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Abstract Complex geometries as common in industrial applications consist of mul-
tiple patches, if spline based parametrizations are used. The requirements for the
generation of analysis-suitable models are increasing dramatically since isogeomet-
ric analysis is directly based on the spline parametrization and nowadays used for
the calculation of higher-order partial differential equations. The computational, or
more general, the engineering analysis necessitates suitable coupling techniques
between the different patches. Mortar methods have been successfully applied for
coupling of patches and for contact mechanics in recent years to resolve the arising
issues within the interface. We present here current achievements in the design of
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mortar technologies in isogeometric analysis within the Priority Program SPP 1748,
“Reliable Simulation Techniques in SolidMechanics. Development of Non-standard
Discretisation Methods, Mechanical and Mathematical Analysis”.

1 Introduction

Mortar methods have been developed in the early 1990s of the past century [4], see
also in [1] in the context of domain decomposition problems, originally applied to
spectral and finite element methods, see, among many other [28, 77, 81]. Domain
decomposition techniques provide powerful tools for the coupling of different, in
general nonconforming meshes. A wide range of reason exists to create such inter-
faces; the characteristic idea of mortar methods rely on the weak, integral condition
in contrast to strong point-wise couplings. Within the principle of virtual work and
far beyond this mechanical concept, mortar methods enter the corresponding balance
equations in a variational consistent manner.

Lagrange multipliers in a dual form have been proposed in [78]. This allows for a
cost efficient and effective way for the interface coupling. Several interpretation exist
for the condensation, e.g. as elimination of the Lagrange multipliers via the Schur
decomposition as presented in [29] or as null-space reduction scheme as shown in
[38]. In the latter citation, mortar methods are used for overlapping domain decom-
position methods in the context of fluid-structure interaction problems (FSI), also
known as immersed techniques.Moreover, [48] appliedmortar methods on boundary
fitted FSI, demonstrating the wide range of applicability of this methodology.

For contact mechanics, nodal wise enforcement of the non-penetration condition
are used since the 1980s, see, e.g., [32, 33]. As shown in detail in [25], nodal wise
formulations do not pass the patch test and do not converge correctly, which is a
major drawback of these methods. In contrast, mortar methods used as variationally
consistent contact interface conditions as considered in [35, 43, 44, 60–64] pass the
patch test.

Isogeometric Analysis (IgA) as introduced in [45] has become a widely used
methodology, see [9–11, 39]. This framework facilitates the usage of NURBS basis
functions, emanating from the field of computer aided design (CAD). Moreover, it
allows for the construction of finite element basis functionswith adjustable continuity
across the element boundaries, in contrast to classical Lagrangian basis functions.
This enables the numerical treatment of higher-order partial differential equations
(PDE’s), e.g. for Cahn-Hilliard or Cahn-Hilliard like formulations [30], in fracture
mechanics [6, 17, 18], in structural mechanics, e.g. in [2, 3, 22–24, 47, 65] and for
generalized continua [27].

A major drawback of IgA is the decomposition of the whole domain in patches.
In standard industrial geometries, the domain is decomposed in hundreds or even
thousands of patches, which necessitates the application of suitable interface con-
ditions. Therefore, the combination of mortar methods and IgA has been proposed
in [8, 36]. A wide range of issues arise, mostly related with the suitable choice of
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the Lagrange multiplier space. In a series of actual contributions [20, 21, 40, 67],
higher-order domain decomposition has been addressed as well, which allows for
the application of higher-order PDE’s in multi-patch geometries.

Finally, several contributions deal with IgA and mortar contact methods, see
[13, 14, 19, 37, 69]. Biorthogonal splines for the effective condensation of the
Lagrange multipliers have been developed in [82]. Multidimensional coupling has
been addressed recently in [46, 72].

The paper is structured as follows. In Sect. 3 basic notations and IgA concepts are
introduced within a most general framework on unconstrained and constrained elas-
ticity. In Sect. 4, recent trends in IgA based mortar domain decomposition methods
are shown. This is followed in Sect. 5 by recent contributions for IgA mortar contact
techniques, along with multidimensional coupling conditions in Sect. 6. Eventually,
conclusions are drawn in Sect. 7.

2 Coupled Simulations with Mortar Methods in HPC

Although mortar methods have been originally developed for coupling on non-
overlapping subdomains, the idea of variational transfer has been applied to a much
wider class of problems. A principal advantage of mortar methods is their ability
to couple different discretizations, either on interfaces, surfaces, in the volume, and
even across dimensions, i.e. between 1D and 3Dmodels or 3D and 2Dmodels. Using
variants or derivatives of the mortar methods, coupled multi-physics problems, such
as fluid structure interaction, can be realized using immersed methods with volume
coupling [54]. For multi-scale simulations in mechanics, mortar methods can be
used to couple molecular dynamics simulations with finite element approximations
using an overlapping decomposition approach. Contact problems in mechanics can
efficiently be dealt with using mortar methods for the coupling between surfaces
[15, 59], and coupling across dimension or non-conforming meshes can be used for
the simulation of flow in fracture networks in geo-sciences [5, 66, 74, 75]. Finally,
mortar methods can also be employed to build multilevel approximation spaces for
multigrid methods, thereby serving for the construction of linear or non-linear multi-
grid methods on complex geometries [16, 85].

The flexibility mortar methods provide, however, is tightly connected to the capa-
bility of assembling the mortar transfer operator for volume coupling or surface
coupling - or combinations thereof. This seemingly practical task turns out to play
a pivotal role when more complex applications with possibly several non-connected
or overlapping domains are considered. For large scale simulations, also the parallel
assembly of the transfer operator has to be considered. The latter is a challenging
task in terms of efficiency and scalability, as in general no a priori information on
the connectivity between two non-matching meshes is available, which then has to
be generated and dealt with during the assembly.

In this section, we will present examples from cardiac simulation, computational
mechanics, and fluid-structure interaction in cardiac simulation and geo-sciences,
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which illustrate the capabilities of the mortar method. Moreover, we will discuss
the tedious and non-trivial assembly of the mortar operator in the context of mas-
sively parallel computations in HPC (e.g., [55]), which has been realized in the two
libraries [84].

One example for computationally demanding simulations are multi-scale sim-
ulations in mechanics. The idea behind these multi-scale simulation is to resolve
phenomena such as fracture locally by means of molecular dynamics and to use a
continuum mechanics representation for the remaining body. Thus, on the discrete
level, molecular dynamics simulation have to be coupled with finite element dis-
cretizations. In molecular dynamics (MD), atoms are represented as point masses,
which are subject to internal and external forces. For the positions of the atoms it
is assumed that they follow Newton’s equation of motion. The forces exerted on
the atoms are modeled by means of the gradient of a potential, e.g. Lennard–Jones,
which is describing the behavior of the material under consideration. This leads to a
system of ordinary differential equations, which then is solved numerically. For the
coupling of molecular dynamics simulations, we have to transfer quantities such as
displacements, velocities, and forces between a finite element discretization, which is
based on integral quantities, and the MD discretization, which is based on pointwise
given information (atoms). In [26] this coupling has been realized by attaching a
partition of unity to the atoms and then using a mortar transfer operator for coupling
between the MD and the FEM discretizations. As it turns out, the mortar method in
this context can be shown to act as a frequencyfilter,whichwill effectively remove the
high-frequency components of the MD displacements, which can not be represented
on the FE mesh. As a consequence, mortar based multi-scale coupling eliminates a
large part of the unphysical wave reflections at the coupling interface and gives rise
to a stable coupling between MD and FEM, see Fig. 1 and [26].

Fig. 1 Multi-scale coupling
of Molecular Dynamics and
Finite Elements via Partition
of Unity and L2-projection
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In the context of fast solution methods, mortar methods have also been used
to derive adaptive space-time discretization methods, see [50, 51], which combine
the advantages of structured meshes in terms of simple data-structures with the
advantages of adaptive discretizations. Here, for the coupling at the interfaces, mortar
methods have been employed, allowing for a local (to a single processor or core)
treatment of the unknowns. Clearly, the load balancing needs to be adapted to this
situation. The resulting decomposition cannot only be used for the design of adaptive
parallel methods, but also for the construction of additive Schwarz-preconditioners
in space and time based on non-conforming space-time decomposition, see [50, 51].

Whereas in the above example the computation of the transfer operator at the
domain interface is straight forward, it becomes more difficult and demanding in the
case of coupling between non-matching or warped surfaces or in the case of volume
coupling between bodies represented with unstructured meshes. By definition, the
assembly of the transfer operator requires the evaluation of integrals on the intersec-
tion of two non-matchingmeshes.We refer to Fig. 6, which illustrates the complexity
of the resulting intersections for a fracture network. In the case of surface coupling,
meshes need to be projected from one surface onto another [15]. In a parallel setting,
involving two or more domains or bodies, a major difficulty is that a priori we don’t
know which elements of which subdomain will have a non-empty intersections [52].
We note that in a parallel computation these might be on completely different pro-
cessors, so that a global search has to be carried out. A global search however is not
advisable due to the resulting quadratic complexity. Thus, more efficient strategies,
i.e. hierarchic strategies based on kd-trees, are employed for detecting possibly inter-
secting elements. The resulting cut-candidates are then checked in detail for possible
intersections, so that the quadratures on the intersections can be carried out, in order
to compute the entries of the mass matrix. From a technical point of view, detection
and computation of the intersections has to be handled very carefully, as small cuts
or ill-conditioned sub-problems will show up. Additionally, in order to guarantee
scalability, the computation of the intersections and the computation of the local
integrals are distributed globally to ensure equal load balancing. For surface related
coupling, e.g. contact problems, this imbalance is quite obvious. It will, however,
also show up for volume coupling. One possibility to ensure a good load balancing,
is to use space-filling curves. We refer to [52], where this approach is described in
detail as well as to the library MoonoLith [84], which to our knowledge is the only
currently available library implementing variational transfer on arbitrary meshes in
parallel for surfaces and volumes. As a consequence, the flexibility of mortar meth-
ods is counterbalanced by the complex assembly of the transfer operator for complex
geometries.

Once available, however, variational transfer can be used to design new numerical
methods for coupled multiphysics simulations. Here, as an example, we consider
immersed methods for fluid structure interaction in cardiac simulation. Figures2
and 3 show the fluid-structure interaction interaction between the turbulent systolic
jet and the leaflets of a bio-prosthetic aortic valve. The fluid-structure interaction
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Fig. 2 Spatial distribution of
the von Mises stresses in the
bio-prosthetic aortic valve

Fig. 3 Vortical structures
arising from the interaction
of the bio-prosthetic aortic
valve with the blood
flow [54]
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Fig. 4 Spatial distribution of
the von Mises stresses in the
bio-prosthetic aortic valve
during contact

formulation relies on a mortar approach to couple a finite difference discretization
of the Navier-Stokes equations, with an finite-element formulation of an anisotropic
fiber-reinforced model [34, 54, 83]. In contrast to other immersed approaches, the
coupling strategy allows for an implicit treatment of the equations describing the
solid dynamics. Moreover, it effectively prevents leakage at the interface, as the
basis functions of the multiplier space form a partition of unity. Figures4 and 5 show
the combination of volume coupling with surface coupling, i.e. of FSI with contact
for the considered bio-prosthetic aortic valve. Here, transfer on the entire volume as
well as on the surface have to be carried out in order to satisfy the equality (FSI)
constraint and inequality (contact) constraints (Figs. 6 and 7).

3 Basic Equations and Isogeometric Analysis

We start with a short summary of elasticity with constraints to introduce the basic
concepts to be dealt with in the following. Therefore, we consider a Lipschitz
bounded domain with reference configuration B0 ⊂ R

d , d ∈ {2, 3}, undergoing a
motion characterized by a time dependent deformation mapping ϕ : B0 × I → R

d ,
where I = [0, T ] is the time interval elapsed during the motion. The current config-
uration is denoted by Bt = ϕt (B0), material points are labeled by X ∈ B0 → R

d .
Unconstrained elasticity. For themost basic setting in elasticity, we introduce the

virtual work of the internal and external contribution and postulate that the principle
of virtual work is valid. In a first step, the spaces of solution and weighting functions

S = {
ϕ ∈ H1(B0) | ϕ = ϕ̄ on Γ u

}
, (1)

V = {
δϕ ∈ H1(B0) | δϕ = 0 on Γ u

}
, (2)

are defined. Here, wemake use of the standard notation for the Sobolev spaceHs(B0),
s ≥ 1, of square integrable functionsϕwith square integrable weak derivatives of the
given order. Note that second and third gradient materials require ϕ ∈ H2(B0) and
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Fig. 5 Streamlines of the
velocity fluid field during the
closure of the valve when
contact occurs

ϕ ∈ H3(B0), respectively. In accordance with common nomenclature, we denote the
Dirichlet boundary conditions Γ u and Neumann conditions Γ n , satisfying ∂B0 =
Γ u ∪ Γ n and Γ u ∩ Γ n = ∅ throughout the time interval I. The principle of virtual
work now reads: find ϕ ∈ S such that

a(ϕ, δϕ) = l(ϕ, δϕ) ∀ δϕ ∈ V, (3)

where
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Fig. 6 Non conforming mesh method for flow in fracture porous media [66]

Fig. 7 Fluid Structure Interaction with contact for geo-sciences (from [74])
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a(ϕ, δϕ) :=
∫

B0

∇X(δϕ) : P dV, (4)

l(ϕ, δϕ) :=
∫

B0

δϕ · B(ϕ) dV +
∫

Γ n

δϕ · T(ϕ) dA, (5)

are the internal and external contributions to the virtual work. Here, P denotes the
first Piola-Kirchhoff stress tensor, B body forces and T surface loads, acting on Γ n .
For linear elasticity, the second term on the right hand side of (4) has to be linearized,
hence, a(ϕ, δϕ) is a bi-linear form.

Constrained elasticity.Elastic systems can be subject to a wide range of different
constraints. For incompressible systems, constraints are defined throughout thewhole
domain. For overlapping domain decomposition methods as used for fluid-structure
interaction (immersed techniques) as well as for solid-solid interaction problems,
the constraints are defined on at least parts of the domain. Plasticity takes a special
role, as the corresponding constraints are defined as Karush-Kuhn Tucker inequality
conditions within the whole domain, almost always locally condensed. Many for-
mulations focus on conditions at certain internal and external interfaces; classical
domain decomposition problems act on fixed interior interfaces, whereas boundary
fitted fluid-structure interaction formulations rest on moving internal interfaces. On
the other hand, constraints acting on external interfaces like Dirichlet and control
conditions can be applied as well as contact problems, which, similar to plasticity,
are given as a set of Karush-Kuhn Tucker inequality conditions.

This principle of virtual work reads now

a(ϕ, δϕ) + b(λ, δϕ) = l(ϕ, δϕ) ∀ δϕ ∈ V, (6)

b(μ,ϕ) = 0 ∀ μ ∈ N , (7)

where the form b(μ,ϕ) is to be defined corresponding to the considered constraints.
Detailed formulations in the context of the mortar methods under investigations in
this article are presented in subsequent sections. All formulations require appropriate
definitions for the spaces of solution functionsM and weighting functionsN of the
Lagrange multipliers λ, depending on the chosen problem to be taken into account.
Note that this kind of problems leads in general to a saddle point structure, such that
the chosen spaces have to obey the inf-sup conditions.

B-spline and NURBS spaces. Next, we introduce in a nutshell suitable B-spline
and NURBS approximations. We refer to Hesch et al. [37] for more details on the
construction of the spaces including hierarchical refinement procedures. A multi-
variate B-spline basis of degree p = [p1, . . . , pd ] is defined by the dyadic prod-
uct � = Θ1 ⊗ · · · ⊗ Θd of univariate knot vectors, built by a sequence of knots
Θl = [ξl1 ≤ ξl2 ≤ · · · ≤ ξln+pl+1], l ∈ {1, . . . , d} and n the number of basis functions.
In the absence of repeated knots, the partition [ξ1i1 , ξ1i1+1] × · · · × [ξdid , ξdid+1] form an
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element of the mesh in the parametric domain.1 A single multivariate B-spline BA

is then defined by

BA = B i
p(ξ) = B i

p(ξ
1, . . . , ξd) =

d∏

l=1

Nil ,pl (ξ
l), (8)

with multi-index i = [i1, . . . , id ] and supp(BA) = [ξ1i1 , ξ1i1+p1+1] × · · · ×
[ξdid , ξdid+pd+1], providing the necessary support for the required continuity. The recur-
sive definition of a univariate B-spline is given as follows

Nil ,pl = ξ − ξlil
ξlil+pl

− ξlil
Nil ,pl−1(ξ) + ξlil+pl+1 − ξ

ξlil+pl+1 − ξlil+1

Nil+1,pl−1(ξ), (9)

starting with

Nil ,0(ξ) =
{
1 if ξlil ≤ ξ < ξlil+1
0 otherwise

. (10)

The collection ofB-splines BA, A ∈ [1, . . . , n] is defined on� and the corresponding
spline space, defined as S(�) = span(BA). Moreover, the extension to the NURBS
space is given by

RA = Ri
p(ξ) =

d∏

l=1
Nil ,pl (ξ

l) wi

∑
î

d∏

l=1
Nîl ,pl

(ξl) wî

, (11)

along with the corresponding NURBS weights wi. The fundamental properties of a
basis are typical for B-spline and NURBS spaces:

• Linear independence,
∑

A
cA RA(ξ) ≡ 0 ⇔ cA = 0.

• Partition of unity,
∑

A
RA(ξ) = 1.

• Local support of B-splines and of NURBS
• Smoothness is related to knot multiplicity m i

2

• Nonnegativity, i.e. RA(ξ) ≥ 0 .

Please note that the Kronecker delta property RA(ξi) = δA
i , which is common for

Lagrangian basis functions, is in general not fulfilled here. The parametric domain as
defined in the knot vector� correlates to the domain B̂, independent of the existence
of local refinements. The shape functions RA can be associated with a net of control

1 We define the number of repetitions in � at node i as multiplicity mi.
2 Cm continuity of the approximation spaces relates to solution functions u which are at least
u ∈ Hm+1(B), with Hm+1(B) being the Hilbert space of square integrable functions with m + 1
square integrable derivatives.
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points qA ∈ R
d , such that a geometrical mapF : B̂0 → B0 can be defined to link the

parameter and the physical space

ϕh := F(ξ) = RA(ξ)qA = Ri
p(ξ)qi, (12)

cf. da Veiga et al. [12]. The physical domain is the image of the parametric domain
through F, and we note that both domains share the same regularity properties, see
Brivadis et al. [8].

4 Mortar Techniques for Isogeometric Analysis

To combine mortar with IgA techniques is of special interest for complex domains
which require a multi-patch representation. The use of multi-patches can also help
to avoid singularities in the domain mapping for relatively simple domains. To allow
for patch-wise independent mesh generation, it is a must to tear and interconnect
the discrete solution in a suitable way. Different alternatives such as discontinuous
Galerkin (DG) based interior penalty approaches ormortar basedLagrangemultiplier
formulations exist. Here we focus on mortar techniques and guarantee always a
variational consistent weak C0-coupling at the interior patch boundaries. We review
two conceptual different strategies to realize higher-order continuity and address
the cost of static elimination of the Lagrange multiplier. A rigorous mathematical
analysis of standard mortar IgA techniques can be found in [8].

4.1 Biorthogonal Splines for Isogeometric Analysis

This subsection is based on [82]. We provide the abstract construction framework
of biorthogonal Lagrange multiplier basis functions. The handling of non-matching
meshes in terms of Lagrange multipliers may result in a uniformly stable and vari-
ationally consistent discrete formulation, and thus from a theoretical point of view
it is well-understood and attractive. However, it gives, in general, rise to a saddle
point system, which is more challenging for iterative solvers due to its indefinite
algebraic character. The analysis of such a system can be based on a mixed approach
and requires continuity of the bilinear forms, approximation properties of the primal
and dual space and a uniform inf-sup stability between the discrete spaces.

Alternatively the saddle point system can be formally condensed. Then we are
in the setting of a positive definite system on a constrained primal space. The dual
variable is eliminated, and at the same time constraints are incorporated in the primal
space. Now we can apply the theory of nonconforming finite elements and have to
analyze the consistency error. In the mortar case, the consistency error is directly
related to the jump of the discrete solution across the interface. Due to the weak
continuity, which is enforced by the discrete Lagrange multiplier, it can be shown,
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Fig. 8 Spurious oscillations in the Lagrange multiplier for p = 1 in case of quadratic splines as
primal space and uniformly stable results for p = 2: Dirichlet boundary conditions (right) and
Neumann boundary conditions (left)

in case of an optimal mortar method, that it is at least of the same order as the best
approximation error in the unconstrained primal space.

Using a discrete Lagrangemultiplier space, which is obtained, up tomodifications
at the crosspoints, as trace space of the primal space restricted to the slave side, there
exists no basis of the discrete constrained space such that all basis functions have a
local support. This is related to the fact that a typical mass matrix is sparse but has
a dense inverse. Consequently, we obtain basis functions having a support on the
slave side, which is local in the direction normal to the interface but global along the
interface. This also holds for classical low-order mortar finite elements but is even
more pronounced in the higher-order IgA framework.

To obtain an optimal mortar IgA approach, which results in a sparse positive
definite system on the constrained space, the discrete Lagrange multiplier space has
to satisfy four elementary properties:

• (BA) – best approximation property with respect to the dual norm,
• (LS) – local support of the basis functions,
• (BC) – biorthogonality condition between the trace of the primal and the dual basis
functions,

• (UC) – uniform inf-sup condition.

While (LS) and (BC) influence mainly the computational aspect, (BA) and (UC)
are essential from the theoretical point of view. To see that (UC) is not only a counting
argument of the dimensions of the involved spaces, we give a simple illustration of the
effect of a mesh-dependent constant in the inf-sup condition. To do so, we consider
p = 2 for the primal space and two different pairings in the discrete Lagrange multi-
plier space. One is obtained by the trace space with p = 2 and one with p = 1. Here,
a counting point argument would be very misleading. In this case, the choice p = 1
for the discrete Lagrange multiplier is unstable while p = 2 is uniformly stable, as
illustrated in Fig. 8. The Dirichlet condition case is more pronounced to instabilities
due to the strong constraint of the primal space at the boundary. For more details and
a theoretical analysis of the uniformly stable pairing, we refer to [8].
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In the following, we briefly sketch the main steps in the construction of such a
biorthogonal set of basis functions. The technical details can be found in [82]. For
simplicity of notation, we consider only one interface Γ .

Step I: In a first step, we embed the trace space on the slave side of the interface
Γ into the product space of piecewise polynomials having no continuity constraints
between the elements, i.e., the spline space of lowest regularity. Using for this higher
dimensional product space an elementwise defined basis obtained by multiplying
the original basis functions φi , i = 1, . . . I , with elementwise cut off functions χe,
e ∈ E . Here I is the dimension of the trace space and E the set of elements. We
note that due to the locality of the support of φi many product terms φiχe yield
the zero function. The non-trivial ones can be reordered and denoted by φi,e, i =
1, . . . , (p + 1)(d − 1) where p is the polynomial order of the trace space and d the
dimension of the domain. They form the new basis functions of the product space.
It is now easy to construct a biorthogonal basis by inverting a local mass matrix
of size (p + 1)(d − 1) × (p + 1)(d − 1). More precisely, we require ψi,e ∈ Qp(e)
such that

∫

e
φi,e ψ j,e ds =

∫

e
φi,e ds δi, j , i, j = 1, . . . , (p + 1)(d − 1). (13)

Then by construction the biorthogonal basis defined as product space satisfies (BA),
(LS) and (BC) but unfortunately not (UC), and thus we cannot guarantee unique
solvability of the system.

Step II: In a second step, we reduce the dimension such that we have equality in
the dimensions of the trace space and the one spanned by our modified biorthogonal
basis functions. Each basis function φi of the trace space can be written uniquely as
linear combination of the basis functions of the product space

φi =
∑

e∈E,e⊂supp φi

φg(i,e),e, i = 1, . . . , I, (14)

where g(i, e) ≤ (p + 1)(d − 1) such that φiχe = φg(i,e),e. We note that if i �= j then
for e ⊂ supp φi ∩ supp φ j =: Si j we get g(i, e) �= g( j, e). To define now a smaller
set of biorthogonal basis functions, we glue the ones of Step I together by using the
same coefficients in the linear combination, i.e.,

ψi :=
∑

e∈E,e⊂supp ψi

ψg(i,e),e, i = 1, . . . , I. (15)

By doing so, we obtain for each basis function of the trace space one basis function
in the dual space and (UC) can be shown. By construction it satisfies (LS), i.e., supp
φi = supp ψi , and (BC), i.e.,
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Fig. 9 Example of biorthogonal basis functions satisfying (BC), (UC) and (LS) but not (BA)

∫

Γ

φi ψ j ds =
∑

e∈E

∫

e
φi ψ j ds =

∑

e∈E,e⊂Si j

∫

e
φg(i,e),e ψg( j,e),e ds

=
∑

e∈E,e⊂Si j

∫

e
φg(i,e),e ds δg(i,e),g( j,e)

=
∑

e∈E

∫

e
φg(i,e),e ds δi, j =

∫

Γ

φi ds δi, j .

(16)

Unfortunately by reducing the number of basis function, we have gained the property
(UC) but lost for p > 1 the property (BA).

In Fig. 9, we illustrate the result of Steps I-II for p = 2 and a seven dimensional
trace space. The basis functions have exactly the same support as the ones of the trace
space, i.e., at most three elements, and are discontinuous across the elements. We
note that these basis functions cannot reproduce a linear function with mean value
zero, and thus the required best approximation property is not satisfied. As can be
easily observed, all interior basis functions φ3,φ4,φ5 have the same shape and can
be obtained from each other by a simple coordinate shift.

Step III: In the third step, wemodify the biorthogonal basis that we have obtained
in Step II such that (LS), (BC) and (UC)will be preserved and the best approximation
property (BA) will be restored. We note that adding to a biorthogonal basis function
a function which is orthogonal to the trace space does not destroy (BC). As a prelim-
inary step, we define out of the biorthogonal product space locally defined functions
being orthogonal to the trace space. Having these basis functions at hand, we then
define coefficients by solving systems of small size.We point out that the system size
depends on the order p but not on the meshsize. The small size of the system then
guarantees that (LS) is preserved. Let us assume for the moment that we have cal-
culated the coefficients, we then obtain the modified dual basis function by adding a
linear combination of globally orthogonal functions where the computed coefficients
are used. The system to be solved is given in such a way that the new basis satisfies
by construction (BA). In other word the condition (BA) determines the small size
system to be solved. Since on a uniform mesh all interior basis function have the
same form, only a small number of different systems has to be solved, and this step is,
as all other steps, computationally cheap. We point out that we have here to enlarge
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Fig. 10 Example of a interior biorthogonal basis function, p = 2

the support from at most p + 1 elements to 2p + 1 elements. A biorthogonal basis
having the same support as the trace basis and optimal reproduction property does
not exist for p > 1. In the standard finite element case, we refer to [77] for p = 1
and to [56] for p > 1.

Figure10 illustrates one interior dual basis function for p = 2. In this case the
support is enlarged from 3 to 5 elements as indicated by the shadowed regions.

Step IV: In case of crosspoints/wirebaskets, we further reduce the dimension of
the basis functions such that (UC) holds with respect to a smaller trace space. It is
of importance to note that this step has to be worked out carefully such that (BA) is
not lost.

Although, Steps I-IV are quite technical and can be for d = 3 on non-uniform
meshes prone to coding bugs, all steps are local in the sense that the size of all
involved systems to be solved does depend on p and d but not on the meshsize.

In the rest of this subsection, we illustrate the robustness and flexibility of the
approach by a numerical example previously discussed in full detail in [82]. As test
case, we consider the well-known 2D benchmark of an infinite plate with a hole
with the equations of linear elasticity. Due to symmetry, only a quarter of the plate is
considered, and the infinite geometry is cut with the exact traction being applied as
a boundary condition. As exemplary geometric setup, we choose two patches with
a straight interface, but where the parametrization of the interface is different in the
two patches. The entire setting is illustrated in Fig. 11 for a mesh ratio of 2:3.

Numerical investigations are outlined here for quadratic (p = 2) and cubic (p =
3) splines and three different choices for the Lagrange multiplier bases. Specifically,
a so-called standard Lagrange multiplier basis (‘std’), which is constructed as trace
space of the primal space restricted to the slave side and therefore does not satisfy
the (LS) condition, is compared with the two variants of biorthogonal Lagrange
multiplier bases introduced above: the elementwise approach (‘ele dual’) from Fig.9,
which violates the (BA) property, and the approach with slightly enlarged support
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Fig. 11 2D plate with a hole - Geometry and setup (left) and two-patch parametrization (right)
with an exemplary mesh ratio of 2:3. Reproduced and slightly modified from [82]

Fig. 12 2D plate with a hole - Convergence results for different Lagrange multiplier bases for
p = 2 (left) and p = 3 (right) with exemplary mesh ratios of 2:3 and 3:2. Reproduced and slightly
modified from [82]

from Step III above (‘optimal’), which satisfies all four conditions (BA), (LS), (BC)
and (UC).

Convergence results under uniformmesh refinement, with the discretization error
of the displacement field umeasured in the energy norm ‖u − uh‖E , are reproduced
from [82] in Fig. 12. Several key results can be identified: first and foremost, both the
standard Lagrange multiplier basis as well as the optimal biorthogonal basis yield
the expected convergence order of O(h p) in all considered cases, and the absolute
error levels are comparable. It should be kept in mind, however, that only the optimal
biorthogonal basis fromStep III above at the same timeguarantees local support of the
basis functions (LS). Second, the simple elementwise biorthogonal basis from Step
II clearly cannot provide optimal results in all cases, but may exhibit a deteriorated
convergence order ofO(h3/2). This becomes particularly apparent if the slave mesh
is coarser than the master mesh and for higher-order interpolations (here p = 3). The
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results underline the importance of all three steps in the construction of biorthogonal
Lagrange multiplier basis functions highlighted above.

4.2 Multi-patch Analysis for Kirchhoff–Love Shells

As a first prototypical example for the use of IgA concepts and advanced mortar
methods in elasticity, we focus on Kirchhoff–Love (KL) shell elements. The devel-
opments here are based on [67]. The kinematical assumptions of KL shells rely on the
out of plane curvature terms, used to describe the bending of the shell. This approach
requires a general G1 continuity across the whole domain (see [47] for details on G1

continuity), in contrast to Hellinger-Reissner (HR) beams developed throughout the
past decades. As IgA naturally allow us to deal with equations of higher-order, the
central drawback of KL shell elements is removed.

For complex geometries, the domain is always divided into sub-patchesΩm ,m =
1, . . . , M with interfaces Γl , l = 1, . . . , L . In particular, we require G1 continuous
patch connection of the in general non-conformdiscretized patches.Within a classical
mortar method to enforce C0 continuity across the interface, a Lagrange multiplier
space is introduced by the trace space of the displacements restricted to the slave
side Γ1. Now we can state that for a given ϕ(2)

h at the interface Γ2 on the mortar side
we assume now that a ϕ(1)

h at the interface Γ1 on the slave side can be found, such
that the minimization problem

‖ϕ(1)
h − ϕ(2)

h ‖2L2(Γ1)
= inf

w∈W (1)
h

‖w − ϕ(2)
h ‖2L2(Γ1)

, (17)

is satisfied. Here, W (1)
h = span{Nr

(1)}, where Nr
( j) are B-Spline shape functions on

side j , restricted to the subset r , see [67], Sect. 3.2 for details. This leads to the
classical mortar formulation of the constraints

Φ0 :=
∫

Γ1

(
Nr1

(1) · Nr2
(1) q

(1)
r2 − Nr1

(1) · Nr3
(2) q

(2)
r3

)
dΓ, (18)

where we have made use of

ϕ(1)
h =

3n(1)∑

r=1

q(1)
r Nr

(1), ϕ(2)
h =

3n(2)∑

r=1

q(2)
r Nr

(2). (19)

Note that we use the discrete Lagrange multiplier space with biorthogonality condi-
tions between the primal and the dual basis functions, see Sect. 4.1 for details. The
situation is different for a G1 continuous coupling. Therefore, we assume again that
for a given ϕ(2)

h at the interface Γ2 on the mortar side a ϕ(1)
h at the interface Γ1 on

the slave side can be found, such that
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Fig. 13 Initial bases (left) and modified bases functions (right)

‖ϕ(1)
h − ϕ(2)

h ‖2L2(Γ1)
+

2∑

α=1

∫

Γ1

(

ϕ(1)
h,α −

2∑

k=1

λα
k ϕ(2)

h,k

)2

dΓ =

inf
w∈W (1)

h

⎡

⎣‖w − ϕ(2)
h ‖2L2(Γ1)

+
2∑

α=1

∫

Γ1

(

w,α −
2∑

k=1

λα
k ϕ(2)

h,k

)2

dΓ

⎤

⎦

(20)

is satisfied, where we make use of the notation (•),α for the derivative with respect
to the direction α. This is equivalent to enforce

Φ1 := Φ0 +
∫

Γ1

Nr1
(1),1 · Nr2

(1),1 q
(1)
r2 − Nr1

(1),1 ·
(

2∑

k=1

λ1
k N

r3
(2),k

)

q(2)
r3 dΓ +

∫

Γ1

Nr1
(1),2 · Nr2

(1),2q
(1)
r2 − Nr1

(1),2 ·
(

2∑

k=1

λ2
k N

r3
(2),k

)

q(2)
r3 dΓ.

(21)

Here, λ
j
i , i, j = 1, 2 are four real numbers, defined at each point of the surface to

control the G1 continuity. Note that for λ
j
i = δ

j
i we obtain C1 continuity. Certain

ways exist to enforce the mortar constraints. Here, we provide some information
for a local condensation procedure where we calculate modified basis functions to
avoid the explicit usage of Lagrangemultipliers. Therefore, we distribute points ξi on
the parametric domain of the finer-meshed surface and determine the corresponding
parameters ξ′

i with ϕ̄(2)
h (ξ′

i ) = ϕ̄(1)
h (ξi ) using an orthogonal projection. Afterwards

we use the information from (20) evaluated at the distributed points to calculate new
bases functions, see Fig. 13 for a graphical representation of modified functions. This
procedure can be considered as a local null-space reduction scheme, acting on the
space of basis functions.
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f

Fig. 14 Reference configuration and boundary conditions (left) and von Mises stress distribution
with C0 continuous mortar coupling (right)

To demonstrate the applicability to KL shells, we investigate a cylinder com-
posed of two, initially curved shell patches discretized by 18 × 18 and 20 × 20 cubic
NURBS elements, respectively. Note that the NURBS weights are chosen such that
two perfect half cylinders with a radius of 1m, a length of 3m and a thickness
of 0.02m are obtained. The cylinder is fixed along a bottom line and a line load of
28N/m is applied on the opposite side as shown in Fig. 14, left side. On the right side,
a classicalC0 continuous mortar method is applied, which does not allow for a trans-
fer of bending moments across the interface. The effects on the deformed geometry
displayed are obvious. In contrast, the results in Fig. 15 demonstrate that the cou-
pling conditions satisfying (20) at the interface can counterbalance the non-matching
meshes. Note that the G1 coupling conditions are in general linear constraints, such
that linear and angular momentum are conserved quantities throughout the interface,
providing that the constraints are fulfilled in the reference configuration.

4.3 Weak Cn Coupling for Solids

In [20], the previously introduced concept of high-order mortar coupling conditions
is extended towards the application on Cauchy continua. Moreover, we investigate
different evaluations of general Cn continuous coupling conditions, written in terms
of a saddle point system. The constraints forC0 andC1 continuous coupling, respec-
tively, have been introduced in (18) and (21), using λ

j
i = δ

j
i . The extension for C2

follows immediately via

Φ2 := Φ1 +
3∑

j,l=1
j≥l

∫

Γ1

(
Nr1

(1), jl · Nr2
(1), jl q

(1)
r2 − Nr1

(1), jl · Nr3
(2), jl q

(2)
r3

)
dΓ, (22)
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Fig. 15 Von Mises stress result for G1 coupling

which can be extended towards general Cm continuity in a straight forward manner.
One particular challenge in realization of a mortar method is the evaluation of

the interface integral. This might be more a technical issue, but extremely important
for an efficient implementation. Any quadrature rule based on the slave mesh does
not respect the mesh lines of the master mesh and vice versa for a quadrature rule
on the master mesh. Therefore it is common to use a quadrature rule based on a
merged mesh, i.e. a mesh leads to an exact evaluation of the integral, if it respects
the reduced smoothness of the master and slave functions at their respective lines.
The standard mortar analysis assumes that the interface is resolved by the mesh on
the master and the slave side. In that case, no projection of points on the discrete
master side onto the discrete slave side and vice versa is required. Consequently the
construction of the common mesh, named segmentation process, is still challenging
but does not result in an additional variational crime. The situation is different for
curved interfaces where the discrete interfaces do not match in general. Then for
the segmentation process a mapping from the vertices of the master side onto the
discrete slave interface is required. For the evaluation of the basis function on the
master side the quadrature points of the merged mesh have to be mapped back onto
the discrete master side, which results in an additional error contribution.

In contrast, equidistant sample points on the parametric domain can be taken into
account, which can be interpreted as a midpoint quadrature formula on a sub-mesh
with respect to a weighted Lebesgue measure. More precisely, we use the Lebesgue
measure on the parametric domain assuming a uniform decomposition. Then the
quadrature weights are identically given by h2 and are just a constant scaling which
does not alter the least-squares approach. To separate the effect of the approximation
error we reconsider a patch test and recall, that the stress is a constant in the domain.
Therefore, a fixed number of elements is applied with a curved interface in between,
see Fig. 16. Figure17 shows the results for a C0, C1 and C2 coupling using different
numbers of sample points. The error for the sample point evaluation decays with
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Fig. 16 Patch test. Reference configuration (left) and computational mesh (right) for a patch test
with curved interface

Fig. 17 Maximum error in the von Mises stress result of a patch test plotted over the total number
of sample points per element

the same order independent of the enforced continuity across the interface, whereby
the asymptotic limit for C2 coupling is already reached at 25 sample points per
element and dimension. For comparison, a Gauss integration with rising number of
Gauss points is presented as well, enforcingC0 continuity across the interface. To be
precise, a Gauss integration on the parameter space as well as on the physical space
using the usual transformation rule evaluated at each Gauss point on the interface,
i.e. ‖ϕh,ξ1 × ϕh,ξ2‖ for the area transformation, has been applied. As can be seen,
the asymptotic limit is reached for a small number of Gauss points on the physical
space, whereas on the parameter space the Gauss integration converges.

To demonstrate the applicability on large deformations, we introduce an exam-
ple composed of two parts, which are bonded together via the basis modification
approach. The lower surface is fixed in space and the upper surface is rotated by
an angle of φ = 720◦. For both parts, we apply quadratic as well as cubic B-spline
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Fig. 18 Twisted block.VonMises stress result for the quadratic discretizationwith full and reduced
modification and the cubic discretization with full and reduced modification (from left to right)

based discretization, where the lower part consists of 4 × 4 × 10 elements and the
upper part of 5 × 5 × 10 elements. In order to consider locking effects, we apply the
full set of dependent degrees of freedom (dof), referred to as full modification, as
well as a reduced set of dependent dofs, referred to as reduced modification. The von
Mises stress distribution is depicted in Fig. 18. Concerning the result for the quadratic
discretization with full modification, we observe a locking behavior at the interface
since only 54 degrees of freedom are applied at the interface, reducing the approx-
imation quality significantly. In contrast, the deformation is not suppressed for the
reduced modification, where 216 degrees of freedom remain for the approximation
of the interface.Moreover, the result of the cubic discretizationwith full modification
shows a non significant locking behavior, visible only as a slightly reducedmaximum
value of the von Mises stress at the interface. Here, 96 degrees of freedom remain
for the approximation at the interface. Eventually, for the cubic discretization with
reduced modification, 294 degrees of freedom are used for the approximation at the
interface such that we obtain a nearly perfect stress distribution across the interface
without any disorders due to the basis modification.

4.4 Crosspoint Modification

In a last step concerning higher-order coupling conditions using an extended mortar
method,we consider crosspointmodifications at the crosspoints between sub-patches
of a multipatch geometry. This subsection is based on [21], where a modification of
the Lagrange multipliers is shown to decouple the interfaces, avoid overconstraint
situations and resume the best approximation property (BA), as discussed in Sect. 4.1.
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Fig. 19 Crosspoint modification. Evaluation of quadratic B-spline basis functions and their first
derivatives in normal and tangential direction at the interface (from left to right). Modified functions
and derivatives at the crosspoint are colored in red. The dashed curves denote derivatives associated
with the interior of the slave patch

Our modification will be carried out on the parametric space of the crosspoint for
the slave side of each interface separately. Thus, without restriction it is sufficient
to consider one interface and one crosspoint at a time. In case of a weak Cl−1,
1 ≤ l ≤ p coupling we have to remove the first l basis functions on the interface but
also functions associated with the interior of the subdomain. While the interior basis
functions are affected by normal derivatives, the ones on the interface by tangential
derivatives. Now we want to modify the following next p such that the new reduced
basis functions are given as

Rm
i =

l∑

j=1

ci j R j + Ri+l , i = 1, . . . , p, (23)

Rm
i = Ri+l , i > p, (24)

with coefficients matrix C ∈ R
p×l , [C]i j = ci j , see [21], Sect. 2.2 for details on the

definition of the coefficient matrix. Obviously, the new Rm
i are linearly indepen-

dent, and in case of maximal continuity C forms a square matrix. Let A1 ∈ R
p×l

and A2 ∈ R
p×p with components [A1]i j = ai j and [A2]i j = ai j+l . These matrices

can be obtained from computing the L2 scalar products [Q]i j := (qi , R j ) on the cor-
responding boundary with i = 1, . . . , p, j = 1, . . . , p + l, and [M]i j := (Ri , R j ),
i, j = 1, . . . , p + l and setting (A1,A2) = QM−1. Now, the matrix C can be for-
mally computed from A1 and A2 by

C := A−1
2 A1. (25)

For p = 2 it reads as

[C] =
[

5
2 2

− 3
2 −1

]
for l = 2, [C] =

[ 3
2− 1
2

]
for l = 1. (26)

In case of p = 3 we can impose up to weak C2 interface continuity and find
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Fig. 20 Grain growth in crystalline materials. Setting of multi-patch problem (left) and initial
field (right)

[C] =
⎡

⎣
37
6 5 3

− 25
3 − 19

3 −3
19
6

7
3 1

⎤

⎦ for l = 3. (27)

Note that we have considered open knot vectors with p + 1 repeated knots at the
crosspoint. Further matrices can be found in [21]. Figure19 illustrates the crosspoint
modification of a quadratic B-spline basis. Therein, the bases are evaluated at the
interface where modified functions and their derivatives are colored in red. Note
that basis functions associated with the interior of the slave patch only contribute to
derivatives normal to the interface due to the assumed construction of the parametric
domain.

To demonstrate the applicability on systems with C2 continuity requirements,
we investigate a phase-field crystal equation defined in terms of an order-parameter
ψ(X, t) : B × I → R which describes a local deviation from a reference mass den-
sity. Therefore, we introduce a Swift-Hohenberg energy function as

F(ψ) =
∫

B

1

4
ψ4 + 1

2
(r + 1)ψ2 + ψ Δψ + 1

2
ψ ΔΔψ dV, (28)

where the parameter r represents an undercooling of the system. The phase-field
crystal model is derived as a Wasserstein gradient flow of the Swift-Hohenberg
energy

ψ̇ = ∇ ·
(

ψ+ ∇ δF

δψ

)
, ∀ (X, t) ∈ B × I, (29)

where the variational derivative reads

δF

δψ
= ψ3 + (1 + r)ψ + 2Δψ + ΔΔψ. (30)
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Fig. 21 Grain growth in crystalline materials. Solution of multi-patch simulation at different
times t = [50, 65, 100]

Here, ψ+ = ψ − ψmin ≥ 0 denotes a mobility parameter with lower bound ψmin.
Moreover, assuming again a quadratic domain B = [a1, a2], the strong form (29) is
supplemented by periodic boundary conditions and initial conditions given by

ψ(X, 0) = ψ0(X). (31)

Therein,ψ0 is a prescribed initial deviation of the mass density. Amulti-patch setting
is now introduced, where each patch is of size 145 × 145 and we apply 205 × 200
and 200 × 205 cubic B-spline based elements per patch such that each interface
is non-conform as shown in Fig. 20. The simulation parameters are specified as
follows. For the lower bound we set ψmin = −1.5 and for the parameter regarding
the undercooling of the system we set r = −0.35. In addition, for the initial field we
apply the configuration illustrated in Fig. 20. Results of the simulation are shown in
Fig. 21 at different times. Note that no disturbances at the interface are observed.

4.5 Hybrid Approaches for Higher-Order Continuity
Constraints

This subsection is based on [40]. In contrast to the previous two subsections, we do
not enforce higher-order continuity conditions weakly in terms of Lagrange multi-
pliers. Here we combine ideas from C0-mortar based coupling techniques with DG
methods. The resulting scheme yields a hybrid approach in the sense that we use
discrete Lagrange multipliers only for the handling of the C0 continuity condition
but all higher regularity constraints are included by terms resulting from DG. As
already mentioned IgA approaches are natural candidates for the approximation of
fourth- and sixth-order partial differential equations. But they also may yield excel-
lent numerical approximation results for second-order elliptic eigenvalue problems.
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Fig. 22 Decomposition of a 3D violin bridge into sub-patches (left), the fourth eigenmode: homo-
geneous (middle) and inlay (right)

Figure22 shows the fourth eigenmodes of a maple wood violin bridge having nine
orthotropic material parameters in the elasticity tensor. The difference between the
middle and right picture results from the fact that in the middle picture the material
parameters are constant, whereas in the picture on the right an inlay of a harder wood
is inserted, and thus only piecewise constant material parameters are assumed. On
the left the decomposition into the sub-patches is given for the homogeneous case.
We recall that crosspoint/wirebasket modifications of the Lagrange multiplier basis
functions have to be worked out.

In comparison to classical conforming finite elements, IgA approaches provide
much better results for higher frequency modes. However in case of non-matching
meshes and weak C0 continuity constraints across interfaces between sub-patches,
one can observe severe outliers. To overcome these shortcomings and to improve
quantitatively the error decay, a simple strategy is to enforce higher continuity by
penalty terms.While for second-order elliptic problems, it is notmandatory to impose
higher-order constraints on the regularity of the discrete solution, it is for higher-order
PDEs.

For simplicity of presentation, we discuss here only the model problem of a bihar-
monic equation and refer to [40] for more general situations and numerical results.
The approach can be easily adapted to a sixth-order PDE using cubic splines with
maximal regularity in the sub-patches. Also for second-order PDEs, we can penalize
jumps in the derivatives up to the maximal regularity, i.e., for a cubic spline approach
we can introduce a suitable penalization for jumps in the first and second derivatives.
However it is important to note that all jump terms have to be scaled properly for not
loosing the continuity of the bilinear form. The scaling is dictated by the order of
the PDE and the order of the derivative. Having the abstract framework of defining
Lagrange multipliers up to maximal weak regularity of the two previous subsections
at hand and knowing how to penalize jumps in the derivatives and adding consis-
tency terms in a DG setting allow us in a flexible way to combine both approaches. Of
special interest is to keep the first layer of degrees of freedom in the Lagrange mul-
tiplier space associated with the nodes which sit physically on the interface between
sub-patches but remove the layers which are associated with nodes in the interior of
the sub-patches. This simplifies the required data-structure for handling higher-order
continuity constraints.
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Following [7], the weak formulation of a C0 symmetric interior penalty formula-
tion for biharmonic equations reads as:

a(w, v) :=
∑

T∈Th

∫

T
D2u : D2v dx +

∑

f ∈Fh

∫

f

({wn,n} [vn] + {vn,n} [wn]
)
ds

+
∑

f ∈Fh

∫

f

τ

h f
[vn] [wn] ds.

(32)

Here D2 stands for theHessian,Th denotes the set of elements,Fh the set of faces, and
·n and ·n,n denote the first and second normal derivatives on the faces, respectively.
The second term on the right of (32) reflects consistency terms involving the first
and second derivatives across the faces in normal direction. As it is standard, the
parenthesis [·] stands for the jump and {·} for the average. On a boundary face, these
terms have to be defined such that the boundary conditions are reflected properly.
The last term in (32) depends on the penalty parameter τ ≥ τ0 > 0 and the diameter
h f of the face f . If τ0 is large enough well-posedness is guaranteed, and the bilinear
form is uniformly elliptic on a suitable space.

Using a IgA approach, which is locally on each sub-patch Ck , k ≥ 1, the jump
terms with respect to faces associated with the interior of the sub-patches vanish and
do not have to be taken into account. However for non-matching meshes at the sub-
patch interfaces, it is, in general, not possible to preserve the strong C1 continuity
within the IgA framework.

Thus we adapt the bilinear form defined by (32) in two steps. The first step follows
directly from the approach above and reduces the sum over all faces to a sum over
all interfaces. It reads as

K∑

l=1

⎛

⎝
∫

Γl

({wn,n} [vn] + {vn,n} [wn]
)
ds +

∑

f ∈F s
l h

τ

h f

∫

f
[vn] [wn] ds

⎞

⎠ , (33)

where F s
l h stands for all faces on the slave side of the interface Γl .

To avoid locking of the approach, we relax in a second step the penalty term and
only consider the jumps projected onto piecewise constants with respect to the mesh
associated with the slave side, i.e., the modified bilinear form reads as

aIgA(w, v) :=
M∑

m=1

∫

Ωm

D2u : D2v dx +
K∑

l=1

∫

Γl

({wn,n} [vn] + {vn,n} [wn]
)
ds

+
K∑

l=1

∑

f ∈F s
l h

τ

h f

∫

f
πs
0[vn] πs

0[wn] ds,

(34)
where πs

0 stands for the projection operator onto piecewise constants with respect to
the slave side mesh.
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Using standard inverse and trace estimates in combination with DG techniques it
is easy to show that the resulting bilinear form is uniformly continuous and elliptic on
a suitable space provided that C0 continuity across the interfaces is given. However,
even this is, in general in a mortar context, not possible. In contrast to the normal
derivative where a discontinuity is penalized, we impose the C0 continuity of the
solution weakly. As it is standard for mortar techniques this is realized in terms of a
Lagrange multiplier space. Here we can use all options which are known for the stan-
dard case of a second-order elliptic operator. To summarize, the hybrid formulation
for the biharmonic equation guarantees that the solution is in the constraint mortar
IgA-space, i.e., it satisfies a weakC0 continuity but no weak higher-order continuity.
The discontinuity in the normal derivative is penalized by the bilinearform aIgA(·, ·).
This is the big difference between the hybrid approach discussed in this subsection
and the weak Cn continuity of Sects. 4.2–4.4. We point out that due to the need of
a uniform inf-sup condition, crosspoints in 2D and the wirebasket in 3D have to be
very carefully handled within the Lagrange multiplier approach. As it is typical for
this situation, the number of degrees of freedom in the Lagrange multiplier space has
to be reduced without compromising the approximation property. In the case of the
hybrid approach one can also add terms which only penalize jumps at the crosspoints
and wirebasket, respectively, see [40]. Due to the scaling different weights have to be
used in the penalty formulation. In 2D a crosspoint is a geometrical object of dimen-
sion zero while the interface is of dimension one. This difference in the dimension
has to be balanced by different mesh-size depending weight factors.

5 Mortar Contact Formulations for Isogeometric Analysis

Mortar low-order finite element methods are widely used in contact mechanics. In
contrast to penalty methods they allow for a variational consistent formulation of
the non-penetration condition and a friction law. An optimal a priori estimate can
be derived, for both the displacement and the surface stress being approximated
by the Lagrange multiplier, [41]. The performance can be increased by applying
adaptivemesh refinement techniques based on a posterior error indicators [79] and by
specially designed energy preserving time integration schemes [31]. For an overview
of variationally consistent formulations of inequality constrained problems, we refer
to [80]. Of special interest are formulations which allow for local static condensation
such as biorthogonal based Lagrange multiplier techniques. By this one can easily
apply all-at once semi-smooth Newton techniques which can be implemented in
form of primal-dual active set strategies, [42, 43]. In each Newton iteration, one
has to decide for each node on the slave side of the contact interface the type of
boundary condition. In case of a thermo-mechanical contact problem typically non-
linear Robin type conditions occur, and the heat flux can be eliminated locally, [44].
Most theoretical results and algorithmic approaches can be easily adapted to the
IgA framework. In the following subsections, we report on recent results for contact
mechanics and IgA approaches.
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5.1 Biorthogonal Basis Functions Applied to Contact
Mechanics

This subsection is related to [53, 69]. While the condition (BA) in subsection 4.1 is
of crucial importance to obtain optimal order best approximation properties for the
constrained IgA space, this condition can be considerably relaxed in case of contact
mechanics.Here the solution is typically not of high global regularity. Thuswe cannot
expect convergence rates of order p, p ≥ 2, in the energy norm if uniform refinement
is used. Numerically one observes typically a sub-optimal convergence rate of≈ 3/2
if quadratic or even cubic basis functions are used. If the numerically convergence
rate is bounded not by the best approximation order of the involved discrete spaces but
by the regularity of the solution, then the best approximation order might be reduced
without loosing the observed convergence order. More precisely, if the solution is in
H 5/2(Ω) but not in Hs(Ω) with s > 5/2, then we cannot expect a better order than
3/2 for the error decay in the energy norm. Typically due to the inequality constraints
of contact problems such as the non-penetration condition or a friction law which
determines about sliding, the solution of a mechanical contact problem is in Hs(Ω)

with s < 5/2.
Therefore the required best approximation property for the discrete Lagrange

multiplier space Mh reads as

inf
ψh∈Mh

‖ψ − ψh‖H−1/2(Γ ) ≤ C h3/2 ‖ψ‖H 1(Γ ), (35)

where H−1/2(Γ ) stands here for the dual of the trace space on the possibly contact
boundary Γ . This property holds on mild assumptions on the shape of the basis
functions ψi of Mh and the following two conditions:

• Each ψi is locally supported, in the sense that the support of ψi contains at most
K1 elements and each element is at most contained in the support of K2 basis
functions. Both K1 and K2 are supposed to be meshsize independent.

• The constant function equal one is an element of Mh . (RE)

Let us now consider the dual basis obtained in Sect. 4.1 after Step II (see also Fig. 9).
As mentioned it does not satisfy an order p best approximation property for p ≥ 2
but it satisfies (RE). Recalling that Mh ⊂ span {φi,e} and 1 ∈ span {φi,e}, it is easy to
show that ψi form a partition of unity. Let Ψ := ∑

i ψi , then we get for all φ j,e that

∫

Γ

Ψ φ j,e ds =
∑

i,supp φi⊃e

∫

e
ψg(i,e),e φ j,e ds =

∑

i,supp φi⊃e

∫

e
φ j,e ds δg(i,e), j

=
∫

e
φ j,e ds =

∫

Γ

φ j,e ds.

(36)

Thus, we found that Ψ = 1 ∈ Mh . In other words: although the order p best approx-
imation property is lost for p ≥ 2, this dual basis may still preserve the observed
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Fig. 23 2D Hertzian contact. Geometry setup, material parameters and the chosen patch
parametrization with an exemplary coarse NURBS mesh (level 2). Reproduced and slightly mod-
ified from [69]

convergence rate for problems where the convergence is bounded by the regularity
of the solution as discussed above. While sub-optimal convergence results are to
be expected in IgA patch coupling situations (as has been confirmed in Sect. 4.1, in
particular with Fig. 12), the element-wise dual basis is still an attractive candidate
for contact problems in IgA.

In [53], low-order dual Lagrange multipliers have been applied to a dynamic
viscoelastic contact problem with short memory. Existence and uniqueness results
have been shown for the associated mixed formulation. For the discretization of the
primal space, low-order conforming finite elements have been applied as a special
case of IgA. Numerical results for higher-order NURBS-IgA in the mesh tying case
but also for finite deformation contact problems can be found in [69]. As can be
expected from the lack of a higher-order reproduction property ofMh , the error decay
in the mesh tying examples is asymptotically not optimal for general non-matching
meshes.

To better illustrate the theoretical findings, a two-dimensional Hertzian-type con-
tact example of a cylindrical body (radius R) with a rigid planar surface under plane
strain conditions is reproduced and slightly modified from [69]. To avoid singular-
ities in the isogeometric mapping, a small inner radius (radius r ) is introduced, see
Fig. 23 for the geometric setting, the material parameters and the parametrization
(different IgA patches are marked with different shading). The two horizontal upper
boundaries undergo a prescribed vertical displacement. Meshes using second-order
and third-order NURBS basis functions are employed, which is also illustrated in
Fig. 23 for a very coarse mesh (level 2). In this setup, half of the elements on the
potential contact surface are located within one ninth of the circumferential length
and C p−1 continuity is ensured over the entire active contact surface.

In the convergence study, uniformmesh refinement via knot insertion is performed
on each of the patches resulting in a constant local element aspect ratio. Although
only relatively small deformations are to be expected, a fully nonlinear description
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Fig. 24 2D Hertzian
contact. Convergence results
for standard and dual
Lagrange multiplier bases
for p = 2 and p = 3. The
biorthogonality construction
for the dual case is based on
Step I and II in Sect. 4.1.
Reproduced and slightly
modified from [69]

of the continuum using nonlinear kinematics and a Saint-Venant-Kirchhoff material
under plane strain condition is assumed. Figure24 depicts the convergence behavior
in terms of the energy norm. Since no analytical solution is available, the finest mesh
(level 7) with standard third-order NURBS is used as a numerical reference solution.
In the limit, all methods converge with the expected order of O(h3/2) in the energy
norm and also the absolute error values are quantitatively very similar. In the second-
order case (p = 2) the standard and dual Lagrange multiplier bases yield the same
error asymptotically, whereas for third-order NURBS, a slightly elevated error of the
dual variant as compared to the standard one can be observed. In view of Fig. 24, the
use of a simple (i.e. element-wise) biorthogonal basis for the Lagrange multiplier (as
obtained in Sect. 4.1 after Step II) instead of primal ones does not come at the expense
of a reduced accuracy for contact problems, but yields equally accurate results while
reducing the total system size to the number of displacement degrees of freedom
only. In contrast to the IgA patch coupling case in Sect. 4.1, the convergence is now
limited by the regularity of the solution, such that both the standard and biorthogonal
Lagrange multiplier variants converge with the same order. The use of higher-order
NURBS for contact problems with reduced regularity, i.e. third-order in Fig. 24 or
even higher seems questionable from this viewpoint, since no faster convergence is
gained from the higher-order interpolation.

5.2 Thermomechanical Contact Problems

The isogeometric mortar methods for isothermal contact derived in the previous
section can also be extended to include thermal coupling effects consisting of
heat conduction across the contact interface, frictional heating and a temperature-
dependent coefficient of friction. The following remarks are based on [68, 71], and
the interested reader is referred to the original publications for further details. From
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the continuum mechanical perspective, the first two coupling effects are included
in the contact interface heat fluxes, while the last one enters in Coulomb’s law of
friction via a temperature-dependent coefficient of friction.

The thermomechanical coupling in the bulk continuum (e.g. thermo-elasticity or
thermo-plasticity) is not revisited here, but the focus is clearly set on the thermo-
mechanical interface and the choice of a discrete Lagrange multiplier basis in IgA.
As in the isothermal case, a Lagrange multiplier field λ is introduced to enforce
the mechanical contact constraints and can be identified as the negative slave-side
contact traction, i.e. λ = −t(1)c . In a similar fashion, a thermal Lagrange multiplier
field λT is now introduced to enforce the thermal interface constraint and will be
chosen as the slave side heat flux λT = q(1)

c . Specifically, the variational formulation
of the thermal interface constraint is as follows:

∫

Γ

(
λT − βc λn (T (1) − T (2)) − δc λ · vτ

)
δλT dγ = 0, (37)

where vτ represents the relative tangential velocity (sliding velocity),λn is the normal
part of the mechanical Lagrange multiplier (contact pressure), βc is the contact heat
conductivity and δc is the distribution parameter for frictional heat dissipation. In the
limit cases δc = 0 or δc = 1 the entire frictional dissipation is converted to heat on
the master or slave side, respectively. Interestingly, the choice of a discrete Lagrange
multiplier basis follows the exact same steps for the thermal contact part as for
the mechanical contact part described in Sect. 5.1. The main complexity in terms of
mortar discretization and algebraic system representation lies in the third and last part
of the thermal interface constraint described above, which represents the frictional
heat dissipation at the contact interface. Firstly, an objective kinematicmeasure has to
be defined for the relative tangential velocity vτ . Secondly, and most importantly, the
term involves a so-called ‘triple’ integral, i.e. an integral over a product of three shape
functions at the contact interface, since vτ as constraint interface shape functions
besides λ and δλT . This poses very high demands on the quadrature accuracy at the
contact interface, especially when dealing with higher-order approximations using
Lagrange polynomials or NURBS, see e.g. [19]. Following the work in [44], an
appropriate lumping technique is applied to reduce the computational cost without
compromising on accuracy.

The fully coupled nonlinear system to be solved in each time step is comprised
of the structural and thermal equilibrium equations, the nonlinear complementarity
(NCP) function of normal and tangential contact and, finally, the thermal contact
interface condition. The global vector of discrete unknowns consists of four groups
of degrees of freedom: vectors containing all nodal values of the displacements D
and temperatures T as well as the discrete Lagrange multipliers λ̄ and λ̄T . As in the
isothermal case, the system is non-smooth due to the involved NCP functions, but
still amenable to semi-smooth versions of Newton‘s method as discussed in [60, 61,
70]. If biorthogonal basis functions as introduced in Sects. 4.1 and 5.1 are used for the
Lagrange multiplier fields λ and λT , the local support (LS) property from Sect. 5.1
is again satisfied by construction due to to the similar structure of the variational
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Fig. 25 Thermomechanical contact. Geometry setup (left) and exemplary temperature solution
(right). Reproduced and slightly modified from [68]

formulations including λ and λT . Hence, both the usual Lagrange multiplier incre-
ments and the thermal Lagrange multiplier increments can be trivially condensed,
and therefore the saddle point structure of the systemmatrix is successfully removed.
The condensed linear system to be solved consists of displacement and temperature
degrees of freedom only. In an abstract notation, it reads

[
KDD KDT

KT D KT T

] [
ΔD
ΔT

]
= −

[
RD

RT

]
(38)

Only one representative numerical example is presented in the following to high-
light the most important features of isogeometric mortar methods for thermome-
chanical contact, see also [68] for further details and results. First, convergence
under uniform mesh refinement is analyzed with a two-body contact setup as given
in Fig. 25. Both bodies are modeled with a Neo-Hookean material lawwith E (1) = 5,
E (2) = 1 and ν(1) = ν(2) = 0.2. Furthermore, thermal expansion is included with
the coefficient of thermal expansion being α(1)

T = α(2)
T = 0.01 and thermal conduc-

tivities are set to k(1)
0 = 1 and k(2)

0 = 5. At the contact interface, frictionless contact
is assumed with a contact heat conductivity βc = 103. The final configuration and
temperature distribution are also illustrated in Fig. 25.

Figure26 exemplarily depicts the convergence behavior in the H 1 semi-norms
of the discrete displacement and temperature fields within the two bodies for mesh
sizes h ∈ [2−7 , 2−1]. In particular, classical finite elements with Lagrangemultiplier
bases according to [62] and IgAwith biorthogonal Lagrangemultiplier bases accord-
ing to [82] are compared for the quadratic case (p = 2). All variants converge with
the optimal order to be expected based on the regularity of the solution, i.e.O(h3/2).
For second-order NURBS approximation, the absolute error values are slightly larger
than for quadratic finite elements when the same mesh size is analyzed. This is not
surprising since, at the same mesh size h, the isogeometric approximation has a
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Fig. 26 Thermomechanical contact. Convergence results for second-order finite elements (solid
lines) and second-order NURBS (dashed lines). For both approximations, dual Lagrangemultipliers
are employed. Comparison by mesh size (left) and by number of control points/nodes (right).
Reproduced and slightly modified from [68]

smaller function space. More specifically, the B-spline basis used for the discretiza-
tion at a certain mesh size is included entirely in the corresponding quadratic finite
element discretization. If, however, the errors are analyzed with respect to the num-
ber of nodes or control points, respectively, the isogeometric case is slightly more
accurate in the displacement solution, whereas the error in the discrete temperature
field is of similar accuracy as compared to finite elements.

To analyze the effects of frictional heating, thermoplasticity and nonlinear dynam-
ics including mechanical and thermal energy conservation over an isogeometric
contact interface, several more examples have been collected in [68]. The inter-
ested reader is referred to the original publication for details on problem geometry,
loading and material parameters.

6 Multi-dimensional Coupling

In this last chapter, we consider a dimension reduced model for a fiber-matrix cou-
pling. The fiber is modeled by a one dimensional beam theory and is embedded into
a three dimensional body. This approach follows fundamental ideas as introduced in
[57, 58]. For more recent contributions, we refer to [38] in the context of immersed
finite element methods for fluid-structure interaction problems and to [49, 73], in
the context of 3D-1D transport models in microvascular networks. Working with a
1D-3D model has clear advantages with respect to meshing in cases of stochastic
fiber distributions.

We start with a classical continuum degenerated beam model, assuming that the
motion of the beam is given by the restricted position field

x̃(θα, s) = ϕ̃(s) + θα dα(s). (39)
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As usual, Greek indices are ranging from α = 1, 2 and latin from i = 1, 2, 3. Here,
the orthonormal triad di is related to the reference triad via the rotation tensor R̃ ∈
SO(3), i.e. R̃ = di ⊗ Di , orthogonal to the beam cross-section.

As strain energy, we use a simple form

Ψ̃ (Γ ,K) = 1

2
Γ · K1 Γ + 1

2
K · K2 K, (40)

where K1 = Diag[G A1, G A2, E A] and K2 = Diag[E I1, E I2, G J ]. The stan-
dard beam strain and curvature measures, Γ and K, are respectively given as

Γ = R̃
T

ϕ̃′ − D3, K = axl
(
R̃

T
R̃

′)
. (41)

The rotation tensor R̃ is parameterized by quaternions q ∈ R
4, where |q| = √

q · q =
1.

Let us introduce the beam load and moment ñ = R̃K1 Γ and m = R̃K2 K,
respectively. Postulating that the principle of virtual work holds, we obtain the strong
form

ñ′ + next = 0,

m̃′ + ϕ̃′ × ñ + mext = 0.
(42)

Here, wemade use of the resultant contact force ñ and resultant contact torque m̃, and
next ,mext are external contributions.Without loss of generality, we assumemext = 0.

The strong form can be discretized using a method of weighted residuals, also
known as collocation type method. Here we use the isogeometric collocation method
proposed in [76] for the beam discretization. For the matrix, we apply a standard
variational IgA approach.

We enforce the continuity condition

ϕ = ϕ̃ in Ω̃, (43)

for matrix-fiber deformation fields weakly in terms of Lagrange multipliers. In
absence of other external forces for the beam, next contains only the matrix-fiber
interaction force, which corresponds to our Lagrange multiplier. After condensation
of the Lagrange multiplier along with the boundary conditions for ñ, we obtain the
following matrix-fiber system:

∫

Ω

∂Ψ

∂F
: ∇δϕ dV +

∫

Ω̃

ñ · ∂

∂s
δϕ ds = 0, (44)

for all δϕ from an appropriate functional space, and
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Fig. 27 Deformed fiber-matrix system with p = [2, 2, 4] and n = 17 (left) and the associated von
Mises stress of the matrix (right)

ϕ̃ = ϕ,

m̃′ + ϕ̃′ × ñ = 0,

ñ = ñ(ϕ̃, q),

m̃ = m̃(q),

q · q = 1,

(45)

in the collocation points. Here, Ψ (F) and F = ∇ϕ denote the strain energy and the
deformation gradient of the matrix, respectively.

For a numerical example, we consider a simple model problem from [72, Sect.
4.2]: a beamof length 5m and radius r = 0.125mwithYoungmodulus 4346N/m2 is
embedded into the 1m × 1m × 5m matrix block of Saint-Venant–Kirchhoff mate-
rialwithYoungmodulus 10N/m2. Poisson ratio is zero for bothmaterials. Thematrix
and the beam are both fixed at z = 0, and a moment −0.025Nm in x-direction is
applied to the beam tip z = 5. This simple test allows us to illustrate the stability of
the proposed approach, its convergence and the model error. Simulation is performed
using Esra code developed in Siegen university by C. Hesch group. The matrix is
discretized with NURBS of degree p = [px , py, pz]. We consider the same degree
in x and y directions, px = py , and the degree in z direction is the same as for the
beam. The number n of elements in x and y directions is the same and by a fac-
tor of five smaller than in z direction. The deformations and von Mises stress for
p = [2, 2, 4] and n = 17 are depicted in Fig. 27. The left picture in Fig. 28 shows
convergence of the tip displacement u(ti p) with the number n of elements in x
direction increasing for different spline degrees. On the right, we also compare it
with the reference finite element solution ure f (ti p) = 0.19009m from [72] obtained
with 2D-3D (surface-to-volume) coupling. As it can be clearly seen, the numerical
solution does not converge to the reference one. This results from the reduced model
approach and asymptotically we obtain the model error between a 1D-3D and a
computationally more expensive full 3D-3D coupling. For a detailed analysis and a
more sophisticated framework with a reduced model error for the 1D-3D coupling,
we refer to [46].
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Fig. 28 Convergence of the tip displacement u(ti p), left, and relative error |u(ti p) −
ure f (ti p)|/|ure f (ti p)|, right

7 Conclusions

We summarized modern mortar based IgA methodologies and their application to a
large variety of problems in structural mechanics ranging from non-linear contact,
thermo-mechanical friction and fracture to fiber reinforced material simulations.
While some of the proposed methods are a mere combination of well-established
techniques out of the mortar finite element community with IgA approaches, the
nature of IgA brings also new challenges. IgA approaches are typically used in the
higher-order context and allow higher regularity of the discrete solution. To preserve
this higher smoothness in the case of non-matching meshes is not as simple as in the
finite element context. A variationally consistent approach requires a careful design
of suitable discrete Lagrange multiplier spaces and for all Lagrange multipliers a
suitable modification at crosspoints. Also the construction of biorthogonal basis
function is not as local as in the low-order finite element context. However it can be
achieved on the prices of enlarging the local support by at most p elements. Mortar
based IgA methodologies provide flexible and robust discretization schemes for
approximating a large class of partial differential equations including higher-order
equations such as Kirchhoff Love shells which require a G1-continuity and non-
smoothproblems such as contactmechanics. Traditionalmortarmethods are typically
based on a non-overlapping domain decomposition of the physical d-dimensional
domain and implement a weak coupling in terms of Lagrange multipliers defined
on a (d − 1)-dimensional interface. However, the concept is not restricted to such
situations and can be also generalized to a multi-dimensional setting which opens
the possibility for many more applications.
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