Proportionally Fair Resource Allocation in SD-RAN

Fidan Mehmeti
Chair of Communication Networks
Technical University of Munich, Germany
Email: fidan.mehmeti @tum.de

Abstract—The introduction of Software-Defined Radio Access
Networks in 5G, whose main feature is the possibility of decou-
pling the control plane from the data plane, and associating the
former with a controller away from base stations, represents a
paradigm shift in the way the network resources are allocated.
This property provides an increased flexibility in cellular network
operation, yielding significant improvements compared to the
pre-5G resource allocation era. However, the full extent to which
this amelioration ranges is not yet clear for different metrics
of interest and objectives. One such objective is to allocate
resources so that proportional fairness is achieved. Therefore, in
this paper, we consider analytically the problem of proportionally
fair allocation in SD-RAN environments, by deriving the policy
which accomplishes that. We do this for two scenarios. In the
first, the goal is to provide proportional fairness across all the
users in the network, whereas in the second, the objective is to
provide proportionally fair allocation in terms of the throughput
of all BSs. We evaluate the performance with input parameters
from a real trace. Results show that the introduction of SD-
RAN increases the value of the objective by up to an order of
magnitude compared to the scenario with no SD-RAN.

Index Terms—SD-RAN, 5G, Proportional fairness.

I. INTRODUCTION

In pre-5G networks, both data plane and control plane
operations were performed jointly in Base Stations (BSs).
This changed in 5G with the emergence of Software Defined
Networks (SDNs) [1] and their adaptation in Radio Access
Networks (RANs), known as SD-RAN [2], where the control
is decoupled from the data plane and transferred to centralized
entities known as SD-RAN controllers. This represents a
paradigm shift in how cellular networks operate in general,
and how the assignment of resources is handled in particular.

This way of operation brings a lot of benefits into the mobile
network [2]-[4], with flexibility being among the principal
ones. This increased level of flexibility stems from having a
broader view of the entire network, enabled by the centralized
SD-RAN approach. In that way, depending on the current
distribution of User Equipments (UEs), i.e., users, across BSs,
and their channel conditions for which the UEs periodically
update their serving BSs [5], and BSs send those information
to the SD-RAN controller, the latter can assign resources to
BSs according to a given allocation policy. BSs then perform
the allocation across UEs within their operational region.
Consequently, exploiting the wide network knowledge results
in an overall performance improvement as it allows for optimal
allocation decisions, depending on the objective. In contrast
to SD-RAN, in a classical RAN setup, each BS has its own
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fixed set of resources, and allocates them to the UEs within
its coverage area.

Among the improvements SD-RAN brings to both the
cellular operator and UEs is the increased throughput. How-
ever, while some open-source SD-RAN prototypes, like
FlexRAN [2] and 5G-EmPOWER [3] already exist, it is not
yet clear the extent to which the delegation of traditional RAN
functions to centralized controllers increases either the overall
throughput, or that of individual UEs. Other objectives may
be of interest. One such is to allocate resources effectively,
but at the same time to provide a level of fairness. Combining
these two objectives is captured best by providing proportional
fairness [6] in terms of the throughput when allocating the
network resources, as the users with better channel conditions
experience higher rates, but also the users with worse channel
conditions are not penalized. To the best of our knowledge,
this problem has not been addressed before in the context of
SD-RAN.

Deriving and implementing the proportionally fair allocation
policy in cellular networks is challenging mostly due to
the dynamic nature of wireless channels, originating from
UE mobility and effects inherent to mobile networks, like
shadowing [7]. This channel variability drives forward the
need to change the amount of allocated resources at the same
granularity level at which the channel changes, and to take
into account the channel conditions of all UEs when making
the allocation decisions.

Some of the important questions that arise related to pro-
viding proportional fairness in SD-RAN-led networks are:

o What is the allocation policy that provides proportional
fairness in an SD-RAN-enabled cellular network with a
given number of BSs, where the number of UEs per BS is
known before hand together with their channel conditions
at a given time?

o If the goal is to provide proportionally fair resource
allocation among BSs, what is the policy that enables
the fulfillment of that objective?

« How does an SD-RAN-enabled network perform against
a system in which all the BSs have their amount of re-
sources fixed, i.e., against traditional resource allocation?

To answer the aforementioned questions, in this paper we
formulate first an optimization problem whose objective is to
provide proportional fairness among all UEs in the network,
irrespective to which BSs they are associated with, given
the constrained resources but having the extra flexibility of



adaptive resource allocation to BSs, depending on the number
of UEs and their channel conditions. We show that in such
a scenario proportional fairness is achieved if all the network
resources are split equally among UEs, i.e., BSs with more
UE:s receive proportionally more resources. On the other hand,
if the goal is to provide proportional fairness among BSs,
the resources among BSs should be shared equally, while
within a BS, the UE with the highest CQI' at that slot should
receive all the resources. Further, we give the data rates for
the users when these proportionally fair policies are used. The
results we provide in this work are particularly helpful for the
cellular operator as they can provide an exact prediction of the
average data rate when sharing resources in a fair way and can
also help in network resource planning. The main message
of this paper is that the use of SD-RAN can improve the
performance. This is especially emphasized when the number
of BSs increases. Specifically, our main contributions are:

o We derive the allocation policy which guarantees propor-
tional fairness among all UEs, as well as the policy that
guarantees proportional fairness among BSs.

o We evaluate the performance using realistic input data
gathered from a measurement campaign [9].

« We show concrete performance improvements when us-
ing SD-RAN compared to the traditional RAN approach
in terms of proportional fairness.

The remainder of this paper is organized as follows. In
Section II, we discuss some related work. The system model
and the problem formulation are presented in Section III. The
analysis for proportional fairness among all UEs and BSs is
presented in Section IV. Section V introduces the benchmark
model without SD-RAN. In Section VI, we evaluate the per-
formance and provide some interesting engineering insights.
Finally, Section VII concludes the paper.

II. RELATED WORK

Since its introduction, the concept of SD-RAN has attracted
significant attention in the last years [10], [11]. Among the
first works that suggest handing over the control decisions to
a centralized controller from BSs are [12] and [13], which
also discuss the increased flexibility when using SD-RAN.
However, the gains in terms of the increased throughput or
the improvements in terms of the effective use of network
resources are not discussed neither in [12] nor in [13].

To our best knowledge, different aspects of data rate max-
imization problem, including fair resource allocation, in SD-
RAN environments have not been considered so far. The first
prototype implementations of SD-RAN are FlexRAN [2] and
5G-EmPOWER [3]; both constrained to serve only a limited
number of UEs with a single server. As opposed to [2] and [3],
with our analysis we can predict the performance for the
derived optimal policies for any number of BSs, number of
UEs, channel conditions, and any amount of resources.

1CQI is an information each UE sends to its BS to describe the channel
conditions. The value ranges from 1 (very poor channel conditions) to 15
(excellent channel conditions) [8].

In [14], the problem of minimizing the number of assigned
resources has been considered in an SD-RAN environment,
by taking into account two types of slices, those for delay-
sensitive traffic, and those for throughput-critical traffic. The
other contribution of [14] is that slice isolation can be
maintained. However, there is no discussion on the resource
allocation policy that provides proportional fairness.

The general problem of guaranteeing proportional fairness
in a wireless network has been considered previously in [15].
However, the problem setup in [15] is not compatible with
the SD-RAN environment (i.e., the number of resources is
fixed per BS), losing this way the additional flexibility in
resource allocation. As will be seen in Section VI, SD-RAN
significantly outperforms the no-SD-RAN approach.

On a similar note, the authors in [16] consider the problem
of allocating resources where network slices can be spread
across multiple BSs. The objective in [16] is to allocate
resources so that the overall throughput (across all UEs) is
maximized, by guaranteeing a minimum data rate to everyone
first. However, the solution in [16] is based on a non-closed
form approximation approach, which does not allow to see
the explicit dependency of throughput on different input pa-
rameters. Also, the proportionally fair resource allocation is
not considered in [16]. In contrast, in our work, we solve the
problem over the entire network in its most general form for
any number of UEs, BSs, and heterogeneous channel statistics
while providing a closed-form expression for the throughput
obtained via proportionally fair resource allocation.

The most related work in spirit to ours is [8], in which
the authors consider the problem of proportional fairness after
providing the same minimum data rate to everyone in a
single BS, and reallocating afterwards the unused resources
to the same group of UEs. While data rates vary from one
frame to another, all UEs receive the same rate in a given
frame. However, the SD-RAN controller is not used in [8],
meaning that the amount of resources belonging to each BS is
fixed, loosing the additional flexibility of allocating resources
adaptively to BSs, which as will be shown in Section VI of
our work increases the objective considerably compared to the
no-SD-RAN setup.

III. PERFORMANCE MODELING

First, we introduce the system model, and then define two
optimization problems that we solve in this paper.

A. System model

We consider an SD-RAN-led network (Fig. 1) with a single
controller responsible for assigning resources (and the alloca-
tion decisions further to UEs) to BSs. For every BS there is
an SD-RAN agent that communicates with the controller [17],
using the Transport Control Protocol (TCP). We denote by N/
the set of all BSs. There are in total n = |A| BSs in the
operational area of the controller. Further, we denote by M;
the set of all UEs within the coverage area of BS i, where
m; = | M,] is the number of UEs in BS . So, the total number
of UEs in the network is Y ., m;.
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Fig. 1. Illustration of the SD-RAN environment.

5G uses Physical Resource Blocks (PRBs) as the unit of
allocation on a per-slot basis [18]. Each PRB consists of 12
subcarriers. The slot duration is a function of the subcarrier
spacing. Specifically, if the subcarrier spacing is 15 KHz (PRB
width of 180 KHz), the slot duration is 1 ms. If the subcarrier
spacing is 30 KHz (PRB width of 360 KHz), the corresponding
slot duration is 0.5 ms. The slot duration decreases further
(2x) when switching to subcarrier spacing of 60 KHz, and
another 2x when switching to 120 KHz [5]. Different PRBs
are assigned to different UEs within a slot. The assignment
varies across slots. Consequently, scheduling needs to be
performed across two dimensions, frequency and time. In total,
there are K available PRBs for n BSs.

UEs experience different channel conditions (CQIs) across
different PRBs even within the same slot. Because of the UE
mobility and time-varying nature of the channels, per-PRB
CQI (which is a function of Signal-to-Interference-Plus-Noise-
Ratio (SINR)) changes from one slot to another, whose value
depending on the Modulation and Coding Scheme (MCS) used
sets the per-PRB rate. To maintain analytical tractability, a sim-
plifying assumption is made in this paper. Namely, we assume
that the BS splits the transmission power equally among all
PRBs it transmits on, and that the channel characteristics for
a UE remain static across all PRBs (identical CQI over all
PRBs for a given UE), but change randomly (according to
some distribution) from one slot to another, and are mutually
independent among UEs (i.e., UEs with heterogeneous channel
conditions). These assumptions reduce the resource allocation
problem to the number of allocated PRBs and not to which
PRBs are assigned to a UE.

The previous assumptions imply that in every slot, UE
(i,4)?, where i € N and j € M;, will have a per-PRB rate
(known also as per-block rate), i.e., the rate each assigned
PRB brings to a UE, which can be modeled with a discrete
random variable, R; ;, with values in {ry,72,...,715}, such
that 11 < ry < ... < 115, with a Probability Mass Function
(PMF) pg, ;(x), which is a function of UE (i, j)’s CQI over
time.> Note that there are 15 possible values of CQI.

2We denote every UE with the ordered pair (4, j), where 4 stands for the
BS, while j denotes the UE receiving service by that BS.

3We omit the reference to time throughout this paper in order to simplify
the notation.

TABLE I

NOTATION
N Set of all BSs
n=|N]| Number of BSs
M; Set of all UEs in BS ¢
m; = |M;| | Number of UEs in BS ¢
K Total number of PRBs
K; Number of PRBs allocated to BS 4
K j Number of PRBs allocated to UE j in BS 4
R; ; Per-PRB rate of UE j in BS % in a slot
Ci.j Data rate of UE (¢, 5) in a slot
PR; ; (2) PMF of per-PRB rate of UE (¢, j)

Table I summarizes the notation used throughout this work.

B. Problem formulation

Each UE periodically sends the information about its CQI to
its serving BS. Then, every BS collects all the CQI information
from the UEs in its area and forwards them to the SD-RAN
controller (see Fig. 1). Based on the CQI information from
all BSs (and hence all UEs), the controller then, depending
on the resource allocation policy used, decides on the number
of PRBs to assign to each BS in every slot. Further, from
the PRBs it receives, each BS decides how it will allocate
those PRBs to the UEs in its coverage area. Therefore, using
SD-RAN, the resource allocation process is performed in two
levels. First, among BSs, and then each BS allocates the PRBs
it received from the controller to the UEs within its area.

Let K; ;,Vj € M;, denote the number of PRBs UE j gets
from BS i* If K;,Vi € N, denotes the number of PRBs
that BS 7 receives from the controller in a slot, then it holds
Ki = 7" K; ;. If C; ; expresses the data rate of UE (i, )
in a slot, then Ci7j = Ki’jRi)j.

In this paper, the goal is to provide proportionally fair
resource allocation along two dimensions: (i) across UEs, and
(ii) across BSs.

1) Proportional fairness across UEs: First, we strive to
provide proportionally fair resource allocation across all UEs
in the entire SD-RAN-led network, which is equivalent to
maximizing the sum of the logarithms of the data rates of all
UEs [6].> This results in the following optimization problem:

Py X Z;Z;log(Ki,jRi,j) (1)
i=1 j=

S.t. ZZKM <K, (2

i=1 j=1

K;; >0, VYieN,VjeM,. 3)

Constraint (2) expresses the maximum number of PRBs that
can be allocated to all UEs, whereas (3) captures the fact that

4Each UE can receive resources from one BS only.

5An equivalent objective to (1) is to maximize the product of the data
rates, i.e., [[1" H;”:ll K ;R; ;. Hence, in Section VI, for some scenarios
we show the product of the data rates, and for some others the sum of the
logarithms of the data rates. We do this to better visualize the outcomes.



the number of allocated PRBs to UEs cannot be negative. The
decision variables are K; ;.

2) Proportional fairness across BSs: In the second sce-
nario, the goal is provide proportionally fair allocation of PRBs
across BSs, i.e., to maximize the sum of the logarithms of
the throughput of all BS. The throughput in BS ¢ in a slot
is Z;n:bl Cij = 27:11 K; jR; ;. The following optimization
formulation describes this scenario:

m;

7)2 : %ax Zlog ZK’i,jRi,j (4)
=1 j=1
st SN K <K )
i=1 j—1
Ki,j >0, Vie N, VJ e M;. (6)

As opposed to P;, P, is not concerned with the fair
allocation within users of the BS, but only looks at the BS
as a whole. The constraints (5) and (6) are identical to those
of P;. The decision variables are again K ;.

In the next section, we solve optimization problems P; and
P2 by obtaining the corresponding optimal policies as well as
showing the data rate in a slot of every UE when following
the corresponding optimal resource allocation policies.

IV. PERFORMANCE OPTIMIZATION

In this section, first we determine the optimal policy and
derive the corresponding data rates by solving P;. Then, we
solve Ps.

A. Proportional fairness across all UEs

We proceed with solving P;. The function in the objective
is apparently concave. Namely, the main diagonal elements of
its Hessian matrix are equal to —Kﬁ ;< 0, whereas all the
off-diagonal elements are 0, making the Hessian a negative
definite matrix, resulting in a concave objective function [19].
Given also that the constraints are linear, there exists a solution
to the problem, and the local optimizer is a global optimizer
as well. First, we define the Lagrangian of this optimization
problem as

£o= S gy - Y Ky —K
i=1 j=1 i=1 j=1
S K, @
i=1j=1

where A > 0 and p;; > 0, Vj € M, are the slack
variables. It can be easily shown that P; satisfies Slater’s con-
dition [6], hence the strong duality holds. Therefore, Karush-
Kuhn-Tucker (KKT) conditions [19] can be applied to the dual
optimization problem, and the optimal solution would need to
satisfy the following system of equations:

oL

K. Vi e N,Vj e M, (8)

:O’

n m;

MY N Kij—K| =0, )

i=1 j=1
Ni,jKi,j :0, Vi GN,Vj EMi. (10)
Substituting Eq.(7) into Eq.(8), we obtain
— A4 pi; =0, VieN,VjeM,, (11)
Ki,;
or equivalently,
1
A= K + w5, Vi e N,Vj e M,. (12)
0,J

In order to avoid —oo in the objective (1), the number of
assigned resources to any UE has to be strictly positive, K; ; >
0. This results in A > 0 in Eq.(12). The latter combined with
Eq.(9) yields

n  m;

>N Kij=K.

i=1 j=1

13)

Eq.(13) merely states that constraint (2) must be satisfied with
strict equality, i.e., there should be no PRBs left unassigned.
This is intuitive as we are trying to maximize the sum of
logarithms of data rates, i.e., to increase the effectiveness of
resource assignments.

The fact that K; ; > 0 also leads (from Eq.(10)) to p;; =
0,Vi € N,Vj € M;. Then, Eq.(12) reduces to

1
K;; = 3 (14)
Substituting Eq.(14) into Eq.(13) and rearranging, we obtain
7»L_1 m;
= ==l 15
1t (1)

which after being substituted into Eq.(14) leads to:

Result 1. A proportionally fair resource allocation policy
across all UEs in the network with SD-RAN is achieved if
the number of assigned PRBs to UE (i,j) follows the policy
K
DM
There are two important conclusions that can be drawn from
Result 1. First, to achieve proportional fairness, the resources
have to be split equally among all UEs. Second, which is
implied by the first outcome - this allocation policy is static.
This reduces the computational complexity at the controller
side significantly as it does not have to reschedule resources
in every slot. In a slot, UE (4, j) experiences the data rate
KR :
= (17)
Dim1 M
which implies that UEs with better channel conditions have
higher data rates. Hence, fairness is achieved by having
everyone receive the same amount of network resources, and
effectiveness is achieved by having UEs with better channel
conditions experience higher data rates.

K;; = (16)

Cij=KijRij=



B. Proportional fairness across BSs

The second objective is to provide proportional fairness in
resource allocation across BSs, i.e., solve Ps.

The objective function Eq.(4) is concave. Namely, the main
diagonal e;lements of the corresponding Hessian matrix A are

———2l—— < 0, whereas the off-diagonal elements are
(ZJ:1R1 K]téJRiyj)

— et < (), implying that for any non-zero vector
(Z i Ko Rig)

X, it holds that

xTAx <0,

meaning that the Hessian is a negative definite matrix, hence
the objective is strictly concave. With constraints (5) and (6)
being linear, it turns out that there exists a unique solution
to P, or said differently, the local maximum is also a global
solution.

The Lagrangian function is defined as

L = Xn:log ii:Ki,ij Y iiKi,j K
=1 j=1 =1
+ Ziuiiji,ja (18)
i=1 j=1

where A > 0 and p;; > 0, Vj € M,, are the slack variables.
Similarly to Py, Slater’s condition is valid here as well. KKT
conditions can be applied to the dual optimization problem,
and as the constraints of Py are identical to those of P;, the
solution to Py should adhere to the same system of equations
as Py, i.e., Eqgs.(8)-(10).

Substituting Eq.(18) into Eq.(8) and rearranging, we obtain
R’L,j

Zj:l KliJRZJ

+ Wi, V’LQN,V] e M,;. (19)
In order to avoid —oo, every BS has to receive some resources,
ie., Z;nzl K; ;R;; > 0, which together with Eq.(19) implies
that A > 0. The latter together with Eq.(9) implies full
utilization of network resources, the same as when solving
P1, i.e., Eq.(13) applies to this case as well.

Next, let us look at Eq.(19) when it is applied to two UEs
that are receiving service from the same BS ¢. Let us denote
these as (4, j1) and (i, j2). We have

R; j, R; j,

= e 5 Tl = —=m e (20)
> o1 KijRij Y KijRi

+ Hijs-
Let us assume w.l.o.g. that in the given slot UE (i, ;) has a
higher CQI than UE (34, j2), ie., R, ;, > R;;,. Then, from
Eq.(20), we have

Rij, — Rij,
mg
> o1 KijRij

implying p; j, < p4,j,. This means that p; ;, > 0, resulting
from the constraint (10) in K; ;, = 0. So, as long as a UE
within the area of her BS has a worse channel (lower CQI)
than another UE, she will not receive any PRBs at all. The
analysis propagates across UEs of all BSs. So, within a BS,
only UEs with the highest CQI are eligible to receive PRBs.

= Higo — Hij, > Oa (21)

Then, what is this policy in the second level (within BSs)
of resource allocation? It is the well-known maxCQI policy,
where only the user with the highest CQI will receive all the
resources, or if more than one UE have identical (highest) CQI
they share the resources equally.

Next, we consider only the UEs with the highest CQI in
their BSs. For that purpose, let us pick the corresponding UEs
in BS 4y and is, UE (i1,71) and UE (ig, j2), i.e., for which
we know from the previous discussion that K;, ; > 0 and
K;, j, > 0. For these two UEs, Eq.(19) becomes

11,71 R’i2>j2

> o1 Ky Ry > =1 Kiy jRis
If we denote by R;, jae and R, mq. the highest per-PRB
rates in BS ¢; and BS 149, respectively, then as both UEs
(i1,71) and (i2, jo) are eligible to receive PRBs, it holds that
R;, i, = Ri, mae and Ry, j, = R;, maz. As the denominators
in Eq.(22) represent the total throughput in BSs ¢; and s, the
following holds:

Rihjl i2,J2
Ki1 Ril,maz KiQRig,maz

where K;, = Z;’Zi K;, jand K, = Z;n:ﬁ K;, ; denote the
total number of PRBs allocated to BSs ¢; and 79, respectively.
From the above discussion, Eq.(23) reduces to

+ iy 5 = T+ Wig,ja - (22)

+ iy, = + Hiz,jas (23)

1
= Jo T iz (24)

12

1
Kiil + iy g1
Since K;, j, > 0 and K, j, > 0, from Eq.(10) it follows that
iy, = 0 and ps, 5, = 0. Eq.(24) now reduces to

K, = K;,, Viy,is € N. 25)

Propagating the last property across all BSs, it results that
each BS will receive % PRBs in every slot, irrespective of the
channel conditions of UEs within the BS. So, for the first level
of resource allocation in an SD-RAN-led network, resources
are split equally among BSs, i.e., we have the Round-robin
policy [20]. Summarizing, we have:

Result 2. A proportionally fair resource allocation policy
among all BSs in the network with SD-RAN is achieved if
the combination Round-robin — maxCQl is used. The amount
of PRBs UE (i, ) receives in a slot is then

K 07 lfRi,j < Ri,mam
1,5 — K ,
A Fig =
where |MP?*| denotes the number of UEs within BS i that
have the highest CQI in the given slot.®

Ri,mama

As opposed to achieving proportional fairness among UEs,
where the allocation is static, when it comes to proportionally
fair resource allocation among BSs, the allocation policy is
dynamic in the second level of allocation (among UEs within
each BS), as it depends on R; ;.

%We remind the reader that with the maxCQI policy we assume that when
more than one UE have the same highest CQI they share resources equally.



The data rate of UE (4,5) from Result 2 is either 0, or

Cij = n{j\iﬁajﬂ when she has the highest CQI in the slot
within BS 4.’

V. BENCHMARK MODEL

In order to assess the performance of the SD-RAN-enabled
network in terms of proportional fairness, we need a bench-
mark model. To that end, the most suitable model is the
one in which there is no SD-RAN, but where there are
some proportional fairness guarantees. Hence, we choose the
benchmark in which the RAN operates in a traditional way,
where every BS is pre-assigned its set of PRBs, and the
allocation process undergoes proportional fairness within each
BS separately. If K is the total number of PRBs in the system,
then w.l.o.g. we assume that each BS operates on % PRBs,
where n as already defined, is the number of BSs.

In the no-SD-RAN setup, the problem formulation for
BS ¢, whose solution guarantees proportionally fair resource
allocation to the UnEﬁ within its coverage area is

Po(i) :  max leog (KijRij) (26)
j:
s.t. ZKM < o (27)
j=1
Ki; >0, VYjeM,. (28)

Essentially, for each BS we would need to solve Py(i)
separately. The function in the objective is apparently concave.
Namely, the main diagonal elements of its Hessian matrix are
equal to —KE]'Z < 0, whereas all the off-diagonal elements
are 0, making the Hessian a negative definite matrix, resulting
in a concave objective function [19]. Given also that the
constraints are linear, there exists a solution to the problem,
and a local optimizer is a global optimizer as well. We define
the Lagrangian of this optimization problem as

L= log(Ki;Ri;) =AY Kij— g + > pi K,
j=1 j=1 j=1
(29)
where A > 0 and p; ; > 0, Vj € M,. It can be easily shown
that Py(¢) satisfies Slater’s condition [6], hence the strong
duality holds here as well. Therefore, KKT conditions can
be applied to the dual optimization problem, and the optimal
solution would need to adhere to the following constraints:

oL
— =0, Vje Mi, 30
0K, J (30)
A ZKM -] =0 31
7j=1
wiKi; =0, VjeM,. (32)
Substituting Eq.(29) into Eq.(30), we obtain
A= + 45, Vi € Mg, (33)

K;

implying A > 0. Combining this with Eq.(31), the following
must hold: s
- K
Jj=1

Further, K; ; > 0 as otherwise would make the objective —oo.
This fact combined with Eq.(32) yields p;; = 0, Vj € M,.
Therefore, from Eq.(33) we obtain A = L Substituting the

(34)

Ki.j :
latter into Eq.(34), we get
nms; .
A= Vj e iy 35
W EM (35)
resulting in
1 K 1
Kij=-=—" (36)

A n o m;

i.e., within each BS proportional fairness is achieved when all

the PRBs of that BS are split equally among UEs of that BS.

Having the benchmark against which we can compare the

results obtained with our approaches, we proceed next with
assessing the performance under different policies.

VI. PERFORMANCE EVALUATION

In this section, we describe the simulation setup first. Then,
we compare the performance of our two approaches, the
benchmark, and another policy (same rate to everyone) for
different cases. This is followed by results on the impact of
channel statistics on the allocation process. Finally, we look
at some corner cases.

A. Simulation setup

We have used a 5G trace with data measured in the Republic
of Ireland as input parameters. These traces can be found
in [21], with a detailed description in [9], and statistical
analysis in [22]. Here, the parameter of interest from the trace
is CQI with 15 levels, which serves to determine the per-PRB
rate of a user in a slot. These measurements were conducted
for one UE, but at different days, for different services, and
when the user is static and also when moving around. To
mimic the dynamic nature of these users, we have picked 8
UEs that were moving around. Based on the frequency of
occurrence of a per-PRB rate for every UE, we obtained the
corresponding per-PRB rate probabilities (Table II).

The slot duration is 0.5 ms. The subcarrier spacing is
30 KHz, with 12 subcarriers per block, making the PRB width
360 KHz. The total number of PRBs is K = 273 [5]. The
simulations are conducted in MATLAB R2021b.

In the simulator, every BS in each slot sends the information
of CQIs of its UEs to the controller. With the full picture of all
CQIs in the network, the controller according to the allocation
policy used distributes the resources (PRBs) to BSs together
with the information on how to further assign them to UEs in
their coverage areas. Depending on the amount of resources
assigned, and its per-PRB rate, we determine the data rate each
UE experiences in a slot.

Unless stated otherwise, we show results for three cases:

e Case 1: 4 BSs; 2 UEs for BSs 1 and 2, 4 UEs for BSs 3
and 4.



TABLE II
PER-PRB RATES AND THE CORRESPONDING PROBABILITIES FOR EVERY USER FROM THE REPUBLIC OF IRELAND TRACE [9]

R (kbps) 48 73.6 121.8 192.2 282 378 474.2 712 7722 | 874.8 1063.8 1249.6 1448.4 1640.6 1778.4
P1,k 0 0 0 0 0 0 0.01 0.05 0.11 0.13 0.14 0.18 0.06 0.11 0.21
P2,k 0 0 0 0 0 0.01 0.02 0.06 0.13 0.14 0.2 0.21 0.07 0.09 0.07
P3,k 0.01 0 0 0 0 0.01 0.01 0.02 0.06 0.13 0.17 0.18 0.08 0.18 0.15
P4,k 0 0 0 0 0 0.02 0.03 0.13 0.06 0.2 0.32 0.11 0.01 0.09 0.03
D5,k 0 0 0 0 0 0 0.04 0.07 0.13 0.17 0.22 0.2 0.05 0.06 0.06
D6,k 0 0 0 0 0.01 0.03 0.11 0.12 0.19 0.15 0.15 0.12 0.05 0.04 0.03
D7,k 0 0 0 0 0 0 0.05 0.06 0.15 0.17 0.2 0.2 0.05 0.07 0.05
P8,k 0 0 0.01 0.01 0.01 0.03 0.15 0.12 0.18 0.14 0.13 0.11 0.06 0.03 0.02

e Case 2: 5 BSs; 2 UEs for BSs 1 and 2, 4 UEs for BSs 3 TABLE III

and 4, 6 UEs for BS 5.
e Case 3: 8 BSs; 2 UEs for BSs 1 and 2, 4 UEs for BSs 3
and 4, 6 UEs for BSs 5 and 6, 8 UEs for BSs 7 and 8.
Note that in all the cases, a UE is chosen randomly from
one of the eight types of Table II. Then, its CQI values across
slots are taken from the trace of the corresponding user.

B. Performance comparisons

We start with comparing the performance obtained with
our policies against the benchmark. First, we compare our
approach for proportional fairness across all UEs in an SD-
RAN-enabled network (the solution to P1), to which we refer
as SD-RAN in the figures, with the benchmark and another
allocation policy in both of which there is no SD-RAN, i.e.,
each BS “owns” a fixed set of PRBs. The benchmark is
described in Section V, whose results are referred to as Py.
The second comparison policy is “equal-rate” [23] in the BS,
i.e., UEs with good channel conditions receive fewer PRBs,
whereas UEs with bad channel conditions receive more PRBs.

We show results for the three cases introduced previously.
Fig. 2 portrays the results for the product of data rates of all
UEs (the equivalent of Eq.(1)) in the network over time with
different policies for Case 1. We do this for better visualization
purposes. See Footnote 5 for explanations on this. As can be
observed, the solution to P; always outperforms that of the
benchmark Py, and equal-rate. The difference is very large,
up to 2x. We are showing results for only 30 slots to better
discern the differences. However, as Result 1 is the optimal
solution of P, it always outperforms the two no-SD-RAN
approaches. The equal-rate policy always provides the worst
results in terms of proportional fairness, as it penalizes the
users with good channel conditions.

Fig. 3 depicts the results for Case 2, whereas Fig. 4 does
that for Case 3. Similar to Fig. 2, on the y-axes we show the
product of data rates of all UEs. In both scenarios, SD-RAN
outperforms the other two approaches in terms of proportional
fairness significantly. Note that as the number of BSs and
UEs increases, the difference in performance gets larger. For
Case 3, our approach (obtained solving P;) outperforms the
other two policies by up to an order of magnitude.

Next, we compare the results in terms of proportional
fairness across BSs. Fig. 5 shows the outcomes related to
Case 1 for the value of the objective Eq.(4) in the network
over time with different policies, whereas Fig. 6 and Fig. 7

THE AVERAGE (IN MBPS) AND THE COEFFICIENT OF VARIATION OF
PER-PRB RATES FOR USERS OF TABLE II

UE 1 2 3 4 5 6 7 8
E[R;] | 125 | 1.12 | 127 | 1.02 | 1.07 | 092 | 1.06 | 0.87
cy,r | 031 | 0.31 0.3 032 | 031 | 038 | 0.31 | 041

depict the results for Case 2 and Case 3, respectively. Our
approach now uses the solution to P». The other parameters
remain unchanged from the previous scenarios. In all three
cases, SD-RAN outperforms no-SD-RAN. Equal-rate policy
performs worst in this aspect as well. It is worth pointing out
that for this set of plots we show on the y-axes the results
in logarithmic scale, i.e., as the objective is originally defined
in Eq.(4). The reason for this change is that the differences
between the results provided by different approaches are much
larger now. E.g., in Fig. 7, we see differences (on logarithmic
scale) as high as 3 (for Eq.(4)), which means 1000x higher
objective with our approach then the benchmark if we show
the products of data rates (i.e., the objectives on linear scale).

The effects shown in the previous results can be observed
for other cases too (different input parameters). Common to
all these is that SD-RAN is always more proportionally fair.

C. Impact of channel statistics

Next, we look at the impact of channel statistics (expressed
through the first and second moments of the per-PRB rate)
on the average of the assigned number of PRBs to UEs and
their variability. Note that this applies only to proportional
fairness among BSs, as in the case of proportional fairness
among UEs, all of them receive the same number of PRBs
always, i.e., there is no variability neither across users nor in
the time dimension. We assume there are 4 BSs, and in the BS
of interest there are 8 UEs (those from Table II). Our focus
here is to look how much varies the number of assigned PRBs
to users with different channel statistics. To quantify the latter,
we use the average per-PRB rate E[R] and the coefficient of
variation (cy ), where the latter is defined as the ratio of the
standard deviation and the mean of the per-PRB rate. Table III
shows those two parameters for users of Table II. As can be
seen, all of them have roughly similar channel variability, but
there are differences in their first moments of per-PRB rates.

So, how varying is the number of PRBs assigned to users,
and even more importantly, what does it depend on? The
allocation policies we propose in this work react according
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to Eq.(1) for Case 1. to Eq.(1) for Case 2.

to channel (CQI) changes at UEs. Fig. 8 depicts the average
value of the number of PRBs for these UEs over time. As can
be observed from Fig. 8, UE 1 and UE 3 receive the highest
number of PRBs over time (between 17 and 18 in every slot
on average), whereas UE 8 gets the lowest number of PRBs
(on average less than 4 per slot). If these results are compared
with the first moment of per-PRB rates (the second row of
Table III), we see that they are consistent, i.e., UEs 1 and 3
have the highest average per-PRB rate, while UE 8 the lowest.

How is the situation in terms of the variability of the number
of assigned PRBs over time? Fig. 8 also shows the results for
the coefficient of variation of the number of assigned PRBs to
these users. What can be observed is the fact that UE 6 and UE
8 experience the highest variability in PRB assignments, while
UE 1 and UE 3 the lowest. As opposed to the first moment,
these outcomes are not fully compliant with the variability
of channel conditions of UEs. Namely, from Table III (third
row), we can observe that UEs 2, 4, 5, and 7 have as varying
channel conditions as UEs 1 and 3, but higher variability in
the assigned PRBs over time. So, the first moment of per-PRB
rate is far more decisive on the first moment of assigned PRBs
than the variability of channel conditions is on the variability
of assigned PRBs over time.

The previous findings are explained by Table IV, which
shows the probability that a UE will receive any resources in
a slot, i.e., the probability that UE will experience the highest
(potentially with other UEs) CQI in a given slot. Note that in
the BS level the allocation policy is maxCQI. UE 1 and UE 3
have the highest chances to receive any resources, hence they
have the highest average PRBs assigned. On the other hand,
UE 8 in 93% of the slots will not receive any PRBs, and in only
7% of the slots will have resources allocated, increasing thus
its coefficient of variation of the number of assigned PRBs.

D. Policy comparisons: Corner cases

So far, we have compared the allocation policies for
various configurations, considering UEs with different CQI
distributions. In the following, we demonstrate performance
differences between the allocation policies in corner cases in
terms of the UE channel conditions. To that end, we consider
the following four scenarios (in each scenario there are 2 BSs

to Eq.(1) for Case 3.

TABLE IV
THE PROBABILITY THAT THE CQI OF A GIVEN UE IS EQUAL TO THE
HIGHEST CQI AMONG ALL UES IN A SLOT
user 1 2 3 4 5 6 7 8
0.35 | 0.18 | 0.34 | 0.1 | 0.15 | 0.09 | 0.14 | 0.07

prob.

with 2 UEs each, and 2 other BSs with 4 UEs each, i.e., in
total there are 4 BSs and 12 UEs):

o Scenario A: All UEs in all BSs experience similar channel
conditions. The CQI of every UE in a slot is drawn
uniformly from the entire set.

o Scenario B: All UEs have excellent channel conditions
(CQI is drawn uniformly from the range 13 — 15).

o Scenario C: All UEs have very bad channel conditions
(CQI is drawn uniformly from the range 1 — 3).

o Scenario D: UEs in two of the BSs experience excellent
channel conditions (their CQI is drawn uniformly from
the range 13 — 15), whereas UEs in the other two BSs
suffer from bad channel conditions (their CQI is drawn
uniformly from the range 1 — 3).

Fig. 9 shows the ratio of the average values of the equivalent
objectives to Eq.(1), i.e., the product of data rates, over time
in the network with SD-RAN (solving P;), and no-SD-RAN
(the outcome from the solution to Py) for the four scenarios
described above. SD-RAN outperforms no-SD-RAN in all four
scenarios, by almost exactly the same factor (near 2). This
implies that the average of the product of data rates over time
with P; is almost twice as high as the average of the product
of data rates over time with Py, obviously implying a more
proportionally fair resource allocation.

Fig. 10 depicts the average values of the objective Eq.(4)
over time (i.e., on logarithmic scale) for the same setup as
previously, but with the results obtained from P, and Pj.
Again, in all scenarios, the SD-RAN outperforms no-SD-RAN
network. The difference between the two policies is the highest
in Scenario A, which is around 2 on logarithmic scale, or
equivalently, around 100 x on linear scale. Obviously, the latter
means that the product of the throughput of all BSs is 100x
higher with the solution of P, than with that of Py.

VII. CONCLUSION

In this paper, we considered the problem of providing
proportional fairness in terms of throughput in an SD-RAN
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environment. We derived the allocation policies that provide
proportional fairness. We did this for two cases. In the first,
the goal was to provide proportionally fair allocation across all
UE:s in the network, while in the second case, the objective was
to guarantee proportional fairness among BSs. We evaluated
the performance on real data sets, and compared it with no-
SD-RAN network and another allocation policy, demonstrating
the considerable improvements the introduction of SD-RAN
brings into play. In the future, we will consider a-fairness.
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