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Abstract

Many insurers have started to underwrite cyber in recent years. In parallel, they
developed their first actuarial models to cope with this new type of risk. On the port-
folio level, two major challenges hereby are the adequate modelling of the dependence
structure among cyber losses and the lack of suitable data based on which the model
is calibrated. The purpose of this article is to highlight the importance of taking a
holistic approach to cyber. In particular, we argue that actuarial modelling should
not be viewed stand-alone, but rather as an integral part of an interconnected value
chain with other processes such as cyber-risk assessment and cyber-claims settlement.
We illustrate that otherwise, i.e. if these data-collection processes are not aligned with
the actuarial (dependence) model, näıve data collection necessarily leads to a danger-
ous underestimation of accumulation risk. We illustrate the detrimental effects on the
assessment of the dependence structure and portfolio risk by using a simple mathe-
matical model for dependence through common vulnerabilities. The study concludes
by highlighting the practical implications for insurers.
text
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1 Introduction

Cyber insurance still is a relatively new, but steadily expanding market.1 Insurers who have
recently entered the market and started to establish their cyber portfolios, exploiting the on-
going growth in demand, are becoming increasingly aware of the challenges associated with
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1In 2015, the global market size was estimated at approximately $2 billion in premium, with US business
accounting for around 90%. A rapid market growth was projected, with total premium reaching $20+ billion
by 2025 ([7]). This estimate currently still seems within reach, with a global market size of around $7 billion
in 2020 ([26]).
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insuring cyber risk. These include the dynamically evolving threat landscape, interdepen-
dence of risks, heavy-tailed loss severities, and scarcity of reliable data to calibrate (nascent)
actuarial models. Particularly the last point is repeated like a mantra; and indeed, while
there are growing databases on cyber incidents and their consequences2, they often do not
contain the information necessary for the various tasks of an actuary. In fact, the best data
source which can be adjusted to contain all details to calibrate an insurer’s individual model
is the insurer’s own claims-settlement department. While an increasing number of claims in
cyber insurance strain insurers’ profitability margins, from the statistical point of view they
should be welcomed as the detailed and reliable data whose lack is so frequently lamented.
To make full use of the data collected in-house, however, the processes and systems around
the underwriting of a cyber portfolio need to be aligned using a holistic approach, where
risk assessment, product design, actuarial modelling, and claims settlement are treated as
complementary activities interconnected by feedback loops.

In this article, we aim at illustrating the importance for insurers of using the current
moment – namely when starting to underwrite cyber risk – to contemplate and establish
data-collection processes in risk assessment and claims settlement which allow them to ac-
tually use the collected data to calibrate and refine their actuarial models continuously.
Sections 2.1 and 2.2, respectively, address the cyber insurance value chain in detail to il-
lustrate the above mentioned interconnections and to introduce one particular approach to
modelling dependence in cyber, namely via common vulnerabilities.
In Section 3 we introduce a (purposely simplified) mathematical model capturing such a
dependence structure to illustrate that straightforward, näıve data collection necessarily
leads to accumulation risk being systematically underestimated, both in the statistical and
colloquial sense. We show that while this does not necessarily imply erroneous pricing of
individual contracts, it may lead to a dangerous underestimation of dependence and port-
folio risk. This is illustrated by comparing the common risk measures Value-at-Risk and
Expected Shortfall for the total incident number in the portfolio as well as the joint loss
arrival rate for any two companies in the portfolio.
Section 4 concludes and highlights the practical implications of this study for insurers.

2 Two Challenges for Cyber Insurance

2.1 A holistic approach to cyber-insurance underwriting

In recent years, various academic papers and numerous empirical studies have been devoted
to proposing stochastic models for cyber risk.3 Likewise, the establishment of cyber insurance
as a new business line has occupied many insurers and industry subsidiaries such as brokers,
see e.g. [6]. Whenever a new insurance line is introduced, the central tasks for actuaries
will be technical pricing of the to-be-insured risks and risk management of the resulting

2See e.g. PRC [1] for a publicly available dataset on data breaches and e.g. the commercial providers
Advisen [2] and SAS for more specialized datasets.

3For example, game-theoretic models based on a highly stylised understanding of the IT landscape ([17,
35]) or analyses of publicly available cyber loss data to propose frequency and severity distributions ([14, 15]),
to name opposite ends of the modelling spectrum.
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portfolio (or more precisely in cyber, risk management of an established portfolio, which
now additionally contains risks from cyber policies). Underwriting and pricing risks can be
done based on expert judgement for each risk individually4 or – more commonly – based on
a chosen mathematical model. In other words, actuaries have to devise an answer to the
question: “How (do we choose) to model cyber risk?” Equally important, however, and often
overlooked by academic papers, is the observation that it is not reasonable for actuaries to
come up with a (no matter how accurate) answer to the above question in the isolation of an
actuarial department. Instead, the chosen mathematical model needs to be simultaneously
based on and itself be the basis of the business processes surrounding actuarial modelling
along the entire economic insurance value chain. The development, calibration, and back-
testing of an actuarial model are only sensible if they are based on information and data from
risk assessment, product design, and claims settlement, as detailed below and illustrated in
Figure 1.

� Product design: Before even starting to devise an actuarial model, a clear-cut definition
and taxonomy of cyber risk(s) needs to be established in order to determine which aspects
of cyber are deemed insurable (anything else should be excluded from the coverage by
contract design) and which coverage components a cyber insurance policy should consist of.
This product design process naturally needs to be revised regularly with the involvement
of legal and market experts, as the cyber threat landscape as well as prospective clients’
coverage needs evolve dynamically.

� Risk assessment: The risk-assessment process serves to elicit information deemed rele-
vant to estimate a prospective policyholder’s susceptibility to cyber risk. For cyber insur-
ance, this process should naturally include an assessment of the client’s IT infrastructure
and existing cyber-security provisions. For an accurate assessment of such technical sys-
tems, cooperation with IT security experts is indispensable. However, how to adequately
include extensive qualitative knowledge about an IT system’s vulnerabilities and security
into a stochastic model is a complex, unresolved issue in itself. Nevertheless, the questions
asked and information gathered from prospective policyholders during the risk-assessment
process should depend on the actuarial model that is subsequently used for pricing of
individual contracts and risk management of the cyber portfolio.

� Actuarial modelling: The actuarial modelling step aims at developing a stochastic
model which allows an estimation of the distribution of each policy’s and the overall
portfolio’s loss from cyber risk. This serves as the basis for (technical) pricing and risk
management. The model should be calibrated – and ideally back-tested – using adequate
data (once available) and expert judgement. In summary, the choice of stochastic model
depends on product design (which types of cyber losses are to be modelled) and in order to
calibrate and develop it further, adequate data must be gathered through risk assessment
and claims settlement.

� Claims settlement: Claims settlement deals with incoming claims from cyber losses in
existing policies. In practice, this task is often treated completely disjoint from the above-
mentioned processes (except product design), and typically conducted by legal experts

4This is indeed common e.g. for very large risks in industrial lines.
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whose main concern is to understand the intricacies of each individual claim well enough
to judge whether and to which extent it is covered by the components of the policy. The
manner of data collection and storage is mostly dictated by legal (and efficiency) concerns.
For cyber it is relevant to stress that technical expertise cannot be expected in a classical
claims-settlement department. However, this is a crucial shortcoming: The information
that needs to be collected in order to make claims data usable for model calibration
is dictated by the choice of model. Vice versa, additional information collected may
uncover flaws or omissions of the actuarial model and support its continuing development.
Therefore, it is important to collect historical claims information with the underlying
actuarial model in mind. In cyber, it is well-established consensus that any actuarial
model needs to take dependence between cyber losses into account. The exact choice of
dependence model is of course an insurer’s individual decision5, but it is clear that if one
strives to calibrate such a model based on data, the model choice needs to be reflected in
the data-collection process from the insurer’s own claims experience.

Depending on the reader’s own practical experience, interconnection of the above pro-
cesses and cooperation between all stakeholders may sound like a utopia or a matter of course.
We agree that for established business lines, either may be the case, depending on whether
systems and processes were set up and continuously monitored intentionally or rather were
allowed to grow historically. It is clear that as cyber insurance is just being established, now
is the moment to intentionally set up this value chain in a way that enables insurers to cope
with the dynamic challenges of this new and continuously evolving risk type in the future.

2.2 Dependence in cyber via common vulnerabilities

It is uncontested that a core actuarial challenge in cyber risk is the failure of the indepen-
dence assumption between claim occurrences, which underlies the diversification principle
in insurance. Due to increasing interconnectivity, businesses, systems, and supply chains
become ever more dependent on functional IT infrastructure and crucially, more interde-
pendent. Therefore, including the modelling of dependence in an actuarial model for cyber
risk is indispensable. The actuarial literature discusses several approaches for this, most
commonly using epidemic spreading on networks / graphs (e.g. [17, 35]), based on (marked
/ self- or cross-exciting) point processes (e.g. [10, 28, 36]), or employing copula approaches
(e.g. [20, 24, 29]).
Regardless of the concrete modelling approach, dependence between cyber losses is worrisome
for insurers as it may entail accumulation risk, which can be defined e.g. as the

risk of large aggregate losses from a single event or peril due to the concentration
of insured risk exposed to that single event or peril.6

Of course, accumulation risk as a concern is not limited to cyber insurance; other lines of
business typically confronted with exposure concentrated to a single event are lines subject

5We will advocate for modelling common vulnerabilities as the source of dependence in cyber in the
coming sections, but the exact choice of dependence modelling is irrelevant for this argument.

6Compare the definition of risk exposure accumulation by Casualty Actuarial Society (https://
www.casact.org/).
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Figure 1: The diagram illustrates the interconnections between different tasks in a holistic insur-
ance value chain. While actuaries are typically mainly involved in risk assessment and actuarial
modelling, there are crucial connections to other areas which must not be overlooked. In particular,
the necessity to create awareness that meaningful data, which can (and should) be tailored to the
chosen acturial model, is being collected daily in the claims-settlement department (usually by a
completely disjoint group of experts, who do not have actuarial modelling aspects on their agenda
of primary concerns) should be emphasized.

to natural catastrophes7 or marine insurance (see e.g. [4]).

Following the classical decomposition of risk into a combination of threat, vulnerability,
and impact (see e.g. [23]), a cyber threat only manifests itself as an incident (with potential
monetary impact) if there is a corresponding vulnerability in the target system. Therefore,
we postulate that any cyber incident is caused by the exploitation of a vulnerability in
the company’s system, where it can be distinguished between symptomatic and systemic8

vulnerabilities (see [12, 11]), the former affecting a single company while the latter affect
multiple companies simultaneously. Commonly cited examples of systemic vulnerabilities
are the usage of the same operating system, cloud service provider, or payment system,
affiliation with the same industry sector, or dependence on the same supplier.

Example 1. We give two recent examples of common vulnerabilities which prominently
exposed many companies to a cyber threat simultaneously. The following information and
more technical details on both examples can be found in the report [33]. These examples serve
to illustrate that in some cases, it might be quite obvious for an insurer to determine from
incoming claims data that several cyber claims are rooted in the same common vulnerability,

7For example, Hurricane Katrina has been named as the most expensive event ever to the insurance
industry world-wide, see [3].

8We remark that some authors (see the recent survey paper [9]) employ a slightly diverging nomencla-
ture: They denote dependency of cyber risks from common vulnerabilities as systematic risk and, in turn,
understand systemic risk to mean cyber risk due to contagion effects in interconnected networks.
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whereas in other cases this is very difficult to detect.

� Microsoft Exchange: In the first quarter of 2021, threat actors exploited four zero-day
vulnerabilities in Microsoft Exchange Server. The attacks drew widespread media atten-
tion due to the high number of affected companies (estimates of 60.000 victims globally, see
[34]) within a short time frame, enabled by the ubiquitous use and accessibility of Exchange
Servers at organizations world-wide and by their ability to be chained with other vulnera-
bilities. Due to the massive media coverage, leading to high awareness among companies,
and the relatively clear time frame (the attacks had begun in January and were rampant
during the first quarter of 2021), it was relatively easy for insurers to identify whether
incoming cyber claims during (or slightly after) this time frame were rooted in one of the
Microsoft Exchange vulnerabilities.

� Print Spooler / Print Nightmare: In the third quarter of 2021, several zero-day
vulnerabilities were disclosed in Windows Print Spooler, another widely used service in
Windows environments. As mentioned in [33], the same service was already exploited in
2010 in the so-called Stuxnet attacks. Stuxnet was a malicious worm consisting of a lay-
ered attack, where Windows systems were infected first (through zero-day vulnerabilities),
but not the eventual target; i.e. the infection would have usually stayed undetected in the
Windows system and seeked to propagate to certain (Siemens) PLCs (see, e.g., [18, 32]).
These 2010 attacks were not immediately connected to an insurance context. However,
if an analogous mechanism (e.g. through the recent Print Spooler vulnerabilities) were
to cause cyber insurance claims, it would certainly be hard to attribute all claims to the
same common vulnerability for two reasons: First, the eventual target system where the
(economic) impact is caused differs from the system affected by the common vulnerability
and second, the time frame is much less clear than in the previous example, as the delay
between exploitation of the vulnerability and economic impact is somewhat arbitrary.

In any case, in order to calibrate a model that uses common vulnerabilities as the source
of dependence, an insurer needs to collect at least some information about the root cause
for each claim to be able to estimate the dependence structure correctly. We now give a
very general overview of how information on common vulnerabilities would be reflected in
the insurer’s risk modelling process, before introducing a more concrete, slightly simplified
mathematical model in Section 3.

2.3 Notation

Assume that an insurer’s portfolio consists of K ∈ N companies. From the viewpoint of
each company, indexed i ∈ {1, . . . , K}, cyber incidents arrive according to a simple point

process with corresponding counting process (N (i)(t))t≥0 =
(
|{k ∈ N : t

(i)
k ∈ [0, t]}|

)
t≥0

, in

the simplest case a homogeneous Poisson process with rate λi > 0. This rate may differ
between companies (i.e. some are assumed to be more frequently affected than others) and
the main focus of cyber risk assessment (e.g. via a questionnaire, see [19] for a blueprint, or
a more extensive audit for larger risks) is to gather information about characteristics which
are considered relevant to determine a prospective policyholder’s rate (classical covariates
are e.g. company size, type and amount of data stored, types of business activities, see e.g.
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[15, 30, 31]).
As the λi are naturally unknown, the insurer usually estimates them given past claims ex-
perience of similar policyholders (depending on the portfolio size, more or less homogeneous
groups would be considered similar). The overall arrival of incoming incidents to com-
pany i is actually composed of several (assumed independent and Poisson) arrival processes
(from idiosyncratic incidents and common events), i.e. the overall Poisson rate for company
i ∈ {1, . . . , K} decomposes into

λi = λi,idio +
∑
s∈S∗

i

λs,syst > 0, (1)

where λi,idio ≥ 0 is the rate of idiosyncratic incidents arriving to company i, possibly modelled
as some function of the covariates9, S∗i ⊆ {1, . . . , S} is the subset of S known systemic risk
factors (any common factor through which multiple companies in the portfolio could be
affected simultaneously) present at company i and λs,syst ≥ 0 is the overall occurrence rate
of an event due to exploitation of systemic risk factor s ∈ {1, . . . , S}. In this modelling step,
several “pitfalls” could occur:

(1) If questions about relevant covariates are omitted during risk assessment (i.e. because
their influence on the frequency of cyber incidents is unknown), this may introduce a bias
when estimating λi,idio (in either direction, i.e. over-/underestimation depending on the
covariates).

(2) If certain systemic risk factors are unknown and therefore not inquired about during risk
assessment (e.g. no question about the choice of operating system or cloud service provider)
for some or all companies, a systematic underestimation of the true rates is introduced,
as the set S, resp. subsets S∗i , do not contain all possible events.

The errors (1) and (2) should be mitigated by refining risk assessment procedures contin-
uously based on expert input and evaluation of claims data. This leads to the main point
of inquiry in this article: Given (correct) assumptions about covariates and systemic risk
factors, the goal is to enable the insurer to estimate the corresponding rates, both idiosyn-
cratic and systemic, using historical claims data. As the insurer monitors incoming claims
over a policy year [0, T ], where typically T = 1, in addition to client-related data and basic
claims-related data, usually a description of the incident (i.e. the order of occurrences that
lead to a monetary loss) is provided by the client. This is unstructured data, and depend-
ing on the case could e.g. be given in the form of a phone conversation or e-mail report
to an insurance agent or via a scanned PDF containing a report of an IT forensics expert.
This information is typically reviewed by the insurance agent in order to decide whether
the claim is covered, but may not or only in abbreviated form be entered into the insurer’s
claims database. This means that information allowing claims to be identified as stemming
from the same systemic vulnerability is often not available or (fully or partly) discarded. In
the following, we illustrate the detrimental effect of this omission of information about the
extent of systemic events on the estimation of dependence and portfolio risk.

9For example, fitting a standard GLM or GAM here would be common practice.
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3 Mathematical model

To quantify the effect we have introduced and discussed on a qualitative level in Section 2,
we now construct a simple mathematical model which captures common events (‘shocks’)
and allows to analyze the effect of underestimating the extent of joint events.

3.1 An exchangeable portfolio model and the modelling of missing
information

We assume that the insurer’s portfolio consists of K ∈ N homogeneous companies and let
∅ ⊂ I ⊆ {1, . . . , K} denote a non-empty subset of the portfolio affected by a common event.
Assume that cyber events (to any set I) arrive according to independent, homogeneous
Poisson processes. In theory, each subset I could potentially have a different arrival rate of
common events, leading to the prohibitive complexity of needing to estimate 2K − 1 rates.
To avoid the curse of dimensionality, we make the following assumption.

Assumption 1 (Exchangeability: Equal rates for subsets of equal size). Assume that arrival
rates only depend on the number of companies in the subset, i.e. the insurer aims at esti-
mating a vector of K arrival rates λ := (λ|I|=1, . . . , λ|I|=K), where λ|I|=k denotes the arrival
rate of events affecting any subset of size k ∈ {1, . . . , K}.

We denote as model (M) the model given these ‘true’ rates λ.10 Assumption 1 leads to
homogeneous marginal arrival rates λi, i ∈ {1, . . . , K}, for each company of

λi =
K∑
k=1

λ|I|=k(
K
k

) (
K − 1

k − 1

)
=

K∑
k=1

k

K
λ|I|=k =

λ|I|=1

K︸ ︷︷ ︸
idiosyncratic incidents

+
K∑
k=2

k

K
λ|I|=k.︸ ︷︷ ︸

incidents from common events

(2)

Note that (2) is a simplified formalisation of (1).
It is well-known that the maximum likelihood estimator of the rate of a homogeneous Poisson
process is given by the sample mean (see e.g. [13]) over the observation period, i.e. in our
case each estimator λ̂|I|=k is given by the mean total number of observed events affecting
precisely k companies11, i.e. for L > 0 observed policy years

λ̂|I|=k =
1

L

L∑
ℓ=1

n̂
|I|=k
ℓ ,

10Note that model (M) describes a setting where the first claim-arrival times, denoted τ = (τ1, . . . , τK) ,
of the companies in the portfolio follow an exchangeable Marshall-Olkin distribution, see [22], p. 122ff. Note
that in contrast to [22], we denote by λ|I|=k the arrival rate of the Poisson process that is essentially the
superimposed process of all arrival processes to subsets of size k, i.e. the rate for every particular subset of

size k would be (independently of the subset) given by λk := λ|I|=k

(Kk)
. For example, for k = 1, λ|I|=1 describes

the overall rate of events affecting one single firm. As the model is exchangeable, each firm is equally likely
to be affected by such an event, i.e. from the viewpoint of each of the K firms, these events arrive with rate

λ1 = λ|I|=1

K .
11For simplicity, we assume policy years of length T = 1, during which the portfolio does not change.
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where n̂
|I|=k
ℓ is the number of observed events to subsets of size k during policy year (or

simulation run) ℓ ∈ {1, . . . , L}.

Assumption 2 (Missing information on common events). Assume that, independently for
each common event to a subset of any size |I| ≥ 2 and independently for each company in
the subset, i.e. i ∈ I, the probability that the arrival at this company is correctly identified as
belonging to the common event (affecting all companies in I) is given by p ∈ [0, 1].12

Example 2. To illustrate Assumption 2, consider the following situation: A vulnerability in
a commonly used software could be exploited, leading to hackers gaining access to confidential
data which allowed them to defraud several companies throughout the policy year. After the
policy year, when historical claims data is analyzed, all incidents in the database are first
considered independent. Those incidents where detailed information is available, in this case
that the original cause of the loss was the exploit of the common vulnerability, are then
identified as belonging to a common event. If originally five companies were affected in this
way, but only for three of them the required information was available, instead of (correctly)
counting one observed event on a subset of five companies (contribution to the estimator

λ̂|I|=5), the insurer would (incorrectly) count one event on a subset of three companies and

two independent incidents (contribution to the estimators λ̂|I|=3 and twice to λ̂|I|=1).

Mathematically, Assumption 2 means that the Poisson arrival processes to subsets of size
|I| = k ≥ 2 are subject to thinning (with probability (1− pk)) and superposition of (K − k)
other Poisson arrival processes.

Definition 1 (Model (M̃) - missing information). Assumption 2 leads to a different model,

denoted (M̃), with Poisson arrival rates denoted λ̃ := (λ̃|I|=1, . . . , λ̃|I|=K) given by

λ̃|I|=1 = λ|I|=1 +
K∑
i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)
+

max(i−1,2)∑
j=2

(i− j)fBin(j; i, p)
]
, (3)

λ̃|I|=k =
K∑
i=k

λ|I|=ifBin(k; i, p), k ∈ {2, . . . , K}, (4)

where fBin(k; i, p) =
(
i
k

)
pk(1− p)i−k is the p.m.f. of a Binomial distribution.

Remark 1 (Interpretation of the rates λ̃). The rates λ̃ can be interpreted as follows:

� For k = K, the rate in the model with missing information is given by

λ̃|I|=K = λ|I|=KfBin(K;K, p) = λ|I|=KpK ,

i.e. the original rate thinned by the probability that all (of the K independently investigated)

incidents are identified correctly. Note that for p ∈ [0, 1), λ̃|I|=K < λ|I|=K, i.e. the rate of
events that jointly affect the whole portfolio is obviously lowered.

12A straightforward generalisation would be to assume different detection probabilities for different event
sizes, i.e. a vector p := (p|I|=2, . . . , p|I|=K). Intuitively, this may e.g. be used to represent the assumption
that incidents from larger events are more likely to be detected, as such events are often subject to public
coverage (see e.g. the Microsoft Exchange example above) and therefore insurers may already be alert to
check if recorded claims belong to this same root cause.
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� For 1 < k < K, the rate in the model with missing information is given by the sum of
the original rate for i = k thinned by the probability of classifying all k incidents correctly
(summand for i = k) and the rates resulting from the probabilities of misclassifying events
to more than k firms incorrectly such that they are counted as events to k firms (summands

for i > k); compare Example 2. λ̃|I|=k can thus be higher or lower than λ|I|=k, depending
on λ and p. However, in general, the cumulative rate of ‘small’ events (i.e. all events up
to any size k) does not decrease, i.e.

k∑
i=1

λ̃|I|=i ≥
k∑

i=1

λ|I|=i, ∀k ∈ {1, . . . , K}.

� The rate for idiosyncratic incidents in model (M̃) is given by the sum of the original rate
(these incidents are never “misclassified”) and all the “fallout” from classifying common
events incorrectly: If for an event to a subset of size i, none or only one of the firms
are classified correctly, all i incidents will be counted as idiosyncratic (first part in square
bracket in (3)); if j ≥ 2 firms are attributed correctly, the remaining i − j are classified
as idiosyncratic (second part in square bracket in (3)). Therefore, for p ∈ [0, 1), it holds

λ̃|I|=1 > λ|I|=1, i.e. the rate of idiosyncratic incidents is increased.

Lemma 1 (Marginal rates remain unchanged). The marginal arrival rates for each company

stay unchanged between model (M) and model (M̃), i.e.

λ̃i = λi =
K∑
k=1

k

K
λ|I|=k, i ∈ {1, . . . , K}.

Proof. Intuitively, the statement is clear, as an incorrect (non-)identification of common
events does not lead to missing a claim, but to wrongly attributing its cause. A formal proof
is given in Appendix A.

The interpretation of Lemma 1 is of high practical relevance: For pricing of (cyber)
insurance policies, usually only the individual loss distribution of a company is taken into
account. As the marginal arrival rates stay unchanged, prices for all individual insurance
contracts would stay unchanged (i.e. ‘correct’) between models (M) and (M̃). This means
that omitting information about common events would not lead to mispricing of individual
policies. This identity of marginal rates is dangerous, as the crucial oversight of underesti-
mating the extent of common events would not be evident as affecting (average) profitability,
but only in a (worst-case) scenario that an unexpectedly large loss (exceeding the estimated

risk measure, typically Value-at-Risk, which may be much smaller in model (M̃) than the
actual one in model (M), see next section) manifests.

3.2 Implications for dependence- and risk-measurement

Portfolio Value-at-Risk

Despite the marginal rates staying unchanged when moving from (M) to (M̃), see Lemma 1,
omitting information about common events may have dangerous implications for risk man-
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agement. We first illustrate how it may lead to an underestimation of portfolio risk, measured
e.g. by Value-at-Risk, denoted VaR1−γ, of the total incident number in the portfolio in a
policy year.13 VaR1−γ for a r.v. X in an actuarial context (where positive values denote
losses) is defined as

VaR1−γ(X) = inf
{
x ∈ R : P(X ≤ x) ≥ 1− γ

}
, γ ∈ (0, 1). (5)

Note that the overall incident number in a portfolio of size K follows a compound Poisson
distribution, i.e.

S(T ) :=

N(T )∑
i=1

Zi, where N(T ) ∼ Poi
(
T

K∑
k=1

λ|I|=k
)
,

{Zi}i∈N i.i.d. with P(Zi = k) =
λ|I|=k∑K
k=1 λ

|I|=k
, ∀k ∈ {1, . . . , K}.

The rate
(∑K

k=1 λ
|I|=k

)
corresponds to the overall Poisson arrival rate of events (of any

size), and {Zi}i∈N correspond to the associated “jump sizes” of the total incident number,
i.e. the number of companies affected in the ith event. Therefore, we can use the Panjer
recursion formula (based on [27]) to compute the probability mass function (p.m.f.) and
corresponding cumulative distribution function (c.d.f.) and Value-at-Risk (as in Equation

(5)) of the total incident number in a policy year under models (M) and (M̃) for chosen λ
and p ∈ [0, 1]. We choose an exemplary set of rates for a portfolio of size K = 10 as given

in Table 1, where λ again denotes the rates of an original model (M) and λ̃ the rates of the

corresponding model (M̃) resulting from Assumption 2.
Figure 2a displays the p.m.f. under model (M) and highlights the comparison of VaR0.995

for p = 1 (full information, i.e. original rates), p = 0.5 (partial information about common
events, compare Table 2), and p = 0 (no information about common events, i.e. complete
independence assumption). Figure 2b compares VaR1−γ for (1 − γ) ∈ {0.95, 0.995} and

p ∈ [0, 1], based on the c.d.f. of total incident numbers under the rates λ and λ̃. This small
example already highlights the importance of gathering (full!) information about the origins
of cyber incidents, as otherwise the portfolio risk will be drastically underestimated.
Finally, let us mention an observation that can be made by considering the p.m.f. (and
corresponding c.d.f.) for different p ∈ [0, 1], as exemplarily depicted in Figure 3: When

moving from (M) to (M̃), no events / incidents are missed completely, thus the c.d.f.s of the
total incident number in the portfolio are not ordered in the sense of usual stochastic order,
i.e. it does not hold that for all x ≥ 0 : FS

M̃
(T )(x) ≥ FSM (T )(x), where SM(T ) (resp. SM̃(T ))

denotes the total incident number under model (M) (resp. (M̃)).
We have observed, however, from the results illustrated in Table 2 and Figure 2, that this
ordering of c.d.f.s does hold for certain large values of x. Figure 3b shows that indeed it holds
exactly for large values of x, more precisely x > x0 for some x0 ≥ 0, i.e. the so-called single-
crossing condition or cut-off criterion (see e.g. [25]) is fulfilled here. This is meaningful as

13For the sake of simplicity, we only consider incident numbers here, as of course the results would not
be qualitatively different if for an insurance application, one were to equip each incident with a (random)
monetary loss size.
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Model p |I| = 1 |I| = 2 |I| = 3 |I| = 4 |I| = 5 |I| = 6 |I| = 7 |I| = 8 |I| = 9 |I| = 10

(M) 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(M̃) 0.5 29.49 1.93 1.77 1.45 1.00 0.55 0.23 0.07 0.01 0.0010

(M̃) 0 55.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Original rates and resulting rates for p = 0.5 (i.e. for each event affecting a subset of at least
two firms jointly, the incident at each firm is attributed correctly to this event with probability
p = 0.5 and otherwise incorrectly seen as independent as a result of not being able to identify
the common root cause) and p = 0. By partially omitting information about common events, the
resulting idiosyncratic rates are much increased, rates of smaller common events (here up to |I| = 4)
are also increased, whereas rates of larger common events (here from |I| = 6 on) are lowered.

Model p λi (i ∈ {1, . . . ,K}) E[S(T )] VaR0.95(S(T )) VaR0.99(S(T )) VaR0.995(S(T ))

(M) 1 5.5 55 90 107 113

(M̃) 0.5 5.5 55 76 86 90

(M̃) 0 5.5 55 68 74 76

Table 2: Resulting marginal rates (homogeneous for all companies), expected total incident num-
bers, and risk measures VaR1−γ(S(T )) at three levels for p ∈ {0, 0.5, 1} and T = 1. Crucially,
marginal rates and thus expected incident numbers E[S(T )] do not change (by Lemma 1 and lin-
earity), while VaR1−γ(S(T )) at all chosen levels is systematically lowered when common event
information is partly or fully disregarded.

it is a sufficient condition for another (weaker) type of stochastic order, so-called increasing
convex order, which has an important connection to the class of coherent risk measures; this
will be addressed more generally in a subsequent section.

Quantifying dependence by joint loss arrival rate

From a practical viewpoint, the illustrations of the last section already emphasize the detri-
mental effects of missing information about common events. Theoretically, there are different
quantities one might use to assess the extent of “missed / overlooked dependence” in model

(M̃) compared to the true model (M). From a risk management perspective, it is clear that
simultaneous losses by multiple policyholders carry potentially greater risk than independent,
diversifiable losses. Therefore, one might look at the instantaneous rate of two policyholders
i, j ∈ {1, . . . , K}, i ̸= j, simultaneously experiencing a cyber claim.14 As arrivals of cyber
incidents to policyholder i ∈ {1, . . . , K} follow a Poisson process with rate λi (see (2)), the
first arrival time, denoted τi, follows an exponential distribution and for small T > 0 it holds
by a first-order Taylor expansion

P(τi ≤ T ) = 1− e−λ
iT ≈ 1− (1− λiT ) = λiT ⇐⇒ 1

T
≈ λi

P(τi ≤ T )
.

14As we are assuming an exchangeable model, w.l.o.g. i = 1, j = 2.
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Figure 2: Panel 2a shows the p.m.f. of the total incident number for parameters as in Table 1 and
again T = 1. The solid vertical line depicts the corresponding VaR0.995 if full information about
common events is available (p = 1), i.e. all incidents are classified correctly. The dashed lines depict
analogously VaR0.995 for partial information (p = 0.5, i.e. for each event on average half of the
resulting incidents are attributed correctly), and no information (p = 0, i.e. all incidents regarded
as idiosyncratic) about common events. In both latter cases, the true risk is clearly underestimated
(compare VaR0.995 for p = 0 with the ‘true’ underlying distribution!). Panel 2b shows VaR· for
(1− γ) ∈ {0.95, 0.995} and p ∈ [0, 1] (in steps of ∆ = 0.01), based on underlying rates λ and λ̃. As
expected, the lower the probability p of correctly identifying a common root cause, the more severe
is the resulting underestimation of the risk.

This implies for the instantaneous joint loss arrival rate

lim
T↘0

P(τi ≤ T, τj ≤ T )

T
≈ lim

T↘0

λiP(τi ≤ T, τj ≤ T )

P(τi ≤ T )
= λi lim

T↘0
P(τj ≤ T | τi ≤ T ) = λi LTDC , (6)

where τi, τj are the first arrival times of a cyber claim to policyholders i and j, respectively,
and LTDC denotes the lower tail dependence coefficient of the bivariate copula C of (τi, τj).
We know (see [22], p. 122ff) that by Assumption 1 the survival copula of the random vector of
allK first claim-arrival times, (τ1, . . . , τK), is an exchangeable Marshall–Olkin (eMO) survival
copula, and its two-margins (i.e. the survival copula of (τi, τj)) are bivariate Cuadras–Augé
copulas with parameter α given by15:

α = 1−

∑K−1
i=1

(
K−2
i−1

)
1

(Ki )
λ|I|=i∑K

i=1

(
K−1
i−1

)
1

(Ki )
λ|I|=i

= 1−
∑K−1

i=1

(
K−2
i−1

)
λi∑K

i=1

(
K−1
i−1

)
λi

. (7)

From (7), some interpretation of α is immediately visible:

� Comonotonicity occurs iff only common events to the whole portfolio occur, i.e.
α = 1 ⇐⇒ λK > 0, λi = 0 ∀i ∈ {1, . . . , K − 1};

� Independence occurs iff only idiosyncratic incidents occur, i.e.
α = 0 ⇐⇒ λ1 > 0, λi = 0 ∀i ∈ {2, . . . , K}.
15See the previous footnote on the relation of λ|I|=i and λi.
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Figure 3: Panel 3a shows the p.m.f. of the total incident number for rates λ as in Table 1, T = 1,
and resulting rates λ̃ for p ∈ {0, 0.5}. Figure 3b analogously plots the c.d.f.s, illustrating that while
the c.d.f.s are not ordered in the sense FS

M̃
(T )(x) ≥ FSM (T )(x), ∀x ≥ 0, there is a threshold value

x0 s.t. this ordering holds (exactly) for large values x > x0 ≥ 0, i.e. the so-called single-crossing
condition is fulfilled here. In the actuarial context, one is typically interested in high quantiles of
the loss distribution (VaR1−γ for (1− γ) close to 1), i.e. the region where in this case it holds for
the quantile functions F←S

M̃
(T )(1− γ) ≤ F←SM (T )(1− γ), leading to the observations for the portfolio

risk measure discussed in this section.

Definition 2 (Bivariate Cuadras–Augé copula, [22], p. 9). For α ∈ [0, 1], let Cα : [0, 1]2 7→
[0, 1] be defined by

Cα(u1, u2) := min{u1, u2}max{u1, u2}1−α, u1, u2 ∈ [0, 1].

Remark 2 (Tail dependence coefficients of Cuadras–Augé (survival) copula ([22], p. 34f)).
For a bivariate Cuadras–Augé copula Cα, the tail dependence coefficients are given by

UTDCα = α, LTDCα = 1{α=1}.

Note that in general for a copula C and its survival copula Ĉ, it holds (provided existence)
that UTDC = LTDĈ and LTDC = UTDĈ, respectively.

This means for the comparison of the instantaneous joint loss arrival rate in (6), we are

interested in comparing the parameter α (as in (7)) for models (M) and (M̃).

Remark 3 (LTDĈα
for constant λ). Assume λ|I|=i ≡ λ̄ > 0, ∀i ∈ {1, . . . , K}. Then, in

model (M) the lower tail dependence coefficient of the bivariate copula of (τi, τj) is given by

LTDĈα
= α =

2

3
,

and the instantaneous joint loss arrival rate in (6) is given by

lim
T↘0

P(τi ≤ T, τj ≤ T )

T
= λiα =

λ̄(K + 1)

2
· 2
3
=

λ̄(K + 1)

3
.
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Lemma 2 (Relation of LTDĈα
for models (M) and (M̃)). Let (M) be an exchangeable model

as in Assumption 1 with any vector of arrival rates λ and let (M̃) be the corresponding model
according to Definition 1. Let α and α̃ be the respective parameters of the bivariate survival
copulas of (any two) first-arrival times (τi, τj) as given in (7). Then, it holds that α̃ ≤ α
and more specifically, under Assumption 2,

α̃ = p2α

for any p ∈ [0, 1].

Lemma 2 implies that in model (M̃), by omitting information about common events
according to Assumption 2, the instantaneous joint loss arrival rate for any two companies in
the portfolio is underestimated by a factor of p2, which intuitively makes sense, as this factor
indicates the probability of independently not overlooking a joint event in two companies.

Stochastic ordering and coherent risk measures

Above, we have observed exemplarily that the portfolio risk when measured by Value-at-
Risk (at ‘relevant’ levels in an actuarial context, see the remark about the single-crossing
condition above and illustration in Figure 3b) is underestimated in a model with missing

information (M̃) compared to an original model (M). Another important risk measure is
Expected Shortfall (at level (1− γ)), in the following denoted ES1−γ(X) for a r.v. X in the
actuarial context, defined as (see e.g. [5]):

ES1−γ(X) =
1

γ

∫ 1

1−γ
VaRz(X)dz, (8)

where VaRz(X) is defined in (5). It is well-known that ES1−γ possesses in a certain sense
preferable analytical properties compared to VaR1−γ, in particular ES1−γ is a coherent risk
measure.1617 The fact of ES1−γ being coherent allows to draw some interesting theoretical
conclusions for the present study presented below in Corollary 1. As a basis, we use the
more general observation on the stochastic ordering of compound Poisson random variables
summarized in the following theorem.

Theorem 1 (Increasing convex order for specific compound Poisson distributions). Let L >
0 and ℓ ∈ N and consider two independent homogeneous Poisson processes with intensities

16See the seminal work of [8] for the definition and properties of coherent risk measures and e.g. [16] for a
collection of proofs of the coherence of expected shortfall.

17Note that the term ‘expected shortfall’ is often simply used interchangeably with ‘average / tail /
conditional Value-at-Risk’ or ‘tail conditional expectation’, which are in turn usually used synonymously.
In an actuarial context, the most well-known definition is TVaR1−γ(X) = E[X|X ≥ VaR1−γ(X)], i.e. the
expected loss given that a loss at least equal to the Value-at-Risk occurs. However, many equivalencies
between the above risk measures, and in particular the coherence of the risk measures other than ES1−γ

as defined in (8), only hold if X follows a continuous distribution; see [5] for a detailed discussion. As in
the context of this work, discrete underlying distributions (of incident numbers) occur, we therefore only
consider ES1−γ .
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λ > 0 and λ̃ := ℓ λ > 0, denoted N(t) := (N(t))t≥0 and Ñ(t), respectively. For any fixed
T > 0, let

S(T ) :=

N(T )∑
i=1

L = L N(T )textandtextS̃(T ) =

Ñ(t)∑
i=1

L

ℓ
=

L

ℓ
Ñ(T ).

Then, E
[
S(T )

]
= E

[
S̃(T )

]
and

S(T ) ≥icx S̃(T ), (9)

where ≥icx denotes ‘increasing convex order’.

Proof. See Appendix A.18

Remark 4 (Notes to Theorem 1). text

1. Note that S(T ) ≥icx S̃(T ) and E
[
S(T )

]
= E

[
S̃(T )

]
is equivalent to S(T ) ≥cx S̃(T )

( ‘convex order’), see [25], Theorem 1.5.3.

2. In actuarial science, a perhaps more common, synonymous name for ‘increasing convex
order’ (≥icx) is ‘stop-loss order’ (≥sl), which stems from an important characterization of
≥icx by the so-called stop-loss transforms (see [25], Theorem 1.5.7):

X ≤icx Y ⇐⇒ E
[
(X − t)+

]
≤ E

[
(Y − t)+

]
∀t ∈ R. (10)

3. Note that S(T ) and S̃(T ) can be interpreted as two collective risk models with equal expected

total claims amount E
[
S(T )

]
= E

[
S̃(T )

]
, where

⋄ S(T ) is the total claims amount from a model with relatively few, large losses (of deter-
ministic size L > 0), and

⋄ S̃(T ) is the total claims amount from a model with relatively many, small losses (of
deterministic size 0 < L

ℓ
< L).

Thus, Theorem 1 states that the model with on average many (independent) small losses is
preferable ( ‘less risky’) in the sense of increasing convex order compared to a model with
equal expected claims amount and on average few (independent) large losses.

Corollary 1 (Expected Shortfall for models (M) and (M̃)). Let ES1−γ(·) denote Expected
Shortfall as in (8) and let SM(T ) and SM̃(T ) denote the total incident number in the portfolio

under models (M) and (M̃), respectively, until a fixed time T > 0. Then, for any T > 0 and
any γ ∈ (0, 1), it holds

ES1−γ
(
SM(T )

)
≥ ES1−γ

(
SM̃(T )

)
. (11)

Proof. See Appendix A.

This implies that by omitting information about common events, the portfolio risk is
necessarily underestimated when using expected shortfall (or any other coherent risk mea-
sure).

18Somewhat surprising to us, we did not find the (or a correspondent) statement of the theorem in the
literature, hence, for completeness we provide an elementary proof in the Appendix.
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4 Conclusion

When insurers started to develop actuarial models for cyber risk, they soon emphasized that
one major challenge is the lack of adequate data to calibrate and backtest their models.
Many classical actuarial models are based on the assumption of independence between losses
and historical data is mainly used to draw inference about individual policyholders’ loss dis-
tributions (i.e. the parameters of their loss frequency and severity distribution for a certain
risk). Indeed, this is sufficient in markets where the claims are independent. Risk assess-
ment and claims settlement therefore usually take into account this individual client-specific
information. However, in the case of cyber, collecting such individual information alone is
not sufficient, as not only parameters of the individual (marginal) loss distributions, but also
those of an adequate model of dependence, have to be calibrated. This is only possible if
information about dependence between historical claims, i.e. that losses may have stemmed
from the same cause, is systematically collected.
This article has used a stylized mathematical model to highlight the effects on portfolio risk
measurement if information on common events is fully or partly discarded. In practice, and
we have to raise a big warning sign here, the resulting underestimation of accumulation risk
would only become evident too late, namely once a (to-be-avoided) extreme portfolio loss
has occurred.

The urgent practical implications for insurers are evident: As outlined in Section 2.1,
actuarial modelling of cyber cannot be regarded as an isolated challenge, but as one in-
terconnected step in the insurance value chain. Actuaries therefore must be in continuous
exchange with other stakeholders, in particular legal experts (regarding insurability of cyber,
product design, and requirements on the collection of claims settlement data) and informa-
tion security experts. The central importance of the latter group for the actuarial modelling
of cyber can hardly be overstated; their expertise is essential in tackling important challenges
such as how to include an extensive qualitative assessment of a company’s IT landscape, in-
cluding existing security provisions, into a stochastic actuarial model.
Only continuous interdisciplinary cooperation will allow to develop a holistic approach which
allows insurers to proactively steer their cyber underwriting activities without exposing them-
selves to potentially starkly underestimated levels of accumulation risk.
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A Appendix A

Proof of Lemma 1

Proof of Lemma 1. Starting from Definition 1, we observe that the new marginal rates for
any ℓ ∈ {1, . . . , K} are given by

λ̃ℓ =
K∑
i=1

i

K
λ̃|I|=i =

1

K
λ|I|=1 +

1

K

[
K∑
i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)
+

max(i−1,2)∑
j=2

(i− j)fBin(j; i, p)
]]

+
K∑
i=2

i

K

K∑
j=i

λ|I|=jfBin(i; j, p)

=
1

K
λ|I|=1 +

1

K

[ K∑
i=2

λ|I|=ii
(
fBin(0; i, p) + fBin(1; i, p)

)
︸ ︷︷ ︸

(S1)

+
K∑
i=2

λ|I|=i

max(i−1,2)∑
j=2

(i− j)fBin(j; i, p)︸ ︷︷ ︸
(S2)

+
K∑
i=2

i
K∑
j=i

λ|I|=jfBin(i; j, p)︸ ︷︷ ︸
(S3)

]
.

It remains to show that the sum in the square bracket equals
∑K

j=2 jλ
|I|=j. Reversing the

order of summation in (S3) and renaming i ↔ j in the remaining terms yields

[
(S1) + (S2) + (S3)

]
=

K∑
j=2

λ|I|=jj
(
fBin(0; j, p) + fBin(1; j, p)

)
+

K∑
j=2

λ|I|=j

max(j−1,2)∑
i=2

(j − i)fBin(i; j, p) +
K∑
j=2

λ|I|=j

j∑
i=2

ifBin(i; j, p)

=
K∑
j=2

λ|I|=jj
(
fBin(0; j, p) + fBin(1; j, p)

)
+

K∑
j=2

λ|I|=j
( j−1∑

i=2

jfBin(i; j, p) + jfBin(j; j, p)
)

=
K∑
j=2

jλ|I|=j

j∑
i=0

fBin(i; j, p)︸ ︷︷ ︸
=1

=
K∑
j=2

jλ|I|=j.

i



Proof of Remark 3

Proof of Remark 3. Note that due to the properties of the Binomial coefficient, it holds that(
K−1
i

)(
K
i+1

) =
i+ 1

K
,(

K−2
i

)(
K
i+1

) =
K−1−i
K−1

(
K−1
i

)(
K
i+1

) =
K − 1− i

K − 1
· i+ 1

K
=

(K − (i+ 1))(i+ 1)

K(K − 1)
.

Inserting this into the expression in (7) yields

α = 1−

∑K−2
i=0

(
K−2
i

)
1

( K
i+1)

λ|I|=i+1∑K−1
i=0

(
K−1
i

)
1

( K
i+1)

λ|I|=i+1
= 1−

1
K(K−1) λ̄

∑K−2
i=0 (K − (i+ 1))(i+ 1)

1
K
λ̄
∑K−1

i=0 (i+ 1)

= 1− 1

K − 1

∑K−1
i=1 (K − i)i∑K

i=1 i
= 1− 1

K − 1

1
6
K(K + 1)(K − 1)

1
2
K(K + 1)

= 1− 2

6
=

2

3
.

For the marginal rates λi in (2), it holds

λi =
K∑
k=1

k

K
λ|I|=k =

λ̄

K

K∑
k=1

k =
λ̄

K

K(K + 1)

2
=

λ̄(K + 1)

2
,

implying the remark.

Proof of Lemma 2

Proof of Lemma 2. By definition, α and α̃ are given by

α = 1−
∑K−1

i=1

(
K−2
i−1

)
λi∑K

i=1

(
K−1
i−1

)
λi

=: 1− Zα

Nα

, α̃ = 1−
∑K−1

i=1

(
K−2
i−1

)
λ̃i∑K

i=1

(
K−1
i−1

)
λ̃i

=: 1− Zα̃

Nα̃

,

where λi =
λ|I|=i

(Ki )
and λ̃i =

λ̃|I|=i

(Ki )
.

We use the following properties of the Binomial coefficient and the Binomial distribution(
K − 1

i− 1

)
=

i

K

(
K

i

)
, (BIN1)(

K − 2

i− 1

)
=

K − i

K − 1

(
K − 1

i− 1

)
=

K − i

K − 1

i

K

(
K

i

)
, (BIN2)(

K − 2

i− 2

)
=

(
K − 1

i− 1

)
−
(
K − 2

i− 1

)
. (BIN3)

X ∼ Binom(K, p) =⇒ E[X] = Kp, (BIN4)

X ∼ Binom(K, p) =⇒ E
[
X2

]
= Kp(1− p) +K2p2. (BIN5)
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This implies the following auxiliary result:

Nα − Zα =
K∑
i=1

(
K − 1

i− 1

)
λi −

K−1∑
i=1

(
K − 2

i− 1

)
λi

(BIN3)
= λK +

K−1∑
i=2

(
K − 2

i− 2

)
λi =

K∑
i=2

(
K − 2

i− 2

)
λi.

(12)

Furthermore, it holds that Nα = Nα̃, as

Nα̃ =
K∑
i=1

(
K − 1

i− 1

)
λ̃i =

K∑
i=1

(
K − 1

i− 1

)
λ̃|I|=i(

K
i

) (BIN1)
=

K∑
i=1

i

K
λ̃|I|=i Lemma 1

=
K∑
i=1

i

K
λ|I|=i = Nα.

(13)

We will show that for Zα̃ it holds that

Zα̃ = λ1 +
K∑
i=2

λi

[(K − 1

i− 1

)
−
(
K − 2

i− 2

)
p2
]
. (∗)

This implies the claim, as one can rewrite

Zα̃ = λ1 +
K∑
i=2

λi

[(K − 1

i− 1

)
−

(
K − 2

i− 2

)
p2
]
=

K∑
i=1

(
K − 1

i− 1

)
λi − p2

K∑
i=2

(
K − 2

i− 2

)
λi

(12),(13)
= Nα − p2(Nα − Zα). (14)

From this it follows

α̃ = 1− Zα̃

Nα̃

(13),(14)
= 1− Nα − p2(Nα − Zα)

Nα

= 1−
[
1− p2

(
1− Zα

Nα

)]
= p2α.

To show (∗), we rewrite (3) as

λ̃|I|=1 = λ|I|=1 +
K∑
i=2

λ|I|=i
[
i
(
fBin(0; i, p) + fBin(1; i, p)

)
+

max(i−1,2)∑
j=2

(i− j)fBin(j; i, p)
]

= λ|I|=1 + λ|I|=22
(
fBin(0; 2, p) + fBin(1; 2, p)

)︸ ︷︷ ︸
(1−p2)

+
K∑
i=3

λ|I|=i
[
i

i−1∑
j=0

fBin(j; i, p)︸ ︷︷ ︸
i(1−pi)

−
i−1∑
j=2

jfBin(j; i, p)︸ ︷︷ ︸
±

∑
j=0,1,i jfBin(j;i,p)

]

(BIN4)
= λ|I|=1 + λ|I|=22(1− p2) +

K∑
i=3

λ|I|=i
[
i− ipi −

(
ip− ip(1− p)i−1 − ipi

)]
= λ|I|=1 + λ|I|=22(1− p2) +

K∑
i=3

λ|I|=ii(1− p+ p(1− p)i−1)

= λ|I|=1 +
K∑
i=2

λ|I|=ii(1− p+ p(1− p)i−1).
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Changing to the rates λ̃1 =
λ̃|I|=1

K
(LHS) and λi =

λ|I|=i

(Ki )
(RHS) yields

λ̃1 = λ1 +
K∑
i=2

i

K

(
K

i

)
λi(1− p+ p(1− p)i−1)

(BIN1)
= λ1 +

K∑
i=2

(
K − 1

i− 1

)
λi(1− p+ p(1− p)i−1),

i.e. for fixed i ∈ {2, . . . , K}, the coefficient of λi from λ̃1, which appears in Zα̃ with factor(
K−2
0

)
= 1 is given by

(
K−1
i−1

)
(1 − p + p(1 − p)i−1). Analogously, the coefficients of λi from∑K−1

j=2 λ̃j, scaled by
(
K−2
j−1

)
, are illustrated as the column sums in Table 3 and given by

λi

(
K

i

)
︸ ︷︷ ︸

λi(Ki )=λ|I|=i

i∑
j=2

(
i

j

)
pj(1− p)i−j

(
K − 2

j − 1

)
︸ ︷︷ ︸
Def. of Zα

1(
K
j

)︸︷︷︸
λj=

λ|I|=j

(Kj )

(BIN2)
= λi

(
K

i

) i∑
j=2

K − j

K − 1

j

K
fBin(j; i, p) =

λi

(
K
i

)
(K − 1)K

[
K

i∑
j=2

jfBin(j; i, p)−
i∑

j=2

j2fBin(j; i, p)
]

(BIN4),(BIN5)
=

λi

(
K
i

)
(K − 1)K

[
K(ip− ip(1− p)i−1)−

[
ip(1− p) + i2p2 − ip(1− p)i−1

]]
=

λi

(
K
i

)
(K − 1)K

[
Kip−Kip(1− p)i−1 − ip+ ip2 − i2p2 + ip(1− p)i−1

]
=

λi

(
K
i

)
(K − 1)K

[
(K − 1)ip− (K − 1)ip(1− p)i−1 − (i− 1)ip2

]
= λi

[(K
i

)
i

K
p−

(
K

i

)
i

K
p(1− p)i−1 −

(
K

i

)
i(i− 1)

K(K − 1)
p2
]

(BIN1)
= λi

[(K − 1

i− 1

)
(p− p(1− p)i−1)−

(
K − 2

i− 2

)
p2
]
.

Thus, adding the coefficients of λi from λ̃1 and
∑K

j=2 λ̃j

(
K−2
j−1

)
for each fixed i ∈ {2, . . . , K−1}

yields(
K − 1

i− 1

)
(1− p+ p(1− p)i−1) +

(
K − 1

i− 1

)
(p− p(1− p)i−1)−

(
K − 2

i− 2

)
p2 =

(
K − 1

i− 1

)
−
(
K − 2

i− 2

)
p2,

which implies (∗) and therefore the claim.

Proof of Theorem 1

Proof of Theorem 1. text
Step 1: Increasing convex order for some discrete random variables
For an integer K > 0, consider a Bernoulli r.v. Z ∼ Ber(p), p ∈ [0, 1] and K i.i.d. copies of
it denoted Zi, i ∈ {1, . . . , K}.
Furthermore, consider the r.v.s X and Y defined as follows:

X = K Z,

Y =
K∑
i=1

ki Zi, i ∈ {1, . . . , K},
(15)
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where k := (ki)i∈{1,...,K} is an NK
0 -vector s.t. ∀i : ki ∈ {0, . . . , K} with

∑K
i=1 ki = ∥k∥1 = K.

Assume w.l.o.g. ki ≥ ki+1, ∀i ∈ {1, . . . , K − 1}, and let i∗ := |{ki : ki > 0}|, then the first i∗

entries of k represent a partition of K (and the remaining entries equal 0).
It is obvious that for any r.v. Y as above

E[Y ] = E[X] = Kp,

and we will now show that for any such Y it holds that

Y ≤icx X

by using the following sufficient condition (the so-called cut criterion or crossing condition,
see e.g. [25], p. 23): If for two r.v.s X and Y with c.d.f.s FX and FY respectively, it holds
that E[Y ] ≤ E[X] and in addition, there exists t0 ∈ R s.t.

FY (t) ≤ FX(t) ∀t < t0,

FY (t) ≥ FX(t) ∀t ≥ t0,
(16)

then this implies Y ≤icx X.
Let us in the following exclude the trivial cases p ∈ {0, 1} and k = (K, 0, . . . , 0) as they lead
to FX = FY . Note that in all non-degenerate cases we have i∗ > 1.
Then, for r.v.s X and Y as defined in (15), there exists t0 ∈ [1, K− 1] s.t. the single-crossing
condition is fulfilled:
For t < 0 and t ≥ K, obviously FX(t) = FY (t).
For t ∈ [0, 1), we use that p ∈ (0, 1) and i∗ > 1 to see

FY (t) = P(Y = 0) = (1− p)i
∗
< 1− p = P(X = 0) = FX(t).

For t ∈ (K − 1, K), again with p ∈ (0, 1) and i∗ > 1,

FY (t) = P(Y ≤ K − 1) = 1− P(Y = K) = 1− pi
∗
> 1− p = P(X = 0) = FX(t).

Lastly, note that

� t 7→ FX(t) is constant for t ∈ (0, K − 1] at the level FX(t) ≡ 1− p.

� FY (t) is monotone increasing (being a c.d.f. ) for t ∈ (0, K−1] with (non-negative) jumps
at some of the {1, . . . , K − 1} and FY (0+) = (1− p)i

∗
< 1− p < 1− pi

∗
= FY (K − 1).

Thus, due to the monotonicity of FY , there must be a unique t0 ∈ [1, K − 1] fulfilling (16).
Step 2: Implication for (compound) Poisson process setting
Now, fix a time horizon T > 0 and consider two independent homogeneous Poisson processes
N(t) := (N(t))t≥0 with rate λ > 0 and Ñ(t) := (Ñ(t))t≥0 with rate ℓλ > 0, ℓ ∈ N. As Ñ(t)
can be understood (in the sense of being equal in distribution) as the superposition of ℓ

independent Poisson processes Ñj(t), j ∈ {1, . . . , ℓ}, all of them with rate λ > 0 (see e.g.

[21], p. 16), one can write S(T ) and S̃(T ) as

S(T ) =

N(T )∑
i=1

L = L N(T ),

S̃(T ) =

Ñ(T )∑
i=1

L

ℓ
D
=

L

ℓ

ℓ∑
j=1

Ñj(T ).

v



Due to the properties of the homogeneous Poisson process and by Wald’s equation, it follows
immediately that

N(T ), Ñj(T ) ∼ Poi(λ T ), j ∈ {1, . . . , ℓ},
E
[
N(T )

]
= E

[
Ñj(T )

]
= λ T, j ∈ {1, . . . , ℓ},

E
[
S(T )

]
= E

[
S̃(T )

]
= λ T L,

where Poi(λ) denotes the Poisson distribution with density fPoi(λ)(k) =
λke−λ

k!
, k ∈ N0, λ > 0.

Now, consider the following random variables:

X i = L 1{N(T )≥i} =

{
L if N(T ) ≥ i,

0 else,
=⇒ X i =


L w.p. 1−

i−1∑
j=0

fPoi(λT )(j),

0 w.p.
i−1∑
j=0

fPoi(λT )(j),

Y i
j =

L

ℓ
1{Ñj(T )≥i} =

{
L
ℓ

if Ñj(T ) ≥ i,

0 else,
=⇒ Y i

j =


L
ℓ

w.p. 1−
i−1∑
j=0

fPoi(λT )(j),

0 w.p.
i−1∑
j=0

fPoi(λT )(j),

j ∈ {1, . . . , ℓ}.

Note that X i denotes the size of the ith jump of the Poisson process N(t) if it occurs until
time T (of deterministic size L > 0 if the process jumps at least i times until time T , and of
size 0 else), and analogously the ℓ independent random variables Y i

j denote the sizes of the

ith jump of each of the independent Poisson processes Ñj(t) if they occur until time T .
As the Y i

j , j ∈ {1, . . . , ℓ}, are independent, one can derive the density of their sum, denoted
Y i, from arguments borrowed from the Binomial law:

Y i :=
ℓ∑

j=1

Y i
j =



L w.p.
(
1−

i−1∑
j=0

fPoi(λT )(j)
)ℓ

,

ℓ−1
ℓ
L w.p.

(
ℓ

ℓ−1

)(
1−

i−1∑
j=0

fPoi(λT )(j)
)ℓ−1 i−1∑

j=0

fPoi(λT )(j),

· · ·

1
ℓ
L w.p.

(
ℓ
1

)(
1−

i−1∑
j=0

fPoi(λT )(j)
)( i−1∑

j=0

fPoi(λT )(j)
)ℓ−1

,

0 w.p.
( i−1∑

j=0

fPoi(λT )(j)
)ℓ

.

Note that this illustrates the fundamental difference between the two considered cases (pro-

cess N(t) vs. superposition of ℓ processes Ñj(t)): In the notation of a collective risk model, if
the claim occurrences are driven by the process N(t) (corresponding to relatively few events)
and claim sizes are relatively large (i.e. of size L), either a large total claims amount occurs
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or no claim at all occurs for each jump. On the contrary, if claim occurrences are driven by
the independent processes Ñj(t) or equivalently their superposition Ñ(t) (relatively many
events) and claim sizes are relatively small (i.e. of size L

ℓ
), for a large total claims amount

of size L from all the first (second, third, . . .) jumps to occur, all ℓ processes Ñj(t) inde-
pendently need to jump at least once (twice, three times, . . .); equivalently, ℓ independent

jumps need to occur before time T in the superimposed process Ñ(t). Likewise, to obtain

no claim at all from the ith jumps, any of the processes Ñj(t) independently must not jump
more than (i− 1) times; or equivalently, the superimposed process may not jump more than
(i − 1)ℓ times until T . Therefore, the probability of both large (i.e. size L) and no (size 0)
total claims amounts is reduced, and probability mass is shifted to the intermediate cases
that some (but not all or none) of the independent processes observe at least i jumps. As

E[X i] = E[Y i] = L
(
1−

i−1∑
j=0

fPoi(λT )(j)
)

– note that the weights for Y i are akin to the density of a Binomial distribution with
N = ℓ, p = 1 −

∑i−1
j=0 fPoi(λT )(j) – for any i ∈ N the discrete random variables X i and

Y i are akin to X and Y from the first part of the proof, X i being a Bernoulli r.v. with
positive mass only on the largest admissible value L and Y i following a discrete density
supported on the set of values {0, L

ℓ
, · · · , (ℓ−1)L

ℓ
, L} with equal expectation. It follows from

the above derivations that X i ≥icx Y i, i ∈ N. As (increasing) convex order is preserved
under summation (this follows immediately from the transitivity of ≤icx), this implies the
statement of the theorem as

S(T ) =
∑
i∈N

X i ≥icx

∑
i∈N

Y i = S̃(T ).

Note that it is straightforward to again extend the result to a case where not all deterministic
jump sizes corresponding to the ℓ arrival processes Ñℓ(t) are equally of size L

ℓ
, but instead

one replaces them by a collection {Li}i∈{1,...,ℓ}, such that Li > 0,∀i ∈ {1, . . . , ℓ}, and
∑

Li =
L.

Proof of Corollary 1

Proof of Corollary 1. It is a well-known result that for any two integrable r.v. X and Y ,
convex order is equivalent to the ordering of expected shortfall at all levels q, i.e.

Y ≤cx X ⇐⇒ ESq(Y ) ≤ ESq(X), ∀q ∈ (0, 1),

see e.g. [16] and the references therein. Therefore, the statement of the corollary is equivalent
to showing SM(T ) ≥cx SM̃(T ). As from Lemma 1 (and linearity) it follows that E[SM(T )] =
E[SM̃(T )], it is sufficient to show SM(T ) ≥icx SM̃(T ) (see first point of Remark 4).
This follows immediately from Theorem 1: Recall that in model (M), the arrival rates for
events of size k ∈ {1, . . . , K} are given by λ := (λ|I|=1, . . . , λ|I|=K) and that all arrivals
are independent (from arrivals of events of the same or any other size). The total incident
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number until time T can therefore again be written as a sum of K independent compound
Poisson r.v.s:

SM(T )
D
=

K∑
k=1

kNk(T ),

where Nk(t) := (Nk(t))t≥0, k ∈ {1, . . . , K}, are independent Poisson processes with rates
λ|I|=k. In turn, for any k, the process Nk(t) can (artificially) be understood as the superpo-
sition of (k + 1) independent Poisson processes Nk,j(t) := (Nk,j(t))t≥0, j ∈ {0, . . . , k}, with
rates λ|I|=k fBin(j; k, p), where in model (M) each of the arrivals of each of these processes
is associated with a jump of size k.
Then, the total incident number from events of size k until time T > 0, denoted Sk(T ),
and events of all sizes, denoted S(T ), are given by the following compound Poisson r.v.s,
respectively:

Sk(T ) =
k∑

j=0

kNk,j(T )
D
= kNk(T ), S(T ) =

K∑
k=1

Sk(T ) =
K∑
k=1

k∑
j=0

kNk,j(T ),

where
D
= denotes equality in distribution.

In model (M), for any k ∈ {1, . . . , K} each Poisson arrival process Nj,k(t) is associated

with jumps of size k. In model (M̃), each arrival process Nj,k(t) is replaced by several
independent processes with equal Poisson rate, but associated with smaller jump sizes (which
sum up to k), as represented in Table 4. From Theorem 1, it follows immediately that the
compound incident number in the second column (model (M)) of each row dominates in
increasing convex order the compound incident number of the corresponding processes in
the third column (model (M̃)). By summing over all rows (recall that ≤icx is preserved
under summation), the same holds for the compound incident number from each process
Nk(t), k ∈ {1, . . . , K}, in model (M) as compared to the overall compound incident number

from all the corresponding independent processes in model (M̃). By summing over all
k ∈ {1, . . . , K}, it follows that SM(T ) ≥icx SM̃(T ) for any fixed T > 0 and thus the statement
of the corollary.
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λ2 λ3 · · · λK−2 λK−1 λK

(K−2
j−1

)
λ̃K

(K
K

)
λKpK

(
K
K

)
(
K
K

)
λ̃K−1

(K−1
K−1

)
λK−1p

K−1

(
K

K−1

)
(

K
K−1

) +
( K
K−1

)
λKpK−1(1− p)

(
K
K

)
(

K
K−1

) (K−2
K−2

)
λ̃K−2

(K−2
K−2

)
λK−2p

K−2

(
K

K−2

)
(

K
K−2

) +
(K−1
K−2

)
λK−1p

K−2(1− p)

(
K

K−1

)
(

K
K−2

) +
( K
K−2

)
λKpK−2(1− p)2

(
K
K

)
(

K
K−2

) (K−2
K−3

)
· · · · · · · · · · · · · · · · · · · · · · · ·

λ̃3

(3
3

)
λ3p3

(
K
3

)
(
K
3

) + · · · +
(K−2

3

)
λK−2p

3(1− p)(K−2)−3

(
K

K−2

)
(
K
3

) +
(K−1

3

)
λK−1p

3(1− p)(K−1)−3

(
K

K−1

)
(
K
3

) +
(K
3

)
λKp3(1− p)K−3

(
K
K

)
(
K
3

) (K−2
2

)
λ̃2

(2
2

)
λ2p2

(
K
2

)
(
K
2

) +
(3
2

)
λ3p2(1− p)

(
K
3

)
(
K
2

) + · · · +
(K−2

2

)
λK−2p

2(1− p)(K−2)−2

(
K

K−2

)
(
K
2

) +
(K−1

2

)
λK−1p

2(1− p)(K−1)−2

(
K

K−1

)
(
K
2

) +
(K
2

)
λKp2(1− p)K−2

(
K
K

)
(
K
2

) (K−2
1

)
Table 3: The table illustrates the calculation of the coefficient of each λi, i ∈ {2, . . . ,K − 1}, in Zα̃. In each row, λ̃j is calculated based

on the definition of model (M̃) given in (4), where λ̃j = λ̃|I|=j

(Kj )
and λi =

λ|I|=i

(Ki )
are substituted (leading to the last fraction of Binomial

coefficients in each entry). The coefficient of each λi, i ∈ {2, . . . ,K − 1}, in Zα̃ is given by the scalar product of the ith column and the
very last column which lists the factors

(
K−2
j−1

)
from the definition of Zα̃.

ix



Model (M): (Poisson rate, jump size) Model (M̃): (Poisson rate, jump size) Interpretation

Nk,k(T )
(
λ|I|=kTfBin(k; k, p), k

) (
λ|I|=kTfBin(k; k, p), k

) All k joint arrivals recognized =⇒ process with jump
size k is “replaced by” process with jump size k.

text

Nk,k−1(T )
(
λ|I|=kTfBin(k − 1; k, p), k

) (
λ|I|=kTfBin(k − 1; k, p), k − 1

)(
λ|I|=kTfBin(k − 1; k, p), 1

) k−1 joint arrivals recognized =⇒ process with jump
size k is replaced by two independent processes with
jump sizes k − 1 and 1, respectively.

text

Nk,k−2(T )
(
λ|I|=kTfBin(k − 2; k, p), k

) (
λ|I|=kTfBin(k − 2; k, p), k − 2

)(
λ|I|=kTfBin(k − 2; k, p), 1

)(
λ|I|=kTfBin(k − 2; k, p), 1

) k−2 joint arrivals recognized =⇒ process with jump
size k is replaced by three independent processes with
jump sizes k − 2, 1, and 1, respectively.

text
· · · · · · · · · · · ·
· · · · · · · · · · · ·
text

Nk,2(T )
(
λ|I|=kTfBin(2; k, p), k

)
(
λ|I|=kTfBin(2; k, p), k − 2

)(
λ|I|=kTfBin(2; k, p), 1

)(
λ|I|=kTfBin(2; k, p), 1

)
textextextexttexttextextext

· · · textextextexttextextextext(
λ|I|=kTfBin(2; k, p), 1

)
2 joint arrivals recognized =⇒ process with jump size
k is replaced by independent processes with jump sizes
2 (one process) and 1 (k − 2 processes), respectively.

text

Nk,1(T ) +
Nk,0(T )

(
λ|I|=kT (fBin(1; k, p) + fBin(0; k, p)), k

) (
λ|I|=kT (fBin(1; k, p) + fBin(0; k, p)), 1

)
text · · · texttextexttexttextext
text · · · texttextexttexttextext(
λ|I|=kT (fBin(1; k, p) + fBin(0; k, p)), 1

)
1 or 0 joint arrivals recognized =⇒ process with
jump size k is replaced by k independent processes,
each with jump size 1.

Table 4: Comparison of the compound Poisson processes corresponding to models (M) and (M̃) for any fixed k ∈ {1, . . . ,K}: The arrival
process Nk(t) for events of size k, i.e. associated with jumps of size k, can be replaced by (k+1) independent processes with thinned rates

according to the weights of a Binomial distribution. According to Definition 1, in model (M̃), these processes are replaced by several
independent processes, associated with smaller jump sizes adding up to k.

x


	Introduction
	Two Challenges for Cyber Insurance
	A holistic approach to cyber-insurance underwriting
	Dependence in cyber via common vulnerabilities
	Notation

	Mathematical model
	An exchangeable portfolio model and the modelling of missing information
	Implications for dependence- and risk-measurement

	Conclusion
	Bibliography
	Appendix A

