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Abstract

Proposed hybrid algorithms encode a combinatorial cost function into a problem Hamiltonian
and optimize its energy by varying over a set of states with low circuit complexity. Classical
processing is typically only used for the choice of variational parameters following gradient
descent. As a consequence, these approaches are limited by the descriptive power of the associated
states. We argue that for certain combinatorial optimization problems, such algorithms can be
hybridized further, thus harnessing the power of efficient non-local classical processing.
Specifically, we consider combining a quantum variational ansatz with a greedy classical
post-processing procedure for the MaxCut-problem on three-regular graphs. We show that the
average cut-size produced by this method can be quantified in terms of the energy of a modified
problem Hamiltonian. This motivates the consideration of an improved algorithm which
variationally optimizes the energy of the modified Hamiltonian. We call this a twisted hybrid
algorithm since the additional classical processing step is combined with a different choice of
variational parameters. We exemplify the viability of this method using the quantum approximate
optimization algorithm (QAOA), giving analytic lower bounds on the expected approximation
ratios achieved by twisted QAOA. We observe that for levels p = 1, ... ., 5, these lower bounds are
comparable to the known lower bounds on QAOA at level p + 1 for high-girth graphs. This
suggests that using twisted QAOA can reduce the circuit depth by 4 and the number of variational
parameters by 2.

1. Introduction

Due to their real-world interest, problems and algorithms for combinatorial optimization figure
prominently in present-day theoretical computer science. For theoretical physics, the profound and
immediate connections to the physics, e.g., of Ising or Potts models are particularly appealing.
Combinatorial optimization also provides an intriguing potential area of application of near-term quantum
devices with clear figures of merit such as approximation ratios. Yet the study of quantum algorithms for
these problems is still in its infancy, especially when compared to the intensely studied area of classical
algorithms. For example, for classical algorithms, an established bound [13, 14] on efficiently achievable
approximation ratios for MaxCut under the unique games conjecture matches that achieved by the
celebrated Goemans—Williamson algorithm [10] (see also [4]). It appears rather unlikely that under the
unique games conjecture an efficient quantum algorithm can outperform the Goemans—Williamson
algorithm for generic graphs. Even the more modest goal of identifying special families of instances for
which a quantum algorithm outperforms comparable efficient classical algorithms appears to be out of
reach. Independently of whether or not one can find a provable real-world quantum advantage in the
setting of combinatorial optimization, or ends up using quantum devices as a heuristic to efficiently find
approximate solutions, or finds novel classical algorithms inspired by quantum ones (as has happened
before), it is natural to study to what extent existing proposals can be improved in a systematic manner with
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associated performance guarantees. This is what we pursue here in the context of hybrid classical-quantum
algorithms.

For the problem of finding (or approximating) the maximum of a combinatorial cost function
C:{0,1}" — R (given by polynomially many terms), typical hybrid algorithms proceed by defining the cost
function Hamiltonian

Hc = Z C(2)|z) (2|

ze{0,1}n

in terms of local terms, and a parametrized family { U () }gco of n-qubit unitary circuits. The later might
be parametrized by the underlying graph of the cost function or in case of hardware-efficient algorithms
tailored to the physical device [12]. The parametrized family gives rise to variational ansatz states

[W(0)) = Us(6)0)"",

that can be prepared with Ug(0) from a product state |0>®". Measuring ¥ (6) in the computational basis
then provides a sample z € {0, 1}" from the distribution p(z) = |(z|¥(6))|* such that the expectation value
of the associated cost function is equal to the energy E[C(z)] = (U(0)|Hc|¥(0)) of the state U(#) with
respect to He. Thus the problem of maximizing C is translated to that of finding a value of the (vector of)
parameters  maximizing the energy of W (). The latter step is envisioned to be performed e.g., by
numerical gradient descent or a similar classical procedure prescribing (iteratively) what parameters 6 to
try. The computation of this prescription (according to obtained measurement results) is the classical
processing part of the quantum algorithm leading to the term hybrid. We will refer to this form of algorithm
as a ‘bare’ hybrid algorithm in the following.

The potential utility of this approach hinges on a number of factors. Of primary importance—beyond
questions of convergence or efficiency—is whether the family {U(0) }yce of states is sufficiently rich to
variationally capture the (classical) correlations of high-energy states of Hc. There is an inherent tension
here between the requirement of applicability using near-term devices, and the descriptive power, i.e.,
required complexity of these states: on the one hand, each unitary Ug(6) is supposed to be realized by a
low-depth circuit with local gates (making it amenable to experimental realization on a near-term device),
and the dimensionality of the parameter or ‘search’ space O should be low to guarantee fast convergence
e.g., of gradient descent. On the other hand, states having high energy with respect to H¢ and belonging to
the considered family of variational states may have intrinsically high circuit complexity, and,
correspondingly, may also require a large number of variational parameters to approximate. The
unavoidability of this issue has been demonstrated using the MaxCut-problem on expander graphs with #n
vertices and the quantum approximate optimization algorithm (QAOA) at level p: here the parameter space
is © = [0,27)* and the corresponding circuits Ug(6)) have depth O(pd). Locality and symmetry of the
ansatz imply that achievable expected approximation ratios are upper bounded by a constant (below that
achieved by Goemans—Williamson) unless p = Q(logn) [3]. In fact, the locality of the ansatz alone implies
that for smaller values of p, the achieved expected approximation ratio is not better than of a random
guessing for random bipartite graphs, as shown in [6].

These fundamental limitations of ‘standard’ hybrid algorithms are tied to the assumption that an
increased complexity of the required quantum operations is unacceptable and/or infeasible in the near
term. Under these circumstances, the only way forward appears to be to use alternative, possibly more
powerful (e.g., non-local) efficient classical processing which could exploit the limited available quantum
resources more effectively. One example where a classical post-processing is used is [7], where QAOA is
combined with a greedy ‘pruning’ method to produce an independent set of large size. Here post-processing
is needed, in particular, to ensure that the output is indeed an independent set. Another proposal in this
direction is the idea of ‘warm-starting’ QAOA with a solution provided by the Goemans—Williamson
algorithm [5] (see also [16]). The warm-starting approach has the appeal that—by construction—the
Goemans—Williamson approximation ratio can be guaranteed in this approach (assuming convergence of
the energy optimization). An alternative is the recursive QAOA (RQAOA) method [2, 3] which uses QAOA
states to iteratively identify variables to eliminate. This effectively reduces the problem size but increases the
connectivity and thus the circuit complexity of the iteratively obtained subproblems. Furthermore,
analytical bounds on the expected approximation ratios are unknown except for very special examples [3].
For both warm-starting QAOA as well as RQAOA, one deviates from the original QAOA ansatz, leading to
different variational states and corresponding quantum circuits.

1.1. Our contribution
Basic idea. Here we consider arguably more minimal adaptions of hybrid variational algorithms for the
MaxCut-problem on three-regular graphs. For a given bare hybrid algorithm A involving a family
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{U(0)}peo of variational ansatz states as described above, we show how to construct a modified algorithm
AT which uses the same family of states {¥(6) }yco. The algorithm AT will be called twisted-A. Our
modified algorithms are directly motivated by the work of Feige, Karpinski, and Langberg [9] (referred to as
FKL in the following). These authors propose an algorithm for the MaxCut problem on three-regular graphs
which proceeds by solving a semidefinite program relaxation (similar to Goemans and Williamson), and
subsequently improving the rounded solution by a simple greedy post-processing technique. We also
consider the improved version by Halperin, Livnat, and Zwick [11] (referred to as HLZ below) which
involves a more non-local greedy procedure. For some motivation, see the following example.

Example. Consider a simple motivational example of a greedy post-processing procedure that can improve
a given cut. The input will be a three-regular graph G = (V, E) and a cut C. We say that a vertex is
unsatisfied when all three of its neighbours lie in the same partition of the cut as it does. The algorithm will
repeatedly run through the vertices and check whether some of them are unsatisfied. If it finds an
unsatisfied vertex it moves it to the opposite side of the cut and repeats the process with the updated cut
until none of the vertices is unsatisfied. Since moving one vertex increases the cut size by 3 and potentially
lowers the number of unsatisfied vertices by 4, one can show that this procedure improves the cut size by at
least %times the number of unsatisfied vertices in the initial cut. Let us apply this greedy procedure to a
random cut, which has an expected approximation ratio of 1/2. A vertex will be unsatisfied with probability
273, From the linearity of expectation we have that the greedy procedure will improve the cut by at least
25|V|. Since |V| = 2|E|, we achieve approximation ratio at least ; + & = 0.5625 in expectation.

The algorithm A™ proceeds by using the variational family of states defined by the algorithm A to
obtain an approximate cut, but this step is modified or ‘twisted’, as discussed below. The algorithm A™
then attempts to enlarge the cut size of the obtained cut by applying a classical post-processing procedure:
we perform either the FKL post-processing procedure (obtaining an algorithm FKL-A™) or the HLZ
post-processing procedure (giving an algorithm HLZ-A™).

Let us now describe the sense in which A" is a ‘twisted’ form of .4 and not merely a hybrid algorithm
augmented by a subsequent classical post-processing step. This terminology stems from the fact that in the
quantum subroutine of the algorithm, the variational parameters (angles) are not optimized with respect to
the original problem Hamiltonian Hg. Instead, one can express the expected cut size produced by
measuring a state W(6) and using classical post-processing by the expectation value of a modified
Hamiltonian Hg (for both FKL and HLZ) in the variational state ¥(6). The twisted algorithm A™ thus
optimizes the angle § with respect to the modified Hamiltonian H} . Importantly, this does not change the
ansatz/variational family of states used. This allows us to make a fair comparison (in terms of quantum
resources and, especially, the number of variational parameters) to the original algorithm A.

Improved hybrid algorithms. The modified algorithm A™ requires a set of quantum operations that are
comparable (in number and complexity) to that of A. In particular, it involves preparing the states
{¥(0)}gco. In addition, AT uses extra local measurements because the hybrid optimization step is
modified: the energy to be optimized is given by a modified problem Hamiltonian H rather than the
MaxCut-problem Hamiltonian Hg associated with the considered graph G. The modified Hamiltonian H}
is either a three- or four-local Hamiltonian and (as Hg) diagonal in the computational basis. In particular,
this means that measurements of up to 4 qubits at a time in the computational basis are sufficient to
determine the (expected) cost function. We note that while this can also be achieved by measuring each
qubit in the computational basis and taking appropriate marginals, locality properties can be exploited at
the optimization stage, see e.g. [15].

By construction, the algorithms A and A™ achieve (expected) cut sizes (for any fixed instance G) related
by the inequalities

E [cutsize (A(G))] < E [cutsize (AT (G))] (1)

for any (bare) hybrid algorithm .4, assuming that the optimal parameters are found in the optimization
step. Indeed, (1) follows because, denoting with

0, = arg m(9ax<\11(9)|HG|\I/(9)>

the optimal parameters for the Hamiltonian Hg, we have by definition of the algorithms that

E [cutsize(A(G))] = (¥ (6.)|Hg|¥(6.))

E [cutsize(AT(G))] = m;tx(\l/(&)|H§|\If(9)>’ )

and
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Hf = Hg + Ag,

where A is a sum of non-negative local operators. These considerations apply to any bare hybrid
algorithm A.

Lower bounds on approximation ratios. We specialize our considerations to QAOA, and establish lower
bounds on the approximation ratio for bare and twisted QAOA, i.e., we consider the algorithms QA0A, and
QAOA;F. Specifically, we consider low values of p for three-regular graphs, triangle-free three-regular graphs
and high girth three-regular graphs. We denote the expected approximation ratio achieved by an algorithm
A on a graph G with maximum cut size MC(G) by

ag(A) :=MC(G)™! - E[cutsize(A(G))].

In the following, we will refer to the expected approximation ratio achieved by an algorithm A simply as the
approximation of A (omitting the term ‘expected’) unless specified otherwise. In the case of A = QAOA,,
E[cutsize(A(G))] is defined as in (2), but with the level-p QAOA trial function ¥¢(5,7), 8,7 € [0,27)F
instead of W (#).

Our results are summarized in figure 1, which gives our lower bounds on the approximation ratio for
each of these methods. For comparison, we also state the following known bounds on bare QAOA for any
three-regular graph G,

ac(QAOA,) > 0.6924 established in [8]
ac(QAOA,) > 0.7559 conjectured in [8], established in [18]
ag(QAOA;) > 0.792 39 conjectured in [18].

Also shown in figure 1 are the guaranteed approximation ratios of the best-known classical algorithms: this
includes the Goemans—Williamson algorithm (Gw) for general graphs (which is optimal when assuming the
unique games conjecture [13]) which achieves

aG(GW) > 0.8785 for any graph G (see [10]).

For three-regular graphs, the best efficient classical algorithms are the algorithm by Feige et al [9] which
relies on a semidefinite program whose solution is then improved by a simple greedy post-processing
technique, and a refinement of this technique by Halperin ef al [11]. They achieve

ag(FKL) > 0.924
aG(HLZ) > 0.9326

see [9]

for any three — regular graph G see [11].

According to the table given in figure 1, the established lower bounds on the expected approximation
ratios for twisted versions of QAOA at level p = 1,. .., 5 are comparable to the lower bounds on QAOA,;,
at the higher level p + 1. This suggests that by using these twisted versions, the level p can be reduced by
one while roughly maintaining the approximation ratio. We emphasize, however, that this conclusion can
only be drawn when it is known that the corresponding bound on QAOA, 1, is tight.

Let us conclude by mentioning a few open problems. One potential avenue to obtaining improved
approximation ratios with hybrid algorithms is to use a different variational family of ansatz states. Here
our work gives clear guidance when this is combined with classical post-processing: for a graph G, the
energy of a modified cost function Hamiltonian H & = Hg + Ag should be optimized instead of that of H.
In particular, since Ag is a sum of three-local terms in the case of FKL and a sum of four-local terms in the
case of HLZ, this motivates introducing new terms (e.g., proportional to these terms) in the ansatz. Such a
modification of the algorithm is superficially related to the fact that the classical (randomized
rounding-based) algorithms of [9, 11] also use additional (three-variable) constraints in the semidefinite
program (SDP) compared to the Goemans—Williamson algorithm. We note, however, that using different
variational ansatz states will require a different accounting of resources (e.g., circuit depth). In contrast, our
twisted algorithms use the same circuits to prepare ansatz states as their bare version.

Another promising approach may be to combine warm-starting-type ideas with classical
post-processing. Here one could consider algorithms that first solve the SDP underlying the classical
algorithms [9, 11], and subsequently prepare a corresponding quantum state. One may hope that—similar
to [5]—suitably designed approaches give a guaranteed approximation ratio matching that of these classical
algorithms.

Moving beyond combinatorial optimization problems, it is natural to ask if variational quantum
algorithms for many-body quantum Hamiltonian problems (e.g., quantum analogues of MaxCut as
considered in [1]) can be improved by similar greedy (quantum) post-processing procedures.
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Method | p=1 | p=2 | p=3 |p=4]|p=5]|p=6
Bare QAOA, Eq. (23) | 0.6924 [8]| 0.7559 [18]| 0.7923 [18]| 0.8168 | 0.8363 | 0.8498
FKL-QAOA} Prop. 5.1 || 0.7443 0.7887 0.8146 0.8323 | 0.8457 | 0.8564
HLZ-QAOA/ Prop. 5.2 || 0.7548 0.7954 0.8191 0.8358 | 0.8482 | 0.8582
Figure 1. The main results of this work. We compare the provably guaranteed approximation ratios of bare QA0OA,,
FKL — QAOA;r and HLZ — QAOA;r for three-regular graphs with girth greater than 2p + 2. Numbers written in boldface also
apply to general three-regular graphs. All quantities are rounded down to four decimals. Guaranteed approximation ratios which
have been established in other work are indicated with citations.

1.1.1. Outline

In section 2, we review the relevant classical post-processing methods that—in combination with
randomized rounding of the solution of certain SDP relaxations—yield the best known efficient classical
algorithms for MaxCut on three-regular graphs. In section 3, we review the QAOA and state a few properties
relevant to our subsequent analysis. In section 4, we motivate and define the algorithm A" obtained from a
hybrid algorithm .A. Finally, in section 5, we establish our lower bounds on the achieved approximation
ratio achieved by the twisted algorithm QAOA™.

2. Classical post-processing methods for MAXCUT

In this section, we describe the two classical post-processing procedures which we build on to define twisted
versions of a given hybrid algorithm for the MaxCut problem on three-regular graphs. These
post-processing procedures are subroutines of the classical algorithms for MaxCut on bounded degree
graphs and graphs with maximum degree 3 by Feige et al [9], and Halperin et al [11], respectively.

Recall the definition of the MaxCut problem: we are given an (undirected, simple) graph G = (V, E) and
are asked assign two colors to vertices C: V — {0, 1}, which we refer to as a cut of G, that maximizes the
number cutsize(C) of satisfied edges. Here we say that an edge e = {u, v} is satisfied by C if and only if
C(u) # C(v). The maximal size cutsize(C) of a cut C of G is denoted MC(G).

The Goemans—Williamson algorithm [10] for MaxCut proceeds by solving an SDP relaxation [4] of the
MaxCut problem, and subsequently uses a randomized hyper-plane rounding to obtain a cut.

The algorithms of [9, 11] also proceed by first solving certain SDPs and applying randomized rounding.
The obtained candidate cut is then further processed in a greedy manner in order to improve the cut
size.

Here we review these post-processing procedures and corresponding performance guarantees. One of
their key features is that they can be applied to any candidate cut C irrespective of whether it is produced
e.g., by rounding the solution of an SDP, random guessing, or starting with a fixed cut. This means that they
can also be applied to the output of a hybrid algorithm. We emphasize, however, that our modified hybrid
algorithms require a modification going beyond simple post-processing of the classical measurement result,
see section 4 for details.
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Figure 2. The main motivation behind FKL. On the left, the closed neighborhood of a vertex ¢ is shown. Now assume that we
assign a cut C to G and that (¢, j, k) is a good triplet for C. We distinguish two cases, depending on whether the edge {c, (} is
satisfied (dashed line) or unsatisfied (straight line). Top row: if {c, £} is unsatisfied, flipping the value of ¢ increases the size of the
cut by three (no satisfied edges are destroyed, three satisfied edges are created). Bottom row: if {c, ¢} is satisfied, flipping the value
of ¢ increases the size of the cut by one (one satisfied edge is destroyed, two satisfied edges are created).

Although the guaranteed approximation ratio achieved by HLZ is better than the one achieved by FKL, we
investigate both algorithms. The reason for this lies in the locality of the procedures: while FKL considers
only the direct neighborhood of a vertex in a single step and is therefore local, HLZ also considers paths and
cycles of lengths in the given graph whose lengths might potentially be unbounded and is therefore not
necessarily local. We emphasize, however, that the performance of both procedures in the quantum case can
be quantified by considering local operators.

Both post-processing procedures take as input a cut C. They iteratively work towards (ideally)
improving the cutsize by modifying the cut. A single iteration proceeds by identifying a suitable subset
W C V of vertices whose assigned color is flipped, i.e., replacing C by the modified cut

{C(U) forveg W

1— C(v) otherwise .

2.1. The Feige—Karpinski—Langberg (FKL) post-processing method
The main idea of this post-processing step is the following observation: if there are three vertices ¢, j, k such
that one of them (say, ¢) is connected to both the other ones and all three vertices are assigned the same
color by the cut C, then flipping the value at ¢, i.e., considering C'*}, will increase the size of the cut, see
figure 2.

To formalize this, we assume that the set V of vertices of the graph G = (V, E) is ordered. Without loss
of generality, set V= [n] = {1,...,n}. The following definitions will be central:

Definition 2.1 (triplets).

(a) A three-tuple (c,j, k) € V? of pairwise distinct vertices with j < k is called a triplet if {c,j} € E and
{¢, k} € E. We call the vertex c the central vertex of the triplet. The set of all triplets in G will be
denoted Tg.

(b) Let Cbe a cutof Gand (c,j, k) € Tg. Then (c,j, k) is called a good triplet for C if
C(c) = C(j) = C(k).

The set of all good triplets for C will be denoted Goodg(C).

(c) Let Cbeacutof G, (c,j, k) € Goods(C) and v € V. We say that (¢, j, k) is destroyed by flipping v if
(¢, k) is not a good triplet for the cut clvt,

We now formulate the post-processing procedure by FKL. While the observations above show that
flipping the center of a good triplet (c, j, k) will increase the cutsize, we might get even better results by
flipping j or k. Furthermore, it is in our interest that the flipping does not destroy too many good triplets.
Taking all this into account motivates the procedure given in algorithm 1.
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Algorithm 1. The FKL improvement procedure for three-regular
graphs [9].

1: function FKL(three-regular graph G = (V, E), cut C)
2 S« Good;(C)

3: while § # () do

4 VGood < set of all vertices in S

cutsize (C{”}) —cutsize(C)

5: v 4— arg gg}gfod —‘S\Good(; (c(”)) ‘
6 C«

7: S« triplets in S that are good for C{*}
8 return C

The following result is proven in [9].

Lemma 2.2 (lemma 3.2 in [9]). Let G be a three-regular graph and let C be a cut of G. Then the cut
C = FKL(G, C) satisfies

. . 1
cutsize(C') > cutsize(C) + 5|GoodG(C)|.

Let us exemplify this improvement by using two simple examples with a three-regular graph G = (V, E).
Consider first the trivial constant cut Ceonet Which assigns the same color to all vertices. The cutsize of Ceonst
is 0, hence the approximation ratio vanishes as well, i.e.,

MC(G)

Now consider the cut C' := FKL(G, Coonst) obtained by applying the FKL-post-processing procedure to the
trivial cut. This cut achieves approximation ratio at least

cutsize(C') > 23
MCc(G) ~ T
This can be seen as follows: for a constant cut, every triplet is a good triplet and it is easy to see that
|Tg| = 2|E| for a three-regular graph. Lemma 2.2 then implies that the resulting cut C satisfies
cutsize(C') > £|E| and we obtain the claim with MC(G) < |E|.

As another example, consider a uniformly random cut Cyyngom 0f G. For such a cut, the expected

approximation ratio is
{cutsize(crandom)

NCS) ]:1/2.

Let C" := FKL(G, Crandom) be the result of applying the FKL-procedure to Crandom- Then

cutsize(C")
=2 > 0.
MC(G)
To see this, note that the probability of a fixed triplet being good is equal to i. By linearity of expectation,
we have E[|Good(C")|] = ;|Tg| = 3|E|. Lemma 2.2 then implies that the resulting cut C” satisfies
Elcutsize(C")] > (3 + 1 - 1) |E| = 3|E| > :MC(G).

2.2. The Halperin-Livnat—Zwick (HLZ) post-processing method

In 2004, Halperin et al [11] improved upon the algorithm of [9], giving an algorithm for MaxCut achieving
an expected (provable) approximation ratio of at least 0.9326 on graphs with vertex degree at most 3. To the
best of our knowledge’, this is the best currently known efficient classical algorithm. Although their
algorithm works for graphs of maximum degree 3, we will discuss a restricted and thus simpler version for
triangle-free three-regular graphs. Unlike the FKL-post-processing this method employs more non-local
improvement procedure. The main point here is to illustrate the use of another post-processing method in
the construction of twisted hybrid algorithms. We will refer to this procedure simply as
HLZ-post-processing.

3 There is supposedly a slightly improved algorithm in Doror Livnat’s M.Sc. Thesis having an approximation ratio 0.9328 [11].
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Algorithm 2. The HLZ improvement procedure simplified to three-regular
triangle free graphs.

1: function HLZ(triangle-free three-regular graph G = (V, E), cut C)

2: V3 < vertices in V with three unsatisfied edges by cut C

3: V, < vertices in V with two unsatisfied edges by cut C

4: while V; U V, # () do

5: if V3 # () then

6: v — vertex in V3 with the smallest number of neighbours in V;
7: C«

8: elseif V, # () then

9: v ¢ vertex in V,

10: {v1,..., vt} < the longest path or cycle in G[ V5] containing v
11: M« {v; € {vy,...,v}|iis odd}

12: CC™

13: V3 < vertices in V with three unsatisfied edges by cut C

14: V, < vertices in V with two unsatisfied edges by cut C

15: return C

Given a cut C of a triangle-free graph G, this post-processing method proceeds as specified in
algorithm 2. Specializing the results of [11] to the triangle-free case considered here gives the following
statement:

Lemma 2.3 (lemma 3.1in [11]). Let G be a three-regular triangle-free graph, C be a cut of G and V, and V;
be the sets of vertices with two and three unsatisfied edges adjacent to them in the cut C. Then the cut
C = HLZ(G, C) satisfies’

. . 2 17
cutsize(C') > cutsize(C) + §|V2\ + E\V3|.

Again, let us get a feel for the impact of the procedure like we did for FKL in certain simple scenarios,
this time for a triangle-free three-regular graph G = (V, E). Once again, consider first the trivial constant
cut Ceonst Which assigns the same color to all vertices and therefore has cutsize 0, so the approximation ratio
is 0 as well. Considering C' := HLZ(G, Ccongt), i.€., the cut obtained by applying the HLZ-post-processing
procedure, this cut achieves an approximation ratio of at least

cutsize(C")

MC(G) > 0.7555. (3)

To see this, note that for a constant cut, all vertices belong to V3 = V and none to V, = ). Lemma 2.3
implies that cutsize(C') > {Z|V| and using that |E| = 3/2|V| > MC(G), we obtain

cutsize(C) ~ cutsize(C') ~ 172 .
MCG) 2 2 155~ 0.7555.

As another example, consider a uniformly random cut Cyyngom 0f G. For such a cut, the expected
approximation ratio is %, i.e., E[cutsize(C)] = %\E| Considering the cut C" := HLZ(G, C), the
approximation ratio of this cut is

cutsize(C")
MC(G)

} = 0.6611

which can be seen as follows: the probability of a vertex being in V3 and V; are 27 and 272, respectively. By
linearity of expectation, we have E[|V3|] = 27°|V| and E[|V,|] = 27%|V|. Lemma 2.3 implies that
E[cutsize(C")] > @ + &4 |V| 4+ 75|V|. Using that | V| = £|E|, we see that the approximation ratio is
lower-bounded by 1 + 2 ~ 0.6611 in expectation value.

3. Quantum approximate optimization and MaxCut

Here we briefly state the relevant definition for QAOA applied to the MaxCut problem. In section 3.2, we
then discuss basic features of QAOA that we exploit to find lower bounds on approximation ratios.

3.1. Definition of the MaxCut Hamiltonian and QAOA,
Recall that the MaxCut problem Hamiltonian for a graph G = (V, E) is given by

He = % Z (I — ZuZy) (4)

{u,v}€E

* Note that there is a typo in the lemma 3.1 [11].
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where a single qubit is associated with each vertex u € V. Measurement of a state ¥ € (€@l in the
computational basis yields a string C € {0, 1}Vl specifying a cut C of expected size

(V|Hg|¥) = E[cutsize(C)]. (5)

The variational family used in QAOA is specified by a natural number p called the level of QAOA. For a
given graph G = (V, E), the level-p variational state with parameters (/3,7) € [0,27)" x [0,27) is

[¥a(8.1)) = Us(8, )|+ ©)

where |[+) = —=(|0) + [1)), |[+V1Y = 1-++)°"! and where

p
UG(ﬂ) '7) = H [exp <_1ﬂmZXu> exp(_i'VmHG)‘|

m=1 ucV

is the QAOA unitary. In the following, we analyze the performance of twisted algorithms derived from
QAOA,.

3.2. Locality and uniformity of QAOA

The analysis of QAOA typically exploits its locality and uniformity, see e.g., [8, 17, 18]. Similar arguments
apply to our modified versions of QAOA. Here we state these properties in a form that will be used below to
establish lower bounds on the achieved approximation ratios.

Locality of QAOA. One of the defining features of this ansatz is its locality: the reduced density operator
of 15(B,7v) on some subset S C [#] of qubits is uniquely determined by (3, v) and the ‘p-environment’ of
S, a certain subgraph of G. For the following analysis, it will be convenient to express this dependence in a
more detailed form.

Let A be a local operator supported on a subset supp(A) C [n] of qubits. Conjugation of A by an
operator of the form exp(—if3,,X,;) does not change the support of A and leaves the operator invariant
unless u € supp(A). Similarly, conjugation of A by an operator of the form exp(iv,,Z,Z,) leaves A invariant
unless {u, v} N supp(A) # 0, in which case the support generically becomes {u, v} U supp(A). Applying
this reasoning iteratively shows the following: conjugating A by the QAOA unitary Ug(/3, ) is equivalent to
conjugation by a cost function unitary UG®) [supp(a)] (8, 7y) associated with a subgraph G® [supp(A)] of G.
The latter is defined as follows, for any fixed subset S C V vertices corresponding to the support of A. A
length-¢ path starting in S is a sequence (uy, . . ., uy) of vertices such that uy € S and {uj_l, uj} € E for all
j=1,...,L The subgraph G [S] of G is the result of taking the union of all paths of length at most p
starting in S. We call G?)[S] the p-environment of S. Succinctly, this shows that

($6(B, VIAYGB ) = (L isuppian (B 1Al appin (B )

In other words, to evaluate the expectation of A, it suffices to consider the QAOA-state associated with the
p-environment of the support of A.

Uniformity of QAOA. For a generic local operator A with support S = supp(A), the quantity
<1/JG(p) i51(8>7) |A|1/JG(p)[S] (5, 7)> depends on the underlying graph G only through the p-environment GP[S]
of § and the subgraph G[S] of G induced by S. In fact, for a fixed induced subgraph K := G[S], only the
equivalence class of the p-environment G [S] matters. Here two graphs G; and G, (that both contain K as
a subgraph) are called equivalent if and only if they are isomorphic with an isomorphism fixing K. This
property of QAOA is an immediate consequence of its definition.

This motivates considering equivalence classes of p-environments associated with a graph G. We denote
this set by £®)(G) and call this the set of p-environments of G. Modulo isomorphisms fixing G, every
element of £7)(G) is a graph that appears as a p-environment G’ [S] for a graph G, where S is a subset of

vertices of G with the property that the induced subgraph is G = G[S]. We will use individual
representatives of each equivalence class to denote elements of £ (G). For example, the set £ M (]._;_I.c ) is
depicted in figure 4 found in appendix A. These observations allow to reorganize expectation values that are

uniform. For example,

WaBN| D ZuZe | WaBn)) = D n6(G) a8, 21 Z:1ve(8,7)) |

{uvlek Gee®) (1—5) )




10P Publishing

Quantum Sci. Technol. 7 (2022) 045013 L Cahaetal

where 1¢(G) is the number of times the p-environment G appears in G.
Of special interest to us will be so-called p-trees. Given a graph G and p € N, T?) (G ( ) is defined as the
sole tree in £ ( ), see figures 6 and 7 in appendix A for examples.

4. Twisted variational hybrid algorithms for MaxCut

In this section, we define our twisted algorithm A™ given a hybrid algorithm .A. We first show in section 4.1
that the effect of classical post-processing can be quantified in terms of the expectation value of a modified
problem Hamiltonian. We then give the definition of the twisted algorithm A™ in section 4.2.

4.1. Lifting performance guarantees to hybrid algorithms

Lemmas 2.2 and 2.3 provide performance guarantees for the improvement obtained by applying the
(classical) FKL- and the HLZ-algorithm to any cut C. Here we show that these results easily translate to the
context of hybrid algorithms.

Concretely, consider a graph G = (V, E) with V = [n] and a variational ansatz state ¥ € (C?)®".
Measuring ¥ in the computational basis provides a cut C € {0, 1}" to which we can apply either the FKL or
the HLZ procedure.

Let us first consider the simpler case of FKL, i.e., suppose that C = FKL(G, C) is the cut obtained by
applying the FKL-post-processing to the cut C. To make lemma 2.2 applicable to this setting, we need an
operator that accounts for good triplets. Such an operator is

> Mejg,  where s = (|000)000] + [111)(111[), .,
(C>j>k)€TG

with T denoting the set of triplets in G. Observe that 11 is a projector onto the subspace spanned by
computational basis states |C) describing a cut C € {0, 1}" such that (c, j, k) is a good triplet in C. This
implies that the expectation (U|Ng|¥) of Ng in a state ¥ is equal to the expected number of triplets in a cut
C obtained by measuring ¥ in the computational basis, i.e.,

(U[Ng|[¥) = > [(C[W)[* - |Goodg(C)| = E[|Goods(C)]]. (8)
ce{o,1}"

Correspondingly, we call Ng the good triplet number operator.
Combining (8) with (5), we obtain the following ‘quantum version’ of lemma 2.2:

Lemma4.1. Let G = (V, E) be a three-regular graph with V = [n] and ¥ € (C?)®". Let C € {0, 1}" be the
result of measuring W in the computational basis and C := FKL(G, C). Then

E [cutsize (C')] = (| (HG + ;NG> | W),

This lemma shows that the ‘target Hamiltonian” Hg should be modified by introducing the
improvement operator
A= 7N 9)
3
A similar treatment applies to the HLZ-procedure. Suppose that C' = HLZ(G, C) is the cut obtained by
applying the HLZ-post-processing to the cut C. We now want to ‘quantify’ lemma 2.3 and therefore need
two operators that account for the number of vertices with two and three unsatisfied edges adjacent to
them, respectively. To define these operators, let A(c) be the ordered three-tuple of neighbors of ¢ € Vand
A(c) denote the closed neighbourhood A(c) := (¢, A(c)1, A(c)2, A(c)3). Then we set

2 _ @) )
= ch,A(c) and Mg ZHcA (©’

ceV ceV
where
b b)
H(a(c) = Z [b)Xb|, ® Pf‘\()c) with PIE\(C) : Z |xyz)(xyz| () and
be{0,1} {xp,2}€{0,1}3,

box+bDy+bdz=1

T2 ) == (10000)0000] + [1TT1)(1111[)

10
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Algorithm 3. The twisted algorithm Post- A1 where Post € {FKL,HLZ}
and where A = {|¥(0)) }, o is a variational algorithm. The measurement
result C € {0,1}" obtained in step 3 defines a cut of G.

1: function Post- A (three-regular graph G = (V, E) with V = [n])

2 Compute 0, = argmaxgee (Vg (0)|(Hg + AL (6))

3 Measure Wq(6,) in the computational basis getting outcome C € {0, 1}"
4:  Compute C' = Post(G, C)

5 return C’

Observe that Pgb()c) is a projector onto the sum of computational basis states that contain exactly two bits
equal to b. Furthermore, Hg(c) is a projector onto the subspace spanned by computational basis states

which are associated with exactly two unsatisfied edges adjacent to c. Similarly, Hffi(c) is a projector onto the

subspace spanned by computational basis states which are associated with exactly three unsatisfied edges

adjacent to c. By abuse of notation, we use I and TI®® whenever the graph is known from the context.
Using the same reasoning as for lemma 4.1, we obtain the following:

Lemma 4.2. Let G = (V, E) be a three-regular triangle-free graph with V = [n] and ¥ € (C?)®", Let
C € {0, 1}" be the result of measuring U in the computational basis and C :=HLZ(G, C). Then

_ 2 17
E[cutsize(C')] = (¥| (HG + Mg+ 1E.)Mé?) V).

Therefore, Hg should be modified by introducing the improvement operator

2 17
AGH = Mg+ M (10)

4.2. Definition of the twisted algorithm A+
Here we present our modified variational algorithm AT which we call twisted-.A. We formalize a
variational quantum algorithm A as follows: it is given by a family of states

A={V.(0)}pco

where x is an input to the algorithm, i.e., a problem instance and © C RF for some k € N. Once one has
chosen 0, the state ¥,.(6) is measured to obtain the output of the algorithm.

In the case of the MaxCut problem, a problem instance is given by a graph G. A good hybrid algorithm
for this problem specifies a variational family {U;(0)}gco whose elements can be efficiently prepared (e.g.,
by a low-depth circuit) and which—ideally—contains elements with large energy (corresponding to the
expected cut size) with respect to the MaxCut problem Hamiltonian Hg (see equation (4)). Given such an
algorithm A, we obtain a twisted algorithm Post-A™ by the following modifications, where
Post € {FKL,HLZ} denotes the chosen classical post-processing involved (see section 2):

(a) In the angle optimization step, the modified cost function Hamiltonian Hg‘ = Hg + AZOSt is used.
Here AZ and AP are the corresponding operators defined in equations (9) and (10), respectively.

(b) The classical post-processing procedure Post is applied to the measurement result obtained by
measuring the optimal state.

Algorithm 3 shows the general procedure.

5. Lower bounds on approximation ratios of QAOQA ™

Here we analyze the twisted versions of QAOA in detail. For a graph G and p € N, let Hg be the Hamiltonian
(4) and ¥ (5, ) the level-p trial wavefunction defined by (6). The twisted algorithms FKL — QAOA;Ir and
HLZ — QAOA;' proceed as described in algorithm 4. We prove lower bounds on the approximation ratios
ag (FKL - QAOA;) and ag (HLZ - QAOA;) for certain families of three-regular graphs G.

A remark on the proof technique is in order here: while we rely on numerical gradient descent to
determine good candidate parameters, these are used to optimize our lower bounds only. In particular, the
validity of the established bounds is independent of the correctness of these numerical methods. This is
especially important because we consider high-dimensional optimization problems and gradient descent
may or may not converge.

11
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Algorithm 4. The twisted algorithm Post-QAOA, for Post € {FKL, HLZ}.

1: function Post-QAOA, (three-regular graph G = (V, E) with V = [n])

2. Compute (8:,7:) = argmax s ,)cjo.2mp x o2my (Y6 (8> 7)| (Hg + APOSY b (B,7))
3:  Measure ¥;(3,,7,) in the computational basis getting outcome C € {0, 1}"

4 Compute C' = Post(G, C)

5 return C'

5.1. Approximation ratios of FKL-QAOA™ for three-regular graphs

We denote the girth of a graph G, i.e., the size of the smallest cycle in G, by g(G). We present two kinds of
results: for FKL — QAOA]", we give a bound applicable to all three-regular graphs. For higher levels p, we
give bounds applicable to three-regular graphs with high girth.

Proposition 5.1. Let G be a three-regular graph. Then

(a) ag(FKL — QAOA]) > 0.7443.

(b) Ifg(G) = 7, then ag(FKL — QAOAT) > 0.7887.
(c) Ifg(G) = 9, then ag(FKL — QAOAY ) > 0.8146.
(d) Ifg(G) > 11, then a(FKL — QAOA] ) > 0.8323.
(e) Ifg(G) > 13, then ag(FKL — QAOAY) > 0.8457.
(f) Ifg(G) > 15, then o (FKL — QAOA{) > 0.8564.
Proof.

(a) For brevity, let us write ©)5(6) for the QAOA; state with parameters § = (8,7) € [0, 27)%. Recall

from lemma 4.1 that the expected approximation ratio obtained from such a state using the
FKL-post-processing procedure is given by

(60| (Ho + Ag™)[6(®))

MC(G) (1)

We follow and simplify the approach of [8, 18] and bound the ratio (11) in terms of its local
contributions.

We first rearrange and express the numerator of (11) as a sum over triplets. Notice that since
the graph is three-regular, any edge lies in exactly four triplets. Hence

Hg + A" = Z Tcjik) (12)
(C)j)k)eTG

where T is the triplet operator defined as

Hc,j + Hc,k

T(c,j,k) = 4

1 .
+ ng’f’k for (c,j, k) € Tg
and where H*! : (I Z,Zp) is term in the MaxCut-problem Hamiltonian Hg associated with the
edge {a, b}.

Next consider the denominator in the expression (11), i.e., the maximum size MC(G) of a cut.
We can bound this term by the expression

MC(G) < |E| = |A(G)] = [&(G)] (13)

where A () is the set of isolated triangles (triangles that do not share an edge with another
triangle) in G and & ((7) is the set of crossed squares (consisting of two triangles sharing an edge).
Inequality (13) follows immediately from the expression that in any cut of G, there is at least one
unsatisfied (i.e., ‘uncut’) edge in each isolated triangle because of frustration. Similarly, there is at
least one unsatisfied edge in each crossed square. We note that the bound (13) applies to any
three-regular graph G with more than four vertices because in these graphs, any triangle is either
isolated or part of a crossed squared. (Observe that for the remaining graph, the complete graph

G = K, on four vertices, we have MC(K,) = 4, and equation (13) does not hold for this graph. In
our argument, we will replace equation (13) by the relaxed equation (14) below which applies also
to Ky.)

12
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We can bound MC(G) further starting from (13) by expressing the right-hand side as a sum
over edges. Since every isolated triangle has three edges, we can express the number of isolated

triangles as
1
[AG) =32 da@(e)

ecE

where & A(G) (€)is 1 if the edge e is part of an isolated triangle in the graph G and 0 otherwise.

Similarly, we have
|©(G Z 05(6)

eeE

for crossed squares, where (59(@) (e) is 1 if the edge e is part of a crossed square in the graph G and
0 otherwise.

To establish our bound, we only consider the one-environment of each edge e € E, i.e., e [e].
For an edge e € E which belongs to a triangle, the one-environment G'”[e] is not necessarily
sufficient to distinguish whether the triangle is isolated or belongs to a crossed square: for example,
this is the case for an edge e that belongs to a crossed square but is not shared by both triangles.
The fraction of uncut edges (in any cut) is 1/3 for an isolated triangle, and 1/5 for a crossed
square. Using the smaller of these two contributions per edge, i.e., pretending that each triangle is
in a crossed square, yields the bound

G) < Z(l - é%(c;)(e))

eclE (14)

Here 0 A(G) (e) indicates whether the edge e is part of a triangle, i.e., 0 A(G) (e) equals 1 whenever

the edge e is part of a triangle in graph G and 0 otherwise. Notice that J 5 () (e) = O, (G e])( e),
therefore it is enough to examine the one-environments of edges to obtain the bound (the possible
environments are showcased in figure 3 in the appendix A). We note that while we have excluded
G = K4 in the proof of inequality (14), it is easy to check directly that this graph also satisfies (14).
Expression (14) motivates defining the local averaged MaxCut fraction of an edge e in G as

1
LS =1 g(sA(G)<€> .

Using that every edge appears in four triplets, we can reexpress the upper bound (14) as

MC(G)si > (L6 + L)

(C,j,k) € TG

Z LY p» (15)

(e,pk)eTg

where
G . 1 L
Litin = ( foi T {ck})

denotes the local averaged MaxCut fraction of a triplet (¢, j, k) € Tg.
Inserting the upper bound (15) on MC(G) and expression (12) into (11) gives

((O)|(Ho + A" [1ha(6)) . > eimers (e Tiein WG(9)>
MC(G) -

(16)
Z(CJk)GTGL((i]k)

Recall that for any triplet (c, j, k) € Tg, the expectation value (16(6)|T(cjx |16(6)) is equal to the
local expectation (1z(0)| Tiejp |1z(0)), where G is the (appropriate) graph environment of the
triplet. By its definition as a local quantity, the combinatorial quantity L k)
only on the correspondmg graph environment. The set of equivalence classes

L(C i) also depends

g ( j'—é—]; ) {G 1 of possible graph environments consists of 11 (equivalence classes of)

graphs, see figure 4 in appendlx A. Denoting—as in (7)—by n¢(G,) the number of times the

13
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(b)—(f)

environment G, appears in G, we can restate (16) as

(6O (Ho + AF)[06(®)) _ 331 1n6(G,) (e, (0)] Teegw [, (6))
MC(G) - S inG(GOLE

. (17)
Equation (17) is valid for any choice of # € [0, 27)%. Suppose now that we have found some angles
# € [0,27)? such that

(06, 0)|Tiejmn |6, 0)) _ (W6, O] T |t (0))

> foralls=2,...,11. (18)
GS = G bl bl
L(c,j,k) L(c}j,k)
An example of such a pair is
0 = (B,7) = (1.130 565, 5.667 705) (19)

as can be verified by straightforward computation. The mediant inequality ﬂ—z > min{?, g}
implies (inductively) that

11
Zr:Inrtr > min tf’

for any integers {n;}!1, C Ny and non-negative scalars {t,},L,, {£,},1,. Combining this with (18),
we conclude that

S n6(G (W, ()| Tejm v, (0)) (v, @)| Tieim [0, (0))

> > 0.7443. (20)

Z:l:l ng( G,)L(Gctj’k) L(GCZJ'J()
From (17) and (20) we obtain
OV (H. + AFKL 0
Wa)l (He + Ac ) [V®)) - (214

MC(G)

and the claim follows by taking the maximum over 6 € [0, 27)%.

Let us briefly elaborate on the choice (19) of parameters  in this proof. By direct computation,
(Y6, O] Tiejuo |6, )

(k)

parameters 6 € [0, 27)” in equation (19) are the numerically obtained angles achieving the
maximum for r = 1. We note that their only required feature in our argument is property (18).
This can be verified immediately. A proof that these values f indeed correspond to some maximum
is not required.

we numerically observe that the quantity max, o, is minimal for r = 1. The

Let ¢5(6) for € [0,27)* be the QAOA,-wave function. We again consider the expected
approximation ratio given by the expression ratio (11). We can use the trivial lower bound
MC(G) < |E| on the size of the maximum cut, giving

aG(FKL — QAOAS) = [E[™! - (Y6(0)|(Ho + AG™)[¢6(6)) (21)

for any choice of § € [0, 27)%. The assumptions on the girth can be expressed as g(G) > 2p + 2 for
P =2,3,4,5,6, i.e., the level of QAOA. For such high-girth graphs, all relevant graph environments

—_—

of an arbitrary triplet in G are isomorphic to the tree T® (j s ), see figure 6 in appendix A.

Therefore, using (12), the bound (21) becomes

ag (FKL-QAOA]) > 200700 (2 ) O il () ()

jc jck (22)

for any choice of § € [0,27)*. We can evaluate the right-hand side of this inequality using a tensor
network algorithm and gradient descent to maximize the angles. In particular, in each of the cases
(b)—(f) we found a set of angles € such that the right-hand side of (22) is equal to the value stated
in the proposition. These angles are listed in figure 8. This completes the proof.

For sake of comparison, we also obtained the guaranteed approximation ratios of bare QAOA for
p = 4,5, and 6 for high girth graphs. These were computed in a similar fashion as explained at the end of
the proof of proposition 5.1:

ag (QAOA,) > (Yrw(my (0) 1271 — Z1.Z5)[hri (13 (0)) (23)

The witness angles proving the lower bounds are listed in figure 8.

14
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5.2. Approximation ratios of HLZ-QAOA for three-regular graphs

Proposition 5.2. Let G = (V, E) be a three-regular graph. Then

(a)
(b)
(c)
(d)
(e)
()

If G is triangle-free (i.e. g(G) = 4), then ag (HLZ — QAOAT) > 0.7548.
Ifg(G) > 7, then ag(HLZ — QAOAY) > 0.7954.

Ifg(G) > 9, then ag(HLZ — QAOA ) > 0.8191.

Ifg(G) > 11, then ag(HLZ — QAOAT) > 0.8358.
Ifg(G) > 13, then ag(HLZ — QAOAT ) > 0.8482.
Ifg(G) > 15, then ag(FKL — QAOAS) > 0.8582.

Proof.

(a) Recall from lemma 4.2 that the expected approximation ratio obtained using the
HLZ-post-processing procedure is given by

(h6(0)|(Hg + AE) [6(0))
MC(G) ’

(24)

where we again use ¥ () for the QA0OA; state.
We rearrange and express the numerator (24) as a sum over three-star subgraphs, as they are
underlying graphs of local terms of the improvement operator AZ%, The three-star graph with the

J
central vertex ¢ has vertices {c, j, k, £} and edges {{c,j}, {c k}, {c, £} } and we depict it by /k
C

Since the graph G is three-regular, any edge {a, b} € E lies in exactly two stars with central vertices
a and b. Hence
He+AdY =S, (25)

ceV

where S, is the three-star operator

H + Hok 4+ g0 2 17
_ AT AT A H + 71—[52) + EH?) forceV,

Se:
¢ 2 5

(j, k, £) is the ordered neighbourhood of ¢ in G and H*? is again the MaxCut term on edge {a, b}.
Inserting the trivial upper bound on MC(G) < |E| and (25) into (24) gives:

(Y6(0)|(Ho + AZ) [96(9)) < 2oeev(¥6(0)[Se]¢6(9))
MC(G) - |E| '

(26)

We can restate (26) as a sum over the local expectation values over the graph environments from

J
the set £V ( )\) = {GT}le (listed in figure 5 in appendix A):
kC

(v6(0)| (Hg + ALY [16(9)) - > v 116(Gr) (1, (0)[Scl s, (6))

Z > 27
MC(G) |E| (27)
where 1n5(G,) is number of times the environment G, appears in graph G.
Suppose now that we have found some angles 6 € [0, 27)* such that
(G, @S|t @) > (Y, @)[Sc| e, @) foralls =2,...,8. (28)

An example of such a pair is
6 = (B,7%) = (0.102870,5.669 319)

as can be verified by straightforward computation.
We combine (27) with (28) and use the fact that Z§:1nG(G,) = |V| = 2/3|E]| for three-regular
graphs:
($6(0)| (Ho + AZ™) [1h6(6)
MC(G)

) > §<¢G1 (0)]Sc|vp6, (6)) > 0.7548

and the claim follows.
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(b)—(f) We will follow a similar line of reasoning as in (a) and proposition 5.1(b)—(f). The assumptions
again guarantee that the considered graphs are of girth greater than 2p + 2 with p being the level of
QAOA. For such high-girth graphs, all graph environments of an arbitrary star in G are isomorphic

toG =T® ()\j ) Therefore,
k€1

ag(HLZ — QAOAS) >

(SN )

(¥ (0)ISc|5(6)),

where 1z (0) for 6 € [0, 2m)% be the QAOA,-wave function. We obtain witness angles by numerical
optimization (listed in figure 8) and the claim follows.

We note that the proven lower bound proposition 5.2(a) on the approximation ratio
ag(HLZ — QAOA?') of the twisted algorithm QAOA; is below the value 0.7555 resulting from the
application of HLZ to a constant partition (see (3)). An improvement over this trivial (classical) algorithm
can only be observed starting from level p > 2 (cf proposition (5.2)(b)—(f)). This is not surprising given the
fact that the QAOA-ansatz is very restricted, especially for small values of p. In particular, for any angles
(8,7), the Qa0A-state 1 (5,7) (cf (6)) with the usual cost function Hamiltonian Hg for MaxCut is
different from both the all-zero state |0)“" and the all-one state [1)“". This is the case for any level p since
because of the Z,-symmetry of the ansatz: every state ¢;(/3, y) is an eigenstate of the
operator X®",
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Appendix B. Witness angles
Method 8 vy
FKL-QAOA;J [ 0.99225 3.46308 5.78009 2.25304
HLZ-QAOAJ | 0.98705 3.47167 5.77664 2.25962
FKL-QAOAJ [ 0.62112 0.48905 0.26477 0.42728 0.79596 0.92620
HLZ-QAOAY | 0.62519 0.49754 0.27393 0.42808 0.79569 0.92077
QAOA, 0.59956 0.43434 0.29676 0.15904 0.40875 0.78057 0.98804 0.15691
FKL-QAOA] | 0.63219 2.09215 0.42150 0.22286 0.38433 0.72509 0.83266 0.94350
HLZ-QAOA] | 0.63516 0.52634 0.43047 0.23058 0.38478 0.72269 0.82767 0.93461
QAOA; 0.63167 0.52253 1.96094 0.27599 0.14930 0.35924  0.70609 0.82209 1.00420 1.15394
FKL-QAOAZ | 0.64008 0.54030 0.45437 0.34000 0.18710 0.35582  0.68736 0.78042 0.87482 0.99556
HLZ-QAOAZ | 0.64349 0.54679 0.46687 0.38838 0.19975 0.35349 0.68144 0.76945 0.85500 0.96997
QAOA 0.63589 0.53443 0.46334 0.35999 0.25858 0.13885 | 0.33137 0.64558 0.73165 0.83696 1.01019 1.12724
FKL-QAOA{ | 0.64369 0.54870 0.47903 0.40547 1.88825 0.16000 | 0.33434 0.64986 0.73024 0.81681 0.93262 1.04923
HLZ-QAOA{ | 0.64622 0.55243 0.48572 0.42258 1.91095 0.17045 | 0.33265 0.64669 0.72479 0.80326 0.90278 1.01496
Figure 8. Witness angles 3 = 3, 3,,...and v = 7,,7,, . .. certifying the approximation ratios of QAOA, FKL — QAOA;,*' and
HLZ — QAOA, on graphs of girth greater than 2p 4 2 forp € {2,...,6}.
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