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Abstract
We determine explicitly and discuss in detail the effects of the joint presence of a longitudinal
and a transversal (random) magnetic field on the phases of the Random EnergyModel and its
hierarchical generalization, the GREM. Our results extent known results both in the classical
case of vanishing transversal field and in the quantum case for vanishing longitudinal field.
Following Derrida and Gardner, we argue that the longitudinal field has to be implemented
hierarchically also in the Quantum GREM. We show that this ensures the shrinking of the
spin glass phase in the presence of the magnetic fields as is also expected for the Quantum
Sherrington–Kirkpatrick model.
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1 Introduction andMain Results

Mean-field spin glasses such as the Sherrington–Kirkpatrick (SK) model have long served as
an inspiration to both physicists and mathematicians [23,25,30]. For these classical glasses,
Parisi’s replica ansatz for the free energy presents one of the rare gems of an exactly solvable
case, whose solution covers extremely complex behavior—notably the occurrence of a frozen
glass phase below a certain critical temperature Tc. Since spins are intrinsically quantum-
mechanical objects, physicists have started early on to investigate the quantum effects caused
by the inclusion of a transversal magnetic field. Unfortunately, unlike the inclusion of a
longitudinalmagnetic field in theSK-model, the transversal field seems to crash all attempts of
an explicit Parisi solution.One either has to resort to approximations or numerical calculations
for the full phase diagram [17,24,28,32–34] or bounds [18,19] ormore qualitative results [1,9]
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for the Quantum SK-model. It is therefore rather remarkable that the associated hierarchical
caricature, the generalized random energy model (GREM), still admits an explicit solution
of Parisi type even in the presence of a transversal field [15,20,22]. The GREM was initially
invented by Derrida [12,13] to qualitatively capture the behavior of the free energy of more
complicated glasses. It was mathematically reformulated in [27] and its significance for
Parisi’s ansatz was later clarified in [3,16,29].

One central question for spin glasses in external magnetic fields is whether the fields
destabilize the low-temperature glass phase or not. For the SK-model in a constant longitudi-
nal field, de Almeida and Thouless [10] determined an equation for the critical temperature
Tc(h), which turns out to be decreasing in the field strength h and is known under the name
de Almeida–Thouless (AT) line. Below Tc(h) the replica symmetry has been proven to be
broken [31]. Rigorous results above Tc(h) are still incomplete (see e.g. [2] and refs. therein).
Unlike for the SK-model, implementing the longitudinal field naively in GREM models
causes the frozen phase to expand [4,5,7]. Derrida and Gardner [14] therefore suggested a
hierarchical implementation of the longitudinal magnetic field, which then leads again to a
destabilization of the frozen phase.

The present paper now investigates the question of the stability of the low-temperature
phase in general GREM models under the joint presence of a longitudinal and transversal
field. We will present explicit formulas for the free energy of such Q(uantum)GREMs for
both cases: a naive implementation of the longitudinal magnetic field and a hierarchical
implementation. We will discuss the stability of the glass phase and calculate associated
critical exponents.

1.1 The QuantumGREMwith a Random Longitudinal Field

TheQGREMwith a (random) external transversal and longitudinal magnetic field is a Hamil-
tonian on ψ ∈ �2(QN ) of the form

(HNψ)(σσσ) = U (σσσ)ψ(σσσ) − h(σσσ)ψ(σσσ) − (Bψ)(σσσ). (1)

The first term represents the GREM energy landscape on the Hamming cubeQN :={−1, 1}N
and is given by a centered Gaussian process U (σσσ) with covariance function

E [U (σσσ)U (σσσ ′)] = N A(qN (σσσ ,σσσ ′)), (2)

where A: [0, 1] → [0, 1] is a fixed non-decreasing, right-continuous, and normalized func-
tion, A(1) = 1, which does not depend on N . Moreover, qN denotes the normalized
lexicographic overlap of spin configurations σσσ ,σσσ ′ ∈ QN :

qN (σσσ ,σσσ ′):=
{
1 if σσσ = σσσ ′,
1
N

(
min{1 ≤ i ≤ N : σi �= σ ′

i } − 1
)

else .
(3)

GREM processes distinguish themselves through their choice of A, which may be a contin-
uous distribution function. In the latter case, these processes are also called CREM, which
is short for continuous REM. Other examples correspond to distribution functions A with a
finite number n of atoms, which is referred to as an n-level GREM. The simplest case is one
atom at x = 1, i.e. A(x) = 0 for x < 1 and A(1) = 1, which corresponds to the REM, i.e. the
case of independent and identically distributed centered Gaussian variables U (σσσ), σσσ ∈ QN ,
with variance N .
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A straightforward implementation of a (random) longitudinal magnetic field is achieved
through setting

h(σσσ) =
N∑
j=1

h jσ j . (4)

Interpreting the configurationbasisσσσ as the z-components of N quantumspin-1/2, a (random)
transversal field B in x-direction is given by the sum of the Pauli x-matrices sss j with weights
b j ∈ R:

(Bψ)(σσσ) :=
N∑
j=1

b j
(
sss jψ

)
(σσσ),

(
sss jψ

)
(σσσ) := ψ(Fjσσσ),

Fjσσσ := (σ1, . . . ,−σ j , . . . , σN ).

(5)

Wewill assume throughout that the variables (U (σσσ)), (h j ) and (b j ) aremutually independent
and that the field variables h j and b j are independent copies of absolutely integrable random
variables h and b, respectively.

Occurring phase transitions, in particular the AT line, are encoded in the limit of the
pressure (or the negative free energy times the inverse temperature β)

ΦN (β, h, b):= 1

N
ln Tr e−βHN (6)

as the number of spins N goes to infinity. Our first main theorem is an explicit formula for
this limit in terms of the concave hull Ā of A and the right derivative ā of Ā.

Theorem 1 Let U (σσσ) be a GREM with distribution function A and suppose that the longi-
tudinal random field is implemented as in (4). For any β ≥ 0 and any absolutely integrable
random variables h, b, the pressure converges almost surely,

lim
N→∞ ΦN (β, h, b) = sup

0≤z≤1

(∫ z

0
ϕ(β, h, x) dx + (1 − z)E [ln 2 cosh(β

√
b2 + h2)]

)
. (7)

The density ϕ(β, h, x) is given by

ϕ(β, h, x):=
{
ln 2 + ā(x) β2

2 + E [ln cosh βh] if β ≤ βc(x),

β(ā(x)βc(x) + E [h tanh βc(x)h]) if β > βc(x),
(8)

where βc(x) = βc(x, h) is the unique positive solution of the self-consistency equation

ā(x)

2
βc(x)

2 = ln 2 + E [ln cosh βc(x)h] − βc(x)E [h tanh βc(x)h]. (9)

Moreover, ϕ(β, h, x) is a decreasing function of x and strictly increasing and convex in β,
while βc(x) is increasing in x.

Theorem 1, whose proof will be spelled out in Sect. 3, is a generalization of Theorem 1.4
in [22], which addresses the case without a longitudinal field, h = 0. In the classical case
without transversal magnetic field, b = 0, it generalizes the results of [7], which covers the
case that h is constant, and of [4,5], which treats the special case of a REM or two-level
GREM in a random magnetic field.
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1.2 Stability of the Glass Phase in the QGREMwith Longitudinal Field

Glass behavior occurs if the inverse temperature β ≥ βc(x) for at least one x ∈ [0, 1].
From (8) and the monotonicity of ϕ(β, h, x) and βc(x), it is evident that the location of the
glass transition predicted by (7) coincideswithβc(x = 0) and, thus, is completely determined
by ϕ(β, h, 0) which agrees with a rescaled REM pressure [4]. In order to understand the
qualitative behavior of the phase diagram and in particular the question of the stability of
the glass phase in the QGREM with longitudinal field (4), it is thus convenient to restrict
the discussion to the REM with constant fields, i.e., h = h and b = Γ for some positive
constants h, Γ ≥ 0. In fact, even quantitative properties such as the dependence of the critical
temperature Tc(h) = βc(0, h)−1 on the longitudinal field h coincide for the general GREM
with the REM except for some numerical factors which depend on ā(0). We therefore state
the application of Theorem 1 to the QREM as our next corollary.

Corollary 1 Consider a REM process U (σσσ) and constant longitudinal and transversal fields
of strength h, Γ ≥ 0. Then, almost surely

lim
N→∞ ΦN (β, h, Γ ) = max{ΦREM(β, h), ln 2 cosh(β

√
h2 + Γ 2).}, (10)

where, ΦREM(β, h) denotes the function

ΦREM(β, h) =
{
ln 2 + β2

2 + ln cosh βh i f β ≤ βc(h)

β(βc(h) + h tanh(βc(h)h)) i f β > βc(h)
(11)

and βc(h) is the unique positive solution of

βc(h)2 = 2r(tanh(βc(h)h)) (12)

with the modified binary entropy r : [−1, 1] → R,

r(x):= −
(
1 − x

2
ln

1 − x

2
+ 1 + x

2
ln

1 + x

2

)
. (13)

The short proof of Corollary 1 can be found in Appendix A.
For fixed h > 0 the phase diagram, which is plotted in Fig. 1, resembles that of the QREM

without longitudinal field [15,20]. The model undergoes a magnetic transition at

Γc(β, h):=
√

β−2 arcosh

(
1

2
exp(ΦREM(β, h))

)2

− h2, (14)

where themagnetization in x-direction jumps. At fixed h > 0, this line separates the quantum
paramagnet characterized by a positive magnetization in x-direction, from the classical spin
glass.

The unique positive solution βc(h) ∈ (0,
√
2 ln 2) of the self-consistency equation (12)

marks the inverse freezing temperature at longitudinal field h > 0. For fixed h > 0 this
line separates the high-temperature regime of the classical paramagnet at Γ < Γc(β, h)

from the spin glass phase. In comparison to the case h = 0, the longitudinal field causes
an extensive magnetization M(σσσ) := ∑N

i=1 σi in z-direction under the Gibbs average. The
specificmagnetization in z-direction is a self-averaging quantitywhich converges as N → ∞
to

mz(β, h):= 1

β

∂Φ

∂h
(β, h) =

{
tanh(min{β, βc(h)}h), Γ < Γc(β, h),

h√
h2+Γ 2 tanh(β

√
h2 + Γ 2), Γ > Γc(β, h).
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Fig. 1 The left figures illustrates the freezing temperature Tc(h) = β−1
c (h) as a function of the longitudinal

field h. On the right is the T −Γ phase diagram with the critical magnetic field Γc(β, Γ ) as well as the critical
temperature evaluated at h = 0, 3, 7

The kink in its dependence onβ forΓ < Γc(β, h) reflects the second-order freezing transition
at βc(h).

The following proposition summarizes some basic properties of the critical inverse tem-
perature βc(h) and the critical transversal field Γc(β, h) as functions of h.

Proposition 1 The critical inverse temperature βc(h) and the critical magnetic field strength
Γc(β, h) have the following properties:

1. βc(h) is a strictly decreasing function. Moreover, βc(h) = √
2 ln 2 (1 − h2/2) + O(h4)

for small h and asymptotically limh→∞ hβc(h)
ln h = 1.

2. The high temperature limit Γc(0, h):= limβ→0 Γc(β, h) = 1 does not depend on h, and
the low temperature limit

lim
β→∞ Γc(β, h) =

√
(βc(h) + tanh(βc(h)h)h)2 − h2

resembles the ground-state phase transition.
3. For any β > 0 the critical field strength Γc(β, ·) is a strictly increasing function. In

addition, we asymptotically have limh→∞ Γ (β,h)√
hβc(h)

= 1.

The proof of Proposition 1 is based on multiple elementary, but quite lengthy, computa-
tions, which we spelled out in Appendix A for the convenience of the reader.

Let us put these findings in a general context. In classical SK-type models, the freezing
temperature Tc(h) = βc(h)−1 decreases as h becomes larger, i.e. the glass phase shrinks
[10,31]. Numerical calculations support the conjecture that in the Quantum SK-model, the
longitudinal and transversal field destabilize the glass phase as well (cf. [24,34] and [28]). In
contrast, the REMand theQREMexhibit an expanding frozen phase for h > 0. This concerns
not only the critical temperature Tc(h) but also the critical transversal magnetic field strength
Γc(β, h), which also increases with h; see Fig. 1. In this sense the QREM, although the limit
p → ∞ of p-spin models (cf. [21]), features nonphysical characteristics in presence of a
longitudinal field. As we will argue next, this is a consequence of the unrealistic lack of
correlations.
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1.3 The QGREMwith a Hierarchical Longitudinal Field

That a longitudinal field stabilizes the frozen phase in the QREM and QGREM, can be
regarded as a quite nonphysical behavior. We will bypass this problem by following Derrida
and Gardner’s approach to incorporate the magnetic field in z-direction as a hierarchical
operator [14]. This choice can be physically justified: one should recall that the GREM was
designed as a hierarchical approximation of the more involved SK-model, whose energy
correlations are given by E

[
U (σσσ)U (σσσ ′)

] = NrN (σσσ ,σσσ ′)2 in terms of the spin overlap

rN (σσσ ,σσσ ′) = N−1∑N
j=1. In fact, requiring that the entropy of likewise pair-correlated ener-

gies asymptotically coincides in the SK-model and the GREM, i.e.

lim
N→∞

1

N
ln

( ∣∣{σσσ : rN (σσσ ,σσσ 0)2 > a}∣∣∣∣{σσσ : A(qN (σσσ ,σσσ 0)) > a}∣∣
)

= 1

for all a ∈ (0, 1) and a fixed, but arbitrary, reference state σσσ 0, determines the choice A(x) =
γ (x)2, where γ is the inverse function of

γ −1 : [0, 1] → [0, 1], γ −1(a):=1 − r(a)

ln 2
= 1 − x

2 ln 2
ln(1 − x) + 1 + x

2 ln 2
ln(1 + x) (15)

with the binary entropy r from (13). This follows from the known asymptotics

∣∣{σσσ : rN (σσσ ,σσσ 0) > a/h}∣∣ 
 2N2−Nγ −1(a/h)

and
∣∣{σσσ : qN (σσσ ,σσσ 0) > a}∣∣ 
 2N2−aN .
Ifwewant to understand the SK-modelwith a longitudinal field, it is reasonable to consider

the hierarchical reorganization of themagnetic field aswell.We start by introducing the notion
of a general hierarchical field on the Hamming cube QN .

Definition 1 Wecall a functionh : QN → R a hierarchical fieldwith reference stateσσσ 0 ∈ QN

if there exists a function η : [0, 1] → R such that

h(σσσ) = Nη(qN (σσσ ,σσσ 0)), (16)

where q is the lexicographic overlap (3). Furthermore, h is said to be a regular hierarchical
field, if η is a regular function on [0, 1], i.e. η is a uniform limit of step functions.

Our second main result in this paper deals with general regular hierarchical fields. Nev-
ertheless, let us in particular discuss the choice of σσσ 0 and η that corresponds to a constant
external magnetic field. To do so, we rewrite the original constant longitudinal magnetic field
as follows

h
N∑
i=1

σi = hNrN (σσσ ,σσσ 0), (17)

where σσσ 0 = (+1, . . . ,+1) is the ferromagnetic state. In the hierarchical case one may also
think of σσσ 0 being the ferromagnetic state, but the free energy in fact does not depend on this
reference state.

Determining the ”correct” overlap function is a little more subtle. One might be tempted
to pick η(q) = hq which yields the analogous relation between the field and the respective

123



The de Almeida–Thouless Line in Hierarchical Quantum Spin Glasses Page 7 of 32 14

overlap as in (17). Similarly as discussed above, it is more reasonable though to demand that
the entropy agrees, i.e. the number of (positive) energy states agree on an exponential scales

lim
N→∞

1

N
ln

( ∣∣{σσσ : hrN (σσσ ,σσσ 0) > a}∣∣∣∣{σσσ : v(qN (σσσ ,σσσ 0)) > a}∣∣
)

= 1

for any 0 < a < h. Comparing asymptotics leads to the choice

η(a):=hγ (a), (18)

where again γ is the inverse function of (15). Let us record this as a definition:

Definition 2 We call h(σσσ) = Nη(qN (σσσ ,σσσ 0)) with reference state σσσ 0 = (+1, . . . , +1) and
overlap function η given by (18) the hierarchical magnetic field of strength h.

Our aim in the following is to determine the limit of the pressureΦN (β, b, h) of aQuantum
GREM (1) whereU is a GREM-type random process characterized by A in (2), h is a regular
hierarchical field in the sense of Definition 1, and B is a random transversal field whose
weights b j are independent copies of an absolutely integrable variable b (see (5)).

To formulate our main result, we need to introduce doubly-cut GREMprocessesU (y,z) for
0 ≤ y ≤ z ≤ 1 on the reduced Hamming cubeQ�(z−y)N� with the (not normalized) distribu-
tion function A(y,z) : [0, z − y] → [0, 1], A(y,z)(x):=A(x + y) − A(y). The corresponding
concave hull and its right derivative are denoted by Ā(y,z) and ā(y,z).
We further set ϕ(y,z) : R × [0, z − y] → R,

ϕ(y,z)(β, x):=β
√

(2 ln 2) ā(y,z)(x)1x<x (y,z)(β) +
(

β2

2
ā(y,z)(x) + ln 2

)
1x≥x (y,z)(β). (19)

with

x (y,z)(β):= sup
{
x | ā(y,z)(x) > 2 ln 2/β2

}
. (20)

With these preparations we recall from Theorem 1.4 and Theorem 2.8 in [22] that almost
surely

lim
N→∞ ΦN (β, b, 0) = sup

0≤z≤1

[∫ z

0
ϕ(0,1)(β, x) dx + (1 − z)E [ln 2 cosh(βb)]

]

= sup
0≤z≤1

[∫ z

0
ϕ(0,z)(β, x) dx + (1 − z)E [ln 2 cosh(βb)]

]
. (21)

In the presence of any regular hierarchical field h (not necessarily with η given by (18)), this
result generalizes as follows.

Theorem 2 Let U (σσσ) be of GREM and B a random transversal field with independent
weights (b j ) sharing the same distribution as b. Further, let
h(σσσ) = Nη(q(σσσ ,σσσ 0)) be a regular hierarchical field. Then, almost surely:

Φ(β, b, h):= lim
N→∞ ΦN (β, b, h)

= sup
0≤y≤z≤1

[
βη(y) +

∫ z−y

0
ϕ(y,z)(β, x) dx + (1 − z)E [ln 2 cosh(βb)]

]

= sup
0≤y≤z≤1

[
βη(y) +

∫ z−y

0
ϕ(y,1)(β, x) dx + (1 − z)E [ln 2 cosh(βb)]

]
.

(22)
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That the two last equations in (22) agree, is a priori not clear, as the additional cut at z < 1
might change the concave hull Ā(y,z) in the interval of interest. In other words, Theorem 2
in particular says that the maximizing z in (22) can only be a point, where Ā(y,1) = A(y,1)

and consequently the z-cut has no effect on the concave hull.
Remarkably, the transversal field B and the hierarchical field h affect the glass phase quite

differently. While the hierarchical field tends to shrink the glass region in its most correlated
sector first (it acts through the choice of y from the ’left’), the transversal field begins by
changing the unfrozen region and the less correlated sector (it acts through the choice of
z from the ’right’). We will further discuss the consequences of our second main result,
Theorem 2, in the next subsection and spell out its proof only in Sect. 2.

1.4 Instability of the Glass Phase in the QGREMwith Longitudinal Hierarchical Field

If A = Ā, i.e. A is a concave function, ϕ(y,1) is a just a translation of ϕ(0,1) =: ϕ such that

Φ(β, b, h) = sup
0≤y≤z≤1

[
βη(y) +

∫ z

y
ϕ(β, x) dx + (1 − z)E [ln 2 cosh(βb)]

]
, (23)

with

ϕ(β, x) = β
√

(2 ln 2) ā(x)1x<x(β) +
(

β2

2
ā(x) + ln 2

)
1x≥x(β),

x(β):= sup
{
x | ā(x) > (2 ln 2)/β2} .

On the other hand, if A is not concave (which is always the case if A is a step function) the
behavior of ϕ(y,1) is more subtle as one has to take into account that the slope of the concave
hull’s linear segments will change as y increases. In particular, (23) does not necessarily
hold true. In contrast to a transversal field, a hierarchical field might lead to a change of the
determining concave hull. As discussed in [14] this would happen for a hierarchical caricature
of a p-spin glass with p > 2.

For an explicit prediction on the AT line we will now focus on the case that A = Ā is
continuously differentiable with derivative ā. Then for any hierarchical field with an overlap
function η(·) = hv(·) with h ≥ 0 and v ≥ 0 an increasing function, the supremum in (23)
is attained for fixed β ≥ 0 at some y(β, h) which is an increasing function of h. Since the
critical temperature Tc = β−1

c only depends on ā(y(β, h)), it is thus a decreasing function
of h and not increasing as in the QREM.

To be more specific, let us focus on the case of the hierarchical magnetic field η = hγ of
strength h > 0. We will proceed step by step, first discussing the limiting cases.

1.4.1 Vanishing Transversal Field b = 0

In this case, a straightforward differentiation shows that the supremum in (23) is attained at
z = 1 and y = y(β, h) ∈ (0, 1), which for fixed β > 0 and h > 0 is the unique solution of
the equation

y = k

(
ϕ (β, y)

βh

)
, (24)
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where k : [0,∞) → (0, 1] is the inverse function of the derivative γ ′ : (0, 1] → [0,∞) of
γ . The uniqueness of the solution is most easily seen using the explicit form

k(x) =
{
1, x = 0,
1
x tanh

ln 2
x − 1

ln 2 ln cosh
ln 2
x , x > 0,

from which we conclude the fact that k is continuous and monotone decreasing. More pre-
cisely, since y 
→ ϕ(β, y) is continuous and monotone decreasing as well with limiting
values ϕ(β, 0) ≥ ϕ(β, 1) = β2ā(1)/2 + ln 2 > 0, the solution to (24) exists and is unique.

A low-temperature glass phase occurs in this case if and only if y(β, h) < x(β). Clearly,
this is only possible in case x(β) > 0, i.e. for temperatures below the critical temperature at
h = 0, whose inverse is given by

βc :=
√
2 ln 2

ā(0)
.

Since [βc,∞) � β 
→ x(β) is monotone increasing and right-continuous and ϕ(β, x(β)) =
2 ln 2, the inverse critical temperature at h > 0 is then well defined through the requirement

βc(h):= inf {β : x(β) > k (2 ln 2/(βh))} . (25)

The function h 
→ βc(h) is referred to as the AT line. We record some elementary properties
of the AT line and also of the solution of (24) for future purposes in the following proposition.
Of particular interest is the critical exponent of the AT line Tc(h) = βc(h)−1 near h = 0. It
is determined by the asymptotic behavior of ā(x) near x = 0. To facilitate notation, we write
x(t) ∝ y(t) (t → t0) if and only if limt→t0

x(t)
y(t) ∈ (0,∞) exists. For the determination of

the critical exponent, we add the following assumption, which may be satisfied or not.

Assumption 1 For α > 0: ā(0) − ā(x) ∝ xα (x ↓ 0).

E.g. in the SK-caricature case A = γ 2, we have ā(0) = 2 ln 2, which yields the correct
critical temperature βc = 1 of the SK-model, and α = 1. As is spelled out in (26), this leads
to the critical exponent 2 of the AT-line for small transversal fields. This differs from the
known asymptotics Tc − Tc(h) ∝ h2/3 (h ↓ 0) of the AT-line in the original SK-model as
already noted in [14].

Proposition 2 Suppose that A = Ā is continuously differentiable with derivative ā.

1. The inverse critical temperature βc(h) is monotone increasing in h. Its limiting values are
limh↓0 βc(h) = βc and

lim
h→∞ βc(h) =

{
∞ if ā(1) = 0,
2 ln 2
ā(1) if ā(1) > 0.

In the situation of Assumption 1 the critical temperature satisfies:

Tc − Tc(h) ∝ h2α (h ↓ 0). (26)

2. For any β ∈ (0,∞) and h > 0 the unique solution y(β, h) of (24) enjoys the following
properties:
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(a) For fixedβ ∈ (0,∞) the function (0,∞) � h 
→ y(β, h) is continuous and increasing
in h for any β > 0 with limiting values limh↓0 y(β, h) = 0 and limh→∞ y(β, h) = 1.
Moreover,

y(β, h) = O(h3) + h2 ×
{

β2

2 ln 2 (1 + β2/β2
c )

−2, β < βc
β2
c

8 ln 2 , β > βc

(27)

for small h.
(b) The function (0,∞) � h 
→ ϕ (β, y(β, h)) is continuous and decreasing. Moreover,

at any β > 0 its limiting values is limh↓0 ϕ (β, y(β, h)) = ϕ (β, 0).

The proof of this proposition consists again of multiple lengthy, but elementary compu-
tations, which are sketched in Appendix B.

1.4.2 Vanishing Hierarchical Longitudinal Field h = 0

It was shown in Corollary 1.5 of [22] that in case h = 0 and a constant transversal field
b = Γ of strength Γ > 0 the supremum in (23) is attained at y = 0 and z = z(β, Γ ) ∈ [0, 1]
given by

z(β, Γ ) :=

⎧⎪⎨
⎪⎩
1 p(βΓ ) ≤ s(β) := ϕ(β, 1)

gβ(p(βΓ )) s(β) < p(βΓ ) < t(β) := ϕ(β, 0)

0 t(β) ≥ p(βΓ ).

(28)

Here g(β, ·) : [s(β), t(β)] → [0, 1] is the generalized inverse of ϕ(β, ·), which maximizes
z(β, Γ ) and

p(βΓ ) := ln 2 cosh(βΓ ),

is the pressure of a pure quantum paramagnet. As a consequence, the pressure Φ(β, Γ , 0)
has a magnetic transition at

Γc(β, 0) := 1

β
arcosh

(
1
2e

t(β)
)

and possibly a second magnetic transition at Γ
(1)
c (β) := 1

β
arcosh

( 1
2e

s(β)
)
depending on

whether ā(1) > 0 or equivalently s(β) > ln 2 or not. In the regime Γ < Γc(β, 0) a glass
transition occurs at fixed inverse temperature βc.

In case of the SK-caricature for which ā(1) = 0, neither the value of the location of the
quantum phase transition at zero temperature, limβ→∞ Γc(β, 0) = √

(2 ln 2)ā(0) = 2 ln 2 ≈
1.38 . . . agreeswith the perturbative or numerical prediction of approximately 1.51 in [33,34],
nor does the behavior of Γc(T−1, 0) near T = 0 agree with the T 2-scaling predicted in [17].
Presumably, this is a defect of the hierarchical implementation of the glass’ correlations.

1.4.3 Constant Longitudinal and Transversal Field

To determine the pressure Φ(β, Γ , h) in the general case of a constant transversal and longi-
tudinal field Γ , h > 0, we also need to discuss the behavior of the variational expression (23)
at the diagonal y = z, which corresponds to the situation without a GREM. In this case, the
supremum is attained at

σ(β, Γ , h) := k

(
p(βΓ )

βh

)
. (29)
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Note that the condition p(βΓ ) < ϕ(β, y(β, h)) ensures y(β, h) < z(β, h) by the strict
monotonicity of gβ . These findings then yield to the following explicit expression for the
pressure in the general case.

Corollary 2 Suppose that A = Ā is continuously differentiable. For the constant transversal
field of strength Γ > 0 and the hierarchical magnetic field h(σσσ) = Nhγ (q(σσσ ,σσσ 0)) of
strength h > 0 the pressure is almost surely

Φ(β, Γ , h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

βhγ (y(β, h)) +
∫ z(β,Γ )

y(β,h)

ϕ(β, x)dx + (1 − z(β, Γ )) p(βΓ ),

p(βΓ ) < ϕ(β, y(β, h)),

βhγ (σ (β, Γ , h)) + (1 − σ(β, Γ , h)) p(βΓ ),

p(βΓ ) ≥ ϕ(β, y(β, h)),

where y(β, h), z(β, Γ ) and σ(β, Γ , h) are specified in (24), (28) and (29) respectively.

Let us now discuss the physical significance of this formula. In case h > 0 the pressure
in Corollary 2 changes its nature at ϕ(β, z(β, Γ )) = p(βΓ ) = ϕ(β, y(β, h)), i.e. at

Γc(β, h) := 1

β
arcosh

(
1
2e

ϕ(β,y(β,h))
)

.

By strict monotonicity of p, the condition Γ < Γc(β, h) is equivalent to p(βΓ ) <

ϕ(β, y(β, h)) and hence y(β, h) ≤ z(β, Γ ).
The magnetization in the transversal direction

mx (β, Γ , h) := 1

β

∂

∂Γ
Φ(β, Γ , h)

=
{

(1 − z(β, Γ )) tanh βΓ , p(βΓ ) < ϕ(β, y(β, h)),

(1 − σ(β, Γ , h)) tanh βΓ , p(βΓ ) ≥ ϕ(β, y(β, h)),

changes continuously through the transition line Γ = Γc(β, h). Only its second derivative
is generally discontinuous. Note that the magnetization in x-direction neither attains its
maximum value tanh(βΓ ) of the pure quantum paramagnetic phase in the regime Γ >

Γc(β, h) nor does it vanish for Γ < Γc(β, h). Similarly as in the case h = 0 covered in
[22], the transversal magnetization vanishes only at Γ

(1)
c (β), which is equal to zero in case

ā(1) = 0. The critical magnetic field is continuous in h, and one recovers the limiting value
limh↓0 Γc(β, h) = Γc(β, 0) for anyβ ∈ (0,∞). A straightforward Taylor expansion and (27)
imply that in the situation of Assumption 1:

Γc(β, 0) − Γc(β, h) ∼ h2α (h ↓ 0). (30)

In fact, this even holds in the zero temperature limit β → ∞, i.e for the so called Quantum
AT line which is plotted in Fig. 2.

A low-temperature glass phase occurs if and only if

y(β, h) < min {x(β), z(β, Γ )} .

Clearly, this is only possible if two conditions are satisfied simultaneously:

1. z(β, Γ ) > y(β, h), i.e. for transversal fields Γ < Γc(β, h). From the monotonicity of
h 
→ ϕ(β, y(β, h)), we conclude, Γc(β, h) ≤ Γc(β, 0) for any β, h > 0.
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Fig. 2 Plot of the Quantum AT line, i.e. the dependence of the critical transversal field Γc(β, h) on the
longitudinal field h for zero temperature, β = ∞

Fig. 3 On the left is a plot of the critical temperature βc(h) as a function of the longitudinal field. On the right
figure is the T − Γ phase diagram with the critical magnetic field Γc(β, Γ ) as well as the critical temperature
βc(h)−1 evaluated at h = 0, 3, 7

2. x(β) > y(β, h), i.e. for β > βc(h) given by (25), which we already identified as a
monotone increasing function of h.

We thus conclude, that the presence of the transversal field h > 0 shrinks the spin glass’ low-
temperature phase. Qualitatively this behavior is in accordance with the numerical findings
in case of the Quantum SK-model [34]. However, as already noted in [14] in the classical
case Γ = 0, the critical exponents do not agree. Figure 3 plots the temperature-transversal
field phase diagram for different values of h in case A = Ā and ā(1) = 0.

We finally close this section by pointing out that the expression for the pressure in case
p(βΓ ) ≥ ϕ(β, y(β, h)) agrees with that of the hierarchical field h plus a constant transversal
field Γ . It should be compared to the exact solution p(β

√
h2 + Γ 2) without the hierarchical

implementation of the longitudinal field and agrees qualitatively.
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The magnetization in the longitudinal direction is given by

mz(β, Γ , h) := 1

β

∂

∂h
Φ(β, Γ , h) =

{
γ (y(β, h)) , p(βΓ ) < ϕ(β, y(β, h)),

γ (σ (β, Γ , h))) , p(βΓ ) ≥ ϕ(β, y(β, h)),

and varies continuously through both the glass and the magnetic transitions.

2 Proof of Theorem 2

Let us first remark that the last equality in (22) already follows from results in [22]. Indeed,
fix any y ∈ [0, 1) and consider the Hamiltonian

H (y) := U (y,1) − B(2,y)

on the reduced Hilbert space �2(Q�(1−y)N�), where U (y,1) is the cut GREM corresponding
to A(y,1) and B(2,y) denotes the cut transversal field acting only on spins in Q�(1−y)N�

B(2,y):=
N∑

i=�yN�+1

bisssi , (31)

and we set B(1,y):=B − B(2,y). Then, Theorem 2.8 in [22] implies

lim
N→∞

1

N
ln Tr e−βH (y) = sup

y≤z≤1

[∫ z−y

0
ϕ(y,z)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]
,

whereas an application of Theorem 1.4 in [22] yields

lim
N→∞

1

N
ln Tr e−βH (y) = sup

y≤z≤1

[∫ z−y

0
ϕ(y,1)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]
.

In both cases, the supremum is taken over z ∈ [y, 1] at fixed y, which proves the second
equality in (22). We now spell out the proof of the first equality in (22).

Proof of Theorem 2: We will proceed in three steps.
Step 1: Reduction to step functions

We claim that it is enough to show Theorem 2 for step functions η. This follows if we can
prove that the left and right side of (22) are continuous with respect to η in the uniform norm.
This is, however, trivial for the right side, and a simple operator norm bound implies for two
hierarchical fields h, h′ with overlap functions η, η′,

1

N

∣∣∣ln Tr e−β(U−h−B) − ln Tr e−β(U−h′−B)
∣∣∣ ≤ β‖η − η′‖∞.

From now on, we will therefore only consider step functions η, i.e. we assume that there
exist points 0 = q0 < q1 < · · · qm = 1 and real numbers η1, . . . , ηm such that η(x) = ηk
for qk−1 ≤ x < qk and η(1) = ηm . The points qk define blocks of spin vectors σσσ k ∈
Q�qk N�−�qk−1N�, and we will write σσσ = σσσ 1σσσ 2 · · ·σσσm . Moreover, it is convenient to introduce
for k = 1, . . .m the projections Pk and pk :

Pkσσσ = Pkσσσ 1σσσ 2 · · ·σσσm :=σσσ 1 · · ·σσσ k, pkσσσ = pkσσσ 1σσσ 2 · · ·σσσm :=σσσ k .
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Moreover, we set P0σσσ = p0σσσ :=1. Finally, we note that due to the fact that η only takes
finitely many values, we may restrict the variational expression (22) to the maximum over
points y = qk :

sup
0≤y≤z≤1

[
βη(y) +

∫ z−y

0
ϕ(y,1)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]

= max
k=0,...,m−1

sup
qk≤z≤1

[
βηk+1 +

∫ z−qk

0
ϕ(y,1)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]
.

Step 2: Lower bound
Our lower bound on the pressure is based on Gibbs’ variational principle [26]. We pick some
k ∈ {1, . . . ,m} and consider on the subspace �2(QN−�qk N�) the Hamiltonian:

H (k) := U (k) − B(2,qk ), U (k)(σσσ k+1 · · ·σσσm) := U ((Pkσσσ
0)σσσ k+1 · · ·σσσm). (32)

We denote by ρ̃k,β the corresponding Gibbs state at inverse temperature β. The density
matrix ρ̃k,β has the extension ρk,β := |Pkσσσ 0〉〈Pkσσσ 0| ⊗ ρ̃k,β to the full space �2(QN ) =
�2(Q�qk N�) ⊗ �2(QN−�qk N�) and its matrix elements are given by

〈σσσ |ρk,β |σσσ ′〉:=
{

〈σσσ k+1 · · ·σσσm |ρ̃k,β |σσσ ′
k+1 · · ·σσσ ′

m〉 if Pkσσσ = Pkσσσ 0 = Pkσσσ ′

0 else .

By Gibbs’ variational principle, we have

1

N
ln Tr e−β(U−h−B)

≥ β

N
Tr [ρk,β(B(1,qk ) + h + Û (k) −U )] + 1

N
ln Tr |�2(QN−�qk N�)e

−βH (k)
,

with the canonical extension Û (k) of U (k) to the Hilbert space �2(QN ), i.e.,

Û (k)(σσσ 1 · · ·σσσ kσσσ k+1 · · ·σσσm):=U (k)(σσσ k+1 · · ·σσσm).

Since the trial density matrix ρk,β is diagonal with respect to σσσ 1 · · ·σσσ k and fixes the first
variables to Pkσσσ 0, we have

Tr [ρk,βB(1,qk )] = 0 = Tr
[
ρk,β(U (k) −U )

]
.

Thus, it remains to show the almost sure identities

lim
N→∞

1

N
Tr [ρk,βh] = ηk+1, (33)

and

lim
N→∞

1

N
lnTr |�2(QN−�qk N�)e

−βHk

= sup
qk≤z≤1

[∫ z−qk

0
ϕ(y,1)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]
.

(34)
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Step 2.1: Proof of (33): Using h(σσσ) = Nη(qN (σσσ ,σσσ 0)) we compute the trace in the z-basis:

1

N
Tr [ρk,βh] =

m−1∑
l=0

⎛
⎝ηl+1

∑
σσσ :Plσσσ 0=Plσσσ ,Pl+1σσσ

0 �=Pl+1σσσ

〈σσσ |ρk,β |σσσ 〉
⎞
⎠+ ηm〈σσσ 0|ρk,β |σσσ 0〉

=
m−1∑
l=k

⎛
⎝ηl+1

∑
σσσ :Plσσσ 0=Plσσσ ,Pl+1σσσ

0 �=Pl+1σσσ

〈σσσ |ρk,β |σσσ 〉
⎞
⎠+ ηm〈σσσ 0|ρk,β |σσσ 0〉,

where the second equality is due to the construction of ρk,β . Since ρk,β has unit trace,

1 =
∑

σσσ :Pkσσσ 0=Pkσσσ

〈σσσ |ρk,β |σσσ 〉, (35)

and is non-negative, we may estimate both from above and below:∣∣∣∣ 1N Tr [ρk,βh] − ηk+1

∣∣∣∣ ≤ ‖η‖∞
∑

σσσ :Pk+1σσσ
0=Pk+1σσσ

〈σσσ |ρk,β |σσσ 〉.

We further deduce from the spin-flip covariance of H (k) that for any σσσ,σσσ ′ with Pkσσσ =
Pkσσσ ′ = Pkσσσ 0:

E [〈σσσ |ρk,β |σσσ 〉] = E [〈σσσ ′|ρk,β |σσσ ′〉].
Consequently, using the normalization (35) and counting the number of configurations, we
have

E

⎡
⎣ ∑

σσσ :Pk+1σσσ
0=Pk+1σσσ

〈σσσ |ρk,β |σσσ 〉
⎤
⎦ = 2N (1−qk+1)

2N (1−qk )
= 2−N (qk+1−qk ).

By a Borel-Cantelli argument, we thus arrive at the almost sure convergence

lim
N→∞

∣∣∣∣ 1N Tr [ρk,βh] − ηk+1

∣∣∣∣ = 0.

Step 2.2: Proof of (34): We may rewrite the restricted process (in distributional sense)

U ((Pkσσσ
0)σσσ k+1 · · ·σσσm) = U ′(σσσ k+1 · · ·σσσm) +√N A(qk) Y ,

whereU ′(σσσ k+1 · · ·σσσm) is a GREMprocess onQN−�qk N� with (non-normalized) distribution
function A(qk ,1) and Y is a standard Gaussian variable which is independent ofU ′. This distri-
butional equality relies on the fact that centered Gaussian processes are uniquely determined
by their covariance function. Of course, Y does not contribute to the limit of the pressure,

lim
N→∞

1

N
ln Tr |�2(QN−�qk N�)e

−βH (k) = lim
N→∞

1

N
ln Tr |�2(QN−�qk N�)e

−β(U ′−B(2,qk )),

provided that the limit on the right side exists. This is warranted by Theorem 1.4 in [22],
which almost surely yields

lim
N→∞

1

N
lnTr |�2(QN−�qk N�)e

−β(U ′−B(2,qk ))

= sup
qk≤z≤1

[∫ z−qk

0
ϕ(y,1)(x) dx + (1 − z)E [ln 2 cosh(βb)]

]
.

(36)
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Step 3: Upper bound
The method is similar in spirit to the application of the peeling principle presented in [22].
However, we need to cut the transversal field B in a different manner which suits the hierar-
chical field h.
Step 3.1: Truncating the transversal field B
We define the partial fields

Bk :=B(1,qk−1) − B(1,qk ) =
�qk N�∑

i=�qk−1N�+1

bisssi

where we set B(1,q0) = 0. Hence Bk only acts on σσσ k . We also define the restriction B ′
k of Bk

to the complement of (pkσσσ 0):

Bk − B ′
k := 1 ⊗

∑
�qk−1N�< j≤�qk N�

b j
(|pk(Fjσσσ

0)〉〈pkσσσ 0| + |pkσσσ 0〉〈pk(Fjσσσ
0)|)⊗ 1.

Here, the first identity acts on σσσ 1 · · ·σσσ k−1,the last identity on σσσ k+1 · · ·σσσm and Fj denotes
the j th flip operator (see (5)). We denote by B ′ the total truncated transversal field,

B ′ =
m∑

k=1

B ′
k

By the triangle inequality and a Frobenius norm estimate we have

‖B − B ′‖ ≤
m∑

k=1

‖Bk − B ′
k‖ ≤ m

√√√√2
N∑
i=1

|bi |2 = o(N ).

Note that the L1-property of the random variable b and Lemma A.2 in [22] ensure that the
right side is indeed of order o(N ).
Step 3.2: Finishing the proof: Using a trivial norm bound, we estimate

e−β‖B−B′‖ Tr e−β(U−h−B) ≤ Tr e−β(U−h−B′)

=
m−1∑
k=0

⎛
⎝e−βNηk+1

∑
σσσ :Pkσσσ 0=Pkσσσ,Pk+1σσσ

0 �=Pk+1σσσ

〈σσσ |e−β(U−B′)|σσσ 〉
⎞
⎠

+ e−βNηm 〈σσσ 0|e−β(U−B′)|σσσ 0〉

=
m−1∑
k=0

⎛
⎝e−βNηk+1

∑
σσσ :Pkσσσ 0=Pkσσσ ,Pk+1σσσ

0 �=Pk+1σσσ

〈σσσ k+1 . . . σmσmσm |e−β(U (k)−B′(2,qk ))|σσσ k+1 . . . σmσmσm〉
⎞
⎠

+ e−βNηm e−βU (σσσ 0).

The first identity follows by an inclusion-exclusion type of summation over all spin config-
urations σσσ ∈ QN together with the fact that the hierarchical field h commutes with B ′ (and
clearly withU ) and is constant on the respective spin configurations in the sum. The third line
is a consequence of the fact that on the subspace generated by the elements Pkσσσ 0 = Pkσσσ , the
magnetic field B ′ operates only on the remaining spins σσσ k+1 · · ·σσσm and evaluates the poten-
tial atU (k), see (32). We now recall from Lemma 1 in [22] that the diagonal matrix elements
〈σσσ |e−β(U−B)|σσσ 〉 only depend on the square of the variables bi , so that in the estimation of the
trace we may always assume without loss of generality that bi ≥ 0 and hence B as well as
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B ′ have positive matrix elements in the spin configuration basis, which for bi ≥ 0 dominate
each other and in particular

0 ≤ 〈σσσ k+1 . . . σmσmσm |e−β(U (k)−B′(2,qk ))|σσσ k+1 . . . σmσmσm〉
≤ 〈σσσ k+1 . . . σmσmσm |e−β(U (k)−B(2,qk ))|σσσ k+1 . . . σmσmσm〉.

This allows us to expand the summation over all matrix elements with Pkσσσ 0 = Pkσσσ , which
leads to the upper bound

e−β‖B−B′‖ Tr e−β(U−h−B) ≤
m−1∑
k=0

e−βNηk+1Tr |�2(QN−�qk N�)e
−β(U (k)−B(2,qk ))

+ e−βNηm e−βU (σσσ 0).

Together with (36) this finishes the proof of Theorem 2. ��

3 Proof of Theorem 1

Based on the already established results and methods in [4,5,20,22], the proof of Theorem 1
is straightforward but quite lengthy. Before we move on to the details, we outline our proof
strategy which consists of three main steps:

1. First, we need to generalize the results in [4,5] on the REM and two-level GREM with
a random magnetic field to the general n-level GREM (see Theorem 3). Following [4,
5] closely, the argument is based on a large-deviation principle for the entropy which
transforms the computation of the limit to a linear optimization problem with non-linear
constraints.

2. Secondly, we extend the limit theorem for the classical GREM to the QGREM with a
random longitudinal field (see Proposition 4). Using the peeling principle from [22], the
proof is quite easy. The only subtle point is to ensure that the structure of the concave hull
in the variational principle is preserved. Here we use an argument which is very similar
to the proof of [22, Lemma 3.1].

3. Finally, we use an interpolation and continuity argument to the lift the n-level QGREM
result to themore generalQGREMsetting.We refer to the interpolation and concentration
estimates in [22] which are applicable here.

3.1 The GREMwith a RandomMagnetic Field

The main aim of this subsection to prove the following Theorem 3, which extends the discus-
sion of the two-level GREM in [5] to the general n-level GREM. To this end, we will need to
introduce some notation. Let 0 = x0 < x1 < x2 < · · · < xn = 1 be some points a1, . . . , an
some nonnegative weights (we do not assume here that these weights add up to one). As in
the proof of Theorem 2, we decompose the spin vector into blocks σσσ = σσσ 1 · · ·σσσ n according
to the partition formed by the points (xk). The GREM process can be written as

U (σσσ) = √a1N Xσσσ 1 +√a2N Xσσσ 1σσσ 2 + · · · +√anN Xσσσ 1σσσ 2···σσσ n , (37)

where the appearing random variables Xσσσ 1 , Xσσσ 1σσσ 2 , . . . , Xσσσ 1σσσ 2···σσσ n are independent standard
Gaussian variables. Note thatU (σσσ) coincides with the GREMprocess with (non-normalized)
distribution function A,
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A(x) =
n∑

k=1

ak1[xk ,1](x).

The limit depends on the concave hull Ā of A consisting of linear segments which are
supported on a subset of points 0 = y0 < y1 < · · · < ym = 1 where A and Ā agree. It is
convenient to further introduce the following quantities: the increments of the concave hull
āl :=A(yl) − A(yl−1), the interval lengths Ll :=yl − yl−1 and the slopes γl :=āl/Ll .

As our main result in this section, we show that the limit of the classical pressure
ΦN (β, h) = ΦN (β, h, 0) can then be expressed in terms of the partial pressures

ϕ(l)(β, h):=
{

āl
2 β2 + LlE [ln 2 cosh βh] i f β ≤ β

(l)
c ,

β(ālβ
(l)
c + LlE [h tanh β

(l)
c h]) i f β > β

(l)
c

(38)

where the critical temperatures β
(l)
c = β

(l)
c (h) are each the unique positive solution of the

self-consistency equation
γl

2
β(l)2
c = ln 2 + E [ln cosh β(l)

c h] − β(l)
c E [h tanh β(l)

c h]. (39)

The following generalizes results in [4,5], which in turn is build on [7,8].

Theorem 3 Let U (σσσ) be a GREM process as in (37), β ≥ 0 and h an absolutely integrable
random variable. Then, almost surely

lim
N→∞ ΦN (β, h) =

m∑
l=1

ϕ(l)(β, h). (40)

We stress that a randomfield does only change the partial pressures ϕ(l) but not the number
of terms in the right side. In particular, the limit remains to be a function of the concave hull
Ā and not A itself.

Our proof of Theorem 3 follows the large-deviation approach in [4,5]. We first need to
understand the energy statistics of the randomfield. To this end, it is convenient to decompose
the field h(σσσ) into blocks

hk(σσσ k):=
∑

�xk−1N�+1≤ j≤�xk N�
h jσ j .

We first study the occupation numbers

N (yk):= |{σσσ k | hk(σσσ k) ≤ −Nyk}| .
With respect to the uniform distribution on spin configurations σσσ k , the random variables
hk(σσσ k)/Nk with Nk := (xk − xk−1)N have a finite logarithmic-moment generating function
given by

ΛN (t) := 1

Nk
ln

(
1

2Nk

∑
σσσ k

ethk (σσσ k )

)
= N−1

k

∑
�xk−1N�+1≤ j≤�xk N�

ln cosh(th j )

=: E [ln cosh(th)] + SN (t),

where SN (t) is a random variable. For any fixed t ∈ R by the strong law of large numbers
the latter converges to zero as N → ∞. In fact, we can find a set of full probability (with
respect to the distribution of the iid variables (hi )) such that the almost-sure convergence

lim
N→∞ ΛN (t) = E [ln cosh(th)]
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holds true for all t ∈ R simultaneously. This follows from an 3ε-argument by considering a
countable dense set first and extending this assertion by noticing that both sides are contin-
uously differentiable in t (see the proof of Lemma 5 in [4]). The Gärtner Ellis theorem (cf.
[11]) then ensures that

I (z):= sup
t∈R

{zt − E [ln cosh th]} (41)

is a rate function for N−1
k hk(σσσ k) for any k. As a Legendre transform I : R → R ∪ {∞}

is lower semicontinuous. It is straightforward to check that I is symmetric, I (−z) = I (z),
equal to +∞ for |z| > E [|h|], continuously differentiable on (−E [|h|],E [|h|]), where it is
bounded by ln 2, and continuous and monotone on [0,E [|h|]).

The Gärtner Ellis theorem also allows to determine the asymptotic behavior of occupation
numbers N (yk), which we can rewrite as 2Nk times the probability that

hk/Nk ≤ −yk/(xk − xk−1) =: ξk(yk) =: ξk .

More precisely, we almost surely have

ln 2 − inf
z<−ξk

I (z) ≤ lim inf
N→∞

1

Nk
ln N (yk) (42)

≤ lim sup
N→∞

1

Nk
ln N (yk) ≤ ln 2 − inf

z≤−ξk
I (z) = ln 2 − I (ξk).

By the aforementioned continuity of I , we thus obtain for ξk ∈ (−E [|h|],E [|h|]) the almost-
sure convergence

lim
N→∞

1

Nk
ln N (yk) = ln 2 − I (ξk), (43)

which describes the energy statistics of the magnetic field. As a next step, we analyze the
energy statistics of the total Hamiltonian. We start by extending our definition of occupation
numbers and introduce:

N (EEE, yyy) := N (E1, . . . , En, y1, . . . , yn)

:=|{σσσ ∈ QN | √
ak Xσσσ 1···σσσ k ≤ −√

NEk

and hk(σσσ k) ≤ −Nyk for all k = 1, . . . , n}|. (44)

Our next goal is to obtain the asmptotics for N (EEE, yyy). To this end, we introduce the entropy

S(EEE, yyy):= ln 2 −
n∑
j=1

(
E2

j

2a j
+ (x j − x j−1)I (ξ j (y j ))

)
(45)

as well as the constraints

C:=
{
(EEE, yyy) ∈ R

n≥0 × R
n≥0

∣∣∣ k∑
j=1

E2
j

2a j
+ (x j − x j−1)I (ξ j (y j )) < xk ln 2

for all k = 1, . . . , n
}
. (46)

Note that (EEE, yyy) ∈ C guarantees that I (ξk) < ∞ for all k. By continuity of the involved
functions on the domain, where they are finite, we conclude that C is an open set and ξ j (y j ) ∈
(−E [|h|],E [|h|]) for any j in case (EEE, yyy) ∈ C.
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The following lemmaon the asymptotics of N (EEE, yyy) is a natural generalization ofTheorem
1.2 in [5]. We remark that 1

N ln N (EEE, yyy) is shown to converge almost surely, but not in
expectation. As the event {N (EEE, yyy) = 0} has a small, but nonvanishing, probability, we in
fact have E [ln N (EEE, yyy)] = −∞.

Lemma 1 Let X be an n-level GREM vector as in (37) and (hi ) independent copies of an
absolutely integrable random variable h. Then, if (EEE, yyy) ∈ C, we almost surely have

lim
N→∞

1

N
ln N (EEE, yyy) = S(EEE, yyy). (47)

On the other hand, if (EEE, yyy) /∈ C̄, the topological closure of C, almost surely and for all, but
finitely many N:

N (EEE, yyy) = 0. (48)

Proof Let us start with the case (EEE, yyy) /∈ C̄. One then finds some k ∈ N and ε > 0 such that

k∑
j=1

E2
j

2a j
+ (x j − x j−1)I (y j/(x j − x j−1)) ≥ xk ln 2 + ε. (49)

We condition on the weights (hi ) and compute the probability that a reduced spin vector
σσσ 1 · · ·σσσ k meets the first k energy requirements

P(
√
a j Xσσσ 1···σσσ j ≤ −√

NE j and h j (σσσ j ) ≤ −Ny j for all j = 1, . . . , k |(hi ))

=
k∏
j=1

P(
√
a j Xσσσ 1···σσσ j ≤ −√

NE j )P(h j (σσσ j ) ≤ −Ny j |(hi ))

≤
k∏
j=1

e−NE2
j /(2a j )1[h j (σσσ j ) ≤ −Ny j ].

(50)

The first equality is due to the independence of the variables Xσσσ 1···σσσ j for different j . The
bound on the first probability follows from the standard Gaussian estimate. This may be
inserted into the following union bound

P(N (EEE, yyy) ≥ 1|(hi )) ≤
∑

σσσ 1···σσσ k

P
(√

a j N Xσσσ 1···σσσ j ≤ −NE j

and h j (σσσ j
) ≤ −Ny j for all j = 1, . . . , k |(hi ))

≤ exp
(

− N
k∑
j=1

E2
j

2a j

) k∏
j=1

N (yk),

where the last inequality is the previous estimate.
We now distinguish two cases. If

yyy ∈ Gk :={yyy ∈ R
n≥0| I (ξ j (y j )) < ∞ for all j = 1, . . . , k},

we may further estimate the right side using (49) and the upper bound in (42) to conclude
that for all, but finitely many N and almost surely with respect to the variables (hi ):

P(N (EEE, yyy) ≥ 1|(hi )) ≤ e−Nε/2.

A Borel-Cantelli argument then shows that N (EEE, yyy) converges almost surely to zero.
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In case yyy /∈ Gk there exist an integer j ∈ {1, . . . k} such that I (ξ j (y j )) = ∞. Consequently,
(42) implies the almost-sure convergence lim supN→∞ 1

N j
ln N (y j ) = −∞. Since N (y j ) ∈

N0, this implies that almost surely N (y j ) = 0 for all, but finitely many N . We conclude
P(N (EEE, yyy) ≥ 1|(hi )) = 0 for all, but finitely many N and hence the claim (48) in this case.

It thus remains to show (47) for (EEE, yyy) ∈ C. This proof will be based on Proposition 3.
For its application, we introduce the following sequences of numbers

Fk(N ):= 1

N
ln |{σσσ 1 · · ·σσσ k | √

ai Xσσσ 1···σσσ i ≤ −√
NEi and

h j (σσσ j ) ≤ −Ny j for all i = 1, . . . , k − 1; j = 1, . . . , k}|
Gk(N ):= 1

N
ln |{σσσ 1 · · ·σσσ k | √

ai Xσσσ 1···σσσ i ≤ −√
NEi and

h j (σσσ j ) ≤ −Ny j for all i = 1, . . . , k; j = 1, . . . , k}|,
G0 := 0.

The definition of these sets are motivated by inclusion-exclusion. If we suppose that Gk(N )

converges as N → ∞, the almost-sure convergence (43), for which we recall that (EEE, yyy) ∈ C
implies max j |ξ j | < E [|h|], yields

lim
N→∞ Fk+1(N ) = (xk+1 − xk) ln 2 − (xk+1 − xk)I (ξk+1) + lim

N→∞Gk(N ).

Moreover, Proposition 3 further implies

lim
N→∞Gk+1(N ) = −(2ak+1)

−1E2
k+1 + lim

N→∞ Fk+1(N ),

provided that the right side is positive. By definition of the constraint, this is always the case
if (EEE, yyy) ∈ C such that

lim
N→∞

1

N
ln N (EEE, yyy) = lim

N→∞Gn(N ) = ln 2 −
n∑
j=1

(
E2

j

2a j
+ (x j − x j−1)I

(
ξ j (y j )

))

= S(EEE, yyy)

almost surely. ��
The second part of the proof of Lemma 1 relied on the following claim, whose proof

follows that of Proposition 6 in [4].

Proposition 3 Let (DN )N∈N be a family of finite sets, (Xs)s∈DN independent standard Gaus-
sian variables and (Ys)s∈DN a random vector, which is independent of X and whose entries
only take the values 0 and 1. Further, suppose that almost surely

lim
N→∞

1

N
ln |{s ∈ DN |Ys = 0}| = q > 0.

Then the number of large deviations

N (E):=|{s ∈ DN |Ys = 0 and
√
aXs ≤ −E

√
N }|,

with a > 0 almost sure obeys

lim
N→∞

1

N
ln N (E) = q − (2a)−1E2

provided that q > (2a)−1E2.
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Proof We apply the second moment method to N (E) and the conditional expectation con-
ditioned on the event Z :={s ∈ DN |Ys = 0}. A standard calculation similar to (50) using
elementary bounds on the Gaussian distribution function shows that

E [N (E)|Z ] = Z exp(−((2a)−1E2 + o(1))N ).

By explicit computation we determine the second moment of N (E) conditioned on Z :

E [N (E)2|Z ] − E [N (E)|Z ]2

=
∑

s,s′:Ys=Ys′=0

P

(√
aXs ≤ −E

√
N and

√
aXs′ ≤ −E

√
N
)

− P

(√
aXs ≤ −E

√
N
)
P

(√
aXs′ ≤ −E

√
N
)

=
∑

s:Ys=0

P

(√
aXs ≤ −E

√
N
)

− P

(√
aXs ≤ −E

√
N
)2 ≤ E [N (E)|Z ].

Thus, the Chebyshev inequality implies for any ε > 0:

P(|N (E) − E [N (E)|Z ]| > ε E [N (E)|Z ]|Z) ≤ ε−2
E [N (E)|Z ]−1.

We note that E [N (E)|Z ] is almost surely exponentially large; in fact, by assumption ln Z =
N (q + o(1)) with q > (2a)−1E2. Thus, a Borel-Cantelli argument yields almost surely

lim sup
N→∞

∣∣∣∣ 1N ln
N (E)

E [N (E)|Z ]
∣∣∣∣ = 0,

which completes proof using the expression for E [N (E)|Z ]. ��
Based onLemma1,wemay nowestablish a variational expression for the limiting pressure

of the n-level GREM in a random magnetic field.

Lemma 2 For any β ≥ 0 and any absolutely integrable random variable h the pressure
ΦN (β, h) converges almost surely and its limit is given by

lim
N→∞ ΦN (β, h) = sup

(EEE,yyy)∈C
(β(E1 + · · · + En + y1 + · · · + yn) + S(EEE, yyy)) . (51)

Proof By elementary estimates it follows that

exp(NΦN (β, h)) ≥ exp(βN (E1 + · · · + En + y1 + · · · + yn))N (EEE, yyy)

for any (EEE, yyy), which in view of Lemma 1 implies almost surely

lim inf
N→∞ ΦN (β, h) ≥ sup

(EEE,yyy)∈C
β(E1 + · · · + En + y1 + · · · + yn) + S(EEE, yyy).

Toobtain an asymptotic upper boundweuse adiscretization argument.We setα:=maxi=1,...,n

ai and define the compact box

F :=[−(
√
2α ln 2 + 1),

√
2α ln 2 + 1]n × [−E [|h|] − 1,E [|h|] + 1]n .

One easily sees that almost surely no configuration (EEE, yyy) outside of F contributes to the
limit (51) of the pressure. To simplify the notation, we assume in the following that this holds
true for any N . Thus, it suffices to consider configurations in F on which we set the grid

FK :=
{
(EEE, yyy) ∈ F

∣∣ E j = k j
K

(
√
2α ln 2 + 1), y j = l j

K
(E [h] + 1),

k j , l j = −K ,−K + 1, . . . , K , j = 1, . . . , n
}
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with K ∈ N.Wepick ε > 0 arbitrary and choose K = Kε such thatmax{E [h]+1,
√
2α ln 2+

1} < εKε . Then, the ε-neighborhoods of the grid points in FK cover the box F and therefore

eNΦN (β,h) ≤
∑

(EEE,yyy)∈FK
N (EEE, yyy) eβN (E1+···+En+y1+···+yn+2nε).

Let us now observe three points. First, if E j or y j is negative for some j we may replace
this value by 0 without changing the number N (EEE, yyy) on an exponential scale. This is just a
consequence of symmetry and the LDP satisfied by h j and the Gaussian vectors X . Secondly,
without loss of generality we may assume that there are no grid points on the boundary of C.
Moreover, if (EEE, yyy) /∈ C̄, the corresponding term gives no contribution to the limit of ΦN by
(48). Thirdly, the entropy factor corresponding to the summation over the grid points does
not depend on N and is thus irrelevant after taking the limit. Summarizing these points, we
conclude almost surely

lim sup
N→∞

ΦN (β, h) ≤ 2βnε + sup
(EEE,yyy)∈C

β(E1 + · · · + En + y1 + · · · + yn) + S(EEE, yyy),

which completes the proof as ε > 0 was chosen arbitrarily. ��

It remains to solve the variational problem (51) which is the last part in the proof of
Theorem 3. Note that one may replace the sup on C by a maximum on C̄ as the involved
expressions possess continuous extensions to C̄.

Proof of Theorem 3 We proceed via induction on m, the number of linear segments of the
concave hull Ā. If m = 1, the variational problem consists of 2n independent optimization
problems which can be easily solved. This leads to

E j = βa j and y j = (x j − x j−1)E [h tanh(βh)] j = 1, . . . , n.

To obtain the expression for y j , it is helpful to note that the rate function I is the Legendre
transform of E [ln cosh(βh)]. The maximum is attained when ξ j (y j ) = y j/(x j − x j−1)

equals the derivative of E [ln cosh(βh)] with respect to β. We see that if β is small enough,
all constraints are fulfilled and the maximum is given by

Φ(β, h) = ln 2 + β2

2

⎛
⎝ n∑

j=1

a j

⎞
⎠+ E [ln cosh(βh)].

Since in the unconstrained variational problem the optimal value E j is unbounded as β

increases, the above considerations will hold true up to some critical value βc, where the first
constraining inequality is not satisfied, i.e., the maximum is located at the boundary of C.
Due to the structure of the optimal (EEE, yyy) in the unconstrained setting, this needs to be the
inequality corresponding to the highest slope (a1 + · · · + ak)/xk which is attained at k = n
since m = 1. If we denote the optimal configuration of the unconstrained problem at βc by
(EEEc, yyyc) we thus have

S(EEEc, yyyc) = 0.

From there, one obtains after some algebra the self-consistency equation for βc:∑
j a j

2
β2
c = ln 2 + E [ln cosh βch] − βcE [h tanh βch].
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Furthermore,

max
(EEE,yyy)∈C̄

βc(E1 + · · · + En + y1 + · · · + yn) + S(EEE, yyy)

= max
(EEE,yyy)∈C̄

βc(E1 + · · · + En + y1 + · · · + yn),

which is clearly still a valid identity for β > βc. We conclude that Φ becomes a linear
function of β for β > βc and the slope agrees with the derivative of Φ at βc, i.e.

Φ(β, h) = β

⎛
⎝βc

n∑
j=1

a j + E [h tanh βch]
⎞
⎠ .

This is exactly the statement of Theorem 3 in the case m = 1.
Now, suppose that the assertions are true for somem, and wewant to show that it is still the

case for m + 1. Let us write EEE<m, EEE>m, yyy<m and yyy>m , where the vectors denote the energy
configurations corresponding to the first m segments and the last segment, respectively.
Similarly, we set Cm the set of the constraints related to the first m segments. If we only
demand that the energy configuration (EEE<m, yyy<m) satisfy the constraints Cm , then using the
induction hypothesis and the analysis of the case m = 1, we end up with the expression

m∑
l=1

ϕ(l)(β, h) + (1 − ym) ln 2 + β2

2

⎛
⎝ ∑

j∈Im+1

a j

⎞
⎠+ (1 − ym)E [ln cosh(βh)]

for the limit of the pressure, where Im+1 denotes the last segment. This is indeed a solu-
tion if β ≤ β

(m)
c , since the remaining constraints are also verified by the m-level solution

(EEE<m, yyy<m) and the unconstrained solution (EEE>m, yyy>m) due to the concave-hull structure.
We note that for β > β

(m)
c , we only need to consider the n-th inequality (for the same reason

as in the case m = 1) which then may be rewritten as

(ym+1 − ym) ln 2 >
∑

j∈Im+1

(2a j )
−1 + (x j − x j−1)I (ξ j (y j )).

Thus, the situation is analogous to the case m = 1 and the same arguments lead to the
expression for β

(m+1)
c and the pressure Φ if β > β

(m+1)
c . ��

3.2 From GREM to QGREM: Application of the Peeling Principle

We now consider the QGREM with a random magnetic field in z-direction as in Theorem 1.

Theorem 4 Let U (σσσ) be a GREM process as in (37), β ≥ 0 and h, b absolutely integrable
random variables. Then, almost surely

lim
N→∞ ΦN (β, h, b) = max

0≤k≤m

(
k∑

l=1

ϕ(l)(β, h) + (1 − yk)E [ln 2 cosh(
√
b2 + h2)]

)
. (52)

Here, the empty sum is interpreted to be zero.

Proof We recall the definition of the cut GREM U (xk ) := U (0,xk ) which may be represented
as

U (xk )(σσσ 1σσσ 2 · · ·σσσ k) = √
a1Xσσσ 1 + √

a2Xσσσ 1σσσ 2 + · · · + √
an Xσσσ 1σσσ 2···σσσ k .
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The peeling principle [22, Theorem 2.3] implies that for any 0 ≤ k ≤ m either the Gaussians
Xσσσ 1σσσ 2···σσσ k or the partialmagnetic field B(1,xk ) contribute to the specific pressure (for a detailed
discussion see Sect. 2 in [22, Theorem 2.3]). An iterative application of the peeling principle
yields

lim sup
N→∞

∣∣∣∣ΦN (β, h, b) − max
0≤k≤n

1

N
ln Tr e−β(U (xk )−h(σσσ)−B(2,xk ))

∣∣∣∣ = 0,

see also the proof of [22, Corollary 2.7] for a more precise execution of this method. The
cut-magnetic field B(2,xk ) was defined in (31). We naturally split the longitudinal field,

h(σσσ) = h(1,xk )(σσσ 1 · · ·σσσ k) + h(2,xk )(σσσ k+1 · · ·σσσ n); h(1,xk )(σσσ 1 · · ·σσσ k):=
�xk N�∑
i=1

hiσi

and apply Theorem 3 to the Hamiltonian H (xk ):=U (xk ) − h(1,xk ). Together with the strong
law of large numbers for h(2,xk )(σσσ k+1 · · ·σσσ n) + B(2,xk ). Thus we arrive at

lim
N→∞ ΦN (β, h, b) = max

0≤k≤n

(
Φ(xk )(β, h) + (1 − xk)E [ln 2 cosh(

√
b2 + h2)]

)
, (53)

where Φ(xk )(β, h) denotes the limit of the pressure of the Hamiltonian H (xk ) restricted to
the Hilbert space of subgraphQ�xk N� spanned by σσσ 1 · · ·σσσ k . (Note that for H (xk ) on the total
graph QN the resulting pressure is Φ(xk )(β, h) + (1 − xk) ln 2.)

If the cut point coincides with and endpoint of the concave hull. i.e. xk = y j for some j ,
we have

Φ(y j )(β, h) =
j∑

l=1

ϕ(l)(β, h).

Thus, it only remains to show that the maximum in (53) is attained at some yl . We follow
the comparison argument presented in the proof of [22, Lemma 3.1]. If {x0, . . . , xn} =
{y0, . . . , ym}, the assertion is trivial. So, let yl < xk < yl+1. We recall that distribution
function A(xk ) associated with U (xk ) is given by

A(xk ) =
{
A(x) if x ≤ xk,

A(xk) else.
.

We introduce the Gaussian processes Y and Z of GREM type with the distribution functions

AY (x):=

⎧⎪⎨
⎪⎩
A(x) if x ≤ yl ,

A(yl) if yl < x < xk,

A(xk) if x ≥ xk,

AZ (x):=

⎧⎪⎨
⎪⎩
A(x) if x ≤ yl ,

A(yl) if yl < x < xk,

A(yl) + xk−yl
yl+1−yl

(A(yl+1) − A(yl)), if x ≥ xk .

which shall be independent of the weights (hi ) After conditioning on the random weights
(hi ), Slepian’s lemma (cf. [6]) and the independence of (hi ) and the GREM processes imply:
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lim
N→∞

1

N
ln Tr |�2(Qxk N )e

−β(U (xk )−h(1,xk )) ≤ lim
N→∞

1

N
ln Tr |�2(Qxk N )e

−β(
√
NY−h(1,xk ))

≤ lim
N→∞

1

N
ln Tr |�2(Qxk N )e

−β(
√
N Z−h(1,xk )). (54)

For the second inequality, we recall that A is majorized by its concave hull Ā and agrees with
Ā at yl and yl+1:

A(xk) ≤ A(yl) + xk − yl
yl+1 − yl

(A(yl+1) − A(yl)) .

Since the pressure is an increasing function of the jump heights (cf. (38)), we hence arrive
at the second bound in (54). The resulting pressure is computed easily in terms of the partial
pressures (38) corresponding to A:

lim
N→∞

1

N
ln Tr |Qxk N

e−β(
√
N Z−h(1,xk )) =

l∑
j=1

ϕ( j)(β, h) + xk − yl
yl+1 − yl

ϕ( j+1)(β, h).

Using the abbreviation p(β, h, b):=E [ln 2 cosh(β√b2 + h2)] we thus conclude

lim
N→∞

1

N
ln Tr |�2(Qxk N )e

−β(U (xk )−h(1,xk )) + (1 − xk)p(β, h, b)

≤
l∑

j=1

ϕ( j)(β, h) + (1 − yl)p(β, h, b)

+ xk − yl
yl+1 − yl

(
ϕ(l+1)(β, h) − (yl+1 − yl)p(β, h, b)

)
.

Depending on the sign of the term in the last bracket, we have

lim
N→∞

1

N
ln Tr |�2(Qxk N )e

−β(
√
N X (xk )−V (1,xk )) + (1 − xk)p(β, h, b)

≤
l∑

j=1

ϕ( j)(β, h) + (1 − yl)p(β, h, b)

or the sum on the right side runs to l + 1 and yl is replaced by yl+1.
Consequently, the maximal pressure is indeed attained at some yl . ��

3.3 Finishing the Proof: The Interpolation Argument

Finally, we will lift Theorem 4 to the case of a general QGREM. The idea is to show that the
left and right side of (7) are continuous with respect to the distribution function A and the
uniform norm. We start with the continuity of the right side, i.e., spelling out explicitly the
A-dependence of quantities for the moment, we need to show that

Φ(β, h, b, A) = sup
0≤z≤1

(∫ z

0
ϕ(β, h, A, x) dx + (1 − z)E [ln 2 cosh(β

√
b2 + h2)]

)
,

is continuous in A. We recall that the density is given by

ϕ(β, h, A, x):=
{
ln 2 + ā(x) β2

2 + E [ln cosh βh] if β ≤ βc(A, x)

β(ā(x)βc(A, x) + E [h tanh βc(A, x)h]) if β > βc(A, x)
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where the critical temperature βc(A, x) is the unique positive solution of the self-consistency
equation

ā(x)

2
βc(A, x)2 = ln 2 + E [ln cosh βc(A, x)h] − βc(A, x)E [h tanh βc(A, x)h].

Lemma 3 Let β ≥ 0 and b, h be absolutely integrable random variables. Moreover, let
(An)n∈N, A be distribution functions on [0, 1] such that An converges uniformly to A. Then,

lim
n→∞ Φ(β, h, b, An) = Φ(β, h, b, A). (55)

Proof It suffices to show that

lim
n→∞

∫ 1

0
|ϕ(β, h, A, x) − ϕ(β, h, An, x)| dx = 0.

We first prove that the integrand converges almost everywhere (with respect to the Lebesgue
measure and x) to zero. One easily sees that the concave hulls Ān converge uniformly to Ā
and the right derivatives ān(x) converge to ā(x) at any x , where ā(x) is continuous (cf. the
proof of Lemma 3.3 in [22]). Since Ā is concave, this ensures that ān(x) converge almost
everywhere to ā(x). Next, we observe that βc(x, A) is a continuous function of ā(x) by the
implicit function theorem and, thus, βc(x, An) converges almost everywhere to βc(x, A).
This implies that ϕ(β, h, An, x) converges almost everywhere. Nowwe pick some δ > 0 and
note that the sequence ϕ(β, h, An, x) is uniformly bounded due to the general bound

0 ≤ ϕ(β, h, An, x) ≤ ln 2 + ān(x)
β2

2
+ E [ln cosh βh]

and the monotonicity of the derivatives ān(x). We conclude that for any δ > 0,

lim
n→∞

∫ 1

δ

|ϕ(β, h, A, x) − ϕ(β, h, An, x)| dx = 0.

Using the above bound on [0, δ], we obtain∫ δ

0
|ϕ(β, h, A, x) − ϕ(β, h, An, x)| dx ≤ δ(2 ln 2 + ( Ān(δ) + Ā(δ))

β2

2
+ 2E [ln cosh βh]),

which vanishes if we take the limit n → ∞ and then δ → 0. ��
We turn to the interpolation argument for the left side in (7). Let U ,U ′ be two GREM

processeswith distribution functions A, A′ and pressuresΦ(β, h, b, A),Φ(β, h, b, A′). From
[22, Equation (2.16)] we conclude

|E [Φ(β, h, b, A) − Φ(β, h, b, A′)]| ≤ β2‖A − A′‖∞, (56)

The Gaussian concentration inequality (cf. [22, Proposition 2.9]) guarantees the almost-sure
convergence

lim sup
N→∞

|E [Φ(β, h, b, A)] − Φ(β, h, b, A)| = 0.

We are ready to finish the proof of Theorem 1:

Proof of Theorem 1 We fix β ≥ 0 and absolutely integrable random variables b, h and use
the shorthand notations Φ(A):=Φ(β, h, b, A). Let U be a GREM process with distribution
function A. We pick some ε > 0 and an finite-level GREM U ′ with distribution function A′
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such that ‖A − A′‖∞ ≤ ε and |Φ(A) = Φ(A′)| ≤ ε. This is possible thanks to Lemma 3.
We then obtain

lim sup
N→∞

|ΦN (A) − Φ(A)|
≤ lim sup

N→∞
|ΦN (A) − ΦN (A′)| + |ΦN (A′) − Φ(A′)| + |Φ(A) − Φ(A′)|

≤ (β2 + 1)ε.

The final line follows from our preparatory estimate (56) and Theorem 4, which coincides
with Theorem 1 for an n-level GREM. Since ε > 0 is arbitrary, this proves (7).

The remaining assertions now follow easily: ϕ(β, h, x) is clearly an increasing function
of ā(X) which in turn is decreasing in x . Thus, ϕ(β, h, x) is a decreasing function of x .
Similarly, the critical inverse temperature βc(x) is increasing as it is a decreasing function
of ā(x). Finally, the fact that ϕ(β, h, x) is increasing and convex in β directly follows from
(8). ��
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Appendix A: Proof of Corollary 1 and Proposition 1

We start with the straightforward proof of Corollary 1:

Proof of Corollary 1 To apply Theorem 1, we note that in the case of the QREM we have
ϕ(β, h, x) = ΦREM(β, h) for any x . So, we directly obtain (10). It remains to show that the
self-consistency equation

1

2
β2
c = ln 2 + ln cosh βch − βch tanh βch,

which get fromTheorem 1 is equivalent to (12), i.e. βc(h)2 = 2r(tanh(βc(h)h)). This follows
from the elementary computation

r(tanh(x)) = ln 2 − 1

2
((1 − tanh(x)) ln(1 − tanh(x)) + (1 + tanh(x)) ln(1 + tanh(x)))

= ln 2 + ln cosh x − 1

2
((1 − tanh(x)) ln(cosh x − sinh x) + (1 + tanh(x)) ln(cosh x + sinh x))

= ln 2 + ln cosh x − x tanh x

for any x ∈ R. ��
The proof of Proposition 1 is based on multiple elementary, but quite lengthy, computa-

tions.
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Proof of Proposition 1 1. The defining equation (12) immediately implies that βc(h) is a
strictly decreasing function. The Taylor expansions r(y) = ln 2 − y2/2 + O(y4)) and
tanh(y) = y + O(y2) yield for small h > 0

1

2
βc(h)2 = ln 2 − (βc(h)h)2

2
+ O(h4),

which in turn leads to the Taylor expansion of βc(h) in the small field limit.
By inspection of (12) as h → ∞, the critical inverse temperature βc(h) tends to zero, but
we still have that hβc(h) → ∞. Moreover, we recall that tanh(y) = 1−2e−2y +O(e−4y)

for large y and r(1− x) = 1
2 x ln(1/x) +O(x) for small x . After some algebra, we arrive

at the asymptotic equation 2βc(h)he2βc(h)h = 8h2 + O(h). In particular,

lim
h→∞

2βc(h)h

W (8h2)
= lim

h→∞
βc(h)h

ln h
= 1,

where W denotes Lambert W-function.
2. We first consider the high temperature limit. For small β > 0 a Taylor expansion yields

arcosh

(
1

2
exp(ΦREM(β, h))

)
= arcosh

(
1 + 1

2
β2(1 + h2) + O(β4)

)

=
√
1 + h2β + O(β2),

from which we conclude Γc(0, h) = 1. As the term arcosh
( 1
2 exp(Φ

REM(β, h))
)
/β

converges to the absolute value of the ground state energy as β → ∞, we obtain the
claim concerning the low temperature limit.

3. Let us fix some β > 0. We show that

g(h) = arcosh

(
1

2
exp(ΦREM(β, h))

)2

− β2h2

is strictly increasing which is equivalent to the monotonicity of Γc(β, h). We compute the
derivative for h > 0

g′(h) = 2 arcosh

(
1

2
exp(ΦREM(β, h))

) 1
2 e

ΦREM(β,h)√
1
4 e

2ΦREM(β,h) − 1

∂ΦREM(β, h)

∂h
− 2β2h

= 2β

(
arcosh

(
1

2
exp(ΦREM(β, h))

)
tanh(min{β, βc(h)}h)

tanh(arcosh(1/2 exp(ΦREM(β, h))))
− βh

)

We first note that y/ tanh(y) is an increasing function. In the case β ≤ βc(h) we further
use that 1/2 exp(ΦREM(β, h)) > cosh(βh). Hence g′(h) > 0 is an easy consequence of
these observations for β ≤ βc. On the other hand, if β > βc we use the convexity of

η(y):= arcosh(ey)

tanh(arcosh(ey))
,

from which we obtain

arcosh( 12 exp(Φ
REM(β, h))

tanh(arcosh(1/2 exp(ΦREM(β, h))))
>

βh

tanh(βc(h)h)

as the left half side is a convex function of β and the inequality holds true for β = βc(h).
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Finally, we want to show the asymptotic formula for Γc(β, h). Since βc(h) tends to zero,
we only need to consider the ”frozen” expression for ΦREM(β, h). Neglecting terms of
subleading order, we may write after some manipulations

β−2 arcosh

(
1

2
exp(ΦREM(β, h))

)2

− h2 
 2h2(tanh(βc(h)h) − 1) + 2βch.

We recall that 1 − tanh(βc(h)h) 
 2e−2βc(h)h = 4βch
2βche2βc(h)h 
 βc

2h , where the last equal-
ity follows from the proof of part 1. Combining these asymptotic formulas, we arrive at
limh→∞ Γ (β,h)√

hβc(h)
= 1. ��

Appendix B: Proof of Proposition 2 and Corollary 2

In this section, we sketch the computations which lead to the results in Proposition 2 and
Corollary 2.

Proof of Proposition 2 1. Let us first recall that ā(x) is a continuous decreasing function
from which it follows that x(β) = sup{x | ā(x) > (2 ln 2)/β2} is well defined for
β > βc(0) = √

2 ln 2/ā(0) and increasing in β. Since k is a decreasing function, we
see that βc(h) defined in (25) is an increasing function.
To discuss the limiting value h → 0, we observe that limh→0 k(2 ln 2/(βc(h)h)) = 0.
Since ā is continuous, limβ→βc x(β) = 0 from which we conclude limh→0 βc(h) =
βc(0). Using Assumption 1 we see that

x(β) ∝ (β − βc)
1/α.

A direct calculation shows k(x) ∝ x−2 for large x . We thus arrive at βc(h) − βc(0) ∝
h2α , and Tc − Tc(h) ∝ h2α .
For the limit h → ∞, we first consider the case ā(1) > 0. Then, x(β) approaches 1 as
β → βc(∞):=√

2 ln 2/ā(1) and

lim
h→∞ k(2 ln 2/(βc(h)h)) = 0.

Consequently, limh→∞ βc(h) = βc(∞). Similarly, if ā(1) = 0, x(β) approaches 1 as
β → ∞ and we have limh→∞ βc(h) = ∞.

2.a The continuity of y(β, h) follows from the fact that it is a solution of a continuous
implicit equation. Moreover, as φ(β, y) is decreasing in y and k is a decreasing func-
tion,too, it follows from (24) that y(β, h) is increasing in h. As in part 1., one easily
sees that

lim
h→0

k(ϕ(β, y(β, h))/(βh)) = 0 and lim
h→∞ k(ϕ(β, y(β, h))/(βh)) = 1,

which in turn implies limh→0 y(β, h) = 0 and limh→∞ y(β, h) = 1.
For the Taylor expansion, we use the fact that

k(1/x) = ln 2

2
x2 + O(x4).

Consequently, we have

y(β, h) = ln 2

2

(
βh

ϕ(β, y(β, h))

)2

+ O(h4) = ln 2

2

(
βh

ϕ(β, 0)

)2

+ O(h4).
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Recalling that

ϕ(β, 0) =
{

β2

ln 2β2
c

+ ln 2 β < βc,

2 ln 2β
βc

β ≥ βc,

we arrive at (27).
2.b Both assertions follow immediately from part 2a) and the fact that ϕ(β, x) is continuous

and decreasing in x . ��
Finally, we present the proof of Corollary 2:

Proof of Corollary 2 The limit of the pressure is given by

Φ(β, b, h) = sup
0≤y≤z≤1

[
βhγ (y) +

∫ z−y

0
ϕ(y,1)(β, x) dx + (1 − z)p(β, Γ )

]
.

It follows that if y(β, h) < z(β, Γ ), then y(β, h) and z(β, Γ ) remain the maximizer for this
more general problem. We see that this holds true if and only if p(βΓ ) < ϕ(β, y(β, h)) and
the pressure is then given by

Φ(β, Γ , h) = βhγ (y(β, h)) +
∫ z(β,Γ )

y(β,h)

ϕ(β, x)dx + (1 − z(β, Γ )) p(βΓ ).

Otherwise we have y(β, h) ≥ z(β, Γ ) and, consequently, the corresponding maximizer
satisfy y� = z�, i.e.

Φ(β, Γ , h) = sup
0≤y≤1

[
βhγ (y) + (1 − y)p(βΓ )

]
.

Differentiating with respect to y yields the maximizer

y� = σ(β, Γ , h) = k

(
p(βΓ )

βh

)

since k was defined to be the inverse of γ ′. This completes the proof. ��
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