, already
91% | 88% | 89% | 95% | 94% of the rules are applied within
a time-span of less than 10% of the experiments’ duration.

In summary, the described transience of rules reflects what
was to be expected: Throughout the progress of the V&V
projects not only the SUT but also the test infrastructure
evolves. Understandably the failure patterns change, which re-
sults in changing rule sets. Hence, we affirm the consideration
that it is not advisable to come up with a set of static, hand-
crafted rules as they would most likely be valid for a short
period of time only. However, as we did not specifically look

6

Preprint

0.0 0.2 0.4
fraction of weeks

0

50

100

150

200

#
 r

ul
es

0.0 0.2 0.4
fraction of weeks

0

1000

2000

#
 r

ul
es

0.0 0.2 0.4
fraction of weeks

0

100

200

300

#
 r

ul
es

0.0 0.2 0.4
fraction of weeks

0

250

500

750

1000

#
 r

ul
es

0.0 0.2 0.4
fraction of weeks

0

250

500

750

1000

#
 r

ul
es

Fig. 3: Histogram showing the number of rules that are learned in different numbers of development weeks, as fractions of
the total amount of weeks in the simulation time (for the different projects from left to right, A to E).

0 100 200
Rule lifetime [days]

100

101

#
 r

ul
es

0 200 400 600
Rule lifetime [days]

100

101

102

#
 r

ul
es

0 100 200
Rule lifetime [days]

100

101

#
 r

ul
es

0 100 200
Rule lifetime [days]

100

101

102

#
 r

ul
es

0 50 100
Rule lifetime [days]

100

101

102

#
 r

ul
es

Fig. 4: Histogram showing the number of rules for different lifetimes, which is the maximum number of days between the
first and last classification usage of the same rule (for the different projects from left to right, A to E).

into the rules or try to come up with the ‘best possible static
rule set’, we cannot cogently reject the idea.

C. Choice of Parameters

In the experiments, we used fixed values for the minimum
confidence, minimum support and time window. Regarding
the minimum support, investigations showed that changing
the minimum support parameter lead to very little change
in the performance. By increasing the minimum support, the
recall decreases slightly and for just two of the five projects,
the precision increases insignificantly. Only when setting high
values, e.g. 0.5 and higher, the recall drops substantially. For
the minimum confidence and the time window, we performed
a grid search to investigate their influence on the classification
performance. The results for each project are compiled in
Fig. 5, where for each confidence value a line is plotted
showing the overall classification performance varying with
the time window size.

As can be seen by the line color variation from the different
minimum confidence values, this parameter shows a posi-
tive correlation with the precision and a negative correlation
with the recall. This is not too surprising: As introduced in
Sec. II, the minimum confidence specifies how often a rule
has to correctly apply in the training data. Setting a high
value leads to fewer included rules, increasing the odds of
none applying to a new TCE. When no prediction can be
made the recall decreases. With a lower minimum confidence
value, more rules are considered, which might apply to the
previously unclassified TCEs, increasing the recall. Yet, based
on the training data, these new rules are also more likely
to be incorrect, resulting in a lower precision. A minimum
confidence of 0.5 may seem too low, as it includes rules that
are incorrect half of the time in the training data. However,
since the rules are sorted by highest confidence, the previous
predictions made by high confidence rules remain unchanged.
Thus, the average confidence of the applied rules is higher than

0.5. This also explains why changing the minimum confidence
value causes a larger variation in the resulting recall than in
the precision. Interestingly, the caused variation in precision
and recall become larger with increasing time window size.

Regarding the time window parameter, the recall first im-
proves with increasing window size and at around 60-90 days
approaches saturation. This is also a good indication of how
much initial data collection is necessary or appropriate before
using the classification in practice, at least for the studied
projects. For further increasing time window sizes, the recall
stagnates or even declines. This effect is best visible for project
B in Fig. 5. It is harder to make out a trend across the projects
for the precision. In projects A and B, the precision decreases
for increasing time window sizes. However, for projects C
and D the precision is especially low for the smallest window
sizes of 7 and 30 days. Similar to the recall, the time window
effect on the precision mostly stagnates for values higher than
90 days. Except for project B, which may be explained by
the fact that Bs dataset spans by far the longest time period.
Consequently, a greater portion of the TCEs in the experiment
were affected by the large time windows.

In summary, we argue that there is no general best minimum
confidence value and the choice depends more on the dataset
and the desired trade-off between higher recall or precision. It
is up to the practitioners in the concrete setting to adjust the
confidence parameter in order to emphasize higher precision
(less wrong predictions) or recall (more predictions in gen-
eral). Limiting the training data by a time window of 30-90
days works best in our experiments indicating that too much
outdated training data deteriorates the classifiers performance.
However, this observation may depend on the specific datasets
and does not necessarily generalize.

D. Limitations

Our study shows that the ARL-based approach can be used
to classify failed TCEs in running V&V industry projects from

7

Preprint

101 102

Time window length [days]

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
is
io
n

101 102

Time window length [days]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Project A

101 102

Time window length [days]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

101 102

Time window length [days]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Project B

101 102

Time window length [days]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

101 102

Time window length [days]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Project C

101 102

Time window length [days]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

101 102

Time window length [days]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Project D

101 102

Time window length [days]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

101 102

Time window length [days]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Project E

Confidence of
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1.0

Fig. 5: Precision and recall plotted over the time window size in days for different minimum confidence values.

the automotive domain. Below, we point out some limitations
and threats to validity of our study.

The research presented in this paper is based solely on
data from a limited number of projects of one company.
Nevertheless, as this company operates as a supplier in the
automotive industry, the experts confirm that it is reasonable
to expect similar data to be available in other settings as well.4

Given our practical experience, we encourage practitioners to
replicate this study in their projects.

We take the review comments and more specifically the
assigned defect classes as the ground truth for our experiments,
even though – for some cases – we have anecdotal evidence
that even the experts do not always identify the true failure
cause. Opposed to other studies, e.g., [10] that included infor-
mation about incorrectly triaged bugs (bug tossing), unfortu-
nately, no such information about potentially falsely assigned
defect classes is available for the presented projects. According
to the workflow, the failure category is associated manually to
a TCE during inspection. Different experts might come to dif-
ferent conclusions and, hence, assign different labels. Another
reason for such conflicting label assignments can be that in
the same test execution multiple different failures manifest.
Hence, it is possible that contradicting statements deteriorate
the performance of the presented failure classification results.

In the datasets, we found TCEs that are identical in terms
of the test step verdicts, however, have different defect class
labels assigned to them. To assess the extent of this problem,
we analyzed the datasets and identified all such groups of
TCEs with identical step verdicts with more than one sample.
In fact, we found for the projects A | B | C | D | E, for
65% | 76% | 75% | 35% | 79% of the respective TCEs at least

4Recall that the approach was first applied to two Microsoft products [6]
with a totally different tool chain.

one identical TCE has occurred before. Further, we found that
out of those groups, around 50% | 30% | 21% | 41% | 18%
have conflicting labels, meaning there are (at least two)
identically appearing TCEs which are assigned different labels.
However, less than 14% | 14% | 13% | 17% | 5% of all TCEs
in such groups are assigned a label which is different from the
majority label of their respective identical groups. Therefore,
given that the confidence for association rules to be learned
need not be 1.05, we argue that a classification approach,
which is based on the test step verdicts, is still reasonable.

Nevertheless, it remains an open question to be discussed
with the experts why different labels have been assigned
to identically appearing test executions, whether those are
justified and what additional information would be necessary
to distinguish those cases. Some experts state that the specific
test steps’ return values, which may be different even for
the same verdict, are determining factors for differentiation.
However, these are not yet available to our classifier.

E. Baseline experiment

In fact, the findings regarding identically appearing TCEs
with different class labels (Sec. V-D), motivated the implemen-
tation of two baseline experiments with naive classifiers BL1
and BL2 that we briefly discuss in the following: For the naive
classifiers a prediction is made on the basis of an exact match
of the test step verdicts. In cases where different labels have
been assigned to identical executions – as discussed above –
either the most recent label (BL1) or the majority label (BL2)
is assigned. In fact, 22% | 14% | 15% | 50% | 13% of TCEs
are unique, meaning their test step verdicts do not match any
other execution in the corresponding projects A | B | C | D | E.
Hence, the naive classifiers cannot predict a class for them.

5Recall, in our experiments we set the minimum confidence to 0.8.

8

Preprint

TABLE II: Performance comparison with naive classifiers.

Project A Project B Project C Project D Project E

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
ARL .792 .360 .867 .574 .675 .321 .653 .289 .544 .320
BL1 .441 .155 .637 .406 .630 .211 .515 .115 .557 .083
BL2 .661 .233 .796 .508 .627 .210 .577 .129 .573 .086

The overall performance of the naive classifiers BL1 and BL2
is compiled in Tab. II.

As can be seen BL2 outperforms BL1 for all cases. BL2’s
precision is even competitive with the ARL classifier for the
datasets of projects C and E, whereas the recall is not. As
such, the experiments with those naive classifiers provide us an
additional perspective on the dataset quality or, alternatively,
the information richness encoded in the test step verdicts. If
the different labels for two identically encoded TCEs were
actually correct, additional information would be necessary to
distinguish the two.

We have also performed experiments with many other clas-
sifiers including nearest neighbors, decision trees and random
forests. Most perform comparably to the ARL-based classifier,
meaning – not too surprisingly – the dataset quality is of much
more importance than the employed classifier. For this work
we confine ourselves to report only the results of the ARL
classifier along the baseline classifiers because it triggered our
investigations reported here.

VI. LESSONS LEARNED

The practical implications of the gained insights are plenty.
First, we learned that a high proportion of invalid test fail-
ures is encountered in the studied context. The practitioners
assigned so-called defect classes to failed TCEs to distinguish
the different types of failures regularly encountered. Second,
as mentioned in Sec. V-D, we performed an analysis of the
dataset quality. This quality assessment was a byproduct of
our actual investigations that, nonetheless, lead to discussions
with and among the test experts about how the failure analysis
is performed and how the experts come to their defect class
assignments. Especially, for the cases of identical test step ver-
dicts with differing defect class assignments some differences
regarding the interpretation could be revealed. However, for
a portion of such cases, the different class labels are justified
and the experts use information currently not encoded in the
datasets to distinguish between the cases. Third, with our
motivation to reduce the manual effort for the failure analysis,
we got feedback from the practitioners that they would be
motivated to adapt the test cases such that a test step-based
classifier would potentially improve its performance.

Moreover, we can now answer the initially raised question:
How well can failed TCEs in automotive testing setups be
classified according to their failure cause using test step-based
ARL? Depending on the project an overall precision between
54% and 87% can be achieved in the studied projects with
recalls ranging from 29% up to 57%. The results achieved
for projects A and B are comparable to the ones reported in
[6] despite all differences between the two contexts. For some

defect classes (e.g., (CD) in Project A, all classes in Project B)
the approach works compellingly well, while for others (e.g.,
Tool or Model-2 in Project A, Tool or Testcase in Project E)
additional investigations are necessary to determine whether
there is a common cause for the unsatisfactory performance.

Further, we learned that the practical benefits of automati-
cally classifying TCEs depends on the implications the class
assignment can have: In some projects the defect class assign-
ments were merely used for reporting while in other cases a
subsequent process is triggered such as filing change request or
bug tickets. In one of the projects the most commonly assigned
defect class is not meaningful to predict, as this label is used
when the reason for the failure is still unknown and needs
further investigation. That is why we excluded it from the
respective dataset for the experiments presented in this work.

Finally, in particular projects the infrastructure allows to au-
tomatically restart some components of the test infrastructure.
Such a restart can be considered as a basic healing action that
can be triggered during the nightly unsupervised automatic test
case execution in case the classifier identified said component
caused an invalid failed TCE. This leads us to the discussion
of our planned future work.

A. Future work

Based on the limitations (Sec. V-D) and discussed lessons
learned, we motivate future work to extend the ARL-based
approach: First, we plan to incorporate the return values as
additional information on test step level, as we have anecdotal
evidence (cf. Sec. VI) that in some cases the return values are
the determining factor for distinguishing defect classes. This
information, however, is not readily available in our context.
Thus, a technical challenge is to obtain the return values for
all TCEs. In addition, it is not straight forward how to treat
the return values in terms of items in our itemsets for ARL.

Based on the partially promising results, we motivate further
investigations regarding how good a classifier needs to perform
to be considered acceptable for the application in practice.
Considering the achieved performance in projects B and A,
we are confident that the presented ARL-based classification
can be practically beneficial.

In some projects we came in touch with, reassessments are
made but no defect classes are assigned. In fact, even in the
studied projects, many failed TCEs have been reassessed with-
out a defect class assignment, which made them unusable for
this study. In such cases, one could assign defect classes based
on the review comments, e.g. based on regular expressions. In
fact, we experimented with that in one project but we do not
report the results here, because we are aware of the bias of our
own hand-crafted regular expressions-based label extraction,
which also has implications on the comparability to the other
projects where defect classes are inherently used.

VII. RELATED WORK

A. Flaky tests

In the software engineering domain, tests are considered
flaky if different results are obtained even though no changes

9

Preprint

have been made to the SUT or the test environment. Several
works have investigated categories of causes for flaky tests in
the software domain, e.g., [11]–[13]. One recent work extends
this view by investigating intermittently failing tests in the
embedded systems domain [14]. In our setting, the experts
are aware of the unreliability of the test setup. However, due
to the project circumstances the focus lies rather on coping
with the unreliability than fixing it. That is why opposed to
recent attempts to automatically root causing and even fixing
flaky tests [15]–[17], we focus on classifying test executions
according to their failure category.

B. Issue Assignment

Poulos and Veneris state that issue assignment is an “emerg-
ing need to appropriately categorize, prioritize and distribute
[...] failures to the engineer(s) best-suited for detailed debug-
ging of each failure” [18]. In fact, there are various recent
works in the direction of automated issue assignment [10],
[19], [20]. Note, we use issue assignment as a representative
term, knowing that in the literature different terms are used,
e.g., bug triaging [10], failure triaging [18], or, more generally,
incident management [21]. This translates to the context of
this work as to deciding which responsible person or team
should analyze the prevalent failure situation brought up by
a failing test execution. Those approaches predominantly use
human written reports and employ natural language processing
(NLP) techniques [10], whereas in our context we directly use
the test results from the automated test execution.

Another line of research tries to make use of bug reports to
predict root causes [22] or categorize the defects [23]. Those
two works are conceptually closer to what we do in the sense
that we also categorize reports according to (predefined) failure
causes as we will discuss in the next subsection. However, we
do not use human written reports or comments but only the
test step verdicts and the human-assigned defect class.

C. Test Report Analysis

Another stream of papers deals with information obtained
during testing. Liu et al., e.g., compare different so-called
fingerprinting functions [24] including execution profiles. The
central underlying rationale is that the same fault manifests in
the same (or at least similar) behavior. This lead to approaches
that try to cluster tests or rather their execution profiles to sort
out groups of failures [25]–[27]. Also in [28], that idea is
taken up to cluster failures in automotive HiL settings based
on time-series. In contrast, in this work we do not cluster test
executions but classify them. For that we do not use execution
profiles but only readily available test execution information,
namely, the test step verdicts.

Under the term behavior learning Bowring et al. propose
an algorithm to label a program execution as either “pass” or
“fail” [29]. In contrast, we do not need to learn to distinguish
between passing and failing executions because we have
test oracles for that. However, this idea of labeling program
executions was further developed by Xie et al., who propose
an approach to assign multiple labels to a program execution

for cases where one failure should be attributed to one or
more fault types [30]. The idea of multi-label classification
was also empirically investigated under different application
settings by Feng et al. [31]. In fact, there is ongoing discussion
in the scientific community whether or not the independence
assumption of component failures is appropriate and, hence,
whether or not the consideration of multi-fault situations is
necessary [32]. We report only on single-label classification
in this work, because in our setting only a single defect class
label is assigned to each TCEs.

Another type of classification is proposed by Hao et al. who
distinguish the case where the cause of a test failure lies in
the source code (bug) or in the test code (obsolete test) for
Java programs, for which they use tailored features [33]. A
similar question was also raised by Herzig and Nagappan,
who distinguish bugs in the SUT from defects in the test
infrastructure, which they call false test alarms [6]. In other
words, both perform a binary classification task. We, however,
need to distinguish between multiple failure causes, including
the SUT, the test infrastructure and even the operator. In
contrast to [8], who use NLP, we employ ARL inspired by [6].
In contrast to [6] however, we distinguish multiple different
failure causes. To the best of our knowledge, we are the first
to apply ARL to the complex and versatile setting of system-
level testing of automotive embedded systems to categorize
various different failure causes.

VIII. CONCLUSION

We identify invalid test case execution (TCE) failures and
the necessary manual diagnosis and failure category attribution
thereof as a major challenge that is particularly impacting
integration- and system-level testing that involve hardware-
in-the-loop test benches (HiLs). In the studied projects the
portion of invalid test failures ranges from 77% up to 96%
of all labeled failed TCEs. We found that little attention has
been paid to this aspect in the literature so far, and methods
to automatically distinguish between different test failure cate-
gories have considerable potential for time and cost reduction.
We report the application of one approach taken from the
software engineering domain, namely association rule learning
(ARL)-based classification, and evaluate its performance in
our context with five ongoing industry projects. Overall, we
predict the failure category of more than 85k TCEs and achieve
an overall precision up to 86.7% with an overall recall up to
57.4%.

ACKNOWLEDGMENT

This work was funded by the German Federal Min-
istry for Economic Affairs and Energy (BMWi), grant no.
ZF4086014SO9. The responsibility for this article lies with
the authors.

REFERENCES

[1] J. Kasurinen, O. Taipale, and K. Smolander, “Analysis of Problems in
Testing Practices,” in 2009 16th Asia-Pacific Softw. Eng. Conf. Batu
Ferringhi, Malaysia: IEEE, dec 2009, pp. 309–315. [Online]. Available:
http://ieeexplore.ieee.org/document/5358706/

10

http://ieeexplore.ieee.org/document/5358706/

Preprint

[2] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for
software test automation: A systematic literature review,” Softw. Test.
Verif. Reliab., vol. 27, no. 8, pp. 1–20, 2017.

[3] C. V. Jordan, F. Maurer, S. Lowenberg, and J. Provost, “Framework
for Flexible, Adaptive Support of Test Management by Means of
Software Agents,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp.
2754–2761, jul 2019. [Online]. Available: https://ieeexplore.ieee.org/
document/8719978/

[4] I. Evans, C. Porter, M. Micallef, and J. Harty, “Stuck in
Limbo with Magical Solutions: The Testers’ Lived Experiences
of Tools and Automation,” in Proc. 15th Int. Jt. Conf. Comput.
Vision, Imaging Comput. Graph. Theory Appl. Valletta, Malta:
SCITEPRESS - Science and Technology Publications, 2020, pp.
195–202. [Online]. Available: http://www.scitepress.org/DigitalLibrary/
Link.aspx?doi=10.5220/0009091801950202

[5] C. Jordan, P. Foth, A. Pretschner, and M. Fruth, “Unreliable Test
Infrastructures in Automotive Testing Setups,” in 2022 IEEE/ACM 44th
Int. Conf. Softw. Eng. Softw. Eng. Pract. IEEE, may 2022, pp. 307–308.
[Online]. Available: https://ieeexplore.ieee.org/document/9793982/

[6] K. Herzig and N. Nagappan, “Empirically Detecting False Test Alarms
Using Association Rules,” in 2015 IEEE/ACM 37th IEEE Int. Conf.
Softw. Eng., vol. 2. Florence, Italy: IEEE, may 2015, pp. 39–48.
[Online]. Available: http://ieeexplore.ieee.org/document/7202948/

[7] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. 1993 ACM
SIGMOD Int. Conf. Manag. data - SIGMOD ’93. New York, New
York, USA: ACM Press, 1993, pp. 207–216. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=170035.170072

[8] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What Causes My Test Alarm?
Automatic Cause Analysis for Test Alarms in System and Integration
Testing,” in 2017 IEEE/ACM 39th Int. Conf. Softw. Eng. Buenos
Aires, Argentina: IEEE, may 2017, pp. 712–723. [Online]. Available:
http://ieeexplore.ieee.org/document/7985707/

[9] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association
rule mining,” in KDD’98 Proc. Fourth Int. Conf. Knowl. Discov. Data
Min., R. Agrawal and P. Stolorz, Eds., vol. 98. New York, NY, USA:
AAAI Press, 1998, pp. 80–86.

[10] A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving Bug Triaging with
High Confidence Predictions at Ericsson,” in 2019 IEEE Int. Conf.
Softw. Maint. Evol. Cleveland, OH, USA: IEEE, sep 2019, pp. 81–91.
[Online]. Available: https://ieeexplore.ieee.org/document/8919115/

[11] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” Proc. ACM SIGSOFT Symp. Found. Softw. Eng., vol.
16-21-Nove, pp. 643–653, 2014.

[12] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in Proc. 2019 27th ACM
Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. New
York, NY, USA: ACM, aug 2019, pp. 830–840. [Online]. Available:
https://dl.acm.org/doi/10.1145/3338906.3338945

[13] A. Ahmad, O. Leifler, and K. Sandahl, “Empirical analysis of
practitioners’ perceptions of test flakiness factors,” Softw. Testing, Verif.
Reliab., vol. 31, no. 8, pp. 1–24, dec 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1791

[14] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and
D. Sundmark, “Intermittently failing tests in the embedded systems
domain,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test. Anal.
New York, NY, USA: ACM, jul 2020, pp. 337–348. [Online]. Available:
https://dl.acm.org/doi/10.1145/3395363.3397359

[15] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA
2019 - Proc. 28th ACM SIGSOFT Int. Symp. Softw. Test. Anal. Beijing,
China: Association for Computing Machinery, 2019, pp. 101–111.

[16] J. Morán, C. Augusto, A. Bertolino, C. D. L. Riva, and J. Tuya,
“FlakyLoc: Flakiness Localization for Reliable Test Suites in Web
Applications,” J. Web Eng., vol. 19, no. 2, pp. 267–296, jun 2020.
[Online]. Available: https://journals.riverpublishers.com/index.php/JWE/
article/view/3361

[17] C. Ziftci and D. Cavalcanti, “De-Flake Your Tests : Automatically
Locating Root Causes of Flaky Tests in Code At Google,”
in 2020 IEEE Int. Conf. Softw. Maint. Evol. Adelaide, SA,
Australia: IEEE, sep 2020, pp. 736–745. [Online]. Available:
https://ieeexplore.ieee.org/document/9240685/

[18] Z. Poulos and A. Veneris, “Clustering-based failure triage for
RTL regression debugging,” in 2014 Int. Test Conf. Seattle,

WA, USA: IEEE, oct 2014, pp. 1–10. [Online]. Available: http:
//ieeexplore.ieee.org/document/7035339/

[19] C. Bansal, S. Renganathan, A. Asudani, O. Midy, and M. Janakiraman,
“DeCaf: Diagnosing and Triaging Performance Issues in Large-Scale
Cloud Services,” in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng. Softw.
Eng. Pract. New York, NY, USA: ACM, jun 2020, pp. 201–210.
[Online]. Available: https://dl.acm.org/doi/10.1145/3377813.3381353

[20] E. U. Aktas and C. Yilmaz, “Automated issue assignment: results and
insights from an industrial case,” Empir. Softw. Eng., vol. 25, no. 5, pp.
3544–3589, sep 2020. [Online]. Available: https://link.springer.com/10.
1007/s10664-020-09846-3

[21] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An Empirical Investigation of Incident Triage for Online
Service Systems,” in 2019 IEEE/ACM 41st Int. Conf. Softw. Eng. Softw.
Eng. Pract. Montreal, QC, Canada: IEEE, may 2019, pp. 111–120.
[Online]. Available: https://ieeexplore.ieee.org/document/8804464/

[22] T. Hirsch and B. Hofer, “Root cause prediction based on bug
reports,” in 2020 IEEE Int. Symp. Softw. Reliab. Eng. Work.
Coimbra, Portugal: IEEE, oct 2020, pp. 171–176. [Online]. Available:
https://ieeexplore.ieee.org/document/9307647/

[23] F. Thung, X.-B. D. Le, and D. Lo, “Active Semi-supervised Defect
Categorization,” in 2015 IEEE 23rd Int. Conf. Progr. Compr., vol.
2015-Augus. Florence, Italy: IEEE, may 2015, pp. 60–70. [Online].
Available: http://ieeexplore.ieee.org/document/7181433/

[24] C. Liu, X. Zhang, and J. Han, “A Systematic Study of Failure
Proximity,” IEEE Trans. Softw. Eng., vol. 34, no. 6, pp. 826–843, nov
2008. [Online]. Available: http://ieeexplore.ieee.org/document/4589219/

[25] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, Jiayang
Sun, and Bin Wang, “Automated support for classifying software
failure reports,” in 25th Int. Conf. Softw. Eng. 2003. Proceedings.
Portland, OR, USA: IEEE, 2003, pp. 465–475. [Online]. Available:
http://ieeexplore.ieee.org/document/1201224/

[26] N. DiGiuseppe and J. A. Jones, “Concept-based failure clustering,”
in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng. - FSE
’12. New York, New York, USA: ACM Press, 2012, p. 1. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2393596.2393629

[27] M. Golagha, A. Pretschner, D. Fisch, and R. Nagy, “Reducing
failure analysis time: an industrial evaluation,” in 2017 IEEE/ACM
39th Int. Conf. Softw. Eng. Softw. Eng. Pract. Track. Buenos
Aires, Argentina: IEEE, may 2017, pp. 293–302. [Online]. Available:
http://ieeexplore.ieee.org/document/7965453/

[28] C. V. Jordan, F. Hauer, P. Foth, and A. Pretschner, “Time-Series-Based
Clustering for Failure Analysis in Hardware-in-the-Loop Setups: An
Automotive Case Study,” in 2020 IEEE Int. Symp. Softw. Reliab.
Eng. Work. Coimbra, Portugal: IEEE, oct 2020, pp. 67–72. [Online].
Available: https://ieeexplore.ieee.org/document/9307664/

[29] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for
automatic classification of software behavior,” in Proc. 2004 ACM
SIGSOFT Int. Symp. Softw. Test. Anal. - ISSTA ’04. New York,
New York, USA: ACM Press, 2004, p. 195. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1007512.1007539

[30] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang, “Towards more
accurate multi-label software behavior learning,” in 2014 Softw. Evol.
Week - IEEE Conf. Softw. Maintenance, Reengineering, Reverse Eng.
Antwerp, Belgium: IEEE, feb 2014, pp. 134–143. [Online]. Available:
http://ieeexplore.ieee.org/document/6747163/

[31] Y. Feng, J. Jones, Z. Chen, and C. Fang, “An Empirical Study
on Software Failure Classification with Multi-label and Problem-
Transformation Techniques,” in 2018 IEEE 11th Int. Conf. Softw.
Testing, Verif. Valid. Västerås, Sweden: IEEE, apr 2018, pp. 320–330.
[Online]. Available: https://ieeexplore.ieee.org/document/8367059/

[32] J. Li, X. Yan, B. Liu, and S. Wang, “An insight of double-faults
interactions in program: An empirical study,” in 2017 Second Int. Conf.
Reliab. Syst. Eng., no. Icrse. Beijing, China: IEEE, jul 2017, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/8030752/

[33] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang, “Is this a bug or an
obsolete test?” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 7920 LNCS, pp. 602–628,
2013.

11

https://ieeexplore.ieee.org/document/8719978/
https://ieeexplore.ieee.org/document/8719978/
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009091801950202
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009091801950202
https://ieeexplore.ieee.org/document/9793982/
http://ieeexplore.ieee.org/document/7202948/
http://portal.acm.org/citation.cfm?doid=170035.170072
http://ieeexplore.ieee.org/document/7985707/
https://ieeexplore.ieee.org/document/8919115/
https://dl.acm.org/doi/10.1145/3338906.3338945
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1791
https://dl.acm.org/doi/10.1145/3395363.3397359
https://journals.riverpublishers.com/index.php/JWE/article/view/3361
https://journals.riverpublishers.com/index.php/JWE/article/view/3361
https://ieeexplore.ieee.org/document/9240685/
http://ieeexplore.ieee.org/document/7035339/
http://ieeexplore.ieee.org/document/7035339/
https://dl.acm.org/doi/10.1145/3377813.3381353
https://link.springer.com/10.1007/s10664-020-09846-3
https://link.springer.com/10.1007/s10664-020-09846-3
https://ieeexplore.ieee.org/document/8804464/
https://ieeexplore.ieee.org/document/9307647/
http://ieeexplore.ieee.org/document/7181433/
http://ieeexplore.ieee.org/document/4589219/
http://ieeexplore.ieee.org/document/1201224/
http://dl.acm.org/citation.cfm?doid=2393596.2393629
http://ieeexplore.ieee.org/document/7965453/
https://ieeexplore.ieee.org/document/9307664/
http://portal.acm.org/citation.cfm?doid=1007512.1007539
http://ieeexplore.ieee.org/document/6747163/
https://ieeexplore.ieee.org/document/8367059/
http://ieeexplore.ieee.org/document/8030752/

	Introduction
	Association Rule Learning and Classification
	Preliminaries
	Association Rules based on Test Steps – An Example
	Pruning Strategies

	Case Study
	Subject Systems
	Data Collection
	Datasets

	Experiment
	Incremental Learning
	Evaluation Metrics

	Results
	Overall Performance
	Lifetime of association rules
	Choice of Parameters
	Limitations
	Baseline experiment

	Lessons Learned
	Future work

	Related Work
	Flaky tests
	Issue Assignment
	Test Report Analysis

	Conclusion
	References

