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Abstract. Consider a random walk among random conductances on Z? with
d > 2. We study the quenched limit law under the usual diffusive scaling of the
random walk conditioned to have its first coordinate positive. We show that the
conditional limit law is a linear transformation of the product law of a Brownian
meander and a (d — 1)-dimensional Brownian motion.
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1. Introduction and results

In this paper we study random walks on a d-dimensional integer lattice with
random conductances. One can briefly describe the model in the following way:
initially, weights (i.e., some nonnegative numbers) are attached to the edges
of the lattice at random. The transition probabilities are then defined to be
proportional to the weights, thus obtaining a reversible Markov chain; due to a
well-known correspondence between reversible Markov chains and electric net-
works, the weights are also called conductances. We refer to the collection of all
conductances as “environment”. This model attracted considerable attention
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recently, and, in particular, quenched (i.e., for fixed environment) functional
central limit theorems and heat kernel estimates were obtained in rather gen-
eral situations, see e.g. [2,3,6,16] and references therein. We also refer to the
survey paper [5]. To prove the quenched functional CLT, one usually uses the
so-called corrector approach, described in the following way. First, one con-
structs an auxiliary random field (which depends only on the environment),
with the following property: the sum of the corrector and the random walk is
a martingale, for which it is not difficult to show the CLT. Then, using the Er-
godic Theorem, one shows that the corrector is likely to be small in comparison
to the random walk itself.

While this approach has been quite fruitful, it also has its limitations, mainly
due to the fact that the construction of the corrector is not very explicit. For
example, it was understood only quite recently how to prove the quenched CLT
for the random walk with i.i.d. conductances in half-space, see [7,19]. It is
therefore important to go beyond the usual setup, proving other types of limit
laws. In this paper, we continue the line of research of [11] and [12] (which were,
by their turn, mainly motivated by [8,9]), where a one-dimensional model with
random conductances (but with unbounded jumps) was considered.

We now define the model formally. For z, y € Z¢ with d > 2, we write
x ~ y if  and y are neighbors in the lattice Z? and we let B, be the set of
unordered nearest-neighbor pairs (x,y) of Z%. Let (wp)pep, be non-negative
random variables; P stands for the law of this family. We assume that P is
stationary and ergodic with respect to the family of shifts (6,,2 € Z?). The
quantity wy is usually called the conductance of the edge b. The collection of all
conductances w = (wp)pep, is called the environment. If x ~ y, we will also write
wg,y to refer to the conductance between = and y. For a particular realization w
of our environment, we define 7, = Zny wg - Given that m, € (0,00) for all

x € Z¢ (which is P-a.s. the case by Condition UE below), the random walk X
in the environment w is defined through its transition probabilities

—wz’y, if y ~x,
Po(T,y) =4 M .
0, otherwise,

that is, if P is the quenched law of the random walk starting from x, we have
PLIX(0) =2] =1, PEIX(k+1)=2]|X(k) =y] =pu(y,2).

Clearly, this random walk is P-a.s. reversible with the reversible measure (7, x €
74). Also, we denote by EZ the quenched expectation for the process starting
from x. When the random walk starts from 0, we use the shorter notations
P..E,.

In order to prove our results, we need to make the uniform ellipticity as-
sumption on the environment:
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Condition UE. There exists £ > 0 such that, P-a.s., K < wp, < k' for
x ~ 0.

For all n > 1, we define the continuous map (Z"(t),t € [0, 1]) as the natural
polygonal interpolation of the map k/n +— n~1/2X (k). In other words

VnZ"(t) = X([nt]) + (nt — [nt]) X (|nt] +1)

with |-| the integer part. Also, we denote by W@ = (Wy,...,Wy) the d-
dimensional standard Brownian motion. Now, let us embed the graph Z¢ in R%.
Denote by B = {ey,...,e4} the canonical basis of R and by z,...,z4 the vec-
tor coordinates in R?. By Condition UE and as our environment is stationary
and ergodic there exists an invertible linear transformation D : R? — R< letting
the hyperplane {z; = 0} invariant and such that the sequence (DZ"),>1 tends
weakly to W(®_ Indeed, by Condition UE and ergodicity of the environment, it
is well known (cf. [5]) that (Z™),>1 tends weakly to a d-dimensional Brownian
motion with a positive definite covariance matrix . This implies that ¥ has
positive eigenvalues \; and is diagonalizable in an orthonormal basis. If the law
of the environment is also invariant under the symmetries of Z%, it is known
that ¥ = o2I for some constant o, where I is the identity matrix. Thus, there
exists a rotation T such that (T'Z™),>1 tends weakly to Brownian motion with
diagonal covariance matrix X' = (\;)1<i<q in the basis B. This implies that
(2)~Y2TZ"™),>1 tends weakly to W (4. Finally, by some unitary transforma-
tion R, we can rotate the hyperplane (X/)~Y/2T{z; = 0} to make it coincide
with the hyperplane {z; = 0}. Now, using the isotropy of W(% we obtain that
(R(X)~Y2TZ"),>1 tends weakly to W(?. For convenience, in the rest of the
paper, we will choose R such that De; - e; > 0. (R can also involve a reflec-
tion). In the case that the law of the environment is also invariant under the
symmetries of Z¢, then the last statement is true with D = o' (where o is
from the quenched CLT).
Denoting X = (Xi,...,Xy4) in the basis B, we define

7=inf{k > 1: X;(k) =0}
and
Ap={r>n}={Xy(k)>0forallk=1,...,n}.
Consider the conditional quenched probability measure Q[ - | := Py [ - | Ay,
for all n > 1. Denote by C([0,1]) the space of continuous functions from [0, 1]
into R? and by B; the Borel o-field on C([0,1]). For each n, the random map
DZ™ induces a probability measure p” on (C[0,1],B1): for any A € By,
W(A) = QUIDZ" € A)
Let us next recall the formal definition of the Brownian meander W . For this,
define 7 = sup{s € [0,1] : Wi(s) =0} and A; =1 —7y. Then,

WH(s) = AT A Wi(m +sA1),  0<s<l.
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We denote by Py + ® Pyra-1y the product law of Brownian meander and (d—1)-
dimensional standard Brownian motion on the time interval [0,1]. Now, we
are ready to formulate the quenched invariance principle for the random walk
conditioned to stay positive, which is the main result of this paper:

Theorem 1.1. Under Condition UE, we have that, P-a.s., u tends weakly to
Py+ ® Pyra-1) as n — oo (as probability measures on C|[0, 1]).

The next result, referred as Uniform Central Limit Theorem (UCLT), will
be useful in order to prove Theorem 1.1. Let Wg be a d-dimensonal Brownian
motion with covariance matrix ¥ defined above. Denoting by &,(C([0,1]),R)
(respectively, €¥(C([0,1]),R)) the space of bounded continuous (respectively,
bounded uniformly continuous) functionals from C([0,1]) into R, we have the
following result:

Theorem 1.2. Under Condition UE, the following statements hold and are
equivalent:

(i) we have P-a.s., for all H > 0 and any F € &,(C([0,1]),R),

lim sup
"% we[-Hy/n,Hy/n)

Eo,u[F(2")] = BIF(Ws)]| = 0

(ii) we have P-a.s., for all H > 0 and any F € €}(C([0,1]),R),

lim sup
N0 pe[—H/n,H+/n)d

Bo.u[F(2")] - E[F(Wy)]| = 0;

(iii) we have P-a.s., for all H > 0 and any closed set B,

lim sup sup Py,[Z" € B] < P[Wx, € B];
=00 pel—H /i, Hy/m)d

(iv) we have P-a.s., for all H > 0 and any open set G,

lim inf inf Po,.[Z" € G] > P[Wx € GJ;
N0 we[—H\/n,Hy/mld

(v) we have P-a.s., for all H > 0 and any A € B such that P[Wy € 0A] =0,

lim sup Py, w[Z" € A] — P[Wyx € A]| =0.
N7 pe[—Hy/n,Hy/n)d

As mentioned, our approach does not involve the corrector in a direct way
(although, of course, we use the “classical” invariance principle which relies on
the corrector approach). Instead, the key ingredients are the following. We
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use the uniform heat kernel bounds of [10] to prove a uniform CLT (see Theo-
rem 1.2.) In addition, we rely on several auxiliary results giving uniform bounds
for exit times and hitting times of hyperplanes, leading to statements which say,
roughly speaking, that the conditioning does not change the size of fluctuations
(see the beginning of Section 2 for a more detailed description). These auxiliary
results are shown in Section 2. They are of independent interest and might be
applied to study other “fine” questions for the random conductance model than
the conditional quenched CLT considered here. To prove that the conditioning
does not change the size of fluctuations, we use an iteration method relying
on the Markov property and the uniform bounds shown before. In Section 3,
we give the proof of Theorem 1.2. Finally, in Section 4, we give the proof of
Theorem 1.1.

We will denote by Cq, Cs, ... the “global” constants, that is, those that
are used all along the paper and by v, v1, 72, ... the “local” constants, that
is, those that are used only in the subsection in which they appear for the first
time. For the local constants, we restart the numeration in the beginning of
each subsection.

Also, whenever the context is clear, to avoid heavy notations, we will not
put the integer part symbol |-|. For example, for § € (0,1) we will write X (dn)
instead of X ([on]).

2. Auxiliary results

In this section, we will prove several auxiliary results that will be needed later
to prove Theorem 1.1. Before going to the technical side, let us give a short
description. Lemma 2.1 gives a uniform bound on the upper tail of the exit time
of a strip as well as on the lower tail of the hitting time of a set (sufficiently
far away from the starting point). Lemma 2.2 provides a uniform lower bound
for the probability of progressing in the direction e; before backstepping to
the hyperplane of the origin. Lemma 2.3 says that the probability that the
hitting time of a hyperplane is larger than it should be, conditioned on the
first coordinate being positive, decays fast enough. Lemma 2.4 says that the
probability that the “transversal fluctuations” are larger than they should be,
conditioned on the first coordinate being positive, decays fast enough.

Instead of considering the process X in the canonical basis B of RY it is
also convenient to introduce the embedded graph Z? := DZ® with the basis
B = {€1,...,€'4} := DB and consider the process DX in this new basis.
All the results obtained in this section concern the original random walk X
expressed in B but they remain valid for DX expressed in B’ with the || - ||;-
norm replaced by the graph distance in VA

Let us introduce the following notations. First, for a, b € Z, a < b, we
denote by [a,b] the set [a,b] N Z. Vectors of Z? will be denoted by z, y or 2.
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For x € Z% we denote by z1, ..., x4 its coordinates in B. For [ € R, we denote

[ H{x=(21,...,2q) €Z% 2y = [1]}, ifl>0,
{l}j_{ {z:(zl,...,xZ)GZd:xj:—w}, if 1 <0,

for j € [1,d]. If F C Z%, let us define
mr=inf{n >0:X(n) € F} and 74 =inf{n>1:X(n)e€ F}.

At this point we mention that under Condition UE, we can apply Theorem 1.7
of [10] to the random walks Y (n) := X (2n) and Y’ (n) := X(2n + 1), to obtain
that uniform heat kernel lower and upper bounds are available for this model.
That is, there exist absolute constants Cy, Cy, C5 and C4 such that P-a.s., for
n €N,

n C |z — yl?
pi(z,y) < WGXP{*CET} (2.1)
and if ||z — y|j; < n (with || - ||; the 1-norm on Z?) and has the same parity as
n7
n Cs = — yl?
po(2,y) > WGXP{ 7047}' (2.2)

We denote by d; the distance induced by the 1-norm. The heat kernel upper
bound (2.1) has two simple consequences gathered in the following

Lemma 2.1. Estimate (2.1) implies that there exist positive constants Cs and
Cg such that P-a.s., for h > 0 and § > 0, the following holds.

(i) Let Hy and Hs be two parallel hyperplanes in 74 orthogonal to e; for
some i € [1,d] and let us denote by S the strip delimited by H; and Hs.
If 2 < dy(Hy, Hy) < hn'/? then there exists ng = ng(d, h) such that

h
sup P¥ [Ty, um, > 6°n] < C’5g
€S

for all n > ng;

(ii) Let 2 € Z4. If A C Z% is such that dy(x, A) > hn'/? > 1 then there exists
ny = ny(0, h) such that

1)
PY[1ta < 5271] < CGE
for all n > ny.

Proof. Let us denote by S the strip delimited by H; and Hs. To prove (i), we
just notice that P%[rg,um, > 0°n] < PE[X(6%n) € S] and apply (2.1). More
precisely, suppose that H; and Hs are orthogonal to e;. With a slight abuse of
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notation, we also denote by H; and Hs the coordinates where the hyperplanes
H; and Hy cross the first axis. We have

) C, = — yl?
K <8< 3 g o { =y

C (y1 —21)°
=5 Jld/2 D eXp{ —C ylwnj }

y1€[H1,Hz]
N2
XHZeXp{ Czwzxj)}. (2.3)
1=2y,EZL

Using (2.3), we can see that there exist positive constants 71, v2 and ng =
no (0, h) such that

v2(h/6)
P?[X(6%°n) € S] <m / exp {—Cyt?}dt
0

for all n > ng. We deduce that there exists a constant 3 > 0 such that
h
PI[X(0°n) € 8] < gk

for all n > ng.

To prove (ii) we use an argument by Barlow (cf. [1] Chapter 3). First, if we
denote by B(z,r) the || - ||;-ball of center z and radius 7 := |hn'/?| we have
that

PY[1ta < (521’4 <PJ [TBC(m,r) < 6271].

Then, we have
PE[Tpea) < 0%0] < P [ X(6%0) — all1 > ]
+PL | T < 0%, X (@) —al < ). (24)

Writing S = 7ge(, ), by the Markov property, the second term of the right-hand
side of (2.4) equals

r
L [Lyscsen P2 IX(19%n] = 8) — x|l < 5]

.
< swpswp PL[IX([6%n] —m) =yl > 7]
y€OB(z,r+1) m<[§2n]

where 0B(z,r) = {y € Z¢ : ||y — z||s = r}. Combining this last inequality with
(2.4) we obtain,

PE[Tpe(en < 0%0] <2sup  sup P4 X((6%0] —m) —yli > 7]
’ yezd m<|5%n] 2
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<2sup sup PY[|X([6%] —m) ~ yllw > o]
y€Zd m<|52n) 2d

where || - ||o is the co-norm on Z?. Applying (2.1) to bound the last term of
the above equation from above and performing the same kind of computations
as in the proof of (i), we obtain (ii). o

Next, we prove the following lemma, which gives a uniform lower bound
for the probability of progressing in direction e; before backstepping to the
hyperplane {0};.

Lemma 2.2. Let v > 0, then there exist a constant Cy = C7(v) > 0 such that
we have P-a.s., inf e 1y, PY[T{(v1)1}, < T{oy,] > C7, for all integers | > 1.

Proof. We are going to show that we can choose v > 0 small enough in such a
way that the statement of Lemma 2.2 is true for this v. The generalization to
all v > 0 is then a direct consequence of the elliptic Harnack inequality, see [13].
For the moment, let v € (0, i) and fix [ such that vl > 1. Then, consider

€ (v,1]. We start by writing

PLIT ity < o}, ] = PY[X1(wl®) > (v + 1)1, 70y, > wi?]
> PY X (wl?) > (v+ 1)I] — PY[r(0}, < wl?]. (2.5)
Next, let us define v := |wi?| if |wi?] is even or v := |wl?| 4+ 1 otherwise. In

the same way, we define p := |vl] if |vl] is even or |vl| + 1 otherwise. Observe
that in any of these cases,

PLIX1(wl®) > (v +1)I] > PL[X1(v) > 1+ p)]. (2.6)

We will bound the term of the right-hand side of (2.6) from below. For y € {i}1,
we denote by P(y) the (non-empty) set of vectors z € Z? that satisfy the
following conditions: 21 —y1 > p, ||y — z||1 is even and ||y — z||; < v. Applying
(2.2), we obtain

PLIX1(v) > 1+

C u—1y|?

25 3 en{-alSi

u€P(y)
Cs v/2 (v—2v1)/2 (v—(2vi++2v4-1))/2 ’U% T 0‘21
2D YWD VIS R ER s

v1=(p+2)/2 v2=0 va=0

I//2 (V—2U1)/2 (U7(2v1+--~+2vd_1))/2
& / / / exp{—ﬂsz}dvd...dvl
vd/2 v ’
0

(p+2)/2 0 =t

%

Y
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with ~; a positive constant depending only on d. Now making the change of
variables u; = (2v;)/4/v, i € {1,...,d}, in the last multiple integral, we obtain

PY[X1(v) > 1+ p]
VU Vrmu VU=

o T e e e

i—1

(p+2)/vv 0 0 ’

Now, by definition of p, ¥ and the way we chose v, [ and w we have that

2
P < 420w~ 1/?

N4
and v > 1. This implies that
PUIX1(v) > 1+ p]
1—uq Z? 11 23 d
de / / / exp{—%Zu?}dud...dul
IN(p+2) /v 0 =l

1 POy
Z% / / / exp{f%Zu?}dud...dul
0

1A4V/2vw—1/2

By (ii) of Lemma (2.1) we obtain P¥ [r{o}, < wi?] < Csw'/?. Combining this
last inequality with (2.5), (2.6) and (2.7) we obtain

Cy
PYIT((ws i)y < (o)) 2 5 (0w 1/2) = Couw' /2. (2.8)

Observe that for fixed w, we have J(vw™1/2) — J(0) > 0 as v — 0, since
the integrated function is positive and the domain of integration of J(0) has
Lebesgue measure equal to 1/d!. Let

w* —max{s>0 Ces'/? < 4§3J(0)}

that is,

* C3 2
w' = (e CGJ(O)) :
Letting v < w* A (1/4), we can choose a sufficiently small w in such a way

that the second term of the right-hand side of (2.8) is smaller than ig,? J(0).
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Once we have chosen w, we can choose v sufficiently small in such a way that
J(vw=1?) > J(0)/2. We obtain that

, 1C
PLIT( i < Tonl 2 754 7(0) > 0.

This shows Lemma 2.2. O

For e € (0, 1], we denote N := |ey/n|. We next prove an upper bound for the
probability that the hitting time of the hyperplane {N}; is larger than el/2n,
given A,,.

Lemma 2.3. There exists a function f = f(g) with lim._qe~2f(¢e) = 0 such
that we have P-a.s.

lim sup Py [N}, > e | An) < f(e).

n—oo

Proof. Let us begin the proof by sketching the main argument. Consider a €
(0,1), we will show that

lim sup Py [T}, > e/2n | A,] < limsupP, [Tr2-1n}, > aeln | Ay) + o1(e)

n—00 n—oo

when € — 0. Then, iterating the argument using hyperplanes of the form

3 :

273N 972N 2-1N N

Figure 1. Iteration method.
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{277 N}, (cf. Figure 1) we will have that for all j > 0,

limsup Py, [T{2-i N}, > el n | A,
n—oo
S limsup Pw[T{Q—(]’+1)N}1 > ajHel/Qn ‘ An] + 0j(€)

n—oo

when ¢ — 0. Finally, restricting « to the interval (1/4,1), we will show that the
0j(e) are decreasing fast enough. Now, let us start the formal argument. Fix
a € (1/4,1) and let A; := {7y, < T{Jro}l}. We have

Po[r(ny, > €'/ | Ay)
1

= m (Pw[T{N}l > 51/277,,7'{271]\;}1 > asl/Qn,An]

+ Py [Ny, >0, Ty, < a51/2n,An])
< P,[Tr2-1n}, > ae'/?n | Ay

+ TN}, > 51/271,7'{271]\;}1 < aEl/Qn,A271N7An]. (2.9)

#p [
Po[A,] ¥
Then, we have by the Markov property

Pu [T{N}l > 51/277“7 T{2-1N}, < 0651/2TL, A2*1Na ATL]

= Z Z Pw [X(T{Qle}l) = y>T{2*1N}1 — k,

ye{27IN} k<|ael/2n|
T{N}1 > 61/271, A2*1N; An}

< pY >0 — k, Ap_1] Po[Ag-1n].
< ephax o max Llrvy, >/ n k] Pu[Ao-1 5]
(2.10)

Now, let us bound from above the term PY[r(ny, > €¥/?n — k, A,_] uniformly
iny € {27'N}, and in k < [ac'/?n|. Observe that, since e € (0, 1], we have

PYlriny > €/%n =k M) < PYlrwy, > (1= )0, Aoy

y
< PZ[T{O}lu{N}l > (1 — Oz){:‘l/zn]. (2.11)

Let 6§ := 871, where 3 is a positive constant to be determined later. Then,
consider & small enough in such a way that 6 < (1 — a)e/2. Then, divide the
time interval [0, | (1 —a)e'/2n]] into intervals of size [§%n]. Denoting S(0, N) =
UNfl{i}l, we obtain by the Markov property

i=1

F’Zf)[7’{0}1u{]\/}1 > (1 — 04)51/271]
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L[(1—a)el/2n]
[62n]

<Plrowond U (- Dlalilsn]
i=1
; ) (1—a)et/2672-2
< (Lmax P2 [ronon, > 0% (2.12)
for large enough n. Using (i) of Lemma 2.1, we have for all z € S(0, N),
R €
Pw[T{O}lu{N}l > 52n] < 055 (2.13)

for sufficiently large n. Since £/§ = 3, let us choose the constant 5 such that
Cs0 < 1/2. Thus, for ¢ sufficiently small such that 3='e < (1 — a)e/2, we
obtain by (2.12)

3
1\ (1—a)e~ 232
P[0y, 0y, > (1 —a)e'/?n] < 4(5) .

From (2.9), we deduce

Pulring, > €Y% | An] < Pulra-ing, > aeV/2n | A

+ 4(1)(1_@5_%“ Pu[Ao-:y]

2 PIAL] (2.14)

Then, we will find an upper bound for the ratio in the second term of the
right-hand side of (2.14). By the Markov property we have

P, [An] .
_Swlfnl S p TAL | Agiy] > PY 710y, > 7). 2.15
Pw [A2—1N} - [ I 2 N] yE{IQIlllrlN}l [T{O} n] ( )

Let K > 2¢ and let N’ = | K\/n]. We start by noting that for any y € {271N};
we have by the Markov property

P%[T{o}l > n] > PZ[T{O]& >n, TNy, < 7—{0}1]
> min PZ|r >n|PYlriyn, <7 . 2.16
= ooy > nlPLlmnry, < Tio] (2.16)
Let us now bound from below both terms in the right-hand side of (2.16).
We first show that we can choose a sufficiently large K in such a way that
PZ [0y, > n] > 1/2 uniformly in z € {N'};. Using (ii) of Lemma 2.1, we have
PZ[7{01, < n] < Cs/K for sufficiently large n. Choosing K sufficiently large so
that Cg/K < 1/2 we obtain

1
Polrioy, >nl 2 5 (2.17)
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uniformly in z € {N’};. Now going back to equation (2.16), we now show
that with probability of order €7 with v > 0, starting from the line {27!N}q,
the random walk reaches the line {N'}; before reaching the line {0};. By
Lemma 2.2, there exists C7 > 0 such that for every [ > 1, P%[(9y < 7(03] > C7,
with v € {l};. Now consider, the following sequence (Uj);>1 of hyperplanes

defined by
{ U, ={2127'N|h
Ujt1 ={2Uj}h.
Let j* the smallest j such that U; > K+/n. Using the induction relation, we
obtain that for some constant 1 > 0, j* < 4 In(K/e) for large enough n.
By convention, set Uy = {271 N};. By the Markov property, we obtain that
uniformly in y € {271 N},

i
PZ{}[T{]\]/}1 < T{Q}l] > PZ[H{TUz < 7'{0}1}}

=1
i . w g\ 72
> T ([ min PLlw < 701]) = (52) (2.18)

=1

for some constant v, > 0 and large enough n. Combining (2.16), (2.17),
and (2.18) we deduce

i Py[ > ] > 71 (75 )72 (2 19)
min T. n .
ye{2-IN} wl{0h K

for large enough n. Then by (2.14), (2.15) and (2.19) we obtain

P“’[T{N}l > e'/n | An] < Pw[T{Q*IN}l > ael/?n | Ay]
1)(1—a>e—%ﬁ2

L 16K (5 (2.20)
By the same argument, we can deduce that for all j > 1 we have
PulT(a-iny, > ale'n | An] < Py[To-G+ny, > ol tel/2y | Ay]
e\ =72 /1N (1—a)B%e 3 (1a)f
16K (7) (7) 2.21
N 27 2 (2.21)

for large enough n. Iterating (2.20) using (2.21), we deduce

S 2 3 j
) e\ 2 1\ (1—a)B%e 2 (4a)’
llr?isolipr[T{N}l >e/2n | An] < 16K ZO (2—]) (2) .
j:

(2.22)
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As a € (1/4,1), the last series is convergent. Define the function f in the
statement of Lemma 2.3 as

fe) = 16K i (%)‘W (;)(1_(1)%326_%(4@1"

Jj=0

Using the dominated convergence theorem, it is straightforward to show that
lim._ge~2f(g) = 0. This proves Lemma 2.3. O

In the next lemma, N still stands for |ey/n|. However, the quantities (like c,
0, B, ...) defined in the proof of the lemma are not related to the corresponding
quantities defined in the proof of Lemma 2.3. The next lemma controls the
“transversal fluctuations” of Xs,..., Xy, given A,,.

Lemma 2.4. We have P-a.s.,

limsupP, | max sup |X;(j)] > V2N | An} < g(e)
n—oo ie[[de]]jST{N}l

with lim. e 2g(e) = 0.

Proof. First, observe that, by symmetry, it suffices to show that there exists
g’ = ¢'(g) such that

1imsupr[ sup | X;(j)| > e VAN | An| < d'(e) (2.23)

n—00 jST{N}l

with lim._ge~2g’(¢) = 0 for some i € [2,d]. For the sake of simplicity, let us

take ¢ = 2 in the rest of the proof. Fix a € (1/2,1) and let

1—
2 0‘5—1/2
@

> 2.
We introduce the following sequence of events (cf. Figure 2),

G = sup | X2(j) — Xo(T2-xny,)| < 571/2@1@1\7}

jG(”'{z—kN}l’T{z—kHN}l]
for k > 1, with the convention that sup;cy{-} = 0. Then, we denote

B = {7a-#ny, <00} N {r2-kny, < T(0),}

for 6 € (0,1] and k > 1.
Now, observe that on the event B N (Ng>1G}.) we have that

sup | X2(j)| < e VAN

JST(NY,
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2=k N 2—k+1N

Figure 2. On the definition of Gj.

since o € (1/2,1). This implies that

Po| suwp [Xa()l < TVAN | AW| 2R [BEO () Gi) A

jST{N}l E>1

In order to prove Lemma 2.4, we will show that liminf,,_, . P, [Bg N (Nk>1Gr) |
A,] tends to 1 when e — 0. We start by writing

P [B0 () Gi) I An] =PulB | M) —pu[B 0 () Gr) T ]

k>1 k>1

P,[BY | An] — PL[BYNGE | A]. (2.24)
=1

=

From now on, we dedicate ourselves to bounding from above the terms P, [B§ N
G§ | Ay for k < [ | We have by the Markov property,

P,[ByNGE | A,
<P,[B) NG | Ay

1
— Bé c A
Pw[A] [ k> k> ]
1 C .
B Ay Z Z [B’(z’G’%’A"’T{z*kN}l = j’X(T{2*’“N}1) = y}
i<lon] ye{2=FN}y
Pw[Bé] y L ek |
< max  max PY sup (X (i) —y)-eq| > ¢ "N, A
i<T

Pw[A ]J<\.5"J ye{27FN} STio—k+1ny,
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<

max ng[ sup (X (i) —y)- e > é_l/zakN,A(l_(;)n]

ISTio—k+1ny,

Using again the Markov property, we obtain

Pw [An] 1 . Yy
Pw[B]H Z Pw[A” | Bk] Z yE{IQIy’?Nh PUJ[T{O}I > ’I’L]

By the same argument which we used in Lemma 2.3 to treat the term

min Pz [7’{0}1 > n]

ye{27I1N}h
(cf. the derivation of (2.19)), we obtain, for large enough n and all k < |22 ],
P,[B}] K2k
< e .
Pulfn] = n(=) (2.25)

for some positive constants v;, 72 and K from Lemma 2.3. Now, we need to
bound the terms

PY sup  |(X(1) —y) - ea] > V2N, A gy,

ISTo—k+1ny,

from above, uniformly in y € {27%*N};. In order not to carry on heavy notations
we treat the case yo = 0. However, as one can check, the bound we will obtain
is uniform in y € {27 N};. Let

Ep={(21,...,2q) € Z%: 2y = £|E7/20FN|}.
We start by writing

PY _ sup |X2(i)|>é_1/2akN,A(1,5)n

{27k 1INy,

YIte, < Tra—k+1N}, s T{o}, > (1 — d)n]

YirE, < T{g—k+1N}1U{0}1] +PY[rp, > (1 —0)n]. (2.26)
Let us bound the first term of the right-hand side of (2.26) from above. To do
so, we first write

=P
<P

Pg} [TEk < 7{27k+1N}1U{0}J < Pg} [T{571/2akN}2 < 7—{2*’°+1N}1U{0}1]
+P%[T{_é—1/2akN}2 < 7—{2*’“+1N}1U{0}1]' (227)
We treat the first term of the right-hand side of (2.27) (the method for the second
term is similar). Let L € (2,£7'/2) and divide the interval [0, |~*/2a* N |] into
intervals of size | L2~ %N |. Furthermore, let
[27FFIN] -1

FrR= U Uh

Jj=1
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We have by the Markov property,

PZ{) [T{efl/"“/akN}z < T{Q—k+1N}1U{0}1]

16— 1/24FN)
|L2—FN|

< P%[ (N Ty < T{z—kﬂN}lu{o}l}} (2.28)
j=1
[L™re~ Y2 (2a)k | —2
< H max Pz,zu[T{jl_LQ*’“NJ}g < T{2*’“+1N}1U{0}1]~

rar ze{(j—1)[ L2~k N]}2nF},

Let us show that

1
P? . _ < _ < =
G [T o, elTGLE2 AN < TmsaNpuon] S 3

for € sufficiently small and L sufficiently large belonging to (2,~/2). Consider
w € (4, L?), we have for z € {(j — 1)|L27*N|}2 N Fy,
POIT L2+ )2 > T(2-++1 N U{0}])
> Pi[T{27k+1N}1U{O}1 < w2 ?*N?2, TilL2- kN |} > w2_2kN2]
> P [Tro-rr1 Ny 0000, < w2 2FN?
— PL[T(j r2-r Ny, < w2 2N (2.29)
Using (i) of Lemma 2.1, we deduce
P;[Tra-r+1n) 000, < w2 N2 > 1 — Crw /2. (2.30)
Using (ii) of Lemma 2.1, we obtain for all j > 1,

2k AT2 w!/?
PL[T( L2k Ny, S w2 "N7| < Cs 7 (2.31)

Combining (2.29), (2.30) and (2.31) we obtain for all j > 1,
1/2
L

First, choose w sufficiently large such that Cyw=1/2 < 1 /4 and thus choose L
sufficiently large in such a way that Csw'/2/L < 1/4. We obtain

w

P [Tir2-r N} > Tia—r+iny ufo),] = 1 — Csw™ /2 = Cg (2.32)

1
PL[T(jL2-* N}, > T2-*+1N},0{0),] = > (2.33)
Now using (2.27), (2.28) and (2.33) we have since £~1/2 > L,
1\ L7 2 (2a0)" )
PY[TE, < T{a-r+1n},000),] < 16<§> . (2.34)
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Next, let us treat the term PY[rg, > (1 — &)n]. Let n = B~ 1& where 3 is a
positive constant to be chosen later. Then suppose that ¢ is sufficiently small
such that né=/2a* < 1 — ¢ and divide the time interval [0, [(1 — §)n]] into
intervals of size |n?6 a2 n|. Using the notation

[E7Y2aFN| -1

H(Ey) = U {7}2,

j=—[E-Y/2akN|+1
we obtain by the Markov property

PY[rg, > (1 —0)n]

[ [(1—-8)n] J

[n2é—1a2kn]

<Pilmecg U (G- DbPE e )il e n]]
=1

—1 2k ]

S( max PZ[rg, >n’e ta*n

(1-8)(nz~"/?ak) =22
) (2.35)
zEH(EY)

for n sufficiently large. We now bound the term P?[rgm, > 7% 1a?!n] from

above uniformly in z € H(E})). Using (i) of Lemma 2.1, we have
P [rp, > n°é ta?tn] < 055.
n

Since én~! = 3, choose 3 small enough such that C53 < 1/2. For ¢ sufficiently
small such that né=/2a* < 1 — ¢, we obtain using (2.35),

1\ (1-8)(8~"&/2ak) =2
) . (2.36)

PLlrs, > (1—d)n) < 4(5

Combining (2.26), (2.27), (2.34) and (2.36), we deduce that, P-a.s., for all large
In N

enough n and k < |15 ],

max  PY [ sup (X (7)) —y)-es] > E120kN, A(l,(;)n}

ye{2-FN}; i§7{27k+1N}1
INLTE 220" 1 (1-6)(8% e %)
< 16(§> + 4(5) . (2.37)

Using (2.25) and (2.37), we obtain for all large enough n and k < |28,

Pu[Bg N Gf | A

L& 2 (2a)k (1-8)(8%& ta™?%)
S CONNEEC) )
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We finally deduce that, P-a.s., for large enough n,

In N
In 2

PL[B] NGy | Al
k=1

0 L—1~—1/2(2a)k-
< Z,YIK'kawﬁlgf'm (16(1) c _|_4(}
k=1

(1=0)(B?& " a™?")
2 2) -

Observe that since o € (1/2,1), the series above converges. Let § = £'/2, we
have for ¢ < 1/4,

L 1-ap—1.-1/2(34)k

a

el
> P
k=1

= 1
SBNGE A <3 Kokt (16(5)
k=1

J(L)2CRE e
3) ~

Let

= l—ap-1.-1/209,)k
h(g) := Z’le’ka’m-«—lE—% (16(%) 2L (2a)
k=1
(L))

2

By the Lebesgue dominated convergence theorem, we have e 2h(e) — 0 as
e — 0. Using (2.24) and Lemma 2.3 (since § = £'/?) we have for ¢ < 1/4,

lim inf P, [Bg N Gw | An} >1— f(e) — h(e).

n—oo
k>1

This last term tends to 1 as ¢ — 0. Now, take ¢'(¢) := f(e) + h(e) to show
(2.23) and therefore Lemma 2.4. O

3. Proof of the UCLT

In this section we prove Theorem 1.2. The proof is similar in spirit to the
proof of Theorem 1.2 of [11], but it is greatly simplified in the present case by
the use of the heat kernel upper bounds. As in [11], we will consider “good”
sites (see Definition 3.1), where uniform estimates hold for the distance of Z™
and W, and then show that the random walk hits, with high probability, a good
site in small distance from its starting point.

In order to take advantage of the natural left shift on the space C(R) of
continuous functions from R into R, we will rather prove Theorem 1.2 for Z"
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assuming values in C (R ) instead of C'([0,1]). Then, the result for Z™ assuming
values in C([0,1]) will be easily obtained by the mapping theorem (cf. [4]). Let
¢ (C(R4),R) be the space of bounded uniformly continuous functionals from
C(R4) into R. In this section, we write W for the d-dimensional Brownian
motion with covariance matrix 3 from section 1. The first step is to prove the
following

Proposition 3.1. For all F' € €}(C(R4),R), we have P-a.s., for every H > 0,

lim sup
"0 ae[~H/n,Hy/n]?

Eo,[F(2")] ~ ELF(W))| = 0.

Fix F € ¢}(C(R4),R). We will prove that, P-a.s., for every £, H > 0,

sup B, o[F(2")] ~ BIFW)]| < 2 (3.1

2€[—H/m,Hy/n)d

for n large enough. Before this, we need to introduce some definitions and prove
an intermediate result. Let d be the distance on the space Cg, defined by

d(f,g9) = 3 27" min {1, -
ro =3 {1, sup 17 - 9(o)1}

with [ - || the euclidian norm on R?. Now, for any given ¢ > 0, let

he := max{h € (0,1] : PEEEHW(S)H > E} +P[§1£Ed(GSI/V, w) > 5} < g}

(3.2)
Observe that he > 0 for € > 0 and h, — 0 when ¢ — 0. Next, adapting section
3 of [11] we introduce the following

Definition 3.1. For a given realization of the environment w and N € N, we
say that x € Z% is (¢, N)-good, if

o min {n > 1: [E,[F(Z™)] - BIFW)]| <e, forallm >n} < N;

. Pgww[supsghg 27 (s)|| < e,s5ups<p,, d(0s2™,2™) < 5} > 1—¢, for all
m > N.

We now show that starting from a site € [~ H+/n, H+/n]?%, with high probabil-
ity, the random walk X will meet a (g, n)-good site at a distance at most h'v/n
before time hn (unlike as in [11], there is no need here to introduce the notion
of a mice site since by (2.1), every point in [—H+/n, H+/n]? is nice). We denote
by G the set of (g,7n)-good sites in Z.
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Proposition 3.2. Fix b’ > 0. For any e; > 0, we can choose € small enough
in such a way that we have P-a.s., for all sufficiently large n and all z €

[*H\/ﬁa H\/md:

(i) PZ[rg > hen] < ey;

(i) PE | sup;cp. 1 X () = X(O)] > B'v/i| < e
Proof. Fix e. Then, for any ¢’ > 0 there exists N such that

P[0 is (g, N)-good] > 1 — ¢’
By the Ergodic Theorem, we have P-a.s. for all n > nj(w),
|{z € [-2H/n,2H+/n]" and z is not (¢, N)-good}| < 5% Hn? | (3.3)
Let us define
Bad := {x € [-2H/n,2H+/n]¢ and z is not (¢, N)-good}

and Cub := [-2H/n, 2H/n%.
In order to show (i) we observe that for all € [—H+/n, H+/n]¢,

P?[rg > hen] < PY[X(hen) € Bad] + P [rcupe < henl. (3.4)

For the second term of the right-hand side of (3.4), we apply (ii) of Lemma
2.1 to obtain that P%[rcype < hen] < v2(he)'/2. Thus, we can choose & small
enough in such a way that PZ[rcype < hen] < e1/2. Then, using (2.1) and
the fact that |Bad| < 5%’H%n% for large n, we can show that uniformly in
r € BadN[—~H/n, H\/n]? we have P%[X (h.n) € Bad] < ;&' /h. for n sufficiently
large. Thus, choosing ¢’ sufficiently small in such a way that v1&’/he < e1/2 we
obtain P*[X (hen) € Bad] < e1/2.
To show (ii), we notice that

PL| sup [1X(j) = X(O) > W'Vn| = PSlrpeqoym < hen]  (35)

j<hen

with B(z,r) the euclidian ball of center z and radius r. Now, we can apply (ii)
of Lemma 2.1 to the right-hand term of (3.5) to obtain that

1/2

. he
PL| sup [ X(j) = X(O)] > H'v/n| <5575
j<hen h

Finally, choosing e sufficiently small such that y3h'/2/h’ < &1 we obtain (ii).
This concludes the proof of Proposition 3.2. a
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Proof of Proposition 3.1. Let us prove (3.1). Consider x € [—~H+/n, H\/n]%. We

start by writing
Eo,ulF(Z")] = BIFOV)| £ [Bo.u (F(Z") — Eox, ulF(27)]

+ ’Eazw(Eangw[F(Zn)} - E[F(W)])’
(3.6)

=U+V.
First, taking ¢ < £ we obtain V' < £/2 by definition of a (g,n)-good site. It
remains to treat the first term of the right-hand side of (3.6). Denote X’ :=
X — x. Now, observe that by the Markov property

U = [Eo. (F(2") - oy, (0.)[F(2")]) |
(3.7)

S Eezw‘F °oZ" —Fo en’l‘rg (Zn - n_l/QX;g)

We are going to show that for n sufficiently large we have uniformly in x €

[~H/n, Hy/n],
_ 5
Eg,w|F 02" —Fo0,-1,,(Z" —n "X )| < 5
for small enough €. Let M™ := Z™ fnfl/zX;g. Since F' is uniformly continuous,
we can choose n > 0 in such a way that if d(f,g) < n then |F(f) — F(g)| < .

Then, we have

B u|FoZ" — Fo en,ngM"’
—Eou||[FoZ" = Fof, 1M

B, | [Fo 2 = Fof, M
+ 20 FllocPo, [4(Z", 017y M) > 1]

1{d(Z",0,-1,,M™) < 77}}

1{d(Z",0,-1,, M™) > n}}

(3.8)

NG ON

<
Since he < 1, we have

Py, w [d(Zn7 en_lrgMn) > 77:|
< Py,uw [d(vaon*”rgMn) >1,Tg < hn} + P91w[79 > hen

[ Sup (|27 = O M| > 276 < he”}
te[0,n=17g] 2
21 M™) > 25 < hen + Po,ufrg > henl. (39)

n=lrg

< Po,w

+Pyw |:d(0n*17'g va 0
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Let F,, be the o-field generated by X until time 7g. We first decompose the
first term of the right-hand side of (3.9) in the following way:

Poo| sup 127 =1 M| > 37 < hen

te[0,n—17g]

<P swp 27>

+Poe| sup [B1r M| > 1]
“te[0,n"17g] 4

te[0,he]

=Py, w sup  ||1Z2"] >
-te[0,n"17g]

+ B0, (Prs ] s [0, 17 > 0| 7))
te[0,he]

=S S =3

+Eezw(P9XT W[ sup ||Z"||>ﬂD. (3.10)
9" Ltg[o,he] 4

=Py,w sup || Z"]] >
-te[0,n~17g]

We now deal with the second term of the right-hand side of (3.9):

Py, [d(en_ngZ“,eg M) > g,Tg < hsn]

_17_9

S Pezw [”X'Irg” > gn:| +P9acw {d(en_nganeifngMn) > 277—9 S han:|
<Poo| swp 27> 7]
te(0,n—17g] 4

3

0 ng(l{rg < hon}Pg,. [d(anngM",Hi,ngM") > ng])

n n
=P s 27> 7]
te[0,n=17g]

+ Eaiw(l{fg < hen}Poy [d(zn,e,rlmzn) > Z]) (3.11)
Combining (3.9), (3.10) and (3.11), we obtain
Po,w {d(Z", Qn,ngM") > 77} < szw[Tg > hgn]

+ 2P91w[ sup || Z"| > ﬂ

tel0,n—17g]
+ B, (Pox o] sup 27> 1] (3.12)
9 Ligo,h.] 4
+ l{Tg S hfn}P%(Tgw |:d(Z"7f7 onfngZn) > g:l)

On one hand, by definition of a (g, n)-good point, choosing small enough & > 0,
we have uniformly in x € [—~H+/n, H\/n]?,

Eezw(PeX,gw[ sup |27 > g] +1{rg < hgn}ngfgw[d(zn,en,lwzn) > ﬂ)
t€[0,he]
.
(3.13)

<
32[| Flloo
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for all sufficiently large n. On the other hand, by Proposition 3.2, for sufficiently

small €, we have uniformly in = € [~H+/n, H\/n]¢,

«_ ¢

~ 32| Flle
(3.14)

for sufficiently large n. Combining (3.13), (3.14) with (3.12) and (3.7)—(3.9), we
have U < £/2. Together with V' < £/2, this leads to the desired result. O

Po,w[Tg > hen] and Py, sup |27 > g

< _£
32[|Fl[ oo te(0m-1rg]

Denote by €,(C(R4),R) the space of bounded continuous functionals from
C(R4) into R and by B the Borel o-field on C'(R;). The next step is the
following proposition, its proof follows essentially the proof of Theorem 2.1
of [4] (cf. also Proposition 3.7 of [11]).

Proposition 3.3. The first statement implies the second one:

(i) for any F € €}(C(R4),R), we have P-a.s.,

lim sup Eo,w[F(Z™)] — E[F(W)]| =0;
N7 pe[—Hy/n,H+/n)?

(ii) for any open set G, we have P-a.s.,

lim inf inf Po,,[Z2" € G] > P[W € G].
n—oo ¢c[— H/n,H/m)d

Finally, we have Proposition 3.4, which is similar to Proposition 3.8 of [11].
Proposition 3.4. The following statements are equivalent:
(i) we have P-a.s., for every open set G,

lim inf inf Po,.[Z" € G] > P[W € GJ;
n—00 we—H/n, Hy/md

(ii) for every open set G, we have P-a.s.,

lim inf inf Py..[Z" € G] > P[W € G].
n—00 ze(—Hy/m,H/md

Proof. (i) = (ii) is trivial. Let us show that (ii) = (i). Suppose that there
exists a countable family H of open sets such that for every open set GG there
exists a sequence (Op)n=12,.. C H such that 1o, T 1¢ pointwise as n — oo.
By (ii), since the family H is countable we would have, P-a.s., for all O € H,

lim inf inf Po.,[Z" € O] > P[W € O]. (3.15)
n—00 e[ Hy/m, H]
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Then, the same kind of reasoning as that used in the proof of Proposition 3.3
to prove (i) = (ii) would provide the desired result. The fact that H exists,
follows from the fact that the space C(Ry) is second-countable. o

Proof of Theorem 1.2. One can check that it is straightforward (using the same
arguments as in the proof of Proposition 3.3) to deduce that (i), (ii), (iii) and
(v) of Theorem 1.2 are equivalent to statement (i) of Proposition 3.4. That is,
one can prove the equivalence of items (i)—(v) of Theorem 1.2. To conclude the
proof of Theorem 1.2, it remains to show that (ii) of Proposition 3.4 holds. By
Proposition 3.3, (ii) of Proposition 3.4 is equivalent to (i) of Proposition 3.3.
Since by Proposition 3.1, (i) of Proposition 3.3 holds, the proof of Theorem 1.2
is complete. O

4. Proof of Theorem 1.1

For the sake of brevity, let us denote in this section, the process DZ™
(resp. DX) by Z (resp. X). We also recall that W@ = (Wy,...,W,) is a
d-dimensional standard Brownian motion. In order to prove Theorem 1.1, we
first show convergence of the finite-dimensional distributions and then, in Sec-
tion 4.2, we prove the tightness of the sequence (P,[Z™ € - | Ay])p>1. For
e € (0,1), we recall that N := |[gy/n]. In this section for any set F' C R? we
denote

Br=inf{n >0:X(n) € F} and Bf =inf{n>1:X(n) € F}.

We start by recalling the transition density function of the Brownian meander
(see [14]) from (0,0) to (¢, 1)

(z2(1 —t2)~1/?)
(21(1 —t1)~1/2)

2 ~
q(0,0;t,21) = t 732z exp ( - %) (z1(1 —t)71/2) (4.1)
for 1 > 0,0 <t <1 and from (t1,21) to (t2,2)

2
N
q(ti, z15t2,22) = g(t2 — t1,$1,902)N

for 1, 19 >0, 0 < t; < t9 <1, where

for v > 0 and

= - B8 (- 222

for 1, zo >0 and 0 <t < 1.
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4.1. Convergence of finite-dimensional distributions

In this subsection, we prove the convergence of the finite-dimensional distri-
butions. A key ingredient is the decomposition according to the event Ay_. g,
see (4.3), which says that the random walk progresses enough in the desired
direction, without big fluctuations of the other coordinates, before it returns

to the hyperplane of the origin. In order to show that this event

has large

probability, Lemma 2.3 and Lemma 2.4 come into play, see (4.10) and (4.29).

First, let us consider then marginal for ¢t = 1.

Proposition 4.1. We have P-a.s.,

2
lim Pu[ZP(1) > u, ..., Z0(1) > ug | An] = exp(—u2/2) f[ e
e i=2. v2r
for all u = (uy,...,uq) € Ry x RI7L
Proof. First, we introduce some notations. Let
Dy={zeR:zy >uy,...,xq > uq}

and

dt, (4.2)

Repn={zecR: 2y =N,z €[-|e V2N, [e7V2N]],i € [2,d]}.

Let us denote R, ,, = DR, ,, and define the event
Ao—r = {Br.. < By}

We start by bounding the term P,[Z"(1) € D, | A,] from above.
(0,u1 A1) and consider the following decomposition

PL[Z™(1) € Dy | Ay

1
< n c
< oA (PuIZ"(1) € Dus A An] + PulAf 5, A
1
fr n < 1/2
ST (pw[z (1) € Do, Ao, An, Br.., < /)

+P,[2"(1) € Dy, Ao A, B, > al/%]) FPL[ASp |
< (Pw[An})ilpw[Zn(l) € Dua A0—>R7An7ﬂ7€em < 51/2"]
+ PW[ﬁRE,n > el/2p | An] + Pw[ 0-R | An]'

Since £!/2 € (0,1), we have

Pw[A(C)—>R | An] = Pw[ﬂRs,n > 5?})}1 | An]

(4.3)

Fix ¢ €

Ay

(4.4)



A conditional quenched CLT for random walks among random conductances 313

<P Br., >n|A) <P,Br., > | A (4.5)

Then, using the Markov property at time 8z, , we deduce

Pw[An] Pw[Zn(l) € Du’AO_’R7An7ﬂR5m < 51/271,]

Py [AOHR} y X(TL — ])
———— max max P |———
Pu[An] YE€Rc j<|e1/2n] Vn

IA

S Du, Anfj . (46)
Again, using the Markov property at time Sr_, we obtain

Py [An] :
— > PY[A,]. 4.7
Pu[Ao—Rr] — yg}gln [An] 4.0
Combining (4.4), (4.5), (4.6) and (4.7) we obtain
maXyep, , MaxX,<|.1/2,] PL[X (n —j) € Dyv/n, Ay —j]
minyeRa,n PY [An]

+ 2P, [BR. ,, > el/2p | Ay (4.8)

Pu[2"(1) € Du | A] <

Now, to bound the term P,,[Br. . > &'/?n | A,] from above we notice that

P, [ﬁRa,n > !/ | An] =Py, [TRa,n >e'?n | An]

<P max swp [Xi(j) >N A,
Zeﬂ27d]]j§T(N}l

+Pulring, > e/ | Ay (4.9)
By Lemmas 2.3 and 2.4 we have

limsup P, [Br. , > eV2n | Ay] < fe) + g(e). (4.10)

n—00

By definition of 2", we have PY[A,] = PY [2?(1) > 0,t € [0, 1}}. Thus, from
Theorem 1.2 we obtain, recalling that W, is the first component of W@,

. . Yy n — E01 3
nlggo UIEI}%? pY [Zl (t) > 0,t €0, 1]} P {02121 Wi (t) > 0} (4.11)
2
= P[[Wi(1)] < ov] = =L + o(e)

Ver

as ¢ — 0, where P? is law of W(® starting at  and oq := De; -e; > 0 (cf.
Section 1). Now, let us treat the term

PY[X(n — ) € Duv/my Api].
e max 41X (n —j) Vi, Ay
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Fix ¢’ > 0 and let sgn(z) = —1 if x <0 and 1 if x > 0. Denote

U = {Xz(n — 1eY%n]) > (u; — Sgn(ui)él)\/ﬁ} (4.12)

and
V= { max |X(n— [£Y2n]) — Xi(n — )| > 5'\/5} (4.13)

J<[et/2n]

for i = 1,...,d. Observe that we have for y € R.,, and j < [¢'/?n]

.

PLIX(n — j) € Duv/i, An ] < PY[ (Ui UVA) N A, ovsny |

i=1

Let us consider the set Z = {Uy,...,Uq4, V1,...,Vy} and denote by J the set

formed by all intersections of d distinct elements of Z: J contains (Qdd) elements.

Let us denote by Jp,..., J(Zd) all the elements of J. Therefore, we obtain
d

max PY[X(n—j) € Dy Auy] < Y pg[Ji,An_Lgl/sz]. (4.14)

j<let/2n] i<(2d)
=\da

Let us treat the term PY [N U;, A, _|c1/2)]- We have by definition of Z"

Py ﬁ Uss A (e

i=1

d
<[ {2 "W > (i —sen(d | 217 1) > 0.t € 0,1]].
=1
By Theorem 1.2 we deduce

d
limsup max PY [ ﬂ Ui,An_LEI/2nJ:|

n—oo YER: .
i=1

< PVi-elrz [Wl(l) > (uy — sgn(uq)d’), Ogltigl Wi(t) >0

d vel/?
< [[PV=27 Wi(1) > (u; — sgn(u;)")] (4.15)
=2

for some constant ;. Abbreviate &’ := o16(1 — £'/2)7/2 and let us compute
the first term of the right-hand side of (4.15) for sufficiently small e. By the
reflection principle for the Brownian motion, we have

e’ _ / :
P [W1(1)>(u1 sgn(un)d), min Wi(t) > 0
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= p¢ [Wl(l) > (uy — Sgn(ul)y)}
—p [Wl(l) < —(uy — sgn(m)y)}
- P[Wl(l) > (uy —sgn(uy)d’) — 5/}

- P[Wl(l) < —(uy —sgn(uy)d’) — 5/)}

(w1 —sgn(uy)s’)+e’
2
= — e 2dx.

V2r

(u1—sgn(u1)d’)—e’

Therefore, we obtain, as € — 0

limsup max PY [ﬂ U“An_tguznj]

n—oo YERen
=1
(ug —sgn(u1)s")?
— Ly —omn(uy)0 )7

< (26016271-(1 — + 0(5)> ﬁ / e\;%dt. (4.16)

v et/2

(ui _Sgn(u7 )5,)_ m

oo t2

The other terms PY[J;, A, _|.1/2,,|] necessarily contain a term Vj; for some
€ [1,d]. Thus, we have for J; # N%_, U,

d
PY[Jiy Ay o1/2n)] < D PY[V]. (4.17)
j=1

Let us bound the terms limsup,, ., max,cr, , PY[V;] for j € [1,d]. We start
by writing

=PY { max n—LEl/QnJ)—Xj(n—iﬂzé’\/ﬁ}

i< \_51/271]
(k) = X;(n — |£*/%n))| = 'V

I
o]

|: max
n—|el/2n|<k<n

IN

Pg)[ max <Z"(t) —  min Z]"(s)) > (5’}

1—et/2<¢<1 \ 7 1—el/2<s<t

+PY [ min (Zn(t) —  max Zn(s)) < —(5’} .

1—el/2<g<t \ 7 1—el/2<s<t J

By Theorem 1.2, we obtain

lim max PY [ max (Zj"(t) —  min Zjn(s)) > 5/}
n—o0 yER: n 1—el/2<t<1 1—el/2<s<t
- P| (Wi = min W) =¥ 418
e 5(t) | i(s)) = (4.18)
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and

lim max Pf)[ min (Zj"(t) —  max Zj"(s)) < —5'}

n—0o0 yeRe n 1-el/2<t<1 1—el/2<s<t
- P[ min (Wj(t) ~ max Wj(s)) < —5’] (4.19)
1—e1/2<t<1 1—el/2<s<t

Observe that the right-hand sides of (4.18) and (4.19) are equal since (—W)) is
a Brownian motion. Thus, let us compute for example the right-hand side term
of (4.18). By Lévy’s Theorem (cf. [18], Chapter VI, Theorem 2.3), we have

P{ max (Wj(t) — min Wj(s)) > 5'} :P{ max _|W;(t)| > d'|.

0<t<el/? 0<s<t 0<t<el/?

Then,

P[ max W, (t)| > 5’] < 2P[ max W(t) > 5/} = 4P[W;("/2) > §').

0<t<el/? 0<t<el/?

Using an estimate on the tail of the Gaussian law ([17], Appendix B, Lemma 12.9)
we obtain

451/4 5/)2
: > < e
P[Ogr?gg/z [W;(t)] > (5} SN exp { }

We finally obtain

d
) 8d€1/4 (6/)2
hrrlrisogp s i=1 Polvil = §'/2m b { 212 } (420)

To sum up, combining (4.11), (4.14), (4.16), (4.17), and (4.20), we have P-a.s.
limsupP,[Z"(1) € Dy | Ay]

n—oo

(ug —sgn(uq)s’)?
2

= (% + 0(6))71 (2601;(1 —i 0(8)>

oo

. _tZ
e 2
) dt
g / / V2r
(u;—sgn(u;)d’)— \/711;71/2
2d\ 8det/4 (&)?
+ < d) 5ar P { - 251/2} +2(f(e) + g(e)). (4.21)

Let us now bound the term P,[Z™(1) € D, | A,] from below. We have by
the Markov property

P,[Z™(1) € Dy | Ay
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P,[Ao—r, Or., <e'/?n]
) i in  PU[X(n — 5) € Dyv/m, An_j]-
- Pu[An] yg}é?njﬁrfelllgnj LX(n = 3) € Duv/n, Anj]

(4.22)

We first decompose the term (P,,[A,])"'Py[A0—R, Br

< £'2n] in the follow-
ing way

e,n —

Pu[Ao—r,Br.., <c'/?n] _ PylAo—r] Pu[Ao—rBr., > el/2n)
P, [A,] - P, [An] Py[An]
PW[AOHR]
P,[AL]

(1 -Pu[Br., >e'?n| Ao_g]). (4.23)
Then, we write

Pu[Br... >¢e'/n, Ao_g]
Py [AOHR}

P, [ﬁRe," > 51/271, A€1/2n]
Pw [AOHRa Asl/zn}
Pu[Br.. > | Ao,
1-"P, [A(C)*)R ‘ A€1/2n]

PulBr.., >/ | Ag_r] =

(4.24)

For the term P, [Br. , > €'/2n | A 1/2,,], we have, recalling that N = |ey/n],

PulBr.., >e*n|Aye,] =Pulrr., >0 | Ay,
<P max  swp |X;(j) > e VAN | A,
zG[[Q,d]]jST{N}l
+Pulriny, > e | A, (4.25)
By Lemmas 2.3 and 2.4 we deduce
limsup Py [Br. , > e'/?n | Aas,] < g(e¥%) + f(3/). (4.26)

For the term P, [A§_ g | Ac1/2,], we write

PW[ASHR | Asl/Qn] = PW[/@RE.H > ﬁzro}l ‘ Asl/zn] < PW[/GRE,H >e'/?n | Asl/zn]'
Hence, by (4.26) we obtain

lim sup Pu[AS_ g | Aci/zn] < FE¥/4) + g(e¥/4). (4.27)

Going back to the term (P,[A,]) 1P, [Ao_R] in (4.23), we write
Pw [AOHR] Pw [AO*)R]

Pw [An] B Pw [Ana AO—»R] + Pw [A’ru A(C)_,R}
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(Pl | Aomar]) + Pl 45 gl(Puldoi) )

-1

v

(Polibn | o] + Pl A5 ] (Pl Aor]) ™)

—1

(Pl | Aor] +PulA g | Anl(1 = PuAf_ 5 | Au))7)
(4.28)

By (4.10), we have

limsupPy[A§ x| An] < limsupP,[fr, , > e/?n | An] < fe) +g(e). (4.29)

n—oo n—oo

Then, we have by the Markov property

Pw[An | AOHR} < IEHI%X Pg)[An_le/sz] + Pw[ﬂRg_" > 61/27’L | AOHR]. (430)
Y e,n :

Thus, by (4.28), (4.30), (4.24), (4.26), (4.27), and (4.29), we deduce

1152ng (4.31)
. F(E*) + (%) fe)+g(e) 1
> (hrlgljolip yrenzi),(n P%[AnfLel/%J] + 1— f(€3/4) _ 9(53/4) + 1— f(g) _ g(g)> :

Combining (4.22), (4.23), (4.26), (4.27), and (4.31), we obtain P-a.s.

liminf P, [Z"(1) € Dy | Ay]

n—oo

. y F(E) + g(e/") fe) +g(e) 1
2 (112182? B e ey Ty S T g(@)
F(e) + (%)
(e gwm)

x liminf min  min PY[X(n — j) € Dyv/n, Ap—j]. (4.32)
n—00 YyeER: n j<el/2n

Analogously to (4.11) we have

260'1

m + 0(6). (433)

1 Y —
M B, Pl ] =

At this point, let us introduce more notations. Let ' > 0 be the constant used
in the definitions of V; and U; (cf. (4.12) and (4.13)) and introduce

E; = {Xl(n) > (u; + Sgn(ui)é')\/ﬁ}
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and

Fi={ max |X(n) - i(n—j)| < 'V}

j<le?/?n]

for i € [1,d]. Observe that for all y € R, ,, and j < [¢}/?n] we have

d
PLA(n — j) € Du/m, A y) 2 P (B N F), A
1;1 ;
> [ () BiAn| = D PUIFS], (4.34)
i=1 =1

By Theorem 1.2 and similar computations as those to derive equations (4.16)
and (4.20), we obtain for some constant s,

JE%MIE%?,LP‘I’[HEHA ] (%Z% p{ (uq +sg;1(u1)5') }+ ofe ))
g7
1=2

(uitsgn(u;)d’)—y2el/?

as ¢ — 0 and

d
Sdsl/4 (6"
- E Py [Ff _
h?fooupyrenlgjil P PLIFT] < 5 \/ﬂ { 2e1/2 } (4.36)

Combining (4.32), (4.33), (4.35), and (4.36), we obtain P-a.s.

liminf P, [Z"(1) € D, | Ay

n—oo

2e01 F(E3/%) + g(e3/%) fle) +g(e
e e R G R w7 w2k wy T e
S
o S E R

o0 t2
X ((ﬁe_M + 0(6)) ﬁ / M dt

~—
™
S~—"
~—
|
—

V2T ot V2T
T (ui+sgn(u;)d’)—y2el/2
8de!/* (0')?
— N exp{ 52 }) (4.37)

Finally, take 0’ = £/% and let ¢ — 0 in (4.21) and (4.37) to prove (4.2). a
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The next steps in showing that the f.d.d.’s converge are standard and we
follow [14] and [11].
First, we will prove the following

Proposition 4.2. We have P-a.s., for u; > 0, —00 < a; < b; < 00, i € [2,d]
and 0 <t <1,

lim P.,| 2} (1) <u1,ﬁ{z;l(t) € (ai,bil | | A

n— oo !
=2

Ul bz ’U2

expy —57

= /q(0,0;t v de dv. (4.38)

V21t

U
&

0 z=2

Proof. For ¢ > 0 we have

d

P, {Zﬁ(n—lmﬂ) <up—e,() {Zi”(n_antJ) e (a; —e,b; + s]} | An]
=2
A EAC <u1,ﬁ{zr<t) € (asbil} | A (4:39)
=2

<P, {Z{l(n_l [nt]) <up +e, ﬁ {Zi"(n_1 [nt]) € (a; +e,b; — 5]} | An}.
i=2

for all sufficiently large n. Now, suppose that we have for all u; > 0, a; < b;
and 0 <t <1,

lim P, [z?(nﬂmej) <y, (d] {zy(nfltntj) € (a;, Z]} A, }

n—oo

7
[

/oomdvﬂ/exp E} : (4.40)

Combining (4.39) and (4.40) yields (4.38) since the limit distribution ¢(0, 0; ¢, 2:1)
is absolutely continuous. Let us denote by I = I(¢,n) the quantity (n|nt|~)'/2.

N

We recall that x is the vector of coordinates (x1,...,z4). Then, observe that
d
Pu[Z(n 7 |nt]) < wr, () {2000 nt) € (as,bi]} | A
i=2
1

Pu[An]
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d
x e [2" (1) < o, ﬂ {21 € (i, 1]}, A, 21 () > 0, [nt] <k <

luy lba lbg
0 la2

[z}"“( ) € day, ﬂ {z}"”u) c dxi},Am,Xl(k) >0,|nt] <k < n]

lu1 lbg lbd

T

P, [Xl(k:) >0,|nt) <k <n|2"@1) e dn, (dj {z}””(l) c dxiH
=2
P, [zll”” (1) € dz1, (d] {z}”” (1) e dxi} | Am}

=2
lu1 lb2 lbd

Pw // /pw\/mzn()>oo<s<1—nltntﬂ
las

Pu

lag

P, {z}”ﬂ (1) € dz1, (d] {z}"” (1) € dxi} | Am]. (4.41)

i=2
By (4.7), (4.11), (4.31), and (4.33) we have P-a.s.

im Delfnid a2 (4.42)

Using Theorem 1.2 and Dini’s theorem on uniform convergence of non-decreasing
sequences of continuous functions, we obtain

lim 21" [zy(s) >0,0<s<1— n‘antJ} = N(Zl( t )1/2)

n— oo 1-t¢

uniformly in z on every compact set of the form [0, K] x [~ K, K]9~!. By Propo-
sition 4.1, we have

lim P, [thn”( <z, m {ZLntJ( ) < «T'L} \ Ant:|

n—oo
=2
T; 2
2?2 d exp{f%}
! d

V.

700



322 C. Gallesco, N. Gantert, S. Popov and M. Vachkovskaia

Now, applying Lemma 2.18 of [14] to (4.41), we obtain
d
lim P, {Z{L(n_antj) <u, {Z}L(n_antJ) (as, Z]} A, }

n— o0 !
=2

g t— /2 pyt—1/2 bat—1/2

[ [ (e

ast— 1/2 agt— 1/2
152
2 exp{ —1}
x7 2
X T1€ex {——} —— > dxq...dxy.

Finally, make the change of variables y = t'/?z to obtain the desired result. O

The final step in showing convergence of the f.d.d.’s is

Proposition 4.3. We have P-a.s., for all k > 1, u; > 0, —oo < aé < bz < 00,
ie[Lk]l,je[2,d]and 0 <t; <tg<--- <t <1,

k
tim P () {20(t) < iy Z5(t:) € (ab, b, . Z5 () € (ah Wil } | A
i=1

bt bk 2 )2 o 2
et eo{-Gml ) eo{ -Gy )

i) V2mt 2r(ts — t1)  A/27m(te — tr1)

dry ...dxry

a; a;?"
ul 73

X /~-~/Q(Oa0;t17$1)(1(t1,3€1;t27y2)~-~Q(tk717$k71;tk7$k)d$k---d$1-
0 0

(4.43)

Proof. The proof is by induction in k. This result holds for £k = 1 by virtue
of (4.38). Suppose (4.43) is true for k = m — 1, we show that it can be extended
to k=m. Let t, = n~!|t;n]| and let

={reR?: 2 < ul,a <z < bz,j € [2,d]}
for i € [1,m]. We mention here that in this proof, y* for i € [1,m] are all

elements of RY while y; for i € [1,m] belong to R. By the same argument as in
the beginning of the proof of Proposition 4.2, observe that

lim P, [ﬂ{zn ) €D} | An

n—oo
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:Jg@p[ﬂ{gn ) € D;}, ﬂ{z" ) €D} | An (4.44)

provided that the limits exist. Then, we write for sufficiently large n

[ﬂ{z” ) e Dy, ﬂ{zn ep}|An}

1=m—1

= / / Zntl GDl,...Z(m Q)GDm 2,

Dm—1Dm
2t ) edy™ 20t ) € dy™, (1)>o,...,X1(n)>o}

e

Dim—1Dm

P, [Z”(tl) €D1,.... 2" tm2) € Dy, 2t ) € dy™ ! | Amm_l]

X Pgm’l\/ﬁ{zy(s) >0,0<s<t —t | ZVt —t )€ dym}
X Pg”‘ﬁ[z?(s) >0,0<s<1-— t;n] (4.45)
By the induction hypothesis we have

11m PUJ [Zn(tl) € D17 .. ?Zn(tm_2) € Dm—27Zn(tl — ) € Dm_l | Antanljl

m—1
n—o00

d b; bt (y2—y1)®
H / / - 77 eXp{i 2(ta—t1) }
= V2 ot — )

X exp{ 2(tﬁm—1_tm72)

\/27T(tm,1 - tm,Q)

dym_1 e dyl

ult:nl_/f u'mflt;l_/lz
X / / q(0,0;t1 /trm—1,y1) q(t1/tm—1, Y15 t2/tm—1,92) - ..
0 0
X q(tm72/tm717 Ym—2; ]-v ymfl) dymfl e dyl (446)

On the other hand, by (4.42) we have P-a.s.

PUJ An
lim PelAntnoa] _ ey (4.47)

n— o0 P, [An]



324 C. Gallesco, N. Gantert, S. Popov and M. Vachkovskaia

Using Theorem 1.2 and Dini’s theorem on uniform convergence of non-decreasing
sequences of continuous functions, we obtain

Z"(ty, = ty—1) € Dy

m—1>
n— oo

lim pg’"‘lﬁ[zm) >0,0<s<t, —t
y -y 1)2} U

B eXp p—— _—
H \/—t dym ¥ g(t —tm—1,y1" ,v)dv  (4.48)
—lm 1

uniformly in y™~! on every compact set of the form [0, K] x [~ K, K]?~!, and

lim Pg"‘ﬁ[Zf(s) >0,0<s<1- t;n} N (1 —tn)~Y2)  (4.49)

n—oo

uniformly in y™ on every compact set of the form [0, K] x [-K, K]¢~!. Com-
bining (4.44), (4.45), (4.46), (4.47), (4.48), (4.49), and using Lemma 2.18 of [14]
twice, we obtain

lim P, [ﬂ{zn( )eDi}\An}
i=1
b; bm 2 (12711)2
ﬁ/ /exp{ 7} eXp{i 2(t2—t1) }
- - m \/ﬁ m .
(wm*wmf )2
eXp{— Q(tnl_tvn—ll) } d
27T(tm — tm 1)

.I‘m...dl‘l

71/2 1/2

Um—1 Uy, Y U —2t, ']

/ / / / q(0, 0381 /tm—1,91)

X q(t1/tm71,y1; tz/tm—l, Y2) ...
X q(tm—2/tm-1,Ym—2;1, ym—lt,_nl,/lz) dYym—1...dy

X g(tm = tm—1,Ym—1, ym)N(ym(l - tm)_l/z)dym- (4.50)
Now, make the change of variables ¢,/ L/2 Sy =21, ,t,ln/zlym,g = Zypm—2 in (4.50)
to obtain (4.43) for k = m. O

4.2. Tightness

In this section, to finish the proof of Theorem 1.1, we prove that the sequence
of measures (P,[Z™ € - | Ap])n>1 is tight P-a.s. The proof is standard: we con-
sider the modulus of continuity, divide the time interval into small subintervals,
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and have to control the probability of fluctuations of our conditioned process
over these small time intervals, where we use the results of the last subsection.
First, we define the modulus of continuity for functions f € C[0, 1]:

wy(8') = sup {17(s) = F()lloo}

[t—s|<

where s,¢ € [0,1] and || - || is the co-norm on R?. By Theorem 14.5 of [15] it
suffices to show that P-a.s., for every é > 0

hm limsup P, [wzn(8') > €| A,] =0 (4.51)
0’10 n—co
since Z™(0) = 0. Now observe that
Pufwzn () 2 2| Au] =Pu| sup [[27(t) = 27(s) ] = 2| A

jt—s| <&

<P sup [ X(t) - X(ns)llow 2 2VR | An|  (452)

|t—s| <267

for n > 2/6’. Let m := |1/40’] and divide the interval [0,1] into intervals
I, .= [k/m, (k+1)/m], for 0 < k < m — 1. Additionally, consider the intervals
Jy:=[(20+1)/2m, (21+3)/2m], for 0 <1 < m—2 and J,,,—1 := 0. Observe that

Pu| sup [X(nt) — X(ns)|o = £V | A

|[t—s]<267

< PwHkmax sup || (nt) — X (n8)]| o > é\/ﬁ}

<m—1gter,

U {lmax sup ||X(nt) — X(n$)|oo > é\/ﬁ} | An}

<m—1g e,

< m(kglax Pw[ sup [|X(nt) — X(ns)|le > Evn | An}

-1 s,tely,
+ max pw[ sup || X (nt) — X (1n8)||oe > Ev/7 | AnD (4.53)
I<m—1 s,teJ;

with the convention that supg ,;cq{-} = 0. Our next step is to bound from above
the limsup,,_,., of both terms in parentheses in the right-hand side of (4.53).
As an example, let us treat the terms indexed by Iy for k € [1,m — 1]. The
term indexed by Iy and those indexed by Ji, k € [1,m — 1] can be treated in
a similar way. To do that, we will use the same approach as in the proof of
Proposition 4.1. Analogously to (4.4) we have for € € (0,1) and § € (0,1),

P,| sup [|[X(nt) — X(ns)|e > EVn| Ay

s, tely

< (Pw[An])*le{ sup [|X(nt) — X(ns)|se > &V, Aoty Am, Br. . < O™

s, tely



326 C. Gallesco, N. Gantert, S. Popov and M. Vachkovskaia

+Pu[Br., > dnm ™ | Ap] +Pu[Br., >/ | Al (4.54)

Analogously to (4.6), we obtain

(Pw[An])_le[ sup || X(nt) — X(ns)|loe > v/n, Ao—r, An, Br.,, < (5nm_1}

s, tely,

Py[Ao—R] . _ )
————= max max Py[su X(nt—j)— X(ns— > ¢ n}
= TPUA] veRen jeitn) L, X (nt = j) = X(ns = j)lle = EVn

Now, observe that for all sufficiently large n

max pg[ sup [|X(nt — 5) — X(ns — 5)||o > éﬁ]
i<z s,tely,
<Py| suwp X (nt) — X(ns)] = &V (4.55)
s,tel;,

with I}, = [(k — 20)/m, (k + 1)/m]. Now, let I}/ = [(k — 3J)/m, (k + 1)/m].
By Theorem 1.2 and the estimate on the tail of the Gaussian law given in [17],
Appendix B, Lemma 12.9, we have

lim sup max P%{ sup |[|[X(nt) — X (ns)| oo > é\/ﬁ]

n—oo YERen S,tEI};

<d-P[ swp (Wi(t) = Wi(s)| > €]

s,tel;)

é

v

§8d-P[W1(

16d 2m
< e - — 4.56
T EV2mm Xp{ 8 } ( )

1430 }

since 6 < 1. We obtain

limsup max max Pf{)[ sup [|[X(nt —j) — X(ns — j)|leo > éVn

n—oo YERe n j<| 0] s,t€ly
16d 2
0 -, (457
gV 2mm 8

Thus, we have by (4.7), (4.10), (4.54), and (4.57)

lim sup pw[ sup || X (nt) — X(n8)]lsc = £V | An}
n— o0 s,tely
2e01 -1 16d 2m
< (=22 - -
< (5 t00) (g ow{ -5 }) + 7@+
+ limsup P, [Br., > onm™' | Ay]. (4.58)

n—oo
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Combining (4.53) and (4.58) we find

limsupr[ sup || X (nt) — X(1n8)||o = v/ | An}

n— oo [t—s|<26’

16d &2my /2e0q -1
= Qm(ém e - TKE +olo))
+ f(e) + g(e) + limsup P, [Br, , > Snm 1| An]) (4.59)

n—oo

Then, let ¢ = m™ and § = m~'/2 in (4.59). We have by (4.10)

limsupP,[Br., > dnm ™" | A,]

n—oo

= limsupP, [fr, , > Y2 | A,] < F(m3) + g(m™3).

n—oo

Therefore, we obtain

lim limsupP,| sup [|X(nt) — X(ns)|ec > V| An} =0.

Mm—00 n_so0 s.tely
, :

As ¢ is arbitrary and m = |1/4¢’ |, using (4.52), this last expression proves (4.51)

and consequently the tightness of the sequence (Pw (2" €| A"Dn>1' O
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