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Residual Policy Learning Facilitates Efficient
Model-Free Autonomous Racing

Ruiqgi Zhang ", Jing Hou"”, Guang Chen

and Alois Knoll

Abstract—Motion planning for autonomous racing is a challeng-
ing task due to the safety requirement while driving aggressively.
Most previous solutions utilize the prior information or depend on
complex dynamics modeling. Classical model-free reinforcement
learning methods are based on random sampling, which severely
increases the training consumption and undermines the explo-
ration efficiency. In this letter, we propose an efficient residual
policy learning method for high-speed autonomous racing named
ResRace, which leverages only the real-time raw observation of
LiDAR and IMU for low-latency obstacle avoiding and navigation.
We first design a controller based on the modified artificial potential
field (MAPF) to generate a policy for navigation. Besides, we uti-
lize the deep reinforcement learning (DRL) algorithm to generate
a residual policy as a supplement to obtain the optimal policy.
Concurrently, the MAPF policy effectively guides the exploration
and increases the update efficiency. This complementary property
contributes to the fast convergence and few required resources of
our method. We also provide extensive experiments to illustrate
our method outperforms the leading algorithms and reaches the
comparable level of professional human players on the five F1Tenth
tracks.

Index Terms—Autonomous vehicle navigation, motion and path
planning, reinforcement learning.
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I. INTRODUCTION

UTONOMOUS racing is a promising issue and has ob-
A tained much attention. The objective of racing players
is to complete the laps as fast as possible. The players are
required to generate precise actions and aggressively drive at the
dynamics limitation of vehicles. To solve this problem, classical
approaches decouple autonomous racing into trajectory plan-
ning and controller optimization [1], [2]. These approaches are
widely studied and show impressive results with optimization-
based techniques and model predictive control. However, their
performances are highly related to the selection of parameters,
and the reference trajectory requires prior information like fine
dynamics model, global maps and known routes. Meanwhile,
they require expensive hardware for nonlinear optimization and
prediction, which undermine the economy of application for
autonomous racing.

To handle the complex nonlinear dynamics models, some
researchers optimize the control strategy through real-world
data sets and develop the learning-based frameworks [3], [4].
Through expert demonstrations and labeled data, neural net-
works can implicitly construct the mapping between raw ob-
servations and control strategy. Although these methods can
effectively overcome the real-time and adaptability constraints
of conventional approaches, they heavily rely on the graph-
ics processing unit (GPU) and impose much higher hardware
requirements [5]. Their performances are also limited by the
quality and quantity of data sets so they can hardly outperform
the human players [6].

According to real races, the vehicle dynamics may change
during the competition (such as switching different tires). Mean-
while, professional players mainly make real-time decisions
from vehicle states like speed, acceleration, and distance to the
edge. This mechanism enables their policies and experiences to
be plug-and-play when driving on a new track or with differ-
ent dynamics. Therefore, we describe autonomous racing as a
model-free local motion planning task without a global map.
Besides, high-speed racing is a sensitive control application,
where low latency and high precision are both required to catch
the crucial braking and turning points [2]. Deep reinforcement
learning (DRL) [7] is considered as a promising solution for this
motion planning task [8]-[11]. Previous works demonstrate the
outstanding performance of DRL for end-to-end autonomous
driving and racing [12]-[15]. Classical DRL methods utilize
the Gaussian probability distributions to cover workable action
space. Nevertheless, in complex environments, updating from a
randomly initialized policy to the optimal one is always time-
consuming. For example, agents always crash into edges during
turning and circle at the long straight. To jump out of these
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bad conditions, agents need more time-steps for exploration.
Meanwhile, bad initialization sometimes causes premature con-
vergence to local minima [16], [17]. Instead of learning from
zero, it is much easier to learn the residual on the basis of
guidance.

Hence, in this letter, we propose a model-free algorithm for
autonomous racing with DRL and modified artificial potential
field (MAPF) method named ResRace. It utilizes only the real-
time observations of a 2D LiDAR and an inertial measurement
unit (IMU) to achieve efficiency and low-latency control. We
first leverage the raw LiDAR observation to select a local target.
Then the MAPF-based controller provides a “guide-policy”
through the point cloud and local target to guide the exploration
and generate better experiences for training. Concurrently, the
policy network is updated and provides a “residual-policy”. Then
the racing agent adopts the sum of them. In brief, our main
contributions are three-fold:

1) We first define autonomous racing as a high-speed local
motion planning task. With this prerequisite, we propose an
efficient model-free algorithm ResRace algorithm, which is not
dependent on prior information and has outstanding lap time
grades and real-time performance.

2) Instead of learning from zero, we propose a novel method
that works by optimizing the residual-policy with reinforcement
learning algorithms on the basis of the guide-policy from a
designed MAPF controller. With extensive experiments, we
illustrate that our method can highly improve the learning ef-
ficiency of model-free DRL methods.

3) We compare our method with existing leading baselines. It
outperforms two champion algorithms and reaches a comparable
level to human players. We also provide validation results and a
series of behavior examples to show our method can handle the
different scenarios and system dynamics robustly and learn the
racing techniques like human players.

II. RELATED WORKS

The autonomous driving task has been widely studied in the
past decades [4], [18], [19]. Here, we divide previous studies by
their methodology and they can be separated into three groups:
classical hierarchical control approaches, supervised learning
approaches, and reinforcement learning approaches.

Classical Control: Most previous researches describe au-
tonomous driving as a hierarchical perception-planning-control
task. In this paradigm, model predictive control (MPC) is
widely used and demonstrates outstanding results in motion con-
trol [20], [21]. As an improved version, the MPC with Gaussian
Process (GP)-based optimized dynamics models is a practical
method for autonomous racing [22]. With the fine dynamics
model and the optimized reference trajectories, these methods
show excellent performances in both simulation and real-world.
While the deficiency in flexibility and adaption prompts re-
searchers to focus on the learning-based MPC [23]-[26]. By
generating vehicle models and control strategies through the
neural network, learning-based MPC can be utilized in diverse
scenarios. Nevertheless, an inevitable dilemma is the trade-off
between computation consumption and performance.

Deep and Imitation Learning: To skip the modeling, re-
searchers develop the learning-based end-to-end methods to
generate control policy directly from observation. The deep
neural network possesses impressive ability in feature extrac-
tion and pattern recognition are impressive so that it can be
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deployed on autonomous vehicle [27], [28]. As a symbolic
work, researchers successfully develop a convolutional neural
network (CNN)-based controller to follow the road and lane [3].
Similarly, imitation learning leverages expert demonstration as a
template and is proved to be feasible in off-road self-driving [4].
However, though they overcome the adaptability constraints,
their performance depends on the scale and quality of data sets
and they can hardly outperform the human [6].

Reinforcement Learning: Instead of establishing the data sets,
classical reinforcement learning (RL) collects experiences and
updates the policy by continuous intersection with dynamic
environments. Prior works prove RL is an efficient solution for
various complex tasks [12]-[15], [18]. Broadly, reinforcement
learning is grouped into the model-based and model-free RL
according to whether agent establishes the transition model.
Many research proves that model-free RL is practicable in real-
istic racing games [12], [13], [15], but the stochastic exploration
process could damage robots and hinders their applications in
the real-world. Meanwhile, random initialization and sampling
also cause an unstable training process and extensive time
consumption. Contrarily, other researchers introduce the state-
of-the-art (SOTA) model-based DRL algorithm Dreamer [29]
to learn the system dynamics from interactions and construct
latent imagination of future state [14]. However, this approach
requires expert demonstration to pre-train and the imagination
mechanism severely increases the computational and time con-
sumption. Besides, the performance of model-based RL meth-
ods is significantly determined by the model accuracy [30].
In summary, though DRL achieves outstanding performance
in both real and simulated scenarios, we still need a more
robust and efficient solution for aggressive but safe autonomous
racing.

III. PRELIMINARIES

In this section, we give out the crucial definitions of the
autonomous racing process and the detailed settings of the racing
agent and simulation environment, which are the premise of our
methodology in subsequent sections.

Problem Definition: We formalize autonomous racing as a
partially observable Markov decision process (POMDP). The
POMDP can be presented as a tuple (S,A,Q, O, T, R), where
Q and R are respectively the observation and reward. We will
discuss our reward design and observation settings in the sub-
sequent sections. s € S is the possible state for racing agent
and u € A is the possible action. O : § x © — [0, 1] includes
the system uncertainty and represent the probability of observa-
tion in a given state. 7 : S x A x & — [0,1] is the transition
function under a specific state-action and also includes the
uncertainty of system. Thus, an finite behavior trajectory can be
presented as {sg, ug, 70, $1,U1, 71, - - -, ST, UT, r1}, Where the
subscript indicates the time-step within the maximum length 7'
and r is the reward provided by defined R.

Simulation Environment: In this letter, MAPF controller and
DRL agent utilize the real-time observation of LiDAR and
IMU. We leverage a PyBullet-based [32] F1Tenth environment
for simulation [31]. We deploy the agents on the 5 tracks for
evaluation with different difficulties as shown in Fig. 2. They
are different in length, width and turn angles. For example,
Montreal possesses the irregular track edges, changing width
and hairpin turns. But Barcelona track is more narrow and has
the long straights, V-shape turns and chicanes, which challenge
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the racing technique of agents. The diversity of tracks makes the
racing task more challenging and ensures the reliability of our
conclusions.

Agent Settings: In the FlTenth simulator, the agent is a
racing car with Ackerman steering and rigid body in unified
robot description format (URDF) models. The racing agent is
equipped with a 2D LiDAR with a maximum 10 meters range
and 675 measurements evenly distributed over a 270° field
of view. Besides, a 60 Hz IMU measures the motion of the
agent, including the transverse and longitudinal velocity and
acceleration in the horizontal plane. The actions of agent u are
described as u, = {7, a}, where T presents the motor torque
and « denotes the steering angle in [—45°, +45°].

IV. METHODOLOGY

Based on the preliminaries, we illustrate the complementary
property between the MAPF controller and DRL module, and
the pipeline of ResRace in this section. Additionally, we explain
the principles and methodology of the two modules in detail to
emphasize their contributions.

A. Principle of ResRace

Learn Residuals above Guide-Policy: ResRace works by
dividing the output policy 7s(s|f) — us, which is learned
from zero in previous DRL methods, into the residual-policy
7o (s]0) — u, with trainable parameters 6 and the guide-
policy 7, ($) — . Thus, we can express this relation-
ship as m4(s|0) = m,(s|0) + mn(s) or the action equation
Us = Uq + Uy, Importantly, the gradient satisfies \/o7s(s|0) =
Vo7Ta(s]0). In other words, the gradient of 7, does not depend
on 7, so the optimal 7, is reachable through policy gradient
method even 7, is not differentiable. By policy division, our
method combines the complementary advantages of the DRL
and MAPF and pushes the performance boundaries of what
either can achieve independently. When the guide-policy is close
to the optimal one, the residual-policy can be regarded as a
corrective term. If it is defective, we describe it as a hint to
guide the exploration [16]. In racing tasks, agents of classic
DRL always obtain amount of low-reward experiences due to
the collision, circling or wrong directions in initial episodes. We
interpret contributions of guide-policy as providing a positive
displacement towards the optimal one for the initial policy in
the search space, so our policy skips these inefficient conditions
and is much closer to the optimal.

Pipeline of ResRace: The structure of our algorithm is shown
in the Fig. 1. For MAPF controller, it takes only the real-time
point cloud as its input and outputs a guide action w,,. Each
point in the point cloud is regarded as a tiny obstacle, and
the target generator takes the point cloud and generates a local
target. According to the position of local target and obstacles,
U € [—1,+1] is calculated by the defined potential field and
policy function. Concurrently, the policy network, a multi-layer
perceptron (MLP) is randomly initialized and provides the wu,,
which is set in [—2, +2] to ensure it can cover the bad actions of
MAPF controller. The racing agent takes the truncated sum of
actions us = clip (uy, + uq, —1, +1) to drive. During training,
the replay buffer stores the observation, reward and the residual
uq, then 6 is updated with trajectories sampled from the replay
buffer.
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Fig. 1. The overview of ResRace. Our framework mainly consists of two par-
allel action generators. The MAPF controller provides a fundamental action w,,,
through the target generator and defined potential field to guide the exploration.
The DRL agent provides a residual action u, to optimize the global action
Us = Um + Ug and minimize the lap time.

Austria Barcelona

/s

Columbia Montreal

Plechaty

Fig. 2. The bird’s-eye view of tracks in FlTenth simulator [31]. With the
increasing normalized distance in [0, 1], the color fades from black to white,
which means agents are required to run clockwise. The red circles marks where
previous model-free approaches failed to improve their performances, like the
V-shape turns on Austria and Barcelona tracks, the chicane on Montreal circuit
and the U-shape turn with irregular edges on Plechaty circuit.

B. MAPF Controller

Why MAPF': For local motion planning tasks, search-based
approaches like A* and its variants are feasible and proved
to generate the shortest path [33]. However, the optimal race
line is generally between the minimum-distance curve and the
minimum-curvature one [34] so it still needs further optimiza-
tion. Meanwhile, these methods with discrete maps and action
spaces require high resolution to generate precise actions for
high-speed racing, which increases their time consumption [2].
Similarly, sample-based methods like rapidly-exploring random
tree (RRT) and its variants [35]—[37] are also practical but paths
generated by these methods are stochastic and not smooth, so
they are also unsuitable for high-speed navigation. Importantly,
the latency of the above methods is unstable in different sce-
narios. For example, the agent traveling at the wide segment in
Montreal observes a larger area than that of it at the narrow one,
so more time is required for searching and sampling. Contrarily,
the actions generated by MAPF are much smoother, so it can
handle high-speed vehicle control and it also contributes to
suppressing the bang-bang control problem [38]. Meanwhile,
the mapping from the forces to the commands is simple so a
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Fig.3. The demonstration of local target selection when the racing agent drive
(a) at the turn and (b) along the straight. The point cloud can be regarded as a set
of tiny obstacles {01, 02,03, ...,0n}, where N = 675. The red and yellow
points indicates the detected left and right edges.

dynamics model and controllers are not required. In addition, the
time complexity of our MAPF depends on only the horizontal
resolution of LiDAR so its real-time performance is stable.
According to our experiments, our MAPF controller is faster
than the DRL module. Thus, when they are paralleled, MAPF
can hardly increase the global latency of ResRace.

Target Generator: The MAPF controller first utilizes raw
observation of LiDAR to generate a local target g. Denote the
detected points on the edges as {o01,02,03,...,0x}, where
N = 675 is the total measurements of LiDAR. As an intuitive
demonstration in Fig. 3(a), when the agent drives at the turn,
a large distance gap can be detected between o; and 0;1 and
we think the edge is switched. Generally, the center point of
segment 0;0;11 is on the track and we selected it as the local
target of the MAPF controller in this case. Another case is that
the agent drives along the long straight as shown in Fig. 3(b).
On the long straight, there is an observation arc {0;, ..., 0;4n }
reaching the limitation range of LiDAR, which means the next
turn is out of detection range. Thus, we select the center point
0i+z of the arc as the local target.

_ldQ U’

9“9 “rep

1. ; 2
Uyt = =54 (1/]d]] +1/de)™ (D)
Potential Field Definition: The potential field function is
defined as (1). U,y is the attractive potential of the local target

g- dg is the relative position of the local target. Similarly, U7,
presents the repulsive potential of the j-th point in length- N ob-
servation and dJ presents its location. d_ is the effective distance
of repulsive field and is set as 2 meters. Based on the above field
functions, the attractive and repulsive force can be calculated as
(2) and (3), respectively. After that, we transform the potential
force into the normalized action in [—1, +1] through a nonlinear
tanh function as (4). The general constant 7 is a general scaling
factor of the attractive force.

F,, = —vUi, @

Fiep = - vUz;ep’ s.t. de < |d33| 3)
N

Uy = tanh n tht + Z F‘zep * XIU (4)
J=1

Modification in APF: The stagnation at dead points is a
common issue for APF [39]. To solve this problem, we set a
probability v = 0.1 for the agent to explore forward with a tiny
velocity when the stagnation occurs. Because F',.., is the sum of
N = 675 terms with a large value, we need to scale it otherwise
the discrete actions will be output by the hyperbolic tangent
function. Meanwhile, the controller is sensitive to the lateral
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offset and a smaller scale is required. Thus, we set a general
empirical factor X, = [0.05,0.02] to scale repulsive forces on
x and y directions unevenly. Our experimental results show this
modification significantly contributes to ResRace performance.

C. Reinforcement Learning Module

Residual Policy Optimization: The policy optimization
method is replaceable in the DRL module and we utilize
two classic online model-free policy optimization algorithms
TRPO [40] and PPO [41], which consist of policy and value
networks. The policy network 7, (s|0) with trainable param-
eters 0 provides the residual-action u,. Meanwhile, the value
network V'(s|6,) is parameterized by 6, and estimates the
value of state. The critic network is trained with the mean
square error L, (viyure, V) between the estimation value v,
and the true one vy... The probability ratio is defined as

po = T (s, u,) /7% (s,u,) to describe the similarity of the
old policy 72 and the updated one 77,
121,5 = — V(St) +ry -+ 4+ ’YT7t+1’I"T,1 + ’}/TitV(ST)
5
Lirpo = I [pg/i — BKL (ngd7 W;zew)} (6)
Lo(0) =B [min(ped, clip (po, 1~ ¢,1+¢) A)] (7)
Lppo =B [Le(0) +H(ma(|5))] ®)

Our method updates the networks with a stochastic gradient
ascent algorithm through computing an estimator of policy
gradient and advantage [42]. Here, the advantage function is
defined as A in (5). Given a length-T" trajectory as mentioned in
Section III, ¢ specifies the time-step in [0, 7]. The expectation

I presents the empirical average over a finite batch of samples.
In TRPO [40], the KL divergence is utilized to constrain the
policy update and its surrogate objective is maximizing (6). In
PPO [41], the policy update is constrained by the clipped objec-
tive as (7) with the ratio ¢ = 0.2. We normalize A with batch
statistics in practice, which effectively serves as an adaptive
learning rate heuristic that bounds the gradient variance [43]. Be-
sides, we set the policy entropy H (7, (+|s)) as suggested in prior
works [42] to ensure sufficient exploration, and the surrogate
objective of PPO is maximizing the Equation (8). We leverage a
temporal replay buffer to collect these finite trajectories, and the
networks are updated with Adam optimizer [44]. According to
the results, ResRace with PPO performs better than it with the
TRPO in most cases.

R = Rpin + Ra(u) — Palu) — P, ©)

Reward Design: The racing task is minimizing the lap time,
which is equivalent to maximizing the lap progress in the given
time-steps. For DRL method, its objective is to generate a policy
to maximize the episode return. Hence, the reward function
should present the intention of minimizing the lap time. Here,
we define the reward function in ResRace as (9). The discrete
reward Ry, = 4100 is issued when passing the finish line
to encourage the agent to complete more laps in one episode.
However, this sparse reward signal is difficult to attribute to
specific actions, we thus add three continuous rewards. The
continuous reward R, (u) linearly depends on the agent velocity
to encourage aggressive driving. The penalty P, (u) linearly

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:59 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: RESIDUAL POLICY LEARNING FACILITATES EFFICIENT MODEL-FREE AUTONOMOUS RACING

depends on the action difference of two adjacent time-steps and
the absolute value of actions. It significantly restrains undesired
bang-bang control of DRL methods [38], [45]. In racing, un-
necessary and excessive actions cause a longer racing path and
speed reduction. Meanwhile, the safety penalty P, = 1 restrains
the collision with the track edge. Our reward definition can
obviously accelerate the convergence and improve final perfor-
mance, which will be demonstrated in the ablation experiment
section.

V. EXPERIMENTAL SETUP

In this section, we introduce the existing leading baselines and
experimental settings. Additionally, we transfer our method to
unseen tracks to demonstrate its generation ability. Besides, we
illustrate its dynamics robustness and low parameter sensitivity.
All experiments are conducted with INTEL Gold 5218R CPU
and NVIDIA GeForce RTX 2070S GPU.

Baselines: We choose the winners of F1Tenth race in 2019 and
2020 as our competitive baselines. Other representative methods
including MPC-based and model-free DRL approaches are also
included.

1) RacingDreamer [14] wins the champion of F1Tenth 2020
and utilizes the SOTA model-based algorithm Dreamer [29] in
racing task with raw LiDAR observation or occupancy recon-
struction. We record them as Dreamer (LO) and Dreamer (OR)
independently and train them with the process reward as sug-
gested in the original letter.

2) Follow-the-Gap (FTG) [46] is a classic tracking method
and wins Fl1Tenth 2019 champion. FTG is used as the expert
demonstration to initialize the policy in RacingDreamer, so we
consider it as a significant baseline.

3) Local learning MPC (LMPC) [23] utilizes closed-loop data
from last lap to update the controller for the next with operator
splitting solver for quadratic programs (OSQP) [47]. To initialize
LMPC, we follow the path with 1 m/s in the initial 2 laps as the
suggestion of authors.

4) Pure model-free DRL methods are included. We train five
leading baselines including TRPO [40], PPO [41], DDPG [48],
TD3 [49] and SAC [50]. In previous work [14] and our results,
their performances are not well so we record the best one as an
independent baseline MFRL (best).

5) Five professional formula student players are invited to
control the agent by a game console. They can practice on
arbitrary tracks, and observe the scenarios from the bird’s-eye
view (BE) or the following view (FV).

Training Settings: When an episode begins, the racing agent
is placed randomly on the finish line and each episode has a
maximum length of 5,000 time-steps. We train our ResRace for
only 2 M time-steps to show its advantage on convergence speed,
and other DRL baselines are trained for 5 M time-steps. For fair
comparison, all model-free baselines including ResRace utilize
the same MLP with two layers of 256 neurons and are trained for
five trials with independent random seeds. Dreamer baselines are
trained with the same settings as its original letter. For evaluation,
all algorithms are tested for 100 K steps with 5,000 time-steps
per episode. LMPC updates its controller every two laps and
generally converges in 40 laps, so we test it after 50 laps for
five trials and other settings are as the default value [23]. Human
players are evaluated on the five tracks for 50,000 time-steps with
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two views and the average performance of their five best episodes
is calculated as the baseline Human (BE) and Human (FV).

Performance Metrics: We first visualize the training curves
in 2 M steps as Fig. 4 and analyze their learning abilities and
other properties. Besides, we divide the lap progress by the
episode length to calculate the surrogate lap time for all baselines
according to their validation performance. When the agent is
unable to move like crashing into the edges, or navigates towards
the wrong direction, we think it is dead and a new episode will
start. By this way, the efficiency of learning-based methods
is improved. Importantly, when a method can not complete
a full lap (except the longest track Barcelona) after training,
we consider it fails on this track and its lap time is recorded
as Dnf. (do not finish). Moreover, we evaluate their real-time
performance on the model size and maximum frame rates in the
simulator with the same scenario and hardware for 100 K test
time-steps.

Robustness Validation: To evaluate the robustness of
ResRace, we trial our models in different scenarios without
retraining. We first increase the potential force F from 0.7F to
1.3F to validate its sensitivity to MAPF intensity. Meanwhile,
we increase the original friction factor ;1 = 0.80 from 0.55 to
0.95 to validate our models under different dynamics. Besides,
we conduct the cross-validation by testing the trained agent on
unseen tracks for 100 K time-steps. We use the ratio of test
results and results of the model trained on the test track to
evaluate the generalization ability.

Ablation Studies: We test the performance of MAPF con-
troller and pure PPO independently to illustrate their comple-
mentary property. Furthermore, to emphasize the contribution
of modification in APF, we remove the anti-stagnation proba-
bility  and replace the balancing array X, with [0.05,0.05]
to restore its sensitivity to lateral offset. Besides, we replace
our reward design with the original setting in the simulator as
R = cAp — P, where ¢ = 100 is a constant scalar and Ap
denotes the lap progress in one time-step.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the baselines and visualize their
experimental results. We also further discuss the causes of
obtained results according to the simulator demonstration. In
addition, we provide the comparison and behavior analysis of
human players and ResRace during Barcelona racing process.

Training Process: In Fig. 4, because of the guide-policy,
the lap progress in initial episodes of ResRace is much better
than other methods. Model-free baselines and Dreamer explore
with random actions so they collide with the track edges in
most cases. Compared with MFRL (best), the MAPF-based
policy effectively reduces the difficulty of policy optimiza-
tion and highly contributes to performance improvement. Be-
sides, though Dreamer reaches comparable performances to our
method in 2 M steps on three tracks, its prediction process and
extensive modeling lead to much higher algorithm complexity
and more time consumption within the same training steps.
Meanwhile, on the Montreal and Plechaty circuits, where the
track width is uncertain and the edge shapes are irregular,
conventional model-free methods and Dreamer can hardly learn
the practicable policy.

Performance Comparison: In Table I, the performance of
ResRace is better than other methods in most cases though
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——— ResRace (TRPO) ~—— ResRace (PPO)

Fig. 4.
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The training process curves of reinforcement learning-based baselines in 2 million time-steps. Each episode consists of 5,000 time-steps. ResRace and

other baselines are all trained for five trials with independent random seeds. Classic DRL methods learn from zero and early converge to the sub-optimal policy.
Our methods perform better than other DRL baselines in both the initial and the last epochs due to learning on the basis of the guide-policy.

TABLE I
THE LAP TIME COMPARISON ON FITENTH TRACKS

Lap Time (s)|

Methods Aus. Bar. Col. Mon. Ple.
FTG [46] 41.92 12334  34.03 Dnf. 11.98
LMPC [23] 39.31 10591 2837 2648 10.96
MEFRL (best) Dnf. 151.52 35.82 Dnf. 13.12
Dreamer (LO) [14] 37.56 10221 27.60 Dnf. 16.34
Dreamer (OR) [14] | 37.68 100.23  28.12 Dnf. 16.42
Human (BE) 37.57 97.89 29.24 2554  10.52
Human (FV) 36.77  95.82 28.05 23.02 10.35
ResRace (TRPO) 36.71 99.21 28.15  23.74 10.06
ResRace (PPO) 36.87 9579  27.59 2388 9.84

Dnf. = Do not finish

they are trained for more steps. Especially, other approaches
can hardly learn the practicable policy to pass the hairpin turn
on the Montreal. Meanwhile, though Dreamer takes FTG as
expert demonstration and outperforms the model-free methods,
it easily converges to the sub-optimal policy and is still hard to
defeat human players. LMPC obtains higher scores than that of
FTG. We find it performs obviously better on the wide tracks
than other tracks and almost catch up with the human players.
But passing the narrow and sharp turns rapidly is still difficult for
LMPC, and its race lines can be further optimized. For human
players, the following view provides more intuitive observation
so it is easier to control the distance from the track edges. As
a result, the performance of Human (FV) is better than that of
Human (BE). Besides, in most cases, ResRace can reach the
comparable performance of human players with the following
view. Although ResRace takes more 4-0.62 s than humans on the
Montreal, the human players may crash into the edges during
turning. Our results and demonstration indicate that ResRace
adopts an aggressive policy and controls the vehicle at the
dynamics limitation like professional players.

Efficiency: Although we harmonize the network with the
same MLPs, the numbers of required models are various for
different methods. Experimental results show our method re-
quires two networks for value estimation and policy generation
with only 0.48 M parameters, while other MFRL methods
like SAC and TD3 require more target networks and there-
fore possess more parameters. Model-based Dreamer (LO) and
Dreamer (OR) require more parameters for additional system
dynamics modeling. Meanwhile, due to the latent imagination
mechanism, Dreamer’s sampling rates are respectively 38.62 Hz
and 30.51 Hz with LO and OR, which requires much more com-
putational resources to achieve the same real-time performance.
Similarly, the prediction process of LMPC increases its latency,
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Fig. 5. The results of robustness and cross-validation. (a) and (b) show the
performance of ResRace with different potential forces and dynamics. (c)
illustrates the results of ResRace tested on unseen tracks. Each block represents
the progress ratio of the tested model and the trained model. The darker the
block, the better the generalization performance of the tested model. The red
points mark the 0% benchmarks, which indicate the default settings with 1.0
potential force magnification and 0.8 tire friction factor.

so it reaches only 45.92 Hz and is better than model-based DRL
but much slower than our method. Meanwhile, by connecting the
modules in series, ResRace reaches 211.27 Hz and 210.43 Hz
sampling rates, which are only 9.7% and 10.3% lower than pure
TRPO and PPO, respectively. These results illustrate that the
MAPF controller only slightly affects the real-time performance
of our framework.

Change Potential Force: Fig. 5(a) demonstrates that ResRace
is not sensitive to the potential field intensity and indicates the
parameters can be easily adjusted in the range of +30%. We
notice that the performance of ResRace (PPO) with 1.3F is
reduced by about 8% on Barcelona. According to the simulation,
when potential field intensity is too weak or strong, the racing
agent yaws and navigates along the wave line due to the tiny or
excessive transverse force. These undesired problems directly
cause the collision at turns especially on the narrow track.
Meanwhile, ResRace (TRPO) demonstrates lower parameter
sensitivity than ResRace (PPO).

Change Tire Friction: Fig. 5(b) shows our method can adapt to
the changing tire friction. With the increased friction, the racing
agent can reduce its lap time with higher acceleration and turning
speed. While the friction is reduced, though the performance
shrinks slightly, it still finishes the laps stably. For instance, the
turns are smoother in Barcelona than those in others so the agent
requires less friction to pass them. On the contrary, when driving
at the sharp turns of Austria and Barcelona, the racing agent
must pass them with a longer path or lower velocity to reduce
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TABLE II
THE RESULTS OF ABLATION EXPERIMENTS

Methods \ Lap Progress 1

| Aus. Bar. Col. Mon. Ple.
MAPF Controller 131 043 264 064 625
Pure PPO 069 052 0.1 075 6.13
w/o Modification 215 081 272 361 759
w/o Reward Design | 2.14 0.71  2.65 324  8.08
ResRace (PPO) | 226 087 301 349 847

the required friction, which is consistent with experiences of
human drivers.

Cross-Validation: As shown in Fig. 5(c), trained models main-
tain their performance when tested on the track with similar
features. For example, the model trained on Austria can handle
the sharp turns in Plechaty. On the contrary, the irregular and
coarse edges of Montreal challenge the generalization of models
trained on the other track, so that the test results on Montreal
are always unsatisfactory. Meanwhile, the model trained on
complex tracks demonstrates outstanding reliability. Specially,
on Columbia, the model trained on Barcelona outperforms the
Columbia baseline model and reaches 27.55 s per lap, which
beats the professional player by 0.5 s and proves that the model
trained on the challenging tracks process the outstanding gener-
alization ability.

Ablation Studies: We validate contributions of crucial
components in ResRace (PPO) as shown in Table II and
ResRace (TRPO) has similar performances. The MAPF con-
troller is workable in most cases and its maximum progress
matches the initial performance of ResRace in Fig. 4. Mean-
while, TRPO and PPO can hardly work independently on these
tracks. These results demonstrate that the initial exploration of
ResRace is dominated by MAPF policy, and the subsequent im-
provement is attributed to the DRL module. For the modification
in APF, experimental results (w/o Modification) illustrate that it
contributes to the performance of our framework, especially on
Columbia and Plechaty. It improves the performance by +10.1%
on the tracks except for Montreal. When the track is wide, the
modification decreases the lateral potential force excessively
and causes a conservative steering. Thus, the performance of
ResRace without modification outperforms the complete one
on Montreal slightly. Besides, we replace our reward design
with the original process reward in the simulator. According
to the results (w/o Reward Design), our reward design can
improve the average performance by 7.61%. In the simulation,
the action penalty can effectively restrain the redundant steering
and deceleration. Concurrently, with the discrete reward signal
R fin» the agent learns to exit the last turn rapidly and sprint to
the finish line. These results prove that our reward design can
describe the task finely and effectively reduce the lap time. While
after removing the reward design, the performance of ResRace
is still better than most of the baselines.

Behavior Analysis: The Barcelona-Catalunya circuit pos-
sesses sixteen turns (denoted as TO1 to T16) and is the official
winter test track of Formula One for its outstanding design of
turns. As shown in Fig. 6, we select three representative and chal-
lenging parts of this track, including the continuous TO1-T02,
the V-shape TOS and the chicane T14-T15. For continuous turns,
ResRace agent adopts a larger entering angle and earlier turning
point than those of human players at the TO1, which reduces its
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Fig.6. The behavior demonstration on the Barcelona circuit. The red numbers
indicate the difficult turns on this track, and the race lines of ResRace agents
and human players are demonstrated in the second column. The steering/motor-
normalized distance curves of ResRace (PPO) and its modules are shown in the
third column. By comparing them with the action curve of human players, we
can analyze the differences of their driving preferences.

velocity. But it passes the next turn with a smaller angle so the
exiting speeding is higher at TO2. For the V-shape turn, instead
of approaching the apex, our agent adopts a later turning point
and catches the late apex of TOS5. Meanwhile, human players
release the throttle to decelerate at their turning points, while
our agent keeps the maximum power, which can reduce the time
consumption during turning when the traction is large enough.
At the chicane T14-T15, ResRace chooses an earlier turning
point and grasps two apexes, and then exits T15 with the full
throttle and turns sharply to catch the apex of T16. However,
human players prefer to decelerate and pass the chicane with a
smaller curvature. We also visualize the action materials in the
third column of Fig. 6. The throttle actions of MAPF controller
are cautious and the residual actions from DRL module are
aggressive after training. In the initial epochs, the output of
ResRace is mainly determined by the MAPF controller, and the
agent drives along the center line. However, the trained agent
prefers to navigate along the track edges to minimize its lap
time. In other words, with the increasing training steps, the guid-
ance ability of MAPF begins to decline and the residual-policy
determines the output, especially for the steering action.

VII. CONCLUSION

In this letter, we propose a residual policy learning method
ResRace for model-free local motion planning. Instead of the in-
efficient learning-from-zero in classic DRL methods, we design
an efficient MAPF to provide guidance for the agent. The exper-
imental results show that our model-free framework can outper-
form a series of leading approaches and reach comparable level
of human players. Meanwhile, we evaluate the robustness and
compare the actions of our method and human players through
extensive validations and demonstrations. Besides, ResRace
works robustly with different policy optimization methods, APF
parameters and vehicle dynamics. We also notice the limitation
of our method. Although the MAPF controller can improve
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the exploration efficiency, the guide-policy is soft and may be
covered by the residual-policy during initial exploration. Mean-
while, the performance of ResRace is significantly related to that
of the fundamental policy. Although our residual learning frame-
work only needs a workable policy to guide the exploration, the
guide-policy still requires fine-tuning and further revision. Ad-
ditionally, our method still needs extensive validation in the real
world. In future work, we will further improve the performance
of our method and explore its application in more scenarios.
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