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Abstract
In the theory of orthogonal polynomials, as well as in its intersection with har-
monic analysis, it is an important problem to decide whether a given orthogonal
polynomial sequence (Pn(x))n∈N0 satisfies nonnegative linearization of products, i.e.,
the product of any two Pm(x), Pn(x) is a conical combination of the polynomials
P|m−n|(x), . . . , Pm+n(x). Since the coefficients in the arising expansions are often of
cumbersome structure or not explicitly available, such considerations are generally
very nontrivial. Gasper (Can J Math 22:582–593, 1970) was able to determine the
set V of all pairs (α, β) ∈ (−1,∞)2 for which the corresponding Jacobi polynomi-
als (R(α,β)

n (x))n∈N0 , normalized by R(α,β)
n (1) ≡ 1, satisfy nonnegative linearization

of products. Szwarc (Inzell Lectures on Orthogonal Polynomials, Adv. Theory Spec.
Funct. Orthogonal Polynomials, vol 2, Nova Sci. Publ., Hauppauge, NY pp 103–139,
2005) asked to solve the analogous problem for the generalized Chebyshev polynomi-
als (T (α,β)

n (x))n∈N0 , which are the quadratic transformations of the Jacobi polynomials
and orthogonal w.r.t. the measure (1 − x2)α|x |2β+1χ(−1,1)(x) dx . In this paper, we

give the solution and show that (T (α,β)
n (x))n∈N0 satisfies nonnegative linearization of

products if and only if (α, β) ∈ V , so the generalized Chebyshev polynomials share
this property with the Jacobi polynomials. Moreover, we reconsider the Jacobi poly-
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nomials themselves, simplify Gasper’s original proof and characterize strict positivity
of the linearization coefficients. Our results can also be regarded as sharpenings of
Gasper’s one.

Keywords Jacobi polynomials · Generalized Chebyshev polynomials · Fourier
expansions · Nonnegative linearization · Strictly positive linearization · Linearization
coefficients
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1 Introduction

1.1 Motivation

In the theory of orthogonal polynomials and special functions, it is of special inter-
est under which conditions (general or referring to a specific class of polynomials) a
suitably normalized orthogonal polynomial sequence (Pn(x))n∈N0 ⊆ R[x] satisfies
the “nonnegative linearization of products” property, i.e., the product of any two poly-
nomials Pm(x), Pn(x) is contained in the conical hull of {Pk(x) : k ∈ N0}. In other
words, nonnegative linearization of products means that the linearization coefficients
appearing in the (Fourier) expansions of Pm(x)Pn(x) w.r.t. the basis {Pk(x) : k ∈ N0}
are always nonnegative. One reason for the intense study of this property, and for the
extensive corresponding literature, is a fruitful relation to harmonic analysis, which
will be briefly recalled below.

Given a specific sequence (Pn(x))n∈N0 , deciding whether nonnegative lineariza-
tion of products is satisfied or not may be quite difficult, however: in many cases,
the aforementioned linearization coefficients are not explicitly known, or explicit rep-
resentations are of involved, cumbersome or inappropriate structure. In a series of
papers starting with [31] and extending earlier work of Askey [2], Szwarc et al. have
provided some general criteria that can be helpful. However, to our knowledge, there
is no general criterion which is strong enough to cover the full parameter range for
which the Jacobi polynomials

R(α,β)
n (x) = 2F1

(−n, n + α + β + 1
α + 1

∣∣∣∣ 1 − x

2

)

=
n∑

k=0

(−n)k(n + α + β + 1)k
(α + 1)k

(1 − x)k

2kk!

[21, (9.8.1)] satisfy nonnegative linearization of products. Moreover, we are not aware
of an explicit representation of the corresponding linearization coefficients which
allows one to easily identify all pairs (α, β) ∈ (−1,∞)2 such that nonnegative lin-
earization of products is fulfilled.

Note that since (R(α,β)
n (x))n∈N0 is normalized such that R(α,β)

n (1) ≡ 1, one has

R(α,β)
n (x) = n!P(α,β)

n (x)/(α + 1)n if (P(α,β)
n (x))n∈N0 denotes the standard nor-
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malization of the Jacobi polynomials. (R(α,β)
n (x))n∈N0 is equivalently given by the

orthogonalization measure

(1 − x)α(1 + x)βχ(−1,1)(x) dx

(and the normalization R(α,β)
n (1) ≡ 1) [6, Chapter V 2 (B)] [17, (4.0.2)].

In some more detail, the situation concerning Jacobi polynomials is as follows:
starting with the full (positive-definite case) parameter range (α, β) ∈ (−1,∞)2 and
defining

a := α + β + 1 > −1, b := α − β ∈ (−1 − a, 1 + a) (1.1)

and a proper subset V of [−1/2,∞) × (−1,∞) via

V :=
{
(α, β) ∈ (−1,∞)2 : a(a + 5)(a + 3)2 ≥ (a2 − 7a − 24)b2, b ≥ 0

}
(1.2)

(see Fig. 1), Gasper showed the following [10, Theorem 1] (or [13, Theorem 3]):

Theorem 1.1 Let α, β > −1. The following are equivalent:

(i) (R(α,β)
n (x))n∈N0 satisfies nonnegative linearizationof products, i.e., all gR(m, n; k)

given by the expansions

R(α,β)
m (x)R(α,β)

n (x) =
m+n∑

k=|m−n|
gR(m, n; k)R(α,β)

k (x)

are nonnegative.
(ii) (α, β) ∈ V .

Although Theorem 1.1 can be regarded as a “classical result” nowadays, it is still
of considerable interest and was used in the recent publications [4] (dealing with
certain strictly positive definite functions) and [15] (dealing with semigroups defined
by Fourier-Jacobi series), for instance. Also [5], dealing with spherical codes, uses
[10].

In this paper, we find an analogue to Gasper’s result Theorem 1.1 for the class of
generalized Chebyshev polynomials (Theorem 3.2), which are the quadratic transfor-
mations of the Jacobi polynomials; for all α, β > −1, the sequence of generalized
Chebyshev polynomials (T (α,β)

n (x))n∈N0 is given by

T (α,β)
2n (x) := R(α,β)

n (2x2 − 1), (1.3)

T (α,β)
2n+1 (x) := x R(α,β+1)

n (2x2 − 1) (1.4)

[6, Chapter V 2 (G)] or, equivalently, by the orthogonalization measure

(1 − x2)α|x |2β+1χ(−1,1)(x) dx
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and the normalization T (α,β)
n (1) ≡ 1 [6, Chapter V 2 (G)] [17, (4.0.2)]. This solves

a problem posted in [32, Section 5] by Szwarc who asked to determine the parame-
ter range for which these polynomials satisfy nonnegative linearization of products.
Since our result will immediately imply the nontrivial direction of Gasper’s result
Theorem 1.1, it can also be regarded as a sharpening of Theorem 1.1.

Moreover, we shall characterize strict positivity1 of the linearization coefficients
gR(m, n; k) (Theorem 2.1); an analogous result for the generalized Chebyshev poly-
nomials cannot exist due to symmetry. On the one hand, this characterization will
immediately imply the nontrivial direction of Gasper’s result Theorem 1.1, too. On the
other hand, our proof of positive linearization is based on Gasper’s approach [10] but
shorter and more elementary, so it can be regarded both as another sharpening and as a
simplification. InGasper’s original proof, themost computational partwas establishing
the nonnegativity of the coefficients gR(m, n; |m − n| + 2) and gR(m, n;m + n − 2)
(provided (α, β) ∈ V ). We will get rid of these long computations and provide a
more explicit approach. Furthermore, we give characterizations concerning a certain
oscillatory behavior of the gR(m, n; k).

1.2 Underlying Setting

Let us brieflydescribe the basic underlying setting: in this paper,we consider sequences
(Pn(x))n∈N0 ⊆ R[x] with deg Pn(x) = n which are orthogonal w.r.t. a probability
(Borel) measure μ on the real line with |supp μ| = ∞ and supp μ ⊆ [−1, 1].
Under these conditions, it is well known from the theory of orthogonal polynomials
that (Pn(x))n∈N0 determines μ uniquely [6]. Moreover, we assum (Pn(x))n∈N0 to
be normalized by Pn(1) ≡ 1. This normalization is always possible because the
assumptions on supp μ yield that all zeros are (real and) located in (−1, 1) (see [6,
17] for standard results on orthogonal polynomials and on corresponding expansions).
Orthogonality is then given by

∫
R

Pm(x)Pn(x) dμ(x) = δm,n

h(n)
(1.5)

with some function h : N0 → (0,∞) satisfying h(0) = 1.
Under these conditions, nonnegative linearization of products corresponds to the

property that the product of any two polynomials Pm(x), Pn(x) is a convex combina-
tion of P|m−n|(x), . . . , Pm+n(x), or to the nonnegativity of all linearization coefficients
g(m, n; k) defined by the expansions

Pm(x)Pn(x) =
m+n∑

k=|m−n|
g(m, n; k)Pk(x), (1.6)

where
∑m+n

k=|m−n| g(m, n; k) = 1.

1 In the following, we just write “positive” for “strictly positive”, etc. If 0 shall be included, we use
“nonnegative.”
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Using (1.5) and (1.6), one clearly has

g(m, n; k) = h(k)
∫
R

Pm(x)Pn(x)Pk(x) dμ(x) (1.7)

and h(n) = 1/g(n, n; 0). As the assumptions on the support and the normalization
yield that the polynomials Pn(x) have positive leading coefficients, it is also clear
that g(m, n;m + n) > 0 and g(m, n; |m − n|) > 0. In particular, it is well known
that (Pn(x))n∈N0 satisfies the three-term recurrence relation P0(x) = 1, P1(x) =
(x − b0)/a0,

P1(x)Pn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x) (n ∈ N),

where a0 > 0, b0 = 1−a0 and the sequences (an)n∈N, (cn)n∈N ⊆ (0,∞), (bn)n∈N ⊆
R satisfy an + bn + cn = 1 (n ∈ N).

Throughout the paper, as in Theorem1.1we use additional appropriate subscripts or
superscripts when referring to the Jacobi polynomials (R(α,β)

n (x))n∈N0 or generalized

Chebyshev polynomials (T (α,β)
n (x))n∈N0 . Moreover, we use an additional superscript

“+” when referring to the sequence (R(α,β+1)
n (x))n∈N0 . For instance, there will occur

linearization coefficients gR(m, n; k), g+
R (m, n; k) and gT (m, n; k). Observe that a

transition from β to β + 1, which will play a crucial role in this paper, corresponds to
a transition from (a, b) to (a + 1, b − 1) in the notation of (1.1).

In the literature, the nonnegativity of all linearization coefficients g(m, n; k) is
sometimes called “property (P)”. For the sake of clarity, we shall say “nonneg-
ative linearization of products” throughout the paper. This property implies that
(an)n∈N, (cn)n∈N ⊆ (0, 1) and (bn)n∈N ⊆ [0, 1). Furthermore, nonnegative lineariza-
tion of products gives rise to a certain polynomial hypergroup structure, including
associated Banach (L1-) algebras and the fruitful possibility of applying Gelfand’s
theory, which yields a deep and rich harmonic analysis [3, 24]. Hence, nonnegative
linearization of products is not only of interest for a better understanding of gen-
eral or specific orthogonal polynomials, but also has high relevance for functional
and abstract harmonic analysis and, in particular, for the theory of Banach algebras.
Within such polynomial hypergroups, the classes of Jacobi polynomials and gener-
alized Chebyshev polynomials play a special role concerning product formulas and
duality structures [7, 8, 11, 12, 23, 24, 28].

We mention that in this paper the hypergroup context appears only as a kind of
additional motivation to study nonnegative linearization of products. In particular, it
shows the high relevance for harmonic analysis. The paper can be read without knowl-
edge about hypergroups, however. Roughly speaking, a hypergroup is a generalization
of a (locally compact) group which allows the convolution of two Dirac measures to
be a probability measure which satisfies certain compatibility and non-degeneracy
properties but does not have to be a Dirac measure again (see [3, 18, 25] for precise
axioms).
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Fig. 1 The set V . The dashed
line corresponds to the boundary
of � (see Sect. 1.3)

1.3 Previous Results and Outline of the Paper

Let us come back to the Jacobi and generalized Chebyshev polynomials. Concerning
Theorem 1.1, it is not difficult to see that (ii) is necessary for (i). In fact, Gasper has
shown that if b < 0, then gR(1, 1; 1) < 0, whereas if b ≥ 0 and (α, β) /∈ V , then
gR(2, 2; 2) < 0 [10]. The implication “(ii) ⇒ (i)” is highly nontrivial, however. The
subcase (α, β) ∈ �, where � � V is given by

� := {(α, β) ∈ (−1,∞)2 : a, b ≥ 0} =
{
(α, β) ∈ (−1,∞)2 : α ≥

∣∣∣∣β + 1

2

∣∣∣∣ − 1

2

}

(see Fig. 1), is easier and was already solved in [9], and concerning the special case
α ≥ β ≥ −1/2 Koornwinder gave a less computational proof via addition formulas
[22]. Moreover, if (α, β) ∈ �, then the nonnegativity of the gR(m, n; k) can be seen
via explicit representations in terms of 9F8 hypergeometric series given by Rahman
[30, (1.7) to (1.9)].2 Alternatively, the case (α, β) ∈ � can also be obtained from
one of the aforementioned general criteria of Szwarc [31]. The simplest subcase is

2 The formulas [30, (1.7) to (1.9)] contain small mistakes. We will correct them in the appendix (see (A.1)
to (A.3)).
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given by α = β ≥ −1/2 (these are the ultraspherical polynomials), for which the
nonnegativity of the gR(m, n; k) follows from Dougall’s formula (see [1, Theorem
6.8.2])

R(α,α)
m (x)R(α,α)

n (x)

=
min{m,n}∑

j=0

j !
(

α + 1

2

)
j

(
m

j

)(
n

j

)

×
(
m + n + α + 1

2 − 2 j
) (

α + 1
2

)
m− j

(
α + 1

2

)
n− j (2α + 1)m+n− j(

m + n + α + 1
2 − j

) (
α + 1

2

)
m+n− j (2α + 1)m(2α + 1)n

R(α,α)
m+n−2 j (x),

where α > −1/2; for α = β = −1/2, the linearization coefficients reduce to 1/2.
Besides the original proof given in [10], Gasper found a very different one in

[14]. The second proof is based on the continuous q-Jacobi polynomials and explicit
corresponding linearization formulas in terms of 10φ9 basic hypergeometric series due
to Rahman [29]. In the following, we will always refer to the first proof [10].

For our purposes, it will be more convenient to rewrite V (1.2) as

V =
{
(α, β) ∈ (−1,∞)2 : a2 + 2b2 + 3a ≥ 3

(a + 1)(a + 2)

(a + 3)(a + 5)
b2, b ≥ 0

}
. (1.8)

The small region V \� is bounded on the left by a curve c in the (α, β)-plane
which has the following properties (cf. Fig. 1): c starts at the point (α, β) =
(−11/8 + √

73/8,−1) ≈ (−0.307,−1), approaches the line α + β + 1 = 0 tan-
gentially and meets this line at the point (α, β) = (−1/2,−1/2) (which corresponds
to the Chebyshev polynomials of the first kind) [10]. The angle between the line
β = −1 and c can easily be computed and is given by ≈ 87.6◦ (in particular, c cannot
be written as β = f (α) with a single function f ).

Despite the more involved arguments which are required to establish nonnegative
linearization of products for V \�, from a harmonic analysis point of view there
is no reason for restricting to � when studying the associated hypergroups or L1-
algebras; we are not aware of a general advantage or benefit a restriction to�would be
accompanied with. For instance, in [19, Theorem 3.1] (or [20, Theorem 3.1]) we have
shown that the L1-algebra3 associated with (R(α,β)

n (x))n∈N0 , (α, β) ∈ V , is weakly
amenable (i.e., there exist no nonzero bounded derivations into the dual module �∞,
which acts on the L1-algebra via convolution [26, 27]) if and only if α < 0, and the
proof for {(α, β) ∈ V : a = 0} ⊆ � does not differ from the proof for V \�: both
cases are traced back to the interior of � via the same argument using inheritance via
homomorphisms. This example also shows that important Banach algebraic features
like amenability properties may strongly vary even within the same specific class of
orthogonal polynomials satisfying nonnegative linearization of products. Hence, also
in considering other example classes it is desirable to find various—or even all—
sequences (Pn(x))n∈N0 such that nonnegative linearization of products holds.

3 In the polynomial hypergroup sense [24, 25].
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It is an obvious consequence of Theorem 1.1 and (1.3) that (T (α,β)
n (x))n∈N0 cannot

satisfy nonnegative linearization of products if (α, β) /∈ V ; moreover, Szwarc has
already shown that nonnegative linearization of products is fulfilled for all (α, β) ∈ �

[31, 32]. The special case α ≥ β +1 was already shown in [24]. The simplest subcase
is given by α ≥ −1/2 ∧ β = −1/2, which can be obtained as above via Dougall’s
formula; note that T (α,−1/2)

n (x) = R(α,α)
n (x) for all n ∈ N0, or in other words: the

ultraspherical polynomials are the common subclass of the Jacobi and the generalized
Chebyshev polynomials.

In Theorem 3.2, we will obtain that (T (α,β)
n (x))n∈N0 satisfies nonnegative lin-

earization of products if and only if (α, β) ∈ V . Hence, the generalized Chebyshev
polynomials share this property with the Jacobi polynomials. Having inmind the inter-
esting structure of (1.4) (where β + 1 instead of β appears on the right-hand side), we
will also precisely characterize the pairs (α, β) ∈ (−1,∞)2 for which all gT (m, n; k)
with at least one odd entry m, n are nonnegative (Theorem 3.1), and we will describe
the geometry of the resulting set V ′

� V .
The main results and proofs are given in Sect. 2 (Jacobi polynomials) and Sect. 3

(generalized Chebyshev polynomials). At several stages, our arguments are based on
appropriate decompositions of multivariate polynomials. To find such decompositions
(more precisely, appropriate nested sums of suitable factorizations), we also used com-
puter algebra systems (Maple). However, the final proofs can be understood without
any computer usage.

2 Linearization of the Product of Jacobi Polynomials: Sharpening and
Simplification of Gasper’s Result

Let α, β > −1, and let a, b be defined as in Sect. 1. (R(α,β)
n (x))n∈N0 satisfies the

three-term recurrence relation R(α,β)
0 (x) = 1, R(α,β)

1 (x) = (x − bR0 )/aR
0 ,

R(α,β)
1 (x)R(α,β)

n (x) = aR
n R(α,β)

n+1 (x) + bRn R
(α,β)
n (x) + cRn R

(α,β)
n−1 (x) (n ∈ N) (2.1)

with

aR
0 = 2α + 2

α + β + 2
= a + b + 1

a + 1
,

aR
n = (α + β + 2)(n + α + β + 1)(n + α + 1)

(α + 1)(2n + α + β + 1)(2n + α + β + 2)

= (a + 1)(n + a)(2n + a + b + 1)

(a + b + 1)(2n + a)(2n + a + 1)
(n ∈ N),

bR0 = − α − β

α + β + 2
= − b

a + 1
,

bRn = 2(α − β)n(n + α + β + 1)

(α + 1)(2n + α + β)(2n + α + β + 2)
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= 4bn(n + a)

(a + b + 1)(2n + a − 1)(2n + a + 1)
(n ∈ N),

cRn ≡ (α + β + 2)n(n + β)

(α + 1)(2n + α + β)(2n + α + β + 1)

= (a + 1)n(2n + a − b − 1)

(a + b + 1)(2n + a − 1)(2n + a)
(2.2)

[9, (4)]. It is well known that

R(β,α)
n (x) = (−1)n

(α + 1)n
(β + 1)n

R(α,β)
n (−x) (2.3)

[17, (4.1.4), (4.1.6)].
One of our central tools will be a recurrence relation for the gR(m, n; k) which is

taken from [10] and relies on earlier work of Hylleraas [16]. Let n ≥ m ≥ 1; following
[10], we use a more convenient notation and write

s = n − m,

j = k − s

with s ∈ N0 and j ∈ {0, . . . , 2m}. [10, (2.1)] states that the linearization coefficients
are linked to each other via the following recursion: for 1 ≤ j ≤ 2m − 1, one has

θ(m,m + s; j)gR(m,m + s; s + j + 1)

= ι(m,m + s; j)gR(m,m + s; s + j)

+ κ(m,m + s; j)gR(m,m + s; s + j − 1),

(2.4)

where θ(m,m + s; .), ι(m,m + s; .), κ(m,m + s; .) : {1, . . . , 2m − 1} → R read

θ(m,m + s; j) : = (2m − j + a − 1)(2m + 2s + j + a + 1)

× (2s + j + 1)(2s + 2 j + a − b + 1)

(2s + 2 j + a + 1)(2s + 2 j + a + 2)
( j + 1), (2.5)

ι(m,m + s; j) : = b

[
(2m − j)(2m + 2s + j + 2a)

2s + j + 1

2s + 2 j + a + 1
( j + 1)

−(2m − j + 1)(2m + 2s + j + 2a − 1)
2s + j

2s + 2 j + a − 1
j

]
,

(2.6)

κ(m,m + s; j) : = (2m − j + 1)(2m + 2s + j + 2a − 1)

×
{
0, j − 1 = s = a = 0,
(2s+ j+a−1)(2s+2 j+a+b−1)
(2s+2 j+a−2)(2s+2 j+a−1) ( j + a − 1), else.

(2.7)
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Moreover, one has

gR(m,m + s; s) =
(m+s

m

)(2m+a−1
m

)(m+s+ a−b−1
2

m

)
(2m
m

)(2m+2s+a
2m

)(m+ a+b−1
2

m

) , (2.8)

gR(m,m + s; s + 2m) =
(2m+2s+a−1

m+s

)(2m+a−1
m

)(2m+s+ a+b−1
2

2m+s

)
(4m+2s+a−1

2m+s

)(m+s+ a+b−1
2

m+s

)(m+ a+b−1
2

m

) (2.9)

and

gR(m,m + s; s + 1)

= 4bm(m + s + a)(2s + a + 2)

(2m + 2s + a + 1)(2m + a − 1)(2s + a − b + 1)
gR(m,m + s; s), (2.10)

gR(m,m + s; s + 2m − 1)

= 4bm(m + s)(4m + 2s + a − 2)

(4m + 2s + a + b − 1)(2m + 2s + a − 1)(2m + a − 1)
gR(m,m + s; s + 2m) (2.11)

[10, (2.2) to (2.4), (2.9)]. The following auxiliary result deals with the canonical
continuation of the coefficient function ι(m,m + s; .) to [1, 2m − 1] and can be seen
from [9, Section 2] and [10, Section 2]:

Lemma 2.1 Let (α, β) ∈ V with α �= β, and let for m ∈ N and s ∈ N0 the function
ι(m,m + s; .) : [1, 2m − 1] → R be defined by (2.6). Then, ι(m,m + s; .) has at most
one zero. Moreover, if m ≥ 2 or a ≥ 0, then ι(m,m + s; 1) ≥ 0.

There are several ways how Lemma 2.1 can be proven. The proofs given in [9, 10]
rely onDescartes’ rule of signs.We found elementary variants which completely avoid
Descartes’ rule of signs (based on the classical mean value theorem, for instance). We
omit the corresponding details, however.

The proof of Theorem 2.1, which is the main result of this section, will essentially
rely on Lemma 2.1. Concerning the functions θ(m,m + s; .) and κ(m,m + s; .), we
will only need that

θ(m,m + s; .)|{1,...,2m−2} > 0 (m ≥ 2) (2.12)

and

κ(m,m + s; .)|{2,...,2m−1} > 0 (m ≥ 2), (2.13)

which is an obvious consequence of (2.5) and (2.7) and was also used in [10].
We now give two characterizations. The first deals with positivity of the lineariza-

tion coefficients gR(m, n; k) and can be regarded as a sharpening of Theorem 1.1
because the nontrivial direction “(ii) ⇒ (i) (Theorem 1.1)” is implied by “(ii) ⇒ (i)
(Theorem 2.1)” via continuity. Our proof is a—considerably less computational—
modification of Gasper’s approach [10]. The second characterization follows from the
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first and deals with a certain oscillatory behavior of the gR(m, n; k). It will play an
important role for the proof of Theorem 3.1 on generalized Chebyshev polynomials
below.

Theorem 2.1 Let α, β > −1. The following are equivalent:

(i) All gR(m, n; k) are positive.
(ii) (α, β) is located in the interior of V (denoted by V ◦ in the following), i.e.,

a2 + 2b2 + 3a > 3
(a + 1)(a + 2)

(a + 3)(a + 5)
b2 (2.14)

and

b > 0. (2.15)

Corollary 2.1 Let α, β > −1, and let g̃R(m, n; k) denote the linearization coefficients
belonging to the sequence (R(β,α)

n (x))n∈N0 . Then, the following hold:

(i) All numbers (−1)m+n+k g̃R(m, n; k) are nonnegative if and only if (α, β) ∈ V .
(ii) All numbers (−1)m+n+k g̃R(m, n; k) are positive if and only if (α, β) ∈ V ◦.

Proof (Theorem 2.1) We preliminarily note that V ◦ can indeed be characterized as the
set of all (α, β) ∈ (−1,∞)2 satisfying the strict inequalities (2.14) and (2.15), which
can be seen as follows: let ϕ,ψ : (−1,∞)2 → R be defined by

ϕ(α, β) : = (a2 + 2b2 + 3a)(a + 3)(a + 5) − 3(a + 1)(a + 2)b2

= (4β + 20)α3 + (8β2 + 40β + 108)α2 + (4β3 + 40β2 + 96β + 160)α

+ 20β3 + 108β2 + 160β + 96

and

ψ(α, β) := b = α − β;

then

V =
{
(α, β) ∈ (−1,∞)2 : ϕ(α, β) ≥ 0, ψ(α, β) ≥ 0

}

and we have to show that V ◦ coincides with the set

Ṽ :=
{
(α, β) ∈ (−1,∞)2 : ϕ(α, β) > 0, ψ(α, β) > 0

}
.
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It is clear that Ṽ is a subset of V ◦. Moreover, if there was an element (α0, β0) ∈ V ◦
with ϕ(α0, β0) = 0, then ϕ would particularly attain a local minimum at (α0, β0), so
the gradient of ϕ would have to vanish at (α0, β0). However, every (α, β) ∈ V satisfies

∂ϕ

∂α
(α, β) ≥ ∂ϕ

∂α
(α, β) − (a2 + 2b2 + 3a)(4β + 20)

= (24β2 + 100β + 116)α − 8β3 − 40β2 − 20β + 80

≥ (24β2 + 100β + 116)β − 8β3 − 40β2 − 20β + 80

= (4β + 8)(4β2 + 7β + 10)

> 0,

so the gradient of ϕ does not vanish on V . In the same way, one sees that ψ(α, β) > 0
for all (α, β) ∈ V ◦. Putting all together, we obtain that indeed V ◦ = Ṽ .

We establish the easy direction “(i) ⇒ (ii)” in a similar way as in [10]: if b ≤ 0,
then (2.1) and (2.2) (or also (2.8) and (2.10)) show that

gR(1, 1; 1) = bR1 = 4b

(a + 3)(a + b + 1)
≤ 0;

if b > 0 but (α, β) is not located in the interior of V , then the equations (2.4) to (2.8)
and (2.10) yield

gR(2, 2; 2) = 4[(a2 + 2b2 + 3a)(a + 3)(a + 5) − 3(a + 1)(a + 2)b2]
(a + 3)(a + 5)(a + 6)(a + b + 1)(a + b + 3)

≤ 0.

We now come to the interesting direction “(ii) ⇒ (i)”. Our proof is based on Gasper’s
approach [10, Section 2] but simpler and shorter. We will make use of the equations
[10, (2.1) to (2.4), (2.9)], which correspond to the equations (2.4) to (2.11). Moreover,
following Gasper we will make use of (2.12), Lemma 2.1 and (2.13) concerning the
functions θ(m,m+s; .), ι(m,m+s; .) and κ(m,m+s; .).Wewill also use an induction
argument which is motivated by Gasper’s approach [10, bottom of p. 587]. However,
we will not make use of the painful argument which relies on [10, (2.5), (2.8), (2.10),
(2.11)].

Let (α, β) ∈ V ◦, let m ∈ N and let s ∈ N0. We have to show that gR(m,m +
s; s + j) > 0 for all j ∈ {0, . . . , 2m}. Starting similarly to [10], we use “two-
sided induction” and proceed as follows: (2.8) to (2.11) yield gR(m,m + s; s) > 0,
gR(m,m+s; s+1) > 0, gR(m,m+s; s+2m) > 0 and gR(m,m+s; s+2m−1) > 0.
Of course, the positivity of gR(m,m + s; s) and gR(m,m + s; s + 2m) is also clear
from general results, cf. Sect. 1. If m = 1, we are already done (this case is also clear
from (2.1) and (2.2)). Hence, assume that m ≥ 2 from now on; it is then left to show
that gR(m,m + s; s + j) > 0 for all j ∈ {2, . . . , 2m − 2}.
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(2.12) and (2.13) yield θ(m,m + s; 1) > 0 and κ(m,m + s; 2m − 1) > 0, and via
the equations (2.4) to (2.7) and (2.10), (2.11) we compute

(2m + a − 1)(2s + a − b + 1)(2m + 2s + a + 1)(2s + a + 3)

4m(m + s + a)(2s + a + 1)gR(m,m + s; s)
× θ(m,m + s; 1)gR(m,m + s; s + 2)

= (2m + a − 1)(2s + a − b + 1)(2m + 2s + a + 1)(2s + a + 3)

4m(m + s + a)(2s + a + 1)gR(m,m + s; s)
× [ι(m,m + s; 1)gR(m,m + s; s + 1)

+ κ(m,m + s; 1)gR(m,m + s; s)]
= (b2 + a)(2m − 4)(2m + 2s + 2a + 4)2s

+ (a2 + 2b2 + 3a)[(2m − 4)(2m + 2s + 2a + 4)

+ 2s(2s + 2a + 8) + (a + 3)(a + 5)]
− 3(a + 1)(a + 2)b2

(2.16)

and

(2m + a − 1)(2m + 2s + a − 1)(4m + 2s + a − 3)(4m + 2s + a + b − 1)

4m(m + s)(4m + 2s + a − 1)gR(m,m + s; s + 2m)

× κ(m,m + s; 2m − 1)gR(m,m + s; s + 2m − 2)

= (2m + a − 1)(2m + 2s + a − 1)(4m + 2s + a − 3)(4m + 2s + a + b − 1)

4m(m + s)(4m + 2s + a − 1)gR(m,m + s; s + 2m)

× [θ(m,m + s; 2m − 1)gR(m,m + s; s + 2m)

− ι(m,m + s; 2m − 1)gR(m,m + s; s + 2m − 1)]
= (b2 + a)(2m − 4)(2m + 2s − 4)(4m + 2s + 2a)

+ (a2 + 2b2 + 3a)[(2m − 4)(6m + 6s + 4a + 4)

+ 2s(2s + 2a + 8) + (a + 3)(a + 5)] − 3(a + 1)(a + 2)b2.

(2.17)

Observe that b2 + a > 0: if a ≤ 0, this is a consequence of the decomposition

2b2 + 2a = a2 + 2b2 + 3a − a(a + 1).

Therefore, the right-hand sides of (2.16) and (2.17) are greater than or equal to (a2 +
2b2+3a)(a+3)(a+5)−3(a+1)(a+2)b2, so these equations imply that gR(m,m+
s; s+2) > 0 and gR(m,m+ s; s+2m−2) > 0. We note at this stage that (2.16) and
(2.17) allow us to obtain the positivity of gR(m,m + s; s + 2) and gR(m,m + s; s +
2m−2) in a much faster way than Gasper estimated via [10, (2.5), (2.8), (2.10), (2.11)]
(establishing the nonnegativity of gR(m,m + s; s + 2) and gR(m,m + s; s + 2m − 2)
under the assumption (α, β) ∈ V ). This is our essential simplification of Gasper’s
approach.
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As we are done ifm = 2, we assume thatm ≥ 3 from now on. The remaining proof
works similarly as in [10] again. We first apply Lemma 2.1 and obtain the existence
of an N ∈ {1, . . . , 2m − 1} such that ι(m,m + s; j) ≥ 0 for 1 ≤ j ≤ N and
ι(m,m + s; j) < 0 for those 1 ≤ j ≤ 2m − 1 which satisfy j ≥ N + 1. We then
make use of (2.12) and (2.13) and distinguish two cases:

Case 1: N ≥ 3. Then, (2.4) and induction yield

gR(m,m + s; s + j + 1) = ι(m,m + s; j)
θ(m,m + s; j)gR(m,m + s; s + j)

+ κ(m,m + s; j)
θ(m,m + s; j) gR(m,m + s; s + j − 1)

> 0 (2 ≤ j ≤ N − 1).

This shows the positivity of gR(m,m + s; s + 3), . . . , gR(m,m + s; s + N ).
Case 2: N ≤ 2m − 3. In this case, (2.4) and induction yield

gR(m,m + s; s + j − 1) = − ι(m,m + s; j)
κ(m,m + s; j)gR(m,m + s; s + j)

+ θ(m,m + s; j)
κ(m,m + s; j)gR(m,m + s; s + j + 1)

> 0 (N + 1 ≤ j ≤ 2m − 2),

which establishes the positivity of gR(m,m+s; s+N ), . . . , gR(m,m+s; s+2m−3).
If N ≤ 2, then N < 2m − 3 and the positivity of

gR(m,m + s; s + 3), . . . , gR(m,m + s; s + 2m − 3)

is a consequence of Case 2. If N ≥ 2m − 2, then N > 3 and the positivity of
gR(m,m + s; s + 3), . . . , gR(m,m + s; s + 2m − 3) is a consequence of Case 1.
Finally, if 3 ≤ N ≤ 2m − 3, then the combination of both cases yields the positivity
of gR(m,m + s; s + 3), . . . , gR(m,m + s; s + 2m − 3). ��

Our argument via the central equations (2.16) and (2.17) in the initial step above
shows a typical aspect of the strategy (this aspect will also be important in Sect. 3): as
soon as one knows decompositions like in (2.16), (2.17) which allow one to see the
signs of the relevant parts, these decompositions can easily (yet more or less tediously)
be verified by comparing the expansions, or by comparing common zeros and leading
coefficients and so on. Hence, the actual task is finding such decompositions.

Remark 2.1 As was similarly observed in [9, 10], the proof of the direction “(ii) ⇒
(i)” considerably simplifies in the special case a > 0, i.e., for (α, β) ∈ �◦

� V ◦. On
the one hand, for a > 0 the functions θ(m,m + s; .) and κ(m,m + s; .) are positive
on their full domains (cf. (2.5) and (2.7)). Hence, one can avoid the computations (and
appropriate decompositions) of gR(m,m+s; s+2) and gR(m,m+s; s+2m−2). On
the other hand, the proof of the important ingredient Lemma 2.1 is simpler for a > 0
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[9, 10]. If (α, β) is located in the interior of�, then the positivity of all gR(m, n; k) can
also be seen via Rahman’s formulas (A.1) and (A.2). The simplest subcase is given by
α = β + 1, for which the positivity of the gR(m, n; k) can be seen via a very simple
explicit formula [16].

Proof (Corollary 2.1) As a consequence of (2.3), the linearization coefficients are con-
nected to each other via

(−1)m+n+k g̃R(m, n; k) = (α + 1)m(α + 1)n
(α + 1)k

(β + 1)k
(β + 1)m(β + 1)n

gR(m, n; k).

Hence, the assertions are immediate consequences of Theorems 1.1 and 2.1, cf. also
the remarks at the end of [10, Section 1]. ��

3 Linearization of the Product of Generalized Chebyshev
Polynomials: Solution to a Problem of Szwarc

Let α, β > −1 again, and let a, b be defined as in Sect. 1. In the following, we use the
notation and auxiliary functions of Sect. 2. (T (α,β)

n (x))n∈N0 satisfies the recurrence

relation T (α,β)
0 (x) = 1, T (α,β)

1 (x) = x ,

xT (α,β)
n (x) = aTn T

(α,β)
n+1 (x) + cTn T

(α,β)
n−1 (x) (n ∈ N) (3.1)

with (aTn )n∈N, (cTn )n∈N ⊆ (0, 1) given by

aT2n−1 ≡ n + α

2n + α + β
= 2n + a + b − 1

4n + 2a − 2
, aT2n ≡ n + α + β + 1

2n + α + β + 1
= n + a

2n + a
,

cT2n−1 ≡ n + β

2n + α + β
= 2n + a − b − 1

4n + 2a − 2
, cT2n ≡ n

2n + α + β + 1
= n

2n + a
(3.2)

[24, 3 (f)]. Using (1.3), (1.4), (3.1) and (3.2), one can relate the gT (m, n; k) to the
gR(m, n; k) and g+

R (m, n; k). For instance, this was done in [24]: one has

gT (2m, 2n; 2k) = gR(m, n; k) (3.3)

and

gT (2m + 1, 2n + 1; 2k)

=

⎧⎪⎨
⎪⎩
cT2|m−n|+1g

+
R (m, n; |m − n|), k = |m − n|,

aT2m+2n+1g
+
R (m, n;m + n), k = m + n + 1,

aT2k−1g
+
R (m, n; k − 1) + cT2k+1g

+
R (m, n; k), else;

(3.4)
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moreover, gT (m, n; k) = 0 if m + n − k is odd (trivial consequence of symmetry),
and gT (2m + 1, 2n; 2k + 1) and gT (2m, 2n + 1; 2k + 1) relate to (3.4) via

gT (2m + 1, 2n; 2k + 1) = hT (2k + 1)

hT (2n)
gT (2m + 1, 2k + 1; 2n), (3.5)

which is a consequence of (1.7), and

gT (2m, 2n + 1; 2k + 1) = gT (2n + 1, 2m; 2k + 1). (3.6)

We deal with the following problems:

(A) Szwarc’s problem, cf. Sect. 1: find all pairs (α, β) ∈ (−1,∞)2 such that
(T (α,β)

n (x))n∈N0 satisfies nonnegative linearization of products, i.e., such that all
gT (m, n; k) are nonnegative.

(B) Find all pairs (α, β) ∈ (−1,∞)2 such that all gT (m, n; k) with at least one odd
entry m, n are nonnegative.

The pairs (α, β) ∈ (−1,∞)2 such that all gT (m, n; k) with two even entries m, n are
nonnegative are exactly the (α, β) ∈ V , which is an obvious consequence of (3.3) and
Theorem 1.1. Hence, it will be interesting to compare the resulting set of (B) to V .

The solutions to (A) and (B) will be given in Theorems 3.2 and 3.1, respectively.
We want to motivate these results by establishing two necessary conditions for the
pairs (α, β) which are as in (B): in the following, we show that all such pairs (α, β)

necessarily fulfill the conditions b ≥ 0 and a2 + 2b2 + 3a ≥ 0. More precisely, we
show that

• if b < 0, then gT (2m + 1, 2m + 2s + 1; 2s + 2) < 0 for sufficiently large m ∈ N,
• if a2 + 2b2 + 3a < 0, then gT (2m + 1, 2m + 1; 4) < 0 for sufficiently large
m ∈ N.

Given any α, β > −1 and arbitrary m, n ∈ N with n ≥ m, we use the notation of the
previous sections and compute

(2m + a)(2m + 2s + a + 2)
2s + a + b + 1

2s + a + 2

(
cT2s+3

aT2s+1

g+
R (m,m + s; s + 1)

g+
R (m,m + s; s) + 1

)

= 4bm2 + 4b(s + a + 1)m + a(2s + a + b + 1) (3.7)

via (2.10) and (3.2). Making also use of (2.4), which yields

g+
R (m,m + s; s + 2)

g+
R (m,m + s; s + 1)︸ ︷︷ ︸

�=0

= ι+(m,m + s; 1)
θ+(m,m + s; 1)︸ ︷︷ ︸

>0

+ κ+(m,m + s; 1)
θ+(m,m + s; 1)

g+
R (m,m + s; s)

g+
R (m,m + s; s + 1)

for b �= 1, and combining this with (2.5) to (2.7), (2.10) and (3.2), we furthermore
obtain
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4(b − 1)(2m + a − 1)(2m + 2s + a + 3)
(s + 1)(2s + a + b + 3)

2s + a + 4

×
(
cT2s+5

aT2s+3

g+
R (m,m + s; s + 2)

g+
R (m,m + s; s + 1)

+ 1

)

= (4m − 4)(m + s + a + 2)
[
(a2 + 2b2 + 3a)(s + 1) − a(a + 1)s

]

+(a + 1)(2s + a + b + 3)
[
(a + 2b)(2s + 2 − b) + a2 + 2b2 + 3a

]
(b �= 1).

(3.8)

If b < 0, then the right-hand side of (3.7) becomes negative for (all) sufficiently large
m ∈ N, whereas

(2m + a)(2m + 2s + a + 2)
2s + a + b + 1

2s + a + 2

is always positive. Hence, if b < 0, then

cT2s+3

aT2s+1

g+
R (m,m + s; s + 1)

g+
R (m,m + s; s) + 1

is negative for sufficiently large m ∈ N. Since g+
R (m,m + s; s) is always positive, the

latter yields the negativity of

gT (2m + 1, 2m + 2s + 1; 2s + 2)

= aT2s+1g
+
R (m,m + s; s) + cT2s+3g

+
R (m,m + s; s + 1)

(3.4) for sufficiently large m ∈ N.
Now assume that a2 + 2b2 + 3a < 0. On the one hand, one necessarily has b < 1

then (because a2 + 2 + 3a = (a + 1)(a + 2) > 0), so

4(b − 1)(2m + a − 1)(2m + 2s + a + 3)
(s + 1)(2s + a + b + 3)

2s + a + 4

is always negative. On the other hand, if s = 0, then the right-hand side of (3.8)
becomes negative for (all) sufficiently large m ∈ N. Hence,

cT5
aT3

g+
R (m,m; 2)

g+
R (m,m; 1) + 1

is positive for sufficiently large m ∈ N. Since, due to (2.10), g+
R (m,m; 1) is negative,

we obtain the negativity of
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gT (2m + 1, 2m + 1; 4) = aT3 g
+
R (m,m; 1) + cT5 g

+
R (m,m; 2)

(3.4) for sufficiently large m ∈ N.
Putting all together, we see that every pair (α, β) which is as in (B) indeed has to

satisfy both b ≥ 0 and a2+2b2+3a ≥ 0. Our following result deals with the converse
and shows that these two conditions already characterize (B); the set V ′ defined in
Theorem 3.1 is illustrated in Fig. 2.

Theorem 3.1 Let α, β > −1. The following are equivalent:

(i) For all m, n ∈ N0 such that at least one of these numbers is odd, all linearization
coefficients gT (m, n; k) are nonnegative.

(ii) (α, β) ∈ V ′, where

V ′ :=
{
(α, β) ∈ (−1,∞)2 : a2 + 2b2 + 3a ≥ 0, b ≥ 0

}
� V .

If (α, β) ∈ V ′\� and m, n ∈ N0 are such that at least one of these numbers is odd,
and if k ∈ {|m − n|, . . . ,m + n} is such that m + n − k is even, then gT (m, n; k) is
positive.

The inclusion V ′
� V is clear from the rewritten form of V (1.8) (one can easily

find points which show that the inclusion is proper). V ′ is a subset of [−1/2,∞) ×

Fig. 2 The set V ′. The
dotdashed line and the dashed
line correspond to the
boundaries of V and � (see
Sect. 1)
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(−1,∞), which can be seen as follows: let (α, β) ∈ V ′. If a ≥ 0, then (α, β) ∈ � ⊆
[−1/2,∞) × (−1,∞), and if a < 0, then

2 (b − a)︸ ︷︷ ︸
>0

(b + a) = a2 + 2b2 + 3a − 3a(a + 1) > 0

and consequently

0 < b + a = 2α + 1.

This establishes V ′ ⊆ [−1/2,∞) × (−1,∞); it is clear that the inclusion
is proper. Concerning the geometry of V ′, we note that one obtains the set{
(α, β) ∈ R

2 : a2 + 2b2 + 3a = 0
}
by rotating the ellipse

(
x

3
4

√
2

)2

+
(
y
3
4

)2

= 1

by π/4 and shifting the image by (−5/4,−5/4)T (cf. Fig. 3). The small region V ′\V
is bounded on the left by a curve c′ in the (α, β)-plane which starts at the point
(α, β) = (−1/3,−1), approaches the line α + β + 1 = 0 tangentially and meets

Fig. 3 Geometry of the set V ′
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this line at the point (α, β) = (−1/2,−1/2) (cf. also the related set W considered in
[10]). The angle between the line β = −1 and c′ is ≈ 86.2◦ (in particular, c′ cannot
be written as β = f (α) with a single function f ).

As a consequence of Theorem 3.1, we will obtain our second main result of this
section and the answer to (A):

Theorem 3.2 Let α, β > −1. The following are equivalent:

(i) (T (α,β)
n (x))n∈N0 satisfies nonnegative linearizationof products, i.e., all gT (m, n; k)

are nonnegative.
(ii) (α, β) ∈ V .

Comparing Theorems 1.1, 2.1 and 3.2, one may ask whether all gT (m, n; k) are
positive if (α, β) is located in the interior of V . However, this is not true: just recall
that for every choice of (α, β) ∈ (−1,∞)2 one has gT (m, n; k) = 0 if m + n − k is
odd.

We now come to the proofs.
Since Theorem 3.1 implies that the set of all pairs (α, β) ∈ (−1,∞)2 such that

(T (α,β)
n (x))n∈N0 satisfies nonnegative linearization of products is given by V∩V ′ = V ,

Theorem 3.2 follows from Theorem 3.1.
The implication “(i) ⇒ (ii)” of Theorem 3.1 was already established above. In

view of Szwarc’s earlier result, which already shows that (T (α,β)
n (x))n∈N0 satisfies

nonnegative linearization of products at least for all (α, β) ∈ � (cf. Sect. 1), the
converse “(ii) ⇒ (i)” is a consequence of the assertion made in the second part of
Theorem 3.1.

In view of these observations, and in view of (3.5) and (3.6), Theorems 3.1 and 3.2
trace back to the following lemma:

Lemma 3.1 Let (α, β) ∈ V ′\�, and let m ∈ N, s ∈ N0. Then, gT (2m + 1, 2m + 2s +
1; 2s + 2 j) > 0 for all j ∈ {0, . . . , 2m + 1}.

Due to the positivity of the sequences (aTn )n∈N and (cTn )n∈N, the assertion of
Lemma 3.1 is also true for m = 0, of course.

Our task is to establish Lemma 3.1, which will be done via Corollary 2.1, another
“two-sided induction” argument (cf. the proof of Theorem 2.1) and an auxiliary result.
The latter will be needed for the (more involved) induction step.

For the rest of the section, we always assume that (α, β) ∈ V ′\� and that m ∈ N,
s ∈ N0.

Under these conditions, we have

a ∈
(

−1

3
, 0

)

and

b ∈ (−a, 1 + a) ⊆ (0, 1).
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The inequality a > −1/3 follows immediately from

0 ≤ a2 + 2b2 + 3a < a2 + 2(1 + a)2 + 3a = (a + 2)(3a + 1)

(and can also be found in [10]). The inequality b > −a was shown above.
We now define two auxiliary functions p : {1, . . . , 2m−1} → R, q : {1, . . . , 2m−

1} → (0,∞) by

p( j) := cT2s+2 j+3

aT2s+2 j+1

ι+(m,m + s; j)
θ+(m,m + s; j) ,

q( j) := cT2s+2 j+1c
T
2s+2 j+3

aT2s+2 j−1a
T
2s+2 j+1

κ+(m,m + s; j)
θ+(m,m + s; j) .

Concerning well-definedness, observe that θ+(m,m + s; .) and κ+(m,m + s; .) are
positive on their full domains, which follows directly from the definitions (2.5), (2.7).
Using (2.5) to (2.7) and (3.2), we compute

p( j) = p∞( j) + p∗( j)
(2m − j + a)(2m + 2s + j + a + 2)

,

q( j) = q∞( j) + q∗( j)
(2m − j + a)(2m + 2s + j + a + 2)

(3.9)

for all j ∈ {1, . . . , 2m − 1}, where the four functions p∞ : N → (−1,∞),
p∗, q∞, q∗ : N → (0,∞) are given by

p∞( j)

= −1 + 2s + 2 j + a + 2

(2s + j + 1)(2s + 2 j + a)(2s + 2 j + a + b + 1)( j + 1)
× [b(2s + j + 1)(2s + 2 j + a)( j + 1) + (1 − b)(2s + j)(2s + 2 j + a + 1) j] ,

p∗( j)

= (1 − b)
(2s + j + a)(2s + 2 j + a + 1)(2s + 2 j + a + 2)( j + a)(2s + 2 j + 1)

(2s + j + 1)(2s + 2 j + a)(2s + 2 j + a + b + 1)( j + 1)
,

q∞( j)

= (2s + 2 j + a + 2)(2s + j + a)(2s + 2 j + a − b + 1)( j + a)

(2s + j + 1)(2s + 2 j + a)(2s + 2 j + a + b + 1)( j + 1)
,

q∗( j)

= 2s + 2 j + a + 2

(2s + j + 1)(2s + 2 j + a)(2s + 2 j + a + b + 1)( j + 1)

×(1 − a)(2s + j + a)(2s + 2 j + a + 1)( j + a)(2s + 2 j + a − b + 1). (3.10)

Note that the functions p∞, p∗, q∞ and q∗ are independent of m. The superscript
“∞” is used because p∞ and q∞ are just the pointwise limits of p and q as m tends
to infinity.
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As a first consequence of (3.9) and (3.10), we obtain that p maps into the interval
(−1,∞).

The following lemma is the announced auxiliary result and provides an inequality
in p and q which will be central in the proof of Lemma 3.1.

Lemma 3.2 Let (α, β) ∈ V ′\� and m ≥ 2, s ∈ N0. Then, for every j ∈ {1, . . . , 2m−
2} the inequality

[1 + p( j + 1)][q( j) − p( j)] < q( j + 1) (3.11)

is valid.

Proof The basic idea is to use (3.9) and (3.10) in order to isolate m in an appropriate
way. Let j ∈ {1, . . . , 2m − 2}. We decompose

q( j + 1) − [1 + p( j + 1)][q( j) − p( j)]
= q∞( j + 1) − [1 + p∞( j + 1)][q∞( j) − p∞( j)]

+ q∗( j + 1) − p∗( j + 1)[q∞( j) − p∞( j)]
(2m − j + a − 1)(2m + 2s + j + a + 3)

− [1 + p∞( j + 1)][q∗( j) − p∗( j)]
(2m − j + a)(2m + 2s + j + a + 2)

− p∗( j + 1)[q∗( j) − p∗( j)]
(2m − j + a − 1)(2m − j + a)(2m + 2s + j + a + 2)(2m + 2s + j + a + 3)

(3.12)

and compute

ω j : = q∞( j + 1) − [1 + p∞( j + 1)][q∞( j) − p∞( j)]
= (b − a)b[2s(2s + 2 j + a + 2) + ( j + a)(2 j + 4) + 1 − a]

(2s + j + 1)(2s + j + 2)( j + 1)( j + 2)

× (2s + 2 j + a + 2)(2s + 2 j + a + 4)

(2s + 2 j + a + b + 1)(2s + 2 j + a + b + 3)

> 0.

(3.13)

Combining (3.13) with (3.12), we obtain

(2m − j + a − 1)(2m − j + a)(2m + 2s + j + a + 2)(2m + 2s + j + a + 3)

ω j

× [q( j + 1) − [1 + p( j + 1)][q( j) − p( j)]]
= [(2m − j + a − 1)(2m + 2s + j + a + 3) + α j ]

× [(2m − j + a)(2m + 2s + j + a + 2) + β j ] + ρ j

= [(2m − j + a − 1)((2m − j + a − 1) + σ j + 1) + α j ]
× [((2m − j + a − 1) + 1)((2m − j + a − 1) + σ j ) + β j ] + ρ j

(3.14)
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with

α j := q∗( j + 1) − p∗( j + 1)[q∞( j) − p∞( j)]
ω j

,

β j := −[1 + p∞( j + 1)][q∗( j) − p∗( j)]
ω j

,

ρ j := − p∗( j + 1)[q∗( j) − p∗( j)]
ω j

− α jβ j ,

σ j := 2s + 2 j + 3.

We now define

f :
[
j − a + 1

2
,∞

)
→ R

by

f (x) : = [(2x − j + a − 1)((2x − j + a − 1) + σ j + 1) + α j ]
× [((2x − j + a − 1) + 1)((2x − j + a − 1) + σ j ) + β j ] + ρ j

and claim that f maps into (0,∞); once the claim is proven, inequality (3.11) will
follow for j via

m ∈
[
j − a + 1

2
,∞

)
,

(3.13) and (3.14). To establish the claim, we first compute

f ′(x) = [4(2x − j + a − 1) + 2σ j + 2]
× [

((2x − j + a − 1) + 1)((2x − j + a − 1) + σ j ) + β j

+(2x − j + a − 1)((2x − j + a − 1) + σ j + 1) + α j
]
.

Then, two rather tedious calculations yield

f

(
j − a + 1

2

)
= α j (σ j + β j ) + ρ j

= (2s + j + a + 1)(2s + 2 j + 3)(2s + 2 j + a + 3)( j + a + 1)

b[2s(2s + 2 j + a + 2) + ( j + a)(2 j + 4) + 1 − a]
× [b(2s + j + 1)( j + 1) + (1 − b)(2 − a)(2s + 2 j + a + 1)]

> 0

and, for each x ≥ ( j − a + 1)/2,
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((2x − j + a − 1) + 1)((2x − j + a − 1) + σ j ) + β j

+ (2x − j + a − 1)((2x − j + a − 1) + σ j + 1) + α j

≥ σ j + β j + α j

= 1

b[2s(2s + 2 j + a + 2) + ( j + a)(2 j + 4) + 1 − a]
× [b ((1 − a)(2s + j + 2)(2s + j + a)(2s + 2 j + a + 3)

+(1 − a)(2s + 2 j + a + 3)( j + 1)( j + a + 1)

+(2s + j + 2)(2s + j + a + 1)( j + a)(2 j + 4)

+2s(2s + 2 j + 3)(2s + 2 j + a + 2) + ( j + 1)( j + a)(2 j + 4)

+(1 − a)(2s + 2 j + 3))

+(1 − b) ((2s + j)(2 j + a + 2) + (2 + a) j + 2 + 3a)

×(2s + 2 j + a + 1)(2s + 2 j + a + 3)]

> 0

(like in Sect. 2, verifying such decompositions, which allow to directly see positivity,
is easy, so the actual difficulty is finding them). Obviously, we also have

4(2x − j + a − 1) + 2σ j + 2 ≥ 2σ j + 2 > 0

for every x ≥ ( j − a + 1)/2, so f ′ maps into (0,∞). This finishes the proof. ��
We now come to the proof of Lemma 3.1.

Proof (Lemma 3.1) As a consequence of Corollary 2.1, all numbers

(−1) j g+
R (m,m + s; s + j), j ∈ {0, . . . , 2m},

are positive (observe that (β + 1, α) is located in the interior of �). Alternatively, the
positivity of the numbers (−1) j g+

R (m,m + s; s + j) can be obtained from (2.3) and
Rahman’s formula (A.3) (take into account that β + 1 > 0 > α > −1/2). Hence, we
may define φ : {1, . . . , 2m} → (−∞, 0),

φ( j) := cT2s+2 j+1

aT2s+2 j−1

g+
R (m,m + s; s + j)

g+
R (m,m + s; s + j − 1)

.

As a consequence of (2.4), we have

p( j) + q( j)

φ( j)

= cT2s+2 j+3

aT2s+2 j+1

ι+(m,m + s; j)
θ+(m,m + s; j)
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+ cT2s+2 j+1c
T
2s+2 j+3

aT2s+2 j−1a
T
2s+2 j+1

κ+(m,m + s; j)
θ+(m,m + s; j)

aT2s+2 j−1

cT2s+2 j+1

g+
R (m,m + s; s + j − 1)

g+
R (m,m + s; s + j)

= cT2s+2 j+3

aT2s+2 j+1

g+
R (m,m + s; s + j + 1)

g+
R (m,m + s; s + j)

and obtain the recurrence relation

φ( j + 1) = p( j) + q( j)

φ( j)
(1 ≤ j ≤ 2m − 1).

We now use this recurrence relation and induction to show that

φ(2 j) < −1 (3.15)

and

φ(2 j − 1) > −1 (3.16)

for all j ∈ {1, . . . ,m}. As a consequence of (3.8) and

a + 2b > −a > 0,

we see that φ(2) < −1. Moreover, making use of (2.4), which yields

g+
R (m,m + s; s + 2m − 2)

g+
R (m,m + s; s + 2m − 1)︸ ︷︷ ︸

�=0

= − ι+(m,m + s; 2m − 1)

κ+(m,m + s; 2m − 1)︸ ︷︷ ︸
>0

+ θ+(m,m + s; 2m − 1)

κ+(m,m + s; 2m − 1)

g+
R (m,m + s; s + 2m)

g+
R (m,m + s; s + 2m − 1)

,

and combining this with (2.5) to (2.7), (2.11) and (3.2), we obtain that

4(b − 1)
(2m + a − 1)(2m + s + a)(2m + 2s + a − 1)(4m + 2s + a − b − 1)

4m + 2s + a − 2

×
(
aT4m+2s−3

cT4m+2s−1

g+
R (m,m + s; s + 2m − 2)

g+
R (m,m + s; s + 2m − 1)

+ 1

)

= (2m + a − 1)(2m + 2s + a − 1)

×
[
(a2 + 2b2 + 3a)(2m + s − 1) − a(a + 1)(2m + s − 2) + (2 + 2a)b2

]
+ (a + 1)b(2 − b)(4m + 2s + a)(4m + 2s + 2a − 1).

Therefore, we obtain that φ(2m − 1) > −1.
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If m = 1, then (3.15) and (3.16) are already verified to hold for all j ∈ {1, . . . ,m}
by the preceding calculations; hence, we assume that m ≥ 2 from now on. Let j ∈
{1, . . . ,m − 1} be arbitrary but fixed and assume that φ(2 j) < −1. Then,

φ(2 j + 1) = p(2 j) + q(2 j)

φ(2 j)
> p(2 j) − q(2 j).

Since p maps into (−1,∞), we obtain

(1 + p(2 j + 1))φ(2 j + 1) > (1 + p(2 j + 1))(p(2 j) − q(2 j)),

and now Lemma 3.2 implies that

(1 + p(2 j + 1))φ(2 j + 1) > −q(2 j + 1).

Since φ(2 j + 1) < 0, the latter equation yields

φ(2 j + 2) = p(2 j + 1) + q(2 j + 1)

φ(2 j + 1)
< −1.

Finally, let j ∈ {2, . . . ,m} be arbitrary but fixed and assume that φ(2 j − 1) > −1.
We have

1

φ(2 j − 2)
= 1

q(2 j − 2)
(φ(2 j − 1) − p(2 j − 2)) > − 1

q(2 j − 2)
(1 + p(2 j − 2)),

so

1 + p(2 j − 2) > − q(2 j − 2)

φ(2 j − 2)
.

Since

0 > φ(2 j − 2) = p(2 j − 3) + q(2 j − 3)

φ(2 j − 3)
,

we can conclude that

(1 + p(2 j − 2))

(
p(2 j − 3) + q(2 j − 3)

φ(2 j − 3)

)
< −q(2 j − 2).

Now we apply Lemma 3.2 again and obtain

(1 + p(2 j − 2))

(
p(2 j − 3) + q(2 j − 3)

φ(2 j − 3)

)

< (1 + p(2 j − 2))(p(2 j − 3) − q(2 j − 3)).
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Since p maps into (−1,∞), this shows that

p(2 j − 3) + q(2 j − 3)

φ(2 j − 3)
< p(2 j − 3) − q(2 j − 3)

or, equivalently, φ(2 j − 3) > −1, which finishes the induction. Hence, (3.15) and
(3.16) are established to hold for all j ∈ {1, . . . ,m} (for every m ≥ 1). Combining
this with the positivity of all numbers (−1) j g+

R (m,m+s; s+ j) (see above) and (3.4),
we can conclude that all

gT (2m + 1, 2m + 2s + 1; 2s + 2 j)

= aT2s+2 j−1g
+
R (m,m + s; s + j − 1) + cT2s+2 j+1g

+
R (m,m + s; s + j)

= aT2s+2 j−1 · (−1) j−1g+
R (m,m + s; s + j − 1)︸ ︷︷ ︸

>0

· (−1) j−1(1 + φ( j))︸ ︷︷ ︸
>0

,

j ∈ {1, . . . , 2m}, are positive. Since the positivity of gT (2m + 1, 2m + 2s + 1; 2s)
and gT (2m + 1, 2m + 2s + 1; 4m + 2s + 2) is clear, the proof is complete. ��
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AppendixA. CorrectionofRahman’sHypergeometric Representations

This short section contains the announced corrections of small mistakes in Rahman’s
hypergeometric representations [30, (1.7) to (1.9)] of the linearization coefficients
gR(m, n; k) (which belong to the Jacobi polynomials (R(α,β)

n (x))n∈N0 ). For allm ∈ N
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and s ∈ N0, one has

gR(m,m + s; s + j)

= α + β + 1 + 2s + 2 j

α + β + 1
(m + α + β + 1)m

× (α + 1)s+ j (β + 1)m+s(α + β + 1)2s+ j (α + β + 1) j (m + s)!
(α + 1)s(α + 1)m(β + 1)s+ j (α + β + 2)2m+2s+ j s! j !

×
(−m) j

2
(α + β + m + s + 1) j

2(
−m − α+β

2

)
j
2

(α + s + 1) j
2

×
(−m − α) j

2
(β + m + s + 1) j

2

( 1
2

)
j
2(

1
2 − m − α+β

2

)
j
2

(s + 1) j
2
(α + 1) j

2

× 9F8

(
α, 1 + α

2 , α + 1
2 ,

α−β
2 ,

α−β+1
2 , α + β + m + s + 1 + j

2 ,
α
2 , 1

2 ,
α+β
2 + 1, α+β+1

2 ,−β − m − s − j
2 ,

−m + j
2 ,−s − j

2 ,− j
2

α + m + 1 − j
2 , α + s + 1 + j

2 , α + 1 + j
2

∣∣∣∣∣ 1
)

(A.1)

for even j ∈ {0, . . . , 2m} and

gR(m,m + s; s + j)

= α + β + 1 + 2s + 2 j

α + β + 1
(m + α + β + 1)m

× (α + 1)s+ j (β + 1)m+s(α + β + 1)2s+ j (α + β + 1) j (m + s)!
(α + 1)s(α + 1)m(β + 1)s+ j (α + β + 2)2m+2s+ j s! j !

×
(−m) j+1

2
(α + β + m + s + 1) j+1

2(
−m − α+β

2

)
j+1
2

(α + s + 1) j+1
2

×
(−m − α) j−1

2
(β + m + s + 1) j−1

2

( 3
2

)
j−1
2(

1
2 − m − α+β

2

)
j−1
2

(s + 1) j−1
2

(α + 2) j−1
2

× α − β

α + β + 1
9F8

(
α + 1, α+3

2 , α + 1
2 ,

α−β
2 + 1, α−β+1

2 ,
α+1
2 , 3

2 ,
α+β
2 + 1, α+β+3

2 ,

α + β + m + s + 3
2 + j

2 ,−m + 1
2 + j

2 , 1
2 − s − j

2 ,
1− j
2

1− j
2 − β − m − s, α + m + 3

2 − j
2 , α + s + 3

2 + j
2 , α + 3

2 + j
2

∣∣∣∣∣ 1
)

(A.2)

for odd j ∈ {0, . . . , 2m},which corrects [30, (1.7), (1.8)]. This shows the nonnegativity
of the gR(m, n; k) for (α, β) ∈ �, as well as the strict positivity for (α, β) ∈ �◦. For
the subcase α ≥ β ≥ −1/2, the nonnegativity of the gR(m, n; k) can also seen via
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the representation

gR(m,m + s; s + j)

= α + β + 1 + 2s + 2 j

α + β + 1
· (m + s)!

s! j !
× (β + 1)m+s(α + β + 1)2m

(α + 1)m(β + 1)s(α + β + 1)m

× (α + β + 1)2s+ j (−2m) j (2α + 2β + 2m + 2s + 2) j
(α + β + 2)2m+2s+ j (−2m − α − β) j

× (α − β) j

(2β + 2s + 2) j

× 9F8

(
β + s + 1

2 , 1 + β+s+ 1
2

2 , β + 1
2 , β + m + s + 1,−m − α,

β+s+ 1
2

2 , s + 1,−m + 1
2 , α + β + m + s + 3

2 ,

α+β+1
2 + s + j

2 ,
α+β+2

2 + s + j
2 ,

1− j
2 ,− j

2
β−α
2 + 2− j

2 ,
β−α
2 + 1− j

2 , β + s + 1 + j
2 , β + s + 3

2 + j
2

∣∣∣∣∣ 1
)

,

(A.3)

which is valid for allm ∈ N, s ∈ N0 and j ∈ {0, . . . , 2m} and which corrects a typo in
[30, (1.9)]. Note that the expressions in (A.1) to (A.3) may not be well defined if (α, β)

is an element of the boundary of �; in this case, the formulas have to be interpreted
as limits.
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