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Abstract. Consider a random walk among random conductances on Zd with
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1. Introduction and results

In this paper we study random walks on a d-dimensional integer lattice with
random conductances. One can briefly describe the model in the following way:
initially, weights (i.e., some nonnegative numbers) are attached to the edges
of the lattice at random. The transition probabilities are then defined to be
proportional to the weights, thus obtaining a reversible Markov chain; due to a
well-known correspondence between reversible Markov chains and electric net-
works, the weights are also called conductances. We refer to the collection of all
conductances as “environment”. This model attracted considerable attention
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recently, and, in particular, quenched (i.e., for fixed environment) functional
central limit theorems and heat kernel estimates were obtained in rather gen-
eral situations, see e.g. [2, 3, 6, 16] and references therein. We also refer to the
survey paper [5]. To prove the quenched functional CLT, one usually uses the
so-called corrector approach, described in the following way. First, one con-
structs an auxiliary random field (which depends only on the environment),
with the following property: the sum of the corrector and the random walk is
a martingale, for which it is not difficult to show the CLT. Then, using the Er-
godic Theorem, one shows that the corrector is likely to be small in comparison
to the random walk itself.

While this approach has been quite fruitful, it also has its limitations, mainly
due to the fact that the construction of the corrector is not very explicit. For
example, it was understood only quite recently how to prove the quenched CLT
for the random walk with i.i.d. conductances in half-space, see [7, 19]. It is
therefore important to go beyond the usual setup, proving other types of limit
laws. In this paper, we continue the line of research of [11] and [12] (which were,
by their turn, mainly motivated by [8,9]), where a one-dimensional model with
random conductances (but with unbounded jumps) was considered.

We now define the model formally. For x, y ∈ Zd with d ≥ 2, we write
x ∼ y if x and y are neighbors in the lattice Zd and we let Bd be the set of
unordered nearest-neighbor pairs (x, y) of Zd. Let (ωb)b∈Bd

be non-negative
random variables; P stands for the law of this family. We assume that P is
stationary and ergodic with respect to the family of shifts (θx, x ∈ Zd). The
quantity ωb is usually called the conductance of the edge b. The collection of all
conductances ω = (ωb)b∈Bd

is called the environment. If x ∼ y, we will also write
ωx,y to refer to the conductance between x and y. For a particular realization ω
of our environment, we define πx =

∑
y∼x ωx,y. Given that πx ∈ (0,∞) for all

x ∈ Zd (which is P-a.s. the case by Condition UE below), the random walk X
in the environment ω is defined through its transition probabilities

pω(x, y) =

{ ωx,y

πx
, if y ∼ x,

0, otherwise,

that is, if Px
ω is the quenched law of the random walk starting from x, we have

Px
ω[X(0) = x] = 1, Px

ω[X(k + 1) = z | X(k) = y] = pω(y, z).

Clearly, this random walk is P-a.s. reversible with the reversible measure (πx, x ∈
Zd). Also, we denote by Ex

ω the quenched expectation for the process starting
from x. When the random walk starts from 0, we use the shorter notations
Pω, Eω.

In order to prove our results, we need to make the uniform ellipticity as-
sumption on the environment:
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Condition UE. There exists κ > 0 such that, P-a.s., κ < ω0,x < κ−1 for
x ∼ 0.

For all n ≥ 1, we define the continuous map (Zn(t), t ∈ [0, 1]) as the natural
polygonal interpolation of the map k/n 7→ n−1/2X(k). In other words

√
nZn(t) = X(bntc) + (nt− bntc)X(bntc+ 1)

with b·c the integer part. Also, we denote by W (d) = (W1, . . . ,Wd) the d-
dimensional standard Brownian motion. Now, let us embed the graph Zd in Rd.
Denote by B = {e1, . . . , ed} the canonical basis of Rd and by x1, . . . , xd the vec-
tor coordinates in Rd. By Condition UE and as our environment is stationary
and ergodic there exists an invertible linear transformation D : Rd → Rd letting
the hyperplane {x1 = 0} invariant and such that the sequence (DZn)n≥1 tends
weakly to W (d). Indeed, by Condition UE and ergodicity of the environment, it
is well known (cf. [5]) that (Zn)n≥1 tends weakly to a d-dimensional Brownian
motion with a positive definite covariance matrix Σ. This implies that Σ has
positive eigenvalues λi and is diagonalizable in an orthonormal basis. If the law
of the environment is also invariant under the symmetries of Zd, it is known
that Σ = σ2I for some constant σ, where I is the identity matrix. Thus, there
exists a rotation T such that (TZn)n≥1 tends weakly to Brownian motion with
diagonal covariance matrix Σ′ = (λi)1≤i≤d in the basis B. This implies that
((Σ′)−1/2TZn)n≥1 tends weakly to W (d). Finally, by some unitary transforma-
tion R, we can rotate the hyperplane (Σ′)−1/2T{x1 = 0} to make it coincide
with the hyperplane {x1 = 0}. Now, using the isotropy of W (d) we obtain that
(R(Σ′)−1/2TZn)n≥1 tends weakly to W (d). For convenience, in the rest of the
paper, we will choose R such that De1 · e1 > 0. (R can also involve a reflec-
tion). In the case that the law of the environment is also invariant under the
symmetries of Zd, then the last statement is true with D = σ−1I (where σ is
from the quenched CLT).

Denoting X = (X1, . . . , Xd) in the basis B, we define

τ̂ = inf{k ≥ 1 : X1(k) = 0}

and
Λn = {τ̂ > n} = {X1(k) > 0 for all k = 1, . . . , n}.

Consider the conditional quenched probability measure Qn
ω[ · ] := Pω[ · | Λn],

for all n ≥ 1. Denote by C([0, 1]) the space of continuous functions from [0, 1]
into Rd and by B1 the Borel σ-field on C([0, 1]). For each n, the random map
DZn induces a probability measure µn

ω on (C[0, 1],B1): for any A ∈ B1,

µn
ω(A) := Qn

ω[DZn ∈ A].

Let us next recall the formal definition of the Brownian meander W+. For this,
define τ1 = sup{s ∈ [0, 1] : W1(s) = 0} and ∆1 = 1− τ1. Then,

W+(s) := ∆−1/2
1 |W1(τ1 + s∆1)|, 0 ≤ s ≤ 1.
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We denote by PW+⊗PW (d−1) the product law of Brownian meander and (d−1)-
dimensional standard Brownian motion on the time interval [0, 1]. Now, we
are ready to formulate the quenched invariance principle for the random walk
conditioned to stay positive, which is the main result of this paper:

Theorem 1.1. Under Condition UE, we have that, P-a.s., µn
ω tends weakly to

PW+ ⊗ PW (d−1) as n →∞ (as probability measures on C[0, 1]).

The next result, referred as Uniform Central Limit Theorem (UCLT), will
be useful in order to prove Theorem 1.1. Let WΣ be a d-dimensonal Brownian
motion with covariance matrix Σ defined above. Denoting by Cb(C([0, 1]), R)
(respectively, Cu

b (C([0, 1]), R)) the space of bounded continuous (respectively,
bounded uniformly continuous) functionals from C([0, 1]) into R, we have the
following result:

Theorem 1.2. Under Condition UE, the following statements hold and are
equivalent:

(i) we have P-a.s., for all H > 0 and any F ∈ Cb(C([0, 1]), R),

lim
n→∞

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Eθxω[F (Zn)]− E[F (WΣ)]
∣∣∣ = 0;

(ii) we have P-a.s., for all H > 0 and any F ∈ Cu
b (C([0, 1]), R),

lim
n→∞

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Eθxω[F (Zn)]− E[F (WΣ)]
∣∣∣ = 0;

(iii) we have P-a.s., for all H > 0 and any closed set B,

lim sup
n→∞

sup
x∈[−H

√
n,H

√
n]d

Pθxω[Zn ∈ B] ≤ P [WΣ ∈ B];

(iv) we have P-a.s., for all H > 0 and any open set G,

lim inf
n→∞

inf
x∈[−H

√
n,H

√
n]d

Pθxω[Zn ∈ G] ≥ P [WΣ ∈ G];

(v) we have P-a.s., for all H > 0 and any A ∈ B such that P [WΣ ∈ ∂A] = 0,

lim
n→∞

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Pθxω[Zn ∈ A]− P [WΣ ∈ A]
∣∣∣ = 0.

As mentioned, our approach does not involve the corrector in a direct way
(although, of course, we use the “classical” invariance principle which relies on
the corrector approach). Instead, the key ingredients are the following. We
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use the uniform heat kernel bounds of [10] to prove a uniform CLT (see Theo-
rem 1.2.) In addition, we rely on several auxiliary results giving uniform bounds
for exit times and hitting times of hyperplanes, leading to statements which say,
roughly speaking, that the conditioning does not change the size of fluctuations
(see the beginning of Section 2 for a more detailed description). These auxiliary
results are shown in Section 2. They are of independent interest and might be
applied to study other “fine” questions for the random conductance model than
the conditional quenched CLT considered here. To prove that the conditioning
does not change the size of fluctuations, we use an iteration method relying
on the Markov property and the uniform bounds shown before. In Section 3,
we give the proof of Theorem 1.2. Finally, in Section 4, we give the proof of
Theorem 1.1.

We will denote by C1, C2, . . . the “global” constants, that is, those that
are used all along the paper and by γ, γ1, γ2, . . . the “local” constants, that
is, those that are used only in the subsection in which they appear for the first
time. For the local constants, we restart the numeration in the beginning of
each subsection.

Also, whenever the context is clear, to avoid heavy notations, we will not
put the integer part symbol b·c. For example, for δ ∈ (0, 1) we will write X(δn)
instead of X(bδnc).

2. Auxiliary results

In this section, we will prove several auxiliary results that will be needed later
to prove Theorem 1.1. Before going to the technical side, let us give a short
description. Lemma 2.1 gives a uniform bound on the upper tail of the exit time
of a strip as well as on the lower tail of the hitting time of a set (sufficiently
far away from the starting point). Lemma 2.2 provides a uniform lower bound
for the probability of progressing in the direction e1 before backstepping to
the hyperplane of the origin. Lemma 2.3 says that the probability that the
hitting time of a hyperplane is larger than it should be, conditioned on the
first coordinate being positive, decays fast enough. Lemma 2.4 says that the
probability that the “transversal fluctuations” are larger than they should be,
conditioned on the first coordinate being positive, decays fast enough.

Instead of considering the process X in the canonical basis B of Rd it is
also convenient to introduce the embedded graph Z̃d := DZd with the basis
B′ = {e′1, . . . , e′d} := DB and consider the process DX in this new basis.
All the results obtained in this section concern the original random walk X
expressed in B but they remain valid for DX expressed in B′ with the ‖ · ‖1-
norm replaced by the graph distance in Z̃d.

Let us introduce the following notations. First, for a, b ∈ Z, a < b, we
denote by [[a, b]] the set [a, b] ∩ Z. Vectors of Zd will be denoted by x, y or z.
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For x ∈ Zd we denote by x1, . . . , xd its coordinates in B. For l ∈ R, we denote

{l}j =
{
{x = (x1, . . . , xd) ∈ Zd : xj = blc}, if l ≥ 0,
{x = (x1, . . . , xd) ∈ Zd : xj = −blc}, if l < 0,

for j ∈ [[1, d]]. If F ⊂ Zd, let us define

τF = inf{n ≥ 0 : X(n) ∈ F} and τ+
F = inf{n ≥ 1 : X(n) ∈ F}.

At this point we mention that under Condition UE, we can apply Theorem 1.7
of [10] to the random walks Y (n) := X(2n) and Y ′(n) := X(2n + 1), to obtain
that uniform heat kernel lower and upper bounds are available for this model.
That is, there exist absolute constants C1, C2, C3 and C4 such that P-a.s., for
n ∈ N,

pn
ω(x, y) ≤ C1

nd/2
exp

{
− C2

‖x− y‖21
n

}
(2.1)

and if ‖x− y‖1 ≤ n (with ‖ · ‖1 the 1-norm on Zd) and has the same parity as
n,

pn
ω(x, y) ≥ C3

nd/2
exp

{
− C4

‖x− y‖21
n

}
. (2.2)

We denote by d1 the distance induced by the 1-norm. The heat kernel upper
bound (2.1) has two simple consequences gathered in the following

Lemma 2.1. Estimate (2.1) implies that there exist positive constants C5 and
C6 such that P-a.s., for h > 0 and δ > 0, the following holds.

(i) Let H1 and H2 be two parallel hyperplanes in Zd orthogonal to ei for
some i ∈ [[1, d]] and let us denote by S the strip delimited by H1 and H2.
If 2 ≤ d1(H1,H2) ≤ hn1/2 then there exists n0 = n0(δ, h) such that

sup
x∈S

Px
ω[τH1∪H2 > δ2n] ≤ C5

h

δ

for all n ≥ n0;

(ii) Let x ∈ Zd. If A ⊂ Zd is such that d1(x, A) > hn1/2 ≥ 1 then there exists
n1 = n1(δ, h) such that

Px
ω[τA ≤ δ2n] ≤ C6

δ

h

for all n ≥ n1.

Proof. Let us denote by S the strip delimited by H1 and H2. To prove (i), we
just notice that Px

ω[τH1∪H2 > δ2n] ≤ Px
ω[X(δ2n) ∈ S] and apply (2.1). More

precisely, suppose that H1 and H2 are orthogonal to e1. With a slight abuse of
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notation, we also denote by H1 and H2 the coordinates where the hyperplanes
H1 and H2 cross the first axis. We have

Px
ω[X(δ2n) ∈ S] ≤

∑
y∈S

C1

bδ2ncd/2
exp

{
− C2

‖x− y‖21
bδ2nc

}
≤ C1

bδ2ncd/2

∑
y1∈[H1,H2]

exp
{
− C2

(y1 − x1)2

bδ2nc

}

×
d∏

i=2

∑
yi∈Z

exp
{
− C2

(yi − xi)2

bδ2nc

}
. (2.3)

Using (2.3), we can see that there exist positive constants γ1, γ2 and n0 =
n0(δ, h) such that

Px
ω[X(δ2n) ∈ S] ≤ γ1

γ2(h/δ)∫
0

exp {−C2t
2}dt

for all n ≥ n0. We deduce that there exists a constant γ3 > 0 such that

Px
ω[X(δ2n) ∈ S] ≤ γ3

h

δ

for all n ≥ n0.
To prove (ii) we use an argument by Barlow (cf. [1] Chapter 3). First, if we

denote by B(x, r) the ‖ · ‖1-ball of center x and radius r := bhn1/2c we have
that

Px
ω[τA ≤ δ2n] ≤ Px

ω[τBc(x,r) ≤ δ2n].

Then, we have

Px
ω[τBc(x,r) ≤ δ2n] ≤ Px

ω

[
‖X(δ2n)− x‖1 >

r

2

]
+ Px

ω

[
τBc(x,r) ≤ δ2n, ‖X(δ2n)− x‖1 ≤

r

2

]
. (2.4)

Writing S = τBc(x,r), by the Markov property, the second term of the right-hand
side of (2.4) equals

Ex
ω

[
1{S≤δ2n}P

XS
ω

[
‖X(bδ2nc − S)− x‖1 ≤

r

2

]]
≤ sup

y∈∂B(x,r+1)

sup
m≤bδ2nc

Py
ω

[
‖X(bδ2nc −m)− y‖1 >

r

2

]
where ∂B(x, r) := {y ∈ Zd : ‖y− x‖1 = r}. Combining this last inequality with
(2.4) we obtain,

Px
ω[τBc(x,r) ≤ δ2n] ≤ 2 sup

y∈Zd

sup
m≤bδ2nc

Py
ω

[
‖X(bδ2nc −m)− y‖1 >

r

2

]
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≤ 2 sup
y∈Zd

sup
m≤bδ2nc

Py
ω

[
‖X(bδ2nc −m)− y‖∞ >

r

2d

]
where ‖ · ‖∞ is the ∞-norm on Zd. Applying (2.1) to bound the last term of
the above equation from above and performing the same kind of computations
as in the proof of (i), we obtain (ii). 2

Next, we prove the following lemma, which gives a uniform lower bound
for the probability of progressing in direction e1 before backstepping to the
hyperplane {0}1.

Lemma 2.2. Let v > 0, then there exist a constant C7 = C7(v) > 0 such that
we have P-a.s., infy∈{l}1 P

y
ω[τ{(v+1)l}1 < τ{0}1 ] ≥ C7, for all integers l ≥ 1.

Proof. We are going to show that we can choose v > 0 small enough in such a
way that the statement of Lemma 2.2 is true for this v. The generalization to
all v > 0 is then a direct consequence of the elliptic Harnack inequality, see [13].

For the moment, let v ∈ (0, 1
4 ) and fix l such that vl ≥ 1. Then, consider

w ∈ (v, 1]. We start by writing

Py
ω[τ{(v+1)l}1 < τ{0}1 ] ≥ Py

ω[X1(wl2) ≥ (v + 1)l, τ{0}1 > wl2]

≥ Py
ω[X1(wl2) ≥ (v + 1)l]− Py

ω[τ{0}1 ≤ wl2]. (2.5)

Next, let us define ν := bwl2c if bwl2c is even or ν := bwl2c + 1 otherwise. In
the same way, we define ρ := bvlc if bvlc is even or bvlc+ 1 otherwise. Observe
that in any of these cases,

Py
ω[X1(wl2) ≥ (v + 1)l] ≥ Py

ω[X1(ν) > l + ρ]. (2.6)

We will bound the term of the right-hand side of (2.6) from below. For y ∈ {l}1,
we denote by P(y) the (non-empty) set of vectors z ∈ Zd that satisfy the
following conditions: z1 − y1 > ρ, ‖y − z‖1 is even and ‖y − z‖1 ≤ ν. Applying
(2.2), we obtain

Py
ω[X1(ν) > l + ρ]

≥ C3

νd/2

∑
u∈P(y)

exp
{
− C4

‖u− y‖21
ν

}

≥ C3

νd/2

ν/2∑
v1=(ρ+2)/2

(ν−2v1)/2∑
v2=0

· · ·
(ν−(2v1+···+2vd−1))/2∑

vd=0

exp
{
− γ1

v2
1 + · · ·+ v2

d

ν

}

≥ C3

νd/2

ν/2∫
(ρ+2)/2

(ν−2v1)/2∫
0

. . .

(ν−(2v1+···+2vd−1))/2∫
0

exp
{
− γ1

ν

d∑
i=1

v2
i

}
dvd . . . dv1
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with γ1 a positive constant depending only on d. Now making the change of
variables ui = (2vi)/

√
ν, i ∈ {1, . . . , d}, in the last multiple integral, we obtain

Py
ω[X1(ν) > l + ρ]

≥ C3

2d

√
ν∫

(ρ+2)/
√

ν

√
ν−u1∫
0

. . .

√
ν−

Pd−1
i=1 ui∫

0

exp
{
− γ1

4

d∑
i=1

u2
i

}
dud . . . du1.

Now, by definition of ρ, ν and the way we chose v, l and w we have that

ρ + 2√
ν

≤ 4
√

2vw−1/2

and ν ≥ 1. This implies that

Py
ω[X1(ν) > l + ρ]

≥ C3

2d

1∫
1∧(ρ+2)/

√
ν

1−u1∫
0

. . .

1−
Pd−1

i=1 ui∫
0

exp
{
− γ1

4

d∑
i=1

u2
i

}
dud . . . du1

≥ C3

2d

1∫
1∧4

√
2vw−1/2

1−u1∫
0

. . .

1−
Pd−1

i=1 ui∫
0

exp
{
− γ1

4

d∑
i=1

u2
i

}
dud . . . du1

=:
C3

2d
J(vw−1/2). (2.7)

By (ii) of Lemma (2.1) we obtain Py
ω[τ{0}1 ≤ wl2] ≤ C6w

1/2. Combining this
last inequality with (2.5), (2.6) and (2.7) we obtain

Py
ω[τ{(v+1)l}1 < τ{0}1 ] ≥

C3

2d
J(vw−1/2)− C6w

1/2. (2.8)

Observe that for fixed w, we have J(vw−1/2) → J(0) > 0 as v → 0, since
the integrated function is positive and the domain of integration of J(0) has
Lebesgue measure equal to 1/d!. Let

w∗ = max
{

s > 0 : C6s
1/2 ≤ 1

4
C3

2d
J(0)

}
that is,

w∗ =
( C3

2d+2C6
J(0)

)2

.

Letting v < w∗ ∧ (1/4), we can choose a sufficiently small w in such a way
that the second term of the right-hand side of (2.8) is smaller than 1

4
C3
2d J(0).
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Once we have chosen w, we can choose v sufficiently small in such a way that
J(vw−1/2) > J(0)/2. We obtain that

Py
ω[τ{(v+1)l}1 < τ{0}1 ] ≥

1
4

C3

2d
J(0) > 0.

This shows Lemma 2.2. 2

For ε ∈ (0, 1], we denote N := bε
√

nc. We next prove an upper bound for the
probability that the hitting time of the hyperplane {N}1 is larger than ε1/2n,
given Λn.

Lemma 2.3. There exists a function f = f(ε) with limε→0 ε−2f(ε) = 0 such
that we have P-a.s.

lim sup
n→∞

Pω[τ{N}1 > ε1/2n | Λn] ≤ f(ε).

Proof. Let us begin the proof by sketching the main argument. Consider α ∈
(0, 1), we will show that

lim sup
n→∞

Pω[τ{N}1 > ε1/2n | Λn] ≤ lim sup
n→∞

Pω[τ{2−1N}1 > αε1/2n | Λn] + o1(ε)

when ε → 0. Then, iterating the argument using hyperplanes of the form

. . .

0

N2−1N2−2N2−3N

Figure 1. Iteration method.
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{2−jN}1 (cf. Figure 1) we will have that for all j ≥ 0,

lim sup
n→∞

Pω[τ{2−jN}1 > αjε1/2n | Λn]

≤ lim sup
n→∞

Pω[τ{2−(j+1)N}1 > αj+1ε1/2n | Λn] + oj(ε)

when ε → 0. Finally, restricting α to the interval (1/4, 1), we will show that the
oj(ε) are decreasing fast enough. Now, let us start the formal argument. Fix
α ∈ (1/4, 1) and let Al := {τ{l}1 < τ+

{0}1}. We have

Pω[τ{N}1 > ε1/2n | Λn]

=
1

Pω[Λn]

(
Pω[τ{N}1 > ε1/2n, τ{2−1N}1 > αε1/2n, Λn]

+ Pω[τ{N}1 > ε1/2n, τ{2−1N}1 ≤ αε1/2n, Λn]
)

≤ Pω[τ{2−1N}1 > αε1/2n | Λn]

+
1

Pω[Λn]
Pω[τ{N}1 > ε1/2n, τ{2−1N}1 ≤ αε1/2n, A2−1N ,Λn]. (2.9)

Then, we have by the Markov property

Pω[τ{N}1 > ε1/2n, τ{2−1N}1 ≤ αε1/2n, A2−1N ,Λn]

=
∑

y∈{2−1N}1

∑
k≤bαε1/2nc

Pω

[
X(τ{2−1N}1) = y, τ{2−1N}1 = k,

τ{N}1 > ε1/2n, A2−1N ,Λn

]
≤ max

y∈{2−1N}1
max

k≤bαε1/2nc
Py

ω[τ{N}1 > ε1/2n− k,Λn−k] Pω[A2−1N ].

(2.10)

Now, let us bound from above the term Py
ω[τ{N}1 > ε1/2n− k, Λn−k] uniformly

in y ∈ {2−1N}1 and in k ≤ bαε1/2nc. Observe that, since ε ∈ (0, 1], we have

Py
ω[τ{N}1 > ε1/2n− k,Λn−k] ≤ Py

ω[τ{N}1 > (1− α)ε1/2n, Λ(1−α)n]

≤ Py
ω[τ{0}1∪{N}1 > (1− α)ε1/2n]. (2.11)

Let δ := β−1ε, where β is a positive constant to be determined later. Then,
consider ε small enough in such a way that δ < (1 − α)ε1/2. Then, divide the
time interval [0, b(1−α)ε1/2nc] into intervals of size bδ2nc. Denoting S(0, N) =⋃N−1

i=1 {i}1, we obtain by the Markov property

Py
ω[τ{0}1∪{N}1 > (1− α)ε1/2n]
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≤ Py
ω

[
τ{0}1∪{N}1 /∈

⌊
b(1−α)ε1/2nc

bδ2nc

⌋
⋃
i=1

((i− 1)bδ2nc, ibδ2nc]
]

≤
(

max
z∈S(0,N)

Pz
ω[τ{0}1∪{N}1 > δ2n]

)(1−α)ε1/2δ−2−2

(2.12)

for large enough n. Using (i) of Lemma 2.1, we have for all z ∈ S(0, N),

Pz
ω[τ{0}1∪{N}1 > δ2n] ≤ C5

ε

δ
(2.13)

for sufficiently large n. Since ε/δ = β, let us choose the constant β such that
C5β ≤ 1/2. Thus, for ε sufficiently small such that β−1ε < (1 − α)ε1/2, we
obtain by (2.12)

Py
ω[τ{0}1∪{N}1 > (1− α)ε1/2n] ≤ 4

(1
2

)(1−α)ε−
3
2 β2

.

From (2.9), we deduce

Pω[τ{N}1 > ε1/2n | Λn] ≤ Pω[τ{2−1N}1 > αε1/2n | Λn]

+ 4
(1

2

)(1−α)ε−
3
2 β2

Pω[A2−1N ]
Pω[Λn]

. (2.14)

Then, we will find an upper bound for the ratio in the second term of the
right-hand side of (2.14). By the Markov property we have

Pω[Λn]
Pω[A2−1N ]

≥ Pω[Λn | A2−1N ] ≥ min
y∈{2−1N}1

Py
ω[τ{0}1 > n]. (2.15)

Let K ≥ 2ε and let N ′ = bK
√

nc. We start by noting that for any y ∈ {2−1N}1
we have by the Markov property

Py
ω[τ{0}1 > n] ≥ Py

ω[τ{0}1 > n, τ{N ′}1 < τ{0}1 ]
≥ min

z∈{N ′}1
Pz

ω[τ{0}1 > n] Py
ω[τ{N ′}1 < τ{0}1 ]. (2.16)

Let us now bound from below both terms in the right-hand side of (2.16).
We first show that we can choose a sufficiently large K in such a way that

Pz
ω[τ{0}1 > n] ≥ 1/2 uniformly in z ∈ {N ′}1. Using (ii) of Lemma 2.1, we have
Pz

ω[τ{0}1 ≤ n] ≤ C6/K for sufficiently large n. Choosing K sufficiently large so
that C6/K ≤ 1/2 we obtain

Pz
ω[τ{0}1 > n] ≥ 1

2
(2.17)
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uniformly in z ∈ {N ′}1. Now going back to equation (2.16), we now show
that with probability of order εγ with γ > 0, starting from the line {2−1N}1,
the random walk reaches the line {N ′}1 before reaching the line {0}1. By
Lemma 2.2, there exists C7 > 0 such that for every l > 1, Pu

ω[τ{2l} < τ{0}] ≥ C7,
with u ∈ {l}1. Now consider, the following sequence (Uj)j≥1 of hyperplanes
defined by {

U1 = {2b2−1Nc}1
Uj+1 = {2Uj}1.

Let j∗ the smallest j such that Uj ≥ K
√

n. Using the induction relation, we
obtain that for some constant γ1 > 0, j∗ ≤ γ1 ln(K/ε) for large enough n.
By convention, set U0 = {2−1N}1. By the Markov property, we obtain that
uniformly in y ∈ {2−1N}1,

Py
ω[τ{N ′}1 < τ{0}1 ] ≥ Py

ω

[ j∗⋂
i=1

{τUi
< τ{0}1}

]

≥
j∗∏

i=1

(
min

u∈Ui−1
Pu

ω[τUi < τ{0}1 ]
)
≥

( ε

K

)γ2

(2.18)

for some constant γ2 > 0 and large enough n. Combining (2.16), (2.17),
and (2.18) we deduce

min
y∈{2−1N}1

Py
ω[τ{0}1 > n] ≥ 1

2

( ε

K

)γ2

(2.19)

for large enough n. Then by (2.14), (2.15) and (2.19) we obtain

Pω[τ{N}1 > ε1/2n | Λn] ≤ Pω[τ{2−1N}1 > αε1/2n | Λn]

+ 16Kγ2ε−γ2

(1
2

)(1−α)ε−
3
2 β2

. (2.20)

By the same argument, we can deduce that for all j ≥ 1 we have

Pω[τ{2−jN}1 > αjε1/2n | Λn] ≤ Pω[τ{2−(j+1)N}1 > αj+1ε1/2n | Λn]

+ 16Kγ2

( ε

2j

)−γ2
(1

2

)(1−α)β2ε−
3
2 (4α)j

(2.21)

for large enough n. Iterating (2.20) using (2.21), we deduce

lim sup
n→∞

Pω[τ{N}1 > ε1/2n | Λn] ≤ 16Kγ2

∞∑
j=0

( ε

2j

)−γ2
(1

2

)(1−α)β2ε−
3
2 (4α)j

.

(2.22)
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As α ∈ (1/4, 1), the last series is convergent. Define the function f in the
statement of Lemma 2.3 as

f(ε) := 16Kγ2

∞∑
j=0

( ε

2j

)−γ2
(1

2

)(1−α)β2ε−
3
2 (4α)j

.

Using the dominated convergence theorem, it is straightforward to show that
limε→0 ε−2f(ε) = 0. This proves Lemma 2.3. 2

In the next lemma, N still stands for bε
√

nc. However, the quantities (like α,
δ, β, . . . ) defined in the proof of the lemma are not related to the corresponding
quantities defined in the proof of Lemma 2.3. The next lemma controls the
“transversal fluctuations” of X2, . . . , Xd, given Λn.

Lemma 2.4. We have P-a.s.,

lim sup
n→∞

Pω

[
max

i∈[[2,d]]
sup

j≤τ{N}1

|Xi(j)| > ε−1/2N | Λn

]
≤ g(ε)

with limε→0 ε−2g(ε) = 0.

Proof. First, observe that, by symmetry, it suffices to show that there exists
g′ = g′(ε) such that

lim sup
n→∞

Pω

[
sup

j≤τ{N}1

|Xi(j)| > ε−1/2N | Λn

]
≤ g′(ε) (2.23)

with limε→0 ε−2g′(ε) = 0 for some i ∈ [[2, d]]. For the sake of simplicity, let us
take i = 2 in the rest of the proof. Fix α ∈ (1/2, 1) and let

ε̃−1/2 :=
1− α

α
ε−1/2 > 2.

We introduce the following sequence of events (cf. Figure 2),

Gk =
{

sup
j∈(τ{2−kN}1

,τ{2−k+1N}1
]

|X2(j)−X2(τ{2−kN}1)| ≤ ε̃−1/2αkN
}

for k ≥ 1, with the convention that supj∈∅{·} = 0. Then, we denote

Bδ
k = {τ{2−kN}1 ≤ δn} ∩ {τ{2−kN}1 < τ{0}1}

for δ ∈ (0, 1] and k ≥ 1.
Now, observe that on the event Bδ

0 ∩ (∩k≥1Gk) we have that

sup
j≤τ{N}1

|X2(j)| ≤ ε−1/2N
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0

2−kN 2−k+1N

≤ ε̃−
1
2αkN

Figure 2. On the definition of Gk.

since α ∈ (1/2, 1). This implies that

Pω

[
sup

j≤τ{N}1

|X2(j)| ≤ ε−1/2N | Λn

]
≥ Pω

[
Bδ

0 ∩
( ⋂

k≥1

Gk

)
| Λn

]
.

In order to prove Lemma 2.4, we will show that lim infn→∞ Pω[Bδ
0 ∩ (∩k≥1Gk) |

Λn] tends to 1 when ε → 0. We start by writing

Pω

[
Bδ

0 ∩
( ⋂

k≥1

Gk

)
| Λn

]
= Pω[Bδ

0 | Λn]− Pω

[
Bδ

0 ∩
( ⋂

k≥1

Gk

)c

| Λn

]

≥ Pω[Bδ
0 | Λn]−

b ln N
ln 2 c∑
k=1

Pω[Bδ
0 ∩Gc

k | Λn]. (2.24)

From now on, we dedicate ourselves to bounding from above the terms Pω[Bδ
0 ∩

Gc
k | Λn] for k ≤ b ln N

ln 2 c. We have by the Markov property,

Pω[Bδ
0 ∩Gc

k | Λn]

≤ Pω[Bδ
k ∩Gc

k | Λn]

=
1

Pω[Λn]
Pω[Bδ

k, Gc
k,Λn]

=
1

Pω[Λn]

∑
j≤bδnc

∑
y∈{2−kN}1

Pω

[
Bδ

k, Gc
k,Λn, τ{2−kN}1 = j, X(τ{2−kN}1) = y

]
≤ Pω[B1

k]
Pω[Λn]

max
j≤bδnc

max
y∈{2−kN}1

Py
ω

[
sup

i≤τ{2−k+1N}1

|(X(i)− y) · e2| > ε̃−1/2αkN,Λn−j

]
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≤ Pω[B1
k]

Pω[Λn]
max

y∈{2−kN}1
Py

ω

[
sup

i≤τ{2−k+1N}1

|(X(i)− y) · e2| > ε̃−1/2αkN,Λ(1−δ)n

]
.

Using again the Markov property, we obtain

Pω[Λn]
Pω[B1

k]
≥ Pω[Λn | B1

k] ≥ min
y∈{2−kN}1

Py
ω[τ{0}1 > n].

By the same argument which we used in Lemma 2.3 to treat the term

min
y∈{2−1N}1

Py
ω[τ{0}1 > n]

(cf. the derivation of (2.19)), we obtain, for large enough n and all k ≤ b ln N
ln 2 c,

Pω[B1
k]

Pω[Λn]
≤ γ1

(K2k

ε

)γ2

(2.25)

for some positive constants γ1, γ2 and K from Lemma 2.3. Now, we need to
bound the terms

Py
ω

[
sup

i≤τ{2−k+1N}1

|(X(i)− y) · e2| > ε̃−1/2αkN,Λ(1−δ)n

]
from above, uniformly in y ∈ {2−kN}1. In order not to carry on heavy notations
we treat the case y2 = 0. However, as one can check, the bound we will obtain
is uniform in y ∈ {2−kN}1. Let

Ek = {(x1, . . . , xd) ∈ Zd : x2 = ±bε̃−1/2αkNc}.

We start by writing

Py
ω

[
sup

i≤τ{2−k+1N}1

|X2(i)| > ε̃−1/2αkN,Λ(1−δ)n

]
= Py

ω[τEk
< τ{2−k+1N}1 , τ{0}1 > (1− δ)n]

≤ Py
ω[τEk

< τ{2−k+1N}1∪{0}1 ] + Py
ω[τEk

> (1− δ)n]. (2.26)

Let us bound the first term of the right-hand side of (2.26) from above. To do
so, we first write

Py
ω[τEk

< τ{2−k+1N}1∪{0}1 ] ≤ Py
ω[τ{ε̃−1/2αkN}2 < τ{2−k+1N}1∪{0}1 ]

+ Py
ω[τ{−ε̃−1/2αkN}2 < τ{2−k+1N}1∪{0}1 ]. (2.27)

We treat the first term of the right-hand side of (2.27) (the method for the second
term is similar). Let L ∈ (2, ε̃−1/2) and divide the interval [0, bε̃−1/2αkNc] into
intervals of size bL2−kNc. Furthermore, let

Fk =
b2−k+1Nc−1⋃

j=1

{j}1.
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We have by the Markov property,

Py
ω[τ{ε−1/2γαkN}2 < τ{2−k+1N}1∪{0}1 ]

≤ Py
ω

[ ⌊
bε̃−1/2αkNc
bL2−kNc

⌋
⋂
j=1

{τ{jbL2−kNc}2 < τ{2−k+1N}1∪{0}1}
]

(2.28)

≤
bL−1ε̃−1/2(2α)kc−2∏

j=1

max
z∈{(j−1)bL2−kNc}2∩Fk

Pz
ω[τ{jbL2−kNc}2 < τ{2−k+1N}1∪{0}1 ].

Let us show that

max
z∈{(j−1)bL2−kNc}2∩Fk

Pz
ω[τ{jbL2−kNc}2 < τ{2−k+1N}1∪{0}1 ] ≤

1
2

for ε sufficiently small and L sufficiently large belonging to (2, ε̃−1/2). Consider
w ∈ (4, L2), we have for z ∈ {(j − 1)bL2−kNc}2 ∩ Fk,

Pz
ω[τ{jbL2−kNc}2 > τ{2−k+1N}1∪{0}1 ]

≥ Pz
ω[τ{2−k+1N}1∪{0}1 ≤ w2−2kN2, τ{jbL2−kNc}2 > w2−2kN2]

≥ Pz
ω[τ{2−k+1N}1∪{0}1 ≤ w2−2kN2]

− Pz
ω[τ{jbL2−kNc}2 ≤ w2−2kN2]. (2.29)

Using (i) of Lemma 2.1, we deduce

Pz
ω[τ{2−k+1N}1∪{0}1 ≤ w2−2kN2] ≥ 1− C5w

−1/2. (2.30)

Using (ii) of Lemma 2.1, we obtain for all j ≥ 1,

Pz
ω[τ{jbL2−kNc}2 ≤ w2−2kN2] ≤ C6

w1/2

L
. (2.31)

Combining (2.29), (2.30) and (2.31) we obtain for all j ≥ 1,

Pz
ω[τ{jL2−kN}2 > τ{2−k+1N}1∪{0}1 ] ≥ 1− C5w

−1/2 − C6
w1/2

L
. (2.32)

First, choose w sufficiently large such that C5w
−1/2 ≤ 1/4 and thus choose L

sufficiently large in such a way that C6w
1/2/L ≤ 1/4. We obtain

Pz
ω[τ{jL2−kN}2 > τ{2−k+1N}1∪{0}1 ] ≥

1
2
. (2.33)

Now using (2.27), (2.28) and (2.33) we have since ε̃−1/2 > L,

Py
ω[τEk

< τ{2−k+1N}1∪{0}1 ] ≤ 16
(1

2

)bL−1ε̃−1/2(2α)kc
. (2.34)
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Next, let us treat the term Py
ω[τEk

> (1 − δ)n]. Let η = β−1ε̃ where β is a
positive constant to be chosen later. Then suppose that ε is sufficiently small
such that ηε̃−1/2αk < 1 − δ and divide the time interval [0, b(1 − δ)nc] into
intervals of size bη2ε̃−1α2knc. Using the notation

H(Ek) =
bε̃−1/2αkNc−1⋃

j=−bε̃−1/2αkNc+1

{j}2,

we obtain by the Markov property

Py
ω[τEk

> (1− δ)n]

≤ Py
ω

[
τEk

/∈

⌊
b(1−δ)nc

bη2ε̃−1α2knc

⌋
⋃
i=1

((i− 1)bη2ε̃−1α2knc, ibη2ε̃−1α2knc]
]

≤
(

max
z∈H(Ek)

Pz
ω[τEk

> η2ε−1α2kn]
)(1−δ)(ηε̃−1/2αk)−2−2

(2.35)

for n sufficiently large. We now bound the term Pz
ω[τEk

> η2ε̃−1α2kn] from
above uniformly in z ∈ H(Ek). Using (i) of Lemma 2.1, we have

Pz
ω[τEk

> η2ε̃−1α2kn] ≤ C5
ε̃

η
.

Since ε̃η−1 = β, choose β small enough such that C5β ≤ 1/2. For ε sufficiently
small such that ηε̃−1/2αk < 1− δ, we obtain using (2.35),

Py
ω[τEk

> (1− δ)n] ≤ 4
(1

2

)(1−δ)(β−1ε̃1/2αk)−2

. (2.36)

Combining (2.26), (2.27), (2.34) and (2.36), we deduce that, P-a.s., for all large
enough n and k ≤ b ln N

ln 2 c,

max
y∈{2−kN}1

Py
ω

[
sup

i≤τ{2−k+1N}1

|(X(i)− y) · e2| > ε̃−1/2αkN,Λ(1−δ)n

]
≤ 16

(1
2

)L−1ε̃−1/2(2α)k

+ 4
(1

2

)(1−δ)(β2ε̃−1α−2k)

. (2.37)

Using (2.25) and (2.37), we obtain for all large enough n and k ≤ b ln N
ln 2 c,

Pω[Bδ
0 ∩Gc

k | Λn]

≤ γ1K
γ22kγ2+1ε−γ2

(
16

(1
2

)L−1ε̃−1/2(2α)k

+ 4
(1

2

)(1−δ)(β2ε̃−1α−2k))
.
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We finally deduce that, P-a.s., for large enough n,

b ln N
ln 2 c∑
k=1

Pω[Bδ
0 ∩Gc

k | Λn]

≤
∞∑

k=1

γ1K
γ22kγ2+1ε−γ2

(
16

(1
2

)L−1ε̃−1/2(2α)k

+ 4
(1

2

)(1−δ)(β2ε̃−1α−2k))
.

Observe that since α ∈ (1/2, 1), the series above converges. Let δ = ε1/2, we
have for ε < 1/4,

b ln N
ln 2 c∑
k=1

Pω[Bδ
0 ∩Gc

k | Λn] ≤
∞∑

k=1

γ1K
γ22kγ2+1ε−γ2

(
16

(1
2

) 1−α
α L−1ε−1/2(2α)k

+ 4
(1

2

)1/2( 1−α
α )2β2ε−1α−2k))

.

Let

h(ε) :=
∞∑

k=1

γ1K
γ22kγ2+1ε−γ2

(
16

(1
2

) 1−α
α L−1ε−1/2(2α)k

+ 4
(1

2

)1/2( 1−α
α )2β2ε−1α−2k))

.

By the Lebesgue dominated convergence theorem, we have ε−2h(ε) → 0 as
ε → 0. Using (2.24) and Lemma 2.3 (since δ = ε1/2) we have for ε < 1/4,

lim inf
n→∞

Pω

[
Bδ

0 ∩ (
⋂
k≥1

Gk) | Λn

]
≥ 1− f(ε)− h(ε).

This last term tends to 1 as ε → 0. Now, take g′(ε) := f(ε) + h(ε) to show
(2.23) and therefore Lemma 2.4. 2

3. Proof of the UCLT

In this section we prove Theorem 1.2. The proof is similar in spirit to the
proof of Theorem 1.2 of [11], but it is greatly simplified in the present case by
the use of the heat kernel upper bounds. As in [11], we will consider “good”
sites (see Definition 3.1), where uniform estimates hold for the distance of Zn

and W , and then show that the random walk hits, with high probability, a good
site in small distance from its starting point.

In order to take advantage of the natural left shift on the space C(R+) of
continuous functions from R+ into Rd, we will rather prove Theorem 1.2 for Zn
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assuming values in C(R+) instead of C([0, 1]). Then, the result for Zn assuming
values in C([0, 1]) will be easily obtained by the mapping theorem (cf. [4]). Let
Cu

b (C(R+), R) be the space of bounded uniformly continuous functionals from
C(R+) into R. In this section, we write W for the d-dimensional Brownian
motion with covariance matrix Σ from section 1. The first step is to prove the
following

Proposition 3.1. For all F ∈ Cu
b (C(R+), R), we have P-a.s., for every H > 0,

lim
n→∞

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Eθxω[F (Zn)]− E[F (W )]
∣∣∣ = 0.

Fix F ∈ Cu
b (C(R+), R). We will prove that, P-a.s., for every ε̃, H > 0,

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Eθxω[F (Zn)]− E[F (W )]
∣∣∣ ≤ ε̃ (3.1)

for n large enough. Before this, we need to introduce some definitions and prove
an intermediate result. Let d be the distance on the space CR+ defined by

d(f, g) =
∞∑

n=1

2−n+1 min
{

1, sup
s∈[0,n]

‖f(s)− g(s)‖
}

with ‖ · ‖ the euclidian norm on Rd. Now, for any given ε > 0, let

hε := max
{

h ∈ (0, 1] : P
[
sup
s≤h

‖W (s)‖ > ε
]

+ P
[
sup
s≤h

d(θsW,W ) > ε
]
≤ ε

2

}
.

(3.2)
Observe that hε > 0 for ε > 0 and hε → 0 when ε → 0. Next, adapting section
3 of [11] we introduce the following

Definition 3.1. For a given realization of the environment ω and N ∈ N, we
say that x ∈ Zd is (ε, N)-good, if

• min
{

n ≥ 1 :
∣∣Eω[F (Zm)]− E[F (W )]

∣∣ ≤ ε, for all m ≥ n
}
≤ N ;

• Pθxω

[
sups≤hε

‖Zm(s)‖ ≤ ε, sups≤hε
d(θsZ

m, Zm) ≤ ε
]
≥ 1 − ε, for all

m ≥ N .

We now show that starting from a site x ∈ [−H
√

n, H
√

n]d, with high probabil-
ity, the random walk X will meet a (ε, n)-good site at a distance at most h′

√
n

before time hn (unlike as in [11], there is no need here to introduce the notion
of a nice site since by (2.1), every point in [−H

√
n, H

√
n]d is nice). We denote

by G the set of (ε, n)-good sites in Zd.
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Proposition 3.2. Fix h′ > 0. For any ε1 > 0, we can choose ε small enough
in such a way that we have P-a.s., for all sufficiently large n and all x ∈
[−H

√
n, H

√
n]d:

(i) Px
ω[τG > hεn] ≤ ε1;

(ii) Px
ω

[
supj≤hεn ‖X(j)−X(0)‖ > h′

√
n
]
≤ ε1.

Proof. Fix ε. Then, for any ε′ > 0 there exists N such that

P[0 is (ε, N)-good] > 1− ε′.

By the Ergodic Theorem, we have P-a.s. for all n > n1(ω),∣∣{x ∈ [−2H
√

n, 2H
√

n]d and x is not (ε, N)-good}
∣∣ < 5dε′Hdn

d
2 . (3.3)

Let us define

Bad := {x ∈ [−2H
√

n, 2H
√

n]d and x is not (ε, N)-good}

and Cub := [−2H
√

n, 2H
√

n]d.
In order to show (i) we observe that for all x ∈ [−H

√
n, H

√
n]d,

Px
ω[τG > hεn] ≤ Px

ω[X(hεn) ∈ Bad] + Px
ω[τCubc ≤ hεn]. (3.4)

For the second term of the right-hand side of (3.4), we apply (ii) of Lemma
2.1 to obtain that Px

ω[τCubc ≤ hεn] ≤ γ2(hε)1/2. Thus, we can choose ε small
enough in such a way that Px

ω[τCubc ≤ hεn] ≤ ε1/2. Then, using (2.1) and
the fact that |Bad| < 5dε′Hdn

d
2 for large n, we can show that uniformly in

x ∈ Bad∩[−H
√

n, H
√

n]d we have Px
ω[X(hεn) ∈ Bad] ≤ γ1ε

′/hε for n sufficiently
large. Thus, choosing ε′ sufficiently small in such a way that γ1ε

′/hε ≤ ε1/2 we
obtain Px

ω[X(hεn) ∈ Bad] ≤ ε1/2.
To show (ii), we notice that

Px
ω

[
sup

j≤hεn
‖X(j)−X(0)‖ > h′

√
n
]

= Px
ω[τBc(x,h′

√
n) ≤ hεn] (3.5)

with B(x, r) the euclidian ball of center x and radius r. Now, we can apply (ii)
of Lemma 2.1 to the right-hand term of (3.5) to obtain that

Px
ω

[
sup

j≤hεn
‖X(j)−X(0)‖ > h′

√
n
]
≤ γ3

h
1/2
ε

h′
.

Finally, choosing ε sufficiently small such that γ3h
1/2/h′ ≤ ε1 we obtain (ii).

This concludes the proof of Proposition 3.2. 2
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Proof of Proposition 3.1. Let us prove (3.1). Consider x ∈ [−H
√

n, H
√

n]d. We
start by writing∣∣∣Eθxω[F (Zn)]− E[F (W )]

∣∣∣ ≤ ∣∣∣Eθxω

(
F (Zn)− EθXτG

ω[F (Zn)]
)∣∣∣

+
∣∣∣Eθxω

(
EθXτG

ω[F (Zn)]− E[F (W )]
)∣∣∣

:= U + V. (3.6)

First, taking ε ≤ ε̃
2 we obtain V ≤ ε̃/2 by definition of a (ε, n)-good site. It

remains to treat the first term of the right-hand side of (3.6). Denote X ′ :=
X − x. Now, observe that by the Markov property

U =
∣∣∣Eθxω

(
F (Zn)− EθX′

τG
(θxω)[F (Zn)]

)∣∣∣
≤ Eθxω

∣∣∣F ◦ Zn − F ◦ θn−1τG (Zn − n−1/2X ′
τG )

∣∣∣. (3.7)

We are going to show that for n sufficiently large we have uniformly in x ∈
[−H

√
n, H

√
n]d,

Eθxω

∣∣∣F ◦ Zn − F ◦ θn−1τG (Zn − n−1/2X ′
τG )

∣∣∣ ≤ ε̃

2

for small enough ε. Let Mn := Zn−n−1/2X ′
τG . Since F is uniformly continuous,

we can choose η > 0 in such a way that if d(f, g) ≤ η then |F (f) − F (g)| ≤ ε̃
4 .

Then, we have

Eθxω

∣∣∣F ◦ Zn − F ◦ θn−1τGMn
∣∣∣

= Eθxω

[ ∣∣∣F ◦ Zn − F ◦ θn−1τGMn
∣∣∣1{d(Zn, θn−1τGMn) ≤ η}

]
+ Eθxω

[ ∣∣∣F ◦ Zn − F ◦ θn−1τGMn
∣∣∣1{d(Zn, θn−1τGMn) > η}

]
≤ ε̃

4
+ 2‖F‖∞Pθxω

[
d(Zn, θn−1τGMn) > η

]
. (3.8)

Since hε ≤ 1, we have

Pθxω

[
d(Zn, θn−1τGMn) > η

]
≤ Pθxω

[
d(Zn, θn−1τGMn) > η, τG ≤ hn

]
+ Pθxω[τG > hεn]

≤ Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn − θn−1τGMn‖ >
η

2
, τG ≤ hεn

]
+ Pθxω

[
d(θn−1τGZn, θ2

n−1τG
Mn) >

η

2
, τG ≤ hεn

]
+ Pθxω[τG > hεn]. (3.9)
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Let FτG be the σ-field generated by X until time τG . We first decompose the
first term of the right-hand side of (3.9) in the following way:

Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn − θn−1τGMn‖ >
η

2
, τG ≤ hεn

]
≤ Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Pθxω

[
sup

t∈[0,hε]

‖θn−1τGMn‖ >
η

4

]
= Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Eθxω

(
Pθxω

[
sup

t∈[0,hε]

‖θn−1τGMn‖ >
η

4
| FτG

])
= Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Eθxω

(
PθXτG

ω

[
sup

t∈[0,hε]

‖Zn‖ >
η

4

])
. (3.10)

We now deal with the second term of the right-hand side of (3.9):

Pθxω

[
d(θn−1τGZn, θ2

n−1τG
Mn) >

η

2
, τG ≤ hεn

]
≤ Pθxω

[
‖X ′

τG‖ >
η

4
n
]

+ Pθxω

[
d(θn−1τGMn, θ2

n−1τG
Mn) >

η

4
, τG ≤ hεn

]
≤ Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Eθxω

(
1{τG ≤ hεn}Pθxω

[
d(θn−1τGMn, θ2

n−1τG
Mn) >

η

4
| FτG

])
= Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Eθxω

(
1{τG ≤ hεn}PθXτG

ω

[
d(Zn, θn−1τGZn) >

η

4

])
. (3.11)

Combining (3.9), (3.10) and (3.11), we obtain

Pθxω

[
d(Zn, θn−1τGMn) > η

]
≤ Pθxω[τG > hεn]

+ 2Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
+ Eθxω

(
PθXτG

ω

[
sup

t∈[0,hε]

‖Zn‖ >
η

4

]
(3.12)

+ 1{τG ≤ hεn}PθXτG
ω

[
d(Zn, θn−1τGZn) >

η

4

])
.

On one hand, by definition of a (ε, n)-good point, choosing small enough ε > 0,
we have uniformly in x ∈ [−H

√
n, H

√
n]d,

Eθxω

(
PθXτG

ω

[
sup

t∈[0,hε]

‖Zn‖ >
η

4

]
+ 1{τG ≤ hεn}PθXτG

ω

[
d(Zn, θn−1τGZn) >

η

4

])
≤ ε̃

32‖F‖∞
(3.13)
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for all sufficiently large n. On the other hand, by Proposition 3.2, for sufficiently
small ε, we have uniformly in x ∈ [−H

√
n, H

√
n]d,

Pθxω[τG > hεn] ≤ ε̃

32‖F‖∞
and Pθxω

[
sup

t∈[0,n−1τG ]

‖Zn‖ >
η

4

]
≤ ε̃

32‖F‖∞
(3.14)

for sufficiently large n. Combining (3.13), (3.14) with (3.12) and (3.7)–(3.9), we
have U ≤ ε̃/2. Together with V ≤ ε̃/2, this leads to the desired result. 2

Denote by Cb(C(R+), R) the space of bounded continuous functionals from
C(R+) into R and by B the Borel σ-field on C(R+). The next step is the
following proposition, its proof follows essentially the proof of Theorem 2.1
of [4] (cf. also Proposition 3.7 of [11]).

Proposition 3.3. The first statement implies the second one:

(i) for any F ∈ Cu
b (C(R+), R), we have P-a.s.,

lim
n→∞

sup
x∈[−H

√
n,H

√
n]d

∣∣∣Eθxω[F (Zn)]− E[F (W )]
∣∣∣ = 0;

(ii) for any open set G, we have P-a.s.,

lim inf
n→∞

inf
x∈[−H

√
n,H

√
n]d

Pθxω[Zn ∈ G] ≥ P [W ∈ G].

Finally, we have Proposition 3.4, which is similar to Proposition 3.8 of [11].

Proposition 3.4. The following statements are equivalent:

(i) we have P-a.s., for every open set G,

lim inf
n→∞

inf
x∈[−H

√
n,H

√
n]d

Pθxω[Zn ∈ G] ≥ P [W ∈ G];

(ii) for every open set G, we have P-a.s.,

lim inf
n→∞

inf
x∈[−H

√
n,H

√
n]d

Pθxω[Zn ∈ G] ≥ P [W ∈ G].

Proof. (i) ⇒ (ii) is trivial. Let us show that (ii) ⇒ (i). Suppose that there
exists a countable family H of open sets such that for every open set G there
exists a sequence (On)n=1,2,... ⊂ H such that 1On

↑ 1G pointwise as n → ∞.
By (ii), since the family H is countable we would have, P-a.s., for all O ∈ H,

lim inf
n→∞

inf
x∈[−H

√
n,H

√
n]
Pθxω[Zn ∈ O] ≥ P [W ∈ O]. (3.15)
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Then, the same kind of reasoning as that used in the proof of Proposition 3.3
to prove (i) ⇒ (ii) would provide the desired result. The fact that H exists,
follows from the fact that the space C(R+) is second-countable. 2

Proof of Theorem 1.2. One can check that it is straightforward (using the same
arguments as in the proof of Proposition 3.3) to deduce that (i), (ii), (iii) and
(v) of Theorem 1.2 are equivalent to statement (i) of Proposition 3.4. That is,
one can prove the equivalence of items (i)–(v) of Theorem 1.2. To conclude the
proof of Theorem 1.2, it remains to show that (ii) of Proposition 3.4 holds. By
Proposition 3.3, (ii) of Proposition 3.4 is equivalent to (i) of Proposition 3.3.
Since by Proposition 3.1, (i) of Proposition 3.3 holds, the proof of Theorem 1.2
is complete. 2

4. Proof of Theorem 1.1

For the sake of brevity, let us denote in this section, the process DZn

(resp. DX) by Z (resp. X ). We also recall that W (d) = (W1, . . . ,Wd) is a
d-dimensional standard Brownian motion. In order to prove Theorem 1.1, we
first show convergence of the finite-dimensional distributions and then, in Sec-
tion 4.2, we prove the tightness of the sequence (Pω[Zn ∈ · | Λn])n≥1. For
ε ∈ (0, 1), we recall that N := bε

√
nc. In this section for any set F ⊂ Rd we

denote

βF = inf{n ≥ 0 : X (n) ∈ F} and β+
F = inf{n ≥ 1 : X (n) ∈ F}.

We start by recalling the transition density function of the Brownian meander
(see [14]) from (0, 0) to (t, x1)

q(0, 0; t, x1) = t−3/2x1 exp
(
− x1

2

2t

)
Ñ(x1(1− t)−1/2) (4.1)

for x1 > 0, 0 < t ≤ 1 and from (t1, x1) to (t2, x2)

q(t1, x1; t2, x2) = g(t2 − t1, x1, x2)
Ñ(x2(1− t2)−1/2)
Ñ(x1(1− t1)−1/2)

for x1, x2 > 0, 0 < t1 < t2 ≤ 1, where

Ñ(v) =
( 2

π

)1/2
v∫

0

e−
u2
2 du

for v ≥ 0 and

g(t, x1, x2) = (2π)−1/2
(

exp
(
− (x2 − x1)2

2t

)
− exp

(
− (x1 + x2)2

2t

))
for x1, x2 > 0 and 0 < t ≤ 1.
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4.1. Convergence of finite-dimensional distributions

In this subsection, we prove the convergence of the finite-dimensional distri-
butions. A key ingredient is the decomposition according to the event A0→R,
see (4.3), which says that the random walk progresses enough in the desired
direction, without big fluctuations of the other coordinates, before it returns
to the hyperplane of the origin. In order to show that this event has large
probability, Lemma 2.3 and Lemma 2.4 come into play, see (4.10) and (4.29).

First, let us consider then marginal for t = 1.

Proposition 4.1. We have P-a.s.,

lim
n→∞

Pω[Zn
1 (1) > u1, . . . ,Zn

d (1) > ud | Λn] = exp(−u2
1/2)

d∏
i=2

∞∫
ui

e−
t2
2

√
2π

dt, (4.2)

for all u = (u1, . . . , ud) ∈ R+ × Rd−1.

Proof. First, we introduce some notations. Let

Du = {x ∈ Rd : x1 > u1, . . . , xd > ud}

and

Rε,n = {x ∈ Rd : x1 = N,xi ∈ [−bε−1/2Nc, bε−1/2Nc], i ∈ [[2, d]]}.

Let us denote Rε,n = DRε,n, and define the event

A0→R = {βRε,n
< β+

{0}1} . (4.3)

We start by bounding the term Pω[Zn(1) ∈ Du | Λn] from above. Fix ε ∈
(0, u1 ∧ 1) and consider the following decomposition

Pω[Zn(1) ∈ Du | Λn]

≤ 1
Pω[Λn]

(
Pω[Zn(1) ∈ Du, A0→R,Λn] + Pω[Ac

0→R,Λn]
)

=
1

Pω[Λn]

(
Pω[Zn(1) ∈ Du, A0→R,Λn, βRε,n ≤ ε1/2n]

+ Pω[Zn(1) ∈ Du, A0→R,Λn, βRε,n
> ε1/2n]

)
+ Pω[Ac

0→R | Λn]

≤ (Pω[Λn])−1Pω[Zn(1) ∈ Du, A0→R,Λn, βRε,n
≤ ε1/2n]

+ Pω[βRε,n > ε1/2n | Λn] + Pω[Ac
0→R | Λn]. (4.4)

Since ε1/2 ∈ (0, 1), we have

Pω[Ac
0→R | Λn] = Pω[βRε,n

> β+
{0}1 | Λn]
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≤ Pω[βRε,n > n | Λn] ≤ Pω[βRε,n > ε1/2n | Λn]. (4.5)

Then, using the Markov property at time βRε,n we deduce

1
Pω[Λn]

Pω[Zn(1) ∈ Du, A0→R,Λn, βRε,n
≤ ε1/2n]

≤ Pω[A0→R]
Pω[Λn]

max
y∈Rε,n

max
j≤bε1/2nc

Py
ω

[X (n− j)√
n

∈ Du,Λn−j

]
. (4.6)

Again, using the Markov property at time βRε,n
we obtain

Pω[Λn]
Pω[A0→R]

≥ min
y∈Rε,n

Py
ω[Λn]. (4.7)

Combining (4.4), (4.5), (4.6) and (4.7) we obtain

Pω[Zn(1) ∈ Du | Λn] ≤
maxy∈Rε,n maxj≤bε1/2nc P

y
ω[X (n− j) ∈ Du

√
n, Λn−j ]

miny∈Rε,n Py
ω[Λn]

+ 2Pω[βRε,n
> ε1/2n | Λn]. (4.8)

Now, to bound the term Pω[βRε,n
> ε1/2n | Λn] from above we notice that

Pω[βRε,n > ε1/2n | Λn] = Pω[τRε,n > ε1/2n | Λn]

≤ Pω

[
max

i∈[[2,d]]
sup

j≤τ{N}1

|Xi(j)| > ε−1/2N | Λn

]
+ Pω[τ{N}1 > ε1/2n | Λn]. (4.9)

By Lemmas 2.3 and 2.4 we have

lim sup
n→∞

Pω[βRε,n
> ε1/2n | Λn] ≤ f(ε) + g(ε). (4.10)

By definition of Zn, we have Py
ω[Λn] = Py

ω

[
Zn

1 (1) > 0, t ∈ [0, 1]
]
. Thus, from

Theorem 1.2 we obtain, recalling that W1 is the first component of W (d),

lim
n→∞

min
y∈Rε,n

Py
ω

[
Zn

1 (t) > 0, t ∈ [0, 1]
]

= P εσ1

[
min

0≤t≤1
W1(t) > 0

]
(4.11)

= P
[
|W1(1)| < εσ1

]
=

2εσ1√
2π

+ o(ε)

as ε → 0, where P x is law of W (d) starting at x and σ1 := De1 · e1 > 0 (cf.
Section 1). Now, let us treat the term

max
y∈Rε,n

max
j≤bε1/2nc

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ].
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Fix δ′ > 0 and let sgn(x) = −1 if x ≤ 0 and 1 if x > 0. Denote

Ui :=
{
Xi(n− bε1/2nc) > (ui − sgn(ui)δ′)

√
n
}

(4.12)

and
Vi :=

{
max

j≤bε1/2nc
|Xi(n− bε1/2nc)−Xi(n− j)| ≥ δ′

√
n
}

(4.13)

for i = 1, . . . , d. Observe that we have for y ∈ Rε,n and j ≤ bε1/2nc

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ] ≤ Py

ω

[ d⋂
i=1

(Ui ∪ Vi) ∩ Λn−bε1/2nc

]
.

Let us consider the set I = {U1, . . . , Ud, V1, . . . , Vd} and denote by J the set
formed by all intersections of d distinct elements of I: J contains

(
2d
d

)
elements.

Let us denote by J1, . . . , J(2d
d ) all the elements of J . Therefore, we obtain

max
j≤bε1/2nc

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ] ≤

∑
i≤(2d

d )
Py

ω

[
Ji,Λn−bε1/2nc

]
. (4.14)

Let us treat the term Py
ω[∩d

i=1Ui,Λn−bε1/2nc]. We have by definition of Zn

Py
ω

[ d⋂
i=1

Ui,Λn−bε1/2nc

]
≤ Py

ω

[ d⋂
i=1

{
Zn−bε1/2nc

i (1) > (ui − sgn(ui)δ′)
}

,Zn−bε1/2nc
1 (t) > 0, t ∈ [0, 1]

]
.

By Theorem 1.2 we deduce

lim sup
n→∞

max
y∈Rε,n

Py
ω

[ d⋂
i=1

Ui,Λn−bε1/2nc

]
≤ P

εσ1√
1−ε1/2

[
W1(1) > (u1 − sgn(u1)δ′), min

0≤t≤1
W1(t) > 0

]
×

d∏
i=2

P
γ1ε1/2
√

1−ε1/2 [Wi(1) > (ui − sgn(ui)δ′)] (4.15)

for some constant γ1. Abbreviate ε′ := σ1ε(1 − ε1/2)−1/2 and let us compute
the first term of the right-hand side of (4.15) for sufficiently small ε. By the
reflection principle for the Brownian motion, we have

P ε′
[
W1(1) > (u1 − sgn(u1)δ′), min

0≤t≤1
W1(t) > 0

]
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= P ε′
[
W1(1) > (u1 − sgn(u1)δ′)

]
− P ε′

[
W1(1) < −(u1 − sgn(u1)δ′)

]
= P

[
W1(1) > (u1 − sgn(u1)δ′)− ε′

]
− P

[
W1(1) < −(u1 − sgn(u1)δ′)− ε′)

]
=

1√
2π

(u1−sgn(u1)δ
′)+ε′∫

(u1−sgn(u1)δ′)−ε′

e−
x2
2 dx.

Therefore, we obtain, as ε → 0

lim sup
n→∞

max
y∈Rε,n

Py
ω

[ d⋂
i=1

Ui,Λn−bε1/2nc

]

≤
(2εσ1e

− (u1−sgn(u1)δ′)2
2√

2π(1− ε1/2)
+ o(ε)

) d∏
i=2

∞∫
(ui−sgn(ui)δ′)− γ1ε1/2

√
1−ε1/2

e−
t2
2

√
2π

dt. (4.16)

The other terms Py
ω[Ji,Λn−bε1/2nc] necessarily contain a term Vj for some

j ∈ [[1, d]]. Thus, we have for Ji 6= ∩d
i=1Ui,

Py
ω[Ji,Λn−bε1/2nc] ≤

d∑
j=1

Py
ω[Vj ]. (4.17)

Let us bound the terms lim supn→∞ maxy∈Rε,n Py
ω[Vj ] for j ∈ [[1, d]]. We start

by writing

Py
ω[Vj ] = Py

ω

[
max

i≤bε1/2nc
|Xj(n− bε1/2nc)−Xj(n− i)| ≥ δ′

√
n
]

= Py
ω

[
max

n−bε1/2nc≤k≤n

∣∣∣Xj(k)−Xj(n− bε1/2nc)
∣∣∣ ≥ δ′

√
n
]

≤ Py
ω

[
max

1−ε1/2≤t≤1

(
Zn

j (t)− min
1−ε1/2≤s≤t

Zn
j (s)

)
≥ δ′

]
+ Py

ω

[
min

1−ε1/2≤t≤1

(
Zn

j (t)− max
1−ε1/2≤s≤t

Zn
j (s)

)
≤ −δ′

]
.

By Theorem 1.2, we obtain

lim
n→∞

max
y∈Rε,n

Py
ω

[
max

1−ε1/2≤t≤1

(
Zn

j (t)− min
1−ε1/2≤s≤t

Zn
j (s)

)
≥ δ′

]
= P

[
max

1−ε1/2≤t≤1

(
Wj(t)− min

1−ε1/2≤s≤t
Wj(s)

)
≥ δ′

]
(4.18)



316 C. Gallesco, N. Gantert, S. Popov and M. Vachkovskaia

and

lim
n→∞

max
y∈Rε,n

Py
ω

[
min

1−ε1/2≤t≤1

(
Zn

j (t)− max
1−ε1/2≤s≤t

Zn
j (s)

)
≤ −δ′

]
= P

[
min

1−ε1/2≤t≤1

(
Wj(t)− max

1−ε1/2≤s≤t
Wj(s)

)
≤ −δ′

]
. (4.19)

Observe that the right-hand sides of (4.18) and (4.19) are equal since (−Wj) is
a Brownian motion. Thus, let us compute for example the right-hand side term
of (4.18). By Lévy’s Theorem (cf. [18], Chapter VI, Theorem 2.3), we have

P
[

max
0≤t≤ε1/2

(
Wj(t)− min

0≤s≤t
Wj(s)

)
≥ δ′

]
= P

[
max

0≤t≤ε1/2
|Wj(t)| ≥ δ′

]
.

Then,

P
[

max
0≤t≤ε1/2

|Wj(t)| ≥ δ′
]
≤ 2P

[
max

0≤t≤ε1/2
Wj(t) ≥ δ′

]
= 4P [Wj(ε1/2) ≥ δ′].

Using an estimate on the tail of the Gaussian law ([17], Appendix B, Lemma 12.9)
we obtain

P
[

max
0≤t≤ε1/2

|Wj(t)| ≥ δ′
]
≤ 4ε1/4

δ′
√

2π
exp

{
− (δ′)2

2ε1/2

}
.

We finally obtain

lim sup
n→∞

max
y∈Rε,n

d∑
i=1

Py
ω[Vi] ≤

8dε1/4

δ′
√

2π
exp

{
− (δ′)2

2ε1/2

}
. (4.20)

To sum up, combining (4.11), (4.14), (4.16), (4.17), and (4.20), we have P-a.s.

lim sup
n→∞

Pω[Zn(1) ∈ Du | Λn]

≤
(2εσ1√

2π
+ o(ε)

)−1
(

2εσ1e
− (u1−sgn(u1)δ′)2

2√
2π(1− ε1/2)

+ o(ε)
)

×
d∏

i=2

∞∫
(ui−sgn(ui)δ′)− γ1ε1/2

√
1−ε1/2

e−
t2
2

√
2π

dt

+
(

2d

d

)
8dε1/4

δ′
√

2π
exp

{
− (δ′)2

2ε1/2

}
+ 2(f(ε) + g(ε)). (4.21)

Let us now bound the term Pω[Zn(1) ∈ Du | Λn] from below. We have by
the Markov property

Pω[Zn(1) ∈ Du | Λn]
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≥
Pω[A0→R, βRε,n ≤ ε1/2n]

Pω[Λn]
min

y∈Rε,n

min
j≤bε1/2nc

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ].

(4.22)

We first decompose the term (Pω[Λn])−1Pω[A0→R, βRε,n ≤ ε1/2n] in the follow-
ing way

Pω[A0→R, βRε,n
≤ ε1/2n]

Pω[Λn]
=

Pω[A0→R]
Pω[Λn]

−
Pω[A0→R, βRε,n

> ε1/2n]
Pω[Λn]

=
Pω[A0→R]
Pω[Λn]

(1− Pω[βRε,n
> ε1/2n | A0→R]). (4.23)

Then, we write

Pω[βRε,n > ε1/2n | A0→R] =
Pω[βRε,n

> ε1/2n, A0→R]
Pω[A0→R]

≤
Pω[βRε,n

> ε1/2n, Λε1/2n]
Pω[A0→R,Λε1/2n]

=
Pω[βRε,n

> ε1/2n | Λε1/2n]
1− Pω[Ac

0→R | Λε1/2n]
. (4.24)

For the term Pω[βRε,n
> ε1/2n | Λε1/2n], we have, recalling that N = bε

√
nc,

Pω[βRε,n
> ε1/2n | Λε1/2n] = Pω[τRε,n

> ε1/2n | Λε1/2n]

≤ Pω

[
max

i∈[[2,d]]
sup

j≤τ{N}1

|Xi(j)| > ε−1/2N | Λε1/2n

]
+ Pω[τ{N}1 > ε1/2n | Λε1/2n]. (4.25)

By Lemmas 2.3 and 2.4 we deduce

lim sup
n→∞

Pω[βRε,n > ε1/2n | Λε1/2n] ≤ g(ε3/4) + f(ε3/4). (4.26)

For the term Pω[Ac
0→R | Λε1/2n], we write

Pω[Ac
0→R | Λε1/2n] = Pω[βRε,n

> β+
{0}1 | Λε1/2n] ≤ Pω[βRε,n

> ε1/2n | Λε1/2n].

Hence, by (4.26) we obtain

lim sup
n→∞

Pω[Ac
0→R | Λε1/2n] ≤ f(ε3/4) + g(ε3/4). (4.27)

Going back to the term (Pω[Λn])−1Pω[A0→R] in (4.23), we write

Pω[A0→R]
Pω[Λn]

=
Pω[A0→R]

Pω[Λn, A0→R] + Pω[Λn, Ac
0→R]
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=
(
Pω[Λn | A0→R] + Pω[Λn, Ac

0→R](Pω[A0→R])−1
)−1

≥
(
Pω[Λn | A0→R] + Pω[Λn, Ac

0→R](Pω[Λn, A0→R])−1
)−1

=
(
Pω[Λn | A0→R] + Pω[Ac

0→R | Λn](1− Pω[Ac
0→R | Λn])−1

)−1

.

(4.28)

By (4.10), we have

lim sup
n→∞

Pω[Ac
0→R | Λn] ≤ lim sup

n→∞
Pω[βRε,n

> ε1/2n | Λn] ≤ f(ε) + g(ε). (4.29)

Then, we have by the Markov property

Pω[Λn | A0→R] ≤ max
y∈Rε,n

Py
ω[Λn−bε1/2nc] + Pω[βRε,n

> ε1/2n | A0→R]. (4.30)

Thus, by (4.28), (4.30), (4.24), (4.26), (4.27), and (4.29), we deduce

lim inf
n→∞

Pω[A0→R]
Pω[Λn]

(4.31)

≥
(

lim sup
n→∞

max
y∈Rε,n

Py
ω[Λn−bε1/2nc] +

f(ε3/4) + g(ε3/4)
1− f(ε3/4)− g(ε3/4)

+
f(ε) + g(ε)

1− f(ε)− g(ε)

)−1

.

Combining (4.22), (4.23), (4.26), (4.27), and (4.31), we obtain P-a.s.

lim inf
n→∞

Pω[Zn(1) ∈ Du | Λn]

≥
(

lim sup
n→∞

max
y∈Rε,n

Py
ω[Λn−bε1/2nc] +

f(ε3/4) + g(ε3/4)
1− f(ε3/4)− g(ε3/4)

+
f(ε) + g(ε)

1− f(ε)− g(ε)

)−1

×
(
1− f(ε3/4) + g(ε3/4)

1− f(ε3/4)− g(ε3/4)

)
× lim inf

n→∞
min

y∈Rε,n

min
j≤ε1/2n

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ]. (4.32)

Analogously to (4.11) we have

lim
n→∞

max
y∈Rε,n

Py
ω[Λn−bε1/2nc] =

2εσ1√
2π(1− ε1/2)

+ o(ε). (4.33)

At this point, let us introduce more notations. Let δ′ > 0 be the constant used
in the definitions of Vi and Ui (cf. (4.12) and (4.13)) and introduce

Ei =
{
Xi(n) > (ui + sgn(ui)δ′)

√
n
}
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and
Fi =

{
max

j≤bε1/2nc
|Xi(n)−Xi(n− j)| ≤ δ′

√
n
}

for i ∈ [[1, d]]. Observe that for all y ∈ Rε,n and j ≤ bε1/2nc we have

Py
ω[X (n− j) ∈ Du

√
n, Λn−j ] ≥ Py

ω

[ d⋂
i=1

(Ei ∩ Fi),Λn

]
≥ Py

ω

[ d⋂
i=1

Ei,Λn

]
−

d∑
i=1

Py
ω[F c

i ]. (4.34)

By Theorem 1.2 and similar computations as those to derive equations (4.16)
and (4.20), we obtain for some constant γ2,

lim
n→∞

min
y∈Rε,n

Py
ω

[ d⋂
i=1

Ei,Λn

]
=

(2εσ1√
2π

exp
{
− (u1 + sgn(u1)δ′)2

2

}
+ o(ε)

)

×
d∏

i=2

∞∫
(ui+sgn(ui)δ′)−γ2ε1/2

exp
{
− t2

2

}
√

2π
dt (4.35)

as ε → 0 and

lim sup
n→∞

max
y∈Rε,n

d∑
i=1

Py
ω[F c

i ] ≤ 8dε1/4

δ′
√

2π
exp

{
− (δ′)2

2ε1/2

}
. (4.36)

Combining (4.32), (4.33), (4.35), and (4.36), we obtain P-a.s.

lim inf
n→∞

Pω[Zn(1) ∈ Du | Λn]

≥
( 2εσ1√

2π(1− ε1/2)
+ o(ε) +

f(ε3/4) + g(ε3/4)
1− f(ε3/4)− g(ε3/4)

+
f(ε) + g(ε)

1− f(ε)− g(ε)

)−1

×
(
1− f(ε3/4) + g(ε3/4)

1− f(ε3/4)− g(ε3/4)

)
×

((2εσ1√
2π

e−
(u1+sgn(u1)δ′)2

2 + o(ε)
) d∏

i=2

∞∫
(ui+sgn(ui)δ′)−γ2ε1/2

exp
{
− t2

2

}
√

2π
dt

− 8dε1/4

δ′
√

2π
exp

{
− (δ′)2

2ε1/2

})
. (4.37)

Finally, take δ′ = ε1/8 and let ε → 0 in (4.21) and (4.37) to prove (4.2). 2
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The next steps in showing that the f.d.d.’s converge are standard and we
follow [14] and [11].
First, we will prove the following

Proposition 4.2. We have P-a.s., for u1 > 0, −∞ < ai < bi < ∞, i ∈ [[2, d]]
and 0 < t < 1,

lim
n→∞

Pω

[
Zn

1 (t) ≤ u1,
d⋂

i=2

{
Zn

i (t) ∈ (ai, bi]
}
| Λn

]

=

u1∫
0

q(0, 0; t, v)dv
d∏

i=2

bi∫
ai

exp
{
−v2

2t

}
√

2πt
dv. (4.38)

Proof. For ε > 0 we have

Pω

[
Zn

1 (n−1bntc) ≤ u1 − ε,
d⋂

i=2

{
Zn

i (n−1bntc) ∈ (ai − ε, bi + ε]
}
| Λn

]
≤ Pω

[
Zn

1 (t) ≤ u1,
d⋂

i=2

{
Zn

i (t) ∈ (ai, bi]
}
| Λn

]
(4.39)

≤ Pω

[
Zn

1 (n−1bntc) ≤ u1 + ε,
d⋂

i=2

{
Zn

i (n−1bntc) ∈ (ai + ε, bi − ε]
}
| Λn

]
.

for all sufficiently large n. Now, suppose that we have for all u1 ≥ 0, ai < bi

and 0 < t < 1,

lim
n→∞

Pω

[
Zn

1 (n−1bntc) ≤ u1,
d⋂

i=2

{
Zn

i (n−1bntc) ∈ (ai, bi]
}
| Λn

]

=

u1∫
0

q(0, 0; t, v) dv

d∏
i=2

bi∫
ai

exp
{
−v2

2t

}
√

2πt
dv. (4.40)

Combining (4.39) and (4.40) yields (4.38) since the limit distribution q(0, 0; t, x1)
is absolutely continuous. Let us denote by l = l(t, n) the quantity (nbntc−1)1/2.
We recall that x is the vector of coordinates (x1, . . . , xd). Then, observe that

Pω

[
Zn

1 (n−1bntc) ≤ u1,
d⋂

i=2

{
Zn

i (n−1bntc) ∈ (ai, bi]
}
| Λn

]
=

1
Pω[Λn]
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× Pω

[
Zbntc

1 (1) ≤ lu1,
d⋂

i=2

{
Zbntc

i (1) ∈ (lai, lbi]
}

,Λnt,X1(k) > 0, bntc < k ≤ n
]

=
1

Pω[Λn]

lu1∫
0

lb2∫
la2

· · ·
lbd∫

lad

Pω

[
Zbntc

1 (1) ∈ dx1,
d⋂

i=2

{
Zbntc

i (1) ∈ dxi

}
,Λnt,X1(k) > 0, bntc < k ≤ n

]

=
Pω[Λnt]
Pω[Λn]

lu1∫
0

lb2∫
la2

· · ·
lbd∫

lad

Pω

[
X1(k) > 0, bntc < k ≤ n | Zbntc

1 (1) ∈ dx1,

d⋂
i=2

{
Zbntc

i (1) ∈ dxi

}]
× Pω

[
Zbntc

1 (1) ∈ dx1,
d⋂

i=2

{
Zbntc

i (1) ∈ dxi

}
| Λnt

]

=
Pω[Λnt]
Pω[Λn]

lu1∫
0

lb2∫
la2

· · ·
lbd∫

lad

P
x
√
bntc

ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ 1− n−1bntc
]

× Pω

[
Zbntc

1 (1) ∈ dx1,
d⋂

i=2

{
Zbntc

i (1) ∈ dxi

}
| Λnt

]
. (4.41)

By (4.7), (4.11), (4.31), and (4.33) we have P-a.s.

lim
n→∞

Pω[Λnt]
Pω[Λn]

= t−1/2. (4.42)

Using Theorem 1.2 and Dini’s theorem on uniform convergence of non-decreasing
sequences of continuous functions, we obtain

lim
n→∞

P
z
√
bntc

ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ 1− n−1bntc
]

= Ñ
(
z1

( t

1− t

)1/2)
uniformly in z on every compact set of the form [0,K]× [−K, K]d−1. By Propo-
sition 4.1, we have

lim
n→∞

Pω

[
Zbntc

1 (1) ≤ x1,
d⋂

i=2

{
Zbntc

i (1) ≤ xi

}
| Λnt

]

= exp
(
− x2

1

2

) d∏
i=2

xi∫
−∞

exp
{
−v2

2

}
√

2π
dv.
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Now, applying Lemma 2.18 of [14] to (4.41), we obtain

lim
n→∞

Pω

[
Zn

1 (n−1bntc) ≤ u,
d⋂

i=2

{
Zn

i (n−1bntc) ∈ (ai, bi]
}
| Λn

]

=

u1t−1/2∫
0

b2t−1/2∫
a2t−1/2

. . .

bdt−1/2∫
adt−1/2

t−1/2Ñ
(
x1

( t

1− t

)1/2)

× x1 exp
{
−x2

1

2

} d∏
i=2

exp
{
−x2

i

2

}
√

2π
dx1 . . . dxd.

Finally, make the change of variables y = t1/2x to obtain the desired result. 2

The final step in showing convergence of the f.d.d.’s is

Proposition 4.3. We have P-a.s., for all k ≥ 1, ui > 0, −∞ < ai
j < bi

j < ∞,
i ∈ [[1, k]], j ∈ [[2, d]] and 0 < t1 < t2 < · · · < tk ≤ 1,

lim
n→∞

Pω

[ k⋂
i=1

{
Zn

1 (ti) ≤ ui,Zn
2 (ti) ∈ (ai

2, b
i
2], . . . ,Zn

d (ti) ∈ (ai
d, b

i
d]

}
| Λn

]

=
d∏

j=2

b1j∫
a1

j

. . .

bk
j∫

ak
j

exp
{
− x2

1
2t1

}
√

2πt1

exp
{
− (x2−x1)

2

2(t2−t1)

}
√

2π(t2 − t1)
. . .

exp
{
− (xk−xk−1)

2

2(tk−tk−1)

}
√

2π(tk − tk−1)
dxk . . . dx1

×
u1∫
0

. . .

uk∫
0

q(0, 0; t1, x1)q(t1, x1; t2, y2) . . . q(tk−1, xk−1; tk, xk) dxk . . . dx1.

(4.43)

Proof. The proof is by induction in k. This result holds for k = 1 by virtue
of (4.38). Suppose (4.43) is true for k = m−1, we show that it can be extended
to k = m. Let t′i = n−1btinc and let

Di = {x ∈ Rd : x1 ≤ u1, a
i
j < xi ≤ bi

j , j ∈ [[2, d]]}

for i ∈ [[1,m]]. We mention here that in this proof, yi for i ∈ [[1,m]] are all
elements of Rd while yi for i ∈ [[1,m]] belong to R. By the same argument as in
the beginning of the proof of Proposition 4.2, observe that

lim
n→∞

Pω

[ m⋂
i=1

{Zn(ti) ∈ Di} | Λn

]
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= lim
n→∞

Pω

[ m−2⋂
i=1

{Zn(ti) ∈ Di},
m⋂

i=m−1

{Zn(t′i) ∈ Di} | Λn

]
(4.44)

provided that the limits exist. Then, we write for sufficiently large n

Pω

[ m−2⋂
i=1

{Zn(ti) ∈ Di},
m⋂

i=m−1

{Zn(t′i) ∈ Di} | Λn

]
=

1
Pω[Λn]

∫
Dm−1

∫
Dm

Pω

[
Zn(t1) ∈ D1, . . . ,Zn(tm−2) ∈ Dm−2,

Zn(t′m−1) ∈ dym−1,Zn(t′m) ∈ dym, X1(1) > 0, . . . , X1(n) > 0
]

=
Pω[Λntm−1 ]
Pω[Λn]

∫
Dm−1

∫
Dm

Pω

[
Zn(t1) ∈ D1, . . . ,Zn(tm−2) ∈ Dm−2,Zn(t′m−1) ∈ dym−1 | Λntm−1

]
× Pym−1√n

ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ t′m − t′m−1,Zn(t′m − t′m−1) ∈ dym
]

× Pym√n
ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ 1− t′m

]
. (4.45)

By the induction hypothesis we have

lim
n→∞

Pω

[
Zn(t1) ∈ D1, . . . ,Zn(tm−2) ∈ Dm−2,Zn(t′m−1) ∈ Dm−1 | Λntm−1

]

=
d∏

j=2

b1j∫
a1

j

. . .

bm−1
j∫

am−1
j

exp
{
− y2

1
2t1

}
√

2πt1

exp
{
− (y2−y1)

2

2(t2−t1)

}
√

2π(t2 − t1)
. . .

×
exp

{
− (ym−1−ym−2)

2

2(tm−1−tm−2)

}
√

2π(tm−1 − tm−2)
dym−1 . . . dy1

×

u1t
−1/2
m−1∫

0

. . .

um−1t
−1/2
m−1∫

0

q(0, 0; t1/tm−1, y1) q(t1/tm−1, y1; t2/tm−1, y2) . . .

× q(tm−2/tm−1, ym−2; 1, ym−1) dym−1 . . . dy1. (4.46)

On the other hand, by (4.42) we have P-a.s.

lim
n→∞

Pω[Λntm−1 ]
Pω[Λn]

= t
1/2
m−1. (4.47)
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Using Theorem 1.2 and Dini’s theorem on uniform convergence of non-decreasing
sequences of continuous functions, we obtain

lim
n→∞

Pym−1√n
ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ t′m − t′m−1,Zn(t′m − t′m−1) ∈ Dm

]
=

d∏
j=2

bm
j∫

am
j

exp
{
− (ym−ym−1

j )2

2(tm−tm−1)

}
√

2π(tm − tm−1)
dym ×

um∫
0

g(tm − tm−1, y
m−1
1 , v)dv (4.48)

uniformly in ym−1 on every compact set of the form [0,K]× [−K, K]d−1, and

lim
n→∞

Pym√n
ω

[
Zn

1 (s) > 0, 0 ≤ s ≤ 1− t′m

]
= Ñ(ym

1 (1− tm)−1/2) (4.49)

uniformly in ym on every compact set of the form [0,K] × [−K, K]d−1. Com-
bining (4.44), (4.45), (4.46), (4.47), (4.48), (4.49), and using Lemma 2.18 of [14]
twice, we obtain

lim
n→∞

Pω

[ m⋂
i=1

{Zn(ti) ∈ Di} | Λn

]

=
d∏

j=2

b1j∫
a1

j

. . .

bm
j∫

am
j

exp
{
− x2

1
2t1

}
√

2πt1

exp
{
− (x2−x1)

2

2(t2−t1)

}
√

2π(t2 − t1)
. . .

×
exp

{
− (xm−xm−1)

2

2(tm−tm−1)

}
√

2π(tm − tm−1)
dxm . . . dx1

× t−1
m−1

um−1∫
0

um∫
0

u1t
−1/2
m−1∫

0

. . .

um−2t
−1/2
m−1∫

0

q(0, 0; t1/tm−1, y1)

× q(t1/tm−1, y1; t2/tm−1, y2) . . .

× q(tm−2/tm−1, ym−2; 1, ym−1t
−1/2
m−1 ) dym−1 . . . dy1

× g(tm − tm−1, ym−1, ym)Ñ(ym(1− tm)−1/2)dym. (4.50)

Now, make the change of variables t
1/2
m−1y1 = x1, . . . , t

1/2
m−1ym−2 = xm−2 in (4.50)

to obtain (4.43) for k = m. 2

4.2. Tightness

In this section, to finish the proof of Theorem 1.1, we prove that the sequence
of measures (Pω[Zn ∈ · | Λn])n≥1 is tight P-a.s. The proof is standard: we con-
sider the modulus of continuity, divide the time interval into small subintervals,
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and have to control the probability of fluctuations of our conditioned process
over these small time intervals, where we use the results of the last subsection.

First, we define the modulus of continuity for functions f ∈ C[0, 1]:

wf (δ′) = sup
|t−s|≤δ′

{‖f(s)− f(t)‖∞}

where s, t ∈ [0, 1] and ‖ · ‖∞ is the ∞-norm on Rd. By Theorem 14.5 of [15] it
suffices to show that P-a.s., for every ε̂ > 0

lim
δ′↓0

lim sup
n→∞

Pω[wZn(δ′) ≥ ε̂ | Λn] = 0 (4.51)

since Zn(0) = 0. Now observe that

Pω[wZn(δ′) ≥ ε̂ | Λn] = Pω

[
sup

|t−s|≤δ′
‖Zn(t)−Zn(s)‖∞ ≥ ε̂ | Λn

]
≤ Pω

[
sup

|t−s|≤2δ′
‖X (nt)−X (ns)‖∞ ≥ ε̂

√
n | Λn

]
(4.52)

for n ≥ 2/δ′. Let m := b1/4δ′c and divide the interval [0, 1] into intervals
Ik := [k/m, (k + 1)/m], for 0 ≤ k ≤ m− 1. Additionally, consider the intervals
Jl := [(2l+1)/2m, (2l+3)/2m], for 0 ≤ l ≤ m−2 and Jm−1 := ∅. Observe that

Pω

[
sup

|t−s|≤2δ′
‖X (nt)−X (ns)‖∞ ≥ ε̂

√
n | Λn

]
≤ Pω

[{
max

k≤m−1
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n
}

∪
{

max
l≤m−1

sup
s,t∈Jl

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n
}
| Λn

]
≤ m

(
max

k≤m−1
Pω

[
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n | Λn

]
+ max

l≤m−1
Pω

[
sup

s,t∈Jl

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n | Λn

])
(4.53)

with the convention that sups,t∈∅{·} = 0. Our next step is to bound from above
the lim supn→∞ of both terms in parentheses in the right-hand side of (4.53).
As an example, let us treat the terms indexed by Ik for k ∈ [[1,m − 1]]. The
term indexed by I0 and those indexed by Jk, k ∈ [[1,m − 1]] can be treated in
a similar way. To do that, we will use the same approach as in the proof of
Proposition 4.1. Analogously to (4.4) we have for ε ∈ (0, 1) and δ ∈ (0, 1),

Pω

[
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n | Λn

]
≤ (Pω[Λn])−1Pω

[
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n, A0→R,Λn, βRε,n
≤ δnm−1

]
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+ Pω[βRε,n > δnm−1 | Λn] + Pω[βRε,n > ε1/2n | Λn]. (4.54)

Analogously to (4.6), we obtain

(Pω[Λn])−1Pω

[
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n, A0→R,Λn, βRε,n
≤ δnm−1

]
≤ Pω[A0→R]

Pω[Λn]
max

y∈Rε,n

max
j≤b δn

m c
Py

ω

[
sup

s,t∈Ik

‖X (nt− j)−X (ns− j)‖∞ ≥ ε̂
√

n
]
.

Now, observe that for all sufficiently large n

max
j≤b δn

m c
Py

ω

[
sup

s,t∈Ik

‖X (nt− j)−X (ns− j)‖∞ ≥ ε̂
√

n
]

≤ Py
ω

[
sup

s,t∈I′k

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n
]

(4.55)

with I ′k = [(k − 2δ)/m, (k + 1)/m]. Now, let I ′′k = [(k − 3δ)/m, (k + 1)/m].
By Theorem 1.2 and the estimate on the tail of the Gaussian law given in [17],
Appendix B, Lemma 12.9, we have

lim sup
n→∞

max
y∈Rε,n

Py
ω

[
sup

s,t∈I′k

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n
]

≤ d · P
[

sup
s,t∈I′′k

|W1(t)−W1(s)| ≥ ε̂
]

≤ 8d · P
[
W1

(1 + 3δ

m

)
≥ ε̂

]
≤ 16d

ε̂
√

2πm
exp

{
− ε̂2m

8

}
(4.56)

since δ < 1. We obtain

lim sup
n→∞

max
y∈Rε,n

max
j≤b δn

m c
Py

ω

[
sup

s,t∈Ik

‖X (nt− j)−X (ns− j)‖∞ ≥ ε̂
√

n
]

≤ 16d

ε̂
√

2πm
exp

{
− ε̂2m

8

}
. (4.57)

Thus, we have by (4.7), (4.10), (4.54), and (4.57)

lim sup
n→∞

Pω

[
sup

s,t∈Ik

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n | Λn

]
≤

(2εσ1√
2π

+ o(ε)
)−1( 16d

ε̂
√

2πm
exp

{
− ε̂2m

8

})
+ f(ε) + g(ε)

+ lim sup
n→∞

Pω[βRε,n
> δnm−1 | Λn]. (4.58)



A conditional quenched CLT for random walks among random conductances 327

Combining (4.53) and (4.58) we find

lim sup
n→∞

Pω

[
sup

|t−s|≤2δ′
‖X (nt)−X (ns)‖∞ ≥ ε̂

√
n | Λn

]
≤ 2m

( 16d

ε̂
√

2πm
exp

{
− ε̂2m

8

}(2εσ1√
2π

+ o(ε)
)−1

+ f(ε) + g(ε) + lim sup
n→∞

Pω[βRε,n > δnm−1 | Λn]
)
. (4.59)

Then, let ε = m−3 and δ = m−1/2 in (4.59). We have by (4.10)

lim sup
n→∞

Pω[βRε,n
> δnm−1 | Λn]

= lim sup
n→∞

Pω[βRε,n
> ε1/2n | Λn] ≤ f(m−3) + g(m−3).

Therefore, we obtain

lim
m→∞

lim sup
n→∞

Pω

[
sup

s,t∈Îk

‖X (nt)−X (ns)‖∞ ≥ ε̂
√

n | Λn

]
= 0.

As ε̂ is arbitrary and m = b1/4δ′c, using (4.52), this last expression proves (4.51)
and consequently the tightness of the sequence

(
Pω[Zn ∈ · | Λn]

)
n≥1

. 2
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[9] F. Comets, S. Popov, G.M. Schütz and M. Vachkovskaia (2010) Knudsen
gas in a finite random tube: transport diffusion and first passage properties. J.
Statist. Phys. 140, 948–984.

[10] T. Delmotte (1999) Parabolic Harnack inequality and estimates of Markov
chains on graphs. Rev. Mat. Iberoamericana 15 (1), 181–232.

[11] C. Gallesco and S. Popov (2012) Random walks among random conductances
I: Uniform quenched CLT. Elect. J. Probab. 17, paper No. 85, 1–22.

[12] C. Gallesco and S. Popov (2013) Random walks among random conductances
II: Conditional quenched CLT. ALEA 10, 253–270.

[13] D. Gilbarg and N. S. Trudinger (2001) Elliptic partial differential equations
of second order. Classics in Mathematics. Reprint of the 1998 edition. Springer,
Berlin.

[14] D. Iglehart (1974) Functional central limit theorems for random walks condi-
tioned to stay positive. Ann. Probab. 2 (4), 608–619.

[15] O. Kallenberg (1997) Foundations of modern probability. Springer, New York.

[16] P. Mathieu (2008) Quenched invariance principles for random walks with ran-
dom conductances. J. Statist. Phys. 130 (5), 1025–1046.

[17] P. Mörters and Y. Peres (2010) Brownian Motion. Cambridge University
Press.

[18] D. Revuz and M. Yor (1999) Continuous Martingales and Brownian Motion.
Springer, Berlin.

[19] R. Rhodes (2010) Stochastic homogenization of reflected stochastic differential
equations. Electr. J. Probab. 15, 989–1023.


