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ABSTRACT Labelled imbalanced data, used for classification problems, have an unequal distribution of
samples over the classes. Traditional classification models, such as random forest, gradient boosting, face a
problem when dealing with imbalanced datasets. Over 85 oversampling algorithms, mostly extensions of the
SMOTE algorithm, have been built over the past two decades, to solve the problem of imbalanced datasets.
However, it has been evident from previous studies that different oversampling algorithms have different
degrees of efficiency with different classifiers. With numerous algorithms available, it is difficult to decide
on an oversampling algorithm for a chosen classifier. Here, we overcome this problemwith amulti-schematic
and classifier-independent oversampling approach, referred to as ProWRAS (Proximity Weighted Random
Affine Shadowsampling). ProWRAS integrates the Localized Random Affine Shadowsampling (LoRAS)
algorithm and the Proximity Weighted Synthetic oversampling (ProWSyn) algorithm. By controlling the
variance of the synthetic samples, as well as a proximity-weighted clustering system of the minority class
data, the ProWRAS algorithm improves performance, compared to algorithms that generate synthetic sam-
ples through modelling high dimensional convex spaces of the minority class. ProWRAS is multi-schematic
by employing four oversampling schemes, each of which has its unique way to model the variance of
the generated data. The proximity weighted clustering approach of ProWRAS allows one to generate
low variance synthetic samples only in borderline clusters to avoid overlap with the majority class. Most
importantly, the performance of ProWRAS with proper choice of oversampling schemes, is independent
of the classifier used. We have benchmarked our newly developed ProWRAS algorithm against five state-
of-the-art oversampling models and four different classifiers on 20 publicly available datasets. Our results
show that ProWRAS outperforms other oversampling algorithms in a statistically significant way, in terms
of both F1-score and κ-score. Moreover, we have introduced a novel measure for classifier independence
I-score, and showed quantitatively that ProWRAS performs better, independent of the classifier used. Thus,
ProWRAS is highly effective for homogeneous tabular data where convex modelling of the data space can
be done. In practice, ProWRAS customizes synthetic sample generation according to a classifier of choice
and thereby reduces benchmarking efforts.

INDEX TERMS Imbalanced datasets, LoRAS, oversampling, SMOTE.

I. INTRODUCTION
Data originating from real-world problems are often imbal-
anced. Labelled imbalanced data, used for classification
problems, have an unequal distribution of samples over the
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classes. The classes with a higher amount of samples are
called majority classes, and the classes with a smaller amount
of samples are minority classes.

Traditional Machine Learning based classification mod-
els, such as random forest or gradient boosting, face certain
difficulties, while dealing with such imbalanced datasets.
In particular, due to the high number of majority samples
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encountered by the classifier, the learning gets biased towards
the majority class. The minority class samples will have a
higher chance of being misclassified.

Over the years, several approaches, at data level (e.g.,
SMOTE, ADASYN) and algorithm level (e.g., cost-sensitive
learning) have been developed to overcome the prob-
lems described above. Data level approaches involve
pre-processing of data in a specific manner, and algorithm
level approaches tend to modify various aspects of the clas-
sifiers in order to improve classification for imbalanced
datasets. Oversampling approaches are data level approaches
characterised by the generation of synthetic samples for the
minority class in order to provide the classifiers with a bal-
anced sample ratio. Finally, this leads to an improved learning
experience for the minority class during the training process.

One of the most popular oversampling techniques that has
been largely explored and researched upon is the Synthetic
Minority Oversampling Technique (SMOTE) [1]. SMOTE
generates synthetic samples by generating random points
along the line to join two close enough minority class sam-
ples, which can be interpreted as a convex combination of two
close enough minority class samples.

However, the distribution of minority classes and latent
noise in a data set is not taken into consideration by
SMOTE [2]. Also, SMOTE over-generalises the minority
class distribution, while generating synthetic samples, lead-
ing to classifiers biased towards minority class(es) [3], [4].

To overcome such limitations, multiple extensions have
been built as an improvement of SMOTE. These extensions
implement a variety of approaches, such as the detection of
borderline regions between classes and oversampling specif-
ically from the borderline samples (Borderline-SMOTE and
SVM SMOTE) and assigning sample weights to minority
class samples to prioritise minority class samples to be used
for synthetic sample generation (ADASYN and SMOTE-
Boost) [5]–[9]. Other algorithms also detect clusters in the
minority class to perform a prior learning of the minority
class data distribution [10]–[13], [15], [17]. A recent study
conducted an empirical comparison of 85 such extensions or
variants of the SMOTE algorithm proposed until 2018 [19].
The comprehensive study benchmarked these algorithms on
over a hundred imbalanced datasets using different classi-
fiers, including Support Vector Machine (SVM), Decision
Tree (DT), k-Nearest neighbours (kNN), and Multi Layered
Perceptron (MLP), and investigated the best performing algo-
rithms among the 85 SMOTE extensions.

In 2020 Bej et al. proposed the Localized Random Affine
Shadowsampling (LoRAS)) oversampling algorithm, which
shows analytically that the local variance of the synthetic
samples can be controlled by taking convex combinations of
multiple shadowsamples (Gaussian noise added to minority
class samples) from a minority class data neighbourhood,
in contrast to taking convex combination of only twominority
samples, as done by SMOTE and all of its prominent exten-
sions [17]. A benchmarking study on 14 publicly available
datasets characterised by either of high-dimensionality, high-

imbalance, and high-absolute imbalance, using three classi-
fiers kNN, SVM, and Logistic Regression (LR), show that
the approach of LoRAS improves the overall classification.

However, from the empirical comparisons made by
Kovács, we notice that different oversampling approaches
work well for different classifiers (See Table 3 in [19]),
although in Table 4, Kovács, provided an aggregate ranking
for the compared oversampling models [19]. According to
this ranking, the two best algorithms overall are Polynom-fit
SMOTE and ProWSyn.

Observing the dependence of oversampling algorithms
on classifiers, we initially performed a pilot study, com-
paring the oversampling algorithms SMOTE, Polynom-fit
SMOTE, ProWSyn, CURE-SMOTE, SOMO, and LoRAS
using classifiers kNN, LR, RandomForest (RF), andGradient
Boosting (GB). The pilot study is a small scale study we per-
formed before our main benchmarking experiment to verify
our initial hypothesis about different oversampling models
having varying efficiencies for different classifiers. We chose
RF and GB as they are known to be powerful models using
ensemble modelling approaches of Bagging and Boosting
respectively [18]. Our study further confirmed that the perfor-
mance of the oversampling algorithms are indeed classifier
dependent. The question that motivated our research from
this point was: ‘Given that there are at least 85 extensions
of SMOTE for oversampling (and new ones being proposed
every year), how does a user decide on which oversampling
approach to use, considering that the performance of each of
these oversampling approaches depends on the classifiers as
well?’. Bej et al. showed that the variance of the synthetic
samples can affect the imbalanced data classification [17].
Given a dataset and a classifier, it is difficult to decide the
degree of variance of the synthetic samples that can lead to a
better classification for the respective dataset.

As a solution, we developed a multi-schematic, classifier-
independent oversampling approach, referred to as
ProWRAS (Proximity Weighted Random Affine Shad-
owsampling). ProWRAS integrates the Localized Random
Affine Shadowsampling (LoRAS) algorithm and the Proxim-
ity Weighted Synthetic oversampling (ProWSyn) algorithm.
ProWRAS first creates partitions or clusters in the minority
class data points, as per their proximity to the majority class.
The clusters are then assigned normalised weights, such that
clusters close to the majority class have higher weights.
These weights decide the amount of synthetic samples to be
generated from each cluster. To this point, the approach is
similar to the ProWSyn algorithm [20].

The multi-schematic approach of ProWRAS conveniently
generates synthetic sampleswith different degrees of variance
using different oversampling schemes, providing us with a
customized way to model the convex space, given a classi-
fier and a dataset. ProWRAS thus overcomes the problem
of laborious benchmarking studies to choose an appropriate
oversampling algorithm from a pool of more than a hundred
algorithms for a given dataset and a classifier of choice.
Instead of benchmarking on tens of available algorithms,
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our results show that, a user can obtain good classifier per-
formance by implementing only four oversampling schemes
included in the ProWRAS approach.

ProWRAS outperforms other oversampling algorithms in
a statistically significant way, in terms of both F1-score and
κ-score, independent of the classifier used. We benchmarked
the ProWRAS algorithm on 20 highly imbalanced, publicly
available datasets. We employed four commonly used classi-
fiers, GB, RF, kNN, and LR for this study. Thus, ProWRAS is
highly effective for homogeneous tabular data where convex
modeling of the data space can be done.

II. ALGORITHMS USED FOR BENCHMARKING
As we have discussed in Section I, we benchmark the
ProWRAS algorithm against SMOTE, Polynom-fit SMOTE,
ProWSyn, CURE-SMOTE and LoRAS. We have used
the SOMO algorithm in our pilot study but not in the
main study because of its poor performance in terms of
classifier-independence. In Section II, we first provide a brief
description of the algorithms we used in our pilot study and
benchmarking study, and then introduce the new ProWRAS
algorithm.

The SMOTE algorithm generates synthetic minority class
samples by linear interpolation of the minority class. The
synthetic sample generation approach is quite generic in its
construct and focuses on the feature space of a given dataset.
It has been described by [1] using the following approach:

Let us assume that x1 is an arbitrary minority class sample
in an imbalanced dataset C . Cmaj and Cmin are the majority
and the minority class of C respectively. Let us denote the set
of k the nearest minority class neighbours of x1 by N

Cmin
k (x1).

We can also refer to NCmin
k (x1) as the neighbourhood of

the minority class data point x1. Note that, for the sake of
consistency, we will maintain these notations throughout. Let
x2 ∈ NCmin

k (x1), x2 6= x1 be a random minority class data
point. A newly generated synthetic sample is described by:

S = x1 + u · (x2 − x1) (1)

where 0 < u < 1. More samples can be generated
from NCmin

k (x1) simply by choosing additional random neigh-
bours of x1 within N

Cmin
k (x1). Ultimately, this process can be

repeated over all data points in the minority class to generate
a population of synthetic samples from the minority class.
Notably, Equation 1, is analogous to generating a convex
combination of two minority class samples x1 and x2.

S = u · x2 + (1− u) · x1 (2)

The Polynom-fit SMOTE (pf-SMOTE) algorithm was
proposed in 2008 [21]. This algorithm has different oversam-
pling schemes based on underlying network topologies of
the minority class. The pf-SMOTE algorithm proposes four
different network topologies to generate synthetic samples
fromminority class, depending on the latent data distribution.
These are: star topology, polynomial curve topology, bus
topology, and mesh topology. The star topology generates

synthetic samples along straight lines joining the mean of
the minority class data points and each minority class data
point, forming a star-like silhouette for the synthetic data. For
polynomial curve topology, each feature is fit to a polynomial,
the synthetic samples are generated feature-wise along the
curve of these polynomials. For the bus topology, a path con-
necting one minority data to its nearest neighbour is formed
using straight lines. Synthetic samples are sampled from this
path. For the mesh topology, synthetic samples are generated
along straight lines connecting each minority data point to the
rest of the minority data points. The authors suggest that the
star topology has proven to be the most effective [21].

The ProWSyn algorithm partitions the minority class by
their proximity to themajority class. The partitions are treated
as clusters. The clusters are weighted as per their proximity
to the majority class, such that clusters closer to the majority
class have higher weights. The precise method for this is
documented in Algorithm 2. The weights decide how many
samples are to be generated from each cluster. Synthetic
samples are generated following the approach of SMOTE,
that is, taking a convex combination of two arbitrary samples
in a cluster.

The CURE clustering algorithm is used by CURE-
SMOTE to identify clusters among the minority class sam-
ples [15]. The CURE algorithm uses a hierarchical clustering
framework, which is also able to identify outliers in the
minority class. The algorithm identifies centre points for each
cluster after removing the noisy data points, in the process
of clustering. It then generates synthetic data by applying
SMOTE on each representative minority data point and the
cluster centres [15].

The Self OrganisingMap Oversampling SOMO algorithm
uses a Self Organising Map (SOM) [13], [14], a dimension
reduction approach, to learn the latent distribution of the
minority class data points. The imbalance ratio within each
cluster is then calculated, followed by identification of clus-
ters with an imbalance ratio of less than 1. For each of these
identified clusters a density factor quantifying the density
of minority class data points in the respective cluster is cal-
culated and then, every pair of topologically neighbouring
clusters, another density factor, is calculated between the
pairs. Both of the density factors are normalised to form a
weight distribution. The weight distribution arising from the
first distribution governs the amount of intra-cluster synthetic
samples to be generated from each detected cluster, while
the weight distribution arising from the second distribution
governs the amount of inter-cluster synthetic samples to be
generated between a pair of topologically close clusters [13].
The synthetic samples are generated using the SMOTE algo-
rithm for both cases.

The LoRAS oversampling approach proposes to model
the convex space more rigorously. Instead of generating
synthetic samples by taking a convex combination of only
two samples from a neighbourhood (as done by SMOTE
and a majority of its extensions), LoRAS proposes to gen-
erate synthetic samples by taking convex combinations of
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FIGURE 1. Summarising oversampling schemes/strategies used by the investigated oversampling models and their respective influence
on the classifier performance. For example, SMOTE generates samples with a ‘‘High local variance’’ scheme and works well for Gradient
Boosting and Random Forest. Since the ProWRAS algorithm has access to all four oversampling schemes, its performance can be made
independent of the chosen classifier. Explanations of the four oversampling schemes can be found in Section III-B (Choice of proper
neighbourhood size & Convex space modelling). We here focus on the classification models Gradient Boosting (GB), Random Forest (RF),
k-Nearest Neighbours (kNN), and Logistic Regression (LR). We use GB and RF, since they are powerful classifiers that use ensemble
approaches of boosting and bagging, respectively. kNN and LR were also seen to perform well for imbalanced datasets in the
benchmarking study of Bej et al. [17].

multiple shadowsamples (Gaussian noise added to original
minority class samples) in a minority class data neighbour-
hood [17]. Bej et al. analytically calculates the variance of a
LoRAS-generated synthetic sample (considered as a random
variable) as:

Var(Lj) =
2(σ ′2j + σ

2
Bj)

(|F | + 1)
(3)

where, Lj is the j-th component of a LoRAS-generated sample
L, |F | is the number of shadowsamples considered for a
convex combination to generate L, σ ′2j is the original variance
of the minority class samples in a neighbourhood and σ 2

Bj is
the variance of the noise added to the original minority class
samples to generate shadowsamples (σ 2

Bj can be chosen to be
arbitrarily small) [17]. Moreover, the LoRAS algorithm uses
manifold learning technique t-SNE to learn the minority class
data neighbourhoods.

The choice of algorithms is guided by previous benchmark-
ing studies that identified the state-of-the-art. We include
SMOTE because it is the pioneer of all algorithms.
Polynom-fit SMOTE, ProWSyn were the top two oversam-
pling algorithms by overall performance, from the detailed

benchmarking study by Kovács [19]. ProWSyn, CURE-
SMOTE, and SOMO also use the idea of using clustering
approaches on the minority class to learn the distribution of
the minority class, a philosophy they share with ProWRAS
algorithm. Finally, we chose LoRAS because it extended
by the ProWRAS algorithm introduced in the next section.
We further discuss the reasons for choosing these algorithms
for benchmarking in Section IV-B.

III. THE ProWRAS ALGORITHM
A. QUANTIFICATION OF CLASSIFIER INDEPENDENCE
The basis of this work is the observation that the performance
of existing variants of the well known SMOTE oversampling
method for imbalanced classification problems are ‘‘classifier
dependent’’. This is quite natural, as it is widely appreciated
that, for machine learning, no single best method will exist
with respect to all possible classification problems (the so-
called no free-lunch theorem). Analogously, it is unlikely that
there is a single best oversampling scheme, over all possible
classifiers. However, this still poses problems. Since there are
more than a hundred of such SMOTE variants and tens of ML
based classifiers, given an imbalanced dataset, it is difficult

VOLUME 9, 2021 123361



S. Bej et al.: Multi-Schematic Classifier-Independent Oversampling Approach for Imbalanced Datasets

to choose an appropriate oversampling algorithm from such
a large pool of algorithms. We address this problem with the
development of an oversampling approach, which offers good
classification performance on an average, irrespective of the
classifier used. In practice, this avoids laborious benchmark-
ing experiments on numerous oversampling algorithms.

Some ambiguity may arise regarding the term ‘classifier
independence ‘since, an oversampling algorithm that always
leads to worse than the others, could also be considered
classifier independent, if its ranking is ‘stably’ low. In order
to establish some formalization about the term ‘classifier
independence’, we therefore propose a quantitative measure
for classifier independence here.
Definition 1: Given a set of oversampling algorithms O,

a set of classifiers C and a set of benchmarking datasets D, for
a given oversampling algorithm o ∈ O, we define classifier
independence of o as,

I(o) =
|C|

√√√√√∏
c∈C

(
1

|O| − 1

∑
o′∈O
o′ 6=o

F(o′, o)
|D|

)
(4)

where, F(o′, o), denotes the number of datasets for which the
oversampling algorithm o ∈ O, performs equally or better
than another oversampling algorithm o′ ∈ O.
In other words to measure classifier independence of an

oversampling algorithm o relative to some other oversam-
pling algorithms, given a set of datasets and a set of classi-
fiers, we calculate for each classifier, the average proportion
of datasets for which o outperforms other oversampling algo-
rithms. When we calculate this for all classifiers, we take the
geometric mean over all classifiers to obtain I(o). Note that,
we choose a geometric mean over all classifiers in Equation 4,
to keep the measure strictly sensitive to classifier-specific
performance of the oversampling algorithms, since the geo-
metric mean is always less than the arithmetic mean. The
value of I, will always range between 0 and 1, making it
a conveniently interpretable measure. I thus, measures not
only how consistent the performance of an oversampling
algorithm is over a set of classifiers, but also how well
the oversampling model performs compared to other such
models, overall. We however would like to emphasize that,
while we do provide a measure of classifier-independence,
the conclusion will nevertheless be empirical, dependent on
the datasets, oversampling algorithms and classifiers used.

B. CLASSIFIER INDEPENDENT OVERSAMPLING
The motivation behind the ProWRAS algorithm arises from
a pilot study we performed on 14 imbalanced datasets using
four different classifiers GB, RF, kNN, and LR. We observed
that using the oversampling algorithms described in Section II
are variously efficient on different classifiers. We discuss the
results and their implications of our pilot study in detail in
Section V. The ProWRAS algorithm is a multi-schematic
oversampling algorithm, which integrates several aspects of

the LoRAS and ProWSyn algorithm. The ProWRAS algo-
rithm can be realised by the following steps:
Partition/Cluster Minority Class Samples: The algorithm

takes labelled imbalanced data as input. As a first step,
it creates a partition of the minority class. The partition is
done as per the proximity of the minority class data points
from the majority class. The maximum number of desired
partitions can be predefined by the user using a parameter
max_levels (recommended value of 5). The first partition
P1 is determined by the union of n_neighbours_max
(recommended value of 5) number of minority class nearest
neighbours of all the majority class data points. The parame-
ter n_neighbours_max can also be adjusted by the user.
Once the first partition P1 is ready, the process is repeated for
the remaining minority class data points (if any left) that are
not in P1. This procedure is repeated for L−1 steps to obtain
partitions P1, . . . ,PL−1. The minority class data points that
are not included in any of the partitions P1, . . . ,PL−1, form
the partition PL . Thus, for i < j, Pi is closer to the majority
class compared to Pj, i, j ∈ {1, . . . ,L}. The partitions thus
formed are treated as clusters in the minority class. This
clustering technique is adopted from ProWSyn, a very effec-
tive oversampling technique, described in Section II [20].
An advantage of this type of partitioning/ clustering of data
is that the clustering process considers the distribution of the
minority class with respect to the majority class, which is not
considered in other clustering algorithms.
Assigning Proximity Weights to Clusters: The next step is

to assign proximity weights to each cluster Pi, i ∈ {1, . . . ,L},
such that clusters closer to the majority class have more
weights. This is done to make the decision boundary stronger
than, the minority class data points that are closer to the
majority class cause more confusion for the classifiers to cre-
ate a decision boundary. This is achieved for i ∈ {1, . . . ,L},
by assigning weight wi to the cluster Pi, following the
equation:

wi = e−θ ·(i−1) (5)

The weights are then normalised. The parameter θ can be
used to control the rate of decay of weights and the recom-
mended default value is 1. The pseudocode for this process
can be found in Algorithm 2.
Deciding the Number of Synthetic Samples to Generate

From Each Cluster: After the clusters and their respec-
tive normalized weights are obtained, ProWRAS decides
the number of synthetic samples to be generated from
each cluster. The total number of synthetic samples to be
generated is taken as a user input using the parameter
num_samples_to_generate. A recommended value
for this parameter is the difference between the num-
ber of majority and minority class samples. The nor-
malised weights of respective clusters are multiplied to
num_samples_to_generate, to determine the number
of samples to be generated from those clusters. Until this
point, the ProWRAS algorithm follows the same steps as the
ProWSyn algorithm [20].
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Algorithm 1 ProWRAS Oversampling Algorithm (GitHub link)
Inputs:
data Data points.

Parameters:
max_conv (> 0) Weight for number of generated samples per layer.
num_samples_to_generate (> 0) Maximal count of generated samples in the output.

Function ProWRAS_oversampling(data) begin
clusters← partition_info(data) (See Algorithm 2)
weight_max← max({weight : (cluster,weight) ∈ clusters})
Initialize synth_samples with an empty set.
For (cluster, weight) ∈ clusters do

num_samples← dnum_samples_to_generate · weighte

num_convcomb←
⌈
max_conv·weight

weight_max

⌉
synth← generate_points(cluster,num_samples,num_convcomb) (See Algorithm 3)
synth_samples← synth_samples ∪ synth

endfor
Return resulting set of generated data points as synth_samples.

end

Algorithm 2 Proximity Weighted Minority Class Data Partitioning
Inputs:
data Data points.

Parameters:
max_levels (≥ 1) Maximal repeat of bordersearch.
n_neighbours_max (≥ 1) Number of neighbours considered for the majority class data points

while constructing minority class partitions.
θ (> 0) Scaling for weights.
num_feats (= dim(x1)) Number of features.

Function partition_info(data) begin
X_maj← Data points in data with label for major class.
X_min← Data points in X with label for minor class.
L = max_levels
Initialize clusters as empty set.
For i = 1, 2, . . . ,L − 1 do

If |X_min| = 0 then
break

endif
weight = exp(−θ · (i− 1))
k ← min(|X_min|,n_neighbours_max])
cluster← All neighbours in k-neighbourhoods from X_maj in X_min
clusters = clusters ∪ {(cluster,weight)}
X_min← X_min \ cluster

endfor
If |X_min| > 0 then

weight = exp(−θ · (L − 1))
clusters = clusters ∪ {(X_min,weight)}

endif
weight_sum← sum({weight : (cluster,weight) ∈ clusters})
clusters←

{(
cluster, weight

weight_sum

)
: (cluster,weight) ∈ clusters

}
Returns pairs of clusters and normalized weights as clusters.

end

Customize Variance for Each Cluster: Bej et al. in the
article on the LoRAS algorithm pointed out that customising
the variance of the synthetic samples can be important for
an improved modelling of the convex space of the minority
class. In contrast to the ProWSyn algorithm, the ProWRAS

algorithm uses an approach to rigorously model the convex
space of the minority class by controlling the variance of
the synthetic samples generated. There are two aspects of
the algorithm that help us to achieve this, which we describe
next.

VOLUME 9, 2021 123363



S. Bej et al.: Multi-Schematic Classifier-Independent Oversampling Approach for Imbalanced Datasets

Algorithm 3 Cluster-Wise Oversampling Schemes
Inputs:
cluster Data points.
num_samples Number of generated shadowsamples per parent data point.
num_convcomb Number of convex combinations for each new sample.

Parameters:
neb_conv (≥ 1) Number of data points used in affine combination for new samples.
shadow (≥ 1) Number of generated shadowsamples per parent data point.
sigma (≥ 0) List of standard deviations for normal distributions for adding noise to each feature.

Function generate_points(cluster, num_samples, num_convcomb) begin
Initialize generated_data with empty set.
If |cluster| > neb_conv then

neb_list← set of all k-neighbourhoods in cluster
else

neb_list← {cluster}
endif
If num_convcomb < num_feats then

k ← 2
else

k ← num_convcomb
endif
For i = 1, 2, . . . num_samples do

neighbourhood← a random neighbourhood in neb_list
If num_convcomb < num_feats then

data_shadow← neighbourhood
else

Initialize data_shadow with empty set.
For v ∈ neighboururhood do

data_shadow← data_shadow ∪ {shadow random vectors around v with normal distribution. }
endfor

endif
u = (u1, . . . , uk )← k random vectors ∈ data_shadow
w = (w1, . . . ,wk )← a random vector with positive values and w1 + w2 + . . .+ wk = 1
generated_data← generated_data ∪ {

∑k
i=1 wi · ui}

endfor
Returns new points as generated_data.

end

Choice of Proper Neighbourhood Size: For each of the
identified clusters, ProWRAS can generate synthetic samples
using different minority class neighbourhood sizes. This can
lead to a local oversample generation scheme by choosing a
small minority class neighbourhood (similar to the approach
of SMOTE or LoRAS) or a global oversample generation
scheme, which considers the entire cluster as a neighbour-
hood (similar to the approach of CURE-SMOTE). The global
or local oversampling schemes can be accessed using proper
choice of neb_conv parameter. If the choice of neb_conv
is less than the size of the cluster itself, then ProWRAS will
employ the local oversampling scheme, otherwise the whole
cluster will be considered as a neighbourhood and the global
oversampling scheme is employed.
Convex Space Modelling: ProWRAS can also control the

variance of the generated synthetic samples using rigor-
ous convex space modelling. This is achieved using the
max_conv parameter. If max_conv = 2, ProWRAS
generates SMOTE-like synthetic samples by taking convex
combinations of any two minority class samples. We call
this, a high variance oversampling scheme, since this leads
to high variance of the synthetic samples (see Equation 3).

If max_conv > 2, ProWRAS generates LoRAS-like syn-
thetic samples by taking convex combinations of multiple
numbers of shadowsamples. LoRAS-like sample generation
of course requires two more parameters to be added to the
algorithm: σ (recommended value of 0.001), for deciding
the variance of the normal distribution to draw the noise for
creating the shadowsamples, shadow (recommended value
of 100), for deciding how many shadowsamples need to be
created per minority class sample. We call this a low vari-
ance oversampling scheme. The number of convex combi-
nations is decided by the normalized proximity weight of the
respective cluster. We first scale the normalized proximity
weights of all clusters, dividing them by the maximum nor-
malized proximity weight obtained. Note that, this produces
scaled weights for every cluster, such that each cluster has a
weight between 0 and 1. The scaled weights are then multi-
plied with the max_conv parameter to obtain the number of
appropriate convex combinations of shadowsamples for each
cluster.

Note that, clusters with higher scaled weights are closer to
the majority class. Taking a convex combination of multiple
samples for such clusters will help to keep the variance of
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FIGURE 2. Illustration of the working principle of the ProWRAS algorithm. ProWRAS used a proximity based partitioning
system to find clusters in the minority class. For each cluster, it then uses one of four oversampling schemes shown in the
figure. The key to success of the ProWRAS algorithm is its ability to rigorously model the convex space through controlling
the variance of the synthetic samples.

the synthetic samples low, which will prevent them from
interfering with the majority class. Clusters with lower scaled
weights are far away from the majority class, and hence
we can choose to create high variance synthetic samples
from them. This also reduces the computational costs of
ProWRAS, compared to the LoRAS algorithm.

Based two schemes controlling the oversampling neigh-
bourhood (global and local) and two schemes controlling the
variance of the generated synthetic samples (high-variance
and low-variance) as discussed above, we can identify four
oversampling schemes for the ProWRAS algorithm by taking
all possible combinations of the discussed cases, that can be
accessed by different combinations of the two parameters
max_conv and neb_conv. They are:
• High global variance (HGV)
(max_conv = 2, neb_conv ≥ |Cmin|)

• Low global variance (LGV)
(max_conv = dim(data), neb_conv ≥ |Cmin|)

• High local variance (HLV)
(max_conv = 2, neb_conv = 5)

• Low local variance (LLV)
(max_conv = dim(data), neb_conv = 5)

where Cmin is the minority class and dim(data) is the
number of features in the dataset. Note that the global
oversampling scheme is employed for a cluster, if the
chosen value of neb_conv is greater than the size of
the cluster. Choosing the value of neb_conv ≥ |Cmin|

ensures that for all clusters the global oversampling scheme
is employed. Moreover, if max_conv = 2 then auto-
matically scales cluster weights to determine the number
of convex combinations for the shadowsample generation
in any arbitrary cluster becomes 2 (See Algorithm 3),
leading ProWRAS into the high variance data generation
scheme. A graphical representation of the ProWRAS algo-
rithm is shown in Figure 2. To sum up, the ProWRAS
algorithm has eight adjustable parameters: max_levels,
n_neighbours_max, num_samples_to_generate,
θ , σ , shadow, max_conv, neb_conv. Among these,
only two parameters max_conv, neb_conv, affect the
oversampling process significantly by changing the use of
one of the four oversampling schemes.
Classifier-Specific Synthetic Sampling: Finally, to take full

advantage of the ProWRAS algorithm given a dataset and a
classifier of choice, a user can choose to train the classifier
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FIGURE 3. Illustration of the study design for our experiments.

TABLE 1. Table showing the ProWRAS oversampling scheme used for every dataset and for every classifier. HGV: High global variance, LGV: Low global
variance, HLV: High local variance, LLV: Low local variance. Column 2-5 show the oversampling scheme for which ProWRAS works best for respective
datasets and classifiers. Furthermore, the table shows some statistics for the datasets. The last six datasets form Set II.

using all four oversampling schemes and finally select the
best one. In Section V, where we discuss our results, we show
that, classifier-specific choice of oversampling schemes helps
ProWRAS to perform better, independently of the classifier
used.

IV. CASE STUDIES
A. BENCHMARKING DATASETS
For our pilot study and our final benchmarking study,
we selected two sets of public datasets. The first set (Set-I)
is a subset of the 104 publicly available imbalanced datasets
used for the benchmarking studies inKovács [19]. The second
set (Set-II), is a subset of 27 publicly available datasets in

the imblearn.datasets Python library. Set-I has 14
datasets and Set-II has 6 datasets. We select the datasets,
Set-I and Set-II based on the following three criteria. Note
that, we select all the datasets following all the three crite-
ria, to ensure that our choice of datasets for the studies are
impartial. The criteria are:

• We choose datasets with an imbalance ratio of at least
15 : 1. This is to ensure that the performance of the
compared oversampling algorithms are tested, particu-
larly on datasets with high imbalance.

• We choose datasets with a minimum of 35minority class
samples. Datasets with very less minority class samples,
classifier performances that are often affected by high
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stochasticity and the results are often statistically unre-
liable. Setting this condition for the choice of datasets,
enhances the reliability of results.

• We choose datasets with at most 5000 samples (only 4
datasets do not satisfy this condition). Given that our
studies involve 4 classifiers, 8-different oversampling
models and 4-oversampling schemes of the ProWRAS
algorithm, we consider this constraint to limit the com-
putational effort.

In Table 1 we show the statistics for the relevant datasets.

B. PROTOCOLS FOR BENCHMARKING
The datasets of Set-I are used for the pilot study, comparing
Baseline classification with oversampling models SMOTE,
Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, SOMO,
and LoRAS for four respective classifiers GB, RF, kNN, and
LR. For our final benchmarking study, we use all 20 datasets
from Set I and Set II, comparing Baseline classification
with oversampling models SMOTE, Polynom-fit SMOTE,
ProWSyn, CURE-SMOTE, LoRAS, and ProWRAS for four
classifiers GB, RF, kNN, and LR. For both our pilot study and
for our main benchmarking study, we use 5×5 stratified cross
validation as validation protocol. While training our models,
we use oversampling algorithms only on the training data for
each fold. Also, we use normalised datasets for training and
testing.

1) CHOICE OF CLASSIFICATION MODELS AND PARAMETERS
We have used the classification models GB, RF, kNN, and
LR for our benchmarking studies. We use GB and RF, since
they are powerful classifiers that use ensemble approaches of
boosting and bagging, respectively. kNN and LR were also
seen to perform well for imbalanced datasets in the bench-
marking study of Bej et al. [17]. Both in our pilot study and
in the final benchmarking study, we used default parameters
for all the classifiers as recommended in scikit-learn
(V 0.21.2) documentation.

2) CHOICE OF OVERSAMPLING MODELS AND PARAMETERS
In our final benchmarking study, we compare five bench-
marking algorithms against ProWRAS. We choose these
algorithms in particular for the following reasons:

• SMOTE, of course, is the pioneer of all algorithms and
still, widely used because of its simplicity and applica-
bility.

• Polynom-fit SMOTE, ProWSyn are the top two over-
sampling algorithms by overall performance, from the
detailed benchmarking study by Kovács [19].

• ProWSyn, CURE-SMOTE, and SOMO also use the idea
of using clustering approaches on the minority class to
learn the distribution of the minority class better and
take advantage of it during synthetic sample genera-
tion, a philosophy they share with ProWRAS algorithm.
Moreover, both CURE-SMOTE and SOMO are pro-
posed fairly recently (in 2017). SOMO has been used
only in the pilot study. It was excluded in the main study

because of its low I-score in the pilot experiment (See
Table 6).

• We chose LoRAS because, evidently, ProWRAS is an
extension of the LoRAS algorithm.

For the pilot study, we used default parameters for
SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE,
and SOMO algorithms. For LoRAS we use parameter values
of k = 5, |S_p| = 100, Lσ = 5 × 10−8 and regular
embedding. For the parameter Lσ , we use a random search
among the values {2, 10, 30,dim(data))}. This random
search is based on a training and testing (disjoint sets) done
on randomly chosen 50 percent and 20 percent subset of the
respective dataset, chosen such that the imbalance ratio is
maintained in the randomly chosen subsets.

For our final benchmarking study, we also used default
parameters for SMOTE, Polynom-fit SMOTE, ProWSyn,
CURE-SMOTE, and LoRAS algorithms. However, the over-
sampling neighbourhood for all the oversampling algo-
rithms (wherever applicable) is assumed to be 5, observ-
ing that the minority class for all the chosen datasets is
rather small. For ProWRAS we use fixed parameter val-
ues of max_levels = 5, n_neighbours_max = 5,
num_samples_to_generate = |Cmax| − |Cmin|, θ =
1, shadow = 100 and σ = 10−6. These choices are
the recommended default values of the algorithm and have
been decided upon by performing independent pilot stud-
ies on datasets not used in the benchmarking experiments
(e.g. credit fraud dataset). To access the four oversampling
schemes, we use four combinations of values for the param-
eters max_conv, neb_conv.

• High global variance (HGV)
(max_conv = 2, neb_conv = 1000)

• Low global variance (LGV)
(max_conv = dim(data), neb_conv = 1000)

• High local variance (HLV)
(max_conv = 2, neb_conv = 5)

• Low local variance (LLV)
(max_conv = dim(data), neb_conv = 5)

The choice of proper oversampling scheme is based on a
training and testing (disjoint sets) done on randomly chosen
50 percent and 20 percent subset of the respective dataset,
chosen such that the imbalance ratio is maintained in the ran-
domly chosen subsets. In Table 1, we present, for every clas-
sifier and every dataset, which oversampling scheme worked
best among the four. Note that, we previously discussed that,
for accessing the global oversampling scheme for a certain
cluster, neb_conv must be at least the size of the cluster.
Since all our chosen datasets have minority class size of less
than 1000, a choice of neb_conv = 1000 to access the
global oversampling schemes works for all datasets.

3) PERFORMANCE MEASURES
Choice of performance measures are an important aspect of
studies with imbalanced datasets. For our study, we used
two performance measures, F1-score and Cohen’s κ-score.
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TABLE 2. Table showing F1-score/κ-score for several oversampling strategies (Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS,
ProWRAS) for all 20 benchmarking datasets for Gradient Boosting classifier. The column on the right shows the performance of the ProWRAS algorithm
over all datasets. We observe in the last row that the average performance of ProWRAS is superior to all the other oversampling algorithms.

TABLE 3. Table showing F1-score/κ- score for several oversampling strategies (Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS, and
ProWRAS) for all 20 benchmarking datasets for Random Forest classifier. The column on the right shows the performance of the ProWRAS algorithm over
all datasets. We observe in the last row that the average performance of ProWRAS is superior to all the other oversampling algorithms.

F1-score is the harmonic mean of precision and recall and
is a good measure for how good the classification is for the
minority class. Given a classification problem, the κ measure
is formally defined as:

κ =
Po − Pe
1− Pe

where, Po is the measure of observed agreement among the
chosen classifier and the ground truths of the classification
problem. Pe is the measure of agreement by chance, among
a chosen classifier and the ground truths of the classification
problem. The κ-score gives us a quantification of how good
the classification is, considering both the majority and the
minority class.

For coding, we used thescikit-learn (V 0.21.2),
numpy (V 1.16.4), pandas (V 0.24.2), and
matplotlib (V 3.1.0) libraries in Python (V
3.7.4).

We provide an implementation of our algorithm and several
Jupyter notebooks from the benchmarking study on GitHub.

V. RESULTS
A. RESULTS FOR PILOT STUDY
The detailed results for the pilot studies can be found in
Supplementary data (SectionVIII).We observe from our pilot
study, that for kNN classifier LoRAS, CURE-SMOTE, and
Polynom-fit SMOTE are the best performers. For LR clas-
sifier, CURE-SMOTE and Polynom-fit SMOTE are ahead of
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TABLE 4. Table showing F1-score/κ- score for several oversampling strategies (Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS, and
ProWRAS) for all 20 benchmarking datasets for k-Nearest neighbours classifier. The column on the right shows the performance of the ProWRAS
algorithm over all datasets. We observe in the last row that the average performance of ProWRAS is superior to all the other oversampling algorithms.

TABLE 5. Table showing F1-score/κ- score for several oversampling strategies (Baseline, SMOTE, Polynom-fit SMOTE, ProWSyn, CURE-SMOTE, LoRAS, and
ProWRAS) for all 20 benchmarking datasets for Logistic Regression classifier. The column on the right shows the performance of the ProWRAS algorithm
over all datasets. We observe in the last row that the average performance of ProWRAS is superior to all the other oversampling algorithms.

TABLE 6. Table showing the I-scores for different oversampling algorithms for the pilot study.

TABLE 7. Table showing the I-scores for different oversampling algorithms for the final benchmarking experiments.

the other oversamplingmodels. For the RF classifier, SMOTE
and ProWSyn are the best performers. For GB classifier,
ProWSyn, LoRAS, and SMOTE generate better F1-scores.

Moreover, we also observe that the average F1-score and
κ-score for all classifiers is comparatively better for the
ensemble based classifiers RF and GB (see Supplementary
data in Section VIII).

We also provide the I-score for every oversampling model
used in the pilot study in Table 6. We observe that CURE-
SMOTE, Polynom-fit SMOTE and LoRAS produce the best

scores, while the score of SOMO is quite close to the baseline.
Thus, we excluded the SOMO algorithm in our final bench-
marking studies.

B. RESULTS FOR FINAL BENCHMARKING STUDY
Detailed results of our final benchmarking studies are shown
in Table 2,3,4,5. We observe that the ensemble models on
an average perform quite well in comparison to kNN or LR.
Even the baseline model for GB has better F1 and κ-scores
compared to the oversampled classifiers for kNN and LR.
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FIGURE 4. Figure showing results for the final study. Every heatmap for the respective classifier shows the number of datasets for
which the oversampling model in the i -th row performs equally or better (by F1-score) than the model in the j-th column.
Interpreting the figure requires us to look at the row corresponding to an oversampling model. The numbers in the rows are the
number of datasets for which the oversampling model outperforms other oversampling models denoted in the columns. The higher
the number of such datasets, the darker the hue of the heatmap, making the rows for superior models darker in hue. Note that, for
all the classifiers we have used, ProWRAS outperforms other oversampling algorithms for most datasets, with proper choice of
oversampling schemes, of course. This is reflected in the darker hues in the ‘ProWRAS’-row of the heatmap and lighter hues in the
‘ProWRAS’ column. Thus, we can observe the classifier independent behaviour performance of ProWRAS from this figure.

For classifiers GB, RF, and LR, ProWRAS produces better
average F1-score and κ-score over all models. In Figure 4 we
show heatmap plots for each chosen classifier, showing com-
parisons of the oversampling algorithms among each other
in terms of their performance on the 20. We observe that the
oversampling models that performed well for the pilot study
for respective classifiers continue to do well. For example, for
RF, SMOTE and ProWSYN still perform quite well and for
kNN, LoRAS and CURE-SMOTE still performs consistently.
ProWRAS performs consistently well for all the classifiers.

We have also quantified the classifier independence of
the compared oversampling algorithms using the I-score
(Equation 4). We observed that, CURE-SMOTE, LoRAS
and ProWSYN still maintains comparatively high degree
of classifier independence. However, ProwRAS significantly
outperforms other algorithms with a score of 0.833. Thus,
we conclude that, classifier and dataset specific synthetic data
generation of ProWRAS makes its performance classifier-
independent.

C. STATISTICAL SIGNIFICANCE OF RESULTS
A statistical significance test quantifies how significant the
improvement of a model is, compared to another arbi-
trary model. Here, we use the Wilcoxon’s Signed Rank
Test (WSRT) that was already used in related recent articles
on imbalanced datasets [17], [22]. The null hypothesisH0 for
WSRT, is that, there is not a significant difference between
the performance of two compared algorithms. A p-value
obtained after exercising the test, if below the threshold of
0.05, then the null hypothesis can be rejected. However,
only the p-value is not informative enough [22]. Hence,
three more metrics W+, W−, and R are used (see [17]
and [22]).

To make the article self-contained, we borrow the descrip-
tions of these metrics from Bej et al. [17]:

• ‘‘For each data pair (involving LoRAS and some other
oversampling algorithm) of model predictions, the dif-
ference between both predictions is calculated and
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TABLE 8. Table showing the results of Wilcoxon’s signed rank test for comparison of ProWRAS with other oversampling algorithms. The p-values in the
table quantify the statistical significance of the improvement achieved by ProWRAS over each oversampling model. Higher value of W+, shows that how
superior performance of ProWRAS for higher number of datasets. Higher value of R shows better reliability of the results.

FIGURE 5. Distribution of the oversampling schemes used by the ProWRAS algorithm and by
each classifier over all investigated 20 benchmarking datasets. For GB, we see that all four
oversampling schemes has similar frequencies over the datasets. For RF, we observe that high
variance schemes are preferred over low variance schemes. For KNN and LR, we observe that
LLV and LGV are most effective, respectively.

stored in a vector D, excluding the zero difference
values.

• The signs of the difference is recorded in a sign vector S.
• The entries in |D| are ranked, forming a vectorR′. In case
of tied ranks, an average ranking scheme is adopted. This
means, after ranking the entries of |D| are ranked using
integers and then, in case of tied entries, the average of
the integer ranks are considered as the average rank for
all the respective tied entries with a specific tied value.

• Component-wise product of S and R′ provides us with
the vectorW , the vector of the signed ranks. The sum of

absolute values of the positive entries in W is W+ and
the sum of absolute values of the negative entries in W
is W−. After this we define,WR = min{W+,W−}

• Then the test statistic Z is calculated by the equation

Z =
WR −

n(n+1)
4√

n(n+1)(2n+1)
24 −

6t3−6t
48

(6)

where n is the number of components in D and t is the
number of times some i-th entry occurs in R′, summed
over all such repeated instances.
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• Finally, R is calculated using R = |Z |
√
N
, where N is the

total number of datasets compared, which is 14 in our
case [17].’’

The higher the value of, W+ the better the performance of
ProWRAS with respect to the compared algorithms, whereas
a higher value of W− implies the opposite. The value of R
quantifies the degree of improvement of ProWRAS compared
to the other oversampling models. In Table 8 we provide
the p-values, as well as the W+, W− and R measures for
ProWRAS against other oversampling models for all the
classifiers used in our study.

From Table 8, we can observe that ProWRAS significantly
improves classifier performance compared to other oversam-
pling algorithms in most cases. A few exceptions are SMOTE
for RF and GB, Polynom-fit SMOTE and CURE-SMOTE
for LR etc. But even in these cases from Figure 4, we can
see that for both GB and RF, SMOTE does equally or better
than ProWRAS in 7 out of 20 datasets, for LR, Polynom-
fit SMOTE does equally or better than ProWRAS in only
3 out of 20 datasets and CURE-SMOTE does better than
ProWRAS in 6 out of 20 datasets. We can thus conclude, that
even though ProWRAS does not improve model performance
significantly in these few cases, it certainly performs at par
with the compared model for these cases.

VI. DISCUSSION
There are of course certain limitations of the ProWRAS over-
sampling approach. For instance, oversampling models based
on modelling the convex space of the minority class are more
effective for datasets where the convex space of the data can
add some meaningful information to the training experience
of the classifiers. ProWRAS also relies on convex space
modelling of the minority class and hence can be widely
applicable to regular tabular data that are homogeneous in
nature, that is the features are well-defined with respect to
the classification problem. Moreover, the approach is also
more suitable for datasets with more feature variables are
continuous in nature rather than ordinal or nominal feature
variables.

From Figure 5, we observe that the distribution of oversam-
pling schemes used by ProWRAS used by LoRAS is vastly
different for different classifiers. For KNN, the LGV and
LLV oversampling scheme has been largely effective, for LR,
the LGB scheme has worked out for most datasets. For RF,
the oversampling schemes HGV and HLV have worked out to
be the best. For GB, which has produced the best average F1-
score and κ-score among all classifiers over all oversampling
models, interestingly, have a more uniform distribution for
the ProWRAS oversampling schemes.

For RF and GB classifiers except for ProWRAS, SMOTE,
and ProWSyn also performs well. Note that SMOTE uses
synthetic samples with high local variance (SMOTE generate
synthetic samples from neighbourhoods of minority class
data points and does not control the variance of the synthetic
samples, hence high local variance), while ProWSyn, within

each cluster adopts the high global variance philosophy of
synthetic sample generation (ProWSyn generate synthetic
samples from entire clusters of minority class data points
and does not control the variance the synthetic samples,
hence high global variance). Note that, for ProWRASwe also
observe that for most datasets, HGV and HLV strategies are
successful for both GB and RF. For LR except for ProWRAS,
Polynom fit-SMOTE also performs well.

For the default star topology, Polynomfit-SMOTE controls
the variance of the synthetic samples by choosing convex
combination of a minority samples with the centroid of the
minority class, rather than choosing convex combination of
two minority samples. Moreover, Polynom fit-SMOTE does
not generate synthetic samples from individual data neigh-
bourhoods. Thus, it follows a global oversampling scheme.
Although the oversampling strategy of Polynom fit-SMOTE
does not follow any of the strategies we considered for
ProWRAS exactly, the use of the star topology (the default
topology used by Polynom fit-SMOTE, hence used by us in
benchmarking studies), is quite similar to the LGV strategy,
which again is the successful strategy used by ProWRAS for
most datasets for LR.

For the kNN model, the LoRAS algorithm that produces
synthetic samples with low local variance has also proved to
be successful for our pilot study. LoRAS uses LLV strategy
LoRAS both reduces the variance of synthetic samples and
also generate them from neighbourhoods of each minority
class data point. We see that the ProWRAS algorithm is also
quite successful for the kNN classifier, using the LLV scheme
and ‘low variance’ strategies in general.

We observe that given a dataset and a classifier, it is hard
to predict which oversampling scheme of ProWRAS would
be most effective for that particular dataset and classifier.
To obtain the best results, it is highly recommended using
all four oversampling schemes and choose the scheme that is
most effective. Since there are more than a hundred variants
of SMOTE available and scores of ML based classifiers,
it is difficult for a modeler to choose an appropriate classi-
fier and oversampling model given a dataset. In this sense,
ProWRAS provides amodeler with the advantage of perform-
ing benchmarking experiments on only four oversampling
schemes, rather than using numerous oversampling algo-
rithms from a pool of more than a hundred. Our experiments
show that choosing appropriately from these four oversam-
pling schemes consistently provides a superior classification
performance.

In addition, from our results, we do observe some patterns
on which oversampling schemes works better for which clas-
sifiers. For example, for GB and RF, oversampling schemes
HGV and HLV are likely to be more effective; for kNN,
the schemes LGV and LLV are likely to be more effective
and for LR, the scheme LGV is likely to be more effective.

To sum up, the results of the benchmarking study quan-
titatively shows the ProWRAS improve classifier perfor-
mances for all the chosen classifiers, with proper choice of
oversampling scheme compared to the other state-of-the-art
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oversampling algorithms. Moreover, we quantify the sig-
nificance of improvement induced by ProWRAS using the
Wilcoxon’s signed rank test, which proves the improvement
induced by using ProWRAS is statistically significant.

VII. CONCLUSION
Our study confirms that different classifiers adapt differ-
ently to the different approaches of oversampling algorithms
to generate synthetic samples. The proposed ProWRAS
approach can model the convex space of the minority class
more rigorously than the LoRAS algorithm by controlling
the variance of the synthetic samples better. ProWRAS
achieves this through four unique oversampling schemes,
as well as a proximity-weighted clustering system of the
minority class data. The oversampling scheme of ProWRAS
depends on two factors controlling the variance of the
synthetic samples: neighbourhood size and convex space
modelling.

Moreover, ProWRAS allows generating low variance syn-
thetic samples only in borderline clusters to avoid an overlap
with the majority class, making the synthetic sample gener-
ation computationally cheaper compared to LoRAS. Using
the multi-schematic approach of oversampling, ProWRAS
significantly improves performance of classifiers in terms
of both F1-score and κ-score compared to state-of-the-art
oversampling models.

Through a novel performance measure I-score, we have
shown in this article that ProWRAS can be used in a more
‘classifier independent’ way compared to other oversampling
algorithms. This means that, with appropriate choice of over-
sampling scheme, ProWRAS customizes synthetic sample
generation according to a classifier of choice and thereby
reduce benchmarking efforts. Thus, ProWRAS is highly flex-
ible to different classifiers and can find broad applicability
in solving classification problems for real-world imbalanced
datasets.

AVAILABILITY OF CODE
To support transparency, re-usability, and reproducibility,
we provide an implementation of the algorithm for binary
classification problems using Python (V 3.7.4) and
several Jupyter Notebooks from our benchmarking
study in the GitHub repository: https://github.com/COSPOV/
ProWRAS.
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