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platzhalter

Preface
This dissertation is publication-based, meaning its scienti�c content is published in a series of
related, but independent articles, all of which have undergone the scienti�c peer-review process
in international scienti�c journals. The �rst chapters therefore mainly serve as an introduction
to methods and relevant literature. Summaries for each article are then provided in chapter 5.
The presented work has been carried out at the Chair of Theoretical Chemistry of the Technical
University of Munich (TUM) between March 2019 and December 2020, under the supervision of
Prof Dr. Karsten Reuter and has been completed between January 2021 and May 2022 at the Fritz
Haber Institute of the Max Planck Society in Berlin. A research stay between January 2022 and
Mai 2022 hosted by Prof Dr. Gábor Csányi at the University of Cambridge complemented this
work.

Munich, August 2022
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Abstract
Growths in the economy and population, a modern lifestyle, and a fully digitalized and connected
world increase the global energetic demands each year. Currently, fossil fuels make up 80% of
the global energy consumption, the combustion of which being the main driving force for the
disastrous e�ects of climate change. Controlling and reducing CO2 emissions are therefore key
challenges of modern society. Renewable energy sources such as wind and solar panel would
be ideal solutions to this problem, however both are a.) not necessarily predictable and b.) not
evenly distributed geographicaly. To enable an even energy distribution, we require e�cient
energy storage. In the past, the combustion of coal and oil has been so successful as that is what
carbon-based chemicals are: extraordinarily e�cient forms of energy storage.

Many applications, such as laptops, mobile phones, and electric vehicles, utilize lithium-ion
batteries as their primary energy storage. While lithium-ion batteries using liquid electrolytes
entered the market in 1991, all-solid-state lithium-ion batteries (ASS-LIB), although investigated
for decades, are still not widely applied. They promise several advantages in comparison to
liquid electrolyte batteries: minimizing �re hazards, longer cycle lifetimes, more comprehensive
temperature ranges, and enhanced energy density by potential usage of Li metal anodes. In
particular, solid electrolytes of the Li2S-P2S5 (LPS) material class have gained substantial attention
due to their favorable properties. First, they possess high RT conductivities of up to 10−2 S/cm
for crystalline LPS components, which ranks them among the most conductive solid electrolytes.
Secondly, they are composed of the earth-abundant elements sulfur and phosphorous enabling
applications at large scales. However, this material class’ design of potent SSE is hampered by
the poor understanding of structure-property relations. This manifests in massive deviations in
reported Li-ion conductivity in di�erent experimental setups and from theory and experiment.

Simulations based on Density Functional Theory (DFT) or classical force �elds (FF) have
enabled material comprehension e.g. new insights into material properties for decades. Insights
at the atomistic level are irreplaceable for a mechanistic understanding of chemical processes.
Unfortunately, due to high computational costs, DFT methods are limited to small systems while
providing a highly accurate and complete description. At a much reduced computational cost,
classical FFs allow to account for such e�ects. Yet, here the problem is an often reduced accuracy in
the description of the potential energy surface (PES). To this end, emerging Machine Learning (ML)
methods have shown to be increasingly able to bridge this gap, with good �rst-principles accuracy
at a much reduced computational cost. However, the basic assumption of locality, implying the
neglect of long-range interactions, is problematic in many cases.

To this end, the central topic of this thesis is threefold. First, we intended to systematically
identify systems where this locality assumption does not hold. We especially tried to understand
when and why the locality assumption holds for polar and ionic systems and when it fails. Second,
as we realized that local ML models accurately predict isotropic bulk material properties, we
developed a near-universal Gaussian Approximation Potential (GAP) model for the crystalline and
amorphous compounds in Li2S-P2S5. We then used the GAP model to systematically investigate
the e�ect of the local anion composition in glassy Li2S-P2S5 compounds.

At the same time we realized that a short-range model can accurately describe isotropic systems,
we understood that we need an accurate description of non-local interactions for non-isotropic
systems. To this end, we developed the kernel-based charge equilibration scheme called kQEq.
The novel kQEq schemes enable the prediction of partial charges based on local environments by
including the ability to predict non-local charge transfer.
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Zusammenfassung
Wirtschafts- und Bevölkerungswachstum, ein moderner Lebensstil, in seiner Gesamtheit eine
vollständig digitalisierte und vernetzte Welt, erhöhen den Ausstoß von Kohlensto�dioxid jedes
Jahr. Die Verbrennung fossiler Energieträger in Industriesektoren und im Individualverkehr sind
dabei der Hauptgrund für katastrophale Auswirkungen sowohl auf den Planeten Erde als auch auf
uns als Menschheit. Daher ist die Reduktion von CO2-Emissionen die größte Herausforderung,
vor der die Welt heute steht. Bereits heute stammen 20% des weltweiten Energieverbrauchs aus
erneuerbaren Energien. Bei der Energiegewinnung aus nachwachsenden Rohsto�en stehen wir
vor dem Problem, dass Wind und Sonne a.) nicht vorhersagbar und b.) nicht gleichmäßig über
die Erde verteilt sind. Um eine gleichmäßige Energieverteilung zu ermöglichen, benötigen wir
daher e�ziente Energiespeicher. In der Vergangenheit war die Verbrennung von Kohle und Öl so
allgegenwärtig, da kohlensto�basierte Chemikalien genau das sind: ein außerordentlich e�zienter
Energiespeicher.

Lithium-Ionen-Batterien werden häu�g als Energiespeicher der Wahl eingesetzt. Laptops,
Mobiltelefone und Elektroautos wären ohne Lithium-Ionen-Akkus nicht realisierbar gewesen.
Während Lithium-Ionen-Batterien mit �üssigen Elektrolyten 1991 auf den Markt kamen, haben
All-Solid-State-Lithium-Ionen-Batterien trotz jahrzehntelanger Erforschung noch immer keine
breite Anwendung gefunden. Sie versprechen mehrere Vorteile im Vergleich zu Flüssigelektro-
lytbatterien: höhere Leistungsdichte, Minimierung von Sicherheits- und Brandgefahren, längere
Zyklenlebensdauer, umfassendere Temperaturbereiche und Erhöhung der Energiedichte durch
die potenzielle Verwendung von Li-Metall-Anoden. Festkörperelektrolyte der Materialklasse Li2S-
P2S5 haben hier aufgrund ihrer bemerkenswerten Eigenschaften große Aufmerksamkeit erlangt.
Erstens besitzen sie hohe Leitfähigkeiten von bis zu 10−2 S/cm, womit sie zu den leitfähigsten SSEs
zählen. Zweitens bestehen sie aus den auf der Erde reichlich vorkommenden Elementen Schwefel
und Phosphor und ermöglichen daher Anwendungen in großem Maßstab. Allerdings wird das
Design potenter SSEs dieser Materialklasse durch das schlechte Verständnis der Beziehung von
Struktur und Materialeigenschaft behindert. Dies zeigt sich z.B. in großen Abweichungen von
Li-Ionen Leitfähigkeit aus Theorie und Experiment.

Simulationen basierend auf der Dichtefunktionaltheorie (DFT) oder klassischen Kraftfeldern
(force �elds, FF) beschleunigen die Materialanalyse seit Jahrzehnten. Simulation und Modellierung
auf atomarer Ebene sind für das mechanistische Verständnis chemischer Prozesse unersetzlich.
DFT-Methoden sind auf kleine Systeme beschränkt, liefern aber trotz hoher Rechenkosten eine
sehr genaue und vollständige Beschreibung. Obwohl der Rechenaufwand bei der Verwendung
eines klassischen FF gering ist, liefern diese hingegen oft nur eine vereinfachte Beschreibung eines
Materials. Hier haben sich neue Methoden des maschinellen Lernens (ML) als zunehmend in der
Lage erwiesen, diese Lücke zu schließen, indem sie die Genauigkeit der Dichtefunktionaltheorie
bei stark reduzierten Rechenkosten ermöglichen.

Die Grundannahme der Lokalität, die die Vernachlässigung langreichweitiger Wechselwirkun-
gen impliziert, ist in vielen Fällen problematisch. Zu diesem Zweck ist das zentrale Thema dieser
Arbeit in drei Fragestellungen aufgeteilt. Zunächst war es notwendig Systeme zu identi�zieren,
bei denen diese Lokalitätsannahme nicht ausreicht. Der Fokus lag insbesondere darauf, wann
und warum die Lokalitätsannahme für polare und ionische Systeme wie SSEs gilt und wann sie
versagt. Im zweiten Schritt haben wir, als wir erkannten, dass eine genaue Beschreibung isotroper
Materialien durch ein lokales ML-Modell erreicht werden kann, ein nahezu universelles Gaussian
Approximation Potential (GAP) für die kristallinen und amorphen LPS Materialien entwickelt.
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Wir haben das GAP-Model verwendet, um systematisch den Ein�uss der lokalen Anionenzusam-
mensetzung auf die Li-Ionen-Leitfähigkeit in glasartigen Li2S-P2S5-Verbindungen zu untersuchen.
Genauso wie wir erkannten, dass isotrope Systeme durch ein lokales Modell nahezu exakt be-
schrieben werden können, haben wir verstanden, dass wir eine genaue Beschreibung nicht-lokaler
Wechselwirkungen für nicht-isotrope Systeme benötigen. Hierfür haben wir das Kernel-basierte
Ladungsmodel namens kQEq entwickelt. kQEq ermöglicht die Vorhersage von Partialladungen
basierend auf lokalen atomaren Umgebungen.
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Nomenclature
As this thesis combines the nomenclature of di�erent �elds I will use the following notation
throughout this thesis. It is closely related to the original publications i.e. the publication where
the underlying theory has been introduced for the �rst time.

χE Electronegativity
χE,0 Electronegativity of the isolated atom
χECENT Environment dependent electronegativity used in the CENT approach
χd Descriptor vector
Jii Hardness of atom i
J 0ii Hardness of an isolated atom i
ri j Distance between atoms i and j
rA Atomic radius
qi Charge of atom i
Qtot Total Charge
ρi,α Element speci�c neighbour density in SOAP
w Weighting in the element-speci�c neighbor densities
p Power spectra vector
p Elements of the power spectra vector p
c Regression weight
Rn Radial basis function
Ylm Spherical Harmonics
fcut cuto� function
kd Kernel function using descriptor vectors d
KNN Kernel matrix of dimension N x N
λ Regularization parameter
ΣNN Diagonal matrix containing the regularization parameters λ
N Number of input parameters
Nt Number of training points
UE Electrostatic potential energy
kC Coulomb constant
E(+1) Energy equivalent to removing an electron
Etot Total energy
ϵd (χd ) local energy corresponding to a descriptor d
δ (d ) Scaling parameter of descriptor d ∈ [2b,3b,SOAP]
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List of Abbreviations
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CENT Charge equilibration via neural network technique
DFT d Density Functional Theory
EA Electron A�nity
EN Electronegativity
FF Force Field
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GPR Gaussian Process Regression
IP Ionisation potential
kQEq Kernel QEq
KRR Kernel ridge regression
LPS LiPS material class
ML Machine Learning
NN Neural Network
PES Potential energy surface
QEq Charge equilibration scheme by Rappe and Goddard
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1 Introduction
“Our dangerous reliance on carbon-based fuels is at the core of all these problems- economics,

environmental, national security.” [1]

In his Nobel prize lecture in 2007, Al Gore pinpointed the need for an immediate carbon-free
economy. In times of inner European aggression, Al Gore seems right. More than ever.

Thirteen years later, clean energy technologies’ worldwide market lies at approximately 130
billion USD only.[2] Nevertheless, there are signs of improvement. Whilst the global economy
su�ered from the impact of COVID-19,[3] renewable energies expanded by their fastest rate in two
decades.[2] Record sales of electric vehicles are set daily.[4] Policy changes, such as a solar panel
mandate for new non-residential buildings in Germany [5, 6], indicate that the energy economy of
future generations will be unrecognizable to our current one.[7–9] Although sustainable energy in
our economy is without alternative, it is unclear what the supply with solely regenerative energy
will look like.

Batteries are by far the largest part of the clean energy technology market, a market expected to
increase to 1.2 trillion USD by 2050.[2] The current majority of lithium-ion batteries (LIBs) utilize
liquid electrolytes, which are in competition with All-solid-state (ASS)-LIBs.[8, 10–12] In theory,
these are advantageous over liquid-electrolye LIBs, as they minimize safety and �re hazards, have
longer cycle lifetimes and more comprehensive temperature ranges, and enhance energy density
via the potential use of Li metal anodes.[11, 12]

A promising subgroup of ASS-LIBs is the Li2S-P2S5 (LPS) material class.[13] First, they possess
high conductivities of up to 10−2 S/cm, even higher than the well known electrolytes Li10GeP2S12
or Li1.3Al0.3Ti1.7(PO4)3.[14, 15] Secondly, they consist of earth-abundant elements sulfur and
phosphorous.[16] A critical, yet often neglected factor, as abundance is required for sustainable
large-scale global implementation. [8]

When �rst commercial energy storage devices entered the market, sustainable energy research
targeted speci�c energy technologies and related materials.[17] While there is an ongoing hunt for
the jack-of-all-trades material,[18] design of potent SSE is typically hampered by the poor under-
standing of structure-property relations.[19] Hence, e�orts such as the e-conversion cluster or the
BIG-MAP project target disorder and materials interfaces that underlie these changes of material
functions.[20] Examples of successful material improvements by a mechanistic understanding
range from atomic-scale complexions [21, 22], via interface amorphization processes that improve
stability and capacity of batteries [23–25], to nanoscale disorder in solar cell materials.[26, 27]

Likewise, using LPS on a large scale is hindered by a poor understanding of Li-ion conduc-
tivity mechanisms, amorphization and degradation processes.[13] From a modeling perspective,
investigating these observations realistically at the atomistic level strains the capabilities of state-
of-the-art theoretical approaches.[28] On one hand, the system sizes and simulation time scales
required are prohibitive for �rst-principles methods such as density functional theory (DFT).[29,
30] That simply means that the sheer number of calculations, requires simulation approaches
multiple orders of magnitudes faster than standard DFT. On the other hand, parameterizations for
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empirical potentials are often not available, and these potentials may ultimately lack the desired
predictive accuracy. Fortunately, modern machine learning (ML) potentials are increasingly able to
bridge this gap, promising �rst-principles accuracy at a much reduced computational cost.[28] In
the past ML potentials have increasingly been a standard tool for atomistic simulations. The most
prominent examples are Neural Networks (NN) [31–36] and Gaussian Approximation Potentials
(GAP)[37–40], which enable simulation with nearly DFT accuracy while accelerating simulations
almost reaching the speed of classical empirical potentials in some cases.[28, 30] As indicated
by their name, empirical potentials gain their speed from a simple �xed analytical form.[41]
Flexibility and transferability are dominated by choice of the functional form of the potential
energy surface (PES).[42] Opposed to that, ML potentials do not have a �xed functional form, but
instead Machine Learning is used to learn an approximated PES as accurately as needed. [30]

When �rst introduced, ML mehods such as NN used a �xed structure. The NN was then
optimized for a certain number of degrees of freedom, i.e., number of atoms.[32] These cannot be
used to predict energies for a di�erent system size/di�erent number of atoms, since the optimized
weights are valid only for a �xed number of input nodes of the NN. In order to overcome this
scaling limitation, the locality assumption was introduced: The total energy E of the system can
be de�ned as a sum of atomic contributions ϵi and hence the energy associated with a given atom
depends on its immediate environment but not on atoms outside a given cuto� radius.[32, 43, 44]

However, this locality approximation implies that long-range contributions arising, e.g., from
electrostatic interactions, are neglected beyond a certain cuto�.[37] Although the need to include
long-range electrostatics in a similar fashion as in empirical potentials appears straightforward at
�rst glance, the success of short-range ML potentials for the modeling of certain properties of
ionic and polar materials appears to say something di�erent.[45–49] Therefore, the �rst task was
to identify a system and simulation tasks where the locality assumptions hold in some cases but
fail in others. To study the role of long-range e�ects, GAP were constructed with and without
an electrostatic correction term. As we studied the role of anisotropy, we realised that current
electrostatic and charge equilibration models lack the required �exiblity. Hence, we extended
the classical charge equilibration model QEq by an environment-dependent electronegativity
and showed that our kernel QEq model (kQEq) can be used to generate accurate and highly
data-e�cient models for molecular dipole moments.

Chapter 2 will introduce the general concepts of SSEs speci�cally, materials of the Li2S-P2S5 class,
and discuss current challenges. Chapter 3 focuses on the two parts characteristic for ML potentials,
namely the atomic descriptor and the concept of regression. I discuss the GAP framework and
give a tutorial like introduction to the regression methods used in this work. The �nal chapter 4
focuses on the derivation of the charge equilibration and long-range interaction and the discussion
of previously published machine learning charge prediction schemes.
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2 Li2S-P2S5 Solid-State Electrolytes and theirchallenges
2.1 Solid-State Electrolytes
Lithium-ion batteries (LIBs) are currently the most e�cient electrochemical energy storage tech-
nology in terms of energy and power densities, reliability, and rechargability. While LIBs with
liquid electrolytes reached commercialisation at the beginning of the 90s, all-solid-state Lithium-
ion batteries (ASS-LIBs) are still not widely used. ASS-LIBs promise several advantages, regarding
reduced �ammability and operation safety in electri�ed mobility, longer lifetimes, and higher
energy density. [11, 12]

A common drawback of liquid electrolytes are side reactions in which soluble products are
generated at one electrode and consumed or further reacted at the other electrode, often called
chemical cross-talk.[50] A well known example is the Li-S shuttle e�ect.[51, 52] Soluble electrode
components can di�use, being responsible for the progressive leakage of active material from the
cathode.[53] In solid-state electrolytes (SSEs) only lithium ion transfer is exhibited as the SSE acts
as a functional separators with only resulting in minor self-discharge. The negligible self-discharge
is typically attributed to a low residual electronic conductivity.[21] In liquid electrolytes, most
compounds (Li ions and most anions) are mobile. The mobility of all chemical species can cause
concentration gradients of the conducting salts. This salt gradient leads to bulk polarization,
limiting the cell current. As in SSBs only Li ions are mobile, higher current densities can be
reached and hence lower charging times are enabled. [11, 14] A desired feature of SSEs is the use
of lithium-metal anodes. The hope was that due to mechanical rigidity of SSEs dendrite formation
caused by electrodeposition of lithium can be prevented.

SSEs can be divided into three groups. Organic solid polymers, inorganic solids, and solid
like dispersion of nanoparticles in liquids.[54] The last group is often referred to as semi-solid
electrolytes and form a group on their own. Although solid polymer electrolytes appear to be the
preferred choice as they can compensate for volume changes of electrodes by elastic and plastic
deformation, they lack the required high ionic conductivities for battery operation.[55] Batteries
using inorganic solids — either crystalline, glass or glass-ceramic in nature — have demonstrated to
improve battery performance at high currents.[56] This is in contrast to a common misconception
that SSEs are inherently poor ionic conductors at ambient temperature.[56] In fact a number
of ternary and quaternary sul�des and thiophosphates (Li2S-P2S5 and Li10GeP2S12) have been
reported to exhibit room temperature conductivities equal or even higher than typical liquid
electrolytes.[14, 57, 58]

So why is it that ASSBs are not fully applicable already? The major drawback of many inor-
ganic SSEs is their low thermodynamic stability.[59] Just like liquid electrolytes, SEs are easily
oxidized at intermediate potentials and reduced at low potentials.[60] Protecting interfaces are
therefore required to stabilize the electrode/electrolyte contact.[61] While oxides often experience
mechanical failure through cracking, thiophosphates such as the herein studied (Li2S-P2S5) are
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ductile and easily form dense cathode composites.[62]

Fig. 2.1: (Left): Schematic architecture of a solid-state battery adapted from Zeier and Janek.[11] Cathode
and anode are separated by the solid-state electrolyte that allows for lithium-ion di�usion. Porous
cathodes typically made of layered transition metals are the largest component of a battery. Anodes
and cathodes both serve as the active storage component of the battery, but known cathode materials
have a lower Li density. The cathode is typically coated on thin aluminium foils (current collector).
In a SSB the classically used porous graphite anode could be replaced by Lithium metal. (Right top):
Major challenges in modeling solid-state batteries: The use of a lithium metal anode can signi�cantly
increase the cell energy density resulting in a dramatically increased cell energy density. However,
resistive solid electrolyte interfaces (SEI) may form between the lithium anode and the SSE (Right
top). Inhomogeneous lithium metal deposition can form dendrites. Dendrite formation represents a
simulation task that requires an accurate description of charge-transfer plus the ability to model SEI.
Modeling lithium ion di�usion within a solid and over a solid-solid interface strains the capability of
modern simulation techniques. Near ab inito accuracy for long and large simulation cells are required
to determine a full picture of lithium ion motion. When modeling amorphization and the formation
of interfaces, it is crucial to describe reactivity in order to predict degradation processes that happen
during charging and discharging of a battery.

In Fig. 2.1 I give a schematic architecture of a solid-state battery as proposed by Zeier and Janek
and including current challenges in modeling solid-state batteries.[11] Already during synthesis
but especially during operation, SSE form resistive solid electrolyte interfaces (SEI) between
the lithium anode and the SSE. Although material interfaces can be engineered so they form a
protective layer, realistic models are challenging in both cases.[21] Secondly, inhomogeneous
lithium metal deposition in the anode as well as in the SSE itself can form dendrites.[63] For
modelling dendrite formation we require an accurate description of charge-transfer plus the ability
to model disorder in both electrodes and the SSE. The pure size of realistic simulation setups as
well as the simulation time in order to realistically model lithium ion di�usion within a solid and
over a solid-solid interface strains the capability of modern simulation techniques. Near ab initio
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accuracy, in long and large simulation cells are required to determine a full picture of lithium ion
motion. Finally, when modeling disorder, defects, amorphization and the formation of interfaces,
it is crucial that the underlying model is reactive and hence can predict degradation processes
that happen during charging and discharging of a battery.

The key to further advance in the ASS-LIB �eld is to fully understand material disorder, inter-
facial properties and eventually feature a lithium metal electrode and outperform conventional
lithium ion batteries.[11] In this light, it is evident that the development of Li ion batteries doesn’t
hinge on the development of appropriate solid bulk electrolyte materials, but a systematic under-
standing of material properties. In the following chapter I will summarize the structural and ionic
conduction properties of the Li2S-P2S5 material class, highlighting the challenges for an atomistic
understanding of these materials.
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2.2 The Li2S-P2S5 Solid-State Electrolytes
Sulfur based electrolytes gained attention as SSEs due to an inherent high ionic conductivity
(>10−3 Scm−1), [64] and their good contact with electrode materials due to their mechanical soft
nature. [65] The thiophosphate electrolytes in the “simple” Li2S-P2S5 two component system (LPS
family) are particularly interesting as they possess high conductivities without the addition of a
transition metal (Si, Ge, Sn).[58] Accordingly, a variety of crystalline and amorphous materials in
the LPS material class were reported over the past two decades.[13] In literature two nomenclatures
for the LPS material class are found. Either the material is characterized by its chemical formula
or by its mass percentage of Li2S, i.e. Li3PS4 or 75 mol% Li2S.

Although crystalline and amorphous materials are - in principle - of in�nite structural diversity,
in LPS �ve anionic species are commonly observed. As illustrated in Fig. 2.4, these species are
characterized by central phosphorus atoms, each bonded to either four sulfur atoms or a neigh-
bouring phosphorous atom and three sulfurs.

Fig. 2.2: P-S microchemistry/ anionic species formed within Li2S - P2S5.[13] Phosphorous is displayed in red,
sulfur in yellow.

These features were identi�ed and characterized in detail for the �rst time by Dietrich et al.
[58] in 2017 and can be summarized as follows:

• Ortho-thiophosphate moieties PS3−4 (tetrahedra) are dominant for high Li2S quantities (>75
mol%).

• Pyro-thiophosphate moieties P2S4−7 are formed by two corner sharing PS4 tetrahedra. They
are typically observed for Li2S quantities <75 mol%.

• Hypo-thiodiphosphate moieties P2S4−6 are composed by two PS−3 units with a direct P-P
bond. It should be noted that phosphorus in P2S4−6 has a formal oxidation state of +IV,
whereas its formal charge in the rest of the LPS anions is +V.
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• Meta-thiodiphosphate moieties P2S2−6 and Meta-thiophosphate (PS−3 )n are both observed in
the 60 mol% Li2S crystalline composition. Meta-thiodiphosphate has two edge sharing PS3−4
units, Meta-thiophosphate moieties are described as the polymeric corner-sharing chains of
PS−3 .

Crystalline Phases of Li3PS4, Li4P2S6, and Li7P3S11
In the ternary Li-P-S phase diagram, Li3PS4, Li4P2S6, and Li7P3S11 are probably the most commonly
studied compounds.[13]

Fig. 2.3: Crystal structures of the Li2S–P2S5 composition line. The structures are grouped by their local
P–S motifs. Note that Li4P2S6 does not exactly lie on the Li2S–P2S5 composition line, but is the
crystallization product of glassy Li4P2S7. (Li: blue; S: yellow; P: red)

Li3PS4: Li3PS4 is the crystalline compound of Li2S content of 75 mol% and can be found in three
di�erent phases: α , β , and γ -Li3PS4. All of them solely contain the simplest PS3−4 anion. As seen
in Fig. 2.4 conceptually, these three phases can be distinguished by their di�erent arrangement
of PS3−4 anions. These are either all pointing in the same direction (γ ), are arranged in a zig-
zag fashion in one (α ) or two directions (β) in space.[66] The room temperature stable phase is
γ -Li3PS4, exhibiting a phase transition at 600K (γ to β) and at 800K (β to α ).[67] As operating
temperatures of ASSBs are usually smaller than 400K the α phase is less relevant for battery
applications as it is not stable at RT. Apart from that, due to small stoichiometric changes, β-Li3PS4
has been shown to occur at RT. [68]
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Fig. 2.4: Arrangements of PS4 tetrahedra in the α , β , and γ in Li3PS4.[69] (Li: blue; S: yellow; P: red)

A fourth crystalline Li3PS4 called δ , was predicted by Iikubo et al . using an evolutionary
algorithm under high-pressure of 5GPa.[70] To the best of my knowledge, δ -Li3PS4 has not
been experimentally observed. Low RT-conductivities of 2.6 x 10−7 and 9.0 x 10−7 S cm−1 are
experimentally reported for both relevant crystals (γ to β).[67]

Li7P3S11: Crystalline LiP3S11 is obtained for 70 mol% Li2S. It is an extremely important mem-
ber and well studied crystal of the LPS family due to its very high ionic conductivity (up to
1.7 x 10−2 Scm−1 at RT).[71] It has a triclinic P-1 space group, composed by a 1:1 ratio of PS3−4
and P2S4−7 . Lithium ions are exclusively tetrahedrally coordinated.[72] Obtaining fully crystalline
Li7P3S11 is challenging due to its narrow stability window.

Fig. 2.5: Crystallographic structure of Li7P3S11. It features terminal (I) as well bridging (II) sulfur atoms. (Li:
blue; S: yellow; P: red)

As seen in Fig. 2.5 Li7P3S11 features two distinct sulfur species, namely in bridging and terminal
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positions. Our evaluations using Hirshfeld population analysis [73] indicate that these species
correspond to di�erent charge states. It is generally obtained as a glass-ceramic. [74] While
Li-ion conductivity in LPS is usually determined via a di�usion of defects (Li+ vacancies), Li7P3S11
exhibits a more collective Li+ motion yielding superior conductivity compared to the other of its
crystalline counterparts.[75, 76]

Li4P2S6 Synthesizing Li4P2S6 crystals is unique as its composition is not exactly in the sto-
ichiometric line between Li2S and P2S5. Li2S contents of 67 mol% yields Li4P2S7 glass. The
corresponding reaction is:

2Li2S + P2S5 
 Li4P2S7 
 Li4P2S6 + S

The crystal structure of Li4P2S6 was initially reported as being P6 3/mcm when �rst synthesized
in 1982,[77] recent studies predicted a stacking of P2S4−6 yielding P-31 m.[78] Quenching the
Li2S contents of 67 mol% melt yields glassy Li4P2S7. Subsequent annealing leads to the formation
of crystalline Li4P2S6 and sulphur.[77, 78] It is important to emphasize, that the local structures of
glassy Li4P2S7 and crystalline Li4P2S6 di�er signi�cantly. The dominant anion of the Li4P2S7 glass
is P2S4−7 , while as shown in Fig. 2.6 in crystalline Li4P2S6 the material solely contains P2S4−6 .[58,
78] Li4P2S6 is a commonly observed byproduct of other members of the LPS material class.[78]

Fig. 2.6: (a) rystallographic structure of Li4P2S6 with a D3d symmetry. The P–P bonds are along the crystal-
lographic z axis. (b) Ball-and-stick diagram of the P2S6 ion units. The blue arrows indicate the two
possible placements of the P.[79] The origin of the unit cell can either be at the center of the P-P bond
or located between P2S6. (Li: blue; S: yellow; P: red)

Especially, the metastable Li7P3S11 crystal degrades at high temperatures above 1000K leading
to the formation of Li4P2S6.[80] Indeed, these reactions can be attributed to the evaporation of
Li4P2S7 and the high stability of the Li4P2S6 phase. The ionic conductivity of Li4P2S6 is very
low (10−6 Scm−1) but can be enhanced when synthesized as a glass ceramic structure.[58] In the
glass-ceramic microstructure, the amorphous part is mainly composed of PS3−4 units.[58]
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Glasses and Thiophosphate Microchemistry
While LPS crystals have �xed stoichiometries and P-S anion matrices, high structural variability
is found in LPS glasses.[72, 78] The plasticity arising from the amorphous nature of the glasses
makes them more robust to mechanical stress, exerted by volume changes during cell cycling.[11]

Amorphous structures of xLi2S-(100-x )P2S5 have been synthesized and systematically studied
in the range 60 < x < 80.[78] Similar to crystalline LPS, the choice of x in�uences the anion
composition. Except for Meta-thiodiphosphate (P2S2−6 ) all thiophosphate anions were experimen-
tally veri�ed via 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) and Raman
measurements.[78, 81, 82] In general though, compositions are dominated by PS3−4 and P2S4−7 with
the corresponding species ratio highly depending on the choice of x . At low Li2S contents (60 ≤
x≤ 70) P2S4−7 is the dominating anion, while higher Li2S content favours PS3−4 anions.

The P2S4−6 anion content is a�ected by the method of synthesis. A ball milling approach yields
up to 10 % P2S4−6 anion independent of x .[78, 83] In contrast to that a microwave assisted synthesis
route minimizes the formation of P2S4−6 anion at RT.[78, 81, 82] Thiophosphate-chains (PS−3 ) have
only been demonstrated for low Li2S contents (x=60).[58, 78]

Essential di�erences of crystalline and glassy LPS, in addition to anion content, are Li+ conduc-
tion mechanisms. For glassy Li3PS4 , the so-called paddlewheel e�ect has been found to increase
the RT conductivity by several orders of magnitude.[84] The paddlewheel e�ect describes quasi
continuous PS3−4 re-orientations during Li+ migration. Li ion conductivities are between 10−5 and
10−4 Scm−1. They are less conductive than the Li7P3S11 crystal, but signi�cantly higher than the
crystalline Li3PS4 phases.[78–80, 85, 86] An interesting experimentally observed trend in LPS
glasses is an increased Li-ion conductivity with increasing Li2S content.[58]

2.3 Challenges from a Modeling Perspective
Realistic modelling of battery materials is an ongoing journey, challenging time and size scales
of all available methods we currently have in our toolbox. Ranging from polaron assisted Li
di�usion[87], studies on nano-scale complexions using empricial potentials[21] to kinetic Monte
Carlo investigations of Lithium intercalated in graphite[88] our group always tried to push state
of the art approaches to its limits. Developments in the �eld of operando spectroscopy enabled
detailed structural insight into batteries during operation. A key �nding of operando experiments,
not just in battery research but also catalysis and other �elds, is the awareness that a static picture
of a material is not enough and sometimes even wrong.[89] To establish multiscale relations
between atomistic features and a material’s macroscopic behaviour and electrochemical properties
we need to describe atomic interactions as accurate as possible on a size and time scale that is
statistically robust in an ensemble like fashion. So far, the methods of choice are based on DFT
for small/short but very accurate simulations and empirical potentials for large/long simulations
that are limited in their accuracy. Empirical potentials gain their speed and robustness from �xed
functional forms which comes at the cost of lacking reactivity or describing chemical variations
in LPS material inaccurately. In that respect my personal experience was always that accuracy in
a numerical sense often seemed to be taken too seriously and accuracy in a sense of consistency
with experimental observations to be underrepresented.

The approach taken in this thesis, is to replace �xed functional forms of empirical potentials
by �exible functional forms of machine learning interatomic potentials in order to combine the
accuracy of �rst principle methods with the speed of empirical potentials. In materials modelling
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we are typically interested in the total energy Etot of a system. We can de�ne Etot as a sum of local
contributions Elocal and long-range electrostatic EES yielding the following energy expression

Etot = Elocal + EES (2.1)

The following two chapters will evolve around this expression of the total energy. While chapter
2 focuses on the local energy contribution Elocal retrieved from the GAP framework, chapter 3
derives the EES expression in the context of the charge equilibration scheme QEq. Hence, the
underlying structure of each chapter is always the same: Starting from the energy expression
of either the local or electrostatic term each section introduces key steps how these energy
expressions are obtained.
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3 Machine-learning interatomic potentials inmaterials science
3.1 Machine Learning Potentials: A general Overview
In principle, the most accurate way to obtain total energies and atomic forces of a system is by
solving the Schrodinger equation (SE).Unfortunately, an analytic solution is only feasible for
very-simple systems such as the hydrogen atom. For larger chemical structures, the SE is typically
solved approximately. However, even with approximations, an accurate numerical solution of the
SE is a computationally extraordinary demanding task.

In the past, simple empirical functions are commonly used to model the relevant interactions.
From these FF, energies and forces can be obtained with much reduced costs. However, while
o�ering a qualitatively reasonable description of chemical interactions, the accuracy of the un-
derlying FF and hence the quality of the simulations can be very limited.[90] ML methods could
bridge this gap between accuracy of ab initio methods and e�ciency of classical FFs. When using
ML methods the user aims to train an algorithm to learn the functional relationship between
inputs (chemical descriptors) and outputs (properties) from patterns or structure in the training
data.

As we already introduced, in order to create a general ML potential that can be employed
for systems of varying size and composition, just as with many empirical potentials (e.g. EAM,
Terso�) a locality assumption is typically made.[32, 38, 91, 92] The system’s total energy is thus
approximated purely as a sum of local (atomic) contributions:

Etot ≈ Elocal =
N∑
i

ϵ(Zi , χi )fcut (3.1)

where the sum runs over the N atoms in the system and each atom i contributes with an energy ϵ
that only depends on its atomic number Zi and its local chemical environment, represented by
the descriptor χi . [32, 38, 93–95] This implies that electrostatic contributions outside a cuto�, in
the above function de�ned by a cuto� function fcut , are negligible.

Three components are needed to generate an ML potential for a given material/material class:

• A database of reference structures and associated quantum-mechanical data.

• A way to represent the atomic structure such that these can be used by the ML algorithm

• The regression or “learning” algorithm itself.

While I discussed the target materials in the previous chapter, I will discuss tasks two and three in
the following chapter.
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3.2 The Gaussian Approximation Potential Framework
In this work I used the Gaussian approximation potential (GAP) framework.[38, 39] The GAP
software is implemented in the QUIP code.[96] As well as in other ML frameworks, the total energy
of an atomistic system is a sum of atomic (“local”) energies, from training data that consist of the
system’s cartesian coordinates, total energies and their derivatives. In GAP, the two components
for modeling are the representation of atomic environments typically using n-body (with n=2,3)
descriptors as well as the many-body descriptor smooth overlap of atomic positions (SOAP), and
the regression task which is in this framework a Gaussian Process Regression (GPR).

The commonly used energy expression in GAP is

Etotal = Elocal = (δ (2b))2
Nt∑

i ∈pairs
ϵ (2b)(χ (2b)i )

+ (δ (3b))2
Nt∑

j ∈tr iplets
ϵ (3b)(χ (3b)j )

+ (δ (SOAP ))2
Nt∑

a∈atoms

ϵ (SOAP )(χ (SOAP )
a )

(3.2)

“2b”, “3b”, and “SOAP” denote two-, three-, and many-body interactions each containing a scaling
parameter δ (d ). The scaling parameter de�nes the energy contributions of a given interaction.
To the best of my knowledge, Volker Deringer and Gabor Csanyi �rst introduced that energy
expression for a GAP on amorphous Carbon in 2017.[37] From that energy expression, I will
now introduce the ingredients of the GAP framework in a step-by-step manner starting with
descriptors/representations of local atomic environments followed by the GPR framework.

3.3 Descriptors of local atomic environments
The set of descriptors χd = {χd1 ,χd2 ,...,χdN } with d ∈ {2b, 3b,MB} encode the local environment of
every atom i .[97] One possible terminology de�nes a descriptor by being a mapping of an atomic
con�guration i , typically a molecule or a solid de�ned by the cartesian coordinates and chemical
identity of its N atoms, into a suitable representation for the regression task.[30] The mapping
associates i with points in feature space, which are then used to construct a machine-learning
model to regress (�t) a structure-property relation.

One can de�ne four desirable properties/requirements for a structural descriptor: First, the
descriptor should obey fundamental physical symmetries. Second, the descriptor should be
smooth i.e. continuous changes of a structure should yield a smooth change in the associated
descriptor. Third, it should be complete hence inequivalent structures should yield distinguishable
descriptors. Finally, in order to be able to ensure transferability to systems of varying molecular
size, the descriptor should be additive e.g. structures should be decomposed in a sum of local
environments.[98, 99]

The need to remove the dependency of the Cartesian coordinates on the origin and orientation
of the reference system, is a key in chemical simulations. Already in classical FF di�erent sets of
internal coordinates (bonds, angles, and torsions) have been proposed, based on chemical intuition,
as invariant descriptors of molecular geometry. In fact classical FF have been extremely e�ective
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in the modeling of biological systems. When ensuring fundamental physical symmetries this
means that the descriptor χ (d ) has to be invariant 1 under symmetry operations and permutation
of equivalent atoms in addition to translation and rotation of structures.

In practice, in addition to SOAP, a multitude of descriptors χ (d ) are available and di�erent
authors have their favorite descriptor.[32, 38, 93, 94]

3.3.1 Kernel Function
Before we can introduce n-Body Descriptors, we need to highlight the role of kernel functions. In
GAP, the local energy corresponding to each type of descriptor d ∈ {2b,3b,MB} can be given by a
linear combination of kernel functions

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d)t K (d )(χ (d )i , χ
(d )
t ) (3.3)

where t denotes one ofNt training con�gurations χ (d )t . Each training con�guration has a weighting
coe�cient wt . The weighting coe�cient is attained during �tting. The covariance kernel K
quanti�es how similar the input con�guration χ (d ) is to the training con�guration χ (d )t . In
practice, one sparsi�es the representation and only allows the sum to range over a number of
“representative points” drawn from the full training database (Nt � Nf ull ).

So what is now a kernel? In machine learning, a ’kernel’ is usually used to refer to the kernel trick,
a method of using a linear classi�er to solve a non-linear problem. The kernel transform linearly
inseparable data to linearly separable ones. As seen in Figure 3.1 the kernel function K is thus
applied on each data point to map the original non-linear observations into a higher-dimensional
space in which they become separable. In this work we thus use the following nomenclature:
Cartesian coordinates are transformed by basis functions of the underlying descriptor, yielding a
descriptor vector. Each element of that descriptor vector is referred to as a feature.

Fig. 3.1: Graphical representation of the kernel trick: In 2-d, non-separable data (input space) become linearly
separable data in 3-d (feature space) after applying the kernel transformation K.

1It is important to note, that χ (d ) should be invariant to the things that the target property is invariant to. For example,
energy is a translation and rotationally invariant property, but a molecular dipole isn’t.
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In the GAP-framework, for 2b and 3b contributions, a squared exponential kernel is

K (d )(χ (d ), χ (d)t ) = exp

(
−

∑
ς

|χ (d )ς − χ (d )t,ς |2

2σ 2
ς

)
(3.4)

with ς being an index running over the elements of the descriptor vector χ and σ being the width
of the exponential kernel. The elements of the descriptor vector are often referred to as features.
A polynomial kernel is used in order to compare many-body (SOAP) environments

K (SOAP )(χ (SOAP ), χ (SOAP )
t ) =

( χ (SOAP ) · χ (SOAP )
t√

χ (SOAP ) · χ (SOAP )
t χ (SOAP ) · χ (SOAP )

t

)ζ
(3.5)

3.3.2 n-Body Descriptors
In the case of two-body contributions we use the above introduced local energy expression

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

w (d)t K (2b)(χ (2b)i , χ (2b)t ) (3.6)

using a squared exponential kernel yielding

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

w (d)t exp

(
−

∑
ς

|χ (d )ς − χ (d )t,ς |2

2σ 2
ς

)
(3.7)

In this case, we simply use distances ri j between atoms i and j , hence the descriptor has one single
scalar component and the local energy expression for a two body contribution simpli�es to

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

Nt∑
j=1

w (d )t exp

(
−
|ri j − r jk |2

2σ 2
2b

)
(3.8)

Fig. 3.2: Graphical representation of n-body (here n=2,3) descriptors for a simple methane molecule. 2-body
terms encode the chemical environments via atomic distances. 3-body terms add angular information
between atoms. Instead of describing 3-body terms via the angle between three atoms, a general
3-body de�nes angular information by three atomic distances.
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The simplest way to guarantee rotational, translational and permutational invariance is to
represent an atomic structure via a set of atomic pairwise distances ri j accounting for all atom
pairs i and j.

The two-body contribution E(2b) can be obtained by comparing all eligible distances ri j = |ri−r j |
in a molecule or crystal via a smooth and regular kernel function k2b : RxR→ R

k (2b)(ri j , rik ) = exp

(
−
|ri j − r jk |2

2σ 2
2b

)
(3.9)

de�ning the similarity of distances via a Gaussian function of width σ2b . The width σ2b controls
the smoothness of the kernel. The energy E(2b)i (ri j ) of atom i is given by summing local energies,
each de�ned by its kernel values k (2b)(ri j )

E(2b)i (ri j ) =
Nt∑
j

ϵi j =
Nt∑
j

w jk
(2b)(ri j , rik ) (3.10)

with w being the regression weights. For a detailed discussion of the regression weights see
sec. 3.4.

Three-body descriptors add angular information, i.e. energy contributions arising from the
relative position of three atoms i, j,k . Equally to the 2-body descriptor, we can de�ne a three-body
kernel k3b : R2xR2→ R de�ning the energy as

E(2b,3b)i (ri jk ) =
Nt∑
j

w jk
(2b)(ri j , rik ) +

Nt∑
j

w jkk
(3b)(rik , ri j , r jk ) (3.11)

In the 3-body descriptor of GAP, distances ri j , rik , and r jk are not directly used, but a di�erent
form is used to enforce symmetry over permutation of the neighbor atoms j and k .

q(3b) =
©­­«
ri j + rik
(ri j − rik )2

r jk

ª®®¬ (3.12)

But as shown in Fig. 3.2, already a 3-body descriptor can be de�ned in multiple ways. Either by
a set of three atomic distances (or a combination of these) or by an angle between three atoms.
While it can be crucial to include higher body order terms to achieve a higher accuracy, when
de�ning a many-body representation, the possibilities to de�ne the descriptor space seems nearly
in�nite. [97] In the next section I will introduce the widely applied Smooth Overlap of Atomic
Positions (SOAP) descriptor as my many-body descriptor of choice.

3.3.3 Smooth Overlap of Atomic Positions Descriptor
In the past, SOAP has been one of the most widely applied many-body representations.[39]
In SOAP, neighboring atoms are represented by overlapping Gaussian functions yielding the
neighbour density. While the neighbor density is by construction already invariant to permutation
and translation, rotational invariance still has to be introduced. This is achieved by expanding the
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neighbor density in the basis of orthogonal radial distribution functions and spherical harmonics.
We again start by the energy expression

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d )t K (d )(χ (d )i , χ
(d)
t ) (3.13)

using a polynomial kernel

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d )t

( χ (SOAP ) · χ (SOAP )
t√

χ (SOAP ) · χ (SOAP )
t χ (SOAP ) · χ (SOAP )

t

)ζ
(3.14)

In a �rst step the atomic structure is transformed into atomic density �elds ρ for each species α .
We can de�ne a set of element-speci�c neighbor densities ρi,α for each central atom i

ρi,α (r) =
∑
j

fcut · (ri j )exp
(
−
|r − ri j |2

2σ 2
α

)
(3.15)

with σα being an element-speci�c descriptor width and fcut a cuto� function. As discussed the
neighbour density in eq. 3.15 is already invariant to permutations between equivalent atoms and
translation. Rotational invariance can then be introduced by expanding the neighbor density in a
set of orthonormal radial basis functions дn and spherical harmonics Ylm

ρi,α (r) =
∑
nlm

w i,α
nlmдn(r )Ylm(r̂) (3.16)

In this de�nition of the neighbour density ρi,α r is the vector containing the cartesian coordinates
of atom i , r in the radial basis functions дn(r ) is the magnitude and r̂) in the spherical harmonics
Ylm(r̂)) is the direction. The coe�cients w i,α

nlm can be obtained by projecting the density onto the
basis functions via

w i,α
nlm =

∭
dVдn(r )Ylm(θ ,ϕ)ρi,α (r). (3.17)

One typically does not use the entire powerspectrum, but the elements of a �nite truncation of
the power spectrum (up to n ≤ nmax and l ≤ lmax ). Hence, these hyperparameters nmax , lmax
have to be chosen according to the investigated system. The now rotationally invariant output is
the partial power spectra vector p with the individual elements:

piαα
′

nn′l =

√
8π 2

2l + 1
∑
m

w i,α
nlm ·w

i,α ′

n′lm (3.18)

In an alternative de�nition of SOAP by Ceriotti and coworkers[97], the spherical harmonics
can be de�ned by angular terms θ and ϕ as

ρi,α (r) =
∑
nlm

w i,α
nlmдn(r )Ylm(θ ,ϕ) (3.19)
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with the coe�cients w i,α
nlm

w i,α
nlm =

∭
dVдn(r )Ylm(θ ,ϕ)ρi,α (r). (3.20)

and the elements of the powerspectrum

piαα
′

nn′l =

√
1

2l + 1
∑
m

w i,α
nlm ·w

i,α ′

n′lm (3.21)

The kernel function for SOAP is a dot product of the power spectrum elements. When then
using a polynomial kernel (raising the dot product to a small integer ζ ) we get the �nal polynomial
kernel K as de�ned above

K(χi , χt ) =
( χi · χt√

χi · χt χi · χt

)ζ
(3.22)

In addition to the derivation of SOAP, Fig. 3.3 gives a graphical depiction of the above SOAP
derivation. This �gure focuses on the symmetry (permutation, translation, rotation) that is
introduced in the individual steps.

Fig. 3.3: Schematic summary of the steps in a symmetrized �eld construction. In contrast to cartesian co-
ordinates, the atom density �eld is permutationally invariant. By summing over the continuous
translation group we yield an atom centered distribution. Using orthonormal radial functions and
spherical harmonics yields a discrete set of coe�cients that transform as spherical harmonics. The
atomic density functions can be either �nite-width Gaussians, which leads to representations to SOAP
features, or Dirac δ distributions, which recovers the third body order term of the atomic cluster
expansion.[93]

The energy expression can now be expressed in terms of kernel functions

Etotal = Elocal = (δ (2b))2
Nf ul l∑
i

Nt∑
t

K (2b)(χ (2b)i , χ (2b)t )

+ (δ (3b))2
Nf ul l∑
j

Nt∑
t

K (3b)(χ (3b)j , χ
(3b)
t )

+ (δ (SOAP ))2
Nf ul l∑
a

Nt∑
t

K (SOAP )(χ (SOAP )
a , χ (SOAP )

t )

(3.23)

The coe�cients w are determined during the �tting process. In the next section we turn to
gaussian process regression (GPR).
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3.4 Regression Models
The third component determining the use of ML in computational chemistry in addition to
the database and a set of suitable descriptors is the regression of atomic properties. In that
sense regression de�nes the functional dependence of a given quantity on the local structural
environment. Regression models de�ne yi as a function of xi and ci , with ci being the respective
regression weights. The penalty term λ, often referred to as the regularization, is introduced in
some cases

y = f (x , c) + λ . (3.24)

The aim is to �nd the function f (x , c) that most closely �ts the given data. In order to carry out
regression tasks, the form of function f must be speci�ed. First, I will introduce a generalized
formalism of the underlying GPR approach including a simple tutorial-style example. The last
section will discuss the formalism of a sparse regression approach and the role of sparsi�cation
for the prediction of atomic properties.

3.4.1 Gaussian Process Regression
In a recent review on "Gaussian Process Regression for Materials and Molecules" Deringer and
coworkers de�ned two equivalent approaches deriving the GPR framework.[100] Both approaches
highlight di�erent aspects of the �tting process. While from my point of view the weight-space
approach highlights the similarity of Kernel-Ridge Regression (KRR) and GPR based on the choice
of regression weights, the function-space view discusses the fact that the estimator of the local
energies only depends explicitly on the kernel function, and not on the basis functions. In this
section I will discuss the weight-view derivation of GPR but will highlight key information taken
from the function-space derivation.

In the weight-space view of GPR, a function y(x) can be approximated by a function f (x , c),
de�ned as a linear combination of N data points in the training set (usually atoms)

f (x , c) =
N∑
n

cnk(x ,xn) = cTKNN , (3.25)

with c being the regression weights, k the kernel function, and xn the input data. I use the matrix
notation for that regression problem cTKNN in order to be consistent with Fig. 3.4. The �tting of
the GPR model to the data is done by �nding the coe�cients c that minimize the loss function

L =
∑
i

(yi − f (xi , ci ))2 + λ2
N∑
n,n′

cnk(xn ,xn′)cn′ = | |(yref − y)| |2 + ΣcT KNN c. (3.26)

Σ is a diagonal matrix of size N containing all values of λ. By setting dL
dc = 0 to minimize L and

solve for c, to obtain:

c =
(
K − Σ

)−1
yref . (3.27)
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In the GPR framework the Gaussian kernel, sometimes also called square exponential kernel,

k(x ,xn) = exp
( (x − xn)2
2σ 2

length

)
(3.28)

with σlength being the spatial length scale/width of the Gaussian is used.
Let’s now evaluate an example function: y: R→ R. These data points are reproduced from

Ref. [101]. The exact function form of y(x) is unknown so we collect a total of N observations
yref . In Fig. 3.4 the increasing similarity of the predicted function f (x , c) and the true function
y(x) with an increasing number of data points is depicted. While this in principle shows the
relevance of additional data for the accuracy of the prediction, additional data come with an
increasing computation cost. In the last section of this chapter I discuss this and address the role
of sparsi�cation for such problems.

Fig. 3.4: GPR prediction of a function f (x , c) (solid yellow line) of an unknown one-dimensional function y(x)
(dashed black line). The orange shaded area is the standard deviation. GPR provides an uncertainty
information that is not available with a kernel ridge. Using an increasing number of observations N
of data points y the model hyperparameters are �xed.

When updating the Gaussian process (hence adding a new observation n based on its predicted
uncertainty), the updated Gaussian process is constrained to the possible functions that �t the
observations N . Hence, the mean of f (x , c) intercepts all observations N . Additionally, it is
clear that the standard deviation is higher away from the observations, which re�ects our lack of
knowledge about these part of the function.

The kernel width σlength in Gaussian kernel functions together with the regularization λ are
both crucial for the smoothness and the accuracy of the predicted function. The role of σlength and
λ is depicted in Fig. 3.5. The choice is related to the often used terms ’under�tting’ and ’over�tting’
being the left and right panel in Fig. 3.5.

When decreasing regularization and/or kernel width (λ→ 0 , σ → 0) we obtain an improved
alignment of training data N and the predicted function f . As illustrated in the right panel of
Fig. 3.5 an increased precision on the prediction of the training data N when decreasing λ and or
σ diminishes the predictive accuracy for input data unequal to the training data. It is therefore
crucial to determine the accuracy/ predictive power on a set of independent data points.

3.4.2 Sparse Gaussian Process Regression
In practice when training an interatomic potential, full GPR is not applicable for large training
sets, because the computational costs of training scale with O(N 3) i.e. cubical with the training
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Fig. 3.5: E�ect of regularization λ and kernel width σ on the GPR prediction (solid yellow line). Left panel: For
small penalties on the prediction (large λ, σ ) f (x , c) is centered around the average of the observations.
Although the predicted function is smooth, it can not accurately predict the original function and
has a high uncertainty. Right panel: In contrast, small λ, σ over�t the function y(x). Although high
accuracy is achieved for the training data, high uncertainties are yielded for all other data points.
Center panel: An optimal performance is acchieved when balancing smoothness and accuracy with
appropriate λ and σ .

set size.[100] In GAP, instead of using all data points N a smaller set of representative points M(i.e.
M � N ) de�ning the ’sparse’ representation is used. We �rst recall the loss function

L =
N∑
n

(yn − f (xn , cn))2 + R (3.29)

where the relative importance of individual data points being controlled by R. Opposite to the
general case discussed above in sparse GPR the regularization term R is now only depending on
this representative set of M instead of N data points

R = Σ
M∑

m,m′
cmk(xm ,xm′)cm′ . (3.30)

Adding eq. 3.29 to eq. 3.30 and rewriting the loss function in matrix form yields:

L =
(
yref − KNMc

)T
Σ−1

(
yref − KNMc

)
+ cT KMMc. (3.31)

The matrix elements are de�ned as KNM = k(xn ,xm) where N indicates the number of data points
in the data set and M indicates the number of representative points, respectively. Minimizing L
we obtain:

−KMN Σ
−1y + KMN Σ

−1KNMc + KMMc = 0 . (3.32)

When solving for c we yield the following expression:

c =
(
KMM + KMN Σ−1KNM

)−1
KMN Σ−1yref (3.33)

Although, in the �rst glance eq. 3.27 appears to be ’simpler’ compared to eq. 3.33, Fig. 3.7 clari�es
that the coe�cient vector is shorter. Fig 3.7 also sorts out the misconception of sparsi�cation,
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that data points are left out. In sparse GPR, the full data vector y is used in training, yet now M
(’sparse’) locations are chosen to evaluate (unkown) input data. The coe�cient vector is therefore
of length M in the case of sparse GPR, while full GPR yields a coe�cent vector of lenght N .
Evaluating f (xnew, c)=ỹ for a new con�guration xnew is done using eq. 3.25

f (xnew, c) = cT k(xnew) (3.34)

A key bene�t of sparse GPR becomes apparent. While the cost of prediction in full GPR scales
with N , sparse GP is now independent of N . The notation of k(xnew) is used for the vector of
kernel values at xnew and the set of representative points

k(x)m = k(x ,xm) (3.35)

But what does that now mean in the case of the GAP framework? All GAP models are sparse
kernel models, i.e. the basis functions for the linear expansion of the atomic energy do not directly
correspond to the set of input data N . In the GAP framework individual atomic environments are
chosen as the elements of the representative set M , and the corresponding kernel basis functions
are used to expand the atomic energy. The crucial factor, beside the actual number of sparse points
(which can be seen as convergence parameter), is the choice of representative environments for
training. While for a two body-descriptor a homogeneously spaced grid is suitable due to low
dimensionality, the CUR algorithm has been found to be a good algorithm to provide a decent set
of representative data points within the SOAP-GAP model.[100]

Fig. 3.6: Visualization of the full GPR (top) eq. 3.27 and sparse GPR (bottom) eq. 3.33. The training database
consists of N entries. In full GPR all N entries are used to obain the coe�cient vector c of length N. In
sparse GPR, still all entries y are used, but M representative (“sparse”) locations are chosen to obtain a
coe�cient vector c of length M. The �gure is adapted from a review by Deringer and coworkers.[100]
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Fig. 3.7: The coe�cient vector c (green) is computed, and can be used to make a prediction at a new location
f(xnew ) as given in eq. 3.34. The cost scales with the number of data locations, N. In sparse GPR, the
full data vector y is used as well, but now M representative (’sparse’) locations are chosen, with M�
N. The coe�cient vector is therefore of length M, and the cost of prediction is now independent of N.
The �gure is adapted from a review by Deringer and coworkers.[100]
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4 Long-Range Electrostatics and Non-localCharge Transfer
The locality assumption kick-started the �tting of ML potentials and their wide applicability
spanning the range from molelucar to condensed systems.[37, 89] Even in water, where one
would expect long-range electrostatics to be crucial for an accurate description, extraordinary
accuracy of the structural and dynamic properties of bulk liquid water and di�erent ice phases
was achieved using a short-range potential.[102] This can be rationalized by the fact that these
properties/materials are presumably highly isotropic, so that long-range interactions average out.
The importance of long-range e�ects depends on the material and property of interest and thus
demands a systematic analysis.

In this last chapter I will give a historical outline on long-range interactions. Starting with
Coulomb’s law from 18th century, to Sanderson’s concept of electronegativity equalization intro-
duced in the early 50s, and the �rst Charge Equilibration (QEq) scheme by Rappe and Goddard in
1991, section 4.1 will introduce the basic formalism of charge equilibration.

Section 4.2 covers machine-learning based charge equilibration approaches and recent develop-
ments in the �eld of machine learning based charge assignments.

4.1 First steps towards QEq
Coulomb’s law, when �rst introduced in 1785 enabled the quanti�cation of the force between
two stationary, electrically charged particles. Charged particles’ attraction or repulsion is directly
proportional to the product of charges (qi ,qj ) and inversely proportional to the square of the
distance between them:

F = kc
qiqj

(ri − r j )2
. (4.1)

Here, kc is Coulomb’s constant.
From Coulomb’s law we can derive the electrostatic potential energy (UE (qi )) of one point

charge qi at position ri in the presence of another point charge qj as:

UE (qi ) = kc
qiqj

|ri − r j |
, (4.2)

as well as the electrostatic potential energy (UE (qi )) of one point charge qi at position ri in the
presence of N − 1 other point charges qj

UE (qi ) = kcqi
N−1∑
j=1

qj

|ri − r j |
, (4.3)
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In a molecule or condensed system we can then de�ne the electrostatic potential energy of the
entire system of N point charges as:

UE =
1
2k

c
N∑
i

qi

N∑
j,i

qj

ri j
. (4.4)

For small atomic distances ri j e.g. in chemical bonds it is intuitive that the energy description
can be beyond coulombic interactions. Linus Pauling de�ned electronegativity χ by the ability
of an atom to attract shared electrons/electron density when forming a chemical bond.[103] He
proposed an electronegativity scale which depends on bond energies, as a development of valence
bond theory. By that we are able to understand that a covalent bond between two di�erent atoms
(i–j) is stronger than the average of the i–i and the j–j bonds. He proposed an electronegativity
scale which depends on bond energies, as a development of valence bond theory. It is important
to remember that electronegativity cannot be directly measured and strongly correlates with a
number of other chemical properties. Two of these properties are the ionization potential (IP)
and the electron a�nity (EA).[104] The ionization potential is the energy needed to remove the
outer valence electron. Electron a�nity is the energy di�erence related to the injection of an extra
electron. As such we can de�ne the electronegativity of atom i as:

IP + EA

2 = χEi (4.5)

When two atoms i and j form a bond Sanderson postulated that the corresponding electroneg-
ativities equalize.[105] He �rst showed that concept based on bond lengths in alkali halide gas
molecules, and proved that the same holds true for more than two atoms combining within a
molecule. He de�ned the electronegativity as a stability ratio of the formed bond of atoms i and j

χE =
Z

4.19r 3Aρe
(4.6)

where Z is the atomic number, rA the atomic radius of each atom and ρe the electronic density
of atom i . When comparing reported bond lengths to ionic or non-polar covalent radii, Sanderson
identi�ed electronegativities based on bond stability for di�erent molecules. He then averaged
χE to yield one electronegativity per element. But in principle he already put forth that the
electronegativity depends on the formed bond and hence the atomic environment.

Rappe and Goddard extended the idea of the electronegativity equilibration of a bond and
developed a framework to estimate the electrostatic potential energy of molecules and periodic
systems by its charges. The QEq methods computes partial charges by using atomic coordinates
and the two previous de�ned properties of isolated atoms χE,0i , J 0ii . I use the notation χE,0i instead
of χi when we treat an isolated atom i instead of atom i in a molecule. This is one of the underlying
assumptions: atomic ionization potential and electron a�nity of isolated atoms are similar to
the ones of the same element bonded inside a molecule or a crystal. The concepts involved in
the QEq approach manages to combine earlier ideas of Pauling (chemical bond) [103], Mulliken
(electron a�nity)[104], Margrave (an extended de�nition of electronegativity)[106], Parr and
Pearson (concept of hardness)[107], Mortier (Electronegativity-equalization for the prediction
of partial charges)[108], and others. In that respect, I can highly recommend the original QEq
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publication of Rappe and Goddard. In their publication they clearly outline the relationship
between QEq and some of these earlier ideas and methods.

Above, I already de�ned electronegativity based on IP and EA. Now let’s consider how the
energy of an isolated atom changes as a function of charge, e.g. how the energy changes by adding
or removing an electron. Starting with the neutral reference, one can write the energy of atom i
by a Taylor expansion

Ei (qi ) = Ei0 + qi
(∂E
∂q

)
i0
+
1
2q

2
i

(∂2E
∂q2

)
i0
+ . . . (4.7)

When including terms through second order and de�ning two examples of adding/removing an
electron we yield:

Ei (+1) = IP = Ei0 +
(∂E
∂q

)
i0
+
1
2

(∂2E
∂q2

)
i0

(4.8)

Ei (−1) = EA = Ei0 −
(∂E
∂q

)
i0
+
1
2

(∂2E
∂q2

)
i0

(4.9)

These two cases represent the IP (the energy needed to remove the outer valence electron) and the
EA (the energy di�erence related to the injection of an extra electron). When solving for

(
∂E
∂q

)
i0

and
(
∂2E
∂q2

)
i0

we can de�ne

(∂E
∂q

)
i0
=

Ei (+1) + Ei (−1)
2 =

IP + EA

2 (4.10)

(∂2E
∂q2

)
i0
= Ei (+1) − Ei (−1) = IP − EA (4.11)

In eq. 4.5 we already identi�ed the �rst term
(
∂E
∂q

)
i
= χE,0i being equivalent to the electronegativity.

For the second term let’s consider a neutral atom with a singly occupied orbital. The orbital is
empty for the positive ion and double occupied for the negative ion. The di�erence between the
IP and EA for that orbital is:

IP − EA = J 0ii (4.12)

with J 0ii being the Coulomb repulsion between two electrons in the orbital. This electronic
repulsion quantity is the idempotential and is known as atomic hardness. This is an approximation
as the optimum shape of the orbital changes upon adding an additional electron.
Using the de�nitions of electronegativity and hardness we get

Ei (qi ) = Ei0 + χ
0
i qi +

1
2 J

0
iiq

2
i (4.13)
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In order to yield an energy expression for molecules and crystals the sum of atomic values for
χE,0i and J 0ii are extended by pairwise interactions between the atoms:

Etot (q1, . . . ,qN ) =
N∑
i

(
Ei0 + χ

0
i qi +

1
2 J

0
iiq

2
i

)
+

N∑
i<j

qiqj Jii (4.14)

with Ji j being the Coulomb interaction between atom i and j. This can be rewritten as

Etot (q1, . . . ,qN ) =
N∑
i

(
Ei0 + χ

E,0
i qi

)
+
1
2

N∑
i, j

qiqj Ji j (4.15)

In order to obtain the partial charges we set up a system of partial di�erential equations of the
energy with respect to the system charges as χi

χi (q1, . . . ,qN ) =
∂E

∂qi
= χE,0i +

N∑
B

qB Ji j (4.16)

χi is a function of the charges on all the atoms of the system. With the constraint on the total
charge

Qtot =

N∑
i=1

qi (4.17)

the minimun energy is found if

χ1 = χ2 = · · · = χN (4.18)

By that we have a set of N partial di�erential equations for the equilibrium self-consistent charges
that are solved once for a given structure.

In order to solve the QEq scheme, we require the Coulomb potential Ji j , de�ned as the potential
between the charge centers on atoms i and j, to be separated by a distance R. For distances R
where the charge distributions of atoms overlap, the simple Coulomb law (eq. 4.3) is not valid. For
R → 0, the Coulomb interaction Ji j → ∞, whereas it should lead to a �nite value related to Jii
and Jj j . To ensure that Ji j (r ) is physical meaningful, a shielding is needed. A variety of shielding
approaches exist, Rappe and Goddard choose the shielding to be the Coulomb integral between
atomic densities. For simplicity Slater-type densities of neighboring atoms are considered instead
of atomic densities from ab initio calculations on atoms. Hence, QEq still considers neighbouring
atoms like isolated atoms that are pushed close.

The electron densities of an atom with valence orbitals ns, np, or nd can be written as normalized
single nS Slater densities of the form

ρSlaternζ = Nnr
n−1e−ζ r (4.19)

where Nn is the normalization constant, n the valence shell and ζ the valence orbital exponent.
The valence orbital simply represents the characteristic size of each atom by

ζi =
λ(2n + 1)

2ri
(4.20)
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The scaling factor λ accounts for the di�erence between an average atom size and the covalent
radius ri . The Coulomb integral for short distances can now be expressed by atomic densities

Ji j (R) =
∬

ρi (ri )
1
ri j
ρ j (r j )dVidVj (4.21)

In later work Rappe and coworker’s extended the QEq for periodic systems by using the Ewald
summation. By using the Ewald summation they ensure the convergence of the Coulomb term in
an in�nite periodic system. Since the �rst implementation of the original QEq scheme, a variety of
extensions have been proposed in order to improve the quality of the computed charges. Ongari et
al. compared systematic errors of di�erent classical approaches for gas adsorption predictions in
metalorganic frameworks (MOFs). [109] These variations can in general be distinguished by these
four parameters:

• Choice of the atomic parameters

• Center and the order of the Taylor expansion of the energy

• Analytic form to compute the pairwise interaction between atoms with respect to it’s
geometry

• Inclusion of further parameters to characterize each bond type

In the next section, I want to discuss a few selected machine learning approaches for charge
prediction and charge equilibration.

4.2 Machine Learning Charge Prediction Schemes
Including long-range electrostatic interactions in ML potentials as an electrostatic baseline is a
great challenge. We not only require to take interactions beyond the cuto� radius into account, but
also to include physically meaningful energy terms. Huge e�orts have been made by various groups
in the past, ranging from NN approaches like PhysNet[31] and HIPNN[110] predicting partial
charges, electrostatic multipole coe�cients for organic molecules from kernel-ridge regression
[111, 112], partial charge prediction by random forest regression in drug like molecules [113], and
many more.[114–116]

In this section I want to focus on two ideas that - from my perspective - are the key developments
in the last decade that in�uenced the development of our kQEq model. Namely Behler’s third
generation NN in 2011[33] and Goedecker’s charge equilibration neural network technique (CENT)
in 2015[117]. Behler and coworkers were the �rst group to use a baseline neural network predicting
environment-dependent charges from ab initio atomic charges. By that they could predict long-
range interactions but lack the ability to predict non-local charge transfer. A �rst important
step towards non local charge-transfer in ML potentials has then been done by Goedecker and
co-workers. By predicting environment dependent electronegativities and determine charges by
the QEq scheme they were able to include long-range charge transfer in a qualitatively correct
way. In all subsections, I focus on the main idea of how to incorporate long-range electrostatics.
Details of the underling NN frameworks can be found in the corresponding publications.
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4.2.1 Third generation NN potentials
The key component for a successful application of such an electrostatic baseline is the accurate
prediction of atomic charges. While for some cases, including our �rst attempt to use an electro-
static baseline[73], an element-wise �tting of charges can be su�cient, the work of Behler and
others have shown the possibility to predict environment-dependent atomic charges.[33, 118]

In this approach a baseline NN (accounting for the long-range electrostatic) in addition to a NN
potential (covering all remaining short-range interactions within the cuto�) is trained. This idea
of using an electrostatic baseline is often referred to ∆-learning.

Etotal = Eshor t + Eelec (4.22)

In ∆-learning a double counting of electrostatic energy contributions is avoided by a simple
subtraction of the electrostatic energy Eelec from the total energy Etotal . As shown in Fig. 4.1,
atomic charge NNs are trained using reference atomic charges obtained from electronic structure
calculations and atomic positions.

Fig. 4.1: Schematic structure of a third generation NN potential by Behler. A set of atomic NNs (shown in red)
is used to construct environment-dependent atomic charges. These predicted atomic charges can be
used to calculate the long-range electrostatic energy. The total energy of the system is then given
by the sum of the short-range Eshor t and the electrostatic energy Eelec .The �gure is adapted from a
review by Behler.[119]

Using �rst-principle partial charges is a major drawback in that approach. Atomic partical
charges are not physical observables and there is no unique/best choice. Although all of them are
mathematically well-de�ned, benchmark studies have shown that di�erent partitioning schemes
yield very di�erent results.[120] In addition, predicting partial charges directly from atomic
environments, will not cover non-local charge transfer, e.g. charge redistribution outside the
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cuto� radius. As charges are predicted for each atomic environment individually without a
constrain on Qtot , the total charge is not conserved and molecules, which are formally charge
neutral might be predicted to be charged by these type of NN.

4.2.2 The CENT approach

To account for non-local charge transfer Goedecker and co-workers de�ne the total-energy
expression similare to QEq by:

Etot (q1, . . . ,qN ) =
N∑
i

(
E0i + χ

CENT
i qi +

1
2 Jiiq

2
i

)
+
1
2

∬
ρi (ri )

1
ri j
ρB(ri )dVidVj (4.23)

with E0
i being a reference energy, qi the atomic charges, Jii the atomic hardness, and χCENT

i the
environment-dependent atomic electronegativity of atom i . The charge density ρ in CENT is a
superposition of normalized spherically symmetric Gaussian functions of width αi centered at
atomic positions ri given by

ρi (r) =
qi

α3
i π

3
2
exp

(
− |r − ri |

2

α2
i

)
(4.24)

The QEq approach as outlined above only requires three parameters, namely the electronega-
tivity (χEi ), the non-classical contribution to the hardness (J 0ii ) and the atomic size (ri ) for each
species in the system. As a �ipside of this elegant simplicity, the accuracy and transferability of
the QEq method is limited, however.

In the CENT approach this limitation is hurdled by allowing the electronegativity χCENT of
an atom to change as a function of its chemical environment.[117] As shown in Fig. 4.2, for
an ionic system, the cartesian coordinates (input) are transformed to atom-centered symmetry
function vectors (descriptors for the NN). These inputs for the atomic NNs yield the environment-
dependent electronegativities χCENT . Using the charge equilibarion framework similar to QEq,
atomic charges q can be used to compute the total energy Etot using eq. 4.23.
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Fig. 4.2: Schematic structure of the charge equilibration neural network technique (CENT) for a system with
two elements (a,b) with N atoms of element a andM elements for element b. Cartesian coordinates
are transformed to atom-centered symmetry function vectors. These basis functions are the input
for atomic NNs yielding environment-dependent electronegativities χ . Using a charge equilibration
framework similar to QEq, atomic charges q can be used to compute the total energy Etot . The �gure
is adapted from a review by Behler.[119]

Goedecker, and co-workers applied the NN-based QEq model to ionic crystals.[117] In these
ionic systems, the total energy can entirely be represented by the electrostatic contributions. In
general there is no need for Qtot to be zero such that the method is also applicable to charged
systems. Notably in the CENT approach, Qtot is conserved. For details on the setup on the NN
infrastructure see [117].
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5 Publications
As this thesis is publication based, in this chapter a summary of my two publications that resulted
from my research during my PhD period is given. Each overview includes a brief summary of the
genesis and its content and is followed by a more detailed elaboration on my personal contribution.
The corresponding full articles together with the respective supporting information can be found
in the appendix of this thesis.
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5.1 On the role of long-range electrostatics in machine-learnedinteratomic potentials for complex battery materials
Carsten G. Staacke, Hendrik H. Heenen, Christoph Scheurer, Gábor Csányi, Karsten Reuter,
Johannes T. Margraf
ACS Appl. Energy Mater. 2021, 4, 12562-12569
DOI: 10.1021/acsaem.1c02363
Summary: This �rst project aimed for the question, are long-range interactions needed when
using an ML interatomic potential and if so when are they relevant? Modeling complex energy
materials such as the herein investigated Li7P3S11 SSE realistically at the atomistic level strains
the capabilities of state-of-the-art theoretical approaches. Fortunately, modern ML potentials
promise �rst-principles accuracy at a much reduced computational cost. However, the local
nature of these ML potentials typically means that long-range contributions arising, e.g., from
electrostatic interactions are neglected. Clearly, such interactions can be large in polar materials
like electrolytes. In this work we investigated the e�ect that the locality assumption of ML
potentials has on lithium mobility and defect formation energies in SSEs. We therefore developed
a ∆ learning protocol using a simple electrostatic baseline (ES-GAP). Comparing the classical
GAP model with the newly developed ES-GAP, we found that neglecting long-range electrostatics
is unproblematic for the description of lithium transport in isotropic bulk like environments.
In contrast, simulating non-isotropic systems yielded the importance of ES contributions and
provided new insights into interphase stability of Li7P3S11.

Speci�cally, we studied Frenkel defects in an applied �eld mimicking the potential drop at a
solid/solid interface. In this setup we found that a stabilization of the defects can occur already at
moderate �elds. This would favor the accumulation of defects towards the interphase, which could
in�uence the kinetic stability of Li7P3S11/electrode interfaces. Additionally, such stabilizations
are anisotropic to crystallographic orientation making grain shape and orientation an additional
parameter to be considered in battery engineering and beyond.

The �ndings of this work laid the foundation for the following two projects. First, now that we
understood when ES contributions are relevant, we need to develop a suitable electrostatic model,
that has the favourable properties of an ML approach, keeps the reactivity of ML interatomic
potentials and can describe non-local charge transfer. Second, if we want to model SSE interphases
realistically, we need to develop a near-universal ML potential that can likewise describe crystalline
and amorphous LPS compounds.

Individual Contributions
The idea for this project was jointly conceived by Johannes Margraf, Gábor Csányi, Karsten Reuter,
Christoph Scheurer and myself. Gábor Csányi introduced me to the GAP model while Johannes
Margraf and Christoph Scheurer helped me to understand electrostatic modeling beyond �rst
principles. While we have been able to identify cases of similar predictive power of the GAP and
ES-GAP model, Karsten Reuter and Hendrik Heenen suggested interfacial like simulation tasks to
strain the capability of a local GAP model. The manuscript was jointly written and edited by all
authors.
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5.2 Kernel Charge Equilibration: Efficient and Accurate Predictionof Molecular Dipole Moments with a Machine-LearningEnhanced Electron Density Model
Carsten G. Staacke, Simon Wengert, Christian Kunkel, Gábor Csányi, Karsten Reuter,
Johannes T. Margraf
Mach. Learn.: Sci. Technol. 3, 2022, 015032
DOI: 10.1088/2632-2153/ac568d

Summary
In the previous project we identi�ed the need for a charge model that can describe non-local
charge transfer. Hence, in this project we developed a kernel based extension of the widely
used charge equilibrition model (QEq) termed kernel Charge Equilibration (kQEq). In contrast to
conventional QEq, a data-driven, environment-dependent description of atomic electronegativities
is introduced. For this work we trained kQEq models on molecular dipoles and have been able
to show an excellent performance, en par with or better than state-of-the-art kernel models,
speci�cally tuned to predicting dipole moments.

The kQEq formalism presented in this work opens the door towards physics-based kernel
ML models for predicting atomic charges, to be used in combination with reactive interatomic
potentials such as the ES-GAP model. Most importantly, the presented approach was designed
quite general and can be extended to other �t targets (e.g quadrupole moments and electrostatic
potentials) and to more �exible density representations (e.g using atom centered dipoles in addition
to partial charges).

While this work served as a proof of concept for molecular systems, we envision the extension
for more complex �nite systems, such as catalytic processes on nano-particles, and periodic
systems, such as SSE interfaces.

Individual Contributions
Inspired by the work of Goedecker et al., Johannes Margraf suggested to replace �xed elec-
tronegativities by an atomic-environment based term and we quickly developed the �rst working
implementation together with Simon Wengert. Thanks to Christian Kunkel, an online documen-
tation is available. While we �rst aimed for partial charges as the �tting target, Gábor Csányi
suggested to aim for atomic dipoles as a more realistic target. The manuscript was jointly written
and edited by all authors.
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5.3 Tackling structural complexity in Li2S-P2S5 solid-stateelectrolyte using Machine Learning Potentials
Carsten G. Staacke∗, Tabea Huss∗, Johannes T. Margraf, Karsten Reuter, and Christoph Scheurer
∗ These authors contributed equally to the work.
Nanomaterials, 12, 2950, (2022)
DOI: 10.3390/nano12172950

Summary
For the �nal project we aimed for a near universal ML potential for the LPS material class that
can likewise describe crystalline and amorphous LPS. So, how can we model amorphous LPS
realistically at the atomic level and is there a way for a data-e�cient description for glassy SSEs?
As the lithium thiophosphate (LPS) material class provides promising candidates for solid-state
electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical
elements, and low material cost we want to be able to investigate this materials class as a whole.
LPS materials are characterized by complex thiophosphate microchemistry and structural disorder
in�uencing the material performance. To overcome the length and time scale restrictions of
ab initio calculations in simulations of industrially applicable LPS materials, we develop a data-
e�cient training approach for SSEs with an emphasis on complex microchemistries. Our trained
GAP model can likewise describe crystal and glassy materials and di erent P-S connectivities
PmSn .

As we have been able to model this material class as a whole, we apply the GAP surrogate
model to probe lithium ion conductivity and the in�uence of thiophosphate subunits on the latter.
In our work we found that the paddle wheel e�ect, and hence, a constant reorientation of S in
PS3−4 , is happening as long as PS3−4 is present, indepent of glassy or crystalline environments.

The general structure of the training protocol furthermore allows for a variety of extensions,
such as dopants, other selection criteria, and including an electrostatic baseline. For future work
we are currently aiming for a combination of the kQEq model with our training approach to
realistically model internal SSE interfaces.

Individual Contributions
This project has been an ongoing e�ort of Tabea Huss and myself, that included a research
internship and Tabea Huss masterthesis. While I developed the general �tting procedure, Tabea
Huss re�ned the iterative training scheme. Christoph Scheurer and Johannes Margraf guided us
when we were stuck in one of the many approaches we tried and helped us to analyse the data we
produced. The manuscript was jointly written and edited by all authors.
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5.4 Additional Work on Machine Learning Potentials: MachineLearning Surface Complexions of Rutile IrO2 and RuO2

IrO2 Surface Complexions Identified through Machine Learning and SurfaceInvestigations
Jakob Timmermann, Florian Kraushofer, Nikolaus Resch, Peigang Li, Yu Wang, Zhiqiang Mao,
Michele Riva, Yonghyuk Lee, Carsten Staacke, Michael Schmid, Christoph Scheurer, Gareth S.
Parkinson, Ulrike Diebold and Karsten Reuter
Phys. Rev. Lett. 125, 206101 (2020).
DOI: 10.1103/PhysRevLett.125.206101
Summary:
During an initial ab initio study of IrO2 nanoparticles and surfaces, it quickly became obvious
that relevant insights considering the catalytic surface demand a method multiple orders of
magnitude faster than DFT. As classical force �elds in this case are insu�cient due to their lack
of reactivity we turned to the Gaussian Approximation Potential (GAP) framework as a reactive,
interatomic Machine Learning (ML) potential. Fruitful discussion and testing of hyperparameters
with Jakob Timmermann led to a �rst GAP model. Already the �rst simulated annealing (SA)
simulations based on the initial GAP revealed several unknown GAP minimum structures. In
further iterative training and back then visual inspection of Jakob Timmermann revealed a variety
of new, low energy surface complexions that have been revealed by surface reconstructions during
the SA simulations. Together with the colleages from Prof Ulrike Diebold’s group at the Technical
University Vienna we have been able to con�rm experimentally and theoretically that solely
(101)-type surfaces con�rm a (1 x 1) surface unit cell size and hence ruling out any reconstruction
of higher symmetry.

Data-Efficient Iterative Training of Gaussian Approximation Potentials:Application to Surface Structure Determination of Rutile IrO2 and RuO2

Jakob Timmermann, Yonghyuk Lee, Carsten Staacke, Johannes T. Margraf, Christoph Scheurer
and Karsten Reuter
J. Chem. Phys. 155, 244107 (2021)
DOI: 10.1063/5.0071249
Summary:
The instant success of the generation-based training protocol had an obvious �aw: the selection
process via visual inspection is highly subjective, and can not be automated. Accordingly, we
introduced a similarity measure as a systematic, quanti�able selection criterion into our work�ow
and developed an updated iterative and automated training protocol for the identi�cation of global
minimum structures of arbitrary metal oxide surfaces. I then helped with the hyperparameter
selection procedure for rutile IrO2 and RuO2. Jakob Timmermann and Yonghyuk Lee then took
this initial work and developed a systematic yet data-e�cient scheme for bootstrapping the initial
training set, detailed heuristics on how to test and select appropriate hyperparameters, and a
straight-forward approach to determine the similarity threshold. This then fully-automatized,
iterative training protocol was successfully applied to IrO2 and RuO2 and revealed additional
low-energy complexions for both materials.
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6 Summary, Conclusions and Outlook
Large scale energy storage is already indispensable in our todays life. In that respect batteries
play a crucial role in modern mobility, transport and communication. While we are struggling
with the complete picture of liquid electrolytes, we still barely scratch the surface when it comes
to solid-state batteries. In the past, ab initio methods and empirical potentials have been powerful
tools. Unfortunately, in the same way ab initio methods are limited given the size and time scales
required for a detailed understanding of interfaces, while empirical potentials don’t reach the
required accuracy or lack �exibility. Here, emerging Machine Learning (ML) methods have shown
to be increasingly able to combine the strength of both approaches, with good �rst-principles
accuracy at a much reduced computational cost.

In this thesis, I developed a variety of new approaches and tackled these three challenges:
First, we identi�ed simulation tasks which need an electrostatic baseline in order to achieve

a correct description of the material. Using the same training data for crystalline Li7P3S11, we
found signi�cant di�erences between a short range GAP model and the ES-GAP model when
studying isotropic vs. non-isotropic systems. Here, for standard isotropic simulation tasks, such
as determining Li di�usion barriers and ionic conductivities, both models yield similar results. In
contrast, simulations on non-isotropic systems show the importance of ES contributions. More
generally, our results con�rm that short-ranged ML potentials can be surprisingly accurate for
polar and ionic materials in the absence of non-isotropic chemical environments like interfaces or
electric �elds. In contrast we found important qualitative deviation between our GAP models in
non-isotropic systems.

Second, we developed the kernel-based charge equilibration scheme called kQEq. The novel
kQEq schemes enable the prediction of partial charges based on local environments by including
the ability to predict non-local charge transfer. For a �rst application, kQEq models trained on
molecular dipole moments display excellent performance, en par with or better than state-of-the-
art dipole prediction schemes. The formalism of kQEq allows for physics-based kernel ML models
for predicting atomic charges, to be used in combination with interatomic potentials such as GAP.

Third, we developed a near-universal GAP model for the crystalline and amorphous compounds
in Li2S-P2S5. We then used the GAP model to systematically investigate the e�ect of the local
anion composition in glassy Li2S-P2S5 compounds. The general structure of our training protocol
allows for a variety of extensions, such additional selection criteria, doping with transition metals,
and the future modeling of solid/solid interfaces.

Now in 2022, it seems we �nally have all the tools to study solid-solid battery interfaces in an
operando like fashion. Nevertheless, open challenges remain. First, we need to de�ne a training
procedure to train a kQEq model so that we can �t to energies, higher order moments, and periodic
systems. Especially �tting to energies in a ∆-learning fashion is challenging. Second, material
interfaces have shown to exhibit distinctively di�erent stoichiometries, structure, and properties
than either of the neighboring bulk phases. We therefore need a sensible way to to establish
iterative training and exploration protocols that systematically extend the transferability of an
electrostatic GAP model to the complex interphases that truly determine the performance of
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all solid-state batteries. The speed-up achieved by electrostatic GAPs as compared to direct ab
initio calculations will then allow extensive searches and sampling that should provide a much
clearer picture of the yet missing structure-performance relationships that will ultimately enable
a rational design and advancement.
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ABSTRACT: Modeling complex energy materials such as solid-state electrolytes
(SSEs) realistically at the atomistic level strains the capabilities of state-of-the-art
theoretical approaches. On one hand, the system sizes and simulation time scales
required are prohibitive for first-principles methods such as the density functional
theory. On the other hand, parameterizations for empirical potentials are often not
available, and these potentials may ultimately lack the desired predictive accuracy.
Fortunately, modern machine learning (ML) potentials are increasingly able to bridge
this gap, promising first-principles accuracy at a much reduced computational cost.
However, the local nature of these ML potentials typically means that long-range
contributions arising, for example, from electrostatic interactions are neglected.
Clearly, such interactions can be large in polar materials such as electrolytes, however.
Herein, we investigate the effect that the locality assumption of ML potentials has on
lithium mobility and defect formation energies in the SSE Li7P3S11. We find that
neglecting long-range electrostatics is unproblematic for the description of lithium
transport in the isotropic bulk. In contrast, (field-dependent) defect formation energies are only adequately captured by a hybrid
potential combining ML and a physical model of electrostatic interactions. Broader implications for ML-based modeling of energy
materials are discussed.

KEYWORDS: machine learning, electrostatics, battery, solid-state electrolyte, locality

1. INTRODUCTION

The development of new analytical approximation frameworks
is currently leading to an unparalleled surge of machine
learning (ML) approaches in all areas of chemistry and
materials science.1−5 Here, ML is typically considered a
universal approach for learning (fitting) a complex relationship
y = f(x) without explicitly knowing the physical (analytic) form
of f.6,7 In the context of interatomic potentials, this means
establishing the relationship between a system’s atomistic
structure and its total energy E = f({Z, R}), where Z are the
atomic numbers and R are the position vectors of the
constituting atoms. The expectation here is that flexible ML
potentials can overcome long-standing limitations of empirical
potentials that use simple fixed functional forms.7

Such limitations are especially acute when covalent bonds
are formed or broken, when atoms vary their hybridization or
charge state, and generally when large changes in chemical
environments occur. All these aspects apply prominently to the
simulation of operando energy conversion systems in general
and battery materials in particular.3,8−15 With the structural
and compositional complexity of contemporary battery
materials severely limiting direct first-principles-based simu-
lations, there is thus considerable hope that ML potentials
trained with first-principles data will enable simulations at

unprecedented length and time scales and a predictive quality
matching that of electronic structure methods.16−23

To achieve size extensivity and create a general ML potential
that can be employed for systems of varying size and
composition, just as with many empirical potentials (e.g.,
embedded atom models and Tersoff potentials), a locality
assumption is typically made.6,7,24 The system’s total energy is
thus approximated as a sum of local (atomic) contributions

∑ χ= ϵE Z( , )
i

N

i i
(1)

where the sum runs over the N atoms in the system and each
atom i contributes with an energy ϵ that only depends on its
atomic number Zi and its local chemical environment χi (which
is itself a function of {Z, R}). This local environment is suitably
encoded into a representation that (similar to the total energy)
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obeys general symmetries such as the invariance to translation,
rotation, and permutation of atoms of the same ele-
ment.6,7,25−27 Importantly, to allow for efficient training and
scalability to large simulation cells, these representations are
almost always short-ranged, that is, they only describe the
environment within a few Ångstroms around each atom.
In recent years, a large variety of ML potentials using kernel-

or neural-network-based regression has been developed for
molecular and condensed systems, heralding the great
potential of this new data-driven approach.6,7,28 Notably,
such short-ranged ML potentials have also been applied to
polar systems such as water.29−32 Though one would naively
expect long-range electrostatic interactions to play a significant
role here, these potentials provide a remarkably accurate
description of the structural and dynamic properties of bulk
liquid water and different ice phases.33 This is presumably
because these systems are highly isotropic so that long-range
interactions average out.34 Consequently, short-ranged ML
potentials are now commonly applied to study polar and even
ionic systems.30,35−37

However, the importance of long-range effects will clearly
depend on the material and property of interest and thus
demands more systematic scrutiny.38 For example, ionic
diffusion in electrolytes may lead to the transient local
accumulation and depletion of charges, which can break the
isotropy of the electrostatic environment. Even more critically,
grain-boundaries, interfaces, and defects may lead to a
permanent localized polarization of materials. Finally, the
effect of applied electric fields, for example, in batteries, can
obviously only be studied if an electrostatic description is part
of the model.
Notably, several groups have recently proposed ML models

that explicitly include long-range electrostatics.39−45 These

range from simple point-charge models to polarizable models
and full self-consistent approximations of the charge density.
While these approaches offer a route to overcome the locality
constraints of current ML potentials, they also lead to an
increased computational cost, both in terms of training and
evaluation. In particular, they break the favorable linear scaling
of the computational cost with the system size. This makes it
crucial to understand when such explicit treatments of
electrostatics are necessary and when a local ML potential
can be used instead.
The goal of this paper is to analyze the effect of electrostatic

contributions on ML-based simulations of battery materials,
using the Li mobility and interface stability of the crystalline
phase of the solid-state electrolyte (SSE) Li7P3S11 as an
example.46,47 Li7P3S11 exhibits an exceptionally high Li-ion
conductivity and has been suggested as a promising candidate
for all-solid-state lithium batteries.46,47 Large-scale simulations
of this material, possible, for example, through Gaussian
approximation potentials (GAPs), can provide critical insights
into solving open challenges in connection with this material.
We develop two GAP models where one is strictly short-

ranged (GAP), while the other includes a simple electrostatic
baseline (ES-GAP). We find that the inclusion of long-range
ES interactions only benefits the description of nonisotropic
chemical environments, while diffusion properties in the
homogeneous bulk material are well-captured by both
potentials. In contrast, the stability of Frenkel defects in the
presence of electric fields (which influence the material’s
stability at the inhomogeneous electrode/electrolyte interface)
can only be captured with a model that includes long-range
interactions.

Figure 1. (A) Force locality in crystalline Li7P3S11. (B) Force locality in crystalline Li7P3S11 after subtracting the ES baseline model. Convergence of
energies (C) and forces (D) throughout the generations for both models (GAP: blue and ES-GAP: red). Solid lines correspond to test errors and
dashed lines to training errors. The gray shading corresponds to the expected force accuracy according to the locality test.

ACS Applied Energy Materials www.acsaem.org Article

https://doi.org/10.1021/acsaem.1c02363
ACS Appl. Energy Mater. 2021, 4, 12562−12569

12563

https://pubs.acs.org/doi/10.1021/acsaem.1c02363?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.1c02363?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.1c02363?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.1c02363?fig=fig1&ref=pdf
www.acsaem.org?ref=pdf
https://doi.org/10.1021/acsaem.1c02363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2. METHODS
2.1. Computational Details. Reference density functional theory

(DFT) calculations are performed with the Perdew−Burke−
Ernzerhof functional, default “light” integration grids, and a “tier 1”
basis set of numerical atomic orbitals, as implemented in FHI-
aims.48,49 The Brillouin zone is sampled with a 2 × 2 × 2 k-grid. Initial
training configurations are generated with ab initio molecular
dynamics (AIMD) using the Γ-point approximation for the k-grid.
GAP-based MD and nudged-elastic-band (NEB) simulations are
performed using the LAMMPS50 code and the corresponding
interface to QUIP.51 Pairwise electrostatic interactions in the ES-
GAP model are included via a fixed-charge model. To avoid the
divergence of point-charge Coulomb interaction at short distances,
atomic charge densities are modeled by s-type Slater orbitals as, for
example, in the QEq charge equilibration model.52,53 Further details
on the ES-GAP are noted in Section A of the Supporting Information.
For training set construction and data analysis, the atomic simulation
environment, SciPy, and scikit-learn are used.54−56

2.2. GAP Training. To train the GAP models, a simple iterative
procedure is used. Briefly, an initial model is trained on a set of 80
crystalline Li7P3S11 configurations, taken from a short DFT-based MD
simulation and Monte Carlo-sampled Li-ion distributions on crystal
and interstitial sites. This potential is then used to generate new
configurations via MD simulations at 800 K, which are added to the
training set. This procedure is repeated for several iterations (termed
“generations”) until the force and energy errors on new configurations
no longer improve. The thus-obtained models provide an increasingly
accurate description of high-temperature crystalline Li7P3S11. GAP
and ES-GAP models are trained on identical configurations, and the
ES-GAP model was used to generate new configurations in the
iterative procedure. Further details can be found in the Supporting
Information Section C.

3. RESULTS

3.1. GAP and ES-GAP Models. As discussed above, a
hallmark of many-body ML potentials is the assumption that
the total energy can be described as a sum of local atomic
contributions, which corresponds to a complete neglect of
long-range interactions. The locality of these interactions is
thus often tacitly assumed when ML potentials are generated.
However, it can also be quantified more rigorously by
analyzing the force ΔFLR induced on a reference atom by
perturbations of other atoms in the distance beyond a given
cutoff radius.57 This locality test is performed with the
reference method before fitting an ML potential and can
thus be considered the material property. Figure 1A shows the
mean induced force and its standard deviation for Li7P3S11 (see
the Supporting Information for details).
As can be seen, the induced forces are quite large (between

0.1 and 0.5 eV/Å) and decay slowly with the cutoff. This is
particularly evident for the phosphorous atoms, which bear the
largest formal charge in this system (+5). Importantly, these
forces are by construction long-ranged since they exclusively
originate from perturbations beyond the given radius. They
therefore cannot be described by an ML potential with the
corresponding cutoff. In this sense, the mean induced force
⟨|ΔFLR|⟩ provides a lower bound for the residual force errors
that an ML potential with a given cutoff can achieve.
In Figure 1B, the same locality test is performed after

subtracting the fixed-charge ES baseline model from the DFT
forces (see the Supporting Information for details). For cutoffs
larger than 5 Å, this significantly lowers ⟨|ΔFLR|⟩, most
prominently for phosphorous. Counterintuitively, the induced
forces on phosphorous and sulfur are actually increased at
shorter distances. On one hand, this is because the charges of

this model were parameterized to minimize the locality error at
6 Å and are thus not ideal for shorter cutoffs. On the other
hand, a fixed-charge ES model is generally inaccurate for short-
range interactions, where polarization, charge transfer, and
induction effects become important. To capture such effects
with a baseline model would require the use of more complex
polarizable models. Nonetheless, cutoffs of 6 Å are commonly
used in state-of-the-art ML potentials so that a fixed charge ES
baseline can be used here, though residual errors remain and
are discussed below.
The convergence of the iterative training procedure can be

seen in Figure 1C,D. This shows that the energy and force
errors of both models show no further improvement between
the fifth and sixth generations. Importantly, the final force
errors fall into the expected range estimated from the locality
test (see Figure 1B). This indicates the convergence of the
training process, meaning that the remaining error will not be
significantly reduced by further training but is instead related
to the locality of the model and/or potential inadequacies of
the representation.
Interestingly, the root mean squared errors (RMSEs) for

predicted energies and forces are actually slightly lower for the
short-range GAP model. By analyzing the errors of the
individual elements separately (see the Supporting Informa-
tion), we find that the ES-GAP displays somewhat higher
errors for sulfur but lower errors for lithium and especially
phosphorous. Since sulfur is the most abundant element in
Li7P3S11, this leads to the better average performance of the
short-range GAP.
This points to a disadvantage of the fixed-charge approach

used here: Li7P3S11 features two distinct sulfur species, namely,
in bridging and terminal positions. Hirshfeld population
analysis (see the Supporting Information) indicates that
these species correspond to different charge states, while
they are treated equivalently by the ES baseline. This
introduces an error, which needs to be compensated by the
GAP potential. In principle, this could be mitigated by
assigning different charges to these sulfur species. However,
such atom typing would run counter to one of the main
advantages of ML potentials relative to classical force-fields,
namely, the fact that they can break and form bonds. A more
satisfying solution would be the use of floating-charge models,
and this will be explored in future work.42,58

From a different perspective, the differences in force errors
observed for different elements also illustrate a weakness in
average error metrics such as the RMSE (or the least-squares
loss function minimized by the GAP) for multispecies systems:
if the stoichiometry of a material is not balanced, more
abundant species are implicitly weighted more strongly by the
metric. In the present case, sulfur has the largest weight,
although lithium is arguably more important. Nevertheless, the
accuracy of both models is actually quite satisfying overall,
considering the magnitudes of the force components in the
training and test sets, which range up to ca. 10 eV/Å. Note,
however, that in principle, it would be possible to use different
weightings in the loss function for forces on different elements.
In GAP models, this can be achieved by specifying individual
regularization parameters for each force.59

3.2. Lithium-Ion Mobility. Both potentials introduced in
the previous section are trained on the same data and have
approximately the same force error, though small differences
can be seen when looking at the description of individual
elements. Do these differences affect the prediction of the
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observables relevant to battery performance? As the first case
in point, we investigate the Li-ion mobility in the (isotropic)
bulk material. To this end, we consider lithium diffusion
barriers obtained via the NEB method (see Figure 2) and Li-
ion mobilities obtained from MD simulations.
NEB calculations allow the investigation of minimum-energy

paths of individual Li hops between two equilibrium positions
(an initial state and a final state).60 Choosing these states is
actually nontrivial since Li7P3S11 contains a large variety of
possible Li interstitial positions, reflecting the highly dynamic
nature of the Li sublattice. This was previously demonstrated
by Chang et al., who reported a number of Li configurations
with nearly the same ground-state energy as that of the
equilibrium crystal structure.61,62 It is therefore important to
focus on Li hopping events that actually contribute to
conductivity and not just dynamic rearrangements of Li
positions.
To obtain these relevant pathways, we therefore analyzed

the training MD trajectories to isolate individual Li hopping
events. In this manner, a variety of diffusion pathways were
obtained. Further information on all pathways is given in the
Supporting Information (Section G). In the following, the
lowest-barrier pathway is discussed in more detail. Here, a Li
ion diffuses in a channel formed by the PS4

− and P2S7
− anion

complexes (positions are tabulated in the Supporting
Information Section G), along the b lattice vector, as shown
in Figure 2. It can be seen that the 1 × 2 × 1 supercell is
traversed with two consecutive Li-ion hops (obtained from two
NEB calculations Figure 2 I,II). These NEB calculations were
performed based on both the GAP and ES-GAP potentials,
leading to slightly different minimum-energy paths.
Nevertheless, the optimized lowest-energy paths display

similar characteristics of a correlated ion migration where
lithium ions diffuse, while neighboring ions are slightly
displaced from the diffusion path (highlighted in the figure
with solid and dashed arrows for the migrating and displaced
atoms, respectively). For the first hop, an almost identical path
is found, while the second hop yields a slightly different path
when optimized with the two potentials (I and II in Figure 2,

respectively). The deviating paths should not be understood as
different mechanisms favored by the respective potentials,
however, but merely as two feasible paths found by the NEB.
We confirm this assumption by evaluating the energies along
the short-range GAP path with the ES-GAP (and vice-versa).
This analysis reveals almost identical barrier heights for a given
potential on both its own NEB path and the one from the
other potential. It is further noteworthy that the ES-GAP
consistently predicts somewhat higher barriers than the short-
range GAP. For both paths, reference DFT single-point values
tend to lie between the GAP and ES-GAP values. In other
words, the GAP somewhat underestimates the barriers, while
the ES-GAP overestimates them to a similar degree. The
deviation in energies is also not perfectly uniform along the
paths so that the agreement with the DFT can be excellent for
both potentials, at different points of the potential energy
surface.
Despite the overall similar performance of the models, we

thus find small systematic differences between the predictions
of the two models. Interestingly, the short-range GAP is
actually slightly more accurate in predicting the lowest barrier
heights. This indicates that the static-charge model used for the
ES-GAP does not faithfully reflect the electrostatics of the full
DFT calculation, and the ES baseline represents an over-
correction: it correctly increases the barriers but by too much.
As a sidenote, we emphasize that both models are mainly
trained on high-temperature MD data, while the NEB
corresponds to the minimum energy path at 0 K. Presumably,
an even higher accuracy for NEB calculations could be
achieved for both potentials by training on the corresponding
data.
Next, we turn to the Li-ion conductivity σ at finite

temperature, predicted from MD simulations via the
Nernst−Einstein equation (see the Supporting Information
for details). Here, we shift the focus from a microscopic
property (the Li migration barrier height) to a macroscopic
observable (Li-ion conductivity). In principle, the two are
closely related since the barrier height determines the rate of
the Li transport in the transition state theory. However, MD

Figure 2. Left: Illustration of minimum-energy paths for lithium diffusion through Li7P3S11 obtained with short-range GAP (light blue) and ES-
GAP (red) interatomic potentials. Li ions are shown as green spheres and thiophosphates as orange tetrahedra. Solid and dashed arrows highlight
the main migration path and displacements of neighboring lithium atoms, respectively. The labels I and II indicate two consecutive NEB
calculations. Initial and final positions are obtained by analyzing hopping events from MD trajectories (see Supporting Information Section G).
Right: Energies for DFT, GAP, and ES-GAP potentials on the minimum-energy paths calculated with the short-range GAP (top) and the ES-GAP
(bottom). Solid lines indicate the potential with which the path was obtained and dashed lines indicate single-point calculations.
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simulations sample a multitude of different diffusion events.
These are often dominated by the lowest barrier mechanism
but may also be influenced by higher barrier pathways (e.g.,
because they are entropically favored). In this sense, the NEB
and MD simulations provide complementary information.
The corresponding conductivities within the two potentials

(at 800 K) are shown in Figure 3 as a function of the MD

trajectory length. After sufficient sampling, the conductivities
converge to 190 mS/cm for the GAP and 120 mS/cm for the
ES-GAP. This trend in conductivities perfectly reflects the
NEB barrier differences discussed above (i.e., slightly higher
mobility and lower barriers for the short-range GAP model).
Figure 3 also highlights the benefit of using ML potentials

for battery research more generally: to obtain fully converged
conductivities from these simulations, MD trajectory lengths
far beyond the tractability of typical AIMD simulations are
necessary. Hence, AIMD simulations of Li-ion conductivities
should generally not be considered converged and yield, at
best, a qualitative indicator of relative performance between
closely related materials. Even at longer timescales in the low-
nanosecond range (<5 ns), conductivity differences predicted
by both models vary from 10 to 80%.
While we do find some differences between the predicted Li

mobilities of the ES-GAP and GAP, these should be put into
perspective. Ion mobilities of potential SSE materials can vary
by several orders of magnitude, and the small differences in
observed barrier heights are certainly within the margin of the
DFT error. From a practical perspective, there is thus no
significant difference between the two models.63 At this point,
one could conclude from a practitioner’s point of view that a
short-ranged ML potential would be fully sufficient to treat a
complex battery material such as Li7P3S11.
More broadly speaking, the observed insensitivity of

energetic and dynamic properties of bulk Li7P3S11 to long-
range electrostatics is also in line with the previous reports on
other polar liquids and solids.29−32 For dynamic properties,
electrostatic screening by mobile ions is clearly a significant
cause of this behavior. Nonetheless, it is notable that the ES-
GAP and GAP also perform very similarly in static calculations,
as illustrated by the energy−volume curve of Li7P3S11 (see the
Supporting Information). This is a consequence of the fact that
the crystalline system studied herein is highly isotropic. As a
consequence, long-range interactions contribute to a large but
nearly constant Madelung potential. These contributions

cancel each other out to a large extent when considering
forces and relative energies.

3.3. Applied Fields and Defects. Having established the
similar behavior of the GAP and ES-GAP for bulk Li
mobilities, we now turn to their description of an anisotropic
environment. Specifically, we consider a model system that
mimics the effect of the potential drop in the interphase region
at the solid/solid interface between an electrode and an SSE.
This potential variation has been previously computed using a
1-D continuum model64 for a Li anode and graphite (C)
cathode setup (see Figure 4). In this model, the potential drop

reaches several nanometers into the bulk region before it is
completely screened by displaced ions. To model the effect of
this potential drop on the SSE near the interface, we apply
electric fields to a 2 × 3 × 2 Li7P3S11 supercell and investigate
how the field strength and direction affect the stability of a
Frenkel defect (i.e., a Li vacancy/interstitial pair).
Defects have been argued to play an important role in the

kinetics of the decomposition processes at SSE interfaces.65

This kinetic stability is of high relevance to the applicability of
SSEs.66−68 Here, we consider a Frenkel defect in particular as it
allows keeping the simulation cell overall charge neutral and
lies within the phase space covered by the training set of the
GAP potentials. Clearly, the effect of an electric potential drop
can only be captured by the ES-GAP model, which contains
charges that are able to respond to the applied field. In
contrast, the short-range GAP model can only model the “zero-
field” scenario. We also compare the “zero-field” defect stability
in both models with that in the DFT.
We construct the Frenkel defect by shifting a Li atom into an

interstitial position and relaxing the resulting structure using
the two GAP models (see Figure 5 and Supporting
Information Section I). For comparison, single-point DFT
calculations are also performed on both the GAP and ES-GAP
geometries. Without an applied field, this leads to a predicted
defect formation energy of ca. 0.8 eV with the ES-GAP and
DFT and ca. 0.6 eV with the short-range GAP model. Since the
interstitial Li ion has a net positive charge and the ion vacancy
a net negative charge, the defect forms a dipole. The observed
0.2 eV deviation of the defect formation energies between the
GAP and DFT can thus be attributed to the absence of long-
range dipole−dipole interactions in the former. Notably, the
formation energies of neutral Li vacancies, where such dipoles

Figure 3. Convergence of the Li-ion conductivity σ at 800 K during
an MD simulation. The red curve corresponds to the ES-GAP model
and blue to the GAP model.

Figure 4. Schematic of the spatially dependent potential variation ΔU
in a prototypical Li∥SSE∥C solid-state Li-ion battery.64 Since the
grain orientation varies throughout the SSE, the field-dependent
defect stability is studied by applying electric fields along different
crystallographic axes of the simulation cell.
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are absent, reportedly do not show such a strong dependence
on long-range electrostatics.16

Nonetheless, all models predict defect formation to be
highly unfavorable. When applying an electric field, this picture
changes. We find an anisotropic response to the field where
both the destabilization and stabilization can occur (Figure 5).
This anisotropy reflects the fields’ orientation relative to the
defect dipole. Structural relaxation effects then lead to an
unsymmetric stabilization/destabilization of the defect in
either field direction.
While this is a rather simple model system, it already yields

insights into the stability of Li7P3S11 at the SSE/electrode
interface. As shown in Figure 5, field strengths typically
occurring at this interface (which can reach up to 0.3 V/Å64)
are sufficient to make the formation of this defect energetically
favorable. Consequently, one would expect an accumulation of
such defects toward the interface. As recently suggested,66 the
kinetic processes in electrolyte decomposition can be related to
the delithiation of the SSE. Intermediate to this delithiation
process are local concentration gradients by Frenkel defects.
We can therefore hypothesize from our findings that local
fields play a crucial role in the evaluation of interphase
stabilities. Further, we find that the defect stabilization is
anisotropic to the crystallographic orientation. This finding
might explain the previous observations that the SSE/anode
interface stability of Li7P3S11 was dependent on the crystallo-
graphic orientation of the latter.69

From a methodological perspective, this example shows that
the explicit inclusion of electrostatic interactions will be
indispensable for the computational study of battery materials
under operating conditions. Indeed, even the contact between
two different materials will cause a potential drop across the
interface, albeit at a smaller length scale.13 The good
performance of the short-range GAP model in the previous
section is thus not because long-range electrostatic interactions
are small but because they are reasonably isotropic in a
periodic calculation. Breaking this symmetry with an interface
or by applying an electric field clearly shows the importance of
electrostatics which, by design, cannot be incorporated into a
model with a short-range cutoff.
We note that the response of the ES-GAP model to the

applied field relies on the ionic partial charges of the baseline
ES model. Hence, we exploited the corresponding a priori
knowledge. Ideally, these charges could instead be determined

in the training procedure, including model structures of the full
interface, which, however, is beyond the scope of this
conceptual study.

4. CONCLUSIONS
In this paper, we have systematically explored the influence of
explicitly including electrostatic interactions in ML potentials
for battery materials. Using the same ML approach and
training data, we find significant differences between a short-
range GAP model and the ES-GAP model that uses an ES
baseline when studying isotropic versus nonisotropic systems.
In standard isotropic simulation tasks, such as determining Li
diffusion barriers and ionic conductivities, both models yield
similar results. In contrast, simulations on nonisotropic systems
show the importance of ES contributions and provide new
insights into the interphase stability of Li7P3S11.
Specifically, we studied Frenkel defects in an applied field,

mimicking the potential drop at a solid/solid interface. In this
setup, we found that the stabilization of the defects can occur
already at moderate fields. This would favor the accumulation
of defects toward the interphase, which could influence the
kinetic stability of Li7P3S11/electrode interfaces. Additionally,
such stabilizations are anisotropic to the crystallographic
orientation, making the grain shape and orientation an
additional parameter to be considered in battery engineering
and beyond.70

More generally, our results confirm that short-ranged ML
potentials can be surprisingly accurate for polar and ionic
materials in the absence of nonisotropic chemical environ-
ments such as interfaces or electric fields. In contrast, we found
important qualitative deviation between our GAP models in
nonisotropic systems. The further development of ML
potentials with an explicit description of electrostatics therefore
represents an important research goal on the way to the
computational study of battery materials in operando
conditions.
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Abstract
State-of-the-art machine learning (ML) interatomic potentials use local representations of atomic
environments to ensure linear scaling and size-extensivity. This implies a neglect of long-range
interactions, most prominently related to electrostatics. To overcome this limitation, we herein
present a ML framework for predicting charge distributions and their interactions termed kernel
charge equilibration (kQEq). This model is based on classical charge equilibration (QEq) models
expanded with an environment-dependent electronegativity. In contrast to previously reported
neural network models with a similar concept, kQEq takes advantage of the linearity of both QEq
and Kernel Ridge Regression to obtain a closed-form linear algebra expression for training the
models. Furthermore, we avoid the ambiguity of charge partitioning schemes by using dipole
moments as reference data. As a first application, we show that kQEq can be used to generate
accurate and highly data-efficient models for molecular dipole moments.

1. Introduction

Kernel and neural network (NN) based machine-learning (ML) methods have in recent years become
established as an essential addition to the toolbox of computational chemistry [1–4]. In particular, ML-based
interatomic potentials have had great success in providing energies and forces with quantum mechanical
accuracy at a fraction of the cost of first-principles calculations [1, 5–10]. To achieve size-extensivity and a
linear computational scaling with system size, these ML potentials typically rely on a local representation of
atomic environments and consequently assume that the energy can be decomposed into local atomic
contributions [9, 11]. This simple idea has led to a strong focus of chemical ML research on developing
sophisticated representations of local atomic environments and, relatedly, NN architectures that directly
embed atoms in their neighborhood [11–14, 14–18].

At the same time, it is clear that the assumption of locality does not hold for all systems to the same
extent [19]. Indeed, strongly polar or ionic systems display very long-ranged Coulomb interactions. Even for
a fairly unpolar (e.g. organic) system, the locality of the energy does not necessarily imply that other
electronic properties are similarly local. In particular, electronic properties such as molecular orbital energies
or dipole moments can break locality assumptions [20]. Consequently, such properties tend to be more
challenging to predict with purely data-driven ML methods [16, 20]. Beyond this methodological challenge,
dipole moments are an intrinsically interesting target as they govern the asymptotic decay of interactions of
neutral molecules and their absorption cross-sections in vibrational spectroscopy.

A promising route to overcome the limitations of local ML models is to include known physical
interactions explicitly [19, 21, 22]. For example, a description of long-range electrostatics can be obtained by
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learning atom-centered charge distributions (e.g. atomic charges, dipoles or partitioned electron densities)
[19, 23–28]. A prominent recent example of this is the MuML dipole model of Veit et al, which uses atomic
charges and atom-centered dipoles to predict molecular dipole moments [20]. This idea takes advantage of
the fact that the charge distributions around atoms can be predicted with reasonable accuracy from local
environments, even if their interactions are long-ranged. While this solves some of the issues of local
interatomic potentials, there are also significant downsides: firstly, charge conservation of the overall system
is generally not ensured, and secondly non-local charge transfer (e.g. through conjugated π-systems) is not
captured [29].

These issues can be fundamentally addressed by switching the target of the ML model: instead of
predicting the charge distribution directly, one can predict a charge-dependent energy expression. The
charge distribution is then obtained by minimizing this energy expression under the constraint that the
charge is conserved. This idea is closely related to classical charge equilibration approaches like QEq [30]. In
this manner, charge conservation is rigorously ensured, the description of non-local charge transfer is
enabled and a simple route to analytical derivatives is provided through a Hellmann-Feynman-like approach.
The advantage of this approach, compared to directly predicting the charge density, can perhaps be
understood in analogy to the choice of initial guess in density functional theory (DFT) calculations: while it
is common practice to construct the initial guess from a superposition of atomic densities, it has been found
that the superposition of atomic potentials yields a significantly improved starting point [31].

So far only few examples of ML-based charge equilibration models have been reported, however. Most
notably, Goedecker and co-workers applied a NN-based QEq model to ionic crystals [32, 33]. The
corresponding models were trained to predict the energies and forces of reference DFT calculations, using
the corresponding partial charges merely as an intermediate quantity. More recently, Behler, Goedecker and
co-workers combined this approach with local NN potentials for the description of organic molecules and
MgO surfaces [29, 34]. Here, the charge equilibration models were trained on partial charges from reference
DFT calculations. Finally, Xie, Persson and Small applied a more flexible charge-dependent NN to describe
lithium hydride nanoparticles, using training data from constrained DFT calculations [35].

Herein, we present a new kernel-based approach to charge equilibration termed kernel charge
equilibration (kQEq). These models are directly trained on molecular dipole moments and thus avoid the
ambiguity associated with choosing population analysis or projection approaches required in other methods.
A closed-form linear algebra expression for training kQEq models is derived and their accuracy is
benchmarked on the prediction of molecular dipole moments. Finally, limitations and possible extensions
are discussed.

2. Theory

2.1. Charge equilibration
Different conventional (i.e. non-ML) charge equilibration and electronegativity equalization methods have
been proposed in the literature [30, 36–45]. In the derivation of the charge equilibration approach we largely
follow the formalism of Goedecker and coworkers [29, 32–34], which is in turn based on the QEq method of
Rappé and Goddard [30, 46]. In this context, QEq can be understood as a kind of semi-empirical,
orbital-free DFT, where the electron density ρ(r) is expanded as:

ρ(r) = ρ0(r)+ δρ(r), (1)

where, ρ0(r) is a reference density (here the superposition of isolated atom densities) and δρ(r) is a
fluctuation term, which describes charge transfer and polarization in the interacting system. We expand δρ
into a linear combination of normalized 1 s Gaussians centered at the atomic positions rA and of width αA

δρ(r)≈
N∑

A=1

−qA
1

π
3
2α3

A

exp

(
|r− rA|2

α2
A

)
, (2)

where N is the number of atoms and qA are the expansion coefficients. Note that we use the negative of the
expansion coefficients qA here, so that these can directly be interpreted as atomic partial charges. With this
approximation, the electron density is completely defined via the charges qA and it remains to find their
optimal values.

To this end, a simple form of the charge-dependent electrostatic energy is assumed:

E[ρ] = E0 +
N∑

A=1

(
χAqA +

1
2ηAq

2
A

)
︸ ︷︷ ︸

Site−Energy

+ 1
2

¨
δρ(r)δρ(r ′)

|r− r ′|
drdr ′︸ ︷︷ ︸

Coulomb−Integral

. (3)

2
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Here, E0 is a charge-independent reference energy, which we set to zero throughout. The second term
(labeled ‘Site-Energy’) is the well-known second-order Taylor expansion of the atomic energy with respect to
the charge, with the atomic electronegativity χA and the hardness ηA [47]. It provides the energetic
contribution incurred by adding or removing electron density from a given atom. The third term (labeled
‘Coulomb-Integral’) is the classical Coulomb potential of the fluctuation density δρ. This integral can be
computed analytically, using the definition of δρ (see equation (2)):

¨
δρ(r)δρ(r ′)

|r− r ′|
drdr ′ =

N∑
A=1

(
2γAA√

π
q2A +

N∑
B=1

qAqB
erf(γABrAB)

rAB

)
, (4)

with γAB =
√

(α2
A +α2

B)
−1
.

This allows rewriting equation (3) to:

E[ρ] = E0 +
N∑

A=1

[
χAqA +

1
2

(
ηA +

2γAA√
π

)
q2A

]
+ 1

2

N∑
A,B

qAqB
erf(γABrAB)

rAB
, (5)

which makes it explicit that E[ρ] only depends on the charges qA. We may therefore equivalently use the
notation E(q1, . . .,qN). Note that this equation has the familiar form of the original QEq formulation, with
the slight difference that the hardness parameter in QEq implicitly includes the electrostatic idempotential
2γAA√

π
, whereas here ηA only describes the non-classical (e.g. exchange-correlation) contributions to the

hardness.
Given the definitions of ρ and E[ρ], we now search for the density that minimizes the energy functional

under the constraint that the total number of electrons is conserved. From the definition of δρ, it can be seen
that this is equivalent to the constraint that

∑
A qA = Qtot, with the total system charge Qtot. This can be

achieved by defining the Lagrangian

L(q1, ...,qN,λ) = E(q1, ...,qN)+λ

(
N∑

A=1

qA −Qtot

)
. (6)

The constrained minimization of the charges can then be performed by setting up a linear system of
equations so that:

∂L(q1, ...,qN,λ)
∂qA

=
N∑

B=1

HA,BqB +λ+χA = 0 (7)

∂L(q1, ...,qN,λ)
∂λ

=
N∑

A=1

qA −Qtot = 0 (8)

with the elements of the hardness matrix H defined as:

HA,B =

{
ηA +

2γAA√
π

for A= B,
erf(γABrAB)

rAB
otherwise.

(9)

In matrix notation, this linear system can be formulated as:
H1,1 H1,2 · · · H1,N 1
H2,1 H2,2 · · · H2,N 1
...

...
. . .

...
...

HN,1 HN,2 · · · HN,N 1
1 1 · · · 1 0


︸ ︷︷ ︸

H̄

·


q1
q2
...
qN
λ


︸ ︷︷ ︸

q̄

=−


χ1

χ2

...
χN

−Qtot


︸ ︷︷ ︸

c̄

(10)

with the hardness matrix H̄, the charge vector q̄ and the electronegativity vector c̄. Here, the bar-notation is
used to indicate that these arrays are extended by one dimension due to the Lagrange multiplier. The
corresponding N-dimensional sub-arrays are indicated by H, q and c in the following.
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2.2. Kernel charge equilibration
The QEq approach as outlined above only requires three parameters, namely the electronegativity (χA), the
non-classical contribution to the hardness (ηA) and the atomic size (αA) for each species in the system. As a
flipside of this elegant simplicity, the accuracy and transferability of the QEq method is limited, however. In
the kQEq method proposed herein, we follow the basic idea of Goedecker and coworkers to overcome this
limitation [32]. This is achieved by allowing the electronegativity of an atom to change as a function of its
chemical environment. Importantly, taking advantage of the fact that both QEq and kernel ridge regression
(KRR) are formulated as linear problems, we obtain a closed-form expression for training these models.

The environment-dependent electronegativity in kQEq is defined via a kernel regression Ansatz as:

χA(pA) =
Ntrain∑
B=1

wBk(pA,pB), (11)

where k is a kernel function, pA is a representation vector that encodes the chemical environment of atom A,
wB is a regression coefficient and N train is the number of atoms in the training set. We use the SOAP kernel
and representation vector, which are widely used in the construction of interatomic potentials and as
descriptors of local environments [18]. We refer to the original literature and a recent review for a detailed
account of the corresponding theory and implementation [1, 11, 48]. In general, the kernel function
measures the similarity of chemical environments and is defined as:

k(p,p ′) = (p · p ′)2. (12)

To derive an expression for the regression coefficients w, we begin by noting that the prediction of charges
with QEq can be expressed as a matrix multiplication of the matrix A with the vector of electronegativities c:

q=−Ac (13)

where A is the N-dimensional submatrix of H̄−1. Using equation (11), c can also be written in terms of a
matrix-vector multiplication:

c= Kw (14)

so that

q=−AKw. (15)

Here, K is the kernel matrix (quantifying the similarity between the atoms in the system of interest and the
atoms in the training set) and w is the vector of regression coefficients. There are in principle several options
for defining the ‘optimal’ regression coefficients. One could, e.g. fit them to partial charges obtained from
some partitioning of the DFT density. However, the choice of a partial charge model is necessarily somewhat
arbitrary and does not guarantee an accurate description of electrostatic interactions. We therefore instead
use molecular dipole moments µ as a reference, which are unambiguously defined physical observables for
finite systems and define the leading order term of molecular interactions in the long-range limit.

In a first-principles calculation, the dipole moment is calculated as:

µ=

ˆ
rn(r)dr, (16)

where n(r) is the total charge density (obtained from the sum of the electron and nuclear charge
distributions). For a charge equilibration model like kQEq, this simplifies to

µ=
N∑

A=1

rAqA = Rq, (17)

using the 3 ×Nmatrix R with columns rA. Note that for an unambiguous definition of µ for charged
systems, center-of-mass shifted coordinates are used throughout.

Combining equations (17) and (15), we obtain:

µ=−R(AKw), (18)
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for the kQEq dipole moment. To determine the regression weights w, we then set up a regularized
least-squares problem with the loss-function:

L= ||(µ−µref)||2 +σwTKw= || −R(AKw)−µref||2 +σwTKw, (19)

where σ is a regularization hyperparameter and the term wTKw comes from the use of Tikhonov
regularization in a kernel regression model. Note that we use the simplest form of regularization, with a
single parameter σ to control for overfitting. In principle different regularization strengths could be used for
each training point (e.g. proportional to the dipole magnitude).

In a final step, we set dL
dw = 0 to minimize L and solve for w, to obtain:

w=−(ATRTRAK+σ1)−1ATRTµref. (20)

The above equations are formulated for a single kQEq problem (i.e. a single molecule or system). In
practice we train on multiple systems at once. This can still be achieved with a single linear algebra equation
by using blocked matrices for A and R, and by concatenating the dipole vector elements of all training
systems into a single vector.

It should be noted that dipole moments in principle do not contain sufficient information to obtain a
unique set of atomic partial charges. One advantage of the kQEq framework is therefore that it offers a
natural way to enforce physical constraints on the partial charges. These constraints come in two forms,
namely that atoms with similar chemical environments must display similar electronegativities (enforced via
the Kernel and regularization) and that the charges must minimize the kQEq energy expression and sum to
the total charge (enforced via the QEq framework). Importantly, the set of charges that minimizes a given
kQEq energy expression is unique.

2.3. Hyperparameters
Up to now, an environment-dependent description of the atomic electronegativity χA is defined, which can
be learned from data. It remains to specify the non-classical contribution to the atomic hardness ηA and the
atomic radius αA for each element. Herein, we choose these by very simple heuristics: αA is set to be
proportional to the original QEq radius of the element in question. These radii are tabulated for all elements
up to Lawrencium (Z = 103) [30]. Empirically, we found that scaling these radii with single global scaling
parameter sat = 0.75 yields satisfactory results. Similarly, the non-classical hardness parameter ηA is set to
zero throughout, as we found that this yields robust models while keeping the empiricism of the method as
low as possible. These choices are quite simplistic and further optimization would certainly be possible. As
shown below, already these simple defaults provide highly accurate results for the investigated systems
though.

The main hyperparameters to be considered for SOAP are the cutoff radius rcut within which the
neighborhood is expanded and the broadness of the Gaussians used to smear out the atomic positions
(σatom). The choice of these lengthscales governs the range in which the environment of an atom affects its
electronegativity and how sensitive it is to changes of the atomic positions. In the following, we keep the ratio
between these parameters constant (σatom = rcut

8 ) so that for larger cutoffs, the atomic positions are smeared
out more strongly. The idea of keeping this ratio fixed is based on the fact that the expressiveness of a given
atom-centered basis set is limited by the number of basis functions, meaning that it can either provide a
high-resolution picture that is short-ranged or a lower-resolution picture that is longer-ranged. Alternatively,
one could increase the number of basis functions for larger cutoff radii instead, but this would lead to a
significantly increased computational cost. The particular constant of proportionality we use was found to
work well empirically. Note that the Dscribe implementation of SOAP is used [48]. Full details are provided
in the supplementary information (available online at stacks.iop.org/MLST/3/015032/mmedia). The
influence of the cutoff parameter is discussed below.

2.4. Error metrics
To quantify the performance of the kQEq models for predicting molecular dipole moments, we use two
complementary metrics. On one hand, we use the mean absolute error (MAE) of predicted absolute dipole
moments. This is a common measure of accuracy, which allows direct comparison with previous models.
Additionally, we use the root mean squared regularized relative error (RRMSE) as used by Hait and

Head-Gordon in [49]. This metric is defined as |µ−µref|
max(µref,1 D) × 100%, with an arbitrary threshold of 1 Debye

that discriminates between small and large dipole moments. In this way, a seamless transition from absolute
error (for small dipoles) to relative error (for large dipoles) is achieved, which is necessary since the pure
relative error is otherwise severely distorted toward systems with small dipoles.

5
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Figure 1. Learning curves for QEq and kQEq models trained on PBE0 dipole moments for the QM9 dataset. Top: MAEs of four
different kQEq models compared to QEq. Three different randomized training sets are used and averaged for each model.
Bottom: regularized relative root mean square error (RRMSE) of the same models.

3. Results

3.1. Molecular dipole moments
As a first benchmark we trained kQEq models for predicting dipole moments of organic molecules. As
reference data, the dipole moments of 7500 random molecules from the QM9 database were calculated at the
PBE0/def2-TZVP level, using ORCA (data provided in the SI) [50–52]. This set spans a wide range of small
to medium sized molecules containing the elements C, H, N, O and F. From these structures, we randomly
selected a validation set (used to optimize the regularization parameter σ) and a test set of 1000 molecules
each. The training sets used below were drawn from the remaining 4000 molecules. Figure 1 depicts the
learning curves of different kQEq models, using a range of SOAP cutoffs. For comparison, we also fitted a
conventional QEq model to the same data.

All kQEq models clearly outperform the conventional QEq approach, underscoring the benefit of the
additional flexibility obtained by using environment-dependent electronegativities. Furthermore, it can be
seen that the kQEq models improve continuously when given more data, whereas the MAE of the
conventional approach quickly saturates. The model with the smallest SOAP cutoff used here (1.7 Å) shows
the best performance for small training sets but stops improving when training on larger sets. Meanwhile, the
larger cutoffs we tested (2.6 and 3.5 Å) continuously improve and reach an excellent accuracy of 0.15 D
(compared to an intrinsic standard deviation of ca. 2 D).

Following the experience with interatomic potentials based on SOAP, we further tested a 1.7/3.5 Å
‘double SOAP’ representation [7, 53]. This combines a short-ranged/high-resolution kernel with a
longer-range/low-resolution one. The corresponding model reaches an even better accuracy and displays the
most robust performance across different training set sizes. The latter is particularly evident when
considering the RRMSE, which shows that this model consistently improves the relative error when

6
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Figure 2. Comparison of literature reported dipole models (dashed lines) and this work (solid). QEq and kQEq models use the
same B3LYP training/test data as the MuML model. Reference curves are taken from [20].

increasing the training set, whereas some of the other models improve the performance on total dipole
moments at the expense of the relative error (i.e. by describing small dipole moments less accurately).

Overall, these results show that the physical description of long-range contributions in kQEq allows the
use of rather small cutoffs for the ML part, effectively focusing on the nearest neighbors. This is beneficial
both in terms of transferability of the models and the cost of computing the representation. Notably, the
philosophically similar BpopNN model of Xie, Persson and Smalls uses a much larger cutoff radius of 13.2 Å
[35]. Meanwhile, the MuML dipole model of Veit et al (which is also based on SOAP) uses a cutoff of 5 Å
[20]. This indicates that kQEq does a good job of partitioning contributions into long-ranged physical terms
and a short-ranged ML model.

To put this performance into perspective, we compare these models to two recent kernel ML models that
are specifically tailored to predicting dipole moments, namely the operator ML approach of Christensen,
Faber and Lilienfeld and the aforementioned MuML model of Veit et al (see figure 2) [20, 54]. The former
uses a modified variant of the Faber-Christensen-Huang-Lilienfeld (FCHL) representation (FCHL⋆), which
can incorporate the response of the ML model to applied electric fields and thus provides a physically
rigorous and equivariant route to predicting dipole moments. Meanwhile, the latter uses a decomposition of
the total molecular dipole into atomic monopole and dipole contributions, using the equivariant λ-SOAP
approach [55]. For reference we also include the learning curve of a naive FCHL model, which simply
predicts the total dipole moment as a scalar (taken from [54]).

As already discussed in [54], the FCHL⋆ model is a significant improvement over the scalar approach. It
also significantly outperforms conventional QEq for all but the smallest training sets. Meanwhile the MuML
and kQEq models display remarkably similar learning curves and represent a further improvement over
FCHL⋆. Note that for consistency the QEq and kQEq models in figure 1 were trained on the same reference
data (calculated at the B3LYP level) as the MuML model from [20].

It is also instructive to consider the accuracy of the reference methods themselves. As mentioned above,
Hait and Head-Gordon used the RRMSE to benchmark density functional methods against high-level
Coupled Cluster [49]. According to this metric, the best kQEq model reaches an accuracy of 8.1% on the
dipole moments of QM9. This can be compared with the reported errors of popular hybrid functionals like
PBE0 (5.2%) and B3LYP (7%). However, it should be noted that the benchmark in [49] focuses on very small
molecules and includes spin-polarized systems, so that this comparison should not be overinterpreted.
Nonetheless, it indicates that kQEq models approach hybrid DFT accuracy at a much reduced cost.

3.2. Charge analysis
Having established the high accuracy of the kQEq predicted dipole moments, we next turn to the predicted
charges themselves. It is well known that the electron density cannot be unambiguously partitioned into
atomic partial charges. Consequently, there is no way to objectively measure the quality of such partitionings.
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Figure 3. Correlations between all pairs of charge models. The mean absolute deviation (MAD) between each pairing is given in
the inset.

Indeed, there is a fundamental tension between describing the local charge density around each atom versus
global properties such as dipole moments or electrostatic potentials, when approximating a continuous
charge density with atom-centered spherically symmetric charges. Nonetheless, it is worth considering
whether the predicted charges are reasonably intuitive and how they compare to standard population
analysis schemes like the one of Mulliken [56], restricted electrostatic potential fits like the ChelpG scheme
[57], or localized molecular orbital approaches like the Natural Population Analysis [58, 59]. Here, a double
SOAP model trained on 2000 training configurations (at the PBE0 level) is used to provide the kQEq charges
(see figure 1).

Figure 3 depicts the pairwise correlations between these partial charge models. As has been noted
previously, different charge models in general only display moderate agreement with each other [27]. In fact,
the lowest mean absolute deviation (0.1 elementary charges) is found between NPA and kQEq, the largest
between Mulliken and kQEq. The latter can be attributed to the fact that kQEq charges appear in a broader
range (−1–2.5) while Mulliken charges lie between−0.5 and 0.5. Furthermore, kQEq charges display a much
more pronounced clustering into functional groups. This is particularly evident for oxygen. While the
Mulliken analysis assigns similar charges to ether and carbonyl oxygen atoms, kQEq predicts the carbonyl
groups to be significantly more polar. Similarly, the polarity of nitrile and fluoride functional groups is much
higher in kQEq (see SI for element-wise correlation plots with all charge models). In contrast, ChelpG and
NPA charges mostly fall into the same range as the kQEq ones. In particular, the large differences for polar
functional groups (e.g nitrile or carbonyl functional groups) are not observed here. Nonetheless, large
deviations can be seen in other cases, particularly for Fluoride functional groups. In general, the relatively
good agreement with NPA charges is in line with the observations of Bultinck and coworkers for
conventional charge equilibration methods [44].

Two illustrative examples of these differences are shown for 1-(2-Methylcyclopropyl)-ethanone and
2-Fluoropyrazine in figure 4 (both of which are not part of the kQEq training set). At first glance, the
partitionings are qualitatively similar, meaning that the signs of most charges match. However, kQEq,
NPA, and ChelpG predict significantly larger absolute charges than Mulliken. In the case of
1-(2-Methylcyclopropyl)-ethanone, this is particularly evident for the carbonyl group, which is much more
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Figure 4. Comparison of Mulliken, ChelpG, NPA and kQEq partial charges for 1-(2-Methylcyclopropyl)-ethanone (top) and
2-Fluoropyrazine (bottom). Reference dipoles (at the PBE0 level) are depicted as arrows (green) alongside the dipoles of the
corresponding charge partitioning (Mulliken (yellow), ChelpG (red), NPA(purple), kQEq (blue)).

strongly polarized. Importantly, these differences have strong consequences for the overall description of the
molecular electrostatics. Indeed, the dipole moment calculated from the Mulliken charges points in the
opposite direction of the actual dipole. In contrast, the ChelpG and NPA dipoles are well aligned with the
reference, but too small in magnitude. Finally, the kQEq charges provide an accurate prediction of both the
absolute dipole moment and its direction.

The case of 2-Fluoropyrazine is particularly interesting because it illustrates the observed discrepancy
between the charges assigned to C-F groups. Here, kQEq predicts the largest absolute charges on the
corresponding C and F atoms. Interestingly, the Mulliken, NPA, and ChelpG charges nonetheless
overestimate the molecular dipole moment, while the kQEq prediction provides an excellent fit. This is
because the large positive charge on the carbon atom stems not only from charge transfer to Fluorine, but also
to the adjacent Carbon and Nitrogen atoms, which partially counterbalance the polarity of the C-F group.

The generally poor correlation between the charges obtained with different schemes raises some
questions about the different roles and interpretations partial charges can have. On one hand, they can reflect
a local partitioning of the electron density, as in the case of Mulliken, Hirshfeld or Bader charges. On the
other hand, they can reflect the electrostatic potential on the surface of a molecules, as in the case of ChelpG
and related schemes. While the latter is arguably less arbitrary (as it is directly tied to a physical observable) it
has well-known issues with assigning meaningful charges to atoms that are ‘buried’ in bulky molecules.

The kQEq model proposed herein does not neatly fit into these categories. Firstly, it is not a charge
partitioning scheme but an ML model. Mulliken, NPA, and ChelpG charges can only be obtained by running
a full DFT calculation, whereas the kQEq prediction is much cheaper. Secondly, while kQEq models are
trained to reproduce molecular dipole moments, the charges themselves are obtained by minimizing the
electrostatic energy expression in equation (5). The Coulomb interactions between partial charges thus
provide an important physical constraint on how the charge distribution is approximated. As a consequence,
the kQEq derived molecular electrostatic potentials are in good agreement with the ChelpG and NPA ones
(see SI). Nonetheless, the kQEq charges are comparatively large. Since bio-organic forcefields usually rely on
ChelpG or scaled Mulliken charges, the current kQEq models may thus not be directly applicable in MD
simulations. Indeed, the development of interatomic potentials based on kQEq will likely require more
complex loss functions, e.g. incorporating energetic contributions or higher order moments. This will be the
subject of future work.

3.3. Extrapolating beyond small molecules
A well-known drawback of the conventional QEq approach is that it suffers from an delocalization error akin
to that observed for local density functionals. This is e.g. evident in the fact that QEq models incorrectly
dissociate molecules into partially charged atoms, since electronegativity differences between isolated atoms
lead to spurious charge transfer [39]. While kQEq could in principle cure this particular pathology (by
assigning the same electronegativity to all isolated atoms), the more general delocalization tendencies of QEq
will likely be inherited by kQEq to an extent. In this section we explore this issue by testing the performance
of kQEq for the organic polymer chains dataset introduced by Veit et al [20] (see figure 5).
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Figure 5. Dipole moment predictions for α-helix and β-strand polyglycine, polyenoic amino acids, and n-amino carboxylic acids
[20]. The kQEq and QEq models are trained on 2000 molecules from QM9. The retrained kQEq model additionally includes the
largest polymer in each series, highlighted by a square symbol.

This dataset consists of two types of structures. On one hand, glycine polypeptides in the α-helix and
β-strand configurations are considered. On the other hand, polyenoic amino acids and n-amino carboxylic
acids are included, which consist of a carboxylic acid and an amine group separated by a conjugated double
bond or alkane spacer, respectively. Each of these systems shows characteristic changes of the total dipole
moment as the polymer length increases. For the polypeptides, each additional amide bond is itself polar, so
that the total dipole increases approximately linearly with the system size. However, the precise behavior
depends on the spatial orientation of these bond dipoles and their interactions, so that the α-helix and
β-strand configurations show different scalings. The polyeonic amino acid chains also display a linearly
increasing dipole moment. In this case this is not due to the addition of polar bonds, however, but due to the
polarization of the delocalized π-electrons in the spacer. Finally, the dipole of the n-amino carboxylic acids
remains constant upon increasing the chain length, since no polar bonds or delocalized electrons are present.

We again use a ‘double SOAP’ kQEq model trained on 2000 randomly drawn QM9 molecules for
comparison. This model has a mixed performance for this test. For polyenonic and n-amino carboxylic acids,
the performance is very good. This is both in terms of the qualitative features (linear increase in dipole
moments, vs. quick saturation) and the quantitative agreement. Furthermore, kQEq is a strong improvement
over conventional QEq here. In contrast, the performance for the polypeptides is less satisfactory. While the
linear trend is correctly captured, the magnitude of the dipoles is significantly underestimated, in particular
for the β-strand. This behavior is analogous to the underestimation of dipoles typically observed with local
functionals, due to the delocalization error [49]. While this shows that kQEq does not automatically cure all
pathologies of QEq, a clear advantage of a ML approach is that it can be improved with more data. Indeed, by
including the longest chains of each type explicitly in the training set, a retrained kQEq model can be
generated that captures these trends more accurately, see figure 5. Potentially, an improved extrapolation
behavior could be obtained by using a more flexible expression for the site-energy in equation (3), effectively
tackling the problem at its root.

Figure 5 also shows the best MuML model from [20] for comparison. This model performs quite well
overall, in particular for the polypeptide systems, with slightly worse performance for the carboxylic acids. In
this context, it is worth discussing the fundamental differences between MuML and kQEq. The former uses a
fully local decomposition of the overall dipole moment. This works very well for situations where the charge
distribution of a large system is essentially just a sum of smaller fragments (as for the polypeptides). In
contrast, long-range charge transfer and polarization effects cannot be described by such a model.
Specifically, in a system where two functional groups A and B are separated by some spacer, the MuML
charge on A will be independent of B. This is reflected in the underestimated dipole moments of longer
polyenoic amino acid chains. QEq and kQEq are in principle able to describe such non-local effects. The
QEq curve for n-amino carboxylic acid reveals that this is not necessarily an advantage however, as large
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Figure 6. Left: Atomic partial charges for the longest polyenoic amino acid from figure 5, based on MuML (top), NPA (middle)
and kQEq (bottom). Right: Comparison of carbon charges in all three models.

unphysical charge transfer is predicted in this case. In other words, a purely local model will generally lead to
more systematic and less dramatic failures than a poor non-local one. Fortunately, kQEq and related
methods now provide a framework for sophisticated non-local charge equilibration models.

More detailed insight into the charge distributions of the different models can be obtained by comparing
the partial charges directly (see figure 6). Here, the MuML and kQEq charges for the longest polyenoic amino
acid are shown. For comparison, quantum mechanical NPA charges are also included. This reveals that the
kQEq charges display a much better qualitative agreement with NPA. In particular, the oscillatory behavior
of the carbon charges (which can be attributed to polarization effects) is completely absent in MuML but
clearly observable for kQEq. This is notable, given that both ML models are exclusively trained on dipole
moments (i.e. without any atomistic detail) and supports the notion that the kQEq framework introduces
useful physical constraints on the charges.

More generally, it should be noted that kQEq is not primarily intended as a stand-alone molecular dipole
model. Since it is based on an energy functional, it can be used to model long-range electrostatic interactions
in combination with local interatomic potentials. Indeed, it remains an open question whether dipole
moments alone provide enough information for this purpose. Fortunately, the current approach can easily
be expanded to also include higher moments, electrostatic potentials or reference partial charges. This will be
explored in future work.

4. Conclusion

In this work, we introduced kQEq, a kernel-based approach to charge equilibration in molecules. In contrast
to conventional charge equilibration methods like QEq, a data-driven, environment-dependent description
of atomic electronegativities is introduced. kQEq models trained on molecular dipole moments display
excellent performance, en par with or better than state-of-the-art kernel models, specifically tuned to
predicting dipole moments [20, 54].

The formalism presented herein opens the door toward physics-based kernel ML models for predicting
atomic charges, to be used in combination with reactive interatomic potentials. Importantly, the presented
approach is quite general and can be extended to other fit targets (e.g. quadrupole moments and electrostatic
potentials) and to more flexible density representations (e.g. using atom centered dipoles in addition to
partial charges).

While this work focuses on molecular systems, the application to inorganic materials is also envisioned.
For finite systems (e.g. nanoparticles) this is in principle straightforward. The use of other fit targets may
become important for larger systems, however, as the dipole moment alone might contain too little
information in this case. For periodic systems multipole moments are in general ill-defined. Here, the
current approach will have to be extended to reproduce other electronic properties.

It should also be noted that QEq-based frameworks are likely not equally well suited for different kinds of
materials. In principle, one would expect the best performance for metallic systems, where charges are
strongly delocalized and mobile. In contrast, polar insulators or interfaces may be less well described due to
the intrinsic delocalization error of charge equilibration models. More general site-energy expressions could
be developed to overcome these tendencies. Ideally, such developments will ultimately converge with recent
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developments in ML-based DFT, yielding a new generation of orbital-free density functionals [60–63]. Work
in this direction is ongoing in our groups.
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[55] Grisafi A, Wilkins D M, Csányi G and Ceriotti M 2018 Symmetry-adapted machine learning for tensorial properties of atomistic

systems Phys. Rev. Lett. 120 36002
[56] Mulliken R S 1955 Electronic population analysis on LCAO–MOmolecular wave functions. i J. Chem. Phys. 23 1833–40
[57] Breneman CM andWiberg K B 1990 Determining atom-centered monopoles from molecular electrostatic potentials. The need for

high sampling density in formamide conformational analysis J. Comput. Chem. 11 361–73
[58] Reed A E, Weinstock R B and Weinhold F 1985 Natural population analysis J. Chem. Phys. 83 735–46
[59] Nikolaienko T Y, Bulavin L A and Hovorun D M 2014 JANPA: an open source cross-platform implementation of the natural

population analysis on the Java platform Comput. Theor. Chem. 1050 15–22
[60] Brockherde F et al 2017 Bypassing the Kohn-Sham equations with machine learning Nat. Commun. 8 872
[61] Bogojeski M, Vogt-Maranto L, Tuckerman M E, Müller K-R and Burke K 2020 Quantum chemical accuracy from density

functional approximations via machine learning Nat. Commun. 11 5223
[62] Dick S and Fernandez-Serra M 2020 Machine learning accurate exchange and correlation functionals of the electronic density Nat.

Commun. 11 3509
[63] Margraf J T and Reuter K 2021 Pure non-local machine-learned density functional theory for electron correlation Nat. Commun.

12 344

13

https://doi.org/10.1021/j100161a070
https://doi.org/10.1021/j100161a070
https://doi.org/10.1021/acs.jctc.8b01089
https://doi.org/10.1021/acs.jctc.8b01089
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1103/PhysRevB.95.104105
https://doi.org/10.1103/PhysRevB.95.104105
https://doi.org/10.1021/acs.accounts.0c00689
https://doi.org/10.1021/acs.accounts.0c00689
https://doi.org/10.1021/acs.jctc.0c00217
https://doi.org/10.1021/acs.jctc.0c00217
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1063/1.468398
https://doi.org/10.1063/1.468398
https://doi.org/10.1021/jp004368u
https://doi.org/10.1021/jp004368u
https://doi.org/10.1021/jp003823j
https://doi.org/10.1021/jp003823j
https://doi.org/10.1021/jp0369342
https://doi.org/10.1021/jp0369342
https://doi.org/10.1063/1.2346671
https://doi.org/10.1063/1.2346671
https://doi.org/10.1021/ct200283y
https://doi.org/10.1021/ct200283y
https://doi.org/10.26434/CHEMRXIV.8326202.V1
https://doi.org/10.1021/jp020547v
https://doi.org/10.1021/jp020547v
https://doi.org/10.1021/jp0205463
https://doi.org/10.1021/jp0205463
https://doi.org/10.1021/acs.jpca.8b07290
https://doi.org/10.1021/acs.jpca.8b07290
https://doi.org/10.1021/ja00364a005
https://doi.org/10.1021/ja00364a005
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1021/acs.jctc.7b01252
https://doi.org/10.1021/acs.jctc.7b01252
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1038/s41467-020-19267-x
https://doi.org/10.1038/s41467-020-19267-x
https://doi.org/10.1063/1.5053562
https://doi.org/10.1063/1.5053562
https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1063/1.1740588
https://doi.org/10.1063/1.1740588
https://doi.org/10.1002/jcc.540110311
https://doi.org/10.1002/jcc.540110311
https://doi.org/10.1063/1.449486
https://doi.org/10.1063/1.449486
https://doi.org/10.1016/j.comptc.2014.10.002
https://doi.org/10.1016/j.comptc.2014.10.002
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41467-020-19093-1
https://doi.org/10.1038/s41467-020-19093-1
https://doi.org/10.1038/s41467-020-17265-7
https://doi.org/10.1038/s41467-020-17265-7
https://doi.org/10.1038/s41467-020-20471-y
https://doi.org/10.1038/s41467-020-20471-y


Citation: Staacke, C.G.; Huss, T.;

Margraf, J.T.; Reuter, K.; Scheurer, C.

Tackling Structural Complexity in

Li2S-P2S5 Solid-State Electrolytes

Using Machine Learning Potentials.

Nanomaterials 2022, 12, 2950.

https://doi.org/10.3390/

nano12172950

Academic Editor: Hyun-Suk Kim

Received: 12 July 2022

Accepted: 18 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Tackling Structural Complexity in Li2S-P2S5 Solid-State
Electrolytes Using Machine Learning Potentials
Carsten G. Staacke 1,† , Tabea Huss 1,†, Johannes T. Margraf 1, Karsten Reuter 1 and Christoph Scheurer 1,2,*

1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
2 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Fundamental Electrochemistry

(IEK-9), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
* Correspondence: scheurer@fhi.mpg.de
† These authors contributed equally to this work.

Abstract: The lithium thiophosphate (LPS) material class provides promising candidates for solid-
state electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical
elements, and low material cost. LPS materials are characterized by complex thiophosphate micro-
chemistry and structural disorder influencing the material performance. To overcome the length and
time scale restrictions of ab initio calculations to industrially applicable LPS materials, we develop a
near-universal machine-learning interatomic potential for the LPS material class. The trained Gaus-
sian Approximation Potential (GAP) can likewise describe crystal and glassy materials and different
P-S connectivities PmSn. We apply the GAP surrogate model to probe lithium ion conductivity and
the influence of thiophosphate subunits on the latter. The materials studied are crystals (modifications
of Li3PS4 and Li7P3S11), and glasses of the xLi2S–(100 – x)P2S5 type (x = 67, 70 and 75). The obtained
material properties are well aligned with experimental findings and we underscore the role of anion
dynamics on lithium ion conductivity in glassy LPS. The GAP surrogate approach allows for a variety
of extensions and transferability to other SSEs.

Keywords: machine learning; amorphous; Li-ion battery; high ionic conductivity solid electrolyte

1. Introduction

While lithium-ion batteries with liquid electrolytes entered the market in 1991, all-
solid-state lithium-ion batteries (ASS-LIBs), although investigated for decades, are still
not widely in use [1–6]. ASS-LIBs promise several advantages in comparison to liquid
electrolyte batteries: higher power density, minimized safety and fire hazards, longer
cycle lifetimes, more comprehensive temperature ranges, and enhanced energy density by
potential usage of Li metal anodes [1,7,8]. Solid electrolytes of the Li2S-P2S5 material class
have gained substantial attention due to their favorable properties [6,9]. First, they possess
high conductivities of up to 10−2 Scm−1, which ranks them among the most conductive
solid electrolytes such as Li10GeP2S12 or Li1.3Al0.3Ti1.7(PO4)3 [10,11]. Secondly, they are
composed of the earth-abundant elements sulfur and phosphorous enabling sustainable
applications at large scales.

However, this material class’s potential is hampered by the poor understanding of
the relevant structure-property relations. This manifests itself in huge deviations in Li-ion
conductivity between theory and experiment. As such, β-Li3PS4 serves as an illustrat-
ing example. Experimental studies report a lithium ion conductivity of approximately
10−7 Scm−1, making the material unsuitable for industrial battery applications [12]. In
contrast, an ab initio study predicts a conductivity of 10−1 Scm−1; a six orders of magni-
tude deviation from experiment that would make the material the new record holder in
solid-state lithium ion conduction [13]. Such huge discrepancies often arise from com-
putational limitations that constrain tractable system sizes and sampling times. In the
LPS case, high-resolution TEM images for instance revealed the presence of crystalline
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nanoparticles in otherwise amorphous regions, highlighting that conductivity calculations
of ideal crystals are too short-sighted for this materials class [14]. The problem is further
accentuated by the complex chemical structure of LPS [15,16]. A large structural variability
at the molecular level, more precisely different thiophosphate poly-anions, are found in
all crystalline and amorphous materials [6,17]. For a detailed description of the lithium
ion conductivity in LPS we thus need to tackle these challenges: structural complexity of
LPS glass compounds, chemical reactivity of thiophosphates, and the influence of anion
composition on the lithium ion conductivity.

Here we tackle these challenges by replacing the computationally demanding direct
first-principles calculations with a surrogate machine-learning (ML) model. Once trained,
this Gaussian Approximation Potential (GAP) model allows for an upscaling of both time
and length scale: molecular dynamics (MD) simulations covering up to several nanoseconds
and system sizes of several thousand atoms become feasible. Furthermore, the flexibility
offered by the ML approach allows one to implement a GAP model that is more versatile
and can better represent the crucial complex chemistry than a classical force field [18]. We
present a data-efficient iterative training approach to extend an earlier ML force field to
yield a near-universal description of the LPS material class [19,20].

In the first part of this work we present our data-efficient training protocol and evaluate
the GAP model on (a) its predictive accuracy for lithium ion conductivity and (b) its ability
to reproduce two known phase transitions in crystalline Li3PS4. The second part focuses
on the influence of anion composition on the lithium ion conductivity of different LPS
glass compounds.

2. Methods
Computational Details

Reference density-functional theory (DFT) calculations are performed with the PBE
functional, default ’light’ integration grids and a ’tier 1’ basis set of numerical atomic
orbitals, as implemented in FHI-aims [21,22]. The Brillouin zone is sampled with a
1 × 1 × 1 k-grid. Initial training configurations are generated with ab initio molecular
dynamics (MD) using the Γ-point approximation for the k-grid. GAP-based MD and
Nudged-Elastic-Band (NEB) simulations are performed using the LAMMPS [23] code and
the corresponding interface to QUIP [24,25]. For training set construction and data analysis,
the atomic simulation environment ASE, SciPy and scikit-learn are used [26–28].

3. Results
3.1. Lithium Ion Mobility

We obtain the reactive GAP model used to describe the LPS class by fitting to DFT
training data computed with the FHI-aims full-potential package [22]. The underlying
approach is based on three consecutive steps: defining the anion lattice, sampling of Li-sites,
and fine-tuning the materials density. In the first place, only the dominant anion species
(e.g., PS3−

4 and P2S4−
7 ) are taken into consideration and utilized in a ratio that represents the

desired stoichiometry correctly. For a data-efficient sampling of lithium sites, we sample
Li-ion distributions on stable and meta-stable Li sites in a quasi-Monte Carlo like fash-
ion. The materials density is obtained by an iterative compression scheme. Convergence,
a detailed step-by-step description of the underlying algorithm, and numerical error assess-
ments of the training procedure are given in Sections A–C in the Supplementary Materials.
The benefit of this approach is that it allows the free tuning of stoichiometries and polyanion
ratios. In contrast to previous work on crystalline Li7P3S11 we use a purely short-ranged
GAP. In Ref. [19] we combined a GAP model with an electrostatic baseline in order to
study the role of long-range electrostatics in machine-learned interatomic potentials for
complex battery materials. We previously showed that neglecting long-range electrostatics
is unproblematic for describing lithium ion transport in isotropic bulk-like systems [19].

As a first validation of our GAP model, we turn to the Li-ion conductivity of crystalline
LPS materials (α, β, γ Li3PS4 and Li7P3S11) at finite temperature, predicted from MD



Nanomaterials 2022, 12, 2950 3 of 9

simulations via the Nernst-Einstein equation (see section F in the Supplementary Materials
for details). Using the GAP model we evaluate the ionic conductivity from the mean-square-
displacement (MSD) sampled during 2 ns MD simulations for every crystalline compound
at various temperatures between 400 and 800 K. Room temperature (RT) conductivities
are extrapolated from a linear fit. Note that for crystalline Li7P3S11 we required longer
simulation times of up to 13 ns to reach converged conductivities, i.e., time scales that would
essentially be prohibitive for direct ab initio MD. While Li-ion conductivity in LPS is usually
dominated by diffusion of defects (Li+ vacancies), Li7P3S11 exhibits a more collective Li+

motion yielding the observed high conductivity [19,29,30]. As seen in Figure 1, a broad
range of Li-ion conductivities are exhibited in LPS.

Figure 1. (A) Computational Arrhenius plots for Li7P3S11 (red solid line) and α, β and γ phase of
Li3PS4 (blue solid lines), as well as the glasses of Li4P2S6 (orange dashed line), Li7P3S11 (red dashed
line), and Li3PS4 (blue dashed line). (B) Reference conductivity data from literature. A tabulated
form including references can be found in Table S3 in the Supplementary Materials. Solid lines refer
to nominal crystalline materials, dashed lines to glasses/ceramics.

While high RT conductivities of up to 3.6 × 10−3 Scm−1 are found for α-Li3PS4 and
Li7P3S11, β and γ-Li3PS4 exhibit poor RT conductivities of 10−5 to 10−7 Scm−1. These crys-
talline RT conductivities are in good agreement with experimental literature, although the
extrapolated RT conductivity of β-Li3PS4 is somewhat overestimated [30]. For ensemble
averaging, we generated 20 structurally uncorrelated glass geometries for each specific
temperature and stoichiometry. Hence, each data point in Figure 1 is an average over 20 MD
calculations [31]. We consider three different stoichiometries in the analysis that cover
the range from fully tetrahedral (Li3PS4) via mixed (Li7P3S11) to fully bridged tetrahedral
(Li4P2S7) thiophosphate moieties. These three dominant anion subunits are depicted below.
As apparent from Figure 1, the ion conductivity over the whole temperature range and the
extrapolated RT conductivities increase with growing Li2S content of the glass material,
almost tripling conductivity from Li4P2S7 (Li2S = 67 mol%) to Li3PS4 (Li2S = 75 mol%).
Hence, for an increasing Li2S content an increase RT conductivity is observed. These
findings are again in good agreement with experimental studies.

3.2. Li3PS4 Phase Transition

As a final validation step, we test the GAP’s predictive power on the known phase tran-
sitions in Li3PS4. As we show in Figure S8 in the Supplementary Materials, the Arrhenius
curves of β and γ-Li3PS4 exhibit a change of slope at roughly 700 K. Above 700 K, conduc-
tivities of β and γ-Li3PS4 even match those of α-Li3PS4. This change of slope is caused by
the phase transition to α-Li3PS4, involving a rotation of 25 % of the PS3−

4 tetrahedra by 180◦

for both structures [18].
We can probe the phase transition quantitatively by studying the radial distribution

functions (RDFs) of the sulfur sublattice as a function of simulation temperature (Figure 2).
The β- and γ-phase share a HCP (hexagonal close-packed) sulfur sublattice, which is
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transformed to a BCC (body centered cubic) lattice in the α-phase [18]. For both sublattices,
the S-S RDF displays a distinct peak at 3.4 Å, attributed to the intramolecular S-S distance.
In the HCP sublattice, a second distinct peak at 4.3 is observed. The latter is missing
in the BCC structure. Both β- and γ-phase show the characteristic double-peak in the
low-temperature RDF, while the second peak vanishes for temperatures above 650 K.
This same phase transition has also been observed in experimental studies and ab initio
simulations [32,33]. Conceptually, these three phases can be distinguished by their different
arrangement of PS3−

4 . These are either all pointing in the same direction (γ), are arranged
in a zig-zag fashion in one (α) or two directions (β) in space. A visualization can be found
in Figure S6 in the Supplementary Materials [32]. The here obtained temperature between
600 and 700 K for the phase transition again matches fairly well with the experimentally
reported 746 K [33].

Figure 2. S-S radial distribution functions (RDFs) for MD snapshots of α-Li3PS4 (left panel), β-Li3PS4

(middle panel), and γ-Li3PS4 (right panel) at different temperatures. The disappearance of the peak
at 4.3 Å, occurring for β and γ at 700K, corresponds to the phase transition to the α-phase.

3.3. The Role of Anion Composition in Li2S-P2S5 Glasses

Concluding that we can correctly describe the lithium ion dynamics and structural
changes in crystalline Li3PS4 we now turn to the influence of anion composition on the
lithium ion conductivity in LPS glasses. As shown above, the RT conductivity generally
increases with Li2S content of the glass material. The increasing Li-ion conductivity is partly
attributable to the lithium mass percentage increase at equal densities. This larger con-
centration of charge carriers yields higher conductivities for similar diffusion coefficients,
accounting for an increase in conductivity of ∼30%. As this is much less than the above
described rough tripling of the conductivity, we suspect the different anion compositions
in the sulfur sub-lattice to be another, dominant factor.

Existing data on the origin of ion conductivity suppression by the anion lattice is quite
ambiguous. For example, experimental studies report a strong conductivity suppression by
P2S4−

6 , attributed to meso-scale precipitation of the non-conducting Li2P2S6 phase [34,35].
On the contrary, density of state calculations report that P2S4−

7 should suppress ion conduc-
tion at the atomic scale [36]. The charge transfer along the covalent bond between the P
and the bridging S lowers the positive partial charge of the P centers, which supposedly
attracts Li+ ions to the P2S4−

7 anions more strongly than the other thiophosphate anions.
These are just two illustrative examples discussed as possible origins of ion conductivity
suppression by the anion lattice.

First, we analyse the anion composition at different temperatures for all three stoi-
chiometries. Violin plots depicting the building block distributions at different temper-
atures within the structure ensembles are displayed in Figure 3. For the Li3PS4 glass,
the simple PS3−

4 ortho-thiophosphate is as intuitively expected the predominant species
over the whole temperature range. Hypo-thiodiphosphate P2S4−

6 occurs only in small
concentrations ≤10 at.% and shows no strong temperature dependence. Up to 25 at.% of
pyro-thiodiphosphate P2S4−

7 occur at the lower temperature but gradually disappear be-
tween 600 and 700 K. These anion ratios are in agreement with experimental ratios found for
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Li3PS4 [37]. In both, the Li7P3S11 and Li4P2S7 glasses, the P2S4−
6 content instead increases

between 400 and 700 K, even though the increase is not too pronounced in comparison to
the width of the distribution in the ensemble. The found P2S4−

6 contents in Li7P3S11 and
Li4P2S7 are slightly higher compared to experimental data [17].

Figure 3. Top: Dominant anions in the Li2S–P2S5 material class. Bottom: Anion compositions for
different MD temperatures, displayed for Li3PS4 (left panel), Li7P3S11 (middle panel), and Li4P2S7

(right panel) glasses.

Next, we analyze the number of Li-positions occupied during MD simulations at finite
temperatures, by calculating the isosurface of the probability density distribution of Li-
positions (exemplary visualizations see Figure S9 in the Supplementary Materials). When
referencing the volume enclosed by the isosurface to the total volume of the simulation
cell, we identify the relative accessible volume for all Li-ions for a given stoichiometry.
As shown in the left panel of Figure 4 for the Li7P3S11 and Li4P2S7 glasses, the same relative
volume is accessed by Li, while Li3PS4 exhibits a 10 % higher accessible Li-volume at all
temperatures. This is intuitive as P2S4−

n moieties have a larger surface/volume of the anion,
allowing for a smaller number of Li-sites in the material compared to smaller PS3−

4 anions.
In order to explore the effect of the anion lattice motion on the Li-ion conductivity we

either constrain the sulfur positions, or the phosphorous positions, and compare the Li ion
conductivity obtained within MD simulations with these two frozen lattices to the uncon-
strained Li-ion conductivity. As seen in the right panel of Figure 4, the Li-ion conductivity
decreases for all three glass stoichioemetries for both frozen lattices. However, while in
the case of frozen phosphorus we observe only a slight decrease in conductivity, freezing
the sulfur degrees of freedom reduces the conductivity by approximately two orders of
magnitude. We observe the largest decrease of the conductivity for the stoichiometry
consisting of the highest PS3−

4 (Li3PS4) content, and the smallest change for the lowest PS3−
4

content (Li4P2S7). This suggests that the motion of sulfur throughout the Li-ion conduction
plays a significant role.
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Figure 4. (Left panel) Accessible volume of lithium during MD simulations at various temperatures:
Li3PS4 (blue dashed line), Li7P3S11 (red dashed line), and Li4P2S7 (orange dashed line). (Right panel)
Li ion conductivity with frozen sulfur lattice (diamonds with dotted lines), with frozen phosphor
lattice (diamonds with solid line) and without constraints on the sulfur lattice (dots with dashed line):
Li3PS4 (blue lines), Li7P3S11 (red lines), and Li4P2S7 (orange lines).

Smith and Siegel showed that in glassy Li3PS4, lithium migration occurs via a mech-
anism that combines a concerted motion of lithium ions with re-orientations of PS3−

4
anions [38]. This effect, known as the ’paddlewheel’ mechanism, can directly attribute the
increasing Li-ion conductivity with increasing PS3−

4 content. So far, the paddlewheel effect
has only been shown in Li3PS4, but our results confirm this effect occurs as long as PS3−

4 is
present. Hence, the conductivity of Li4P2S6 and Li4P2S7 decrease as well when the sulfur
lattice is frozen, but the effect is not as pronounced as in Li3PS4. As the Li-ion conductivity
of all three stoichiometries is almost identical when the sulfur lattice is frozen, this actually
suggests that the higher accessible volume of Li in Li3PS4 arises from re-orientations of
PS3−

4 anions. Hence, both effects can not be decoupled, but rather the re-orientation of PS3−
4

anions generates new Li sites. Together with the increased overall Li content, this thus fully
rationalizes why the Li-ion conductivity increases with higher Li2S content.

4. Conclusions

All of the herein described effects, collective Li-ion motion of crystalline Li7P3S11,
phase transitions of crystalline Li3PS4, and the conductivity/anion-composition relation
in glassy LPS, could not be studied before by a single interatomic potential, preventing
the relative identification of trends and common origins. While not only this can now be
achieved by our machine learning surrogate model, the general structure of the training
protocol furthermore allows for a variety of extensions, including additional selection
criteria [20,39], using an electrostatic baseline in the model [40], doping with transition
metals, and modeling of solid/solid interfaces [41,42]. We correspondingly see much
prospects in the use of ML potentials to further elucidate atomic scale processes in complex
battery materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12172950/s1, Figure S1: Anion Voronoi Tesselation, Figure S2:
Glass sampling approach, Figures S3 and S4: Sampling of P-P distances, Figures S5 and S6: Force
parity plot, Figure S7–S10: Radial distribution functions, Figure S11: Li3PS4 crystal configuration,
Figure S12: Density dependence of the conductivity, Figure S13: Computational Arrhenius plots,
Figure S14: Li accessible volume. Table S1: Technical Hyperparameters for the GAP, Table S2:
Coordination-resolved force RMSEs, Table S3: Lithium ion conductivity. References [43–49] are cited
in the supplementary materials
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