
1 INTRODUCTION & MOTIVATION 
In order to reach the international goals of the Paris 
Agreement and improve the ecological impacts of 
new buildings, life cycle assessments (LCA) are an 
established method to calculate several environmen-
tal indicators along the whole life cycle of buildings. 
According to the United Nations, manufacturing of 
materials for building construction cause 11% of the 
global energy-related carbon emissions (Abergel et 
al. 2017). Accordingly, a careful LCA of the different 
design options is required in order to identify the main 
drivers and optimize the building design accordingly.  

Up to now, LCA has been performed mainly man-
ually, which is time-consuming, especially quantify-
ing the building components and mapping them to 
LCA databases (Llatas et al. 2020). Building Infor-
mation Models (BIM) combine geometry and seman-
tics and thus facilitate deriving consistent and auto-
mated quantity take-offs of the relevant components 
for calculating whole building life cycle assessments 
(LCA). Additionally, using and enriching the seman-

tic information of e.g. materials provides a great po-
tential to completely automate the calculation process 
(Safari & AzariJafari 2021). 

However, in early design stages, essential deci-
sions are taken that have a significant impact on the 
carbon footprint of the final building design. At the 
same time, the early design stages are characterized 
by high uncertainty due to the lack of information and 
knowledge, making a holistic and consistent LCA for 
supporting design decisions and optimizing perfor-
mance challenging (Schneider-Marin et al. 2020).  

In more detail, in the “rough” BIM models of early 
design stages, materials are rather defined by material 
groups than by specific types (e.g. “concrete” rather 
than “concrete C20/25”), which leads to a range of 
possibilities for each material group. Furthermore, 
several materials or component layers might not in-
tentionally be defined yet, which opens the oppor-
tunity to explore and compare different design op-
tions.  

This paper aims to answer the following research 
question to facilitate a reliable LCA in the early 
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stages: Is automated semantic healing of “rough” 
BIM models possible that allows assigning correct el-
ement types and materials to the respective model el-
ements? 

2 STATE OF THE ART 

2.1 LCA in early design stages using 3D models 

For a whole building LCA in early design stages, 
there are different established approaches. One ap-
proach is using benchmarks, which are derived from 
already finished projects and are then transferred to 
early design stages. Gantner et al. introduced this ap-
proach, based on several design stages, where differ-
ent input information are needed (Braune et al. 2018). 
The early design stages are subdivided into occasion 
and initialization phase, where building types and 
general systems are decided, and design and approval 
planning, where element systems are decided. Never-
theless, with this approach, optimization of LCA us-
ing different design options is difficult because they 
don’t include all later details but rather benchmarks. 

On the other hand, Hollberg suggested a paramet-
ric approach, based on LCA profiles for several con-
struction types and using the Visual Programming 
Language Grasshopper with Rhino (Hollberg 2016), 
where optimizations can be automatically performed. 
However, the modell intup of the calculation depends 
only on geometric and doesn’t include semantic in-
formation, same as with benchmarks. 

2.2 BIM-LCA integration 

Wastiels & Decuypere classified five different inte-
gration workflows for calculating LCA using BIM 
models (Wastiels & Decuypere 2019). While the first 
three still require manual work, mainly for mapping 
IFC element information to LCA profiles, the fourth 
workflow is based on plugins of LCA software in 
BIM authoring tools. The fifth workflow by Wastiels 
& Decuypere includes a BIM object enrichment with 
LCA profiles. 

Rezaei et al. developed a method based on Revit 
models to calculate LCA in early and detailed design 
stages (Rezaei et al. 2019). LCA profiles on element 
levels are detailed into layers and material options, 
but the mapping to match Revit and LCA database 
assemblies is carried out manually. Nevertheless, the 
LCA results are given in ranges, due to uncertainties 
in early design stages, and not as total result. 

Eleftheriadis et al. proposed an BIM-embedded 
LCA approach focusing on structural design alterna-
tives in early design stages (Eleftheriadis et al. 2018). 
However, they do not consider all life-cycle modules 
(only A1-A3) and is also based on Autodesk Revit. 

Horn et al. proposed an integration approach based 
on open BIM using Industry Foundation Classes 
(IFC) as data format (Horn et al. 2020). With the help 

of Information Delivery Manuals (IDM) and Model 
View Definitions (MVD), LCA for several level of 
development of building design are realized, also for 
early design stages.  

2.3 BIM data extraction & mapping methods 

Extracting data from IFC models and map those to 
different data structures or ontologies of the chosen 
use case is a complex task. Several approaches for dif-
ferent use cases have been developed recently. 

Koo et al. explored the use of 3D geometric deep 
neural networks to distinguish BIM element subtypes 
and enrich semantics of IFC model entities (Koo et al. 
2021). Costa & Sicilia propose a methodology of 
transforming and mapping building data from BIM 
models using Semantic Web technologies for an au-
tomated and flexible exchange with other software, 
e.g. whole building energy simulation (Costa & Sici-
lia 2020). 

Wu et al. proposed a natural-language-based re-
trieval engine for BIM object database (Wu et al. 
2019). Their use case is to mapping building compo-
nents in BIM object databases with a higher accuracy 
than with keyword-based methods. 

Reitschmid proposed a mapping algorithm of IFC 
materials to the LCA database Ökobaudat based on 
tokenization of material names and a distinct mapping 
or via Levenshtein distance (Reitschmidt 2015). Nev-
ertheless, no Natural Language Processing (NLP) 
model was used and also no integration to element-
specific mapping was proposed. 

Locatelli et al. investigated in their scientometric 
analysis the synergies between NLP and BIM (Loca-
telli et al. 2021). Beside the field of Automatic Com-
pliance Checking, they identified also Information 
Retrieval from BIM models and Information Enrich-
ment of BIM objects as a further field of relevant ap-
plication. 

Nevertheless, an automated mapping of LCA and 
IFC data on element level has not been developed yet 
(Safari & AzariJafari 2021). 

3 SEMANTIC MODEL HEALING 
The semantic model healing process is part of a big-
ger framework, which we previously proposed (Forth 
et al. 2021). In the paper at hand, the focus is on how 
NLP techniques help to heal the BIM model semanti-
cally for the use case of LCA in early design stages. 
Typically, design decisions are finally decided by the 
client and not the architect, hence, the proposed meth-
odology is leveraging open BIM data models. 

The proposed healing process is based on NLP, us-
ing different strategies to increase the performance of 
mapping materials from a rough BIM model to a 
knowledge database with environmental indicators of 
commonly used components. The knowledge data-
base contains all missing information for LCA and 



has different levels of detail for a range of several po-
tential design options of components, elements, and 
materials, including their dependencies. The semantic 
model healing process happens, when the incomplete 
IFC element data are matched with the detailed LCA 
knowledge database (LKdb). First in chapter 3.1, the 
structure of the LKdb is introduced, before in chapter 
3.2 the method for matching is described.  

3.1 LCA Knowledge Database  

The aim of the LCA Knowledge Database is to store 
all detailed information of typical building elements 
including all relevant information for calculating a 
holistic LCA. After the matching of IFC materials to 
material options in the LKdb and selecting the most 
similar element, all relevant data are queried for cal-
culating the LCA. 

As shown in Figure 1, the general structure of the 
proposed LKdb consists of three different levels: ele-
ment, material category and material option. As the 
LCA database, Ökobaudat was chosen (BBSR 2021), 
because it consists of more than 1400 datasets specif-
ically of building products and is the most used LCI 
database in Germany. 

The Ökobaudat datasets consist of a Universally 
Unique Identifier (UUID) and the relevant life cycle 
modules. All datasets from Ökobaudat consist of sev-
eral environmental impact categories, such as Global 
Warming Potential (GWP), Acidification Potential 
(AP), Eutrophication Potential (EP), Ozone Deple-
tion Potential (ODP), Photochemical Creation Poten-
tial (POCP), Primary Energy Renewable (PERE) and 
many more.  

As the quality of some datasets in Ökobaudat is 
lacking such as missing data of End-of-Life (EoL) 
module, generic EoL scenarios have to be mapped 

manually from Ökobaudat. In this case, for each ma-
terial option two UUID are mapped, one for the LCA 
Modules A1-A3 and another for the missing End-of-
Life scenario (C3/ C4/ D). Stenzel conducted this 
manual mapping as well as a classification of all 
UUIDs according to German cost groups using DIN 
276 (Stenzel 2020). 

All material options have a name and classification 
according to DIN 276, which is derived by the Ger-
man name in Ökobaudat. They are called options, as 
they are the most detailed level of a design option for 
LCA. Further entries are the UUID, included Mod-
ules and the encoded NLP vectors of the name (spans 
and tokens). 

Each material option is related to a material cate-
gory, which is also stored in Ökobaudat. There are 
three different levels of categories, but for LKdb only 
the last level of categories is used, as it groups the da-
tasets of the relevant material options. The category 
level is extended with another external input describ-
ing the service life of building components (BBSR 
2017). For these, the IDs are mapped once to the cor-
responding material category for each classification. 
Also, for the material categories, the name and the 
classification are the keys and the encoded NLP vec-
tors of the name (spans and tokens) are also stored. 

In the next level, material categories and options 
are used for setting up element layers. Different ele-
ments can consist of the same material category or 
option. The element layer and the element have de-
fault maximum and minimum thicknesses and are 
also classified to the third level of the German cost 
group classification according to DIN 276. The ele-
ment layers can have different mixtures ratios, as e.g. 
reinforced concrete consists of two material inputs: 
concrete and reinforcement steel. Each element layer 

Figure 1: Structure of the LCA Knowledge Database as UML schema 



has a unique material position, so that elements con-
sist of one or more layers with different material po-
sition orders.  

3.2 Method for matching materials 

For matching the elements and materials of an IFC 
model to the LCA Knowledge Database, we propose 
employing NLP techniques to measure “semantic 
similarity” (Forth et al. 2021). Measuring the seman-
tic similarity between the IFC element’s material in-
formation and the material names of the database in-
volves converting the text of every material type to a 
vector representation. A vector is a list of numerical 
values, where the combination of them represents the 
overall meaning. When comparing two material 
names, the similarity between vectors A and B can be 
measured using the cosine similarity, while n is the 
dimension of the vector: 
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           (1) 

To compute the vectors for similarity analysis, this 
paper investigates multiple NLP techniques and eval-
uates the performance of state-of-the-art deep learn-
ing models such as GermaNet (Hamp & Feldweg 
1997; Henrich & Hinirchs 2010), SpaCy (Honnibal & 
Montani 2017), or BERT (Devlin et al. 2018), which 
will be introduced in the following sections. 

Figure 2 shows the general workflow for matching 
IFC elements to the previously introduced LCA 
Knowledge Database. Generally, all IFC elements 
consist of an element name, a required classification 
and IFC materials, including their names. As the LCA 
knowledge database is based on the German ÖKO-
BAUDAT and the German cost group classification 
system according to DIN 276, it is also required as 

classification of the IFC elements. The matching 
method is developed with the aim to perform as ro-
bust as possible. For this reason, if there is no IFC 
material available for specific elements, the element 
name itself will be evaluated for NLP similarity anal-
ysis. Furthermore, only the elements corresponding to 
the classification are filtered and compared. The ma-
terial names from the IFC elements as well as from 
the LCA Knowledge Database can be encoded either 
as whole expressions/ spans or be tokenized before-
hand. 

3.3 NLP techniques 

This section introduces the three NLP techniques 
GermaNET, spaCy and BERT. In the next section, the 
performance of these techniques is evaluated and 
compared for measuring the similarity between the 
different material types. 

3.3.1 GermaNET 
GermaNET is a Lexical-Semantic Net specialized for 
the German language, also known as the German ver-
sion of the Princeton WordNet (Hamp & Feldweg 
1997; Henrich & Hinirchs 2010). GermaNET relates 
German nouns, verbs and adjectives semantically by 
grouping lexical units that express the same concept 
into synsets (set of synonyms) and by defining se-
mantic relations between these synsets. It can be rep-
resented as a graph, whose nodes are synsets and 
edges represent the semantic relations (Navigli & 
Martelli 2019). Therefore, the similarity is not meas-
ured using cosine similarity, but graph-related short-
est path similarity, which is equal to the inverse of the 
shortest path length between two synsets. There are 
other path-related similarity analyses such as Wu-

Figure 2: Material-specific similarity analysis of IFC elements and LCA Knowledge Database using GermaNET, spaCy and BERT 



Palmer similarity or Leacock-Chodorow similarity, 
which were not considered in this paper. 

3.3.2 spaCy 
SpaCy is a pre-trained neural network model which 
offers state of-the-art accuracy in multiple languages 
(Honnibal & Montani 2017). Its large German model 
(de_core_news_lg) includes 500k unique vectors in 
its corpus and represents every word or expression 
with a vector of 300 dimensions. As sources for train-
ing data, existing corpi were used such as e.g. TiGer 
Corpus (Brants et al. 2004). 

3.3.3 BERT 
BERT stands for Bidirectional Encoder Representa-
tions from Transformers and was released by Google 
in 2018 (Devlin et al. 2018). Transformers-based pre-
trained models are currently state-of-the-art and are 
capable of solving a different set of tasks as they “can 
represent the characteristics of word usage such as 
syntax and how words are used in various contexts” 
(Locatelli et al. 2021). Nevertheless, BERT repre-
sents each word or expression with a vector of 768 
dimensions, which is significantly higher compared 
to spaCy, making the similarity calculation more 
time-consuming. 

4 EXPERIMENTS & RESULTS 

In the following sections, first the case study is 
shortly introduced. Afterwards, the performance re-
sults of three different NLP techniques based on a 
manual matching is compared. Last, one IFC element 
is chosen to be prototypically matched and the LCA 
calculation is conducted using the LKdb and com-
pared to conventional workflow results. 

4.1 Case study 

For comparing the three different NLP techniques and 
their performance of their workflows, a real-world of-
fice building was chosen as a case study. This real-
world project guarantees that the material naming is 
not optimized but according to current industry stand-
ards, so that the matching performances are tested un-
der realistic conditions.  

In total, the case study office model consists of 
2110 individual elements, which are summed up to 
133 unique elements when grouped by element type. 
Those consists of 59 unique IFC materials, which 
were manually matched to LCA material options and 
categories from the LKdb, as a ground truth.  

4.2 Results  

The following results of each NLP technique perfor-
mance are based on the 59 pairs of IFC materials and 

the matched LCA material options and categories 
from the LKdb based on Ökobaudat. 

4.2.1 GermaNET 
As the workflow of the GermaNET differs from the 
other two NLP techniques, the identification rate of 
the synsets need to be analyzed before analyzing the 
shortest path similarity. 
 
 

 
Figure 3: Synset identification rate of material pairs with Ger-

maNET 

 
After the tokenization of the IFC material names, 

material options and their related material categories, 
synsets were identified to calculate the shortest path 
similarity. Nevertheless, synsets could not be identi-
fied for every token set, so that not for all 59 pairs 
synsets could be identified. As shown in Figure 3, 
only for 20,3% of the material category tokens and 
40,7% of the material option tokens, a pair of synsets 
could be identified. 
 
 

 

Figure 4: Shortest path similarity of NLP material using Ger-

maNET 

 
Nevertheless, the shortest path similarity of the 

identified pairs of synsets show promising results 
(Figure 4). The mean of the similarity of material op-
tion tokens is 88,9% and of the material category to-
kens even 95,2%, both with little deviation. However, 
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including the little synset identification rate of both, 
material options and material categories from the 
LKdb, the total similarity is very low and not suffi-
cient for being used in the proposed matching meth-
odology. 

4.2.2 spaCy 
For the results of spaCy and BERT, the similarities of 
tokens and whole spans of the material options and 
material categories are compared according Figure 2. 
 
 

 

Figure 5: Cosine similarity of NLP materials using spaCy 

 

As shown in Figure 5, the ranges of the cosine sim-
ilarity of all different comparisons differ a lot. Gener-
ally, the similarity of IFC materials to the material op-
tion spans have the worst performance with the mean 
being at 16,3%. This means, that the similarity for 
most matched pairs using material option spans and 
spaCy is only very little. The tokenization improves 
the performance of matching the material perfor-
mances up to a mean of 49,2%. Also, the spans of the 
material categories are much better (mean at 40,5%). 
The tokenization of the material categories improves 
the performance results up to 50,2%. As an addi-
tional, performance result, the maximum similarity of 
all options (material option spans and tokens, as well 
as material category spans and tokens) is calculated. 
Its mean is 63,0%, but also the quartile ranges im-
proved, compared to all other ranges. In general, the 
results are not sufficient, but show a promising strat-
egy of getting the maximum similarity of every op-
tion. 

4.2.3 BERT 
When evaluating BERT, the same similarity results 
are calculated as previously shown with spaCy also 
using cosine similarity. Figure 6 is showing the re-
sults as ranges of the material option spans and tokens 
and material category spans and tokens. Generally, all 
result ranges differ much less compared to the results 
using spaCy, which means that for all pairs more sat-
isfying performances can be reached using BERT. 

Additionally, all means are between 79,3% (material 
category spans) and 86,4% (material option tokens). 
Also, the strategy of getting the maximum similarity 
of every option is improving the general promising 
results (mean 87,6%). 

Also, the minimum values of each result ranges 
show that BERT, generally performs much better 
than spaCy. 

4.3 Summary 

Generally, all three NLP techniques could be applied 
to the case study. Although GermaNET showed 
promising results in the ranges of shortest path simi-
larity, the identification rate of synsets was too low. 
Therefore, a further implementation to the proposed 
matching methodology was not pursued further in this 
paper. The second tested NLP technique, spaCy, 
showed that different strategies of calculating the co-
sine similarity of material option spans and material 
category spans are improving the results. Further-
more, the tokenization of both material options and 
material categories, as well as choosing the maximum 
similarity of every calculated option improved the re-
sult ranges significantly. However, the deviations in 
ranges were substantial and are generally too low, so 
that a further consideration for implementation was 
not investigated. Finally, BERT showed the most 
promising results. Low deviations of the result ranges 
and high cosine similarity of all strategies lead to a 
further implementation of the matching approach. 
Nevertheless, due to its large vectors with 786 dimen-
sions, the calculation time is significantly higher than 
with spaCy and needs to be considered for further op-
timization. 

4.4 Prototypical element matching and calculation 
of LCA results 

Next, the proposed matching methodology was pro-
totypically tested using LKdb and BERT. The LKdb 
was filled with example elements and element layers, 
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Figure 6: Cosine similarity of NLP materials using BERT 

 



based on domain knowledge and the structured Öko-
baudat. As a test element, the exterior wall “Ba-
siswand: STB 250_außen” from the case study was 
chosen (cost group 331, single material “Ortbeton”, 
total area 415.32 m², layer thickness 20 cm). 

The final matching shows if the highest cosine 
similarity was derived from a material category or the 
material option. In this test case, it is the material cat-
egory with a cosine similarity of 85,4%. Therefore, 
the matched element within the cost group 331 is 
“Stahlbeton”, so also the reinforcement steel is in-
cluded beside the range of different concrete options. 

As a comparison for manual matching and manual 
calculation, the software eLCA is used (BBSR). Only 
specific datasets of the Ökobaudat can be used. 
Therefore, the assumed LCA dataset is 
“Transportbeton C20/25”.  

For simplicity, GWP [kg CO2-eq./a] is chosen as 
the comparing indicator with a lifespan of 50 years. 
The results are shown in Figure 7: 
 
 

 

Figure 7: LCA result (GWP) of test element comparing manual 

matching with BERT matching and LKdb 

 

Besides the necessary effort and knowledge of the 
manual matching, the accuracy of the results is differ-
ent. While the result with manual matching and eLCA 
is a single value, the proposed methodology returns a 
material category, considering the uncertainty of ma-
terial choice in the early design stages. Therefore, the 
LKdb returns a range of material options for LCA cal-
culation. Because the matching does not take place on 
a material level, but on an element level, the rein-
forcement steel is getting included in the LKdb ele-
ment of reinforced concrete, which gives more realis-
tic results. This is the reason, why the range of results 
is more than 200 kg CO2-eq./a higher than the manu-
ally matched eLCA result and is therefor more cor-
rect. 

Accordingly, it can be stated that by using the 
LKdb and proposed matching methodology the inac-
curate BIM model can be semantically healed for a 
more accurate LCA in early design stages. 

5 DISCUSSION & OUTLOOK 

By semantically healing BIM models for LCA, the 
analysis of embodied carbon becomes holistically 
more consistent and more comparable for early de-
sign stages. Furthermore, the LCA knowledge data-
base provides design options for optimizing the build-
ing performance according to LCA results. The 
limitations of this research are the chosen LCA data-
base (Ökobaudat) and the correlating German lan-
guage. Other NLP models of different languages 
might perform differently, as well other LCA data-
bases might have less datasets.  

In a next step, the matching should be carried out 
on multiple case studies and verified with manually 
calculated LCA results. Furthermore, the perfor-
mance shall be increased by checking domain specific 
abbreviations, as for example “STB” stands for 
“Stahlbeton” (reinforced concrete), but could not be 
identified by existing NLP models. As in this paper, 
the focus was set to material matching for comparing 
the performance of several NLP models, in a next step 
the element-specific matching shall be included in the 
performance analysis. Finally, to make the method 
more robust, commonly used elements for each clas-
sification with default values shall be defined in the 
LCA Knowledge database. 
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