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Non-Conservative Trajectory Planning for Automated
Vehicles by Estimating Intentions of
Dynamic Obstacles

Tommaso Benciolini

Abstract—Motion planning algorithms for urban automated
driving must handle uncertainty due to unknown intention and
future motion of Dynamic Obstacles (DOs). Considering a single
future trajectory for each DO is not adequate, especially in ur-
ban frameworks where traffic participants exhibit very different
behaviors. However, including multiple candidate trajectories rep-
resenting different behaviors results in an excess of conservatism.
We present a novel combination of the Interactive Multiple Model
(IMM) algorithm and Stochastic Model Predictive Control (SMPC)
that allows non-conservative safe motion planning in presence of
DOs with unknown intention. We introduce a framework based on
LQR and IMM to predict multiple candidate future trajectories,
each interpreted as a high-level intention that the DO is pursuing,
and dynamically estimate their probabilities. Then, the future tra-
jectory of the automated vehicle is iteratively planned in an SMPC
fashion, in which collision avoidance constraints are generated for
multiple future trajectories of each DO, with a focus on the most
likely. Our method improves safe motion planning fully exploit-
ing the benefits of multi-modal predictions of the DOs, avoiding
excessive conservatism. Advantages of the proposed method are
discussed through simulations in the CARLA environment.

Index Terms—Automated driving, interactive multiple model,
model predictive control, safety constraints, stochastic model
predictive control, trajectory planning, urban driving.

1. INTRODUCTION

ESPITE the recent advances in the field of motion planning
for automated vehicles, urban environments remain a chal-
lenging planning framework, due to the interaction with complex
traffic populated by pedestrians and cyclists. These are consid-
erably more unpredictable than vehicles and can be challenging
also for human drivers, so regulators are progressively requiring
emergency breaking systems to be installed in vehicles [1]. With
regard to motion planning, a reasonable trade-off between safety
and efficiency must be found.
Among many existing methods presented in literature, Model
Predictive Control (MPC) is a well-suited control approach to
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plan trajectories for an automated vehicle [2], named ego vehicle
(EV) in this work. In MPC, an optimal control problem is
solved iteratively, yielding a sequence of inputs to the automated
vehicle. The sequence of inputs is chosen by minimizing a cost
function subject to satisfaction of a set of constraints. Only the
first element of the minimizing input sequence is applied to the
system, and the problem is solved again over a moved (receding)
horizon as soon as a new measurement of the state of the
system and the environment is available. In motion planning for
automated driving, the cost function is designed to penalize de-
viations from a desired behavior of the EV (e.g., keeping a cruise
speed, minimize usage of input, maximize comfort). Compared
with other motion planning approaches, constraints consisting
of traffic rules, respect of the vehicle physical limitations, and
safety conditions are explicitly included in the optimization.

To avoid collisions between the EV and static obstacles, mo-
tion planning algorithms design fixed forbidden areas for the EV.
The same approach cannot directly be used to avoid collisions
with other traffic participants, here Dynamic Obstacles (DOs),
since their future motion is not known and only probabilistic
models of DOs are available. Therefore, in order to consider
safety requirements to prevent collisions with DOs, the MPC
scheme must be able to consider uncertainty.

A common approach in MPC-based motion planning for
automated driving consists of predicting the future trajectory
of DOs using a nominal model with additive uncertainty, repre-
senting the unpredictable component of the motion. The additive
uncertainty ultimately results in a probabilistic constraint for
each DO, addressed in a Stochastic MPC (SMPC) fashion.
However, in predicting the future motion of DOs, the uncertainty
is twofold [3], [4]. On one hand, the high-level intention that
determines the behavior of the obstacle is unknown. Depending
on the DO, an intention could represent the desire to reach a
target position, the plan to follow a particular gait, or vehicle ma-
neuvers like turns at intersections or lane changes. On the other
hand, one cannot assume DOs to behave entirely according to a
detectable rational and deterministic strategy when performing a
given intention. Even assuming this, the dynamics of the DO are
generally not completely known. Thus, an additional lower-level
uncertainty is considered, in the form of uncertainty around the
nominal trajectory performing a particular intention. Therefore,
a multitude of uncertain possible trajectories is obtained for
each DO, and the challenge lies in generating safety constraints
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non-conservatively by taking multiple possible trajectories into
account.

In this work, we propose a framework to reduce conser-
vatism by explicitly prioritizing the most likely possible future
trajectories of each DO. Multiple DO future trajectories are
considered using the Interactive Multiple Model (IMM) algo-
rithm [5] combined with several LQR-based approximations.
In IMM, one generally considers multiple candidate models
representing the dynamics of a moving target, and an accurate
state estimate and the relative probability of each model are
recursively obtained. In contrast, we use LQR to design np
closed-loop models comprising the dynamics of the DO and
an internal optimal controller steering the state of the DO in
a way to realize a high-level intention. Thus, in this work the
IMM delivers the probability of each LQR-based trajectory rep-
resenting a high-level intention. Then, n; candidate trajectories
for each DO are predicted over a finite horizon, also propagating
trajectory uncertainty. Finally, SMPC [6] is used to plan the
trajectory of the EV, generating probabilistic safety constraints
for all the predicted trajectories of the DOs in the vicinity of
the EV. To reduce conservatism, probabilistic safety constraints
are required to hold with a probability which depends on the
estimated confidence in each candidate trajectory. In such a way,
higher priority is explicitly given to those future motions that are
more likely to be executed, without being excessively restricted
by those that are considered unlikely.

The contributions of this work are as follows:

e novel combination of IMM and SMPC for motion planning
in presence of dynamic obstacles with unknown intention.
Such combination allows enhanced safety resulting from
taking multiple intentions of DOs into consideration, still
handling them non-conservatively;

® [MM-based framework for multi-trajectory prediction con-
sidering twofold uncertainty, comprising unknown inten-
tion and non-deterministic motion.

The remainder of the paper is organized as follows. In Sec-
tion I-A related work is discussed. Section II recalls the IMM
algorithm and Section Il introduces the key idea of the combina-
tion of IMM and SMPC. Section IV presents the EV dynamical
model and the framework for generation of candidate trajectories
of DOs encoding high-level intentions. Section V gives the
details of the trajectory planning algorithm. Results from the
simulations in CARLA [7] involving typical urban driving envi-
ronments and a discussion on the proposed method are given in
Section VI and in Section VII, respectively. Conclusive remarks
and future research directions are suggested in Section VIII.

A. State of the Art

Interest around trajectory planning for automated vehicles
in urban environment is increasing, specifically with a focus
on the challenges posed by the unknown intentions of other
traffic participants. Several methods have been proposed to
plan a safe and non-conservative motion for the EV based on
Machine Learning [8], [9]. However, in this work we focus
on model-based approaches. MPC [10] takes the evolution of
the environment over a prediction horizon into account and
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iteratively re-plans the trajectory accommodating changes in the
traffic, including constraints in the optimization.

Robust Model Predictive Control (RMPC) was first intro-
duced to address uncertainty in the MPC scheme through a
worst-case analysis [11] and has been applied to collision avoid-
ance tasks [12], [13], [14]. Exact constraint satisfaction is guar-
anteed for every possible realization of the uncertainty, thus in-
trinsically yielding a conservative motion for the EV. In the urban
framework, where a multitude of DOs without a clear future tra-
jectory surrounds the EV, a robust approach is likely to result in
standstills more often than necessary. More recently, SMPC was
presented [15], [16], and applied to automated driving [6], [17].
In SMPC the probability distribution of the uncertainty is consid-
ered and a small probability of constraint violation is allowed
for sufficiently unlikely scenarios. This reduces conservatism
to a large extent and our recent work [18] proposed a scheme
combining safety guarantees with the optimistic planning of
SMPC. Uncertainty was also included in MPC schemes through
Grid-based MPC [19], multistage SMPC [20], learning-based
MPC [21], and considering models of different granularity for
further prediction steps [22]. An extensive summary is presented
in the recent work [23]. However, non-conservatively addressing
twofold uncertainty is a challenge worth further investigation.

A prediction of the future motion of other traffic participants
is necessary to enforce safety constraints. Prediction models are
classified into three categories [24]: physics-based, maneuver-
based, and interaction aware. Physics-based models only con-
sider dynamical properties and are not reliable in the long run,
whereas interaction-aware models [25] also include the reaction
of the other vehicles to the future motion of the EV, but including
them in the optimization is still challenging because of the
increased computational complexity. Maneuver-based models
are a reasonable trade-off and current state of the art [26], [27],
allowing to take the possible intentions driving the behavior of
the other traffic participants into account, without excessively in-
creasing the complexity. However, being the intention unknown
(especially for pedestrians and cyclists), considering a single
model for prediction is limiting. Thus multiple intentions should
be considered in the prediction framework and in generating
safety constraints.

Among several algorithms proposed to predict the future tra-
jectories of traffic participants, in [27] Gaussian process regres-
sion models are used to recognize the maneuver being executed
by other traffic participants computing the likelihood of succes-
sive observations to several models belonging to a pre-recorded
collection of classified motions. Then, a Monte-Carlo prediction
method implemented as a modified version of particle filters is
used to predict the future motion, since, as the authors argue,
other estimations like the Kalman Filter could only be executed
after that the maneuver has been recognized. However, in this
work we consider multiple candidate trajectories at the same
time. Furthermore, [28] used Partially Observable Markov De-
cision Processes (POMDPs) regarding the (unknown) intention
of other traffic participants as a hidden variable. This is a very
interesting approach, accounting for the change in the prediction
accuracy directly in the computation of the policy. However,
rather simple transition models for other traffic participants
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must be adopted and the method is computationally demanding
because it operates in a continuous state space. Alternatively,
Inverse Optimal Control and especially Inverse Model Predictive
Control [29] are adopted to model and predict the future motion
of human-driven vehicles, exhibiting notable accuracy. How-
ever, a prior on the features to be included in the candidate cost
functions must be available and handling multi-modal motions
representing different intentions could be challenging. In this
work, we use the IMM algorithm for prediction and estimation
of the future motion of DOs, since it allows joint estimation of the
uncertainty around estimates and assessment of the probability
of each mode with low computational effort and ease of imple-
mentation. However, other estimation and prediction algorithms
could also be coupled with SMPC in a similar fashion.

The IMM algorithm allows to predict the future motion of
objects with changing dynamics. Given a set of candidate dy-
namical models, it returns an estimate of the state of the object
being tracked and of the associated covariance matrix, and the
probability currently assigned to each of the candidate models is
also estimated. The IMM is recalled in more details in Section II.

Recent works presented approaches to include multiple pos-
sible future trajectories of vehicles, each based on a different
intention, with a view at avoiding an unnecessarily conservative
planning. A first approach was presented in [6], dynamically
estimating the probability of several maneuver-based models to
represent intention uncertainty, employing the IMM algorithm
for estimation and prediction. However, the motion planning
models used are overly simplified, basically assuming that each
DO will maintain a constant velocity or acceleration, and most
importantly only the most likely model is taken into account
in the trajectory planning of the EV. Although this is an im-
provement, since the prediction is based on the recent behav-
ior of the vehicles and not only on a-priori assumptions, still
the most likely model can change, particularly if none of the
models considered perfectly matches the real dynamics. The
possible sudden and frequent change in the dominant model
makes the optimization framework and the resulting planned
motion unreliable. A different approach is presented in [30],
in which the relative confidence of multiple candidate models
for the other traffic participants is estimated using POMDP,
similarly to the previously mentioned work [28]. Then, the
estimated probabilities are utilized as weights to obtain a mix-
ture Gaussian distribution resulting from the combination of
the multiple models, and a probabilistic collision avoidance
constraint is determined based on the mixture distribution. This
approach allows to effectively consider multiple future behav-
iors, but relying on a single collision avoidance constraint that
accounts for all candidate future motions at once requires signif-
icantly over-approximating the forbidden areas for the EV, and
thus induces unnecessary conservatism. Differently, the recent
work [31] considers several candidate maneuvers of DOs sepa-
rately, avoiding the just-mentioned over-approximation. Still, all
obtained predictions are regarded as equally likely, irrespective
of the estimated probabilities. Giving equal importance to all
candidate predictions also renders the planned motion of the EV
unnecessarily conservative, as we discuss in Section VI.
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In this work, we benefit from the estimated probabilities
estimated by the IMM algorithm to explicitly prioritize the
multiple possible future trajectories of the other traffic partic-
ipants depending on their probability. The proposed approach
allows to consider multiple possible intentions of other vehicles,
cyclists, and pedestrians (generally referred to as DOs) in a
non-conservative fashion. In Section III, the basic concepts of
the method are outlined, and details are discussed thereafter,
presenting a framework to generate intention-based candidate
trajectories of the DOs, and discussing how to include them into
the SMPC optimization of the EV, limiting conservatism.

B. Notation

Scalar quantities are denoted in lowercase letters and symbols,
z, vectors are in bold lowercase, z, matrices in bold uppercase,
M, and [M];; indicates entry ¢, j of M. For every vector z and
matrix M of appropriate dimensions, ||z||%; = z" M 2z, where
z ' is the transpose of z. zj, is the k-steps ahead prediction of
z and z7 refers to the value of z at the next sampling time. 2
and z denote the estimate and the prediction of z, respectively.
Forny,ne € Z,I(ny,n2) = {n1,n1 +1,...,no — 1,ns}. The
probability of an event is denoted by P[-].

II. PRELIMINARIES

In this section, the IMM algorithm for multi-modal state
estimation is recalled. Although in this work the IMM is used
to consider multiple candidate trajectories of the DOs, here the
original formulation for different dynamical models is given [5].
Then, Section IV-B introduces a framework for design of closed-
loop models representing high-level intentions in a form suitable
for the IMM.

The IMM algorithm can be understood as an extension of the
standard Kalman Filter [32], adapted to obtain a better estimate
of the state of target objects whose dynamics are described by
different models over time, and is used for example in Aerospace
for tracking maneuvering targets [33], as also in application
related to object motion detection in ballistic [34] or automated
driving frameworks [35], [36]. Instead of using just one model
to dynamically estimate the state, multiple candidate models are
considered. At each sampling time, the newly-collected output
measurement is used to produce not only an estimate of the
state and associated covariance matrix, but also the probability
that each of the considered model is currently used to update
the dynamics of the object being tracked. Compared to [5],
here a known and deterministic input is straightforwardly taken
into account. The procedure outlined is likewise run for every
DO independently. Interactions between different DOs are not
considered in this work.

Assume that the aim is to track an object with switching
linear dynamics, meaning that at every time the state is updated
according to one of nj possible models. Let consider state z,
known deterministic (and possibly time-varying) input 17, and
zero-mean process noise w with covariance matrix 3¢. All
models share the same output vector =y, and the zero-mean
measurement noise v with covariance matrix 3. The generic
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Algorithm 1: Interacting Multiple Model Algorithm.

Input: {1/ }7L,,
State Interactlon

c’ez

3

" [,
np

20 Z 712" # mixed state estimate
i=1

. 0j il I A .

P~ Zﬂ“[P + (2 -2
i=1

covariance

Kalman Filtering
zI <~ Fiz0 + G 773 # state prediction

P~ FipYpi’ + X # covariance update
e R A HzJ # innovation

S« HP H' + 21” # innovation covariance matrix
L'« PHT (S ) # Kalman gain

21« I 4 LV € # state estimate

P~ (I —L'H ) P’ # state covariance

Model Probability Update

exp <0.5ejT (S’j)_l ej>

det (QWSj)

i ' # normalization factor

% # conditional model probabilities
C

A

# probability

ni
c Z A # normalization factor
i=1
Jgl
# model probability
c.
State Estlmate Combination

i -
Z Z zz (' # combined state estimate

Pez [

Output { i

# covariance

z,P

Jl’

j-th model (for the given DO) is in the form:
+ :sz—i-Gjnj—l—w

~vy=Hz+v. (1)

The n; multiple possible models are specified by different inputs
7’ and different matrices 7/, G7, and H of appropriate dimen-
sions. Let IT € R™*™ be the (row-stochastic) state switching
matrix, where each entry [II};; defines the a-priori probability
of switching from model 7 to model j, with i, j € I(1,n;), atany
given sampling time.

Algorithm 1 [5] shows the IMM steps to update the estimate
of the system state and covariance, and the probability of the
considered models. At each iteration, the algorithm receives as
input the estimated probability for each model from the previous
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iteration { /7 }
turns as output the updated model probabilities { i/ } 1 ,,and the
accurate combined state estimate z and a55001ated covariance
matrix P. Observe that the model-specific state estimates and

L, and the new measurement ~y of the DO, and re-

covariance matrices 27, P in Algorithm 1 are “internal” vari-
ables. The iteration starts with the so-called “State Interaction”,
in which estimates from the previous iterations are combined,
considering possible switches in the dynamics. Then, n; Kalman
Filters (one for every model) are fed with the combined estimates
and, based on the prediction error with respect to the newly-
collected measurement ~y, the model probabilities are updated.
Finally, a combined state estimate and covariance matrix are
obtained, weighing the individual estimates of the ny filters by
their probability. Since the update of the estimates is also based
on results from the previous iteration, past data are considered
in the computation of the estimate with relatively small effort.

Compared to a bank of n; independent Kalman Filters each
considering only one of the n; different possible models, here
the initial combination of model estimates is beneficial. In case
of a switch, the IMM quickly corrects the estimate, with a rate
depending on the a-priori switching probabilities specified in
matrix IT. Moreover, at steady state, the combined estimate z of
the IMM algorithm performs nearly as good as a Kalman Filter
based on the (currently) real model [5].

III. COMBINATION OF IMM AND SMPC

The proposed method uses a combination of the IMM al-
gorithm and of SMPC to plan the trajectory of an automated
vehicle in presence of twofold uncertainty due to the DOs in
the environment. Although the same approach is not restricted
to automated driving and can be adopted in other frameworks
to handle similar twofold uncertainties, here we stick to the
example of safe motion planning for clarity.

Instead of assuming that a DO will follow a single nominal
trajectory perturbed by large uncertainty to include significantly
different outcomes, one can narrow down the level of uncertainty
by considering a twofold structure. On a first level, each DO is
assumed to be pursuing one of the possible high-level intentions
(which will be precisely defined in Section IV-B), drawn from a
known set of options. Then, for every considered intention, the
future motion of the DO is not deterministically known, adding
the second level of uncertainty. Therefore, collision avoidance
constraints, such as maintaining a minimum safety distance from
the DO with respect to one of the trajectories are probabilistic in
nature. Thus, we adopt an SMPC approach in which probabilistic
safety constraints are generated for every considered trajectory
of the DO, i.e., solving the optimal control problem

ml}n J(&y,U) (2a)

s.t.&py1 = SF(&r ur) vk €I(0,N —1)
(2b)

Pi§, € S;] > B; Vi el(l,m), Vkel(l,N), ()

where (2b) represents the dynamics of the controlled system,
used to predict the future states of the EV &, k=1,..., N
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Fig. 1. Block diagram of the IMM+SMPC combination. For each DO, mea-
surement data are used to update the probability of each candidate trajectory,
eventually generating safety constraints for all candidate trajectories.

resulting from the current initial condition &, and from a given
input sequence U. Constraints (2c) are chance constraints, in
which §; is a set representation of the collision avoidance
conditions, one for each of the n; candidate future trajectories
of the DO. In an SMPC approach, instead of guaranteeing con-
straint satisfaction for every possible outcome of the uncertainty,
constraints are required to hold only up to a pre-defined level of
probability, 0 < 8; < 1.

Parameter 3;, sometimes referred to as safety level, is a design
parameter of the SMPC method that tunes the trade-off between
safety and efficiency, and is typically chosen heuristically. If
B; in safety constraints (2c) is set equal for all DO trajectories
independently of their probability, the motion planned for the
EV is conservative. Thus, in this work 3; explicitly depends on
the probability of each possible high-level intention estimated
by the IMM, see Fig. 1. The prioritization of safety constraints
depending on the probability of each high-level intention allows
to reduce unnecessary conservativeness with respect to those
trajectories that are currently considered unlikely, maintaining
focus on the (possibly multiple) dominant ones. For example,
during an initial transient phase in which enough data for ac-
curate inference on the high-level intention are yet to be col-
lected, all the candidate high-level intentions are considered and
prioritized; then, as soon as the measurements show that some
high-level intentions are safely ruled out, the related safety con-
ditions are gradually relaxed, focusing the attention on the most
plausible future motions. Hence, very conservative motions of

Fig. 2. Scheme of the kinematic bicycle model in road-aligned coordinates.
The center of mass is at position s along the road, with a lateral displacement
of d with respect to the reference path (in light blue).

the controlled system planned taking all the possible high-level
intentions equally into account are avoided. Nevertheless, the
probability for each trajectory is recursively updated every time
new measurements are collected. Thus, if the DO changes in-
tention and starts moving unexpectedly, the previously excluded
motions are included again in the optimization with higher
priority, taking full advantage of the multi-modal prediction.

IV. DYNAMICAL MODELS

In this section, the dynamical model used for prediction of
the future states of the EV is given, and a framework for design
of multiple candidate trajectories of DOs each resulting from a
high-level intention is introduced.

A. Ego Vehicle Model

For completeness, the model of the EV adopted in the optimal
control problem (2) is outlined. The well-known kinematic
bicycle model [37] is used, since it allows to take into account
the coupling between the longitudinal and lateral movements
for a sufficiently realistic planning, without adding unnecessary
details for the scope of the analysis proposed in this work,
whose ultimate goal is to deliver a feasible trajectory. We assume
the presence of a low-level module in charge for tracking the
generated trajectory, where further details about the vehicle
dynamics can be more appropriately addressed. Observe that
the presented novel IMM+SMPC combination is not restricted
to the use of the kinematic bicycle model, which we adopt
because sufficiently accurate for the scope of our simulations.
More precise models, particularly for high speeds, could also be
used without compromising the efficacy of presented approach.

The nonlinear kinematic bicycle model is expressed in the
road-aligned (Frenet) frame, that is with respect to a possibly
curved reference path, represented in Fig. 2. The EV state
&€ = [s,d,¢,v]" consists of the longitudinal and lateral position
of the center of mass of the vehicle expressed in road-aligned
coordinates, (s, d), of the yaw angle ¢ of the vehicle with respect
to the reference path, and of the linear velocity v. The input
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is a two-dimensional vector u = [a,d]" including the linear
acceleration a and the front steering angle ¢§. Iy and [, are
parameters of the model, representing the distance of the center
of gravity from the front and rear axle, respectively.

Assuming that the reference path and its features are known
to the EV, let x(s) be the local curvature of the reference
path expressed as a function of the curvilinear coordinate s.
The differential equations of the kinematic bicycle model are
obtained along the lines of [38], although adapted to represent
the vehicle with respect to the center of mass (and not with
respect to the center of the rear axles). The nonlinear model is

r veos(a + @) ]
1 —k(s)d

vsin(a + ¢)

: (siz a H(sl) (ioi(g)z ¢)>

= f(&u), )

a

where o = arctan ( b tan 5>.
lf + lr

Assumption 1: During the motion, the position (s, d) of the
EV is such that d # ﬁs)

Assumption 1 is meant to avoid singularities in the model
dynamics (3) and is not restrictive, since standard curvature
values for vehicle roads are small and the controller guarantees
that the lateral displacement d from the reference is limited, so
that typically d < ﬁ

To predict the state of the EV within the prediction hori-
zon, a linear and discrete-time equivalent sufficiently reliable
in predicting the future evolution of the EV dynamics in the
proximity of the current state is obtained, see [18]. At first, the
nonlinear dynamics (3) are linearized around the current state
& = [s0,do, ¢o,v0] " and zero input w* = [0,0] ", yielding

E~F(E u)+ A€ - &)+ Bu, )
where the Jacobian matrices are
0 0
a=9 g )
€ lie u) U (g )

Obtaining the couple of matrices (Aq, Byq) from (A}, B) with
zero-order hold of sampling time 7', the linearized model (4) is
discretized as

€1 =& +Tf(E u") + Ay(§ — &) + Bauyp.  (6)

To make the computation tractable, the derivation of matrices of
the discrete-time system is performed under the approximation
that x’(sp) = 0, consistently with the assumption that the refer-
ence path was designed sufficiently smooth. The explicit formu-
lation of A4 and By is given in Appendix A. Model (6) is used
to predict the future states at step k = 1,..., N, where NV is the
prediction horizon, based on the current state £, and on the input
sequence over the prediction horizon, uy, k =0,..., N — 1.
Section V-B introduces the procedure to derive safety con-
straints preventing collisions with DOs with unknown intention,
which is the main contribution of this work. However, even in
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absence of DOs, the EV must obey the following constraints,
related to static traffic rules or to physical limitations of the
vehicle. The set of constraints is

dimin + wpy < d < dimax — WEY (7a)
0< v < Umax (7b)

Umin < U < Umay (7¢)
Aupin < Au < Aty (7d)

where Auy = uy — uy_1 is the input rate. (7a) is designed to
ensure that the shape of the EV, of width wgy, never exceeds the
allowed driving area, whose limits (in the road-aligned frame)
are dpmin and dp,y. (7b) prevents the EV from driving backward or
faster than the maximum allowed speed, v, - (7¢) and (7d) make
the trajectory planning algorithm aware of the of the actuators
limits of the EV in terms of minimum and maximum acceleration
and steering angle and of the minimum and maximum rate
between two consecutive steps.

B. Dynamic Obstacle Models

Here we introduce closed-loop dynamical models used to de-
scribe possible behaviors resulting from the unknown intention
of the other traffic participants in a suitable form to be included
in the IMM algorithm. Either pedestrians, cyclists, or other
vehicles are referred to as DOs. We use simplified models with
the ultimate goal of representing different intended behaviors of
DOs. Although more precise prediction models representing the
motion of traffic participants in more detail could also be adopted
without compromising the validity of the presented approach, a
precise description of the motion of traffic participants is beyond
the scope of this work. The aim of models here derived is to
express different possible behaviors of traffic participants with
a view to considering multiple future trajectories of the DOs in
the EV planning in a non-conservative fashion, as addressed in
the next section.

Each DO is subject to twofold uncertainty. On one hand, the
intention driving the behavior of each DO is assumed unknown,
and for each of the ng DOs n; possible “high level” intentions
are considered. The choice of the n; candidate behaviors is worth
a special discussion, which is addressed later in this work; here
the set of possible behaviors is assumed to be given. On the other
hand, each intention is considered to be an approximation of the
real behavior of the DOs, therefore trajectory uncertainty around
each candidate intention is also accounted for. For simplicity of
notation, in the following a single DO is considered, although
the same holds for each of the no DOs, independently of the
number.

The DO is represented by its state z = [z, vy, y,v,] ", where
x and y are the absolute cartesian coordinates of the position
of the DO in the world frame, and v,, and v, the longitudinal
and lateral velocity, respectively. Considering input u°® € R?
and disturbance w € R?, the motion is assumed to be described
as a simple point-mass model with decoupled longitudinal and
lateral dynamics as in [3]

zT = A%z + B°u® + w, 8)
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where, defining 7" the sampling time, we have

1 T 0 0 0572 0

qo_ |01 00 go_| T 0 . ©
00 1 T|’ 0 0572
0 0 0 1 0 T

On top of that, the DO is assumed to behave in a way which
is modeled through an LQR controller tracking one of a range
of ny possible intentions. With the term intentions, we refer to
specific goal behaviors, like tracking a given lateral or vertical
position, or maintaining a precise speed in a direction.

Definition 1: An intention z* is defined as a goal target state
for a DO.

Remark 1: Observe that intentions are not time-varying ref-
erence trajectories, but rather desired steady-state values for
the states, fixed over time. For example, a lane change and
acceleration maneuver would be formulated as a target lateral
position (to steer the DO at the center of the desired lane) and a
desired speed.

Thus, the DO applies an input u° chosen as

u® = Ki(z — 2Y), (10)

that is, as a feedback term to steer the state z of the DO
according to one of the intentions 2*/, j € I(1,n;). The DO
is supposed to plan its trajectory depending on some internal
optimality criterion, therefore the feedback gain K7 is selected
as the solution of an LQR problem with weighing matrices
Q eR™. Q=@ =0andRI c R>2 RI = R » 0,
i.e., minimizing the cost function

JoI = Z(z — 2N QI (z — 27) +u® Riu’.
k=0

(1)

The feedback gain K7 minimizing (11) is obtained as

. - N -1 -
K' - (B'PB°+R) B 'PA°, (12
where P is the only positive semi-definite solution to the Alge-
braic Riccati Equation [39]

P=A"PA + @

- A PB (B PB°+ R) 'BTP A, (13)

Remark 2: For a given intention 2*J | matrices Qj and RJ
specify the penalty to be paid for the error in each state compo-
nent with respect to the others or with respect to the penalty for
large inputs. Therefore, @’ and R/ are used to tune the relative
importance in the speed of convergence of each component to
the desired state. The future behavior of a DO is fully specified
only if the tuple (2*/, @7, R7) is given, i.e., if both the intention
and the relative weighing matrices are known.

Not only is it possible to tune the relative importance in
the speed of convergence, but the evolution of a specific state
variable can also be completely ignored by assigning zero to
the associated entries in Qj . This allows, for example, to only
specify a cruise speed in z-direction. A target z-position would
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necessarily be time-varying or imply that the ultimate goal of
the controller is to lead the DO to a fixed position, possibly
contradicting the commanded cruise speed.
Substituting (10) into (8), gives

2T = (A°+ B°K9)z) — B°K'z 4w,  (14)
where z7 represents the predicted state of the DO assuming
it is following trajectory j. Then, by defining the closed-loop
state matrix F7 := A° + B°K’ and input matrix G’ = B°,
the evolution of each DO is formulated as in (1), where 1/ =
— K72 is the input applied to the closed-loop representation
of the DO assuming it is pursuing intention j. Since intentions
z*J are constant, nj is also constant over the prediction horizon.
Vector « in (1) represents the collected measurements of the
position of the DO, where

H:F 0 0 0]7 as)

00 1 0

which is the same for every model, and v ~ A/(0, ) repre-
sents the measurement noise. (15) implies that the EV only relies
on position measurements of the DO. This is an advantage over
other approaches, since an estimate of the full state is produced
by the IMM algorithm.

Observe that in using models of the form (1) to predict
the future trajectory of the DO, uncertainty on the intention
is accounted for by considering multiple models for the DO,
and uncertainty about the execution of each given intention is
represented by the process noise w ~ N (0, X¢).

Then, for each DO an IMM is run to dynamically estimate
the probability that the evolution of the trajectory will be the
result of each one of the n; possible considered intentions. It is
worth emphasising again that the set of possible future intentions
(and weighing matrices) is assumed to be specified in advance.
On one hand, this is a limitation of the method, which will be
discussed in Section VII. On the other hand, this allows to derive
closed-loop models for DOs completely offline, storing n tuples
(F7,G7, H,n’) independently of the number of DOs that will
be encountered. Then, any time a new DO enters the range of the
sensors, anew IMM filter is created, using the stored closed-loop
models.

V. TRAJECTORY PLANNING ALGORITHM

In this section the trajectory planning algorithm is outlined,
discussing the multi-modal prediction of future trajectories
of the DOs surrounding the EV, how non-conservative safety
constraints are generated, and formulating the optimal control
problem solved at every iteration of the SMPC algorithm. Fi-
nally, a short discussion of potential limitations of the generated
constraints and possible improvements are proposed. Again
for simplicity of notation and without loss of generality, in
Sections V-A and V-B a single DO is considered.

A. Multi-Modal Prediction

For every DO, the last combined estimate z obtained by the
IMM algorithm is used to initialize n; predictors, each iterating
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Fig. 3. Three possible uncertain future trajectories of a cyclist (in blue) in the
proximity of an intersection, for a prediction horizon of N = 5. The uncertainty
around each nominal prediction increases over time.

dynamics (1) for N steps. This yields ii, that is, the predicted
state of the DO k-steps ahead, if trajectory j is followed, for
every considered trajectory j € I(1,ny), for every future step
kE € I(1, N). Together with the state, the covariance matrix
is also propagated along every possible trajectory of the DO,
yielding the uncertainty around each state prediction. Precisely,
given linear models of form (1), the covariance matrix X7 of
the predicted state 2{6 of the DO at time step k if trajectory j is
adopted is recursively obtained as [6]

J
D/

=FISiF 43 (16)
starting from the initialization 3} = P,Vj = I(1,n0), where
P is the combined covariance matrix for the current step (zero)
delivered from the IMM algorithm tracking the DO. Input 1’
in (1) is deterministic and therefore does not contribute to the
propagation of the uncertainty.

Remark 3: All the predictors of the DO are initialized with the
(same) combined estimate 2 and combined covariance matrix
P, because this is the most accurate information available.

Initializing each predictor with the estimate 27 and covariance

matrix P’ resulting from each filter j in Algorithm 1 would
deteriorate the performance.

As a result, for every time step & € I(1, V) in the prediction
horizon, n; X ngo predicted states with associated covariance
matrices are available, representing the n; possible future po-
sitions for each of the no DOs surrounding the EV, see Fig. 3.
Next, this information is used to design non-conservative safety
constraints.

B. Safety Constraints

In this section the generation of safety constraints preventing
collisions of the EV with DOs is introduced. User-defined (de-
terministic) conditions, such as maintaining a minimum distance
from the DO, result in a set S of allowed (safe) states for the
EV, so that constraints in the form (2c¢) are considered. Such
constraints are chance constraints because the future position of
the DOs is not known deterministically, and therefore also the set
S of safe states for the EV is uncertain. In the following, based
on the nominal predictions and propagation of the uncertainty
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derived in Section V-A, chance safety constraints for the tra-
jectory planning for automated urban driving are designed and
reformulated into deterministic expressions that are included in
the numerical optimal control problem discussed in Section V-C.
For every predicted step k € I(1, N), ny safety constraints
are generated, one for every candidate trajectory of the DO.
The aim is to consider multiple possible future trajectories of
the DO resulting from different intentions, avoiding excessive
conservatism. Thus, constraints must be designed to:
® increase conservativeness for increasing confidence 7 in
trajectory j for the DO (first level of uncertainty) and
for increasing uncertainty around the nominal predicted
trajectory 27, (second level of uncertainty);
e vanish if trajectory j is ruled out for the DO, i.e., i — 0.
In this work, the safety condition is formulated using an
ellipsoidal region around the position of the DO, that the EV
must not enter, as in [18]. Such a requirement needs the future
position of the DO to be assessed, which is stochastic. Thus, we
derive regions around each of the nj possible nominal trajectories
of the DO designed to contain the (real) future position of
the DO with probability 3; [6]. We are only interested in the
position of DO, therefore the reduced state 2, = [z, y]]" is
considered, which is modeled by a bivariate Gaussian distribu-

tion ifc ~N ([Li, 33, with mean [L{; = [i’fﬂ, g]i]T and covari-
ance 3, = diag(02 , ., 02, ) extracted from the full nominal

prediction Efc and full covariance matrix Ei, respectively. The
ellipsoidal regions designed to contain the position of the future
state of the DO with probability 3; consist of all the positions
ifg satisfying

(s-t) (21) () <.

( is the tolerance level and depends on the required level of
probability through ¢(5;) = —2In(1 — j3;) [18]. Observe that
the regions described by (17) increase for larger uncertainty

(02 jand o7, - in 33,) and for a higher required probability

of constraint satisfaction 3;; furthermore, for 3; — 0 these
regions collapse to points, that is, the constraints are neglected
in practice.

In general, the required probability of constraint satisfaction
B; for a given chance constraint is a design parameter in the
SMPC algorithm, which is set to balance between safety and
efficiency. The larger 3;, the safer and the less efficient the
motion planning. Therefore, a reasonable choice of /3; should
allow for a small probability of constraint violation that does
not compromise safety, yet reducing the conservatism typical of
robust control approaches at the same time. In our method, the
goal is to require stricter safety guarantees for those constraints
related to the most likely future trajectories of the DO. Hence,
B is selected explicitly depending on the estimated probability
of each future trajectory /7 through the function 8; = g(i/).

In principle, the identity 3; = /i’ satisfies the premises on the
constraints stated at the beginning of the section and thus is a
good candidate for function g(p), but other options are possible.
For example, choosing g(p) = p?, with 0 < ¢ < 1, the effect is
that the required level of safety for relatively large probabilities

A7)
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Fig. 4. Function g(p) = p¥ used to stretch the rate of change of 3; with
respect to /17 unequally across the interval p € (0, 1).

/lj is increased, still allowing for a sudden loss of relevance of
the constraints for very unlikely predicted trajectories, see Fig. 4.
In general, the function g(p) is a design parameter which must
satisfy

g(0)
g(1)
g(p1) < g(p2) & p1 < pa.

0 (18a)
1 (18b)
(18¢)

This introduces flexibility in the method, as the rate of change
of 3; with respect to /i’ can be shirked or stretched unequally
across the interval p € (0, 1). However, then values 3; do not
represent true probabilities anymore.

Remark 4: If the confidence in a trajectory approaches 1, the
safety areas grow up to the entire support of the disturbance.
Therefore, for unbounded uncertainties, like the Gaussian case, a
thresholding is needed to prevent the constraints from becoming
excessively large.

To conclude the discussion on the safety constraints, observe
that the forbidden areas defined in (17) only refer to the position
of the center of the DO. However, for collision avoidance, the
physical dimensions of the EV and of the DO must be included.
For this reason, each safety area is expanded to account for
the deterministic length [, and width w, of the EV and of the
DO (independently of the prediction model used), obtaining an
ellipse with semi-major axis aj, and semi-minor axis b, defined
as

al, = (00,5 + o)\ /C(B)) (192)

bl = (0y.k; + wo)\/C(B))- (19b)

Remark 5: In [18], the ellipse sizes are chosen as (zi =
0y.k,j\/C(B;) + lo. However, this option would not satisfy the
requirement of “vanishing” constraints for ﬂj — 0, 1.e., it would
not rule out any constraint also for unlikely predictions, thus
resulting in a conservative motion. Furthermore, [, and w, can
be artificially increased with respect to the actual dimensions of
the EV and of the DO, including additional margins, making the
framework arbitrarily safe also using (19).
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In summary, safety requirements deliver nj constraints as

N 2 N
(se-7) (%)
B N 2 o N 2 <0,
() )
with @), and b, from (19) with 3; = g(ji/), fixed over the whole
prediction horizon. As the EV model is referred to the road-
aligned components, constraints are generated considering the
projection in the Frenet frame of the predicted positions of the
DO. If np DOs surround the EV, for each step & in the prediction
horizon np X nj constraints are generated.
Remark 6: Constraints (20) are quadratic non-convex expres-
sions. Equivalent representations linearized around the current
working point would violate the requirement of neglecting the

constraints if the trajectory is very unlikely (7 — 0), and thus
are not adopted.

ql=1 (20)

C. Optimal Control Problem

Considering the feasible state set = and input ¢/ for the EV
dynamics (7), and state weighing matrices @ = Q' > 0 and
P = P = 0, and input weighing matrices R = R > 0 and
S = ST =0, at every sampling time, a sequence of control
inputs U = [ug,...,u) 4| for the EV is computed, where
N is the prediction horizon, by solving

N-1

min IAEN 1D+ D 1264115 + lukllk + 1Aux|z  (21a)
k=0

st.&1 = F(&0, & ur)  VEEI(O,N—-1) (21b)

£, €E vk € I(1,N) 21c)

up €U VEel(0,N—1) (21d)

g7 <0 Viel(l,no0), Vi € 1(1,m),
vk € I(1, N), (21e)

where (21b) is a compact representation of (6), and (21e) refers
to safety constraints (20). The cost function (21a) consists of
terms penalizing large inputs and large rates of change in the
input, where uy_ is the last applied input, which are included
to boost comfort in the motion planning. (21a) penalizes also
large deviations A& = & — £” of the EV state from the desired
reference state £*, consisting of a reference speed and zero lateral
displacement and yaw angle with respect to the road.
Regarding the computational complexity of the proposed
method, the main bottleneck is the numerical solution of the
optimal control problem (21) which, because of quadratic safety
constraints (21e), is not a quadratic program with linear con-
straints. However, observe that most of the quantities in (21) are
computed before the numerical optimization. The IMM algo-
rithm and the multi-modal prediction of the future trajectories of
DOs and the error propagation are relatively fast operations that
are performed online when the new measurements are collected,
before the optimization starts, since the tuples (F7, G7, H,n’)
describing each considered trajectory are available offline. Fur-
thermore, since such procedure for constraints generation is run
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Fig. 5.

Environment used in the simulation in CARLA.

for each DO independently, parallelization is possible. More-
over, the matrices of the linear EV model in (6) are also quickly
evaluated online before the optimization starts, since their struc-
ture is known analytically and only depends on the current state
of the EV and on the current curvature of the reference path.

D. Improvements in the Safety Constraints

Chance constraints described in the previous section might
suffer from rapid variability due to the dependency on the prob-
ability assigned to each trajectory, which can vary repeatedly
and abruptly during a transient phase in which the information
collected through the measurements is not enough yet. Con-
straints changing significantly and frequently between consec-
utive iterations of the SMPC algorithm are not ideal, because
they result in unreliable and therefore sub-optimal planning.
The main reason for this comes from the idea of using still
untrustworthy information to draw conclusions. To mitigate the
effect, two solutions are proposed.

A first approach to limit the variability in the constraints
consists in substituting /i’ with the average value over the last
¢ instants, ie., 8; = g(:>0_ ;. ij). By doing so, too rapid
and frequent fluctuations are attenuated, making the planning
more ‘“‘suspicious”, so that it takes longer for the EV to trust
the prediction and dare to react consequently when a single
high-level behavior emerges as dominant. Heuristics can be used
to choose a reasonable value for { to rule the trade-off.

Alternatively, a second idea to prevent the EV from taking
contradicting decisions over consecutive steps due to the rapidly
changing prediction environment consists in adding a further
constraint to the first predicted step. The additional constraint is
also elliptical, centered in the weighted average of the positions
of the first predicted states of the DO > 71, [’ z7, with a size
depending on the uncertainty on the trajectory selection. This
constraint is designed so that:

® it remains steadily large during the transient phase, as far

as the uncertainty in the trajectory selection is large;

e it gradually moves toward the most likely prediction (being

centered in the weighted average);

® it eventually vanishes when one trajectory becomes domi-

nant, allowing the EV to dare overtaking.

Observe that with this advance, when focus is on a trajectory
which is currently considered as the most likely, the other options
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are simply temporarily given lower priority. As required by
the premises of the method presented in this work, no option
is permanently ruled out. As soon as uncertainty around the
trajectory selection increases again, the additional constraint
for the first prediction step starts indeed inducing more caution
consequently.

Remark 7: The additional constraint centered in the average
predicted state of the DO might also be enforced to further
prediction steps. However, in principle a constraint in the first
predicted step only is enough to induce caution, as in an MPC
fashion only the first input of the sequence is applied.

VI. RESULTS

The behavior of the EV controlled by the proposed algorithm
is simulated in CARLA, to discuss the properties and benefits
of the novel combination of the IMM and SMPC. We compare
the performance with two similar approaches presented in pre-
vious works: [6], in which the probability of each candidate
trajectories of the DOs is estimated but only the most likely
is accounted for in the motion planning of the EV, and [31],
in which multiple candidate trajectories are considered and
regarded as equally likely. Urban environments with significant
uncertainty concerning the future trajectories of dynamic ob-
stacles are considered. Although a simplified and high-level
model of the EV (3) is used to plan the trajectory, the EV
position is updated applying the determined input to a more
detailed dynamical model. For a realistic physical representation
of the involved agents, we rely on the CARLA library. CARLA
is an open-source simulator for autonomous driving research,
and we implemented our algorithm in Python using publicly
available libraries. The optimal control problem (21) is solved
using the optimize.minimize solver from scipy. Numerical values
and further details are given in Appendix B. All simulations are
shown at https://youtu.be/ZzJ_h71ccOk.

A. Interaction With Absentminded Cyclist

As simulation scenario, we consider a straight road, with a
sidewalk to the right, and an intersection to the left, as depicted in
Fig. 3, part of the simulation environment “Town01” in CARLA,
see Fig. 5. The EV must proceed straight on the road, considering
the uncertain future motion of a cyclist, initially on the sidewalk.
The three considered candidate intentions of the cyclist are:
A) continue on the bike lane on the sidewalk, B) move to the
road and proceed straight on the right of the lane, C) invade
the road to eventually make the left turn. The challenge for the
EV is to accommodate possibly sudden and hazardous moves
of the cyclist (a lane invasion), without inducing an excessively
conservative behavior.

In the simulation, we consider a possible mismatch between
the models used to predict the future trajectory of the DOs and
their actual dynamical properties. Precisely, the cyclist motion
is regulated by two PID controllers, one used to regulate the
speed to the desired target value, one in charge for the lateral
position. Therefore, all candidate future trajectories considered
by the EV are imprecise. Furthermore, during the initial phase,
the target lateral position of the cyclist is repeatedly changed,
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Fig. 6. Dynamical estimate of the probabilities of trajectory A (bike lane

on the sidewalk, red), B (straight on the right lane, blue), and C (left turn at
the intersection, yellow) during the simulation in which the cyclist eventually
invades the lane and the IMM+SMPC method is used. The green bar shows the
moment in which the cyclist finally starts moving toward the lane, at 4.2 seconds.

simulating a possibly absentminded behavior challenging to deal
with, since at first it is unclear whether it is actually starting a
maneuver to invade the EV lane or just proceeding erratically
on the sidewalk. The method is tested for both cases, i.e., if
the cyclist eventually invades the lane and if it stays on the
sidewalk, showing the capability of the novel combination of
IMM and SMPC in dealing with mode uncertainty avoiding
excessive conservatism.

1) Efficient Planning Considering Multiple Intentions: In
the first simulation, the cyclist starts demonstrating an unclear
behavior and eventually leaves the sidewalk and invades the lane.
The estimated probability for the three intentions, dynamically
updated by the IMM based on the position measurements of the
cyclist, are depicted in Fig. 6. After an initialization with a-priori
equal probability, the trajectory on the sidewalk (A) is shortly
recognized as dominant, although with great fluctuations in the
trajectory probability. Oscillations in the estimated probabilities
are due to the fact that the actual behavior of the cyclist does
not match any of the candidates trajectories considered by the
EV; consequently, the confidence in each of them necessarily
changes repeatedly as new measurements are collected. Thus,
the EV regards a possible cut-in of the cyclist as sufficiently
likely and maintains a safety distance. In fact, since the size of the
safety ellipse around each candidate predicted trajectory of the
cyclistis directly obtained from the estimated probability for that
candidate trajectory, the safety ellipses of multiple trajectories
(straight on the sidewalk and lane invasion) are considerably
large. Consequently, the set of feasible positions for the EV
is so restricted that the EV is forced to proceed slowly, to be
able to safely remain behind the cyclist in case a lane invasion
takes place. Eventually, when the cyclist actually moves to the
lane (after approximately 4.2 seconds), the EV is sufficiently far
and the safety distance is maintained, revealing the enhanced
safety resulting from considering multiple candidate intentions
of the cyclist. Observe that the estimated probabilities of the
trajectories eventually converge to their steady-state value given
the a-priori switching probabilities.

In the second simulation, at first the cyclist shows a similar
absentminded behavior (for the first 4.2 seconds), but eventually
remains on the sidewalk. Once again, as long as the intention of
the cyclist is unclear, the EV is forced to a cautious behavior, so
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Fig. 7. Dynamical estimate of the probabilities of trajectory A (bike lane on
the sidewalk), B (straight on the right lane), and C (left turn at the intersection)
during the simulation in which the cyclist eventually remains on the sidewalk
and the IMM+SMPC method is used. The green bar shows when the cyclist
stops behaving absentmindedly, at 4.2 seconds.

as to be ready for a possible lane incursion by the cyclist, which
is regarded to have a non-negligible chance. Thus, the EV is
prevented from taking risky decisions while the collected infor-
mation is not reliable enough to draw conclusions. Nonetheless,
at around 4.2 seconds there is a critical change: the motion of
the cyclist becomes more regular and the IMM consequently
starts steadily estimating that the cyclist will remain on the
sidewalk, see Fig. 7. As soon as it appears clear that the cyclist
will proceed straight and will not invade the lane, the other
candidate trajectories (B and C) gradually exit the optimization
framework of the EV, which hence dares accelerating. Therefore,
the proposed combination of IMM and SMPC allows to consider
multiple candidate trajectories for enhanced safety as far as
they are sufficiently plausible, without resulting in unnecessary
caution if one candidate trajectory is clearly dominant.

Observe that, as previously mentioned, in our simulations
all models used to run the IMM and to predict the nominal
trajectories of the cyclist are only approximations of real be-
haviors, i.e., none of the designed models perfectly matches
the dynamics of the cyclist used in the CARLA simulator,
which is actually controlled by two PIDs. Nevertheless, the goal
of the models is to identify trends corresponding to different
high-level intentions, and each trajectory obtained is considered
to be a nominal realization only. Therefore, additional safety
margins are added, and model discrepancies are included in the
second level of uncertainty, i.e., uncertainty around the nominal
predicted trajectory (for a fixed intention).

2) Comparisonto State-of-the-Art Approaches: Wenow pro-
pose comparison simulations with two methods inspired by
previous works, that do not consider multiple possible future
trajectories for the DOs or do not prioritize them. In simulation
3, the EV only takes the (currently) most likely intention of the
cyclist into account, with an approach similar to [6]. The same
set of candidate intentions of the cyclist is considered and for
each the probability is assessed. However, safety constraints are
generated only with respect to the currently most likely candidate
trajectory of the cyclist. In this simulation, for the first phase the
EV, despite the large uncertainty in the trajectory selection, trusts
the cyclist to remain on the sidewalk, because this is the dominant
mode, although with highly fluctuating confidence. However, at
around 4.2 seconds the cyclist starts moving toward the lane
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(a) Equal priority independently of the estimated probability.

N @
@---@

(b) Prioritization depending on the estimated probability.

Fig. 8. Forbidden areas around nominal predictions of the cyclist for an
horizon N = 5, obtained 8(a) giving equal priority to each candidate trajectory
of the cyclist and 8(b) prioritizing.

and candidate trajectory B gains focus, since the IMM detects
another dominant intention. Still, now the EV is too close to the
cyclist and thus reacts with an emergency braking and steering
maneuver. An excess of confidence in the single (at present) most
likely trajectory is limiting and multiple candidate trajectories
should be accounted for.

Nevertheless, merely considering all candidate trajectories
proves inefficient. In simulation 4, all candidate trajectories of
the cyclist are taken into account with equally large safety areas,
see Fig. 8(a). This approach is inspired by [31]. Initially, the
EV behaves similarly to when controlled with the IMM+SMPC
algorithm, that is, it maintains a distance and avoids overtaking
atfirst. Yet, even when the cyclist starts moving regularly, clearly
showing the intention of staying on the sidewalk, in this case the
EV still does not dare accelerating and overtaking. In Fig. 9, the
speed of the EV is depicted. After a short acceleration at the
beginning, the EV shortly starts slowing down and gradually
reaches the speed of the cyclist. As a matter of fact, if all
models are taken into account irrespective of their estimated
probability, the future trajectories consisting of a movement
toward the lane are never ruled out and thus the EV stays in the
distance, slowing down. Equally weighing all candidate future
trajectories results in an overly conservative motion planning for
the EV, preventing the method from application in real traffic
scenarios. Using the IMM+SMPC method, trajectories of the
DOs currently considered unlikely result in constraints that can
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Fig.9. Speed of the EV during the comparison simulation in which the cyclist

remains on the sidewalk and collision avoidance constraints are enforced for all
three candidate trajectories of the cyclist irrespective of the estimated probability.
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Fig. 10. Dynamical estimate of the probabilities of the 9 trajectories of the
cyclist consisting of different convergence rates to the three target states: bike
lane on the sidewalk, straight on the right lane, and left turn at the intersection.
The green bar shows when the cyclist finally starts moving toward to the lane,
at 4.2 seconds.

be neglected in practice, without overly restricting the motion
of the EV if unnecessary, see Fig. 8(b).

3) Number of Candidate Future Trajectories: Finally, we
discuss the role played by the number of candidate trajectories
of the cyclist considered in the IMM through additional simula-
tions. Given that each candidate trajectory is meant to represent
a specific intention of the cyclist, including more trajectories
is intuitively beneficial. However, there are a few shortcomings
that must be taken into account. We test the IMM+SMPC method
considering 9 candidate trajectories for the cyclist. For each of
the three candidate trajectories initially considered (straight on
the sidewalk, lane invasion, and left turn), two more are now
included, resulting from different rates of convergence to the
same target state, see Appendix B.

In simulation 5, the cyclist eventually invades the lane,
whereas in simulation 6 the cyclist eventually remains on the
sidewalk. Considering multiple candidate trajectories to repre-
sent relatively similar motions is not beneficial because it results
in unnecessary indecision about the trajectory of the cyclist.
Fig. 10 shows the estimated probability for each candidate
future trajectory of the cyclist during the simulation in which it
eventually invades the lane. Although the behavior of the cyclist
is the same as in the previous simulations, due to the many
candidate trajectories considered, in this case there is persistent
indecision about the future trajectory of the cyclist, with the
most likely trajectory only estimated at around 0.2 even after
the initial phase with the absentminded behavior. As a result,
the safety regions around the predicted future positions of the
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Fig. 11.  Speed of the EV during the simulation in which the cyclist remains

on the sidewalk, considering 9 candidate trajectories of the cyclist consisting of
different target speeds or different convergence rates.

cyclist are rather small, see Section V-B, and the optimization
framework becomes very complex. For example, depending on
the predicted future positions of the cyclist, it might happen
that at a certain iteration the EV can find a feasible path in a
given direction and accelerates, whereas at the next sampling
time the framework is so different that the EV needs to suddenly
slow down and turn. These sudden changes result in a trembling
behavior for the EV, visible for example at around 4 seconds of
simulation 5 and at around 6 seconds of simulation 6.

Similarly, we test the method in another setup with sev-
eral candidate trajectories for the cyclist. In these simulations,
further candidate trajectories with respect to the original three
are designed considering different target speeds, also resulting
in 9 candidate trajectories overall. Simulation 7 shows the lane
invasion, whereas in simulation 8 the scenario in which the
cyclist eventually remains on the sidewalk is depicted. In both
simulations a similar trembling behavior can be observed. Fur-
thermore, in this case the safety areas are so small and displaced
sufficiently distant from one another that the EV always manages
to find a feasible path within the areas to be avoided. Thus, the
EV never even slows down. Fig. 11 shows the speed profile of
the EV in case the cyclist eventually remains on the sidewalk,
comparing the performance depending on the considered candi-
date trajectories of the cyclist. If the 9 candidate trajectories are
based on different convergence rates to the same target states,
the EV starts accelerating but needs to slow down shortly after
3 seconds, in order to keep a safety distance from the cyclist
even in case of a possible lane invasion, until the incursion is
completely ruled out (red curve in the figure). Conversely, if the 9
trajectories are based on different target speeds of the cyclist, the
EV basically does not even slow down (blue curve). In the latter
case, although 6 of the 9 considered trajectories of the cyclist
are partially located on the lane, their safety areas are so small
that the EV basically does not consider them, because none of
trajectories is regarded likely enough to generate a meaningful
safety area.

To allow the EV to benefit from the IMM+SMPC method even
in presence of many trajectories very similar to one another,
the safety area should be made artificially very large also for
small probabilities. However, a saturation mechanism should
then be added, avoiding unreasonably large safety areas if one
model perfectly matches the data and its estimated probability
increases.
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TABLE I
NUMERICAL COMPARISON OF SIMULATIONS

Scenario Number of DO models Comp. time | Cost Jgim,
3 0.138 s 328.9
cyclist 1 (most likely only, [6]) 0.138 s 252.7
invades lane 9 (different rates) 0.168 s 309.8
9 (different target speeds) 0.155 s 317.3
3 0.120 s 212.6
cyclist on 3 (non-prioritized, [31]) 0.111 s 348.2
sidewalk 9 (different rates) 0.144 s 228.5
9 (different target speeds) 0.123 s 194.2

We compare our novel IMM+SMPC algorithm with the two
comparison methods from [6], [31] considering two metrics.
On one hand, we evaluate the average computation time for
each iteration of the IMM+SMPC method for the discussed
simulations; specifically, in each iteration, we include the update
step of the IMM, the multi-modal trajectory prediction algorithm
and the generation of safety collision avoidance constraints, and
the solution of the optimal control problem. The average com-
putation time is a primary concern for real-time applicability of
the proposed algorithm, as an update must be performed at each
sampling time, iteratively re-planning the optimal trajectory of
the EV. Secondly, to quantitatively compare the performances
in terms of deviations from the desired cruise speed and lateral
position of the EV, and in terms of usage of the input, we evaluate
the average running-cost of the optimal control problem (21).
Precisely, for simulation stepst = 1, . . ., Ngim, and for weighing
matrices Q, R, and S chosen as in the SMPC cost function used
in the simulation, we define:

= (121G + llw(®)] + | Aut)l3) _

Jsim = Z Ngim

t=1

(22)

The cost (22) is a natural choice as a metric to rank the
performances of the considered algorithms, given that are all
obtained as solution of an optimization problem aiming at min-
imizing such a cost. Performances are summarized in Table 1.
Observe that, although the EV assumes the cyclist to behave
stochastically, the actual cyclist motion in the simulations here
is deterministic. Therefore, the reformulation of chance safety
constraints in the SMPC optimal control problem (21) yields
always the same constraint, thus running each scenario once is
sufficient.

For all considered methods, the average computation time
is significantly shorter than the sampling time 7" = 0.2 s used.
Focusing on the scenario in which the cyclist eventually invades
the lane, we observe that the method from [6], which only
considers the currently most likely prediction of the cyclist,
yields a computation time similar to the IMM+SMPC method
with the initial 3 candidate trajectories, but a noticeably smaller
cost. The explanation for the lower cost lies in the fact that by
considering only the most likely future motion of the cyclist,
the EV basically ignores the cyclist for most of the simulation
and only takes it into account when the relative distance is too
small to prevent the collision (which is not considered in the



2476

computation of cost Jg,). Meanwhile, increasing the number
of candidate future trajectories of the cyclist slightly reduces
the cost (around 5% of reduction), at the price of considerably
increasing the average computation time (between 10% and
20%).

In the second simulation scenario, in which the cyclist in
the end remains on the sidewalk, the average computation time
is generally shorter than in the first scenario. As a matter of
fact, in this case at last the cyclist is predicted to occupy areas
outside of the road boundaries, therefore the collision avoidance
safety constraints are always satisfied in practice and the optimal
control problem is solved quickly. Compared to our proposed
IMM+SMPC method with the initial 3 candidate trajectories, the
comparison method similar to [31], in which future candidate
trajectories are regarded as equally likely, results in a slightly
shorter average computation time, but in a 60% increase in the
cost. Indeed, without prioritization of the candidate trajectories,
the EV never excludes the possible lane invasion, even when
the cyclist clearly shows a different intention. Consequently,
the EV continues to proceed unnecessarily slow, without daring
to speed up, placing excessive focus on an unlikely outcome.
Furthermore, we observe the possible shortcoming in the usage
of several candidate trajectories. If the 9 candidate trajectories
based on different convergence rates are considered, both the
average computation time and the cost Jg;,, marginally increase.
However, this is noticeably not the case if we consider the 9
candidate trajectories for the cyclist based on different target
speeds. The reason for this lies in the fact that in this case the
EV can always find a viable path and all multiple predicted tra-
jectories of the cyclist are essentially disregarded, as previously
discussed, compromising the efficacy of the method.

B. Overtaking Maneuver in Uncertain Traffic

Furthermore, we test our algorithm in a different setting,
specifically in a traffic scenario including the interaction with
two Target Vehicles (TVs). We consider a three-lane road, part
of the simulation environment “Town05” in CARLA, in which
the two TVs are both initially on the right-most lane, both located
in front of the EV, which approaches from the center lane.
The EV must eventually overtake both TVs, who are driving
slower, avoiding overly conservative maneuvers when unneces-
sary. TV1 proceeds on the right most lane regularly, whereas
TV2 exhibits a trembling behavior. Such irregular behavior of
TV2 could be just an erratic driving on the right-most lane due
to distraction of the driver, but could also be understood as a
possible initial movement to the left lane to eventually overtake
the slower TV 1. For both TVs we consider three candidate future
trajectories, consisting of executing a lane change to the left,
keeping the current lane, and lane change to the right. Also in
this case, the mismatch between the models of the DOs assumed
by the IMM and the physical actuation is considered, controlling
the TVs with PD controllers. The irregular behavior of TV2 is
realized along the lines of that of the cyclist in the previous
simulations. Observe that in this scenario the lateral motion plays
a major role in the trajectory planning of the EV.

‘We first consider the case in which TV?2, after some hesitation
causing an ambiguous movement, changes lane to overtake TV 1.
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Fig. 12.  Dynamical estimate of the probabilities of lane change right, lane

keep, and lane change left for both TVs in the simulation in which TV2 eventually
overtakes TV 1. The green bar shows when the ambiguous behavior of TV2 ends
and a left lane change is clearly initiated, at 4.2 seconds.

The estimated probabilities for the two TVs in this scenario
are shown in Fig. 12. The candidate maneuver lane keep for
TV1 is quickly recognized as dominant and the corresponding
probability is steadily the most likely. Conversely, the trembling
behavior of TV2 is reflected on larger fluctuation in the estimated
probabilities. Although lane keep is recognized as the most
likely maneuver, the possibility of lane change left is also non-
negligible and eventually the latter is recognized as the dominant
mode. Videos 9 and 10 represent this scenario both if the novel
IMM+SMPC algorithm is used to control the EV and if the
comparison method considering only the most likely maneuver
of DOs [6] is adopted. Thanks to the IMM+SMPC combination,
the EV can pre-account for a possible lane change maneuver
of TV2 before TV2 finally initiates a lane change maneuver.
Therefore, when the lane change finally occurs, the EV can
still guarantee satisfaction of the safety conditions by moving
to the left-most maneuver, without the necessity to slow down.
Conversely, if the comparison algorithm from [6] is used, the EV
trust TV2 to remain on the right-most lane and does not ponder
a possible lane-change maneuver until too late. The difference
is evident by comparing the planned trajectory of the EV in the
two cases. Fig. 13 represents the traffic configuration and the
planned trajectory of the EV at simulation time ¢ = 4.40 s, that
is, when the lane change has not been clearly initiated yet and
TV2 still lies within the right-most lane. Although still relatively
unlikely, the IMM+SMPC allows to weigh in a possible lane
change maneuver and therefore the planned trajectory is shifted
to the left at the end of the prediction horizon (see Fig. 13(a)),
i.e., when the EV is predicted to get closer to TV2, in order to



BENCIOLINI et al.: NON-CONSERVATIVE TRAJECTORY PLANNING FOR AUTOMATED VEHICLES

(a) Novel IMM+SMPC algorithm.

(b) Comparison method [6].

Fig. 13.  Planned trajectory of the EV at time ¢ = 4.40 s, before TV2 initiates
the lane-change maneuver. (a) Novel IMM+SMPC algorithm. (b) Comparison
method [6].

observe the safety distance in case TV2 should actually initiate
to move to the left. Thus, when this actually happens, the EV can
smoothly continue to shift to the left and eventually overtakes
TV2 from the left lane, without decelerating. Vice versa, the
comparison method from [6] only accounts for the most likely
future trajectory of TV2 (lane keeping), and completely neglects
a possible lane change; thus, the planned trajectory of the EV
continues straight also at the end of the prediction horizon
(Fig. 13(b)). When TV2 moves to the center lane, the EV is
too close to just safely move to the left-most lane, thus steers
emergently.

Then, we simulated the same traffic scenario, but at the end
of the ambiguous phase TV2 eventually keeps the right-most
lane. The estimated probabilities for TV2 in this case are repre-
sented in Fig. 14; the behavior of TV1 is unchanged, therefore
the estimated probabilities are as in Fig. 12(a). We test both
the IMM+SMPC combination and the comparison algorithm
from [31], which takes all candidate trajectories into account
equally; the simulations are represented in videos 11 and 12,
respectively. Using the IMM+SMPC combination, the planned
trajectory while TV2 behaves ambiguously is consistent with the
former case. At first, a possible lane change of TV2 is accounted
for and thus the planned trajectory of the EV shows a temporary
shift to the left for those instants in the horizon in which the
EV is predicted to get close to TV2. Fig. 15 shows the planned
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Fig. 14.  Dynamical estimate of the probabilities of lane change right, lane

keep, and lane change left for TV2 in the simulation in which TV2 remains on
the right-most lane. The green bar shows the moment in which the ambiguous
behavior of TV2 ends, at 4.2 seconds.

Fig. 15.  Planned trajectory of the EV using the novel IMM+SMPC algorithm
at time ¢t = 4.80 s in the scenario in which TV2 eventually does not execute the
lane change.

trajectory of the EV attime ¢t = 4.80s, shortly after TV2 ends the
swinging behavior. The lane change of TV2 is not completely
ruled out yet, so the planned trajectory of the EV includes a
shift to the left later in the prediction horizon. However, as soon
as TV2 exhibits a more regular behavior consistent with a lane
keeping intention, the estimated probability of the maneuvers
become more steady and the lane change is gradually ruled out,
so that the shift to the left of the EV is not necessary anymore.
As aresult, the EV eventually overtakes remaining on the center
lane, avoiding overly conservative behaviors. In contrast, the
comparison method from [31] never rules out the lane change
of TV2, since all candidate trajectories are regarded as equally
plausible irrespective of the estimated probabilities. Hence, the
EV motion is unnecessarily cautious and the EV moves to the
left lane to overtake both vehicles, potentially slowing down the
traffic flow on the left-most lane.

Table II proposes a numerical evaluation of the performances
and comparison of the algorithms through the same metrics
previously introduced, i.e., the average computation time for
each iteration of the IMM+SMPC algorithm and metrics (22).
Considering the scenario in which TV2 eventually changes the
lane, the performances of the comparison method from [6] are
affected by the fact that the method notably fails in yielding
a safe trajectory and thus the IMM+SMPC algorithm yields
a considerably lower cost and average computation time. In
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TABLE II
NUMERICAL COMPARISON OF SIMULATIONS
Scenario Number of DO models Comp. time | Cost Jgmy
V2 3 0.135 s 84.8
changes lane | | (1ot Jikely only, [6]) | 0.174 s 137.7
V2 3 0.121 s 76.8
keeps lane | 3 (hon prioritized, [31]) | 0.172 s 86.5

the other scenario, in which TV2 ultimately remains on the
right-most lane, the IMM+SMPC also yields a significantly
lower average computation time, due to the fact that eventually
the EV disregards the possible lane change of TV2 and the
overly conservative lane change maneuver of the EV is avoided.
Furthermore, compared to the simulations with the cyclist, we
observe that increasing the number of DOs surrounding the
EV does not severely affect the computation time, confirming
that running a new IMM algorithm for each DO is relatively
inexpensive and that the computational burden is driven by
the solution of the optimal control problem (21). Conversely,
comparing the cost Jgin, for different scenarios is not informative,
due to the different setup of the simulations.

VII. DISCUSSION

In this work, the set of candidate possible trajectories resulting
from high-level intentions is assumed known. Yet, the choice
of such possible trajectories is an open problem. Recorded
data can be used to synthesize accurate trajectories describing
typical vehicles, pedestrians and cyclists behaviors using Deep
Learning [40] or Inverse Optimal Control [29].

Moreover, choosing the number of possible different inten-
tions to be considered is also a challenge, in which conflicting
considerations arise. Including many trajectories is tempting,
as this allows to potentially approximate more accurately an
increasing number of motions. For example, in [6] many models
are used to take into account different “rates” of convergence in a
lane change maneuver. However, in the method proposed in this
work this choice would be problematic, leading to persistent
indecision in the choice of the trajectory, and therefore to a
continuously changing prediction environment, particularly if
none of the trajectories considered is “precise enough”. There-
fore, in practice, it is preferable to consider trajectories suffi-
ciently “differentiated”, i.e., representing significantly different
high-level intentions. Hence, the uncertainty about the trajectory
selection is limited to those cases in which the behavior is really
highly unpredictable, and not caused by oscillations between
trajectories resulting in a very similar motion, bearing in mind
that those candidate trajectories are anyway only approximations
of the real behavior.

In Section V-B it was explained how, for every prediction
step, no x np safety constraints are generated, needed to take
into account all the ny possible intentions that each of the ng
DOs might be pursuing. However, if candidate trajectories are
chosen consistently with the aforementioned considerations, the
collected measurements allow the IMM to shortly rule out most
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of the trajectories, leaving just a few reasonable options for
each DO. The unlikely trajectories result in very small ellip-
tical constraints, which have little physical meaning and do not
influence the motion planning in practice. However, they can
considerably slow down the numerical solution of the optimal
control problem. Therefore, it is recommended to set a threshold
for the parameters 3; below which no constraint is generated.
Observe that this does not reduce the capabilities of the method in
taking multiple possible trajectories into account, as the unlikely
trajectories are still considered in the IMM and the related
constraints would be included again in the optimization as soon
as the probability should increase. Therefore, this threshold
would just speed up the computation by explicitly ignoring
trajectories that are currently not considered likely. As a result,
several different sufficiently “differentiated” trajectories can be
considered, permitting the method to consider a wide range of
intentions.

Furthermore, although a new IMM filter must be implemented
and run online for every DO surrounding the EV, the resulting
workload remains relatively limited compared to that of the
online solution of the constrained optimization problem, which
dominates the overall computational demand of the proposed
method, as usual for motion planning algorithms.

Finally, we emphasize that the concept of prioritization of
chance constraints depending on the probability of a given
outcome can be employed in other applications, possibly using
multi-modal estimation algorithms other than IMM, whose im-
plementation and computational workload are, however, unde-
manding. The formulation and handling of chance constraints is
not limited to the procedure presented in this work, and different
options are possible.

VIII. CONCLUSION

In this work a novel combination of the IMM algorithm
and SMPC for motion planning for automated urban driv-
ing in presence of DOs with unknown intention is presented.
Multiple candidate future trajectories of the DOs are designed
considering LQR approximations, and their probability is dy-
namically estimated using the IMM algorithm. This allows to
consider twofold uncertainty about the future motion of DOs,
comprising unknown intention and non-deterministic motion.
Then, the trajectory of the EV is planned iteratively solving
an optimal control problem in an SMPC fashion, using the
probability of each candidate trajectory of the DO to priori-
tize the collision avoidance constraints. Thus, multiple possible
intentions of DOs are included in the motion planning, giving
lower importance to possible future trajectories that are currently
considered unlikely, for sake of efficiency. However, since the
probability of the intentions of DOs is continuously estimated,
temporarily excluded trajectories can gain focus again, fully
exploiting the benefits of the multi-modal prediction. Simula-
tions in CARLA are provided, showing the advantages of the
method.

The combination of IMM and SMPC is suitable for other
contexts in which twofold uncertainty is to be considered. Future
research should focus on comparison and combinations with
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Grid-based MPC [19] and with Belief Function Theory. Fur-
thermore, alternative formulations for safety constraints should
be investigated, allowing a faster computation compared to the
design proposed here. Besides, more sophisticated approaches
for multi-modal prediction of the other traffic participants should
be integrated. For example, considering interactions between
DOs would make the predicted future trajectories more reliable.

APPENDIX A
EXPLICIT FORMULATION OF THE EGO VEHICLE MODEL

Matrices A4 and By of model (6), used for the EV prediction
in the OCP, resulting from the linearization of (3) around state

& = [s,d, ¢,v]" and zeroinputu* = [0, 0]", and discretization
with sampling time 7', are given as
1 el gy an
0 L a a
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where all variables in (24) and (25) are extended by continuity
around possible singularities.

APPENDIX B
NUMERICAL VALUES USED IN THE SIMULATIONS

All simulations were run on a desktop computer with an
AMD Ryzen 7 1700X eight-core processor. We implemented
the CARLA client using the CARLA Python library. At each
sampling time, the CARLA client receives updated information
on the involved agents and runs the code yielding the control
input to move the agents. The numerical value of the current
position of the DOs used to run the IMM is directly obtained
through the CARLA client, whereas no information about the
current speed or acceleration of DOs is used. The EV and the
TVs are spanned using CARLA’s BMW Grandtourer blueprint,
the crossbike blueprint is used for the cyclist.

Units are omitted, as all quantities are given in SI units. The
server updates the world in CARLA with a frequency of 30.
The EV control is updated every 7' = 0.2 and the prediction
horizon length is N = 10. The parameters of the nonlinear
bicycle model are lf = [, = 1.9, and the weighing matrices in
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cost function (21a) of the EV are Q = P = diag(0,1,1,1),
R = diag(0.1,0.1), and S = diag(0.1, 10). Among the two so-
lutions proposed in Section V-D to mitigate the possible sudden
and persistent variability of the optimization framework in tran-
sient phases, in the simulations an additional safety constraint
for the first step is used. Parameters [3; are chosen equal to the
estimated probabilities i/, i.e., g(p) = p in (18).

The closed-loop models used in the IMM and to predict
the future trajectories of the cyclists are obtained through the
procedure outlined in Section IV-B, where all models share
the same input weighing matrix R’ = diag(0.2,0.2) Vj, pro-
cess noise covariance matrix 3¢ = diag(0.1,0.5,0.1,0.5), and
measurement noise covariance matrix ¥ = diag(0.05, 0.05).
Model-specific state weighing matrices and target states are:

e Q" = diag(10,1,0,1), 2*A = [x4,0,0,v"°]"

e Q" =diag(10,1,0,1), 2*B = [25,0,0,v"°]"

e Q€ = diag(0,10,0.01, 10), 2*¢ = [0,2P°, yc,0]T,
where za, xp, and yc are the position of the center of the
sidewalk, of the right lane, and of the lane after the left turn,
respectively, and vP© is the current speed of the cyclist. The
a-priori switching probability matrix is

0.7 02 0.1
II= {01 06 0.3 (26)
0.1 0.1 0.8

For the simulations with multiple models consisting of dif-
ferent rates of convergence to the original target states 2**, 2*B,
and z*C, the additional trajectories are obtained considering the
following additional state weighing matrices:

e QP = QF = diag(1,1,0,10)

Q" = diag(0,10,0.0001, 1)
Q° = Q" = diag(0.1,1,0,5)
Q' = diag(0,1,0.1,1)
whereas the additional trajectories resulting from different target
speeds are obtained using the original state weighing matrices
Q", Q" and QF, and the additional target states:
D = [24,0,0,vP° — 1.38]"
z*E = [15,0,0,0P° — 1.38]7
2t = [0,vP° — 1.38,yc,0]"
26 = [14,0,0,0vP0 4 1.38] "
2" = [25,0,0,vP° + 1.38] 7
21 =[0,0P0 4 1.38,y¢, 0] .

The LQR approximations for the additional simulations are
obtained from Q7 = diag(0, 1,10, 1) Vj and

o A =[0,0T — Av,y™v - 3.5,0]"

° Z*B — [0, UTV, gTV, O]T

o 2C =10,v™ + Av, g™ +3.5,0]T,
with Av = 1.39 and "V is the center of the current lane.

We are available to discuss further details about the imple-
mentation of the presented simulations upon request.
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