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Prüfer der Dissertation: 1. Prof. Dr. Aurélien Tellier
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Kurzfassung

Erreger-Ruhephase ist die Fähigkeit eines Parasiten, für eine gewisse Zeit inaktiv zu wer-
den, bezüglich Stoffwechsel und Infektiosität, und anschließend wieder aktiv (infektiös) zu
werden. Erreger-Ruhephase ist eine Strategie, die bei vielen Pilzen, Bakterien, wirbellosen
Tieren und Pflanzen zu finden ist. Diese Strategie hat sich entwickelt, um die Auswirkun-
gen schwieriger Bedingungen zu überleben und die Fortpflanzung während günstiger Be-
dingungen zu optimieren. Die Strategie des ”bet-hedging” entwickelt sich mit der Zeit,
wenn das Individuum (Pilz, Bakterium, wirbelloses Tier) oder die Nachkommenschaft des
Individuums (wirbelloses Tier, Pflanze) in eine Ruhephase mit niedrigem Stoffwechselzu-
stand eintritt, was bei vielen menschlichen Parasiten (Tuberkulose, Malaria, ...) der Fall
ist. Während dieser Ruhephase finden Evolution und Reproduktion im aktiven Teil der
Population statt. Die Ruhephase von Parasiten wird im Allgemeinen unterschätzt und
hat Konsequenzen für die Verbesserung der Krankheitsbewältigung und -kontrolle. In
dieser Arbeit diskutiere ich die Auswirkungen der Erregerruhe auf die Epidemiologie von
Infektionskrankheiten. Dazu entwickle ich ein Susceptible-Infected-Quiescent-Susceptible
(SIQS)-Modell, um die Auswirkung der Ruhephase auf die Zeit bis zum Aussterben und
die quasistationäre Verteilung des stochastischen SIQS-Modells zu verstehen. Ich stelle
fest, dass die Ruhezeit die Zeit bis zum Aussterben verlängert und die quasistationäre
Verteilung beeinflusst, indem sie eine der bekannten Formen der Verteilung bricht, nämlich
die abnehmende Form. Außerdem entwickle ich ein deterministisches Koevolutionsmod-
ell mit zwei Parasitentypen, die einen Wirtstyp infizieren, und untersuche analytisch die
Stabilität des dynamischen Systems. Insbesondere leite ich eine Stabilitätsbedingung für
ein fünf-mal-fünf-Gleichungssystem mit Ruhezustand ab. Außerdem entwickle ich eine
stochastische Version des Modells, um den Einfluss der Ruhephase auf die Stochastizität der
Systemdynamik zu untersuchen. Ich berechne die stationäre Verteilung der Parasitentypen,
die einer multivariaten Normalverteilung folgt, und erhalte numerische Lösungen für die
Kovarianzmatrix des Systems bei symmetrischen und asymmetrischen Ruhephasenraten
zwischen Parasitentypen. Wenn die Parasitenstämme identisch sind, erhöht die Ruhep-
hase die Varianz der Anzahl der infizierten Individuen bei hoher Übertragungsrate und
umgekehrt, wenn die Übertragungsrate niedrig ist. Wenn jedoch ein Wettbewerb zwischen
Parasitenstämmen mit unterschiedlichen Ruhezeiten besteht, führt die Ruhezeit zu einem
gleitenden Mittelwert, der die Stochastizität dämpft und die Varianz der Anzahl der in-
fizierten Wirte verringert. Der Stammmit der höchsten Rate des Eintritts in die Ruhephase
bestimmt die Stärke des gleitenden Durchschnitts und das Ausmaß der Verringerung der
Stochastizität. Abschließend entwickle ich ein Koinfektionsmodell, das die Dynamik der
Epidemiologie bei Koinfektionen mit zwei Stämmen und einem Wirtstyp erfasst, bei denen
einer der Stämme das Ruheverhalten zeigt. Überraschenderweise beobachte ich ein neues
Verhalten, nämlich dass die Ruhephase die Korrelation zwischen der Anzahl der von bei-
den Stämmen Infizierten beeinflusst. Ich schließe die Arbeit mit einer Diskussion über die
Relevanz der durchgeführten Forschung und einer kurzen Analyse der epidemiologischen
Daten über die Verbreitung von Malariaparasiten in Brasilien.
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Abstract

Quiescence is the ability for a parasite to become inactive, with respect to metabolism and
infectiousness, for some amount of time and then active (infectious) again. Quiescence
is a bet-hedging strategy that is commonly found in many fungi, bacteria, invertebrates
and plants. This strategy developed to survive the effect of harsh conditions and to op-
timise reproduction during favourable conditions. The strategy of bet-hedging in time
evolves when the individuals (fungus, bacteria, invertebrates) or the progeny of the indi-
vidual (invertebrate, plants) enters quiescence with a low metabolic state and is common
in many human parasites (tuberculosis, malaria,...). During this dormancy period, evolu-
tion and reproduction take place in the active part of the population. Parasite quiescence
is generally under appreciated and has consequences for improving disease management
and control. In this Thesis, I discuss the effect of pathogen quiescence on infectious dis-
ease epidemiology. Therefore, I build a Susceptible-Infected-Quiescent-Susceptible (SIQS)
model to understand the effect of quiescence/dormancy on the time to extinction and the
quasi-stationary distribution of the stochastic SIQS model. I find that quiescence increases
the time to extinction and affects the quasi-stationary distribution by breaking one of the
known shapes of the distribution, namely the decreasing shape. Furthermore, I develop
a deterministic coevolutionary model with two parasite types infecting one host type and
study analytically the stability of the dynamical system. I specifically derive a stability
condition for a five-by-five system of equations with quiescence. I also develop a stochastic
version of the model to study the influence of quiescence on stochasticity of the system
dynamics. I compute the steady state distribution of the parasite types which follows a
multivariate normal distribution, and obtain numerical solutions for the covariance matrix
of the system under symmetric and asymmetric quiescence rates between parasite types.
When parasite strains are identical, quiescence increases the variance of the number of
infected individuals at high transmission rate and vice versa when the transmission rate is
low. However, when there is competition between parasite strains with different quiescent
rates, quiescence generates a moving average behaviour which dampens off stochasticity
and decreases the variance of the number of infected hosts. The strain with the highest rate
of entering quiescence determines the strength of the moving average and the magnitude
of reduction of stochasticity. Finally, I develop a co-infections model that captures the
dynamics of epidemiology with co-infections with two strains, one host type, in which one
of the strains exhibits the quiescence behaviour. Surprisingly, I observe a new behaviour,
namely quiescence affects the correlation between the number of infected by either strains.
I conclude the thesis with a discussion of the relevance of the conducted research and in-
clude a short analysis of epidemiological data of malaria parasites disease prevalence in
Brazil.
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Chapter 1

Introduction

Since the seminal early work [18, 65, 12], mathematical models have been refined in their
modern version to understand and predict the spread of infectious diseases [8, 78]. The
use of such mathematical models contributes immensely to the control of various infectious
diseases in human, wild and domesticated animals and plants [9, 43, 32, 56, 55]. Modelling
helps us to utilise our limited resources more effectively in case of a pandemic such as
managing the occupancy rate of hospitalisations [85], with the ultimate aim for human
diseases to decrease the rate of death (as we have recently witnessed during the Covid-19
pandemic). A main first control measure of an infectious disease in humans and animals
include vaccination [64, 72, 77, 111] which was first develop by Edward Jenner in the
year 1796 against smallpox [69, 92, 59]. Later on, the wide use of the vaccine successfully
helped to eradicate the said disease. Note that this is the one and only disease that has
been completely eradicated globally to date. Vaccination acts by stimulating immune
response of susceptible individuals which in turn become immunised against the disease.
Secondly, isolation and quarantine are key measures and consist in isolating from the rest
of the population an already infected person who has been identified or suspected to have
contracted the disease. The result is to reduce the potential transmission rate of the
disease. Isolation / quarantine is the oldest disease management method which is known
for centuries, and has been successfully applied for example 1) in Italy by implementing a
policy that blocked all ships coming from an already plague infected region in the middle-
ages, or 2) in the UK in the year 1665 when people in the village of Eyam in Derbyshire
isolated themselves in an effort to contain the spread of plague to neighbouring villages
[91]. Isolation has been also used recently to curtail the spread of SARS in the year 2003
[63], and in early 2020 to slow down the spread of the Covid-19 epidemics. Isolation of
infected individuals and quarantine measures is one of the simplest control measure to
be applied. In our modern world, travel restrictions are also one of the methods used
to control the spread of infectious diseases [5]. However, these measures carry a social
and economic cost because activities are slowed down or even paralysed. We finally need
to mention contact tracing, which is in itself not a control measure, but a tool used for
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disease management [87]. Contact tracing is a process by which a patient is asked about
his behaviour and potential contacts with other individuals. These contacts can then either
be isolated, vaccinated or even hospitalised depending on their health conditions. Contact
tracing can be done as we witnessed during the Covid-19 epidemics at an early stage of
the epidemics when the number of infected cases is not too large. The feasibility of tracing
infection patterns becomes cumbersome, if not impossible, when the number of infected
individuals is too large.

With these practical tools at hand, the aim of health authorities is to control the spread of
or, if possible, to eradicate the infectious disease. As the only infectious disease that has
been successfully eradicated to this moment is smallpox, it is obvious that disease eradica-
tion is an extremely difficult task. Nevertheless, with the help of mathematicians, there has
been a tremendous achievement towards the control of some diseases such as polio, malaria,
etc. Recently, mathematical modelling is being used to contain the spread of Corona-virus
COVID-19 by applying the above mentioned control measures [23, 74, 35, 36, 97, 47]. In-
deed, mathematical modeling is a tool that can be used to predict the efficacy of different
measures for controlling the disease spread. No doubt that mathematicians worked tire-
lessly towards giving insights on how it spreads from one person to other and what need
to be done to curtail the spread of the disease. The models uses mathematics as a lan-
guage to precisely described the real world problem, albeit models remain simplifications
of the reality and are based on a certain number of hypotheses. In disease epidemiology,
mathematical models allow us to put societal behaviour into an equations, termed differ-
ential equations, allowing analyses and simulations to make a predictions on the spread
of infectious disease, predict whether a disease can become a pandemic and the long term
behaviour of the disease (endemic status).

The transmission of infectious disease is characterised by the level / amount of pathogens
present within the host. In other words, the pathogen has to present a certain amount
of infectious propagules to enable the disease transmission from one infected person to
another. Initially, it is often assumed that all individuals are susceptible to the disease,
and that there is no pathogen present in the population. At time t = 0, one person becomes
infected by the pathogen. The pathogen grows and multiplies in the host individual over
time. At the early time after infection, the infected individual may show no symptoms, but
the pathogen is growing. Such individual is referred to as being exposed and the disease
is said to be at the latent stage. Please note already that this phenomenon is different
from the quiescence stage, which I study later on, at which the pathogen stops growing
inside the host. In the event that the pathogen in the host reaches a sufficiently high level
or population size of infectious propagules, disease transmission can occur and the host
is said to be infectious. If the host’s immune system is able to clear the pathogen during
the latent phase or after an infectious period, the host is so-called recovered. Classically
in epidemiological models, we assume that a single individual becomes infectious, and we
then follow the fate of infection from that individual to assess if the disease persists or
becomes pandemic. The Basic Reproduction Number R0, calculated in many occasion in
my thesis such as in equations (1.3.2 and 1.3.4), is the most important epidemic number
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which determine at the beginning of the outbreak of the disease if the disease becomes
pandemic or not [7]. It is defined as the average number of people an infectious individual
does infect during the pandemic in a totally susceptible population.

In the first chapter of this thesis, I present a general introduction to the problem of choice
and main topic of my work, namely the role of pathogen quiescence in epidemiology. I will
explain why we are interested in studying the influence of quiescence and how we can used
mathematics to answer some interesting questions. I will also define the basic reproduction
number, the most important quantity in epidemiology, and basic notations of mathematical
models of epidemiology used in this thesis. I begin with the standard SIS model which
is mathematical model use to understand and predict the spread of infectious diseases
without host immunity in a constant population. This model can be applied to study the
transmission of malaria disease in Nigeria and the world at large, a topic which is close to
my long term interests. We aim to study the long term behaviour of the infectious disease
mathematically, taking two approaches: deterministic and stochastic. The deterministic
version has a threshold parameter called the basic reproduction number R0 = 1. If R0 > 1,
then the infection becomes endemic, while the infection dies out if R0 < 1. This fact does
not hold in the stochastic version (with birth and death processes), as the disease dies out
regardless of the value of R0 [84] due to the influence of stochasticity.

1.1 Motivation

Let me start with a short outline of a concrete issue which motivates my research in this
thesis. Malaria is a deadly disease caused by Plasmodium sp. parasites and passed to
humans by the Anopheles sp. mosquito through bite. Once bitten, the parasite propagules
(known as sporozoites) multiply in the patient’s liver and then infect and destroy the red
blood cells. Malaria is recognised as a world health issue since the initial stage of the human
historical times [95]. The progression of this disease in human population is estimated to
have begun approximately 42,000 years back [79]. The disease can be controlled and
treated if diagnosed early. Unfortunately, this is not possible in some areas where medical
facilities are lacking and malaria outbreaks frequently occur. Presently, an effective malaria
vaccine is yet to be discovered. Today, despite sophisticated prevention measures such a
insecticide-treated bed nets and effective antimalarial drugs, malaria infects approximately
227 million people and kills about 409,000 people all over the world in 2019 (WHO World
Malaria Report 2020). As a result other forms of preventive measures, chiefly against
mosquito populations, have to be taken by various health agencies and governments in a
bid to eliminate the disease. This effort succeeded in decreasing drastically the disease
epidemics in some regions of the world such as in Southern Europe, the former USSR, and
some countries of North Africa and the Middle East [2].

In Nigeria, the government in collaboration with health agencies is working hard to
achieve the goal of eradicating malaria. Some of the measures taken to this effect include:
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� Prompt diagnosis and treatment with effective medicines.

� Distribution of insecticide-treated nets (ITNs) to achieve coverage of populations at
risk especially children under the age of five and pregnant women.

� Indoor residual spraying (IRS) to curtail transmission.

� Prevention of malaria in pregnancy through intermittent preventive treatment.

Notwithstanding, malaria continues to be a menace to the increasing population of Nigeria
and in the world at large. As such there is the need to further explore other forms of
measures that can produce the required effect of eradicating the parasite or reducing it to
a minimum. Malaria is a serious global health issue generating a strong disease burden
worldwide [101]. There are five species of malaria known to infect human: P. falciparum, P.
vivax, P. ovale, P. malariae, and P. knowlesi. Out of these five, two, namely P. falciparum
and P. vivax are the main causes of malaria cases globally with P. falciparum the deadliest
[58, 75] while P. vivax is the most geographically widespread plasmodium species. The
latter can cause severe, even fatal infections and results in significant global morbidity and
mortality [16, 25, 94, 104] .

Plasmodium life cycle
The Plasmodium life cycle shown in (Figure 1.1) is similar for the five plasmodium species
that caused malaria in the human population [117]. There are three stages:

� Infection of a human with the parasite (sporozoites) by a female mosquito,

� Asexual reproduction inside the human body,

� Sexual reproduction.

Note that the first two stages take place inside the body of an infected individual, while
the third stage starts in the human body and ends in the female Anopheles mosquito.

Malaria infection starts when an infected female mosquito bites a healthy person (individ-
ual), injecting parasites at the sporozoites stage into the blood circulation. That constitutes
the first life stage of parasite (infection stage). These sporozoites then migrate to the liver,
multiply and mature into trophozoites which then spread into red blood cells. This is
achieved by asexual reproduction forming many merozoites which then move freely and
invade red blood cells. Some merozoites also develop into gametocytes. At this stage, a
female mosquito biting an infected (and thus infectious) person, becomes infected with the
parasite (gametocytes) too. At the last (part of third) stage, the gametocytes develop and
reproduce sexually, inside the mosquito’s stomach, to produce sporozoites which migrates
to the salivary glands. Then disease transmisison to another human individual can be
achieved via the mosquito bites [110] .

It should be noted that in the cases of P.vivax and P. ovalae, sporozoites might not follow
the reproduction step and rather become dormant (call hypnozoites) in the liver. These
hypnozoites may be reactivated after a long period of time leading to relapses, because they
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enter the blood stream as merozoites. These hypnozoites can stay dormant (quiescent)
for weeks, months or even years before they wake up and are reactivated. When these
propagules exit the quiescence phase, they continue the life cycle as described above [24].

Figure 1.1: Plasmodium life cycle; the image was taken from The Medical Invincible Group
(MIG)[45]

1.2 Quiescence/dormancy

Quiescence or dormancy is defined, in this thesis, as the ability for a parasite to become
inactive for sometime and then wake up again. It is a bet-hedging strategy that is com-
monly found in many fungi, bacteria [76, 70], invertebrates [81] and plants. This strategy
developed to survive the effect of harsh condition and to optimise the reproduction during
favorable conditions [98]. The strategy of bet-hedging in time evolves when the individuals
(fungus, bacteria, invertebrates) or the progeny of the individual (invertebrate, plants)
enters quiescence with a low metabolic state for some time. During this period, evolution
and reproduction take place in the active part of the population. Quiescence likely evolves
as bet-hedging mechanism for parasites to damp off fluctuating environment such a when it
is subjected to antibiotic/drug treatment, competition under density dependent selection
or prey-predator competitive interactions. Quiescent individual forms a reservoir which is
generally known as the seed bank (in our case quiescent propagule bank) and can be reac-
tivated and enter into the active population later on. Quiescence (dormancy) generates an
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overlapping between generations, a storage effect, and a delay in the generation time [99].
At the population level, dormancy is shown to slow down the rate of genetic drift, that
is increasing the time to random loss or fixation of neutral alleles. Moreover, seed banks
also slow down the action of natural selection by increasing the time to fixation (loss) of
the positively (deleterious) selected alleles [51, 68, 108]. We note the use of the term dor-
mancy preferably for plant seeds or crustacean eggs (e.g. Daphnia sp.), while quiescence
refers to individual bacteria, fungi or malaria propagules switching between ”on” and ”off”
metabolic states. As we focus on microparasites such as malaria in the following, we prefer
the term quiescence from now on.

The quiescent strategy makes it hard to get rid of the parasites. We note that parasite
dormancy has been a long neglected topic in parasitology research despite its huge impact
on management of diseases. Parasite quiescence is a strategy of microparasites (bacteria,
fungi) becoming inactive inside an infected host for some period of time. During this pe-
riod, the disease does not progress in the host and the host can express symptoms or be
asymptomatic. Parasite quiescence has well known but yet underappreciated consequences
for disease management. During quiescence, the parasite are often resistant to the applica-
tion of drugs, antibiotics or fungicides [27, 28, 122, 121]. Furthermore, applying antibiotics
can trigger the switching of bacteria from active to the inactive (quiescent) state. Plas-
modium falciparum has the ability to lurk in the hepatocytes of some patients, remaining
inactive but being resistance to drug treatments, causing later on disease relapse [29, 46].
P. vivax, another malarial agent, exhibits also the ability to become dormant in the liver
of a host for some weeks, months and in some cases even a year or more which makes the
it difficult to eradicate the disease [118, 105, 26]. Therefore, it is important to determine
1) conditions for the evolution of parasite quiescence, and 2) influence of quiescence on the
sustainability of parasite populations.

1.3 Review of the Basic Epidemic Models; SIS and

SIR

In this section, we review some basic epidemiological models on which the further com-
plicated epidemic models which include quiescence in this thesis are build on. Therefore,
it is important to lay down the definitions and understand the dynamics of these basic
models. Both SIS and SIR models are call compartmental model because individuals in
the population are divided into mutually excluded compartments (classes) based on their
disease status. These models are approximately 100-years old and date back to Kermack
and Mckendrick 1927 [65], who first studied an SIR model to understand the mechanism
behind the exponential growth and decay of the number of cases during an epidemics in
London [1]. Since then the models have been applied to numerous infectious diseases such
influenza, malaria, common cold, sexually transmitted diseases, the infamous Covid-19
and many bacterial infections [4, 63].
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The total population is divided into two mutually exclusive compartments, namely: S -the
susceptible sub-population (people who are currently healthy but may get the disease in
the future from a successful encounter with an infectious person), and I- the infected sub-
population (these are individuals who are currently carrying the disease and are capable
of passing it to other people upon contact).

Figure 1.2: Flow diagram of the SIS model described in equation (1.3.1).

The two couple differential equations describe the flux (rate of change) of the individual
in each compartment, the compartments are susceptible and infected class. N is the total
population size, β is the infection rate and ν is the recovery rate.

dS

dt
= −β

SI

N
+ νI

dI

dt
= β

SI

N
− νI,

(1.3.1)

Steady States

Please note that dS
dt

+ dI
dt

= 0 which means that the total population size is constant. now
let N = S + I =⇒ S = N − I. The equilibrium solution of the above system is then

S∗ =
ν

β
N, I∗ =

N

β
(β − ν)

Basic Reproduction Number

R0 =
β

ν
(1.3.2)

Actually the system (1.3.1) can be reduced to one dimensional differential equation as:

dI

dt
= (β − ν − I)I
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The disease free equilibrium, i.e I = 0. The solution when I ̸= 0 and I(t = 0) = I0 is
given as

I(t) =
(
1− 1

R0

) F

F + e−(β−ν)t

where

F =
βI0

β − ν − βI0
.

On the long run we obtain

I(t) = (1− 1

R0

), R0 > 1

or
I(t) = I0e

(β−ν)t → 0, R0 < 1.

Figure 1.3: Flow diagram of the SIR model described in equation (1.3.3).

While the SIR model also assumes that there is a population of individuals and each one of
these individuals is in one of these compartments, it describes the spread of infections that
develop immunity permanently after recovery. Hence the name SIR stands for Suscepti-
ble,S, Infected, I and Recovered, R or removed (people who once contracted the disease and
developed a permanent immunity against the disease after recovery). Once an individual
is in this class he or she does not participate to the infection process. This model has been
successfully applied to study and understand the behaviour of acute infections, that is fast
growing diseases, in which the patient develops immune response very rapidly (days to
weeks) to clear off the pathogen. Example of acute infections include distemper, influenza,
rabies and rubella, and childhood diseases such as mumps, chickenpox and measles [4, 63].

The three couple differential equations describe the flux (rate of change) of the individuals
in each compartment, the compartments are susceptible , infected class and recovered.
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N, β, ν are as defined above.
dS

dt
= −β

SI

N
dI

dt
= β

SI

N
− νI

dR

dt
= νI

(1.3.3)

we assume that S(0), I(0) and R(0) are all greater than zero and that S(0)+I(0)+R(0) =
N . It is easy to see that limt→∞ I(t) = 0 and that S(t) and I(t) are bounded above. The
basic reproduction number is calculated as

R0 =
S(0)

N

β

ν
(1.3.4)

This number serves the same and the dynamics of the initial disease behaves the same as
the one described above for the SIS model.

In (Figure 1.4), we display the simulated result of both models (1.3.1) and (1.3.3) but
focused only the infected class (disease curve) because it enables us to quantify the number
of patients/possible deaths throughout the pandemic. We have seen that in the SIS model
depending of the parameters of the model, there is always a certain number of people
who have the disease in the population. In the SIR model, there is an initial exponential
growth, and then at some point the disease curve reaches its maximum. The disease curve
then decays exponentially, because people become infected then recover and are removed
from the infection process. In other words, the infection ”runs out of gas” and eventually
the number of infected individuals decreases.

Transition Probabilities

To study the long term behaviour of the infectious disease mathematically, there are two
approaches, namely the deterministic and the stochastic. The deterministic version has a
threshold parameter call basic reproduction number R0 = 1 defined in equation (1.3.2). If
R0 > 1, then the infection will become endemic, while the infection dies out if R0 < 1.
This fact does not hold in a stochastic version (with a birth and death process), as the
disease dies out regardless of the value of R0 [84]. Since our main goals is to study time to
extinction and the quasi-stationary distribution of the stochastic SIS model as in [84], it is
therefore necessary to integrate a stochastic process into our deterministic model (1.3.1).
To do so, we first find and define the transition probabilities of each event. The following
equations describe the probabilities of moving from one state to the other. Here, the state
are infection and recovery.
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Figure 1.4: Number of infected people predicted by both SIS and SIR models (1.3.1, 1.3.3)
respectively.

Table 1.1: Transitions rates for the model 1.3.1

Type Transition Rate
Infection of S by I (St, It) → (St − 1, It + 1) β SI

N
∆t+ o∆(t)

Recovery I & replacement with S (St, It) → (St + 1, It − 1) νI∆t+ o∆(t)

1.3.1 Master equation

The master equation of the model 1.3.1 otherwise known as Kolmogorov equation, describes
the deterministic evolution of the above transition probabilities. The master equation is
also used to generate the generator matrix A. Because we are dealing with one dimensional
system, the generator matrix is given in equation (1.3.8), as in [84, 33, 7].

dp(i)
dt

=
β

N
(N − i+ 1)(i− 1)p(i−1) + ν(i+ 1)p(i+1)

−
[
β

N
(N − i)i+ νi

]
p(i)

(1.3.5)

Let

bi =
β

N
i(N − i) and di = νi

then equation (1.3.5) can be written as
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dp(i)
dt

= bi−1p(i−1) − [bi + di]p(i) + d(i+1)p(i+1) (1.3.6)

for i = 1, . . . , N and dp0
dt

= p1d1. In matrix form, the above equation (1.3.6) can be written
as follows

dp(i)(t)

dt
= Ap(t) (1.3.7)

where p(t) = (p0(t), . . . , pN(t))
T and the matrix A known as infinitesimal generator matrix

[106] defined as

A =


0 d1 0 . . . 0
0 −(d1 + b1) d2 . . . 0
0 b1 −(d2 + b2) . . . 0
0 0 b2 . . . 0

. . . . . . . . . 0
0 0 0 . . . −dN

 , (1.3.8)

defined another matrix Â which is the same as matrix A in equation (1.3.8) with first row
and first column deleted. This is so because the matrix does not have a solution as the
detail balance fails there. But the submatrix Â of A is singular [89], therefore eventually
the absorption occurs. i.e limt→∞ p(t) = (1, 0, 0; . . . , 0)T )

Â =


−(d1 + b1) d2 . . . 0

b1 −(d2 + b2) . . . 0
0 b2 . . . 0
. . . . . . . . . 0
0 0 . . . −dN

 (1.3.9)

1.3.2 Quasistationary Stationary Distribution

In this section, we review the study of time to extinction and the quasi-stationary distri-
bution of the stochastic SIS model as in [84]. The SIS model has two equilibrium states,
namely disease free equilibrium and endemic equilibrium. In the stochastic process (Con-
tinuous Time Markov Chain (CTMC)), the disease free equilibrium is an absorbing state
which means that the chain eventually visits this state. Indeed, as the states of the SIS
stochastic model communicate with each other and the limiting conditional distribution
is unique, see [33], the process ends in the disease free state. However, the two equilibria
are far apart from each other with low probability to move between them. This is known
as the quasi-stationary distribution. We define the limiting conditional distribution p̂∗

by conditioning that the process is yet to reach its extinction state, this is to say that
p̂∗ = (p̂∗1, . . . , p̂

∗
N)

T where p̂∗i is the probability I(t) = i given that I(r) > 0 for some t > r
(the CTMC is yet to reach its absorbing state). Mathematically it can be write as follows

p̂∗i (t) = Prob{I(t) = i|I(r) > 0, t > r, }, i = 1, 2, . . . , N.
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The fact that the zero state is an absorbing state, then the probability Prob = Prob{I(r) >
0, t > r, } = 1− p0, Therefore,

p̂∗i (t) =
pi(t)

1− p0(t)
, i = 1, 2, . . . , N. (1.3.10)

differential equation for p̂∗i (t) similar to equation (1.3.5) can be obtained by differentiating
equation (1.3.10) with respect to time t.

dp̂∗i (t)

dt
=

dpi/dt

1− p0
+ d1p̂

∗
1

p1
1− p0

, i = 1, 2, . . . , N (1.3.11)

where p̂∗ = (p̂∗1, . . . , p̂
∗
N)

T is known as the quasi-statinary distribution. In matrix form the
differential equation in (1.3.11) can be written as follows

dp̂∗

dt
= Âp̂∗ + d1p̂

∗
1p̂

∗ (1.3.12)

where Â is defined in equation (1.3.9). The quasi-statinary stationary distribution p̂∗ =
(p̂∗1, . . . , p̂

∗
N)

T is giving by the nonlinear eigenvalue problem which is the stationary solution
of equation (1.3.12)

Âp̂∗ = −d1p̂
∗
1p̂

∗ (1.3.13)

where p̂∗ is the leading left eigenvector of the matrix Â which is a sub-matrix of the
infinitesimal generator (transition) matrix A conditioned on the non zero state.

Note that equation (1.3.13) can not be solved explicitly, but several approximations exist
(for more details see [84]). There are two shapes of the quasi-stationary distribution
depending on the value of the basic reproduction number, R0. If R0 > 1 the shape of the
distribution looks like a normal distribution with the center (mean) being the balance
between the birth β

N
i(N − i) and death νi rates ( β

N
i(N − i) = νi see Fig 1.5). If R0 < 1

the shape of the distribution is monotonically decreasing with p̂∗1 being the highest value.
The trajectory of disease progress will eventually die out but can be constrained by the
non-extinction and therefore the distribution has a mean around small population size
(see Fig 1.6).

The expected time to extinction is given by

E(time to extinction) = 1/d1p̂
∗
1 = 1/ρ(Â), this so because d1p̂

∗
1 is a perron eigenvalue of Â

(1.3.14)

1.4 Simulations

To give some intuitive explanation and to verify the analytic result obtained above, we
use numerical simulations as [84] and as performed later on in this thesis. We use the
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Figure 1.5: Quasistationary distribution of SIS stochastic epidemic model with β = 2, ν = 1
and N = 100 .

Gillespie algorithm [37, 38]. It is used to generate stochastic realisations/sample paths of
the birth and death processes described above. In other word, the algorithm is used to
numerically compute the movement of the continuous time Markov chain CTMC from one
state to the other. To use the algorithm two uniformly distributed random variables are
required u1, u2. The first random variable (u1) is used to compute the time between events
while the second variable (u2) is to determine which event happens. Generally speaking,
consider k events, the closed interval [0, 1] is further subdivided according the probability
q of each event, [0, q1], (q1, q1 + q2], (q1 + q2, q1 + q2 + q3] . . . (q1 + q2 + · · · + qk−1, 1], where
qi, i = 1, . . . , k sums up to 1. If u2 falls in the rth subinterval, then the rth event happens.
The event and rate of each event is described in the transition probability above.

Due to the Markov property, the time between events T are independent and identically
distributed with an exponential Probability density function given as

T = f(t) = λe−λt, t > 0

where λ is the total sum of the rates of the events. The cumulative distribution function
is given as

F (t) =

∫ t

0

f(ω)dω

=

∫ t

0

λe−λtdω
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Figure 1.6: Quasistationary distribution of SIS stochastic epidemic model with β = 1.6, ν =
2 and N = 50 .

= 1− e−λt

let
u = 1− e−λt

=⇒ t = −1

λ
ln(1− u)

= −1

λ
ln(u1)

please observe that 1− u = u1 have the same uniform distribution.

In words, we toss a coin and wait for the outcome, and depending on the value of the
outcome, we then add one from the infected class and subtract one from the healthy
class, or perform the reverse operation. We perform numerical simulations using Gillespie
algorithm applied to the deterministic models (1.3.1), and the results are plotted in (Figure
1.9). Please note that the sample realisations of the stochastic SIS model fluctuate about
the equilibrium trajectories of the deterministic SIS model.

1.5 Plan of the Thesis

After this introduction framing the reserach question and giving basics on the epidemio-
logical models, I will now describe the content of this thesis. In chapter two, we extend the
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Figure 1.7: Expected time to extinction of the stochastic SIS model by using quasistation-
ary distribution with β = 2, ν = 1 and N = 100 .

SIS model by adding a quiescence phase. The extended model is call SIQS. Here, we want
to understand the effect of quiescence/dormancy on the time to extinction and the effect
of quiescence on the quasi-stationary distribution of the stochastic SIQS model. Therefore,
we transform the deterministic model to include stochastic processes and we calculate the
quasi-stationary solution of the process and obtain the time to extinction. We perform a
comparative analysis between time to extinction of the SIS model and that of the SIQS
model. In chapter 3, we build a multi strains model first without quiescence to understand
the relationship between one host specie and two parasite species interactions since most
parasite exists in multiple stains in a host population. The chapter makes a significant
contribution towards understanding of the interactions in communities of living parasitic
organisms, in which both competitive and trophic interactions are present at the same
time. We later introduce a quiescence phase for one parasite type to the deterministic co-
evolutionary model with two parasite types infecting one host type. We study analytically
the local stability of the dynamical system. We develop a stochastic version of the model
to study the influence of quiescence on stochasticity of the system dynamics. We compute
the steady state distribution of the parasite types and obtained numerical solutions for
the covariance matrix of the system under symmetric and asymmetric quiescence rates
between parasite types. In chapter 4, we incorporate quiescence phase to a co-infection
model (4.1.2) and end up with extended model (4.1.3) that captures the dynamics of the
co-infections of two strains, one host type, in which one of the strains exhibits quiescence
behaviour. The steady state solution is calculated and proceed to show that the endemic
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Figure 1.8: Expected time to extinction of the stochastic SIS model by using quasistation-
ary distribution with β = 2, ν = 1 and N = 50

equilibrium of the system is stable when R0 > 1. We perform numerical computation
using Gillespie’s algorithm, and demonstrate that deterministic results and stochastic sim-
ulations are consistent. In such co-infection model, we observe a new behaviour, namely
that quiescence affects the correlation between the presence and frequencies of the parasite
strains. These results are important to show that quiescence has also an effect on interac-
tions between parasite strains in a host population. We conclude this thesis in Chapter 5
by discussing the relevance of the research conducted for disease management, especially
using data obtained for malaria infections in the Amazonian region of Brazil, where both
P. falciparum and P. vivax are present.

1.6 Contributions

I have written all chapters. Chapter 2 is soon to be submitted to a peer-review journal.
The model was developed by myself and Prof J. Müller. I have performed all analyses and
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Figure 1.9: Numerical simulation of the deterministic SIS model compared with stochastic
SIS simulation using Gillespie’s algorithm; initial population size is S = 1000, I = 1.
The parameters are β = 0.2, ν = 0.05, the stochastic realisations fluctuate about the
equilibrium of the deterministic trajectories.

simulations, and wrote the manuscript. For chapter 3, I have designed the model with Prof
J. Müller, Dr S. John, and Prof A. Tellier, and I have performed all analyses and simulations
myself. A large part of chapter 3 is published after peer-review in 2022 as Sanusi et al.
Mathematics (MDPI2022) with URL: https://doi.org/10.3390/math10132289. The model
of chapter 4 was conceived by myself, Prof A. Tellier and Dr E. Stadler. I have performed
all analyses and simulations myself.
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Chapter 2

Stochastic Time to Extinction of the
SIQS Epidemic Models

2.1 Motivation

The aim of this research is to contribute towards the eradication and control of infectious
diseases. However, as mentioned in Chapter 1, global eradication is hard to achieve. For
example, while the eradication of polio was thought to be achieved, the virus started
to come back into the population because of a decrease of vaccination coverage due to
vaccine refusal and various societal issues. Note furthermore that while global eradication
is hard to achieve, we do observe local extinction of diseases in real world data. In such
cases, the disease re-appear later into the same population. We also observe that small
populations of pathogens are always at high risk of becoming extinct. This type of dynamics
is obviously not captured in the deterministic approach. It is therefore necessary to model
the process by using stochastics, that is a birth and death process with a continuous time
and discrete state-space. In (Figure 2.1), we observe the disease curve of dengue fever
incidence in Thailand [30]. It shows that there are intermittent spikes of incidence with
varying amplitudes. In between spikes, there are years with almost zero incidence, and the
disease seem to re-appear later into the population. The same observation can be made
from (Figure 2.2) for measles. On the other hand, another interesting feature of a disease
epidemics, is that disease in small population is at high risk of becoming extinct.

2.2 Main goals

The main goals of this thesis chapter is to study the long term behaviour of the SIS
model through studying its time to extinction and quasi-stationary distribution. We then
incorporate a quiescence phase to the SIS model, so that the extended model is call SIQS,
and we study the effect of quiescence on the time to extinction and the quasi-stationary
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Figure 2.1: Extinction and re-introduction of Dengue incidence for Chaing Mai Province,
Thailand; data was taken from [31]

Figure 2.2: Number of cases of Measles in Canada from 1924-2018; Wikipedia; data was
taken from [86]

distribution of the new SIQS model. We compare the shape of the SIS quasi-stationary
distribution with that of the SIQS model to understand the influence of quiescence on the
quasi-stationary distribution of SIS model [84]. It is well documented that the SIS quasi-
stationary distribution has two shapes depending on the value of the basic reproduction
number, R0. When R0 < 1, the quasi-stationary distribution decreases monotonically with
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p̂∗1 being the maximal value, and the distribution is approximately normally distribution
when R0 > 1 [84, 82, 80]. We test if these predictions also hold in presence of quiescence
in our SIQS model.

Methods: the SIQS model

This section introduces the extended version of the SIS model that was described and
analysed in [82, 113, 83]. In an SIS stochastic model, the disease free equilibrium is the
zero state and an absorbing state. However, it is observed that just before the process
reaches this equilibrium, the process first reaches an equilibrium (endemic, as the SIS
model has two equilibrium solutions) that is different from the zeros state equilibrium.
This equilibrium is called the quasi-stationary distribution, which was first studied in the
late 1960s by Darroch [33]. The quasi-statinary distribution is obtained as the distribution
conditioned on non-extinction of the continuous time Markov chain of the SIS stochastic
model. This means that there is a condition on the distribution so that the stochastic
process is yet to reach the disease free equilibrium [4].

We incorporate a quiescent stage to the standard SIS model, defining an SIQS model.
The following system of ordinary differential equations (2.2.1) describes its dynamics. The
name is derived from the dynamics of the population: at the beginning, the population
is susceptible, then some individuals become infected, and amongst those, a portion of
parasite enter the quiescence phase and can wake up later following a stochastic process,
hence the name SIQS model.

Figure 2.3: Flow chart of the SIQS model

dS

dt
= −β

SI

N
+ νI

dI

dt
= β

SI

N
− ρI − νI + ζQ

dQ

dt
= ρI − ζQ,

(2.2.1)

where Q is the number of individuals in quiescence stage, ρ is the rate at which the infected
individuals enter the quiescence stage and ζ is the rate at which the individuals in the
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quiescence stage exit to become infected. The other parameters are as described in equation
(1.3.1). We assume in the model that there is no birth nor death of hosts so that the total
population is constant. The total population is divided into three mutually exclusive class,
namely Susceptible, infected and Quiescence stage. Equation (2.2.1) describes the rate of
change of individuals in each class.

let N = S + I +Q then at the equilibrium, (2.2.1) has the following equilibrium solution

S∗ =
ν

β
N, I∗ =

ζN(β − ν)

β(ζ + ρ)
, Q∗ =

ρN(β − ν)

β(ζ + ρ)

2.3 Analytical results

2.3.1 Basic reproduction number

Next generation matrix

F =

[
βSI
N

0

]
and V =

[
(ρ+ ν)I − ζQ

−ρI + ζQ

]

let (I,Q) = (x1, x2) = x, then

dx

dt
= F − V =

[
βSI
N

0

]
−

[
(ρ+ ν)I − ζQ

−ρI + ζQ

]

let

F =


∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

 =

[
β 0

0 0

]

V =


∂V1

∂x1

∂V1

∂x2

∂V2

∂x1

∂V2

∂x2

 =

[
ρ+ ν −ζ

−ρ ζ

]

let

κ = FV−1 =


β
ν

β
ν

0 0


∴ ρ(κ) =

β

ν
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Transition Probabilities

Since our main goal is to study the time to extinction of the quasi-stationary distribution
of the stochastic SIQS model, it is necessary to transform the deterministic model (2.2.1)
into a stochastic process. In so doing, we have to first find the transition probabilities of
each event. The following equations describe the probabilities of moving from one state
to the other. Here, the states are infection, recovery, entering and exiting quiescence.

Table 2.1: Transitions rates for the model (2.2.1)

Type Transition Rate
Infection of S by I (St, It, Qt) → (St − 1, It + 1, Qt) β SI

N
∆t+ o∆(t)

Recovery I & replacement with S (St, It, Qt) → (St + 1, It − 1, Qt) νI∆t+ o∆(t)
Go quiescent I & birth of Q (St, It, Qt) → (St, It − 1, Qt + 1)) ρI∆t+ o∆(t)
Wake-up Q & replacement with I (St, It, Qt) → (St, It + 1, Qt − 1)) ζQ∆t+ o∆(t)

2.3.2 Master equation

The master equation otherwise known as the Kolmogorov equation, describes the deter-
ministic evolution of the above transition probabilities. The master equation is also used
to generate the generator matrix A. Because we are dealing with two dimensional system
the generator matrix is rather complex.

let S = N − I −Q, then model (2.2.1) reduces two dimension and the master equation of
the corresponding system can be written as follows

Let p(i, j)(t) = Prob{I = i, Q = j}, then

dp(i,j)
dt

=β/N(N − i− j + 1)(i− 1)p(i−1,j) + ν(i+ 1)p(i+1,j) + ρ(i+ 1)p(i+1,j−1)

+ ζ(j + 1)p(i−1,j+1) − [β/N(N − i− j)i+ νi+ ρi+ ζj] p(i,j,k).
(2.3.1)

2.3.3 Quasi-stationary distribution of the SIQS model

bi =
β

N
i(N − i− j)

ci =ρi

di =νi

ej =ζj

with this notation, then the above equation (2.3.1) can be rewritten in an increasing i′s
as follows
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dp(i,j)
dt

= bi−1p(i−1,j) − [bi + ci + di + ej]p(i,j) + c(i+1)p(i+1,j−1) + d(i+1)p(i+1,j) + e(j+1)p(i−1,j+1)

(2.3.2)
The above equation can be written more compactly as follows

dp(ji)(t)

dt
=

∑
l

∑
k

blkjip(lk) for i, j = 1, 2, . . . N (2.3.3)

Let
B =

∑
l

∑
k

blkji for i, j = 1, 2, . . . N (2.3.4)

and defined
B̃ =

∑
l

∑
k

blkji for i, j = 2, . . . N = B(2 : N, 2 : N) (2.3.5)

Let (Xt, Qt) be random variables for the number of infected individuals and the individuals
in quiescence stage respectively, then

p(ij) = p(i,j)(Xt = i, Qt = j)

let also
X̃t, Q̃t = Xt, Qt|(Xt, Qt) ̸= (0, 0)

p̃(i,j) ̸=(0,0) = p(i,j)(Xt = i, Qt = j|(Xt, Qt) ̸= (0, 0))

d ˜p(i,j)
dt

=
p(i,j)(Xt = i, Qt = j|(Xt, Qt) ̸= (0, 0))

p(Xt, Qt ̸= (0, 0))

=
p(i,j)(Xt = i, Qt = j)

1− p(Xt = 0, Qt = 0)
=

p(ij)
1− p(0,0)

dp̃(i,j)
dt

=
d

dt

(
p(i,j)

1− p(0,0)

)
=

ṗi,j(t)

1− p(0,0)
+

p(i,j)(t)

(1− p(0,0))

˙p(0,0)
(1− p(0,0))

The equilibrium solution of the above equation known as quasi-stationary distribution is
given as

p̃∗(i,j)(t) = (p̃∗(1,1), p̃
∗
(1,2), . . . , p̃

∗
(N,N))

T

(B̃ + d1p̃(1,0))p̃
∗
(i,j) = 0

B̃p̃∗(i,j) = −d1p̃
∗
(1,0)p̃

∗
(i,j) (2.3.6)

note that p∗(i,j) can not be solved explicitly from equation (2.3.6) .
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2.4 Expected time to extinction

Expected time to extinction

Theorem 1. The expected time to extinction is given by

E(time to extinction) = 1/d1p̃
∗
(1,0) = 1/ρ(B̃)

Proof. Recall that
dp

dt
= Bp, p(0,0) = (0, p̃∗)

therefore,
d

dt
p(0,0) = d1p̃

∗
(1,0)

d

dt
p̃ = B̃p̃

since p̃(0,0) = p̃ is an eigenvalue of B̃, we have p̃(t) = e−d1p̃∗(1,0)tp̃∗.Thus,

p̃(0,0)(t) =

∫ ∞

0

d1(e
−d1p̃∗(1,0)tp̃∗(1,0))dt = 1− e−d1p̃∗(1,0)t

E( time to extinction) =

∫ ∞

0

t(− d

dt
P ( alive at time t)dt

=

∫ ∞

0

(1− p(0,0)(t))dt =

∫ ∞

0

e−d1p̃(1,0)tdt = 1/d1p̃
∗
(1,0) = 1/ρ(B̃)

Theorem 2. The expected time to extinction increases linearly with the increase of the
rate of entering quiescence phase, that is ρ.

Proof. Matrix B in equation (2.3.4) can be written as

B = A+ ρC

B(ϵ) = A0 + ϵC

let
X(ϵ) : A(ϵ)X(ϵ) = λ(ϵ)X(ϵ)

and
Y (ϵ) : A(ϵ)Y (ϵ) = λ(ϵ)Y (ϵ)

X(ϵ) = X0 + ϵX1 + . . .

Y (ϵ) = Y0 + ϵY1 + . . .

λ(ϵ) = λ0 + ϵλ1 + . . .
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then
X(ϵ)Y (ϵ) = X0Y0 + ϵX0Y1 + ϵY0X1 + o(ϵ2) = 1

B(ϵ)X(ϵ) = λ(ϵ)X(ϵ)

(B0 + ϵB1)(X0 + ϵX1) = (λ0 + ϵλ1)(X0 + ϵX1)

B0X0 = λ0X0

B1X0 +B0X1 = λ1X0 + λ0X1

Y0B1X0 + Y0B0X1 = λ1Y0X0 + λ0Y0X1

λ1 = Y0B1X0

(B0 − λ0I)X1 = −B1X0 + (Y0B1X0)X0 = −(B1 − Y0B1X0I)X0

Y0(B1 − Y0B1X0I)X0 = Y0B1X0 − (Y0B1X0)(Y0IX0) = Y0B1X0 − Y0B1X0 = 0.

This shows that X1 has a solution.

(B0 − λ0I)X1 = −(B1 − Y0B1X0I)X0

∫ ∞

0

ex(B0−λ0I)t(B0 − λ0I)X1dt = −
∫ ∞

0

ex(B0−λ0I)s(B1 − Y0B1X0I)X0ds

X1 = −
∫ ∞

0

ēT ex(B0−λ0I)s(B1 − Y0B1X0I)X0ds

we now need to show that the matrix is invertible

Proposition 1. C is an invertible matrix on positive complex plane =⇒
∫∞
0

e−Csds =
C−1

Proof. Assume that the eigenvectors of C are X̄1, . . . , X̄n corresponding to the eigenvalues
λ1, . . . , λn =⇒

∫∞
0

e−CsX̄ids =
∫∞
0

e−λisX̄ids =
1
λ
X̄i = C−1X̄i
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Figure 2.4: Numerical simulation of the deterministic SIQS model compared with stochastic
SIQS simulation using Gillespie’s algorithm; initial population size is S = 1000, I = 1Q =
3. The parameters are β = 0.2, ν = 0.05, ρ = 0.5, ζ = 0.2, the stochastic realisations
fluctuate about the equilibrium of the deterministic trajectories.

2.5 Numerical results

We present here several stochastic simulations using the Gillespie’s algorithm to provide
some intuition and test the robustness of our analytical results.

We compute the time to extinction of both models (1.3.1 and 2.2.1) and find that the
quiescence phase increases the time to extinction of the epidemics. This result is also
confirmed by the simulations using Gillespie’s algorithm. The results are shown in (Figure
2.6, 2.7 and 2.5). The time when the epidemic ends is much longer with the quiescence
phase. We show that the time to extinction for SIS (1.3.1) is of an order of magnitude
of four with the population size N = 50 and parameter β = 2, ν = 1 (Figure 1.8) while
the time to extinction for the SIQS model is of the order six with the population size
N = 50 and parameter β = 2, ν = 1, ρ = 0.7, ζ = 0.2 (Figure 2.8). We also note that
the shape of the quasi-stationary distribution exhibits a normal shape regardless of the
value of R0. This is to say that quiescence breaks one of the known shape of the quasi-
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Figure 2.5: stochastic realisation of the stochastic SIQS model until both infected and
quiescence individuals hit zero population size with total population N = 50 , β = 2 and
ν = 1 with the initial population size I(0) = 5, Q(0) = 1.

stationary state, namely the decreasing shape when R0 < 1 (Figure 1.6). We also find
analytically and by simulations, that the time to extinction increases linearly with the
increase of the rate of entering quiescence (ρ) as seen in (Figures 2.9a) and (2.9b). Note
that in (Figure 2.9a) the time to extinction is longer compared to (Figure 2.9b) because a
larger proportion of individuals leave the quiescence phase in (Figure 2.9b) than in (Figure
2.9a). Furthermore, the time to extinction decays exponentially with the increase of the
rate of exiting quiescence (ζ) ( Figures 2.10a and 2.10b). Note that the time to extinction in
(Figure 2.10a) decays faster than in (Figure 2.10b) because individuals enter the quiescence
phase at higher proportion in (Figure 2.10b) than in (Figure 2.10a).

2.6 Conclusion

We extended the study of the time to extinction and the quasi-stationary solution of the
stochastic SIS model which is a one dimensional structure to include quiescence phase
which makes it a two dimensional structure. We approached the problem numerically
where we came up with a block Infinitesimal generator matrix. We calculated the quasi-
stationary solution of the stochastic SIQS model. Moreover, we learnt that quiescence
affects one of the known shapes of the quasi-stationary distribution. Furthermore, the
quiescence increases the time to extinction linearly with the increase of the rate of entering
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Figure 2.6: Histogram of the probability distribution of the time epidemic ends of the
scholastic SIQS epidemic model generated from 1000 realisations/sample paths by using
Gillespie’s algorithm with I(0) = 5, Q(0) = 1, N = 50, β = 2, ν = 1, ρ = 0.7, ζ = 0.2, the
mean of the distribution is 55236.

quiescence. We also learnt that the quiescence phase increases the time the pandemic ends.
This is to say that quiescence is not only a bet-hedging strategy but makes the population
of the parasite more stable in time and insensitive to the application of antibiotics.
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Figure 2.7: Histogram of the probability distribution of the time epidemic ends of the
scholastic SIQS epidemic model generated from 1000 realisations/sample paths by using
Gillespie’s algorithm with I(0) = 5, Q(0) = 1, N = 50, β = 2, ν = 1, ρ = 0.2, ζ = 0.7, the
mean of the distribution is 15397.
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Figure 2.8: Bivariate quasi-stationary distribution of the SIQS model N = 50, β = 2, ν =
1, ρ = 0.7, ζ = 0.2, and the time to extinction is 7.5391e+ 06
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Figure 2.9: (a) Confidence interval of the time epidemic ends as a function of ρ of the
scholastic SIQS epidemic model generated from 10000 realisations/sample paths by using
Gillespie’s algorithm with I(0) = 5, Q(0) = 1, N = 50, β = 2, ν = 1, ζ = 0.7. (b) Confi-
dence interval of the time epidemic ends as a function of ρ of the scholastic SIQS epidemic
model generated from 10000 realisations/sample paths by using Gillespie’s algorithm with
I(0) = 5, Q(0) = 1, N = 50, β = 2, ν = 1, ζ = 0.9.
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Figure 2.10: (a) Confidence interval of the time epidemic ends as a function of ζ of the
scholastic SIQS epidemic model generated from 1000 realisations/sample paths by using
Gillespie’s algorithm with I(0) = 5, Q(0) = 1, N = 50, β = 0.2, ν = 0.1, ρ = 0.4. (
b) Confidence interval of the time epidemic ends as a function of ζ of the scholastic
SIQS epidemic model generated from 10000 realisations/sample paths by using Gillespie’s
algorithm with I(0) = 5, Q(0) = 1, N = 50, β = 0.2, ν = 0.1, ρ = 0.7.
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Chapter 3

Impact of Pathogen Quiescence on
the Stochastic Model

3.1 Introduction

Dormancy or quiescence is a bet-hedging strategy common to many bacteria, fungi [76, 70],
invertebrates [81], and plants which evolves to dampen off the effect of bad conditions and
maximize the reproductive output under good conditions [98, 116, 19]. This bet-hedging
in time occurs when the individual (bacteria, fungus, invertebrates) or the offspring of
the individual (plants, invertebrates) enter dormancy with a low metabolic state for some
period of time during which reproduction and evolution occurs in the active part of the
population. The dormant individuals constitutes a reservoir, the so-called seed banks, and
can re-enter the active population at a later time point. Dormancy (quiescence) evolves a
bet-hedging strategy in response to unpredictable environments such as random variations
of the abiotic conditions [52], competition under density-dependence regulation of the
population [20], contact between a bacteria host and viruses [17], frequency- or density-
dependent selection due to host-parasite coevolution [46] or prey-predator interactions.

Parasite quiescence is a strategy of microparasites (bacteria, fungi) becoming inactive in-
side an infected host for some period of time. During this period, the disease does not
progress in the host and the host can express symptoms or be asymptomatic. Importantly,
quiescent parasites do not contribute to the disease transmission. In the medical commu-
nity, the infections in which the parasite is quiescent or inactive are referred to as silent or
dormant, and in the virology literature they are referred to as covert [102]. Parasite qui-
escence has well known but yet under-appreciated consequences for disease management.
During quiescence, the parasite are often resistant to the application of drugs, antibiotics
or fungicides [27, 28, 122, 121]. Furthermore, applying antibiotics can trigger the switch-
ing of bacteria from active to the inactive (quiescent) state. Plasmodium falciparum, the
main agent of malaria, has the ability to lurk in the hepatocytes of some patients, re-
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maining inactive but being resistance to drug treatments, causing later on disease relapse
[29, 121, 46]. P. vivax, another malarial agent, exhibits also the ability to become dormant
in the liver of a host for some weeks, months even up to a year or more, which makes the
task to eradicate the disease difficult [118, 105, 26]. Therefore, it is important to determine
the 1) conditions for the evolution of parasite quiescence, and 2) influence of quiescence
on the sustainability of parasite populations. A key theoretical study on the evolution of
quiescence in animal parasites [102] shows that silent/covert infection is not likely to be
the optimal strategy (trait value) for the parasite (so called Evolutionary Stable Strategy
(ESS)) in an epidemiological model with one host and one parasite genotype. Parasite
quiescence would only evolve if there were substantial fluctuations in the host population
size or seasonal variations in transmission rates. Therefore, the authors state that their
models predict low rates of covert infection, which does not reflect the consistent high levels
that are found in some host parasite systems. Based on a modelling framework with fixed
population sizes but two hosts and two parasite types, the host population can evolve dor-
mancy as an optimal strategy (ESS) as a result of the parasite pressure and coevolutionary
dynamics [116]. While more theoretical work is needed to decipher the conditions for the
evolution of parasite quiescence/dormancy, likely involving a combination of temporally
variable environmental and coevolutionary pressures, we focus in the present study on the
consequence of quiescence for the stability and outcome of host parasite coevolutionary
dynamics. As a first step in this direction, we consider here a model with one host and
two parasite strains (or types).

Indeed, one host population under pressure by several parasite strains, or even several
parasite species, is the rule rather than the exception [14, 115]. Considering the epi-
demiological dynamics under competition/co-infection between strains is important [52] to
predict the evolution of parasite virulence, that is disease induced death rate of host [112].
We are interested here in understanding the epidemiological dynamics of a single host type
infected by one of the two parasite strains exhibiting quiescence. We ask whether quies-
cence affects the parameters for which two strains can co-exist or competitively exclude
one another. Furthermore, the maintenance of several strains, the persistence of disease
as endemic or the persistence of the host population are affected by stochastic processes.
Disease epidemics are subjected to stochasticity at various levels, the main one being in
the transmission rate, and thus stochastic approaches are required to predict the outcome
of epidemics. While the deterministic model of epidemiology successfully captures the be-
haviour when the size of host and parasite populations are large, stochasticity can affect
the outcome of the dynamics for small sizes significantly [63, 11, 4, 7]. Quiescence affects
the size of the parasite active population and thus possibly the epidemiological dynamics.
We hereby hypothesize that quiescence may also affects the outcome of stochasticity on
the co-existence of our two parasite strains epidemiological model.

In the first part we describe our epidemiological model with changes in the number of
healthy and infected host individuals over time under quiescence of both parasite strains.
We then derive a stability condition for the dynamical ODE system. In the second part of
the study, we introduce stochasticity in disease transmission and derive a Fokker-Planck
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equation of the Continuous Time Markov Chain model. Lastly, we perform some numerical
study on the model behaviour under stochasticity. We show that for symmetric case i.e
when the infected class are identical and quiescence phases are also identical, quiescence
increases the variance, and decrease it when the rate of infection is small. For asymmetric
case, that is when the infected class as well as the quiescence phases are not identical,
quiescence has a major effect in reducing the intensity of the noise in the stochastic process,
whenever the rate of entering (or exiting) quiescence differ between strains. By analogy,
we term this phenomenon as moving average.

3.2 Deterministic model with quiescence

3.2.1 Model description

Our model is similar in essence to classic epidemiological models [49, 60, 52, 100, 10, 42].
Here we consider one host population and two parasite strains, thus the population is
divided into five mutually exclusive compartments: one healthy susceptible host compart-
ment H, two infected host, I1 and I2, infected by parasite of type 1 and 2 respectively, and
two quiescence compartments Q1 and Q2, comprise the infected individuals I1 and I2 for
which the parasite is in the quiescent state. We define the following system of ordinary
differential equations describing the rate of change of the number of individuals in each
compartment.

dI1
dt

= β1HI1 − ρ1I1 − dI1 − γ1I1 − ν1I1 + ζ1Q1 + ϵ1

dI2
dt

= β2HI2 − ρ2I2 − dI2 − γ2I2 − ν2I2 + ζ2Q2 + ϵ2

dH

dt
= Λ− β1HI1 − β2HI2 − dH + ν1I1 + ν2I2

dQ1

dt
= ρ1I1 − ζ1Q1 − dQ1

dQ2

dt
= ρ2I2 − ζ2Q2 − dQ2

(3.2.1)

where Λ is the constant birth rate of healthy host and d to is the natural death rate, γ1
and γ2 are the disease induced death rate or (virulence) caused by parasite 1, and 2 respec-
tively. Similarly all other parasite specific parameters such as disease transmission rate β,
recovery rate ν, rate at which parasite switches to quiescence ρ and the switching back rate
ζ are defined for each parasite strains separately. The parameters ϵ1 and ϵ2 are the rates
of incoming migration of parasite 1 and 2 respectively from an outside compartment/pop-
ulation. These parameters are introduced to avoid the competitive exclusion principle,
namely without the ϵ’s, one parasite type necessarily excludes the other and there is no
coexistence of both parasite types at the epidemic equilibrium, the same effect is expected
if the migration of quiescent parasite would occur (not shown here). We assume 1) that
the parasite lives and multiplies within its host, 2) the absence of multiple infection so that
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strains 1 and 2 of the parasite are mutually exclusive on one host, and 3) no latency pe-
riod for the parasite, hence, the infected persons are infectious immediately after infection.
Note that the model reduces to a simple model of one susceptible host and two infected
host types (SI1I2S, referred to as system without quiescence) when setting the quiescence
parameters equal to zero (Appendix C). In the present study we are particularly interested
in following the number of hosts infected by parasite 1 or 2 and to study conditions for
which both types of parasites are maintained. We therefore assume constant birth rate, to
ensure a non-explosive process when moving to the stochastic version of our model. We
finally introduce the parameters ϵ1 and ϵ2 to promote the coexistence of both strains at
the equilibrium and to guarantee a unique steady state solution in the continuous time
Markov chain version of the model (see below, Stochastic model)

3.2.2 Steady state solutions

In this section we find the equilibrium solutions of the system. First, we analyse the system
without inflow of new infection to the population (ϵ1 = ϵ2 = 0). This simple system
generically has the three equilibrium states: 1) a disease free equilibrium in which both
parasite strains die off and are removed from the system (yielding I1 = I2 = Q1 = Q2 =
0), 2) two-boundary equilibria at which a single parasite strain survive i.e. competitive
exclusion when parameters of the model are non-symmetric (yielding in either I1 = Q1 = 0
or I2 = Q2 = 0). In the non-generic case that we have symmetric parameters, we have line
of stationary solutions. By evaluating the Jacobian matrix of the system, one can evaluate
the stability conditions for these equilibria. To ensure the existence of unique polymorphic
equilibrium, we introduce two parameters for invasion/immigration rates namely, ϵ1 and ϵ2
which are greater than zero. The introduction of these two parameters results in moving the
disease free as well as one of the boundary equilibria to the negative cone i.e. makes them
to have negative values which is biologically meaningless. We are thereafter left with only
one polymorphic equilibrium which is biologically meaningful. Henceforth, we focus on the
analysis of the polymorphic equilibrium for which both parasite strains are maintained in
the system. We show the existence and uniqueness of this endemic equilibrium under mild
conditions (for more details, see Appendix A).

3.2.3 Stability analysis

An n×n Jacobian matrix P is said to be stable, and thus an equilibrium being locally stable,
if all its eigenvalues lie on the left half plane. As it may be impractical to determine the
stability of a matrix analytically [49], by using the Lyapunov theorem to determine if the
system is stable, it is easier to apply the Routh-Hurwitz criterion [49, 80, 66]. However, this
criteria can be cumbersome if the matrix is of high dimension. In this section we therefore
derive the stability condition for a generic 5 × 5 matrix G with parasite quiescence by
reducing our system to 3× 3 which is more easily amenable to computation.
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The Jacobian of system in equation (3.2.1) evaluated at equilibrium is given as follows

G =


β1H

∗ − ρ1 − γ1 − ν1 − d 0 β1I
∗
1 ζ1 0

0 β2H
∗ − ρ2 − γ2 − ν2 − d β2I

∗
2 0 ζ2

−β1H
∗ + ν1 −β2H

∗ + ν2 −β1I
∗
1 − β2I

∗
2 − d 0 0

ρ1 0 0 −ζ1 − d 0
0 ρ2 0 0 −ζ2 − d

 .

Now we define a matrix
A ∈ ((ai,j)) ∈ R3×3 (3.2.2)

to be the Jacobian matrix evaluated at equilibrium of the system without quiescent described in
appendix C. We introduce B = G+ dI, such that the spectrum of B is just the shifted spectrum
of G. Indeed, the stability of B implies stability of G.
Let

B =


a11 − ρ1 a12 a13 ζ1 0

a21 a22 − ρ2 a23 0 ζ2
a31 a32 a33 0 0
ρ1 0 0 −ζ1 0
0 ρ2 0 0 −ζ2

 . (3.2.3)

Definition 3.2.1. Let 3 × 3 matrix A be a Jacobian matrix of system without quiescence phase
and we also define

a1 = −tr(A) = −a11 − a22 − a33,

a2 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31,

a3 = −det(A).

(3.2.4)

The matrix A in 3.2.2 is stable if and only if

tr(A) < 0, det (A) < 0 and a2 > 0. (3.2.5)

The above proposition 1 is simply a reformulation of the Routh-Hurwitz criteria (see details in
[49, 80, 66]). We now find a criteria for stability of B under the following proposition.

Proposition 2. The following three statements are equivalent for the matrix B above:

Statement 1:

The matrix B in 3.2.3 is stable for all ρ1, ρ2, ζ1, ζ2 > 0.

Statement 2 :

b1 > 0, b2 > 0, b3 > 0, b4 > 0, b5 > 0, b1b2b3 > b23 + b21b4,

(b1b4 − b5)(b1b2b3 − b23 − b21b4) > b5(b1b2 − b3)
2 + b1b

2
5 for all ρ1, ρ2, ζ1, ζ2 > 0.
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Statement 3:

det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0, a13a31 ≤ a11a33,

a23a32 ≤ a22a33.

The above statements are technically equivalent in the sense that for the system in (3.2.1) to
be stable it must satisfy the given statements. We prove that statement 1 implies statement
2, statement 2 implies statement 3 and statement 3 implies statement 1. This proposition is
a generalisation of the theorem in [49] and we use the same method as in [49] (see Appendix
B for the proof of the proposition 2 above, as we prove the stability of a generic matrix B as
defined in 3.2.3). The conditions in statement 3 of the above proposition can be used to prove
that the endemic equilibrium of (3.2.1) is locally asymptotically stable. Which means that if
the system undergoes a perturbation (the system is set not too far away from its equilibrium)
then the system eventually reaches its equilibrium. The local stability is not as strong as global
stability, the latter meaning that the system returns to it equilibrium after whatever perturbation
(without restriction). Note that we see the effect of local stability of the equilibrium solutions in
the stochastic simulations using Gillespie’s algorithm, as the realisations (sample paths) remain
within the domain of attraction of the deterministic endemic equilibrium (Figures 3.2a and 3.2b).

As mentioned, the statement 2 may sometimes be hard to apply, thus as an alternative, one
can use statement 3 to show that (3.2.1) is locally asymptotically stable. This is relatively easy
as the dimension of the system is now reduced to 3 × 3, so that it is possible to compute the
Jacobian matrix of the system without quiescence (A.3.1) described in Appendix C to obtain the
matrix A in (3.2.2). Then one can test the conditions described in statement 3 above. Once
those conditions are satisfied then the larger system (3.2.1) is also locally asymptotically stable.

3.3 Stochastic Analysis

3.3.1 Transition probabilities

This section defines a stochastic version to the deterministic model as described in equation (3.2.1)
of section 3.2.1. We add stochasticity occurring at any of the possible transition of individuals
between classes (birth and death). The transition probabilities of jumping from one state (e.g.
infected quiescent) to the another state (e.g. infected) are defined bellow. We choose ∆t very small
so that during this time interval only one event occurs. The proportion of healthy population is
H, the proportion of infected by parasite 1 population is I1, the proportion of infected by parasite
2 population is I2, the proportion of population in quiescence compartment infected by parasite
1 is Q1 and the proportion of population in quiescence compartment infected by parasite 2 is Q2.
The possible changes are either H+1, H−1, I1+1, I1−1, I2+1, I2−1, Q1+1, Q1−1, Q2+1, Q2−1
or no change at all. Therefore, our stochastic process is a birth and death process. The one step
transition probabilities are given in table 3.1:
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Table 3.1: Transitions rates for the quiescence model 1.

Type Transition Rate
Birth of healthy host H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t, I2t, Q1t, Q2t) Λ∆t+ o∆(t)
Natural death of H (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t, I2t, Q1t, Q2t) dH∆t+ o∆(t)
Infection of H by I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t + 1, I2t, Q1t, Q2t) β1HI1∆t+ o∆(t)
Infection of H by I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t, I2t + 1, Q1t, Q2t) β2HI2∆t+ o∆(t)
Death of I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t − 1, I2t, Q1t, Q2t) (d+ γ1)I1∆t+ o∆(t)
Death of I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t − 1, Q1t, Q2t) (d+ γ1)I2∆t+ o∆(t)
Recovery I1 & replacement with H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t − 1, I2t, Q1t, Q2t) ν1I1∆t+ o∆(t)
Recovery I2 & replacement with H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t1, I2t − 1, Q1t, Q2t) ν2I2∆t+ o∆(t)
Immigration to I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t + 1, I2t, Q1t, Q2t) ϵ1∆t+ o∆(t)
Immigration to I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t + 1, Q1t, Q2t) ϵ2∆t+ o∆(t)
Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t − 1, I2t, Q1t + 1, Q2t) ρ1I1∆t+ o∆(t)
Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t − 1, Q1t, Q2t + 1) ρ2I2∆t+ o∆(t)
Wake-up Q1 & replacement with I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t + 1, I2t, Q1t − 1, Q2t) ζ1Q1∆t+ o∆(t)
Wake-up Q2 & replacement with I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t + 1, Q1t, Q2t − 1) ζ2Q2∆t+ o∆(t)
Natural death of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t, Q1t − 1, Q2t) dQ1∆t+ o∆(t)
Natural death of Q2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t, Q1t, Q2t − 1) dQ2∆t+ o∆(t)

3.3.2 Stochastic simulations

In order to test the validity of our assumptions to analyse the stochastic system, we used Gillespie’s
algorithm [37, 38, 6] to generate stochastic realisations/sample paths of the birth and death
processes (Figures 3.2a and 3.2b). In (Figures 3.2a and 3.2b), the stochastic trajectories fluctuate
around the deterministic equilibrium as predicted by equation (3.2.1). Please note that in (Figure
3.2a) there are only three curves in the deterministic trajectories while there are five in the
stochastic realisation. This is to due the fact that we chose symmetric parameter values of the
model, so I1 = I2 and Q1 = Q2 in the deterministic setting, but not in the stochastic version.

3.3.3 Master equation

The forward Kolmogorov differential equation also known as Master Equation, describes the
rate of change of these probabilities is given in table 3.1. The master equation describes the
evolution of the disease individuals at the early times of the infection. To understand the long
term dynamics, we need to derive its corresponding Fokker-Planck equation.
Let p(i, j, k, l,m)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k,Q1(t) = l, Q2(t) = m}, then
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dp(i,j,k,l,m)

dt
=Λp(i−1,j,k,l,m) + d(i+ 1)p(i+1,j,k,l,m) + β1(i+ 1)(j − 1)p(i+1,j−1,k,l,m)

+ (d+ γ1)(j + 1)p(i,j+1,k,l,m) + β2(i+ 1)(k − 1)p(i+1,j,k−1,l,m)

+ (d+ γ2)(k + 1)p(i,j,k+1,l,m) + ν1(j + 1)p(i−1,j+1,k,l,m) + ν2(k + 1)p(i−1,j,k+1,l,m)

+ ϵ1p(i,j−1,k,l,m) + ϵ2p(i,j,k−1,l,m) + ρ1(j + 1)p(i,j+1,k,l−1,m) + ρ2(k + 1)p(i,j,k+1,l,m−1)

+ ζ1(l + 1)p(i,j−1,k,l+1,m) + ζ2(m+ 1)p(i,j,k−1,l,m+1)

+ d(l + 1)p(i,j,k,l+1,m) + d(m+ 1)p(i,j,k,l,m+1)

−
[
Λ + di+ β1ij + (d+ γ1)j + β2ik + (d+ γ2)k + ν1j + ν2k

+ ϵ1 + ϵ2 + ρ1j + ρ2k + ζ1l + ζ2m+ dl + dm
]
p(i,j,k,l,m)

(3.3.1)
This master equation (3.3.1) is then used to work out Kramers-Moyal expansion that led to the
derivation of the Fokker-Planck equation below.

3.3.4 Fokker-Planck equation of the model

To understand the long term dynamics of the master equation (3.3.1), we need to derive the
corresponding Fokker-Planck equation. The Fokker-Planck equation describes further the rate
of change of transitions probabilities described in table 3.1. We can also find the long term
distribution of variables.

Now, let

p(i, j, k, l,m) =

∫ ih+h
2

ih−h
2

∫ jh+h
2

jh−h
2

∫ kh+h
2

kh−h
2

∫ lh+h
2

lh−h
2

∫ mh+h
2

mh−h
2

u(x1, x2, x3, x4, x5)dx1dx2dx3dx4dx5+o(h6),

let also x1 = ih, x2 = jh, x3 = kh, x4 = lh, x5 = mh and h = 1
N . We then performed Kramers-
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Moyal expansion to derived the following Fokker-Planck equation which is given as follows.

∂tu(x1, . . . , x5, t) = −∂x1{hλ− dx1 − β1x1x2 − β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)
−∂x2{β1x1x2 − (d+ γ1)x2 − ν1x2 − ρ1x2 + ζ1x4 + ϵ1}u(x1, . . . , x5, t)
−∂x3{β2x1x3 − (d+ γ2)x2 − ν2x2 − ρ2x3 + ζ2x5 + ϵ2}u(x1, . . . , x5, t)
−∂x4{ρ1x2 − ζ1x4 − dx4}u(x1, . . . , x5, t)
−∂x5{ρ2x3 − ζ2x5 − dx5}u(x1, . . . , x5, t)

+
h

2
∂x1x1{hλ+ dx1 + β1x1x2 + β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)

+
h

2
∂x2x2{β1x1x2 + (d+ γ1)x2 + ν1x2 + ρ1x2 + hϵ1}u(x1, . . . , x5, t)

+
h

2
∂x3x3{β2x1x3 + (d+ γ2)x3 + ν2x3 + ρ2x3 + hϵ2}u(x1, . . . , x5, t)

+
h

2
∂x4x4{ρ1x2 + ζ1x4 + dx4}u(x1, . . . , x5, t)

+
h

2
∂x5x5{ρ2x3 + ζ2x5 + dx5}u(x1, . . . , x5, t)

−h∂x1x2{β1x1x2 + ν1x2}u(x1, . . . , x5, t)
−h∂x1x3{β2x1x3 + ν1x3}u(x1, . . . , x5, t)
−h∂x2x4{ρ1x2 + ζ1x4}u(x1, . . . , x5, t)
−h∂x3x5{ρ2x3 + ζ2x5}u(x1, . . . , x5, t)

(3.3.2)

3.3.5 Linear Transformation of the Fokker-Planck equation

In order to solve the above Fokker-Planck equation (3.3.2), we use the so-called asymptotic
method (see for example [67]). The principle is to transform the multivariate Fokker-Planck
equation to a linear Fokker-Planck equation which is linearised around the stationary state of the
deterministic system (3.2.1). The solution of the linear Fokker-Planck is found to be normally
distributed, the solution is given in the following two theorems (see chapter 8 of [114]). We
numerically checked this results using our stochastic simulations and the comparison is shown in
(Figure 3.3).

Theorem 1. The linear multivariate Fokker-Planck of (3.3.2) can be written as follows

∂P (y, t)

dt
= −

5∑
ij

Mij
∂

∂yi
yiP (y, t) +

1

2

5∑
ij

Nij
∂2

∂yi∂yj
P (y, t) (3.3.3)

where y = (y1, . . . , y5), Nij is symmetric and positive definite, its solution is given as

P (y, t) = (2π)
1
2det(Σ)

1
2 exp(−1

2
yΣ−1yT )

with

Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.
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The matrices N and M are defined explicitly in Appendix D.

Theorem 2. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 +Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =

∫ ∞

0
e−MtNe−MT tdt.

Theorem 2 which known as Lyapunov equation [54] allows us to compute the covariance matrix
as found in the normal distribution shown in theorem 1 fairly easily, this is due to the fact that
matrices A and B are constant matrices, the only unknown is the Σ−1 matrix. The covariance
matrix is of dimension 5 and tells us the degree at which each compartments namely healthy,
infected by strain 1 and 2 and quiescence class 1 and 2 go together i.e. the relationship between
each class. We use MATLAB to perform numerical calculations for the analytical solutions of
the covariance matrix Σ−1 .

We also computed 10,000 independent stochastic realisations using Gillespie’s algorithm. The
probability histogram was plotted in (Figure 3.3) for the number of infected individuals by strain
1. This distribution is then compared with the probability density function of the normal dis-
tribution with mean and variance obtained from both Gilliespie’s algorithm and the normal
approximation method using linear multivariate Fokker-Planck equation (3.3.2). The results are
consistent which further validates our analytical result obtained using linear Fokker-Planck.

3.4 Covariance matrix

In order to understand the effect of quiescence in our stochastic model, we need to compare
the system with quiescence to that of the system without quiescence in terms of the number
of infected by both parasites. To do the comparative study we need to collapse the covariance
matrix for both models with and without quiescence so that we only have 2 covariance matrix
of the infected individuals. For the model with quiescence, this is done by adding the number of
individuals in the infected class and the number of individuals in the quiescence stage to obtain
a total number of infected individuals (irrespective of their quiescence status). For the system
without quiescence, it is straight forward, it is achieved by isolating the number of individuals
in the infected compartment. This step is justified below, and the following results indicate how
to compute the covariance matrix [61, 109]. The obtained covariance matrix is denoted as the
collapsed covariance matrix.
Let Y ∼ Nr(µ,Σ) be r-variate multivariate normal distribution with mean µ and variance Σ,
where

Y =


Y1
Y2
...
Yr

 µ =


µ1

µ2
...
µr

 Σ =


σ1,1 σ1,2 · · · σ1,r
σ2,1 σ2,2 · · · σ2,r
...

...
. . .

...
σr,1 σm,2 · · · σr,r
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Any q linear combination of the Yi, say A′Y, is (q-variate) multivariate normal. Let

A′Y =



a11Y1 + a12Y2 + · · ·+ a1rYr

a21Y1 + a22Y2 + · · ·+ a2rYr

· · ·+ · · ·+ · · ·+ . . .

aq1Y1 + aq2Y2 + · · ·+ aqrYr


,

then
A′Y ∼ Nq(A

′µ,A′ΣA). (3.4.1)

Numerical examples of the collapsed covariance matrix are shown for various parameter combi-
nations. The collapsed covariance matrix of the model with quiescence is denoted as Eq and the
collapsed covariance matrix of the model without quiescence as Ewq. In an effort to understand
the effect of quiescence on the stochastic process, we consider two different cases of parameter
combinations: symmetric where the parameter values of stain 1 and 2 are exactly the same (ex-
amples 1, 2, and 3), and non-symmetric where the parameter values of stain 1 and 2 are different
(for example ρ1 ̸= ρ2, examples 4, 5, 6 and 7).

Example 1 We fix the following parameter values: β1 = β2 = 0.005, d = 0.5,Λ = 1000, ν1 =
ν2 = 0.3, ρ1 = ρ2 = 0.7, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ϵ1 = ϵ2 = 0.6 and the initial population
sizes are H = 50, 000, I1 = 10, 000, I2 = 10, 000, Q1 = 5, 000, Q2 = 5, 000, time = 300. We obtain
the following collapsed covariance matrices:

Eq1 =

(
683, 640 −682, 500
−682, 500 683, 640

)
, Ewq1 =

(
298, 630 −297, 560
−297, 560 298, 630

)
.

Example 2 We use the same parameter values as in example 1 only with a lower quiescence rate
ρ1 = ρ2 = 0.4

Eq2 =

(
655, 170 −654, 060
−654, 060 655, 170

)
, Ewq2 = Ewq1

We show in example 1 that the model with quiescence exhibits a larger variance compared with
the model without quiescence. When comparing example 1 and 2, we observe the effect of quies-
cence on reducing the variance of the number of infected individuals. When the rate of entering
quiescence stage (ρ) decreases, the variance of the number of infected individuals decreases (Eq1

versus Eq2).

Example 3 The parameter and initial values are identical to example 1 except that the disease
transmission rates are now 10 times lower β1 = β2 = 0.0005:

Eq3 =

(
14.81 −0.0388

−0.0388 14.81

)
, Ewq3 =

(
27, 651 −26, 443
−26, 443 27, 651

)
.
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In example 3, we observe the effect of decreasing the transmission rate in reducing the variance
and covariance of the collapsed covariance matrix. In contrast to example 1, in example 3, we
find that the model with quiescence has less variance compared to the model without quiescence.

We describe the effect of quiescence on variance by comparing example 1 and 3. In contrast
to the absence of quiescence, quiescence generates two effects under low transmission rate: 1) a
decrease of the number of infections, and 2) a decrease in the probability of extinction (in a small
population stochasticity is important). Based on our simulations, it is indeed more likely for the
parasite to go extinct in example 3 than in example 1. Therefore, both effects of quiescence in
example 3 concur to reduce the variance compared to the absence of quiescence. In example
1, the population size of each parasite is high enough to be well approximated by a mean-field
ODE, quiescence increases the number of infections and quiescence events produce additional
randomness and simply inflate the variance (compared to the absence of quiescence).

Example 4 We use the same parameter values as in example 1 only with asymmetric rates of
quiescence ρ1 = 0.3, ρ2 = 0.5

Eq4 =

(
2, 251.9 −57.42
−57.42 64.35

)
, Ewq4 = Ewq1

Now that we use asymmetrical rates of entering quiescence between the two strains in example 4,
the variance are much decreased compared to examples 1 and 2. This further reduction in variance
occurs because of the competition amongst the two parasite types in the model with quiescence
(which was absent because of symmetrical rates in examples 1-3). In other words, because the
two parasite strains have different quiescence rates, there is also competition between them to
infect host individuals. Furthermore, the strain with the largest rate of entering the quiescence
stage (ρ) exhibits a smaller variance than the strain with a lower quiescent rate. By analogy, we
call this phenomenon as moving average behaviour (see discussion).

Example 5 We use the same parameter values as in example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.4, ζ2 = 0.8 quiescence.

Eq5 =

(
19.17 −15.07
−15.07 2187.1

)
, Ewq5 = Ewq1.

In example 5, we investigate the influence of asymmetric rates of entering and exiting the quiescent
stage on the variance in infected individuals. We set the rate of entering quiescence of strain 1
to be larger than rate of strain 2, while the rate of exiting quiescence of strain 1 is smaller than
that of strain 2. We still observe the so-called moving average effect, that is, the strain with the
largest rate of entering the quiescence has the smaller variance. This example shows that entering
quiescence has significant effect in changing the dynamics of the system.

Example 6 We use the same parameter values as in example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.8, ζ2 = 0.4 quiescence.

Eq6 =

(
164.04 −151.92
−151.92 2332.6

)
, Ewq6 = Ewq1.
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In example 6, we take the rate of entering and exiting quiescence to be the same for each strain,that
is, ρ1 = 0.8 = ζ1 = 0.8, ρ2 = 0.4 = ζ2 = 0.4, to ascertain if the moving average is determined
by the rate of entering quiescence or the longest quiescence time. This example confirms that
the moving average is determined by the rate of entering quiescence. We note by this example
that rate of exiting quiescence stage doesn’t effect the dynamic significantly as far as the moving
average is concern.

Example 7 In example 7, we increase the disease transmission rates and decrease the birth and
death rate (compared to example 1), while we assume asymmetric rates of entering quiescence
(as in example 5) but symmetric rates of exiting quiescence as well as the immigration rate. The
following values are used β1 = β2 = 0.05, d = 0.4,Λ = 100, ν1 = 0.03, ν2 = 0.3, ρ1 = 0.8, ρ2 =
0.4, γ1 = γ2 = 0.03, ζ1 = ζ2 = 0.1, ϵ1 = ϵ2 = 0.6 and the initial population sizes are as in example
1. We obtain the following collapsed covariance matrices:

Eq6 =

(
967.63 −927.22
−927.22 1151.1

)
, Ewq6 =

(
245.56 −3.6384
−3.6384 5.8915

)
.

From examples 7, here we use asymmetric values of parameters in both models, we see the
influence of quiescence in reducing the variance of the collapsed covariance matrix whenever one
of the rates of entering quiescence is high. In addition, we also see the effect of strain competition
in the model without quiescence in reducing the variance of the number of infected individuals.
In the model with quiescence we take the recovery rate of infected individuals by strain 1 to be
10 times smaller than those infected by strain 2, and observe our moving average effect.

As additional verification, we draw contour plots of the joint density of infected individuals by
strain 1 and 2 in (Figure 3.4a) and (Figure 3.4b) which compare the variance in the number
of infected individuals by both strains. We confirm that the joint distribution of the number
of infected individuals by parasite strain 1 and 2 have a smaller surface area, that is with less
variance, under the model with quiescence than the absence of quiescence. In all examples, the
values of the covariance (off-diagonal elements) are negative, and we observe this effect also in
the contours (Figures 3.4a, 3.4b) because the number of infected individuals by parasite 1 and
2 are negatively correlated. This negative correlation is a result of the competition between the
parasite types. We finally analyse the change in variance (Figure 3.5a) and covariance (Figure
3.5b) of the collapsed covariance matrix as a function of ρ1 and ρ2 (rates of entering quiescence).
The effect of the transmission rates β1 and β2 is here again visible: when β1 = β2 are low, high
rates of entering quiescence depletes the infected compartments so that the number of infected
drops down and the infection decreases, which in turn reduces the variance. When β1 = β2 are
high, there are enough infected to keep the infection spreading despite the rate of quiescence,
hence the increases in the variance (under a fixed values of ζ1 and ζ2 (Figures 3.5a,3.5b). The
behaviour of the covariance is reversed as the infected classes are negatively correlated. Based on
the examples above, increasing ζ1 and ζ2 would results in decreasing the difference between the
variance (as well as for the covariance) for the different transmission rates β1 and β2.
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3.5 Discussion

In this study we aim to understand the effect of quiescence on the spread of infectious disease
and with competition between parasite strains. Our study shows that introducing the pathogens
ability to switch between an active and inactive (quiescence) phase can significantly impact the
stochasticity in the system. In our system, when the invasion/immigration rates are turned
off, one of the parasite type becomes extinct. However, when the invasion/immigration rates are
turned on, coexistence of host and both parasite types is possible. If both strains show equal rates
of infection, transmission and quiescence, there is no real competition and the system behaves
as if only one parasite would be present. On other hand, when the parasite types have differ-
ent characteristics, there is competition between them which generates various epidemiological
dynamics.

Our collapsed covariance measure quantifies the infection load at the steady state of the system
with and without quiescence. We measure this infection load for various parameter combinations
of interest to understand the impact of quiescence on the stochastic process. Under symmet-
ric quiescence rates and high transmission rates, quiescence increases the variance in infected
individuals, while the quiescence reduces the variance in infected when transmission rates are
low. When considering asymmetry in quiescence rates between parasite strains, we uncover a
special phenomenon which we call by analogy to the moving average behaviour. Namely, the
strain with the high rate of entering quiescence serves as moving average for the whole parasite
population and buffers the effect of the second less quiescent strain. In other words, the strain
with the higher quiescence determines the intensity of the noise in the stochastic infection process
determining the variance of the number of infected individuals (lower variance under low disease
transmission, higher variance under high disease transmission). Moving average is a well known
concept in sound, signal, and image processing. In sound processing for example, moving average
also known as low pass filter, filters the frequencies so that only low frequencies can be heard.
The sound of noisy wave or distorted signal, is being smoothens by applying a moving average
processing function because it assumes the areas of high frequencies as noise. We are not aware
of the use of moving average in the field of disease epidemiology, and hence introduce it here as a
consequence of quiescence in parasite. When different strains of parasite do show different quies-
cent rates, the competition between them under a stochastic epidemiological process reduces the
number of infected individuals, as well as the virulence of the disease (number of host death). We
theoretically predict that under competition between parasite types, the strain with the lower rate
of entering quiescence gets fixed, however, if coexistence can be maintained by influx of parasite
strains from outside, quiescence has the beneficial effect to reduce the stochasticity of the system.
An extension for our work is to investigate if quiescence itself can evolve in such epidemiological
setup as a bet-hedging strategy reducing stochasticity in transmission rates.

Due to the difficulty in the existing methods to analyse the stability of 5×5 matrix, we developed
here a criterion for the study of stability of the system with quiescence for the deterministic
system. Proposition 2 is important because it reduces the dimension of the system from 5 to 3. It
is well known that studying the stability of the system with higher dimension is hard, often times
impossible. While system with low dimension is easy and straight forward to study its stability.
Thus the reduction in proposition 2 is of significant importance that removes the difficulties of
analysing matrix with high dimension.
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We then extended our model to a stochastic version. We show that the analytic solution of
the linear Fokker-Planck equation is normally distributed with mean around the equilibrium
solution. We confirm this results by computing 10,000 independent stochastic realisations using
Gillespie’s algorithm (Figure 3.3). The probability histogram was plotted at a time equals to
300 generations. This distribution is then compared with the probability density function of
the normal distribution with mean and variance as obtained from both Gilliespie’s algorithm
and the normal approximation method using linear multivariate Fokker-Planck equation (3.3.2).
The results are consistent which further validates our analytical result obtained using the linear
Fokker-Planck equation.

As revealed by a wealth of recent studies on plant or animal, microbiomes are composed of multiple
species and multiple strains per species. The composition of species and/or strains is governed
by antagonistic, mutualistic or neutral inter- and intra-specific interactions along with stochastic
processes such as birth and death, extinction-recolonization and migration of strains/species [see
[11, 34]]. We speculate that our results on quiescence should be affecting the dynamics in these
multi-species systems. Moreover, many microbe, especially human parasites, enter quiescence
stage as a mechanism of resistance against antibiotics [13]. This has important consequences
for the management of infectious diseases. Furthermore, host bacteria can also enter quiescence
upon contact with viruses [17], which can lead to changes in the expected population dynamics of
the bacterial and virus populations [21]. It is therefore of paramount importance to understand
the influence of the quiescence on the population of hosts and parasites, especially as coevolution
between antagonistic species can drive the evolution of quiescence/dormancy [46].
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Figure 3.1: Flow chart of SI1I2Q1Q2S
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(a) (b)

Figure 3.2: Numerical simulations of the deterministic model (3.2.1) compared
with stochastic simulation using Gillespie’s algorithm. In (Figure 3.2a), the initial
population size is H = 1000, I1 = 100, I2 = 100, Q1 = Q2 = 50. The values of the
parameters are symmetrical; β1 = β2 = 0.005,Λ = 1000, d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 =
0.003, ϵ1 = ϵ2 = 0.6, ζ1 = ζ2 = 0.7, ρ1 = ρ2 = 0.7. While in (Figure 3.2b), the initial
population size is H = 100, I1 = 10, I2 = 10, Q1 = Q2 = 5. The values of the parameters
are asymmetrical; β1 = 0.005, β2 = 0.0005,Λ = 100, d = 0.3, ν1 = 0.3, ν2 = 0.003, γ1 =
γ2 = 0.003, ϵ1 = 10, ϵ2 = 50, ζ1 = 0.2, ζ2 = 0.4, ρ1 = 0.4, ρ2 = 0.1.
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Figure 3.3: Histogram generated from simulations using Gillespie’s algorithm is com-
pared to the probability density with mean and variance obtained from simulation using
Gillespie’s algorithm and the probability density of normal distribution with mean and
variance obtained from the theory of I1, infected by parasite 1 compartment at time =
300 of the stochastic model with quiescence. The initial population sizes of the model
are; I1 = 50000, I2 = 10000, Q1 = 5000, Q2 = 5000. The parameters of the model are
β1 = β2 = 0.05,Λ = 1000, d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ρ1 = ρ2 =
0.7, ϵ1 = ϵ2 = 10.
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Figure 3.4: Contour plots of the joint density of infected individuals by strain 1 and 2
based on simulations for (a) example 4, and (b) example 5 considered in the text. The
x-axis is the number of infected individuals of strain 1 while the y-axis is the number of
infected individuals by strain 2 based on the parameters stated in each example.
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Figure 3.5: Effect of quiescence, rates of entering the quiescence phase ρ1 = ρ2, and of
transmission rates β1 = β2 on the (a) variance of parasite 1, and (b) covariance of parasite
1 of the collapsed covariance matrix. We use the following parameter values (symmetrical
case): d = 0.5,Λ = 1000, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ϵ1 = ϵ2 = 10 and
the initial population sizes are H = 50, 000, I1 = 10, 000, I2 = 10, 000, Q1 = 5, 000, Q2 =
5, 000, time = 300. The blue line is for β1 = β2 = 0.0015, and the red line for β1 = β2 =
0.3125
.
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Chapter 4

Quiescence and co-infection by two
pathogen strains

4.1 Co-infection model without quiescence

In this introductory section, we review the work done in [52] in which the authors build mathe-
matical epidemic model of non-interacting multiple strains that cause acute infection. Specifically,
the authors develop novel statistical tools in order to correctly test for interactions between sev-
eral pathogens that cause severe infections. The model assumes that two pathogen strains can
be present in a host population, and that hosts can be infected by either strain or co-infected by
both strains. In that sense the two strains are non-interacting with one another because there
is no direct influence of the infection status by one strain on the probability of being infected
by the other strain. The model challenges a very old assumption that non-interacting pathogens
are statistically independent. The authors argue that the recovery of the co-infected individuals
generates the net prevalence of individual pathogen to simultaneously decrease. Stochastic sim-
ulations reveal that the non-interacting pathogen are, as a result, positively correlated. Thus, a
main results of this study is that the proportion of co-infected hosts is greater than the naively
expected prevalence of co-infection obtained by multiplying the individual prevalence of both
strains.

Dynamics of individual pathogens. The dynamics of individual parasites/pathogens is cap-
tured in the SIS model (1.3.1) discussed in chapter one. All previous mathematical analyses are
still valid here.

4.1.1 Co-infection model

In recent times and with progress of DNA genotyping, epidemiologists/researchers have now well
established that many infections often involve many strains/pathogens of the same species [115].
In fact, infection of one pathogen strain can trigger the subsequent infection by another strain
[44, 90]. The co-infection affects the extend of symptoms and the degree of contagiousness of the
infection, it also affects the duration and the severity of the infection [41]. Neutral, facilitative
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Figure 4.1: Flow diagram of the co-infection model

and antagonistic interactions are therefore possible [62, 93]. Neutral interaction is when one party
of the interacting species benefits while the other remains unaffected (e.g bird nest and the tree),
facilitative is which both parties of the interacting species benefit from each other (e.g plants and
mycorrhizal fungi), antagonistic interaction is when one party of the interacting species benefits
at the expense of the other (e.g hosts and pathogens) [107]. Thus, the occurrence of co-infection
has a significant importance in disease management and optimal control strategy of the infections
[103, 57, 3].

We now proceed to define the pathogen-specific net forces of infection as follows:

Fi = βiIi = βi(Pi + P12) for i = 1, 2 (4.1.1)

Here we have one host and two parasites, the proportions of individuals singly infected by parasite
1 and 2 are given by P1 and P2, respectively and the proportion of co-infected hosts is given as
P12, β1 is the transmission rate of pathogen 1, β2 is the transmission rate of pathogen 2 and ν is
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the recovery rate. We define the model:

dP1

dt
= β1I1S − β2I2P1 − νP1

dP2

dt
= β2I2S − β1I1P2 − νP2

dP12

dt
= β1I1P2 + β2I2P1 − νP12

S = 1− P1 − P2 − P12

I1 = P1 + P12

I2 = P2 + P12

(4.1.2)

with the equilibrium solution given as

P̃ ∗
12 =

( β1 + β2
β1 + β2 − ν

)
Ĩ1

∗
Ĩ2

∗
=

(β1 + β2)(β1 − ν)(ν − β2)

β1β2(ν − β1 − β2)

and

P̃1
∗
= Ĩ1

∗ − P̃ ∗
12 =

ν(ν − β1)

β2(ν − β1 − β2)
, P̃2

∗
= Ĩ2

∗ − P̃ ∗
12 =

ν(ν − β2)

β1(ν − β1 − β2)
,

where Ĩ1
∗
Ĩ2

∗
are the equilibrium solutions of the SIS model (Chapter 1, 1.3.1). We present here

two numerical simulations to exemplify the main results obtained in [52]. Basically it means that
by computing the number of co-infected and infected by either strain, we can know if there is
facilitation, antagonism or neutral interactions between strains.

4.1.2 Stability analysis

Theorem 1. (Stability theorem) The endemic equilibrium solution of system (4.1.2) is locally
asymptotically stable if

βi > ν for i = 1, 2

Proof. The eigenvalues of the Jacobian matrix evaluated at this equilibrium state is given as

J =

∣∣∣∣∣∣
j11 j12 j13
j21 j22 j23
j31 j32 j33

∣∣∣∣∣∣ .
where

j11 =(1− 2P1 − P2 − 2P12)β1 − (P2 + P12)β2 − ν,

j12 =− (P1 + P12)β1 − β2P1,

j13 =(1− 2P1 − P2 − 2P12)β1 − P1β2,

j21 =− (P2 + P12)β2 − β1P2

j22 =(1− P1 − 2P2 − 2P12)β1 − (P1 + P12)β1 − ν,

j23 =(1− P1 − 2P2 − 2P12)β2 − P2β1,

j31 =(P2 + P12)β2 + β1P2,

j32 =(P1 + P12)β1 + β2P1,

j33 =P2β1 + β2P1 − ν.
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Figure 4.2: Deterministic simulation of the two-pathogens co-infection model without qui-
escence with β1 = 0.5, β2 = 0.25, and ν = 0.1, P1(0) = P2(0) = 0.01, P12 = 0.005, N =
1000.

The eigenvalues are :
ν − β2,

ν − β1,

ν − β1 − β1.

Please not that the eigenvalues lie on the left half plane once β1, β2 > ν which completes the
proof.

4.1.3 Co-Infection Model with Quiescence

In this section, we extend the model in system (4.1.2) to include quiescence compartment as this
phenomenon is very common in parasites of humans, animals and plants. For example, one of
the malaria parasites, call P. vivax, is known to have dormancy which can last for weeks, months
and even years. However, not all malaria parasites are known to have dormancy [96]. There are
numerous data that show co-infection between several malaria strains, and even malaria species
( for example see [15]). Therefore, it is important to consider the effect of quiescence on the
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Figure 4.3: Stochastic simulation of the two-pathogens model without quiescence of the
confection model with β1 = 5, β2 = 2.5, ν = 1 (parameters have units of inverse time), the
initial population sizes are P1(0) = P2(0) = 10, P12 = Q(0) = 5, N = 1000.

co-infection dynamics. Model (4.1.3) described below captures the dynamics of the system of
co-infection with quiescence. The total population is divided into five mutually exclusive com-
partments, namely Susceptible compartment, Singly infected by parasite 1 compartment, Singly
infected by parasite 2 compartment, Co-infected by both parasites compartment, Quiescence
compartment of hosts singly infected by parasite 2. The first equation represents the rate of
change of individuals singly infected by parasite 1, denoted by P1. The second equation repre-
sents the rate of change of individuals singly infection by parasite 2, denoted by P2. The second
equation represents the rate of change of individuals that are co-infected by both parasites 1 and
2, denoted by P12. While the last equation represents the rate of change of individuals infected
by parasite 2 that are in quiescence stage, denoted by Q2. The parameters ρ and ζ are the rate
of entering and exiting quiescence, respectively, the remaining of the parameters are as described
in model (4.1.2) above. We assume that the total population size (N) is constant. The natural
death rate is also neglected as we consider acute infections. Please note that this hypothesis may
need to be revised for chronic infections which are common and underlie a large proportion of
co-infections in animals and humans [40]. For plants, we note that when they are infected by
many pathogens, they typically remain so throughout their lifetime [73]. The disease induced
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death rate is also neglected.

Figure 4.4: Flow diagram of the co-infection model with quiescence.

Co-infection model with quiescence

dP1

dt
= β1I1S − β2I2P1 − νP1

dP2

dt
= β2I2S − β1I1P2 − νP2 − ρP2 + ζQ2

dP12

dt
= β1I1P2 + β2I2P1 − νP12

dQ2

dt
= ρP2 − ζQ2

S = 1− P1 − P2 − P12 −Q2

I1 = P1 + P12

I2 = P2 + P12

(4.1.3)
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4.1.4 Equilibrium Solutions and Stability of the system

The following equations are the equilibrium solutions of the co-infection model (4.1.3)

� P1 = P2 = P12 = Q2 = 0,

� P1 = P12 = 0, P2 =
ζ(β2−ν)
β2(ζ+ρ) , Q2 =

ρ(β2−ν)
β2(ζ+ρ) ,

� P1 = 1− ν
β1
, P2 = P12 = Q2 = 0,

� the co-existence equilibrium occurs when P1, P2, P12, Q2 ̸= 0.

The co-existence equilibrium solution can be expressed in an implicit form as follows:

P ∗
1 =

β1I1S

ν + β2I2
, P ∗

2 =
β2I2S

ν + β1I1
, P ∗

12 =
β1I1β2I2S(β1I1 + 2ν + β2I2)

ν(ν2 + νβ2I2 + νβ1I1 + β1I1β2I2)
, Q∗

2 =
ρβ1I1S

ζν + β2I2
.

Please observe that

I∗i = P ∗
i + P ∗

12 = Ĩi
∗ −Q∗

2 = 1− ν

βi
−Q∗

2 for i = 1, 2 (4.1.4)

This co-infection model (4.1.3) has three equilibrium solutions: (1) disease free equilibrium in
which all the pathogens dies out and are cleared off from the population (yielding the result
as stated in the first item above), (2) two solutions in which one single pathogen survives and
the other pathogen strain dies off and is removed from the population (yielding the solution as
obtained in the second or third item above). In the event where solution in the second item
occurs then the system with co-infection model collapses to the SIQS model, (2.2.1) discussed
in chapter 2 above (that is only the singly infected pathogen 2 and the quiescence pathogen 2
are found). Whereas if the solution in the third item above occurs when only single infected
pathogen 1 survives and all other pathogens are cleared off from the system, in this case the
co-infection model collapses to the SIS model (1.3.1) that is only pathogen 1 remains in the
population. Finally, for (3) is a co-existence solution at which all the pathogens co-exist and
become persistent in the population, the solution is given above.

Theorem 2. (Stability theorem) The equilibrium solution of system (4.1.2) in which P1 = P12 =
0, P2, Q2 ̸= 0 is locally asymptotically stable if

β2 > ν

Proof. The eigenvalues of the Jacobian matrix evaluated at this equilibrium state is given as

J =

∣∣∣∣(1− P2 −Q2)β2 − P2β2 − ν − ρ −β2P2 + ζ
ρ ζ

∣∣∣∣ .
The eigenvalues are :

−(ζ + ρ),

ζ(ν − β2)

ζ + ρ
.

Please not that the eigenvalues lie on the left half plane once β2 > ν, hence the proof.
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Figure 4.5: Deterministic simulation of the two-pathogens model with quiescence and co-
infection, the parameters are β1 = 0.5, β2 = 0.25, ν = 0.1, ρ = 0.4 and ζ = 0.2 and the
initial population sizes are P1(0) = P2(0) = 0.01, P12 = Q(0) = 0.005, N = 1000

4.2 Stochastic analysis

4.2.1 Transition probabilities

This section defines a stochastic version of the deterministic model as described in equation
(4.1.3). We add stochasticity occurring at any of the possible transition of individuals between
classes (birth and death). The transition probabilities of jumping from one state (e.g. infected
quiescent) to the another state (e.g. infected) are defined below. We choose ∆t very small so that
during this time interval only one event occurs. The number of individuals who are susceptible is
S, the number of singly infected by parasite 1 is P1, the number of singly infected by parasite 2
population is P2, the number of co-infected by both parasites is P12, the number of individual in
quiescence compartment singly infected by parasite 2 is Q2. The possible changes over time are
either St+1, St− 1, P1t+1, P1t− 1, P2t+1, P2t− 1, P12t+1, P12t− 1, Q2t+1, Q2t− 1. Therefore,
our stochastic process is a birth and death process. The one step transition probabilities are
given in table 4.1:

We performed stochastic simulation using Gillespie’s algorithm to generate 10,000 realisations.
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Table 4.1: Transitions rates for the co-infection model with quiescence 4.1.3.

Type Transition Rate

Infection of S by P1 (St, P1t, P2t, P12t, Q2t) → (St − 1, P1t + 1, P2t, P12t, Q2t) β1
S(P1+P12)

N
∆t+ o∆(t)

Infection of S by P2 (St, P1t, P2t, P12t, Q2t) → (St − 1, P1t, P2t + 1, P12t, Q2t) β2
S(P2+P12)

N
∆t+ o∆(t)

Infection of P1 by P2 (St, P1t, P2t, P12t, Q2t) → (St, P1t − 1, P2t, P12t + 1, Q2t) β2
P1(P2+P12)

N
∆t+ o∆(t)

Infection of P2 by P1 (St, P1t, P2t, P12t, Q2t) → (St, P1t, P2t − 1, P12t + 1, Q2t) β1
P2(P1+P12)

N
∆t+ o∆(t)

Recovery P1 & replacement with S (St, P1t, P2t, P12t, Q2t) → (St + 1, P1t − 1, P2t, P12t, Q2t) νP1∆t+ o∆(t)
Recovery P2 & replacement with S (St, P1t, P2t, P12t, Q2t) → (St + 1, P1t, P2t − 1, P12t, Q2t) νP2∆t+ o∆(t)
Recovery P12 & replacement with S (St, P1t, P2t, P12t, Q2t) → (St + 1, P1t, P2t, P12t − 1, Q2t) νP12∆t+ o∆(t)
Go quiescent P2 & birth of Q2 (St, P1t, P2t, P12t, Q2t) → (St, P1t, P2t − 2, P12t, Q2t + 1) ρP2∆t+ o∆(t)
Wake-up Q2 & replacement with P2 (St, P1t, P2t, P12t, Q2t) → (St, P1t, P2t + 2, P12t, Q2t − 1) ζQ2∆t+ o∆(t)

Figure 4.6: Stochastic simulation of the two-pathogens model with quiescence of the co-
infection model with β1 = 5, β2 = 2.5, ν = 1, ρ = 0.4, ζ = 0.2 and the initial population
sizes are P1(0) = P2(0) = 10, P12 = Q(0) = 5, N = 1000

The value of each realisation at time t = 25 is stored and graphic produced as shown in (Figures
4.7a, 4.7b, 4.8a, 4.8b and others). Here, when computing the number of hosts infected by strain
2, we add the hosts that are in the quiescence stage. We assess the existence of a statistical
correlation between the number of infected by parasite 1 and those by parasite 2 by means of a
linear correlation (using Matlab build in function, fitlm). The value of the R2 is informative on
the degree of variance explained by the correlation.
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Figure 4.7: (a) Positive correlation between number of parasites 1 and 2 in the stochastic
co-infections epidemic model. The observations are generated from 1, 000 realisations/sam-
ple paths by using Gillespie’s algorithm at time t = 25 with P1(0) =, P2(0) = 10, P12 =
5, N = 1, 000, β1 = 5, β2 = 2.5, ν = 1. (b) Quiescence breaks the positive correlation be-
tween number of parasites 1 and 2 in the stochastic co-infections epidemic model. The
observations are generated from 1, 000 realisations/sample paths by using Gillespie’s algo-
rithm at time t = 25 with P1(0) = P2(0) = 10, P12 = 5, Q(0) = 10, N = 1, 000, β1 = 5, β2 =
2.5, ν = 1, ρ = 1.2, ζ = 0.4.

4.3 Discussion

We incorporate quiescence phase into model (4.1.2) and build the extended model (4.1.3) that
captures the dynamics of the co-infections of two strains in which one of the strains exhibits
the quiescence behaviour. Note that the two strains are here non-interacting directly with one
another. There is a need to build up a mathematical model that properly mimics the quiescence
behaviour and its effect on disease dynamics to improve disease management. We show that the
the model without quiescence is stable when both infection rates are greater than the recovery
rate. We also show that the equilibrium of the co-infection model with quiescence in which the
system collapses to the SIQS model is as well stable once infection rate is greater then the recovery
rate. Regarding the stability of the co-infection model with quiescence, we already knew from
Chapter 3 that quiescence does change the stability properties of the system [50, 48]. In fact the
quiescence makes it more stable. Thus, the stability of the co-infection model without quiescence
implies the stability of the system with quiescence. We then perform numerical computation using
the Gillespie’s algorithm and the results are shown in (Figures 4.3 and 4.6). The deterministic
and stochastic simulations are consistent in their behaviour and convergence towards the steady
state. However, it has been observed in the stochastic simulations that quiescence affects the
correlation between the number of infected individuals by the two strains. We can describe the
set of results of numerical simulations and number of infected hosts by parasite 1 and 2 as an
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Figure 4.8: (a) Positive correlation between number of parasites 1 and 2 of the stochastic
co-infections epidemic model without quiescence. The observations are generated from
10, 000 realisations/sample paths by using Gillespie’s algorithm at time t = 25 with P1(0) =
, P2(0) = 10, P12 = 5, N = 1, 000, β1 = 5, β2 = 2.5, ν = 1. (b) The truncated positive
correlation between number of parasites 1 and 2 in the stochastic co-infections epidemic
model without quiescence. The observations are generated from 10, 000 realisations/sample
paths by using Gillespie’s algorithm at time t = 25 with P1(0) = P2(0) = 10, P12 =
5, Q(0) = 10, N = 1000, β1 = 5, β2 = 2.5, ν = 1.

ellipse of realized points in the plot of I1 versus I2 (as in [52]). When quiescence is added,
this ellipse become rather circular whenever the rate of entering quiescence is greater then the
rate of exiting the quiescence, i.e. when the fraction ρ

ζ > 1. Therefore, we conclude that with
quiescence, pathogen strains in co-infection are statistically independent based on the number of
infected hosts infected by single strains, as opposed to the claim made in [52] without quiescence.
This is due to the fact that when the rate of entering quiescence is strong then the number of
those singly infected with active parasite 2 decreases, which in turn decreases the number of
co-infected individuals. Basically quiescence delays further infection with parasite strain 1, and
we can interpret our results as quiescence generating some indirect interaction between the two
strains in the epidemiological dynamics.
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Figure 4.9: (a) Quiescence breaks the positive correlation between number of parasites 1
and 2 of the stochastic co-infections epidemic model. The observations are generated from
10, 000 realisations/sample paths by using Gillespie’s algorithm at time t = 25 with P1(0) =
, P2(0) = 10, P12 = 5, N = 1000, β1 = 5, β2 = 2.5, ν = 1, ρ = 1.2, ζ = 0.4. (b) Truncated set
of high infection values in which quiescence breaks the positive correlation between number
of parasites 1 and 2 in the stochastic co-infections epidemic model. The observations are
generated from 10, 000 realisations/sample paths by using Gillespie’s algorithm at time
t = 25 with P1(0) = P2(0) = 10, P12 = 5, Q(0) = 10, N = 1000, β1 = 5, β2 = 2.5, ν = 1, ρ =
1.2, ζ = 0.4.
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Figure 4.10: (a) Positive correlation between number of parasites 1 and 2 of the stochastic
co-infections epidemic model without quiescence. The observations are generated from
10, 000 realisations/sample paths by using Gillespie’s algorithm at time t = 25 with P1(0) =
, P2(0) = 10, P12 = 5, N = 1000, β1 = 2.5, β2 = 5, ν = 1. (b) Truncated set of high
values with positive correlation between number of parasites 1 and 2 in the stochastic co-
infections epidemic model without quiescence. The observations are generated from 10, 000
realisations/sample paths by using Gillespie’s algorithm at time t = 25 with P1(0) =
P2(0) = 10, P12 = 5, Q(0) = 10, N = 1000, β1 = 5, β2 = 2.5, ν = 1.
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Figure 4.11: (a) Quiescence breaks the positive correlation between number of parasites 1
and 2 of the stochastic co-infections epidemic model. The observations are generated from
10, 000 realisations/sample paths by using Gillespie’s algorithm at time t = 25 with P1(0) =
, P2(0) = 10, P12 = 5, N = 1000, β1 = 2.5, β2 = 5, ν = 1, ν = 1, ρ = 2, ζ = 1. (b) Truncated
set of high values with quiescence breaking the positive correlation between number of
parasites 1 and 2 in the stochastic co-infections epidemic model. The observations are
generated from 10, 000 realisations/sample paths by using Gillespie’s algorithm at time
t = 25 with P1(0) = P2(0) = 10, P12 = 5, Q(0) = 10, N = 1000, β1 = 2.5, β2 = 5, ν = 1, ρ =
2, ζ = 1.
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Figure 4.12: Simulation of the deterministic co-infection models 4.1.2 and 4.1.3. (a) The
proportion of co-infected individuals is higher than the proportion of product of parasites 1
and 2, with P1(0) = P2(0) = 0.01, P12 = 0.005, N = 1000, β1 = 0.3, β2 = 0.25, ν = 0.1. (b)
The proportion of co-infected individuals is equal to the proportion obtained by multiplying
parasites 1 and 2, with P1(0) = P2(0) = 0.01, P12 = Q(0) = 0.005, N = 1000, β1 = 0.3, β2 =
0.25, ν = 0.1.ρ = 0.12, ζ = 0.04.
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Chapter 5

Discussion

5.0.1 Discussion

5.0.1.1 Overview of results

Mathematical models are tools used to understand the behaviour of natural phenomenon. In my
thesis, epidemiological models are built to understand the effect of quiescence on the infection
process. We have seen that quiescence increases the time to extinction of the stochastic infection
process of acute infections. Additionally, Quiescence affects the long term behaviour of the
epidemics, that is to say, the quiescence increases the time at which the epidemic ends. We show
in our study that quiescence mitigates stochasticity and reduces the noise under strain competition
and generates a phenomenon equivalent to a moving average. This principle is general enough and
the same idea could be investigated for a model of bacteria submitted to stochasticity of antibiotic
treatment. We speculate that quiescence is not only a bet-hedging strategy, but also influences
the stochasticity of the population behaviour. Namely the population size of bacteria may become
more stable in time and insensitive to antibiotic treatment. Our results also call for more in depth
investigations of the quiescence behaviour upon infection, of the length and determinants of the
quiescent stages and the effect of quiescence on stochastic disease transmission in human diseases.
We have also observed that the quiescence affects the correlation of two non-interacting pathogen
strains. A correlation between number of parasites of strains 1, 2 and number of co-infected
hosts decreases and vanishes whenever the rate of entering quiescence is greater than the rate of
exiting quiescence. Quiescence decreases the prevalence of co-infections and thus generates the
pathogen strains to be at statistical independent. Therefore, it is important to know the life-cycle
of pathogens, that is if one strain undertakes quiescence, in order to predict if strains can show
facilitation, antagonism or neutral interactions during co-infection.

5.0.2 Small case study: malaria and co-infections in Brazil

Malaria is one of the most severe disease in the world, infecting around 200,000 people annually in
Brazil [15]. The Brazilian legal Amazon Malaria data contains information about the number of
individuals infected by the three (3) malaria species, namely P. falciparum, P. vivax, P. malarie
and possible co-infections. However, in this study we concentrate on the number of infected by
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either P. falciparum, P. vivax and co-infections by both to test the predictions of our models.
We therefore intend to perform comparative study/ data analysis based on the malaria infections
by P. falciparum and/or P. vivax obtained in Brazil from the year 2009 to 20019. We want to
see whether the model that we developed in chapter 4 can explain correlation or absence thereof
in the data.

5.0.2.1 Material and methods

The dataset is obtained from the Malaria Epidemiological Surveillance Information System (Sivep-
Malaria). It is a malaria monitoring system in Brazilian legal Amazon which consists of nine
Brazilian states and it is the area where malaria in endemic in the country contributing more
then 90% of the number of malaria cases in Brazil [88]. The dataset consists of all medical records
of individuals who were tested for malaria in the region from 2009 to 2019. It has 40 attributes
and more than 22 million records of suspected malaria cases. The attributes consist of data re-
garding the examinations, notifications, as well as patient information [120, 15]. All suspected as
well as confirmed case of infection by malaria is notified and registered in SivepMalaria [71]. All
information in SivepMalaria are recorded yearly and arranged locally based on county. Therefore
Sivepmalaria is a very crucial tool that can be used to study and understand the distribution of
malaria to improve disease management [119].

5.0.2.2 Overview of results: SivepMalaria Data

We first present an overview of the data of infections based on patient characteristics. (Figure
5.1) shows the association between patients’ occupation and the infection by malaria parasites.
There are slightly small variations in the patients’ occupation and the percentage of infections by
P. falciparum, P. vivax and the co-infections. The panning workers have high rate of co-infections
followed by those that are working in mining. Whereas the other categories have almost the same
percentage of co-infections. (Figure 5.2) shows the association of patients’ education and the
proportion of malaria infections. Those that do not complete their primary education have the
highest percentage of infections by both P. falciparum and P. vivax. Then the second highest
amount of infections are those that did not complete their secondary school education also by
both species. These two categories of individual that came first and second by the infection of
individual parasite have the highest count of co-infection. Individuals that have already completed
their college education have low proportion of infection by both P. falcifarum and P. vivax as
well as co-infections. In general, in this data, the higher the level of education, the lower are the
infection and co-infection levels. In (Figure 5.3), there is no significant difference for infection
levels as far as the gender is concerned. Generally speaking, we can say that female have a slightly
lower proportion of infection.

(Figure 5.4) shows that the malaria infection by ethnicity. Basically, there is no significant
difference in infection based on ethnicity. White and indigenous have slightly higher proportion
of infection by P. vivax while black and mixed race have slightly higher percentage of infection
by P. falciparum and co-infections are at similar level across ethnicities. (Figure 5.5) shows that
few people infected by the malaria parasites, including the co-infections, do not show symptoms
while the majority of the infected people show symptoms.

(Figure 5.6) shows that majority of the examination to detect malaria cases are thick and thin
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Figure 5.1: The relationship between patients’ occupation and the relative proportion of
malaria cases for P. falciparum, P. vivax and co-infections.

blood smears. Co-infections are chiefly found by rapid diagnostic test.

In (Figures 5.7a, 5.7b, 5.8a and 5.8b), we compute the correlations of the SIVEPMalaria data for
the years 2019, 2010, 2015 and 2019 with p− values and R2. The value of R2 tells us the degree
of the correlation while p− value tells us whether to accept or reject the null hypothesis H0 are
as well computed and are shown on the graph. If p− value < 0.05, we reject the H0 hypothesis
(no correlation) and accept the H1 hypothesis (there is a correlation) and if p−values > 0.05, we
accept the H0 hypothesis (no correlation) and reject the H1 hypothesis (there is a correlation) .
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Figure 5.2: The relationship between a patients’ education and the relative proportion of
malaria cases for Plasmodium falciparum, Plasmodium vivax and co-infections.

5.0.2.3 Conclusions

Based on the data analysis performed and the results obtained, it appears that the two species of
malaria show a correlation in their infection process. We have predicted the opposite in our model
with quiescence in chapter 4. The results agree with the predictions of the co-infection model
without quiescence that the species infections are positively correlated. Our possible explanations
include that 1) quiescence in P. vivax is not strong enough to influence the correlation and co-
infections, 2) our model is too naive and misses some other assumptions to generate the correlation
under quiescence, or 3) the number of infection data are too few to capture the lack of correlation
introduced by quiescence.
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Figure 5.3: The relationship between a patients’ gender and the relative proportion of
malaria cases for Plasmodium falciparum, Plasmodium vivax and simultaneous infections.

5.0.3 Discussion on assumptions of our models

Models are simplified representation of reality, meaning that we believe our predictions are robust
but may present limitations. In this research, we make simplifying assumptions regarding the
spatial structure of populations and on the mechanism of quiescence. 1) We neglect the spatial
structure, namely a subdivision of populations according to geographical location. We assume
here a homogeneous mixing population, and our model does not capture the heterogeneity of
the population for disease transmission. This is a very important factor as we consider malaria
burden that affects whole continents. In reality the world population, and even within continents,
is heterogeneous meaning that each location in the world has its own rate of disease transmission
and recovery [22]. For example the climate change/ condition (which may affect the parameters of
the disease process) differs from one geographical location to the other. The severity and mortality
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Figure 5.4: The relationship between a patients’ race and the relative proportion of malaria
cases for Plasmodium falciparum, Plasmodium vivax and simultaneous infections.

rates of malaria infection is also not evenly distributed across the globe. With the underlying
homogeneity of parameters across different locations, our deterministic model predicts the same
solution at different location of the world. For application of our models, specific adaptation of the
relevant parameters should be done. We have also note that malaria transmission is seasonal which
heavenly depends on the particular location of the world. The distribution of malaria species is
also not evenly distributed across the world, as the distribution of Plasmodium falciparum is
very much centred in Africa where malaria is endemic, while the distribution of Plasmodium
vivax is centred in Africa but also common in Asia, India, South-America. Furthermore, an
additional level of heterogeneity is found across individuals. For example for malaria, individuals
are heterogeneous with respect of their naturally acquired immunity, their genetic resistance level,
number of co-morbidities, and the drug treatment they take in order to clear off the disease [53,
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Figure 5.5: The relationship between a patients’ symptoms and the relative proportion of
malaria cases.

39]. 2) Another main assumption is that parasite becomes dormant after infecting an individual.
The transmission of infectious disease is characterised by the level / amount of pathogens present
within the host. In order to infect a new host, the pathogen load has to reach a certain amount
of infectious propagules to enable the disease transmission. After becoming infected with the
parasite/pathogen, instead of growing, under quiescence the parasites stops growing inside the
host for some period of time. In this research we assume that a single individual becomes
infectious, and we then follow the fate of infection from that individual to assess if the disease
persists or becomes pandemic.
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Figure 5.6: The relationship between a patients’ exam and the relative proportion of
malaria cases.

5.0.4 Outlooks: Future direction

Our results call for more investigation of the advantage of quiescence for human/animal/plant
parasites. The classic assumption is that quiescence is a bet hedging strategy [102] and may evolve
in very peculiar conditions. First, the question that I want to address in future is for example
what is the disadvantage for parasite of doing quiescence? In this thesis we studied the effect of
parasite quiescence/dormancy, once it is established as an evolutionary strategy. As quiescence
affects disease dynamics, the length and severity of epidemics, it is of importance to find out
effective disease management strategies for example against dormant malaria parasites. Secondly,
my work in the future may consider investigating in more depth the influence of quiescence on
the prevalence of co-infections, of the length and the determinants of the quiescence stage and the
effect of quiescence on the stochastic disease transmission in human diseases. For example, it is
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Figure 5.7: (a) Correlation between number of infected of parasites 1 and 2 of the SIVEP-
Malaria data for the year 2009. (b) Correlation between number of infected of parasites 1
and 2 of the SIVEPMalaria data for the year 2010.
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Figure 5.8: (a) Correlation between number of infected of parasites 1 and 2 of the SIVEP-
Malaria data for the year 2015. (b) Correlation between number of infected of parasites 1
and 2 of the SIVEPMalaria data for the year 2019.

unclear whether co-infections between strains may be facilitated or antagonized by the presence
of quiescence, namely what is the role of quiescence in triggering/slowing down the host immune
system when exposed to a second strain. Third, a topic of interest is the evolution of parasite
virulence. It is well documented in the literature that under co-infection, there is evolution of
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more virulent strains by competition between new variants than the resident strain. A direction
of future work may thus investigate and predict how parasite virulence is affected under the
influence of quiescence.
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Appendix A

Appendix

A.1 Equilibrium Solution of the Model with Quies-

cent

From equations 5 and 4 of system (3.2.1), the quiescence compartments, we find the equilibrium
solutions and is given as follows

Q∗
1 =

ρ1I1
ζ1 + d,

,Q∗
2 =

ρ2I2
ζ2 + d

. Let c1 =
ρ1

ζ1 + d
, c2 =

ρ2
ζ2 + d

,

then the equilibrium solutions of the infected compartment (equations 1 and 2 of system (3.2.1)
are given by

I∗1 =
ϵ1

d+ γ1 + ν1 + ρ1 − ζ1c11 − β1H∗ , I
∗
2 =

ϵ2
d+ γ2 + ν2 + ρ2 − ζ2c12 − β2H∗ .

Now we need to calculate the equilibrium solution in the healthy compartment, to do so we need
the following propositions.

Proposition 1. For ϵ1, ϵ2 > 0, there is at least one non-negative equilibrium solution in the
healthy compartment.

Proof. Substituting the equilibrium solutions of the quiescence and infected compartments as
calculated above in the first equation of the system (3.2.1), we have

P (H) = Λ(d+ γ1 + ν1 + ρ1 − ζ1c1 − β1H)(d+ γ2 + ν2 + ρ2 − ζ2c2 − β2H)− β1Hϵ1(d+ γ2 + ν2 +
ρ2− ζ2c2−β2H)−β2Hϵ2(d+ γ1+ ν1+ ρ1− ζ1c1−β1H)− dH(d+ γ1+ ν1+ ρ1− ζ1c1−β1H)(d+
γ2+ν2+ρ2−ζ2c2−β2H)+ν1ϵ1(d+γ2+ν2+ρ2−ζ2c2−β2H)+ν2ϵ2(d+γ1+ν1+ρ1−ζ1c1−β1H),

then

P (0) = Λ(d + γ1 + ν1 + ρ1 − ζ1c1)(d + γ2 + ν2 + ρ1 − ζ1c1) + ν1ϵ1(d + γ2 + ν2 + ρ2 −
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ζ2c2) + ν2ϵ2(d+ γ1 + ν1 + ρ1 − ζ1c1) > 0,

because the terms inside brackets are all positive, and P (H) → −∞, then by intermedi-
ary value theorem there exist H∗ such that

P (H∗) = 0, H∗ > 0

Please observe that other compartments (I∗1 , I
∗
2 , Q

∗
1, Q

∗
2) for H

∗ are non-negative, since

P
(d+ γ1 + ν1 + ρ1 − ζ1c1

β1

)
< 0, =⇒ H∗ ≤ d+ γ1 + ν1 + ρ1 − ζ1c1

β1
=⇒ I∗1 ≥ 0,

by the same argument, we show that I∗2 > 0. Since I∗1 , I
∗
2 > 0, then Q∗

1, Q
∗
2 > 0

In the above proposition 1, we find a polynomial of degree three in which we use intermediate
value theorem to show that the polynomial has a solution.

Uniqueness of The Equilibrium Solution
We introduce the terms a, b, c, e defined bellow, with this notation, we obtain the following propo-
sition —

Proposition 2. If b2 < 3ac , then there is a unique non-negative equilibrium solution of P (H).

Proof. Let
P (H) = aH3 + bH2 + cH + e = 0,

dP

dH
= 3aH2 + 2bH2 + c = 0. (A.1.1)

The solution of quadratic equation (A.1.1) is

H =
−(2b)±

√
(2b)2 − 4(3a)c

2(3a)
(A.1.2)

where
a = −3β1β2d,

b = 2dβ1ρ2 + 2dβ2ρ1 + 2dβ1ν2 + 2dβ1ν1 − 2c12dβ1ζ2 − 2c11dβ2ζ1 + 2β1β2ϵ2 + 2β1β2ϵ1 + 2dβ1γ2 +
2dβ1γ1 + 2Λβ1β2 + 2d2β2 + 2d2β1,

c = −β1ϵ1ν2−Λβ1ν2−β2ϵ1ν1−Λβ2ν1−dρ1ρ2−dν1ρ2+c11dζ1ρ2−β1ϵ1ρ2−dγ1ρ2−Λβ1ρ2−d2ρ2−
dν2ρ1 + c12dζ2ρ1 − β2ϵ2ρ1 − dγ2ρ1 −Λβ2ρ1 − d2ρ1 − dν1ν2 + c11dζ1ν2 − β1ϵ2ν2 − d2ν2 + c12dζ2ν1 −
β2ϵ2ν1−dγ2ν1−d2ν1−c11c12dζ1ζ2+c12β1ϵ1ζ2+c12dγ1ζ2+c12Λβ1ζ2+c12d

2ζ2+c11β2ϵ2ζ1+c11dγ2ζ1+
c11Λβ2ζ1+c11d

2ζ1−β2γ1ϵ2−dβ2ϵ2−β1γ2ϵ1−dβ1ϵ1−dγ1γ2−Λβ1γ2−d2γ2−Λβ2γ1−d2γ1−Λdβ1−d3,

e = ϵ1ν1ν2+Λν1ν2+γ2ϵ1ν1+Λγ1ν2+dϵ1ν1+Λγ2ν1+dΛν1+ϵ2ν1ν2+γ1ϵ2ν2+dϵ2ν2+Λγ1γ2+dΛγ1,

choose parameter values so that
b2 < 3ac,

then the quadratic equation (A.1.2) does not have real solution.
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In the above proof, we use calculus to find the maximum value of the polynomial. The analysis
shows that the polynomial does not have a maximum or minimum value at the specified interval.
This shows that the polynomial has only one root by proposition 1 (existence of a solution) above.

A.2 Proof of Theorem 2 stated in Chapter 3

We now proof Theorem 2 stated in Chapter 3 above regarding the stability of the matrix B
defined in (3.2.3).

Proof. The characteristics polynomial of B is given by

λ5 + b1λ
4 + b2λ

3 + b3λ
2 + b4λ+ b5 = 0

where

b1 = ρ1 + ρ2 + ζ1 + ζ2 − tr(A)

b2 = ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2

b3 = ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A)− ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1

b4 = ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A)

b5 = −ζ1ζ2det(A)

Step 1:

By Routh-Hurwitz Criterion [49, 80, 66] , the matrix B is stable if and only if the fol-
lowing conditions hold:

� bi > 0 (i = 1, . . . , 5)

� b1b2b3 > b23 + b21b4

� (b1b4 − b5)(b1b2b3 − b23 − b21b4) > b5(b1b2 − b3)
2 + b1b

2
5

Step 2
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Suppose that for all ρ1, ρ2, ζ1, ζ2 > 0

� b1 > 0

= ρ1 + ρ2 + ζ1 + ζ2 − tr(A) > 0 =⇒ tr(A) ≤ 0

� b2 > 0

= ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2 > 0

=⇒ tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0, and a33 ≤ 0

� b3 > 0

= ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A)− ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 > 0

=⇒ det(A) < 0, tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0,

a33 ≤ 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33

� b4 > 0

=⇒ ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 > (ζ1 + ζ2)det(A)

=⇒ det(A) < 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33

� b5 > 0

= −ζ1ζ2det(A) > 0 =⇒ det(A) < 0

Step 3:

Assume that det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0,

a13a31 ≤ a11a33, a23a32 ≤ a22a33. then for all ρ1, ρ2, ζ1, ζ2 > 0, we have
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� ρ1 + ρ2 + ζ1 + ζ2 − tr(A) = b1 > 0

� ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2 = b2 > 0

� ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A) − ζ1ζ2tr(A) − (a22 +
a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 = b3 > 0

� ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A) = b4 > 0

� −ζ1ζ2det(A) = b5 > 0

�

(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))
2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2(−ζ1det(A)

− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1)
(A.2.1)

= b1b2b3 − b23 − b21b4 > 0

=⇒ b1b2b3 > b23 + b21b4.

For the full expansion of equation (A.2.1) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see the
wxMaxima output (as online available notebook).
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� (
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A)− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)− (ζ1ζ2det(A))

)(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1

+ ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)

(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A)))
2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A)− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)

)

− (ζ1ζ2det(A))

(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ρ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

)2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1ζ2det(A))
2 > 0

(A.2.2)
= (b1b4 − b5)(b1b2b3 − b23 − b21b4)− b5(b1b2 − b3)

2 − b1b
2
5 > 0

=⇒ (b1b4 − b5)(b1b2b3 − b23 − b21b4) > b5(b1b2 − b3)
2 + b1b

2
5

For the full expansion of equation (A.2.2) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see
the wxMaxima output (as online available notebook).
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A.3 Description of the model without quiescence

In this section we will develop a mathematical model that describes the evolution of single Host-
two parasites with constant recruitment rate. The model without quiescence is given by these
set (system) of ordinary differential equations:

dI1
dt

= β1HI1 − dI1 − γ1I1 − ν1I1 + ϵ1

dI2
dt

= β2HI2 − dI2 − γ2I2 − ν2I2 + ϵ2

dH

dt
= Λ− β1HI1 − β2HI2 − dH + ν1I1 + ν2I2

(A.3.1)

Steady State Solution of the System
The analysis of steady state of the the system without quiescence (A.3.1) has the same steps and
similar results as for the system with quiescence.

Transition Probabilities

Table A.1: Transitions rates of the model without quiescence A.3.1

Type Transition Rate
birth of healthy host H (Ht, I1t, I2t) → (Ht + 1, I1t, I2t) Λ∆t+ o∆(t)
natural death of H (Ht, I1t, I2t) → (Ht − 1, I1t, I2t) dH∆t+ o∆(t)
infection of H by I1 (Ht, I1t, I2t) → (Ht − 1, I1t + 1, I2t) β1HI1∆t+ o∆(t)
infection of H by I2 (Ht, I1t, I2t) → (Ht − 1, I1t, I2t + 1) β2HI2∆t+ o∆(t)
death of I1 (Ht, I1t, I2t) → (Ht, I1t − 1, I2t) (d+ γ1)I1∆t+ o∆(t)
death of I2 (Ht, I1t, I2t) → (Ht, I1t, I2t − 1) (d+ γ1)I2∆t+ o∆(t)
recovery I1 & replacement H (Ht, I1t, I2t) → (Ht + 1, I1t − 1, I2t) ν1I1∆t+ o∆(t)
recovery I2 & replacement H (Ht, I1t, I2t) → (Ht + 1, I1t1, I2t − 1) ν2I2∆t+ o∆(t)
immigration to I1 (Ht, I1t, I2t) → (Ht, I1t + 1, I2t) ϵ1∆t+ o∆(t)
immigration to I2 (Ht, I1t, I2t) → (Ht, I1t, I2t + 1) ϵ2∆t+ o∆(t)

Master equation
Let p(i, j, k)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k}, then

dp(i,j,k)

dt
=Λp(i−1,j,k) + d(i+ 1)p(i+1,j,k) + β1(i+ 1)(j − 1)p(i+1,j−1,k)

+ (d+ γ1)(j + 1)p(i,j+1,k) + β2(i+ 1)(k − 1)p(i+1,j,k−1) + (d+ γ2)(k + 1)p(i,j,k+1)

+ ν1(j + 1)p(i−1,j+1,k) + ν2(k + 1)p(i−1,j,k+1) + ϵ1p(i,j−1,k) + ϵ2p(i,j,k−1)

− [Λ + di+ β1ij + (d+ γ1)j + β2ik + (d+ γ2)k + ν1j + ν2k + ϵ1 + ϵ2] p(i,j,k)
(A.3.2)

This master equation (A.3.2) is then used to work out the Kramers-Moyal expansion that led to
the derivation of the Fokker-Planck equation below.
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Derivation of Fokker-Planck Equation
Now, let

p(i, j, k) =

∫ ih+h
2

ih−h
2

∫ jh+h
2

jh−h
2

∫ kh+h
2

kh−h
2

u(x, y, z)dxdydz + o(h4),

let also x = ih, y = jh, z = kh and h = 1
N . We then performed Kramers-Moyal expansion to

derived the following Fokker-Planck equation which is given as follows.

∂tu(x, y, t) = −∂x{hλ− dx− β1xy − β2xz + ν1y + ν2z}u(x, y, z)
−∂y{β1xy − (d+ γ1)y − ν1y + hϵ1}u(x, y, z)
−∂z{β2xy − (d+ γ2)y − ν2y + hϵ2}u(x, y, z)

+
h

2
∂xx{λ+ dx+ β1xy + β2xz + ν1y + ν2z}u(x, y, z)

−h∂xy{β1xy + ν1y}u(x, y, z)

+
h

2
∂yy{β1xy + (d+ γ1)y + ν1y + ϵ1}u(x, y, z)

−h∂xz{β2xz + ν2z}u(x, y, z)

+
h

2
∂zz{β2xy + (d+ γ1)y + ν2y + ϵ2}u(x, y, z)

(A.3.3)

Linear Transformation of the Fokker-Planck equation

Theorem. The linear Fokker-Planck equation for the above non-linear Fokker-Planck can be
written more compactly as follows

∂P (y, t)

dt
= −

3∑
ij

Mij
∂

∂yi
yiP (y, t) +

1

2

3∑
ij

Nij
∂2

∂yi∂yj
P (y, t) (A.3.4)

where y = (x, y, z), Nij is symmetric and positive definite, its solution is give as

P (y, t) = (2π)
1
2det(Σ)

1
2 exp(−1

2
yΣ−1yT )

with

Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.

Theorem. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 +Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =

∫ ∞

0
e−MtNe−MT tdt.

The above theorem known as Lyapunov theorem which gives us the opportunity to compute
covariance matrix more easily since matrices M and N are constant matrices,the only unknown
is Σ−1 matrix. We use MATLAB to obtain the covariance matrix Σ−1 numerically. The stochastic
matrices M and N for the system without quiescence are similar to those that of the system with
quiescence.
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A.4 Stochastic Matrices of the Linear Fokker-Planck

equation

M =


−d− β1I

∗
1 − β1I

∗
2 −β1H

∗ + ν1 −β1H
∗ + ν2 0 0

β1I
∗
1 β1H

∗ − d− γ1 − ν1 − ρ1 0 ζ1 0
β1I

∗
2 0 β1H

∗ − d− γ2 − ν2 − ρ2 0 ζ2
0 ρ1 0 −ζ1 − d 0
0 0 ρ2 0 −ζ2 − d



N =


n11 −(β1H

∗I∗1 + ν1I
∗
1 ) −(β1H

∗I∗2 + ν1I
∗
2 ) 0 0

−(β1H
∗I∗1 + ν1I

∗
1 ) n22 0 −(ρ1I

∗
1 + ζ1Q

∗
1) 0

−(β1H
∗I∗2 + ν1I

∗
2 ) 0 n33 0 −(ρ2I

∗
2 + ζ2Q

∗
2)

0 −(ρ1I
∗
1 + ζ1Q

∗
1) 0 n44 0

0 0 −(ρ2I
∗
2 + ζ2Q

∗
2) 0 n55


where

n11 = λ+ dH∗ + β1H
∗I∗1 + β1H

∗I2 + ν1I
∗
1 + ν2I

∗
2 ,

n22 = β1H
∗I∗1 + (d+ γ1)I

∗
1 + ν1I

∗
1 + ρ1I

∗
2 + ζ1Q

∗
1 + ϵ1,

n33 = β1H
∗I∗2 + (d+ γ2)I

∗
2 + ν2I

∗
2 + ρ2I

∗
2 + ζ2Q

∗
2 + ϵ2,

n44 = ρ1I
∗
1 + ζ1Q

∗
1 + dQ∗

1,

n55 = ρ2I
∗
2 + ζ2Q

∗
2 + dQ∗

2

and
H∗, I∗1 , I

∗
2 , Q

∗
1, Q

∗
2

are equilibrium solutions of (3.2.1) (rearranged in such away that healthy compartment comes first equation
in the system. The order of the other compartments remains unchanged).
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host-parasite coevolution. BMC Evol. Biol., 19(1):1–11, 2019.

[61] Richard A. Johnson and Dean Wichern. Multivariate Analysis. Wiley, sep 2014.

[62] Anssi Karvonen, Jukka Jokela, and Anna-Liisa Laine. Importance of sequence and timing in parasite
coinfections. Trends in parasitology, 35(2):109–118, 2019.

[63] Matt J. Keeling and Pejman Rohani. Modeling Infectious Diseases in Humans and Animals. Prince-
ton University Press, sep 2011.

[64] Matt J Keeling, Mark EJ Woolhouse, Darren J Shaw, Louise Matthews, Margo Chase-Topping,
Dan T Haydon, Stephen J Cornell, Jens Kappey, John Wilesmith, and Bryan T Grenfell. Dynamics
of the 2001 uk foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science,
294(5543):813–817, 2001.

[65] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of
epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical
and physical character, 115(772):700–721, 1927.

100



[66] H. Kestelman and F. R. Gantmacher. The theory of matrices. Biometrika, 48(1/2):237, jun 1961.

[67] Oleg Kogan, Michael Khasin, Baruch Meerson, David Schneider, and Christopher R Myers. Two-
strain competition in quasineutral stochastic disease dynamics. Phys. Rev. E., 90(4):042149, 2014.
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