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Abstract

Viruses, particularly bacteriophages (or phages), are Earth's most abundant biological entities.
They can infect nearly all organisms and serve as a global reservoir of genetic diversity.
Bacteriophages play a crucial role in bacterial-phage co-evolution, shaping the genetic makeup of
bacterial populations over time, regulating microbial communities in both the human body and
natural environments, and potentially influencing the development of certain diseases. However,
bacteriophage research has faced significant obstructions due to labor-intensive, cultivation-
dependent isolation processes. Recently, viral metagenomics (viromics) has experienced
unprecedented growth, driven by advancements in high-throughput sequencing technologies and
computational methods, allowing researchers to bypass traditional wet-lab isolation steps. Novel
software and databases have facilitated a deeper understanding of viral communities and their
interactions with hosts. However, managing and ensuring the reproducibility of data analysis
generated by these studies presents significant challenges, which arise due to the large-scale nature
of the datasets, variations in computational platforms, differences in software and database

versions, and the absence of an easy-to-use, comprehensive data analysis pipeline.

My Ph.D. projects aimed to address these challenges. First, I developed ViroProfiler, a
containerized bioinformatics pipeline designed for scalable, reusable, and shareable analysis of
viromic sequencing data. This user-friendly platform facilitates reproducible research by providing
a standardized framework for data processing and analysis. It generates comprehensive results
from raw sequencing data, enabling deeper insights into community structures, the behavior and

characteristics of specific viral taxa, and the genetic elements within individual viral contigs.

Next, I demonstrated the power of this comprehensive virome analysis pipeline through a clinical
study. Collaborating with wet lab scientists, we investigated the role of gut bacteriophages in
Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Our findings illuminate the
complex interplay between viral entities and host bacteria, revealing distinct virome structures
associated with different disease statuses and potential relationships between community structure
shifts and disease development. Furthermore, we identified toxin-related auxiliary metabolic genes
(AMGs) that were more abundant in disease groups, highlighting the potential role of phages in

disease development.



Beyond human health, we also explored the role of bacteriophages in environmental contexts. Our
primary focus was on identifying and characterizing virus-encoded hydrocarbon degradation genes
(VHYDEGS). Given the unique nature of environmental viromic data and the research purpose, we
used additional informatics tools to analyze metagenomic viral contigs obtained from a public
database. Re-analyzing these viral contigs enabled us to discover previously unexplored viral
functions related to the remediation of long-chain hydrocarbon-polluted environments. From the
identified high quality vHYDEGs, six protein families were proved to be involved in the crucial
steps of alkane degradation. Our findings provide further evidence of the unexplored contributions

of bacteriophages to global carbon cycling.

In addition, this viromic data analysis pipeline also contributed to large-scale studies, including
cohort studies. We characterized gut phages in allogeneic stem cell transplantation patients and
identified an association between phage-encoded auxiliary metabolic genes (AMGs) and
protective immuno-modulatory metabolites in the human gut. In a Helicobacter pylori-induced
colorectal cancer (CRC) mouse model, we examined the gut virome and discovered strong phage-
bacteria linkages in the initial stage of CRC. Additionally, we investigated the functional role of
bacteriophages in childhood stunting. Building on these diverse applications of viromic analysis,
I presented an extensive review of state-of-the-art bioinformatics methods employed in viromic

studies, as well as my prospects.

Overall, this study presents an optimized pipeline, ViroProfiler, which integrates state-of-the-art
workflow management system and software to offer a comprehensive range of options for viromic
data analysis. By employing this pipeline, we were able to explore massive sequencing data
obtained from both human and environmental viromic samples. Our collective findings provide
valuable insights into the behavior and function of bacteriophages and their encoded genes in

diseases and natural environments.



Zusammenfassung

Viren, insbesondere Bakteriophagen (oder Phagen), sind die hdufigsten biologischen Einheiten auf
der Erde. Sie konnen nahezu alle Organismen infizieren und dienen als globales Reservoir
genetischer Vielfalt. Bakteriophagen spielen eine entscheidende Rolle in der Bakterien-Phagen-
Koevolution und prigen im Laufe der Zeit das genetische Profil bakterieller Populationen. Sie
regulieren mikrobielle Gemeinschaften sowohl im menschlichen Korper als auch in natiirlichen
Umgebungen und beeinflussen moglicherweise die Entstehung bestimmter Krankheiten. Die
Bakteriophagenforschung ist jedoch aufgrund arbeitsintensiver, kultivierungsabhingiger
Isolationsprozesse auf erhebliche Hindernisse gestoBen. In jiingster Zeit hat die virale
Metagenomik (Viromik) dank Fortschritten in Hochdurchsatz-Sequenzierungstechnologien und
rechnergestiitzten Verfahren ein beispielloses Wachstum erfahren, das es Forschern ermoglicht,
traditionelle Nasslaborschritte zu umgehen. Neue Software und Datenbanken haben ein tieferes
Verstindnis von viralen Gemeinschaften und ihren Wechselwirkungen mit Wirten ermdglicht. Die
Verwaltung und Gewihrleistung der Reproduzierbarkeit von Datenanalysen, die von diesen
Studien generiert werden, stellt jedoch erhebliche Herausforderungen dar, die aufgrund der grof3
angelegten Natur der Datensitze, Variationen in rechnergestiitzten Plattformen, Unterschieden in
Software- und Datenbankversionen und dem Fehlen einer benutzerfreundlichen, umfassenden

Datenanalysepipeline entstehen.

Meine Doktorarbeiten zielten darauf ab, diesen Herausforderungen zu begegnen. Zunichst
entwickelte ich ViroProfiler, eine containerisierte Bioinformatik-Pipeline, die fiir skalierbare,
wiederverwendbare und teilbare Analyse von Viromik-Sequenzdaten konzipiert ist. Diese
benutzerfreundliche Plattform erleichtert reproduzierbare Forschung, indem sie einen
standardisierten Rahmen fiir die Datenverarbeitung und -analyse bereitstellt. Sie erzeugt
umfassende Ergebnisse aus Rohsequenzdaten und ermdglicht tiefere Einblicke in
Gemeinschaftsstrukturen, das Verhalten und die Eigenschaften spezifischer viraler Taxa sowie die

genetischen Elemente innerhalb einzelner viraler Contigs.

Als Néchstes demonstrierte ich die Leistungsfahigkeit dieser umfassenden Virom-Analysepipeline
in einer klinischen Studie. In Zusammenarbeit mit Wissenschaftlern aus dem Nasslabor

untersuchten wir die Rolle von Darmbakteriophagen bei Barrett-Osophagus (BE) und Osophagus-



Adenokarzinom (EAC). Unsere Ergebnisse beleuchten das komplexe Zusammenspiel zwischen
viralen Entitdten und Wirtsbakterien und zeigen unterschiedliche Viromstrukturen, die mit
verschiedenen Krankheitsstatus und moglichen Beziehungen zwischen
Gemeinschaftsstrukturverschiebungen und Krankheitsentwicklung in Zusammenhang stehen.
Dariiber hinaus identifizierten wir toxinbezogene zusétzliche Stoffwechselgene (AMGs), die in
Krankheitsgruppen haufiger vorkamen und die potenzielle Rolle von Phagen in der

Krankheitsentwicklung hervorhoben.

Jenseits der menschlichen Gesundheit untersuchten wir auch die Rolle von Bakteriophagen in
Umweltkontexten. Unser Hauptaugenmerk lag auf der Identifizierung und Charakterisierung von
viruskodierten = Hydrokohlenabbau-Genen (VHYDEGs). Angesichts der einzigartigen
Beschaffenheit von Umweltviromik-Daten und des Forschungszwecks nutzten wir zusétzliche
Informatikwerkzeuge, um metagenomische virale Contigs aus einer 6ffentlichen Datenbank zu
analysieren. Durch die erneute Analyse dieser viralen Contigs konnten wir bisher unerforschte
virale Funktionen im Zusammenhang mit der Sanierung von langkettigen Kohlenwasserstoff-
verschmutzten Umgebungen entdecken. Aus den identifizierten hochwertigen vHYDEGs wurden
sechs Protein-Familien als an den entscheidenden Schritten des Alkanabbaus beteiligt erwiesen.
Unsere Ergebnisse liefern weitere Belege fiir die unerforschten Beitrdge von Bakteriophagen zum

globalen Kohlenstoffkreislauf.

Dariiber hinaus trug diese Viromik-Datenanalysepipeline auch zu grofl angelegten Studien bei,
einschlieBlich Kohortenstudien. Wir charakterisierten Darmphagen bei Patienten mit allogener
Stammzelltransplantation und identifizierten eine Assoziation zwischen phagenkodierten
zusitzlichen Stoffwechselgenen (AMGs) und schiitzenden immuno-modulatorischen Metaboliten
im menschlichen Darm. In einem Helicobacter pylori-induzierten kolorektalen Krebs (CRC)
Mausmodell untersuchten wir das Darmvirom und entdeckten starke Phagen-Bakterien-
Verbindungen im Anfangsstadium von CRC. Zusitzlich untersuchten wir die funktionelle Rolle
von Bakteriophagen bei Wachstumsverzogerungen im Kindesalter. Aufbauend auf diesen
vielfiltigen Anwendungen der Viromik-Analyse priisentierte ich eine umfassende Ubersicht iiber
modernste bioinformatische Methoden, die in Viromik-Studien eingesetzt werden, sowie meine

Aussichten.



Insgesamt stellt diese Studie eine optimierte Pipeline, ViroProfiler, vor, die ein modernes
Workflow-Management-System und Software integriert, um eine umfassende Palette von
Optionen fiir die Viromik-Datenanalyse zu bieten. Durch den Einsatz dieser Pipeline konnten wir
massive Sequenzierungsdaten sowohl von menschlichen als auch von Umweltviromik-Proben
untersuchen. Unsere gemeinsamen Ergebnisse liefern wertvolle Einblicke in das Verhalten und die
Funktion von Bakteriophagen und ihren kodierten Genen bei Krankheiten und in natiirlichen

Umgebungen.
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1 Introduction

1.1 Viruses in nature and health

Viruses are ubiquitous in nature, comprising an estimated 103! virus particles in the biosphere
(Hendrix et al. 1999). This makes them the largest reservoir of genetic diversity on Earth and a
driving force behind global geochemical cycles (Suttle 2005). Their omnipresence leads to
numerous interactions with host organisms, significantly impacting ecosystems and playing a
crucial role in the biochemical cycling of major elements. For instance, viruses can redirect the
flow of carbon into particulate or dissolved organic matter through lysis of their bacterial hosts
(Wilhelm and Suttle 1999). They have also been shown to directly encode enzymes involved in

the metabolism of carbon, nitrogen, and sulfur (Kieft et al. 2021; Thompson et al. 2011).

Bacteriophages, or phages, are viruses that infect bacteria and constitute the majority of viruses on
Earth. By influencing the mortality, diversity, and evolutionary trajectories of their bacterial hosts,
phages can modulate microbial populations in various environments. This, in turn, shapes the
ecology and impacts the homeostasis of microbiota (Chevallereau et al. 2021). Despite their
immense ecological significance, phages have historically been understudied due to
methodological limitations and difficulties in culturing and isolating them. Considering the vast
number of phages in nature, only thousands of isolates with complete genome sequences exist to
date, and current culture-independent approaches suggest we are only uncovering the tip of the

phage iceberg (Perez Sepulveda et al. 2016).

The human virome, comprising the viral components of the human microbiome, consists of
approximately 10'3 particles per individual and is also dominated by bacteriophages, according to
existing viral sequencing research (Liang and Bushman 2021). Though similarly vast and complex
compared with human microbiome, the human virome remains largely unexplored, with majority
sequence data in typical virome studies remaining unidentified and new viruses being discovered
frequently. Nevertheless, increasing evidence associates viral community states with health or
disease status (Liang et al. 2020; Ma et al. 2018; Norman et al. 2015; Reyes et al. 2015; Zhao et

al. 2017). Most of these studies have produced primarily descriptive results, necessitating in-depth

20



functional analyses of the virome and its behavior for a better understanding of its function and

contribution to health and disease.

Nevertheless, the prosperous studies about bacteriophages and virome in the last decades have
generated numerous results, revealed the previously neglected role that bacteriophages played in
manipulating the microbiome, interacting with both bacteria hosts and human immune systems,

and thus positively or negatively impact the human health or environments.
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Figure 1. The schematic diagram of the diverse human body sites that phages have been reported directly and
indirectly impact on health (Adapted from (Tiamani et al. 2022)).

1.2 Impact of bacteriophages on human health

The human body is a complex ecosystem, hosting trillions of microorganisms, including bacteria,
viruses, fungi, and archaea. This vast microbial community, known as the human microbiome,
plays a vital role in maintaining our health and well-being. Among these microorganisms,
bacteriophages represent the most abundant and diverse group of viruses found within the human
microbiome. They specifically target bacteria and are thought to impact the composition of our
body’s microbial environment considerably. In addition to directly affecting the ecology of their

bacterial host, they may also operate through more indirect pathways, such as modulating
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metabolism or the immune system of the human body (Wahida, Tang, and Barr 2021). A lot of
body sites that were previously believed to be sterile were later proved to be resident by phages,
such as urinary tract, bladder and blood stream (Figure 1). While phages are not classical pathogens,
they are able to bypass mammalian physical barriers, and it has become increasingly clear that
they can influence the mammalian immune system (Barr 2017; Van Belleghem et al. 2019).
Bacteriophages participate in the immune reaction of human hosts in different ways, and could
offer the human host defence against pathogenic bacteria. The adherence of phages to the mucus
layer of the gut might provide non-host immunity by protecting the epithelial cells from bacteria
(Barr 2017). Inversely, some bacteriophages can encode ankyrins that, after bacterial expression,

reduce the eukaryotic immune response and phagocytosis of bacteria (Jahn et al. 2019).

Recent research has shed light on the critical role that bacteriophages play in modulating the human
microbiome and impacting overall health. Phages are known to influence bacterial populations by
selectively infecting and lysing specific bacterial strains, thus contributing to bacterial diversity
and competition. This dynamic relationship between phages and bacteria is essential for
maintaining a balanced microbial community, which in turn affects various physiological

processes, such as digestion, metabolism, and immunity. For example,

Phages and Antimicrobial Resistance. Phages may play a role in the dissemination of
antimicrobial resistance genes among bacteria, potentially contributing to the global rise of
antibiotic-resistant bacterial infections. Horizontal gene transfer (HGT) facilitated by phages can
enable the spread of resistance genes between bacterial species. Provide benefit to their host
bacteria under the environmental pressure such as antibiotic treatment, re-shape the microbiome
structure and affecting the disease status via phage-mediated HGT (Mohan Raj and Karunasagar

2019).

Phages and Type 2 Diabetes. The potential role of bacteriophages in type 2 diabetes (T2D) has
gained increasing attention in recent years. Dysbiosis of the gut microbiome has been linked to the
development of T2D, with changes in phage populations possibly contributing to this imbalance.
Virome in T2D patients are characterized by significantly altered viral taxonomic composition and
weaken viral-bacterial correlations compared with lean controls (Yang et al. 2021). Phages may

influence glucose metabolism and insulin sensitivity by modulating the composition and function
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of gut microbiota, which in turn can affect the production of short-chain fatty acids, inflammation,
and gut barrier integrity. A consortium made up of eight phages were suggested to be a potential

index of T2D (Chen et al. 2021).

Phages and Inflammatory Bowel Disease. Inflammatory bowel disease (IBD), including Crohn's
disease and ulcerative colitis (UC), has been linked to alterations in the gut microbiome, with
emerging evidence implicating phages in the pathogenesis of these disorders, interindividual
dissimilarity between mucosal viromes was higher in UC than controls (Zuo et al. 2019).
Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than
controls. Changes in phage populations may contribute to IBD by driving bacterial dysbiosis,
triggering aberrant immune responses, and promoting chronic inflammation. Phage-based
therapies, such as the targeted elimination of specific pathogenic bacteria or the restoration of a
balanced gut microbiota through phage consortia treatment, could potentially offer novel

approaches for managing IBD (Federici et al. 2022).

Phages and Respiratory Health. The respiratory microbiome, which includes the nasal passages,
throat, and lungs, also contains a diverse community of phages that can influence respiratory health.
The combination of serum cytokine and Propionibacterium phages could work as a strong
predictor of acute respiratory tract infections (ARTIs), showing the tight relationship of the phage

species and infections in respiratory tract (Li et al. 2019).

These findings highlight the complex interplay among phages, bacteria, and the human host. Early
studies attempted to uncover the contributions of the entire virome community or phage consortia
to disease development. However, these studies were limited by their focus on documenting
changes in the community structure and calculating correlations between virome composition and
specific disease types. Therefore, a deeper and more comprehensive understanding of phage

biology and ecology, as well as their potential impact on human health, is necessary.
1.3 Impact of bacteriophages on environment

In addition to human health, bacteriophages have a significant impact on the environment, as they

affect the ecology and evolution of bacteria and archaea which are important components of the
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biosphere and contribute to the geochemical cycling of key elements such as carbon (Figure 2).

For example,

Implications for Aquatic Ecosystems. In aquatic ecosystems, bacteriophages play a significant
role in shaping the dynamics of microbial communities. They can influence the population
structure and activity of bacteria involved in processes such as nitrogen and sulfur cycling, which
are critical for maintaining the health of aquatic environments. Additionally, phages can impact
the food web by affecting the growth and survival of bacteria that serve as the primary food source
for filter-feeding organisms like zooplankton. In marine, free phage particles were also thought to
contribute to the dissolved organic matter (DOM) pool. Jover et al, suggested phages could
significantly contribute to phosphorous reservoir in the phosphor limited environment, while
Bonnain et al hypothesized that phages could serve as organic ligands of ion in ocean, acting as a
reservoir of trace metals that frequently limit primary production (Bonnain, Breitbart, and Buck

2016; Jover et al. 2014).

Influence on Soil Fertility and Agriculture. Bacteriophages can affect soil fertility and
agricultural productivity by interacting with the complex microbial communities present in the soil
(Svircev, Roach, and Castle 2018). They can influence the abundance and activity of nitrogen-
fixing bacteria, which play a crucial role in converting atmospheric nitrogen into a form that plants
can utilize (Wang et al. 2022). Additionally, phages can impact the populations of bacteria involved
in the decomposition of organic matter, thus influencing nutrient availability in the soil (Jansson
and Wu 2023). By manipulating phage-host interactions, it may be possible to develop sustainable

approaches to improve soil fertility and promote crop productivity.

Bioremediation and Pollution Control. Bacteriophages have the potential to contribute to
bioremediation efforts, particularly in the context of pollution control. Certain bacteria are known
to degrade pollutants like hydrocarbons, heavy metals, and pesticides. Bacteriophage replication
related genes were found to be enriched in the deep-sea oil plume, suggesting the potential role of
phages in the biodegradation if oil spills in deep-sea environments (Lu et al. 2012). Bacteriophages
might also affect microbial oil degradation negatively; pollutants can induce prophages and the
resulted phage particles caused lysis of bacterial cells (Head, Jones, and Roling 2006). Selectively
targeting and promoting the growth of bacteria degraders through phage predation, it may be
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possible to enhance the efficiency of bioremediation strategies. Moreover, phages can be
engineered to carry specific genes that enable the degradation of pollutants, further bolstering their

potential application in environmental cleanup efforts.
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Figure 2. The potential contributions of viruses on carbon cycling in both the aquatic environment and soil. The
arrows show the roles that viruses play in the traditional food web, the “microbial loop” and the C cycle network
of ecosystems (Gao et al. 2022).

The environmental implications of phage-bacteria interactions are vast, affecting biogeochemical

cycles, ecosystem dynamics, and even climate change, making them essential components of

ecosystems.
1.4 Viral metagenomics (viromics)

The field of viromics has been revolutionized by the advent of next-generation sequencing (NGS)
technology. This breakthrough enables researchers to bypass traditional culture-based methods and
directly sequence entire viral communities, allowing for unbiased identification, characterization,

and quantification of viruses without prior knowledge of their composition. The development of
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advanced algorithms and bioinformatics tools has further enhanced viromic research by facilitating

the efficient analysis and interpretation of complex sequencing data.

A traditional viromic research workflow typically involves collecting samples from environmental,
isolated culture, or host-associated sources. Subsequently, viral DNA or RNA is extracted and
sequenced. The sequencing reads are then processed using a series of bioinformatics software tools
to detect viral sequences. These viral sequences are annotated using various tools and databases to
characterize their taxonomic and functional properties (Figure 3). In the following sections, we

present a brief introduction of the steps involved in a viromic study.
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Figure 3. Workflow for identifying viral sequences in most common sample types (Adapted from (Mirzaei et al.
2021))
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1.4.1 DNA extraction and amplification

DNA extraction techniques are essential for detecting viral DNA in biological samples. The typical
viromic samples tend to be limited in quantity, have a low proportion of viral particles, and possess
high levels of contamination from the host's microbiome (Liu et al. 2020; Sabatier et al. 2020).
There are various methods available, but each has its own pros and cons that usually favor the

recovery of more abundant organisms.

Common techniques involve the use of a 0.2 pum filter to remove larger particles like host cells and
bacteria. However, this can lead to the elimination of large viruses and reduce the amount of viral
DNA recovered. CsCl gradient ultracentrifugation purification can provide very pure samples but
may be biased towards isolating certain types of phages. Various procedures for boosting the
concentration of viral nucleic acids, such as random amplified shotgun library (RASL), linker-
amplified shotgun library (LASL), and multiple displacement amplification (MDA), each have
their own disadvantages and inaccuracies (Mirzaei et al. 2021). It is imperative to eliminate
extraneous contamination using virus-like particle (VLP) purification techniques to gain a precise
understanding of phage prevalence. Recently designed flow cytometry-based approaches can
differentiate VLPs from other microorganisms through fluorescence-activated cell sorting (Deng
et al. 2014; Gaudin and Barteneva 2015). Although these strategies reduce contaminations, they

may still affect the sensitivity of viral detection.

Considering the constraints and biases posed by current sample processing methods,
bioinformatics processes used in downstream analysis are essential for diminishing potential

negative consequences caused by experimental techniques.
1.4.2 DNA sequencing

The most used NGS (Next-Generation Sequencing) platforms in viromics are Illumina's HiSeq
and MiSeq systems. These platforms offer a broad selection of sequencing options, such as shotgun
metagenomics, which enables the analysis of all genetic material present in a sample, and targeted
metagenomics, which focuses on specific genes or genomic regions of interest. However, NGS
technologies generate limited read length, which can hinder the accurate assembly and annotation

of viral genomes, especially for those containing repeat regions or high genomic plasticity. To
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overcome these limitations, Third-Generation Sequencing (TGS) platforms, such as Oxford
Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), have emerged as promising
alternatives. These systems offer longer read lengths, with some reads exceeding 100 kilobases,
greatly improving the resolution of complex viral communities and facilitating the assembly of
complete viral genomes. However, the current error rates of TGS platforms are higher than those

of NGS (Dohm et al. 2020).

Recognizing the complementary strengths of NGS and TGS platforms, some studies have begun
to employ a hybrid sequencing approach, combining the advantages of both technologies. This
strategy has proven to be particularly effective in generating high-quality viral genomes (Cook et

al. 2023; Zaragoza-Solas et al. 2022).
1.4.3 Viral detection from viromic sequencing data

The primary objective of viromic studies is to identify viral contigs or genomes from sequencing
data. One strategy is based on reads classification, where clean sequencing reads are aligned to a
reference database of known viral genomes using sequence comparison and similarity search tools,
such as BLAST (Camacho et al. 2009). More efficient algorithms such as k-mer-based methods
use the frequency of short nucleotide sequences (k-mers) to classify reads. These methods are
generally faster and more memory-efficient than alignment-based methods. Kraken, a k-mer-based
taxonomic classifier, is a widely-used tool in this category. It constructs a compact k-mer database
from reference viral genomes and classifies metagenomic reads by mapping their k-mers to the
database (Wood and Salzberg 2014). Kraken's speed and accuracy have made it popular for large-
scale metagenomic studies. With the growing interest in k-mer-based methods, other tools such as
CLARK (Ounit et al. 2015) and Kaiju (Menzel, Ng, and Krogh 2016) have been developed. These
tools also employ k-mer-based approaches but utilize distinct algorithms and optimizations to

enhance classification accuracy and efficiency.

Another strategy is based on genome assembly. These methods involve assembling short
sequencing reads into longer contigs, followed by identifying viral contigs using sequence
similarity or other genomic features. One of the first widely used tools for genome assembly was
Velvet (Zerbino 2010), a de Bruijn graph-based assembler. MetaVelvet (Namiki et al. 2012), the

metagenome version of Velvet, was designed for metagenomic assembly and demonstrated
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improved performance in recovering viral genomes from complex environmental samples.
Another de Bruijn graph-based assembler is IDBA-UD, developed as a metagenomic assembler
capable of handling uneven sequencing depths and multiple genomes in a single dataset (Peng et
al. 2012). SPAdes (Bankevich et al. 2012) and its metagenomic version, metaSPAdes (Nurk et al.
2017), were designed as general-purpose assemblers, which also proved useful for assembling
viral genomes. Based on previous performance evaluations on viromic samples, metaSPAdes has
shown the best performance for viral genome assembly in terms of contig length, assembly
accuracy, and the recovery of low-abundance viruses, making it a good choice for viromic

sequencing data assembly (Sutton et al. 2019).

After obtaining viral contigs from the assembly, multiple viral detection tools can be employed to
identify viral contigs. These tools also rely on a virus reference database but utilize different
strategies to distinguish viral contigs from non-viral contigs. For example, VirSorter (Roux et al.
2015) and MARVEL (Amgarten et al. 2018) identify viral contigs by comparing their proteins to
viral proteins in the reference database. Some machine learning-based tools, such as VirFinder
(Ren et al. 2017) and DeepVirFinder (Ren et al. 2020), employ k-mer profiles trained on viral
reference databases. A more detailed introduction to various viral detection methods can be found

in Section 7.2.
1.4.4 Viral contig binning

One challenge in analyzing viromic data is the short and fragmented nature of assembled contigs.
This often leads to multiple contigs representing a single viral genome. Annotating these contigs
separately can result in the loss of valuable information and incorrect annotation results due to the
highly diverse and mosaic nature of viral genomes. To avoid this issue, researchers have turned to
viral contig binning. This process groups contigs belonging to the same viral genome into a single

bin, allowing for more comprehensive annotation of the viral genome.

Early efforts in viral contig binning involved using general-purpose metagenomic binning tools,
such as CONCOCT (Alneberg et al. 2014), GroopM (Imelfort et al. 2014), and MaxBin (Wu et al.
2014), which were primarily developed for bacterial and archaeal genome recovery but could also
be applied to viral datasets. However, these methods had limitations in accurately binning viral

sequences due to the unique characteristics and high diversity of viral genomes. Later, specialized
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viral contig binning tools were developed, such as Phamb (Johansen et al. 2022) and vRhyme

(Kieft et al. 2022), which consider the unique features of viral genomes.

Phamb enables the binning of thousands of viral genomes directly from bulk metagenomic data by
combining a deep learning-based metagenomic binning algorithm with paired metagenome and
metavirome datasets. However, one limitation of Phamb is that it requires more than 50,000 viral
contigs as input to achieve better binning results. vRhyme is a versatile and fast tool for viral contig
binning. It generates viral metagenome-assembled genomes (VMAGs) by comparing coverage
variances and utilizing supervised machine learning for sequence characteristic classification. To
improve binning, vRhyme exploits unique viral genome properties, such as the infrequency of
duplicate genes in viruses. When evaluated on simulated data, vRhyme created more complete and

less contaminated vMAGs than existing tools.
1.4.5 Viral contig and genome annotation

The annotation of viral contigs or bins involves identifying and characterizing functional elements,
such as genes, regulatory elements, and functional non-coding RNA sequences. The first step in
annotating viral genomes is to identify protein-coding genes within the assembled sequences.
Several gene prediction tools have been developed, including Prodigal (Hyatt et al. 2010),
GeneMarkS (Besemer, Lomsadze, and Borodovsky 2001), and Glimmer (Kelley et al. 2012).
These tools use distinct algorithms and models to predict open reading frames (ORFs) and coding
sequences (CDS) within viral genomes. Once the genes have been identified, their functions must
be annotated. This can be done by comparing the predicted protein sequences to databases of
known protein families, domains, or motifs using sequence comparison tools such as BLAST
(Camacho et al. 2009), HMMER (Eddy 2011), MMseqs2 (Steinegger and Soding 2017),
DIAMOND (Buchfink, Xie, and Huson 2015), InterProScan (Jones et al. 2014), and EggNOG-
mapper (Cantalapiedra et al. 2021). Commonly utilized databases include InterPro (Paysan-
Lafosse et al. 2022), EgeNOG (Hernandez-Plaza et al. 2022), PFAM (Mistry et al. 2021), KEGG
(Kanehisa et al. 2021), UniProt (The UniProt Consortium 2019), and viral-specific databases such
as NCBI viral RefSeq proteins (Li et al. 2021), VOGDB (https://vogdb.org), pVOG ((Grazziotin,
Koonin, and Kristensen 2017)), and PHROG (Terzian et al. 2021) database. In addition to protein-

coding genes, viral genomes may also contain functional non-coding RNA elements, such as
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transfer RNAs (tRNAs) and transfer-messenger RNAs (tmRNAs). Tools like tRNAscan-SE (Lowe
and Eddy 1997) can be used to predict the presence of non-coding RNA elements within viral
genomes. Several tools have been developed to integrate multiple steps of viral genome annotation
into a single software. For instance, DRAM-v (Shaffer et al. 2020) annotates vVMAGs using KEGG,
UniRef90, PFAM, RefSeq viral proteins, VOGDB database, and custom databases. Pharokka
(Bouras et al. 2022) identifies predicted CDS and annotates them using the PHROG database. A
combination of computational tools, databases, and manual curation is often required to achieve

accurate and comprehensive annotations of viral genomes.
1.4.6 Virus-host prediction

Identifying the host of viruses can offer valuable insights into viral ecology, evolution,
transmission, and host interactions. This information can also contribute to developing strategies
for controlling viral infections, such as vaccines or antiviral drugs. However, experimental
methods for determining virus-host relationships can be challenging, time-consuming, and labor-
intensive. Consequently, computational approaches have emerged as a beneficial method for

predicting the host organisms a given virus can infect.

Various features can be utilized to predict the host of a given virus, particularly for bacteriophages
(Edwards et al. 2016). (1) Sequence similarity-based methods: tools such as BLAST and tBLASTx
can compare viral sequences against a database of known host genomes or host marker genes to
identify potential hosts based on sequence similarity. CRISPR arrays in bacterial and archaeal
genomes contain spacers originating from viral or plasmid sequences, providing a record of
previous encounters with foreign genetic elements. Tools like SpacePHARER (Zhang et al. 2021)
can predict viral hosts based on matches between viral sequences and CRISPR spacers in host
genomes. (2) Machine learning-based methods: machine learning algorithms can be trained to
predict viral hosts based on the k-mer frequency patterns in viral sequences. Tools like WIsH
(Galiez et al. 2017), HostPhinder (Villarroel et al. 2016), and VirHostMatcher-Net (Wang et al.

2020) employ k-mer frequencies and machine learning techniques for viral host prediction.

Some tools integrate multiple features to enhance host prediction accuracy. For instance, iPHoP
combines various computational approaches, including "host-based" tools and "phage-based" tools.

Host-based tools leverage different levels and patterns of sequence similarity between phage and
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host genomes, while phage-based tools extract information from a database of reference phages

and archaeoviruses with known hosts (Roux et al. 2023).
1.4.7 Virus taxonomy assignment

Traditional virus taxonomy, based primarily on morphological characteristics and host range, has
its roots in the early days of virology when electron microscopy and cultivation were the primary
methods for studying viruses. The order Caudovirales, for example, which encompasses all tailed
bacteriophages, is well suited for classifying viruses isolated from cultivated bacteria or other hosts.
However, the majority of viral sequences in viromic datasets lack corresponding host and
morphological information, rendering traditional classification schemes inadequate. As a result,
modern viral taxonomy relies heavily on sequence similarity between viral genomes and known
viruses in public databases. However, the sheer volume and diversity of viral sequences uncovered
through metagenomic studies often outpace the growth of these databases, resulting in many novel
viruses lacking close relatives with which to compare. To address this challenge, the International
Committee on Taxonomy of Viruses (ICTV) has begun to establish new nomenclature for viruses

discovered through metagenomics based on their genomic content (Gorbalenya et al. 2020).

In parallel, the development of computational tools such as vConTACT (Bolduc et al. 2017),
vConTACT?2 (Bin Jang et al. 2019), CAT (von Meijenfeldt et al. 2019), and MMseqs2 taxonomy
module (Mirdita et al. 2021) has facilitated the assignment of taxonomy to viral contigs in viromic
datasets. These tools employ various strategies and reference databases, each offering unique
advantages and limitations in terms of speed, accuracy, and compatibility with existing databases.
A major hurdle in viral taxonomy assignment is the discrepancy in nomenclature between the
ICTV and the NCBI taxonomy. This divergence complicates the process of converting between
the two nomenclature systems and can lead to inconsistencies in viral classification. To overcome
this issue, some tools, like the MMseqs2 taxonomy module, enable users to create customized

reference databases tailored to their needs.
1.4.8 Virus lifestyle prediction

Virus lifestyle refers to the manner in which a virus interacts with its host. There are two primary

types of viral lifestyles: virulent and temperate. Virulent viruses exhibit a strictly lytic life cycle,
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causing lysis (bursting) of the host cell after infection. In contrast, temperate viruses can integrate
their DNA into the host chromosome and remain dormant (as proviruses) for many generations
without causing host cell lysis. However, under specific conditions, such as exposure to stress
factors, proviruses can be induced to enter a lytic cycle, leading to host cell lysis. Therefore, a

virus's lifestyle determines its potential to undergo either a lytic or lysogenic life cycle.

Accurate prediction of phage lifestyles is crucial for several reasons. First, it aids in determining
the potential use of phages in therapy. For instance, virulent phages are more suitable for phage
therapy because they can rapidly lyse bacterial cells and decrease the bacterial population. In
contrast, temperate phages may be less effective since they can remain dormant in the host cell
without causing lysis. Second, predicting phage life cycles can help understand their biology and
evolution. By examining the genetic and molecular mechanisms underlying lytic and lysogenic
cycles, researchers can gain insights into how these viruses have evolved to interact with their
bacterial hosts. Finally, predicting phage life cycles is essential for understanding their ecological
role in natural environments such as soil and water. For example, temperate phages can transfer
genes between bacteria through lysogeny, which can have significant implications for bacterial

evolution and adaptation to changing environments.

Multiple features can be utilized to construct models for virus lifestyle prediction. BACPHLIP
detects the presence of a set of lysogenic-related proteins in viral genomes and predicts lifestyle
using a Random Forest classifier (Hockenberry and Wilke 2021). PhaTYP employs BERT
(Bidirectional Encoder Representations from Transformers) to enhance the accuracy of lifestyle
prediction on short contigs (Shang, Tang, and Sun 2023). PhageAl applies NLP (Natural Language
Processing) techniques to encode phage genome sequences and predict lifestyle using an SVM
(Support Vector Machine) model (Tynecki et al. 2020). DeePhage uses a "one-hot" encoding form
to represent phage genome sequences and detects local features using a convolutional neural
network (CNN) (Wu et al. 2021). Each of these tools has its advantages and limitations. For
instance, PhageAl has the highest accuracy but can only be used from a web server with a limit on
usage times. BACPHLIP is user-friendly but can only predict complete phage genomes. Our
recently developed tool, Replidec, overcomes some limitations by detecting temperate-related
protein families from all viral proteins. It exhibits similar performance compared to PhageAl and

can be used on non-complete VM AGs.
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1.4.9 Auxiliary metabolic genes

A viral-specific annotation is the identification and annotation of auxiliary metabolic genes
(AMGs). Recent studies have shown that viruses can encode AMGs, which have important
implications for the metabolism and ecology of the microbial communities they infect (Breitbart
et al. 2018; Crummett et al. 2016; Gasper et al. 2017; Kieft et al. 2021; Thompson et al. 2011).
These AMGs can alter host metabolism, enhance viral fitness, and contribute to biogeochemical
cycling, as well as shaping microbial community structure and function, highlighting the critical
impact of viral-encoded AMGs on microbial ecosystems. However, the identification and
annotation of AMGs in viromic data is a challenging task (Pratama et al. 2021). AMGs can be
highly diverse, and their sequences may be only distantly related to known reference genes,
making it difficult to accurately detect and characterize them using traditional sequence
comparison methods. Additionally, the fragmented and incomplete nature of viromic data can
further complicate the identification and annotation of AMGs. To address these challenges,
multiple tools have been developed recently. For example, VIBRANT (Kieft, Zhou, and
Anantharaman 2020) and DRAM-v (Shaffer et al. 2020) use a ruleset for defining and annotating
AMG:s in viral genomes. These tools utilize advanced algorithms and curated reference databases
to improve the detection and characterization of AMGs, even in cases where the AMGs have low

similarity to known reference sequences.
1.5 Reproducible data analyses

In the fields of metagenomics and viromics, researchers often require complex data analysis
strategies involving multiple steps, each with a range of tools to address similar issues. Researchers
must not only choose the appropriate tools for each step but also install, compile, and run these
tools on their own data. Often, multiple tools must be executed simultaneously, and their results
combined, while ensuring that each subsequent step begins only after the completion of the
preceding step. Some steps require more computational resources than others. In cases where
analyses are performed on high-performance clusters (HPC) shared with other researchers,
efficient management of computational resources is crucial for maintaining equitable access. Job
scheduler software, such as PBS (Portable Batch System) and SLURM (Simple Linux Utility for

Resource Management), can automatically manage and allocate resources based on pre-defined
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configuration files for each analysis script. However, manually creating configuration files and

executing each step separately is impractical for large-scale data and projects.

Custom scripts can be used to chain all analysis steps and allow the entire workflow to be run using
a single command. However, maintaining and sharing these custom pipelines can be challenging
due to dependencies on specific software and platforms. This makes it difficult to reproduce
analyses conducted by other researchers. To achieve reproducible analyses, it is essential to adhere
to well-defined principles like the FAIR (Findable, Accessible, Interoperable, and Reusable)
principles that are widely accepted within the scientific community (Barker et al. 2022). Workflow
management systems, such as Snakemake (Molder et al. 2021) and Nextflow (Di Tommaso et al.
2017), facilitate the development of FAIR-compliant workflows. Both of them are designed to
manage and orchestrate complex data analysis pipelines, handling dependencies and parallelism
automatically. They guarantee reproducibility, scalability, and maintainability of scientific
workflows, and can operate on a variety of computational platforms, from single-core systems to
high-performance computing clusters and cloud environments. Researchers only need to write
analysis scripts for each step, define input and output data, specify the software used in each step,
and provide pre-defined configuration files that define computational resources or other variables
required by each analysis. The workflow management system automatically manages
dependencies during execution. The choice between Snakemake and Nextflow largely depends on
user preferences and programming background. Snakemake is based on Python and utilizes a
domain-specific language resembling Python, allowing users to define rules for data processing
tasks. Nextflow, on the other hand, is based on Groovy, which may be less familiar to researchers
compared to Snakemake's Python-like syntax. Both support modular extension, but Nextflow has
a more active community, including the nf-core initiative (Ewels et al. 2020; Yates et al. 2021),
which offers an extensive range of well-documented and standardized modules and pipelines for

various applications.

To ensure adherence to the FAIR principles, workflow code can be managed using Git and hosted
on code-sharing platforms such as GitHub and GitLab. By hosting code on these online platforms,
developers can access Continuous Integration/Continuous Deployment (CI/CD) services that
streamline workflow development and maintenance. For example, GitHub Actions is a popular

CI/CD tool that automates the testing and deployment of code changes, ensuring software remains
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reliable and up to date. It can also automatically create Docker containers and upload them to
Docker Hub, a platform for sharing Docker images. Users can execute a single command to deploy
the pipeline on a local computer, HPC, or cloud computing platform. Containerization
technologies, such as Docker and Singularity (Kurtzer, Sochat, and Bauer 2017), further enhance
the reproducibility and portability of scientific workflows. By encapsulating the software
environment and dependencies into a single, unified container, researchers can ensure that their
pipelines run consistently across different computational platforms. This eliminates the need for
complex installation procedures and minimizes potential software conflicts, allowing users to

focus on data analysis rather than troubleshooting.

In conclusion, the integration of FAIR principles, workflow management systems, containerization
technologies, and CI/CD practices empowers researchers to produce transparent, reproducible, and
easily extensible computational pipelines (Figure 4). The synergistic combination of these tools
fosters a collaborative research environment, accelerates scientific progress, and ultimately

improves the reproducibility and reliability of viromic studies.
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Figure 4. Illustration about Nextflow-based reproducible computational analyses pipeline. Four layers from Data,
pipeline, software environment, and execution layers were included in the pipeline (Djaffardjy et al. 2023).
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1.6 Motivation and overview of this work

As discussed before, increasing efforts were made to recognize the importance of the virome as it
has been associated with diseases and energy flow in nature. However, there are still additional,
unique challenges inherent to virome analysis that limited the more comprehensive understanding
of the behavior and function of virome in human health and nature. In this thesis, the efforts were
made from the following aspect to address the aforementioned questions. In chapter 3, I describe
ViroProfiler, a computational pipeline for viromic data analysis. It integrates state-of-the-art
bioinformatic tools of viromic data analysis via the modern workflow management framework
Nextflow and ensures computational reproducibility using containerization techniques. An R
package and Shiny APP were also provided for downstream analyses. In chapter 4, I present a
study of the role of bacteriophages in Barrett esophagus and esophageal adenocarcinoma. We
highlight a potential link between gut phages and esophageal diseases by identifying distinct gut
phage communities and their disease specific AMGs in various stages of these diseases. Viral genes
related to bacterial exotoxin and LPS biosynthesis proteins, have been associated with potentially
affecting gut bacterial composition and inflammation. In chapter 5, I present a study of the role of
viruses, mainly bacteriophages, in hydrocarbon pollution bioremediation. I show that viruses carry
a variety of hydrocarbon degradation genes (VHYDEGsS) that are involved in the crucial, rate-
limiting step of alkane hydroxylation. Predictions of protein structures reveal their metabolic
potential. These viruses exhibit a diverse range of taxa and evolutionary backgrounds and are
associated with multiple hydrocarbon degraders, suggesting potential for engineering applications
in hydrocarbon and crude oil bioremediation. In chapter 6, I describe other projects that I
contributed to, including (1) a study of the role of bacteriophages in childhood stunting, we found
distinct gut phages in stunted children compared to their non-stunted counterparts. In vitro
experiments show these phages can regulate bacterial abundance and composition, suggesting their
role in the pathophysiology of child stunting. (2) a study about the virome community and function
in the H. pylori-promoted CRC mice model. We observed expanded temperate phages in the
infected mice preceding the evident colonic tumor development, many temperate phages can infect
probiotics with known antitumor effects such as butyrate producer Clostridium butyricum. (3) a
study of the role of bacteriophages in allogeneic stem cell transplantation patients, we found a gene

BCoAT in two phage contigs that is linked to high levels of butyric acid in the gut, suggesting that
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phage-encoded AMGs may contribute to the production of immune-modulating metabolites in the
human gut. (4) a review article of the modern computational tools for viromic study. The final

chapter is the summary of the dissertation and discusses future developments.
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2 Materials and Methods

2.1 ViroProfiler workflow architecture

For the development of ViroProfiler, NextFlow (Di Tommaso et al. 2017) was utilized as the
workflow framework. The modular design architecture and container support were incorporated
by employing the nf-core template. Software dependencies were managed through Conda YAML
configuration files, allowing for the efficient handling of complex dependency chains and
versioning. The installation of these dependencies into the Docker container was facilitated by
Micromamba, a lightweight and fast package manager. Customized Dockerfiles, based on the
Micromamba image, were used to define the container content, ensuring the consistency and
reproducibility of the computational environment across different platforms. The building and
deployment of Docker containers were automated using GitHub Actions, a popular continuous
integration and continuous deployment (CI/CD) service. This automation ensured that the latest
updates and improvements to the workflow were seamlessly integrated and readily available to

users through Docker Hub, a widely used container registry.
2.2 Standard analyses in ViroProfiler

Raw reads were subjected to cleaning using fastp (Chen et al. 2018). Clean reads were then
assembled into contigs using metaSPAdes (Nurk et al. 2017). Contigs from multiple samples were
merged into a single FASTA file. These contigs were clustered based on 95% sequence similarity
and 85% coverage on the shorter contigs. From each cluster, the longest contig was selected as the
representative contig, resulting in the creation of a non-redundant contig library (nrclib). Contig
quality was assessed, and bacterial contamination regions from proviruses were removed using
CheckV (Nayfach et al. 2021). Open reading frames (ORFs) and genes were identified with
Prodigal (Hyatt et al. 2010), followed by clustering of gene and protein sequences using MMseqs2
(Steinegger and Soding 2017) to reduce redundancy. Annotation of the clustered sequences was
performed with EggNOG-mapper (Cantalapiedra et al. 2021) and abricate. Clean reads were
mapped to the nrclib using Bowtie2 (Langmead and Salzberg 2012), and abundance-related
metrics, such as read counts, trimmed mean, covered fraction, and reads per base, were calculated

using CoverM (https://github.com/wwood/CoverM). Optionally, tools such as Phamb (Johansen
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et al. 2022) and vRhyme (Kieft et al. 2022) were employed for binning the nrclib. Viral contigs
from nrclib were detected using multiple software, including VirSorter2 (Guo et al. 2021),
VIBRANT (Kieft et al. 2020), and DeepVirFinder (Ren et al. 2020). Identified viral contigs were
annotated with DRAM-v (Shaffer et al. 2020), while auxiliary metabolic genes (AMGs) were
identified and annotated using DRAM-v and VIBRANT. Viral contigs were clustered into genus
clusters using vConTACT?2 (Bin Jang et al. 2019). Taxonomy was assigned to viral contigs using
both vConTACT2 and the MMseqs2 taxonomy module (Mirdita et al. 2021), which compared the
contigs against reference viral genomes in the NCBI Virus RefSeq database. Hosts of the viruses
were predicted using iPHoP (Roux et al. 2023). Replication lifestyles were predicted with either
BACPHLIP (Hockenberry and Wilke 2021) or Replidec (Peng et al. 2022).

2.3 Virome DNA extraction and sequencing

In brief, a comprehensive protocol established in the lab was followed to prepare the samples for
viral sequencing. Initially, a sample of less than 50 pL was mixed with 1/5 volume of chloroform
and subjected to centrifugation at 14,000 g for 3 minutes. The upper phase was retained to remove
proteins from the sample. Subsequently, DNasel (1U/ uL, Invitrogen, USA, Lot No. 1158858) was
introduced and an incubation period of 1 hour at 37°C was maintained to eliminate bacterial DNA
fragments. Afterward, the sample was treated with lysis buffer (700 pL KOH stock (0.43g/10ml),
430 pL DDT stock (0.8g/10ml), 370 uL H2 O, pH=12) and incubated at room temperature for 10
minutes. This step was followed by freezing the sample at -80°C for 2 hours to ensure effective
cell lysis. Next, the samples were incubated at 55°C for 5 minutes, and 1 pL Proteinase K (20mg/ml,
Invitrogen, USA, Lot No. 1112907) was added, followed by another incubation for 30 minutes at
55°C to facilitate protein digestion. To purify the samples, AMPure beads (Agencourt, Beckman
Coulter, USA) were utilized. The AMPure beads were added to the samples, and a co-incubation
period of 15 minutes was allowed for DNA adsorption. The DNA was then eluted from the beads
using 35 pL Tris buffer (10mM, pH=9.8) and stored at -80°C until further analysis. Finally, the
prepared samples were subjected to viral sequencing on an Illumina Novoseq 6000 instrument,

employing chemistry for 2 x 150 bp reads.
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2.4 Additional bioinformatic analyses

In addition to the standard analyses previously mentioned, further analyses were conducted for
Manuscript 2. In detail, contigs were annotated using the CAT tool (v5.0.4), which assigns
taxonomy to each contig based on their protein content (von Meijenfeldt et al. 2019). For contigs
that could not be assigned taxonomy by ViroProfiler and CAT, the Demovir software
(https://github.com/feargalr/Demovir) was employed to assign family-level taxonomy. The
number of reads mapped to genes was estimated using FeatureCounts (Liao, Smyth, and Shi 2014).

The hosts of the viruses were predicted using the VirHostMatcher-Net (Wang et al. 2020).
2.5 Public viral protein and genome analyses

To investigate the role of bacteriophages in hydrocarbon pollution degradation, viral proteins,
genomes, and metadata of sample sources were downloaded from the IMG/VR database (Camargo
et al. 2022). Viral proteins were also downloaded from the PHROG database (Terzian et al. 2021).
Hydrocarbon degradation genes in the viral genomes were annotated using the CANT-HYD
database (Khot et al. 2022), which provides a comprehensive resource of genes and enzymes
involved in hydrocarbon degradation pathways. InterProScan (Jones et al. 2014) was then utilized,
searching against the InterPro database (Paysan-Lafosse et al. 2022), for further annotation of the
vHYDEGs. The three-dimensional structure of the proteins were gained by employing ColabFold
(Mirdita et al. 2022) in combination with the state-of-the-art protein structure prediction tool,
AlphaFold2 (Jumper et al. 2021). The viral genomes were annotated using Pharokka (Bouras et al.
2022), a tool specifically designed for the annotation of bacteriophage genomes. Taxonomy was
assigned to the viral sequences using vConTACT2 (Bin Jang et al. 2019) and the MMseqs2
taxonomy (Mirdita et al. 2021) based on sequence similarity between query and reference viral
proteins. The genome structure of the analyzed viruses and respective bacteria were compared

using Clinker (Gilchrist and Chooi 2021).
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3 ViroProfiler: a containerized bioinformatics pipeline for

viral metagenomic data analysis

Authors: Jinlong Ru, Mohammadali Khan Mirzaei, Jinling Xue, Xue Peng and Li Deng
Published in Gut Microbes 15, 2192522 (2023)

DOI: 10.1080/19490976.2023.2192522

3.1 Abstract

Bacteriophages play central roles in the maintenance and function of most ecosystems by
regulating bacterial communities. Yet, our understanding of their diversity remains limited due to
the lack of robust bioinformatics standards. Here we present ViroProfiler, an in-silico workflow
for analyzing shotgun viral metagenomic data. ViroProfiler can be executed on a local Linux
computer or cloud computing environments. It uses the containerization technique to ensure
computational reproducibility and facilitate collaborative research. ViroProfiler is freely available

at https://eithub.com/deng-lab/viroprofiler.

3.2 Contribution

J.R. developed the software. M.K.M. and J.R. drafted the manuscript. J.R and X.P. performed the
analyses. J.X. wrote the documentation. M.K.M. and L.D. conceived and supervised the project.

All authors reviewed and approved the manuscript.
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4 Differences in Gut Virome Related to Barrett Esophagus

and Esophageal Adenocarcinoma

Authors: Tianli Ma#, Jinlong Ru#, Jinling Xue, Sarah Schulz, Mohammadali Khan Mirzaei,
Klaus-Peter Janssen, Michael Quante and Li Deng

Published in Microorganisms 9,1701 (2021)

DOI: 10.3390/microorganisms9081701

4.1 Abstract

The relationship between viruses (dominated by bacteriophages or phages) and lower
gastrointestinal (GI) tract diseases has been investigated, whereas the relationship between gut
bacteriophages and upper GI tract diseases, such as esophageal diseases, which mainly include
Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC), remains poorly described. This
study aimed to reveal the gut bacteriophage community and their behavior in the progression of
esophageal diseases. In total, we analyzed the gut phage community of sixteen samples from
patients with esophageal diseases (six BE patients and four EAC patients) as well as six healthy
controls. Differences were found in the community composition of abundant and rare
bacteriophages among the three groups. In addition, the auxiliary metabolic genes (AMGs) related
to bacterial exotoxin and virulence factors such as lipopolysaccharides (LPS) biosynthesis proteins
were found to be more abundant in the genome of rare phages from BE and EAC samples
compared to the controls. These results suggest that the community composition of gut phages and
functional traits encoded by them were different in two stages of esophageal diseases. However,

the findings from this study need to be validated with larger sample sizes in the future.

4.2 Contribution

Conceptualization, K.-P.J., M.Q. and L.D.; methodology, T.M.; formal analysis, T.M., J.R., and
M.K.M.; investigation, T.M. and J.X.; writing, TM., J.R,, S.S., ].X., M.K.M., K.-P.J., M.Q. and

L.D. All authors have read and agreed to the published version of the manuscript.
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5 Unveiling the hidden role of aquatic viruses in

hydrocarbon pollution bioremediation

Authors: Jinlong Ru#, Jinling Xue#, Jianfeng Sun, Linda Cova and Li Deng
Published in Journal of Hazardous Materials 459, 132299.(2023)

DOI: 10.1016/j.jhazmat.2023.132299

5.1 Abstract

Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation,
which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the
role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This
study examines the diversity and activity of hydrocarbon-degradation genes encoded by
environmental viruses, focusing on phages, within public databases. We identified 57 high-quality
phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we
refer to as virus-encoded hydrocarbon degradation genes (VHYDEGs). These genes are encoded
by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere.
Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic
analyses revealed the diverse evolutionary trajectories of VHYDEGs across habitats, revealing
previously unknown biodegraders linked evolutionarily with vVHYDEGs. Our findings suggest
phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the
initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and
promoting their propagation. To support future research, we developed vHyDeg, a database
containing identified vVHYDEGs with comprehensive annotations, facilitating the screening of

hydrocarbon degradation AMGs and encouraging their bioremediation applications.
5.2 Contribution

Jinlong Ru: Methodology, Software, Data curation, Formal analysis, Writing - original draft,

Writing - review & editing. Jinling Xue: Conceptualization, Investigation, Data curation, Writing
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- original draft, Writing - review & editing. Jianfeng Sun: Visualization. Linda Cova: Visualization.

Li Deng: Conceptualization, Supervision, Funding acquisition.
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6 Further contributions

6.1 Bacteriophages Isolated from Stunted Children Can Regulate Gut

Bacterial Communities in an Age-Specific Manner

Publication

Mohammadali Khan Mirzaei, Md. Anik Ashfaq Khan, Prakash Ghosh, Zofia E. Taranu, Mariia
Taguer, Jinlong Ru, Rajashree Chowdhury, Md. Mamun Kabir, Li Deng, Dinesh Mondal, Corinne
F. Maurice, 2020. Bacteriophages Isolated from Stunted Children Can Regulate Gut Bacterial
Communities in an Age-Specific Manner. Cell Host & Microbe 27, 199-212.e5.
https://doi.org/10.1016/j.chom.2020.01.004

Manuscript abstract

Stunting, a severe and multigenerational growth impairment, globally affects 22% of children
under the age of 5 years. Stunted children have altered gut bacterial communities with higher
proportions of Proteobacteria, a phylum with several known human pathogens. Despite the links
between an altered gut microbiota and stunting, the role of bacteriophages, highly abundant
bacterial viruses, is unknown. Here, we describe the gut bacterial and bacteriophage communities
of Bangladeshi stunted children younger than 38 months. We show that these children harbor
distinct gut bacteriophages relative to their non-stunted counterparts. In vitro, these gut
bacteriophages are infectious and can regulate bacterial abundance and composition in an age-
specific manner, highlighting their possible role in the pathophysiology of child stunting.
Specifically, Proteobacteria from non-stunted children increased in the presence of phages from
younger stunted children, suggesting that phages could contribute to the bacterial community

changes observed in child stunting.
Selected contributions

I performed phage genome annotation and contributed to the results interpretation.
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6.2 Altered virome structure and function characterization in
Helicobacter pylori-driven colorectal carcinogenesis and H. pylori

eradication

Publication

Shiqi Luo, Jinling Xue, Jinlong Ru, Mohammadali Khan Mirzaei, Anna Ralser, Raquel Mejias
Luque, Markus Gerhard, Li Deng, 2022. Altered virome structrue and function characterization in
Helicobacter pylori-driven colorectal carcinogenesis and H. pylori eradication. bioRxiv 2022.07.

03.498559. https://doi.org/10.1101/2022.07.03.498559
Manuscript abstract

The understanding of gut virome and its role in Helicobacter pylori-driven colorectal cancer
(CRC), as well as the long-term impact of H. pylori eradication via antibiotic treatment on it could
contribute to better understanding the mechanisms of the disruption of gut bacteriome homeostasis
involved in H. pylori-driven colorectal carcinogenesis and antibiotic therapy for H. pylori
eradication. In the dynamic analysis of viral genome shotgun metagenomic of samples from lower
gastrointestinal tract of the Apc+/1638N and C57BL/6 mice with H. pylori infection and
eradication, stable viral abundance, and replacement of bursted unique viral contigs in infected
and uninfected Apc+/1638N mice were observed. Temperate phages, which encoding
comprehensive microbial functional genes and targeting various susceptible hosts, were expanded
extremely prior to cancer exacerbation. In addition, short-term antibiotic exposure for H. pylori
eradication was able to alter the gut virome and thrive the antibiotic resistance genes (ARGs) in
the viral genome for at least 6 months. Collectively, these results point toward a potential role of
the altered, but dynamically balanced gut virome, characterized by the expanded temperate phages,
in contributing to the H. pylori-driven CRC, and indicate that viral genome may act as ARG
reservoir for the antibiotic resistance of bacteria after the antibiotics therapy to H. pylori

eradication.
Selected contributions

I performed the viromic data analyses and contributed to the results interpretation.
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6.3 Bacterial and Bacteriophage Consortia are Associated with
Protective Intestinal Immuno-modulatory Metabolites in Allogeneic

Stem Cell Transplantation Patients

Publication

Erik Thiele Orberg, Elisabeth Meedt, Andreas Hiergeist, Jinling Xue, Paul Heinrich, Jinlong Ru,
Sakhila Ghimire, Oriana Miltiadous, Sarah Lindner, Melanie Tiefgraber, Sophia Golde, Tina
Eismann, Alix Schwarz, Sascha Gottert, Sebastian Jarosch, Katja Steiger, Christian Schulz,
Michael Gigl, Julius C. Fischer, Klaus-Peter Janssen, Michael Quante, Simon Heidegger, Peter
Herhaus, Mareike Verbeek, Jiirgen Ruland, Marcel RM van den Brink, Daniela Weber, Matthias
Edinger, Daniel Wolff, Dirk H. Busch, Karin Kleigrewe, Wolfgang Herr, Florian Bassermann,
André Gessner, Li Deng, Ernst Holler, Hendrik Poeck2. Bacterial and Bacteriophage Consortia are
Associated with Protective Intestinal Immuno-modulatory Metabolites in Allogeneic Stem Cell

Transplantation Patients. (Submitted)
Manuscript abstract

The human microbiome has a direct effect on clinical outcome in patients undergoing allogeneic
hematopoietic stem cell transplantation (allo-SCT). Besides bacteria, fungi and viruses as well as
intestinal microbiota-derived metabolites are involved, but it is still unclear how dynamic shifts in
these three kingdoms contribute to the production of intestinal metabolites, how metabolites are

impacted by GvHD or antibiotics and whether they are associated with clinical outcome.

To address this, we performed a prospective, longitudinal study that combined three-kingdom
(bacteria, fungi, viruses) analysis of intestinal microbial communities with targeted metabolomics
in allo-SCT patients (n=78) at two different transplantation centers. Using Multi-omics factor
analysis (MOFA), we uncovered a microbiome signature of bacteria from the Lachnospiraceae and
Oscillospiraceae families and their associated bacteriophages, which correlated with the
production of immuno-modulatory metabolites including short-chain fatty acids (SCFAs),
branched-chain fatty acids (BCFA), metabolites associated with induction of type-I IFN signaling

(IIMs) and immuno-modulatory secondary bile acids. We established an Immuno-modulatory
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Metabolite Risk Index (IMM-RI) consisting of five index immuno-modulatory metabolites
(IMMs), which was associated with improved survival, less transplant-related mortality and
reduced relapse rate. Onset of GI-GvHD and exposure to antibiotics significantly impacted

intestinal levels of protective IMMs.

Using whole shotgun metagenomic sequencing, we observed that in IMM-RI low-risk patients,
sustained production of protective IMMs was associated with a high abundance of SCFA
biosynthesis pathways, specifically butyric acid via butyryl-CoA:acetate CoA-transferase
(BCoAT). Through genome assembly from viral metagenomic sequencing data, we detected two
bacteriophages which encoded BCoAT as an auxiliary metabolic gene. They were more abundant
in IMM-RI low-risk patients and positively correlated with butyric acid concentration, suggesting

that these bacteriophages may modulate bacterial metabolite biosynthesis.

Our study identifies a specific microbiome signature associated with protective IMMs that could
improve fecal microbiota transplantation (FMT) donor selection and provides a rationale for the
development of engineered metabolite-producing consortia and defined metabolite combination

drugs as novel microbiome-based therapies for cancer patients.
Selected contributions

I performed the viromic data analyses and contributed to the results interpretation.
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6.4 Challenges of Studying the Human Virome — Relevant Emerging

Technologies

Publication

Mohammadali Khan Mirzaei, Jinling Xue, Rita Costa, Jinlong Ru, Sarah Schulz, Zofia E. Taranu,
Li Deng, 2021. Challenges of Studying the Human Virome — Relevant Emerging Technologies.
Trends in Microbiology 29, 171-181. https://doi.org/10.1016/j.tim.2020.05.021

Manuscript abstract

In this review we provide an overview of current challenges and advances in bacteriophage
research within the growing field of viromics. In particular, we discuss, from a human virome
study perspective, the current and emerging technologies available, their limitations in terms of de
novo discoveries, and possible solutions to overcome present experimental and computational
biases associated with low abundance of viral DNA or RNA. We summarize recent breakthroughs
in metagenomics assembling tools and single-cell analysis, which have the potential to increase
our understanding of phage biology, diversity, and interactions with both the microbial community
and the human body. We expect that these recent and future advances in the field of viromics will

have a strong impact on how we develop phage-based therapeutic approaches.
Selected contributions

I wrote the “Current Tools and Viral Databases” section and contributed to the “Unknown Viruses

and Discovery” and “Identifying Unculturable Phages’ Host Range” section.
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7 General Discussion

Extensive research has demonstrated the critical role of microbial communities in both natural
environments and the human body, particularly regarding their impact on ecosystem functioning.
For instance, studies have established the significant contribution of the microbiome to
biogeochemical processes such as the global carbon and nitrogen cycles, as well as its involvement
in food web dynamics (Fraterrigo, Balser, and Turner 2006; Grossart et al. 2020; Orland et al.
2019). Furthermore, the microbiome plays a vital role in the development of the human immune
system, regulation of immune response, protection against pathogens, and maintenance of a

healthy balance of microorganisms (Ling et al. 2020; Zheng, Liwinski, and Elinav 2020).

To date, most of this research has centered on the composition and function of bacteria or fungi,
with relatively few studies exploring the virome component of the microbiome. It has only been
in recent decades that researchers have begun to investigate the viral community within the
microbiome. The complexity of the virome, its small genome size (particularly in comparison to
bacterial counterparts), diverse host range, and the absence of a universal 16S ribosomal RNA
equivalent present challenge for studying the virome. Consequently, our understanding of the
virome remains limited, with only a small number of viral sequences and genomes identified and
a significant proportion of sequenced data still cannot be annotated. Recent viromic studies
employing advanced technologies for high-throughput, deep genome sequencing, and data
analysis have started to illuminate the composition of virome and their impact on human health

and environment.

Despite the rapid progress in viromic techniques, several challenges persist, including the
development of a comprehensive and easy-to-use computational pipeline. To advance the study of
viromic research and explore the role of viruses, particularly bacteriophages, in human health and
environmental ecology, this thesis first presents a computational pipeline designed to streamline
the data analysis workflow. Subsequently, we conducted two studies to reveal the role of viruses
in human disease and bioremediation of hydrocarbon pollution. In addition, we discuss
supplementary work examining the role of viruses in human health. This discussion encompasses

all dissertation topics and offers an outlook on future research directions.
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7.1 Distinct challenges in the analysis of environmental and human

viromic data

Environmental and human virome samples exhibit distinct characteristics, resulting in unique
challenges for their analysis. One such challenge arises from differences in contamination (Jurasz,
Pawtowski, and Perlejewski 2021). Virome samples contain a substantial number of host and other
contaminants, which can negatively impact the accuracy and reliability of metagenomic analyses.
It is essential to remove host and contaminant sequences from virome samples for precise analysis,
as incomplete removal, especially of contaminants with high sequence similarity to viral genomes,
can introduce bias into metagenomic analyses. For human viromes, the process of removing host
contaminants is relatively straightforward due to the availability of the human reference genome.
However, environmental virome samples often contain a diverse range of host and contaminant
sequences that are not as easily removed, owing to the absence of comprehensive reference

genomes for the various organisms present in these environments.

Another notable difference between environmental and human viromes is the level of diversity
observed within these viral communities. Environmental viromes typically exhibit a much higher
degree of viral diversity compared to human viromes. This increased diversity presents challenges
when attempting to assemble viral sequences into contigs. In environmental virome samples, the
high diversity often results in shorter contigs due to the presence of a large number of distinct viral
genomes or low sequencing depth. Consequently, this caused difficulties in accurately annotating
and characterizing the viral species present within these samples. In contrast, human viromes
generally display lower levels of diversity compared to environmental samples. This reduced
complexity allows for the application of cross-assembly techniques, which can lead to the
generation of longer contigs. These longer contigs provide a more comprehensive representation
of the viral genomes present within the sample, thereby enhancing the accuracy and resolution of

downstream metagenomic analyses.

To further improve the analysis of environmental and human viromes, distinct analysis strategies
specifically tailored to address the challenges associated with these sample types should be
employed. For instance, the reference-based contamination removal step is implemented in the

ViroProfiler pipeline for human samples. For environmental samples, while there are currently no
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standard methods to remove contaminants, the development of advanced assembly algorithms for
highly diverse environmental virome samples in the future may lead to more accurate contig
generation and improved characterization of viral communities. In ViroProfiler, we utilized two
approaches to remove contamination. The first one is for samples containing contamination of a
large number of human or other organisms with known genomes. In this case, contaminant reads
are removed by aligning them to the reference genome. While the second approach applicable to
all samples, involves assembling reads into contigs and then identifying viral contigs using
multiple computational methods. This process relies on the accuracy of viral detection methods,

which were discussed in the next section.
7.2 Challenges in viral sequence identification from viromic data

Current computational methods for identifying viral contigs from viromic samples can be
primarily classified into four categories. The first category includes sequence similarity-based
approaches, which compare metagenomic sequence reads to reference databases of known viral
genomes or genes using BLAST (Camacho et al. 2009). These methods, however, exhibit limited
sensitivity in identifying novel or divergent viruses due to low sequence similarity. Their efficacy
depends on the completeness and accuracy of reference databases, which may not encompass all

known virus sequences or could contain misannotations.

The second category comprises gene content-based approaches, leveraging the presence of specific
viral marker genes or functional gene profiles to identify viruses within metagenomic samples.
Popular tools in this category include VirSorter (Roux et al. 2015) and MARVEL (Amgarten et al.
2018). These methods may fail to detect viruses that lack the selected marker genes or exhibit
significant gene content variability. They may also produce false positives if the chosen marker

genes are shared by other non-virus mobile genetic elements.

The third category encompasses k-mer frequency-based approaches, which identify viruses by
analyzing the frequency of k-mers in metagenomic data. These methods operate under the
assumption that the k-mer frequency distribution differs between viruses and non-viruses.
Examples of such tools are Kraken (Lu et al. 2022; Wood, Lu, and Langmead 2019) and CLARK

(Ounit et al. 2015). However, these methods are sensitive to sequencing errors and compositional
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biases, which may result in incorrect assignments, and they depend on the accuracy and

completeness of reference k-mer databases.

The final category involves machine learning-based approaches, which train machine learning
models to distinguish between phage and non-virus sequences based on sequence features or
genomic properties. Examples of these tools are VirFinder (Ren et al. 2017) and DeepVirFinder
(Ren et al. 2020). These methods also rely on the quality of training datasets, which may not
encompass the full diversity of viral genomes, and they bear the potential for overfitting or poor

generalization to novel or divergent viruses.

Recent benchmarking of virus identification tools suggests that each tool has its own advantages
and limitations (Ho et al. 2023; Schackart et al. 2023), because they usually use one or a few virus-
related features. Most of them strongly rely on known virus reference databases, thus failing to
detect unknown viruses in the sample. To overcome this limitation, we combined multiple virus
identification tools in ViroProfiler to improve sensitivity. Using this approach, we re-analyzed 10%
samples of a published virome dataset and identified more new phages than the original study.
Characterization of the newly identified phages revealed novel functions related to disease status
(see Manuscript 1). Despite the availability of multiple virus identification tools, benchmarking
different tools remains challenging. We anticipate that the establishment of standardized protocols
and benchmark datasets for viral sequence identification will enable the comparison of various

virus identification tools, helping researchers select and develop more advanced tools.

7.3 Studying the role of bacteriophages from the perspective of

microbial community

With the identification of viral contigs/genomes from metagenomic samples, researchers can study
the role of bacteriophages in the context of microbial communities. The most straightforward and
intuitive way to understand the role of the phage community in a defined system is to analyze its
composition, including documentation of virome richness and diversity, as well as taxonomy
annotation using reference phage databases to investigate variations in community structure.
Several studies have already found altered phage composition in diseased individuals compared to

healthy ones, such as the significantly increased bacteriophage community diversity in colorectal
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cancer (CRC) patients, and clinical stage-dependent development of the enteric virome observed
in partial redundancy analysis of virome species-level profiles (Nakatsu et al. 2018). Another
example is childhood obesity and metabolic syndrome, where gut virome alterations in diversity
and richness were observed (Bikel et al. 2021). In IBD, increased Caudovirales taxonomic richness
in enteric virome were onserved ans thought to be associated with the disease (Norman et al. 2015).
These early observations brought public attention to the importance of vieome in diseases.
However, these studies often provide descriptive results for entire or partial bacteriophage
communities, without in-depth functional analysis, in this period, researchers found community
structure variations, and related these variations with disease status, but we still don’t know who

did what, and how they did these in the entire virome in short, no causality could be established.

Moreover, the traditional virus taxonomy classification system, which relies on morphology and
virus host information, is not reliable since it requires virus cultivation in a lab. With the
identification of more metagenomic-assembled viruses, it is necessary to consider virus genomes
and use genome information to classify virus taxonomy. As a result, the International Committee
on Taxonomy of Viruses (ICTV) has developed a new classification system for virus taxonomy. In
ViroProfiler, we offer both the traditional taxonomy classification system from NCBI and the new
taxonomy classification system from ICTV. Users can select the one that suits their study purpose.
The accuracy of taxonomy classification will improve in the future as new reference virus genomes

are added.

To overcome the limitations of recording only community structure variations, we conducted a
study on the gut virome of patients with Barrett's esophagus (BE) and esophageal adenocarcinoma
(EAC). We explored the virome structure variation and observed a disease-associated increase in
diversity. To understand the contribution and function of the virome beyond the altered structure,
we attempted to predict the hosts of viral contigs. We observed an expanded host range of rare
viruses in the disease group, suggesting that this host-range expansion could facilitate horizontal
gene transfer between hosts. Additionally, we discovered bacterial toxin-related auxiliary
metabolic genes (AMGs) in phage contigs with higher relative abundance. This finding leads us
to hypothesize that the spreading of these genes by phages might be one possible explanation for
disease progression. Furthermore, we used BACPHLIP to predict the viral lifestyle, allowing us to

further explore the behavior of bacteriophages and their potential role in disease development. Our
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results showed an increase in lysogenic replication cycles in the EAC group, indicating an
enhanced likelihood of phage-mediated horizontal gene transfer. By combining variations in
community structure, host range expansion, and altered lifestyle in disease groups, we provide

more evidence on how phages could manipulate host bacteria and contribute to disease.

7.4 Studying the role of bacteriophages from the perspective of

protein functions

Another perspective for studying the role of bacteriophages is at the molecular level.
Understanding the molecular mechanisms by which viruses infect and replicate within their hosts
can shed light on viral pathogenesis, host defense mechanisms, development of novel therapeutic

strategies and environmental applications.

Phages have been shown to encode auxiliary metabolic genes (AMGs), which have been proven
to be functional by experimental validation or metatranscriptomic data. One example is the
photosynthesis gene psbA observed in cyanophages, which has a highly conserved amino acid
sequence. Photosynthesis continues during infection despite the decline in expression of host
photosynthesis genes, providing experimental evidence of the function of phage-encoded genes
(Lindell et al. 2005). Another example is the pmoC gene discovered in large freshwater phages,
which is potentially involved in methane oxidation. Transcriptional data show that the pmoC genes
were highly expressed alongside genes encoding phage DNA packaging and particle assembly-
related proteins (Chen et al. 2020). Our ViroProfiler pipeline can identify AMGs, providing a proxy
for phage functional analyses at the molecular level. For instance, in Manuscript 2, we identified
AMGs encoding bacterial toxins, such as spyA, tccC, entB, and entD genes. These were more
abundant in the genomes of rare phages in BE and EAC patients and are involved in microbial
cellular processes. This finding provides valuable evidence about the function of rare phages in
disease. Although the relative abundances of these AMGs are low, and the statistical analysis is
largely restrained due to the limited sample number, we did find some trends. Higher levels of
these toxin-related AMGs were often associated with higher levels in the disease group, especially
in EAC. In Manuscript 3, we identified hydrocarbon degradation AMGs in viral contigs from a
public database. We predicted their protein structures and compared them with other

experimentally confirmed bacterial protein structures, discovering high structural similarity and
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the existence of catalytic binding sites. This indicates maintained catalytic functions. In the
phylogenetic analysis based on the protein sequences of these AMGs, we observed the
evolutionary closeness between our VHYDEGs-encoded enzymes and those from identified
bacterial degraders. Moreover, the function of these viral contigs was more related to their habitat
rather than their taxonomy. This information provides insight into the potential role of viruses in

hydrocarbon pollution bioremediation.

A limitation of AMG identification methods is that the function and activity of these identified
genes are not guaranteed, and experimental work is usually required to further confirm their
enzymatic potential. Another limitation is that current methods for AMG identification mainly rely
on sequence-based similarity searches, such as BLAST analysis. This approach is limited by the
fact that AMGs are subject to high evolutionary pressure and rapid diversification, often resulting
in sequences that do not exhibit significant similarity to their homologues in prokaryotic hosts. For
example, in Manuscript 3, we showed that viral proteins could have low sequence similarity with
their prokaryotic homologs but retained high structural similarity. Since similar protein structures
indicate similar protein functions, this finding suggests that we can integrate protein structure

information into the detection and annotation of AMGs.

Fortunately, recent advancements in protein structure prediction, such as AlphaFold (Jumper et al.
2021) and RoseTTAFold (Baek et al. 2021), have provided a new approach to annotating protein
functions using structural information. Related structural comparison tools like Foldseek (van
Kempen et al. 2022) enable rapid searches for proteins with similar structures in reference protein
structural databases. This method, known as structure-based functional annotation, allows for the
identification of remote homologous proteins even when they do not share significant sequence
similarity. Since protein structures are more conserved than sequences, as demonstrated in
Manuscript 3, we expect that structure-based homologous detection methods will help us discover
more virus-encoded functional auxiliary metabolic genes (AMGs). During the writing of this work,
a preprint study utilized this idea and annotated more phage proteins using structural information
than by relying solely on sequence information (Say et al. 2023). We anticipate that as more phage
protein structures are predicted, an increasing number of functional genes, especially AMGs, will
be discovered from phage genomes, thus expanding our understanding of the role of phages in the

environment and human health. In addition, the detection and functional annotation of more novel
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phage genes and proteins will provide greater amounts of training data for designing advanced

computational models to annotate phage genes.
7.5 Advantages and limitations of current viromic data analyses tools

Numerous tools for virome sequencing data analyses have been developed, with most of them
addressing specific problems, such as detecting viruses from reads or contigs and annotating
identified virus contigs or genomes. For users to gain a holistic understanding of viruses in their
samples, they must decide which analyses to perform, which software to choose, and how to parse
and integrate results from different analysis steps. In many cases, they also need to spend
considerable time installing or even compiling the software. Even after analyzing their data using
a combination of multiple software, reproducing these analyses can be challenging for other
researchers, since computational platforms, software versions, and even database versions cannot
be guaranteed to be the same as those used by the original author. Moreover, minor differences in

parameter settings can lead to significant differences in results.

ViroProfiler is an attempt to address these problems. It is a well-designed workflow based on a
modern computational analysis pipeline framework and well-established viromic analysis
procedures. Reproducible analysis is ensured using version control and containerization
techniques. The analysis steps are based on the requirements of the Minimum Information about
an Uncultivated Virus Genome (MIUViG) standard (Roux et al. 2019). With ViroProfiler,
manually installing software on high-performance computing (HPC) or other cloud computing
platforms is no longer necessary. Furthermore, the output of the pipeline can be combined and

visualized using multiple tools integrated into ViroProfiler or the companion R package, vpfkit.

Despite its advantages, ViroProfiler has certain limitations that must be addressed to improve its
overall performance. For instance, databases used in multiple steps, such as DRAM-v and
VIBRANT, have redundancies due to their reliance on VOGDB and PFAM databases. This overlap
not only increases the size of the databases but also results in longer computational time and greater
resource consumption. Moreover, conflicting versions of the same database within the pipeline can
raise concerns about annotation consistency. Another limitation of our current pipeline is its

primary focus on analyzing Illumina sequencing data. As the accuracy of third-generation
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sequencing technologies improves and their costs decrease, an increasing number of viromic
studies are leveraging platforms such as PacBio and Nanopore long-read sequencing. These
platforms offer several benefits, including the generation of longer reads and the ability to resolve
complex genomic regions, making them particularly well-suited for viromic studies. To address
this limitation, we plan to incorporate modules related to third-generation sequencing data analysis
into a new sub-workflow in ViroProfiler. In the future, comprehensive and universal analysis of
all sequencing platforms will be supported. The modular design of the Nextflow and nf-core
framework facilitates this integration, enabling easier extension and customization of the pipeline
to meet individuals' specific needs. The inclusion of these advanced sequencing technologies in

future versions of ViroProfiler will significantly enhance its performance and utility.

7.6 Future work

We anticipate the widespread use of ViroProfiler in the future has the potential to significantly
contribute to the development of a more comprehensive phage reference database. Phage detection
and annotation have long been heavily dependent on these databases, as they provide a wealth of
information that researchers rely on to accurately identify and classify phages. Although reference-
independent methods, such as machine learning-based approaches, have made significant strides,
they still require accurate phage annotation in reference databases for training purposes. As these
studies uncover new viral sequences, databases can be updated with the latest information, thereby
improving the accuracy and depth of phage detection. This updated knowledge can then be fed
into phage identification algorithms to detect even more phage sequences from viromic samples.
This creates a circular feedback loop that can rapidly speed up phage research. To facilitate the
quick iteration of the feedback loop, one possible approach could be to create a cloud-based
platform that automatically updates phage databases in real-time as new data becomes available.
Furthermore, integrating machine learning models could further streamline the annotation process,
detect novel phage sequences, and predict their properties, such as host range, virulence factors,
and potential applications in biotechnology or medicine. These predictions could then be validated
by experimental data, further refining the accuracy of the machine-learning models, and

contributing to the expansion of the reference databases.
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An area of future development for ViroProfiler is the creation of advanced visualization tools to
present results in a more intuitive and accessible manner. Recognizing that the visualization of
results should be easily executed on personal computers, we have separated this module from the
main ViroProfiler pipeline and developed it as an R package. The R package includes essential
functions for downstream analysis of outputs from the ViroProfiler pipeline and a Shiny App for
user-friendly visualization of the results. The Shiny App is also packaged into a Docker container,
allowing users to install and run it with a single command on any computer with Docker installed.
The current implementation of the package and Shiny App provides basic functions and
visualizations. Additionally, we plan to expand its functionality and visualization interfaces based

on research requirements and user feedback in the future.

Another long-term plan for ViroProfiler is to integrate it with real-time sequencing techniques such
as Nanopore sequencing. It is promising to upload the Nonapore sequencing results to a cloud
computing platform, where ViroProfiler can be run automatically so that users can get results in
real time. Since the ViroProfiler pipeline can be easily deployed on a cloud computation platform
using a single command, it is very suitable for real-time analyses when users only need to upload
raw sequencing results to the cloud computation platform with pre-defined configuration settings.
It is especially suitable for studying viromes at the community level. With detailed metadata such
as sample sources, the virome profiling results can be classified based on their origin, for example,
based on habitat, ecosystem, or patient cohorts classified by ages, diseases, and other metadata.
This classification of the viral genomes and their genomic product will facilitate more adjusted

computational models for future research.
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8 Conclusions and outlook

This study presents a standardized and reproducible computational pipeline for viromic data
analysis. We applied this pipeline to human virome samples to investigate the role of
bacteriophages in Barrett's esophagus and esophageal adenocarcinoma. We also conducted a study
on virus-encoded hydrocarbon degradation genes and investigated their potential role in
bioremediation. In other work, we applied NGS and viromic technology to potential phage therapy

and provided a review of current technology for studying human virome.

In future research, one promising area is the use of bacteriophages in biotechnology and gene
therapy. This rapidly developing field has many potential applications, such as using phages as
vectors to deliver therapeutic genes to target cells, designing more efficient enzymes using phage-
encoded proteins, and more. Moreover, phage therapy is gaining increasing attention as a potential
alternative to traditional antibiotics, which could have significant implications for the treatment of
bacterial infections. Further exploration of the mechanisms underlying the interactions between
phages and host organisms could lead to new discoveries and applications in virology, medicine,
and biotechnology. Thus, developing more advanced computational tools for analyzing viromic
data and studying their interactions will be crucial in advancing our understanding of the role of

phages in the environment and health, and pave the way for their vast applications.
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ABSTRACT ARTICLE HISTORY
Bacteriophages play central roles in the maintenance and function of most ecosystems by regulat- Received 15 September 2022
ing bacterial communities. Yet, our understanding of their diversity remains limited due to the lack ~ Revised 16 February 2023

of robust bioinformatics standards. Here we present ViroProfiler, an in-silico workflow for analyzing ~ Accepted 13 March 2023
shotgun viral metagenomic data. ViroProfiler can be executed on a local Linux computer or cloud KEYWORDS

computing environments. It uses the containerization technique to ensure computational repro- Virome; microbiome;
ducibility and facilitate collaborative research. ViroProfiler is freely available at https://github.com/ bacteriophages;
deng-lab/viroprofiler. bioinformatics;

metagenomics

Introduction
Recently, several tools have been developed to

Bacteriophages (or phages) are the most abundant ~ characterize different features of viral contigs after
biological entities on earth. They play a key role in ~ assembly. These tools can be classified into three
most ecosystems by regulating bacterial commu-  groups based on their function: 1) tools designed
nities. Recent studies suggested that changes in  for viral discovery, which include VirSorter2’,
phage composition are associated with several dis- ~ VIBRANT'®, DeepVirFinder'!, and VIP'2. These
eases, such as IBD"? type 2 diabetes’, tools mainly use homology searches against refer-
malnutrition®, and many more”. Understanding ~ ence databases or features learned from viral
the mechanisms of interactions between phages  sequences. 2) The second group includes pipelines
and their bacterial hosts can provide some insights ~ for virome composition analysis, including
into the role of these viruses in the environment  VirusSeeker'> MetaVir'*, ViromeScan'® and
and the human body.® FastViromeExplorer'®. 3) The third group includes

The introduction of shotgun metagenomics tools for taxonomy classification or functional
has significantly improved our understanding annotation, such as  VMAGPY  and
of microbial community composition in most vConTACT2'®. However, the function of these
ecosystems, including the human body. tools is mainly limited to identifying a few charac-
However, with the introduction of Qiime’ and terization factors in viral metagenomes. Some of
Mothur® profiling of bacterial communities has  these tools are also highly difficult to install or use
become standardized, no such standard for inexperienced users, which makes configuring
approach is yet available for analyzing the viral  and integrating them into other tools for generat-

community. In addition, compared to metage- ing reproducible data challenging for researchers
nomics analyses of the bacterial communities, ~ with limited bioinformatics experience.

profiling viruses’ compositions is still highly Here we present ViroProfiler, a containerized
time-consuming through the current approaches  pipeline for viral metagenomic data analysis.
commonly used in the field. ViroProfiler takes advantage of the most recently
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developed viral metagenomic analysis tools and
databases to improve the taxonomy and functional
annotation of viruses and their gene products. In
addition, ViroProfiler uses containerization to
ensure computational reproducibility.
ViroProfiler can be executed through a container
platform such as Docker and Singularity’® on
Linux clusters or cloud computing environments.
It can also be installed via the Conda recipe for
high-performance computing clusters that don’t
support containers.

Results
Overview of the pipeline

Quality control, assembly, and viral discovery

We have included multiple quality control steps for
generating an unbiased contig library for down-
stream analyses in ViroProfiler. These measures
ensure to exclude redundancy in the contigs gen-
erated, identify prophages and dereplicate highly
similar contigs of the same species. This provides
a significant advantage to downstream analyses by
accurately estimating the relative abundance of
viral taxa and metabolic genes in samples. In addi-
tion, we included a binning option which enables
construction of viral metagenome-assembled

1. Assembly and abundance estimation 2. Viral detection

genomes (VMAGs) or bins, and provides a more
realistic estimation of viral community composi-
tions. After the non-redundant contig library
(nrclib) or bins are built, we use VirSorter2®,
VIBRANT!?, DeepVirFinder11 and CheckV? to
detect putative viral sequences. VirSorter2,
VIBRANT and CheckV identify viral sequences
based on their homology to the reference data-
bases, while DeepVirFinder uses a machine learn-
ing model to detect viral sequences. Therefore, it
can detect novel viruses not showing homology to
the public databases. ViroProfiler provides
a scoring system for classifying viral contigs iden-
tified by multiple tools in this step (Figure 1).

Functional annotation and AMG prediction

In the annotation step, the pipeline provides
two  possible approaches. By  default,
ViroProfiler uses DRAM-v, the viral mode of
DRAM?!, an automated pipeline for identifying
microbial metabolism. DRAM-v can identify
auxiliary metabolic genes (AMGs) in viral
sequences and annotating their genomes using
multiple publicly available databases. The down-
side of using DRAM-v for annotation is that it
slows down the analyses. Therefore, to over-
come this issue, we provide an alternative
approach for gene annotation, which relies on

) ( vRhyme o
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Figure 1. Schematic overview of the ViroProfiler pipeline. Optional steps are indicated with dashed boxes and arrows.
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searching the EggNOG database®® using
eggNOG-mapper”. The latter is helpful if iden-
tifying AMGs in viral contigs is out of interest.
For the taxonomy assignment, we combine
vConTACT2"® and MMseqs2 taxonomy>* mod-
ule searching against NCBI viral RefSeq data-
base. Combining these two methods, we can
significantly improve the accuracy of taxonomy
assignment to viral sequences from metage-
nomics data (Figure 1).

Host prediction, and the assessment of replication
cycle

The potential hosts of viral sequences are predicted
using iPHoP?’, a recently developed tool which
uses a two-step framework that integrates multiple
methods for assigning hosts to different viruses
based on their genomic signatures with a <10%
false-discovery rate. In addition, our pipeline
allows predicting the replication cycle of viral
sequences using BACPHLIP?® and a newly devel-
oped in-house software Replidec’’, with
a combined accuracy of more than 90%. These
tools use the genetic signatures of viral sequences,
which are associated with three different types of
replication cycles in viruses, lytic, lysogenic, and
chronic, to predict their replication cycles
(Figure 1 and S1).

Visualization and downstream analyses

We developed an R package called vpfkit (short for
“ViroProfiler Tookit”) for downstream analyses of
ViroProfiler results in R. It contains functions for
preprocessing data generated from multiple
ViroProfiler steps, and a Shiny APP called
ViroProfiler-viewer for visualizing and manipulat-
ing results interactively in a web page. ViroProfiler-
viewer allows users to filter viral contigs based on
their length, quality, and other annotations such as
taxonomy, host, and replication type. In addition,
a TreeSummarizedExperiment object file can be
generated as inputs for downstream analyses in
R. Intermediate files from ViroProfiler, such as
genome sequences and BAM files, can be used in
other software and pipelines, such as MetaPop® for
micro- and macro-viral diversity analyses.
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Metagenome analyses and validation of the
pipeline

We used a simulated mock dataset®” and an experi-
mental dataset from previous studies to evaluate
the performance of ViroProfiler. The mock dataset
contains 14 simulated Illumina paired-end sequen-
cing samples, each with 500-1000 viral genomes
from the NCBI RefSeq database v69. We analyzed
13 out of the 14 samples using ViroProfiler (sam-
ple_12 had no reverse FASTQ file, so it was
removed). We compared the viral detection preci-
sion and sensitivity of ViroProfiler with Kraken2*,
and abundance estimation performance with
Bracken®'.

Specifically, the raw reads from the mock dataset
were fed into ViroProfiler for preprocessing,
assembly (without binning), annotation, and abun-
dance estimation ("ViroProfiler” in Figure 2). For
comparison, Kraken2 and its standard database
were used to detect viruses from reads prepro-
cessed by ViroProfiler. Bracken was then used to
estimate the abundance of viruses identified by
Kraken2 (”BrackenSTD” in Figure 2) and
ViroProfiler ("BrackenVPF” in Figure 2), respec-
tively. The taxonomy lineage of viruses was stan-
dardized using Taxonkit’” on the NCBI taxonomy
database (obtained on 2022-12-15). We compared
the performance of these tools in virus identifica-
tion using precision, sensitivity, and F1 score (har-
monic mean of precision and sensitivity) on
different taxonomic ranks and abundance thresh-
olds. Our analyses show that ViroProfiler has the
best performance (highest F1 score) at the phylum
and order levels, especially at lower abundance
thresholds, i.e., ViroProfiler can detect low-
abundance viruses with high precision and sensi-
tivity. While using Bracken with Kraken2 and its
standard database (BrackenSTD) has the highest
sensitivity, they showed a lower precision at the
phylum and order levels. At the family level,
ViroProfiler achieved performance comparable to
BrackenSTD, while at the genus and species levels,

the sensitivity of ViroProfiler —dropped
significantly.
This was expected, as in contrast to

ViroProfiler, which uses lowest common ancestor
(LCA) of all genes in viral contigs for taxonomy
assignment, Kraken2 relies on LCA of exact
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Figure 2. Benchmarking ViroProfiler on mock samples. a) Compares the performance of ViroProfiler with Kraken2 and Bracken in
detecting viruses. b) Compares the performance of ViroProfiler and Bracken in providing estimations of viral abundance. BrackenSTD,
when Bracken was used with the Kraken2 standard database. BrackenVPF, when Bracken was used with the custom database. Bracken
was used for estimating the abundance of identified taxa. Smaller values indicate closer similarity to the true composition profile.

k-mer matches of partial genomes, which
increases sensitivity when the viral sequences
have representatives in the Kraken2 reference
database. Since Kraken2 standard database and
the mock dataset are highly similar, we created
a custom database that only included viral con-
tigs annotated by ViroProfiler to evaluate the
performance of Kraken 2 when these two are
less alike. Our results showed that BrackenVPF
had the lowest sensitivity in all taxonomic ranks.
Even at the phylum level, where ViroProfiler
had>95% sensitivity and precision, BrackenVPF
had only~50% sensitivity (BrackenVPF in
Figure 2a). In addition, we compared the perfor-
mance of BrackenSTD and BrackenVPF with
ViroProfiler in estimating the viral abundances
using the mock dataset. We compared the abun-
dance profile generated by ViroProfiler,
BrackenSTD, and BrackenVPF with the true
composition profile from the original study
using Bray-Curtis dissimilarity (Figure 2b).
ViroProfiler and BrackenSTD showed similar
performance at the phylum and order levels,
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while Kraken2 and Bracken with the standard
database (BrackenSTD) performed better at the
family, genus, and species levels. However, when
Kraken2 and Bracken were used with the custom
database (BrackenVPF), it showed the lowest per-
formance in all taxonomic ranks.

Altogether, our analyses show that ViroProfiler
can accurately classify viruses at phylum, order,
and family levels. In addition, Viroprofiler provides
a database-independent approach for viral classifi-
cation, contrary to Kraken2. This is especially use-
ful for metagenomic studies, as metagenomes
usually include viruses with no homology to the
reference database.

To evaluate the performance of ViroProfiler on
real datasets, we randomly selected and analyzed 20
out of 266 samples from a previous study of viral
community composition in fecal samples from
ulcerative colitis (UC) patients and healthy
individuals®>. Using ViroProfiler, we significantly
improved the viral discovery rate by identifying 761
viral contigs compared to 183 contigs assembled by
the authors. We also observe differences in phage



community composition identified by the earlier
study compared to the ViroProfiler findings. For
example, contrary to the initial analyses, we observed
a higher proportion of Podoviridae in samples from
healthy individuals than in UC patients (34.6% vs
12.3%). In addition, we did not observe significant
differences in diversity scores, as seen in the initial
analyses. Moreover, through ViroProfiler, we used
DRAM-v, which with a higher accuracy, to strictly
identify AMGs in viral contigs, contrary to the initial
study that relied on the general functional capacity of
the viral contigs, which could be misleading”. Finally,
ViroProfiler assigned a host to each viral contig,
showing that UC patients carry fewer phages that
infect Bacteroidia than healthy individuals (Figure 3).

Computational requirements

ViroProfiler can be installed on most operating sys-
tems that support Conda and containerization
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techniques. However, it is recommended to run the
pipeline on a High-Performance Computing (HPC)
system. The minimum hard disk requirement for
the databases and container images is~80GB.
However, additional storage space is required if
users want to run optional modules such as
EggNOG annotation and PHAMB binning.
A detailed storage space requirement for each mod-
ule is available in supplementary table 1.

Our benchmarking analysis on 13 mock datasets
using Helmholtz Munich’s Scientific Computing
HPC cluster (1 to 20 CPUs and 1 to 120 GB of
RAM for each process) was finished in 12 hours.
Host prediction was the most time-consuming and
took 10 hours to complete. However, most analyses
can be run in parallel; therefore, using more compu-
tational resources will decrease the running time. The
execution times and the computational resources
used for each step are provided in supplementary
figure S1 and supplementary file 1, respectively.
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Figure 3. a) Relative abundance of viral contigs generated by ViroProfiler; b) Violin plots show different diversity indexes; c) Heatmap
of AMGs predicted in viral contigs from healthy and UC samples; d) Sankey plot of host prediction for different viral contigs.
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Discussion

Viral communities are central to the mainte-
nance of most ecosystems, including the
human body. The introduction of shotgun meta-
genomics has provided opportunities to study
these communities. Yet, analyses of generated
data require applying multiple bioinformatic
tools and need relevant programming skills.
We believe ViroProfiler, a containerized pipeline
for virome data analysis, can address these
issues. ViroProfiler combines stand-alone analy-
tical tools and databases with a workflow man-
agement system which enables flexible and
reproducible analyses of virome data in an inter-
active environment while significantly shorten-
ing the processing time.

We benchmarked ViroProfiler using mock
datasets and compared its performance to the
existing tools for classifying viruses. ViroProfiler
showed high accuracy in classifying viruses at
taxonomic ranks higher than genus. Moreover,
it can detect viral replication cycles, predict
hosts, and identify AMGs in viral sequences.
We also used ViroProfiler for analyzing pre-
viously published experimental viral metagen-
ome data as part of our validation step. We
then compared our results with the original
analyses, which showed significant improvement
in multiple profiling steps, including viral dis-
covery, taxonomy assignment, functional anno-
tation, host and replication cycle predictions.
This was achieved while less than ten percent
of the published data were analyzed.

In conclusion, we believe that ViroProfiler can
substantially improve the quality of data analyses
in virome research and pave the ground for more
standardized characterization of the viral com-
munities from complex ecosystems. However,
ViroProfiler is specifically designed for classifying
viruses samples with isolated viruses.
Therefore, excessive environmental contamina-
tions, usually found in metagenome sequences,
could increase the running time of the pipeline
and result in lower precision. Yet, this is
a general issue with virome studies, and it is
recommended to isolate the viral fractions before
sequencing for an accurate estimation of viruses
in the samples.

in
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Methods
The pipeline

ViroProfiler integrates state-of-the-art bioinformatic
tools via Conda environments and containerization
techniques for processing viral metagenomic
sequences in a nf-core’” based Nextflow™ pipeline
(Figure 1). It executes series of standard viral meta-
genomics analysis subsequently or separately if part of
the analysis has been done elsewhere. The installation
process is described in detail at https:/github.com/
deng-lab/viroprofiler. For ensuring reproducible ana-
lyses, a specific version of the pipeline can always be
run by using the version parameter in the command
line (-r <version>). In addition, each container used
in the workflow is tagged by the accompanying tool
version, pre-build and stored on Docker Hub (https://
hub.docker.com/u/denglab). The benefit of contain-
ers is that users don’t need to install multiple software
that may cause conflict. Each container contains one
or more sub-workflows that is versioned, and
Nextflow will automatically download and manage
the containers used in each step. Core modules of
ViroProfiler and integrated tools are listed in Table 1.

Quality control

The quality control of raw sequencing reads is
performed using fastp®’. The high-quality reads
are generated by following five consecutive
steps: 1) trimming adapters, 2) removing low-
quality reads and 3) trimming the low-quality
bases (Q<20) at the end of reads, 4) removing
the trimmed reads with length<30bp, and 5) if
decontamination option is enabled, reads that
show homology to mammalian host genomes will
be removed®®. This is specifically beneficial for
identification of AMGs as the previous studies*
have shown that the removal of host contamination
substantially improves the accuracy of AMG iden-
tification and interpretation of viral-encoded
functions.

Genome assembly and dereplication

Each sample was individually assembled using
metaSPAdes®. The assembled contigs were then
merged into a multi-FASTA file and contigs



Table 1. Core modules and integrated tools of ViroProfiler.
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Software Module License Reference
metaSPAdes Assembly NA -

vRhyme Binning GPL v3 .

Phamb Binning MmIT =

CheckV Virus detection and QC BSD 2

VirSorter2 Virus detection GPL v2 2

DeepVirFinder Virus detection USC-RL v1.0 1

VIBRANT Virus detection and gene annotation GPL v3 »

DRAM Functional annotation GPL v3 Al

eggnog-mapper Functional annotation GPL v3 223

abricate Functional annotation GPL v2 https://github.com/tseemann/abricate
MMseqs2 Taxonomy assignment GPL v3 e

vConTACT2 Taxonomy assignment GPL v3 i

Bacphlip Replication cycle prediction MmIT 26

Replidec Replication cycle prediction MIT 4

iPHoP Host prediction GPL v3 =

CoverM Abundance estimation GPL v3 https://github.com/wwood/CoverM
Kraken2 Virus detection MIT 20

Bracken Abundance estimation GPL v3 -

shorter than a threshold (ex. 1kbp) were excluded
from the further analyses. This step generated the
long “complete contig library” (cclib_long). The
quality of cclib_long was then evaluated using
CheckV?, which were assessed for their quality,
completeness, and potential contamination. The
host flanking region were also removed from the
final contigs. To remove redundancy in the contig
library, we dereplicated the cclib_long by clustering
contigs following the MIUViG guidelines (95%
ANI - Average Nucleotide Identity and 85% AF -
Aligned Fraction)® using custom python script
anical.py and aniclust.py from CheckV. This step
generated a non-redundant contig library (nrclib)
for downstream analyses.

Viral contig binning

Due to the limitation of assemblers, we usually get
fragmented contigs of a viral genome. To overcome
this limitation, ViroProfiler uses binning approach
that relies on Phamb®® and vRhyme™ to identify
contigs that belong to the same genome and classify
them as a bin, or viral metagenome-assembled
genome (VMAG). Phamb is a recently developed
tool for binning phage genomes that relies on
DeepVirFinder for viral contig discovery and
a deep-learning algorithm for contig binning™. It
requires>50,000 contigs as input, which sometimes
can not be met. In that case, users can choose
vRhyme for the binning step, which uses multi-
sample coverage effect size comparisons between
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scaffolds, protein redundancy scoring mechanism,
and machine learning model to detect bins. Viral
quality, completeness and contamination ratio of
bins were then assessed using CheckV. Binning is
set as an optional step in ViroProfiler because the
risk of false positive and the fact that contigs in
a bin is connected randomly, which might not
represent the actual viral genomes.

Viral contig identification

ViroProfiler integrates five different tools for iden-
tification of viral sequences: 1) VirSorter2’, 2)
MMseqs2 taxonomy assignment>* based on NCBI
viral RefSeq, 3) CheckV?°, 4) DeepVirFinder11
and 5) VIBRANT', Briefly, contigs or bins are
identified as viruses when they satisfy one of the
following criteria: 1) identified as viruses in cate-
gory 1, 2, 4, or 5 by VioSorter2 with default para-
meters (-virome mode); 2) classified as viruses by
Mmseqs2 taxonomy module; 3) classified as com-
plete, high-quality, medium-quality and low-
quality by CheckV; 4) have a score>0.9 and
p-value<0.01 in the DeepVirFinder prediction; 5)
identified as viruses by VIBRANT. Viral detection
tools were selected based on their approach to
identifying viral sequences. VirSorter2,
VIBRANT, MMseqs taxonomy module, and
CheckV identify viral sequences based on the
homology of proteins in contigs to reference data-
bases, which is more reliable than non-homology-
based tools like DeepVirFinder. However,
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DeepVirFinder employs a machine-learning model
trained on viral genomic signatures to distinguish
viral sequences from non-viral sequences.
Therefore, it can detect novel viruses with no
homology to the reference databases. While
homology-based tools like VirSorter2 and
VIBRANT tend to have lower false positive rates
on longer contigs (e.g.>3 kbp), non-homology-
based tools like DeepVirFinder have shown higher
sensitivity, making them more suitable for analyz-
ing short contigs (e.g.<3 kbp) and detecting novel
viruses*' ™.

ViroProfiler provides a confidence classification
to the contigs or bins identified as viruses using the
following criteria, 1) “high confident” is assigned if
they are classified by VIBRANT, or as category 1,2
by VirSorter2, or as viruses by mmseqs2 taxonomy
module, or have “Complete”, “High-quality”,
“Medium-quality” annotation in CheckV; 2) “low
confident” are rest contigs that predicted as viral
sequences by DeepVirFinder, and “unclassified” by
MMseqs2 taxonomy module or have “Low quality”
annotation in CheckV.

Gene prediction and protein function annotation

To keep as many potential genes as possible, contigs
in cclib_long are fed into Prodigal** for predicting
protein-coding genes and translating them to pro-
teins. To remove redundancy and improve annota-
tion speed in downstream analysis, proteins are
clustered using MMseqs2* using thresholds of mini-
mum identity (0.7 by default) and coverage (0.9 by
default). These thresholds can be modified in the
params.yml config file before running the pipeline.
Representative proteins of these clusters are used to
make the non-redundant protein library (nrplib),
which is assigned a computationally predicted func-
tion and gene ontology using eggNOG-mapper®
searching against the EggNOG database®. This step
will not be necessary in case prediction of AMGs is
planned as DRAM-v also provides functional annota-
tions. Functional annotations of viral contigs are
annotated using DRAM-v, which searches viral
genes against multiple databases, such as KEGG™,
PFAM", VOGDB (https://vogdb.org/) and NCBI
viral RefSeq**. DRAM-v also detects auxiliary meta-
bolic genes (AMGs) in viral genomes. In addition,
antimicrobial resistance and virulence genes can be
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identified using Abricate (https://github.com/tsee
mann/abricate) to search genes against CARD®,
ResFinder”® and VEDB’" ** databases.

Taxonomy assignment

Taxonomy assignment of viral contigs is per-
formed using a combination of viral genome clus-
tering and voting-based classification approaches.
Briefly, for viral contigs longer than 10 kbp, their
protein sequences are fed into vConTACT2* for
virus clustering and taxonomy annotation. Since
vConTACT?2 does not report taxonomy names at
the species and subspecies level, we combine
vConTACT?2 clustering with the MMseqs2 taxon-
omy module** using the NCBI viral RefSeq as
references. MMseqs2 assigns taxonomy to viral
sequences by comparing their proteins to reference
databases and determining taxonomy using the
lowest common ancestor. MMseqs2 was selected
as it is fast and sensitive®*. We combine the
MMseqs2 results with viral clusters (VCs) gener-
ated by VConTACT2. When VCs contain multiple
contigs with different taxonomies, we use LCA to
assign the final taxonomy. However, users could
manually check these VCs and determine taxon-
omy based on their domain knowledge. To be
consistent with taxonomy assignment, names and
lineages are standardized using taxonkit*® and an
in-house python script.

Host and replication cycle prediction

We used iPHOP to predict virus-host ranges®,
which integrates multiple methods to provide
host predictions. This makes its predictions highly
reliable compared to other tools available for host
prediction. However, iPHoP has a big database
(~200GB), thus we set host prediction as an
optional step. Users can skip this step if they are
not interested in the host predictions. The virus
replication cycle is predicted using BACPHLIP*®
and Replidec”’.

Viral abundance estimation

ViroProfiler provides two approaches for viral abun-
dance estimation. The first approach uses Bracken to
estimate the abundance of each taxonomic category



from the Kraken2 classification results. This pro-
vides accurate estimates of viral sequences with
representatives in the Kraken2 reference database.
However, Kraken2 fails to identify novel viruses with
no homology to the databases. Therefore, the second
approach estimates viral abundance based on map-
ping clean reads to ViroProfiler assembled viral con-
tigs. Briefly, clean reads are mapped to contigs in
nrclib using bowtie2® to create BAM files for each
sample. Next, CoverM (https://github.com/wwood/
CoverM) is used to remove spurious read mappings
at less than 90% identity in BAM files and then
calculate the number of reads (—m count), trimmed
mean of coverage (-m trimmed_mean) and covered
fraction (-m covered_fraction) of each contig across
all samples. In the downstream analyses, the abun-
dance of a viral contig in a sample is usually set to
zero if reads from that contig cover less than
a threshold percentage (ex. 50%) in the sample.
This refinement of the abundance table can be gen-
erated in ViroProfiler-viewer in an interactive way.
Finally, if the abundance of genes is of interest,
featureCounts®® is used to calculate number of
reads mapped to each protein-coding gene.
Altogether, these two approaches can accurately esti-
mate viral abundance regardless of their homology
to reference databases.
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Abstract: The relationship between viruses (dominated by bacteriophages or phages) and lower
gastrointestinal (GI) tract diseases has been investigated, whereas the relationship between gut
bacteriophages and upper GI tract diseases, such as esophageal diseases, which mainly include
Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC), remains poorly described. This
study aimed to reveal the gut bacteriophage community and their behavior in the progression of
esophageal diseases. In total, we analyzed the gut phage community of sixteen samples from patients
with esophageal diseases (six BE patients and four EAC patients) as well as six healthy controls.
Differences were found in the community composition of abundant and rare bacteriophages among
three groups. In addition, the auxiliary metabolic genes (AMGs) related to bacterial exotoxin and
virulence factors such as lipopolysaccharides (LPS) biosynthesis proteins were found to be more
abundant in the genome of rare phages from BE and EAC samples compared to the controls. These
results suggest that the community composition of gut phages and functional traits encoded by them
were different in two stages of esophageal diseases. However, the findings from this study need to be
validated with larger sample sizes in the future.

Keywords: esophageal diseases; esophageal carcinogenesis; gut bacteriophages; bacterial exotoxin;
LPS biosynthesis proteins

1. Introduction

Barrett’s esophagus (BE) is the only known precursor for the development of esophageal
adenocarcinoma (EAC) with a five-year survival rate of less than 20%. The incidence of
these diseases is on the rise globally [1,2]. Early diagnosis of patients at risk could prevent
the progression of BE to EAC, and effectively reduce the development of EAC. However, as
only 0.3-0.5% of BE patients develop EAC, endoscopic biopsy surveillance, while linked to
higher survival rates, is only recommended for at-risk patients [3]. In addition, endoscopies
are often discomforting, and sometimes lead to inconclusive results [4]. Thus, noninvasive
diagnostics with higher accuracy are sought after. The human gut is home to trillions
of microorganisms, including bacteria, viruses, fungi, and protozoa. These microorgan-
isms and their human host maintain a symbiotic relationship, in which the host provides
a nutrient-rich habitat, and the microbiota supplies key metabolic capabilities, protects
against pathogen invasion, and trains the immune system [5]. In addition, an imbalance in
gut microbiota, termed dysbiosis, is associated with several human diseases or conditions,
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including inflammatory bowel disease (IBD), and colorectal cancer (CRC). These microbial
communities have shown disease-specific community structure, suggesting that they can
be used as signatures for diagnosing some dysbiosis-associated diseases [6-9].

Both BE and EAC biopsy samples have been found to harbor a unique bacterial com-
munity. Compared to the normal esophagus, Gram-positive bacteria (Firmicutes) were
gradually replaced by Gram-negative bacteria (Bacteroidetes, Proteobacteria, Fusobacteria,
and Spirochaetes) in BE [10]. As the disease progressed from BE to EAC, the Gram-negative
bacteria Escherichia coli (E.coli) and Fusobacterium nucleatum became more dominant [11].
These changes are important as LPS, the outer membrane component of Gram-negative
bacteria, could promote the secretion of pro-inflammatory cytokines through activating
the Toll-like receptor (TLR) and the downstream NF- kB pathway in different cell types,
contributing to the severity of esophageal diseases [11]. In human and mice models with
BE, elevated levels of pro-inflammatory cytokines and activated TLR were observed in the
gastroesophageal junction [12]. The resulting chronic inflammation could induce systemic
immune responses, which further promote the development of GI tract diseases [13]. In the
BE mouse model, the chemokines IL-1b and IL-8, secreted by epithelial cells in the esopha-
gus and forestomach squamous epithelium, facilitated the progression of BE to EAC [6].
Moreover, the gut microbiome was associated with this process, as germ-free L2-1L1B mice
did not develop dysplasia while the shift of the gut microbiome resulted in different speeds
of developing esophageal dysplasia and tumor [6]. The above evidence further shows that
these alterations of the bacterial community associated with inflammation can accelerate
the development of esophageal diseases.

However, this is not limited to the gut bacteria as viruses, which outnumber bacterial
cells by about tenfold in the gut, also contribute to human health and diseases [14-19].
In addition to the widely reported eukaryotic viruses [20-23], mounting data suggests
that phages play a critical role in human health by affecting the bacterial community and
function [19,24,25]. For example, bacterial-cell lysis caused by phage infection can lead
to the release of nucleic acids, proteins, and lipids, which may trigger an inflammation
response [26,27]. In addition, prophages that are integrated in bacterial genomes could
supply them with virulence-associated genes that can increase their fitness under specific
conditions [28]. Under stimulus (such as, DNA damage [29]), the prophages may switch
to the lytic cycle [30], which can lead to gene exchange between bacteria, increasing
their pathogenicity [31]. For example, the virulence gene that encodes the enterotoxin
A was transferred to Staphylococcus aureus by phage-mediated horizontal gene transfer
(HGT) [32,33]. Furthermore, phages can also obtain AMGs from bacteria to modulate
bacterial metabolism [34]. These phage behaviors that regulate bacterial physiology could
further indirectly influence human health, such as the occurrence of GI tract and non-GI
tract diseases including IBD, CRC, Parkinson’s disease, and Type I diabetes [27,35-37].

Former studies that investigated the role of phages in GI tract diseases have mainly
focused on the phage community related to lower GI tract diseases, several studies
have already described the disease-specific phage community that has been revealed
in inflammation-induced diseases such as Crohn’s disease and ulcerative colitis [27]. In a
mouse model of intestinal colitis, it was reported that the bacteriophage community struc-
ture correlated with the disease status, and the presence of some phages during colitis was
associated with an increase in pathobiontic host bacteria (Escherichia-Shigella, Salmonella,
Mycobacterium) that was linked to the intestinal inflammation response [38]. However, the
role of phages in the upper GI tract remains poorly described and limited to a few studies
that have explored the viral community of the oral cavity [39,40]. The research related to
the role of the phage community in esophageal diseases is also limited to one study that
has used metagenomic data from the whole microbial community without isolating the
viral like particles (VLPs) before sequencing [41]. Profiling the community composition of
gut phages in esophageal diseases such as BE and EAC can provide some further insight
into the role of phages in upper GI tract diseases.
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This study aimed to investigate the alteration of gut phages in different stages of
esophageal diseases. For this purpose, we (1) determined the composition of the isolated
bacteriophage community in BE patients, EAC patients, and healthy controls (CT); (2) pre-
dicted the bacterial host ranges of the gut phages in all three groups; (3) identified the
metabolic pathways encoded by these phages.

2. Materials and Methods
2.1. Sample Collection

Sixteen samples were selected from the German BarrettNET registry including six
BE patients, four EAC patients, and six CT for virome analysis. The clinical data are
shown in Table S1, and additional information can be found in a previous study [42]. Stool
samples were collected using Stool Collection Tubes with Stool DNA Stabilizer (STRATEC
Molecular GmbH, Berlin, Germany). The sampling procedure was conducted mostly at
home or in the clinic if the patients were on outpatient visits. Samples were shipped to the
clinic human sample biobank and stored at —80 °C until further virome DNA extraction.

2.2. Virome DNA Extraction

The stool samples were vortexed vigorously for 4 h at 4 °C, then centrifuged at 4000 g
for 30 min to collect supernatant. The supernatant was passed through 0.22 um filters
(PES Membrane, Lot No. ROCB29300, Merck Millipore, Co., Cork, Ireland) to remove
bacterial-associated particles, and the volume was subsequently concentrated to less than
50 uL by Amicon® Ultra Centrifugal Filters (10 kDA, Lot No. R9EA18187, Merck Millipore,
Co., Cork, Ireland). Then 1/5 volume of chloroform was mixed with the samples and
centrifuged at 14,000 g for 3 min, retaining the upper phase followed by a DNAse I (1 U/uL,
Lot No. 1158858, Invitrogen, Carlsbad, CA, USA) treatment for 1 h at 37 °C to remove
non-phage DNA. DNase I was inactivated by adding EDTA (0.1 M). Subsequently, lysis
buffer (700 uL KOH stock (0.43 g/10 mL), 430 uL DDT stock (0.8 g/10 mL), and 370 pL
H,O, pH = 12) was added to the reaction and incubated at room temperature for 10 min
followed by 2 h incubation at —80 °C, and 5 min at 55 °C. Lysed VLPs were then treated
for 30 min at 55 °C with Proteinase K (20 mg/mL, Lot No. 1112907, Invitrogen, Carlsbad,
CA, USA) to digest remaining viral capsid and extract the virome DNA. AMPure beads
(Agencourt, Beckman Coulter, Brea, CA, USA) were added to the extracted DNA and
incubated for 15 min at room temperatureF. DNA was eluted from beads by 35 uL Tris
buffer (10 mM, pH = 9.8) and stored at —80 °C until it was sent for sequencing. Sequencing
was performed on an Illumina HiSeq-PE150 platform.

2.3. Bioinformatic Analysis

On average, 9,358,935 + 169,389 reads per samples were generated. Raw reads
were processed with fastp (v0.20.1) [43] to remove adaptors and low-quality bases. Re-
maining reads were deduplicated using dedupe.sh from bbmap suite (v38.76) (https:
/ /sourceforge.net/projects/bbmap/; accessed on 29 January 2020). Then the obtained
reads were assembled into contigs using metaSPAdes (v3.14.0) [44] with default parameters
retaining only contigs longer than 1 kb. Redundant contigs were removed by dedupe.sh.
Remaining contigs were used to predict viral sequences by the combination of VirSorter
(v1.0.6) [45], CAT (v5.0.4) [46] and DeepVirFinder (v1.0) [47]. Contigs predicted as category
1 and 2 by Virsorter, or predicted as viruses by CAT, were classified as viruses. Contigs
also were classified as viruses if they were predicted as category 3 by VirSorter or could not
be classified to taxonomy by CAT but were predicted as a virus by DeepVirFinder with q
value < 0.01. Predicted viral contigs were clustered using CD-HIT [48] if they shared >95%
identity over 80% of the contig length, the longest contigs in each cluster were retained as a
representative for downstream analysis.

For each representative viral contig, ORFs were predicted using Prodigal (v2.6.3) [49]
and provided to vConTACT (v2.0) [50] for taxonomy annotation. For contigs that could
not be assigned a taxonomy by vConTACT, CAT annotations were used. Otherwise,
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Order and Family level taxonomic annotations were predicted using Demovir script
(https:/ /github.com/feargalr/Demovir; accessed on 27 July 2019) with default param-
eters and database. To calculate the relative abundances of viruses in each sample, clean
reads from each sample were mapped to viral contigs using bbmap.sh from bbmap suite
(v38.76). CoverM (v0.4.0) (https://github.com/wwood/CoverM; accessed on 20 February
2020) was used to estimate contig coverage. Feature Counts (v2.0.0) [51] was then used
to estimate the number of reads that mapped to each gene. Viral proteins predicted in
the previous step were fed into VIBRANT (v1.2.1) [52] to identify lytic and lysogenic
phages and the function was annotated using protein mode with default parameters. VI-
BRANT annotates viral proteins by searching viral proteins against KEGG [53], VOGDB
and PFAM databases, which include function annotation of protein sequences and AMGs.
The virus (phage)-bacteria (host) interactions were predicted by VirHostMatcher-Net,
which is a method based on the combination of features: virus-virus similarity, virus-host
alignment-free similarity, virus-host shared CRISPR spacers and virus-host alignment-
based matches [54]. Bacterial hosts were predicted for contigs with a length greater than 10
kb and score higher than 95% according to VirHostMatcher-Net.

2.4. Statistics Analysis

Alpha diversity of phage community was measured using giime2 (https://qiime2.org;
accessed on 29 January 2020). Principal Coordinates Analysis (PCoA) based on “Bray-
Curtis” similarities was performed using R (v3.2, package vegan, The R Foundation,
Vienna, Austria, 2016). Permutational Multivariate Analysis of Variance (PERMANOVA)
was used to test the significant difference. All data performed statistical analyses, which
were conducted in Prism 9- GraphPad (v9.0.0, GraphPad Software, San Diego, CA, USA,
2020) for the two-way analysis of variance [ANOVA], Tukey’s post hoc test, and R (v4.0.2,
stats package, The R Foundation, Vienna, Austria, 2020) for the Kruskal-Wallis and Dunn’s
post hoc test. The Jonckheere trend test was conducted in IBM SPSS Statistics (v27.0,
IBM Corporation, Armonk, NY, USA, 2020). Meanwhile, multiple testing correction were
performed to adjust the p value based on the “Bonferroni Holm” method. Only significant
differences were shown in figures. Graphs were generated using Prism 9- GraphPad (v9.0.0,
GraphPad Software, San Diego, CA, USA, 2020), Origin (v2020b, OriginLab Corporation,
Northampton, MA, USA, 2020), Microsoft Excel (v365, Microsoft Corporation, Redmond,
WA, USA), and R (v3.3.3, ggplot2 package, The R Foundation, Vienna, Austria, 2017). The
data in results are provided as average & SE.

3. Results
3.1. Gut Bacteriophage Community Structure Differed for BE and EAC Compared to Their Healthy
Counterparts

On average, 43 &= 2% of all reads generated through sequencing were from viruses. In
total, 854 £ 50, 1136 £ 19, 920 + 33 viral contigs were obtained from sequences identified
as viruses for CT, BE, and EAC, respectively. On average, from these contigs, over 95% of
sequences were assigned to phages. The order of Caudovirales, which included Herelleviridae,
Myoviridae, Podoviridae, Siphoviridae, and Unclassified Caudovirales, were the most abundant
phages, accounting for more than 50% of total sequences in all three groups (Figure 1a,
Figure S1). Among those phage families, the relative abundance of Herelleviridae was
lower than 1% in three groups, the relative abundance of Myoviridae (1.12-41.97% in CT,
7.19-18.61% in BE, 1.37-34.36% in EAC), Podoviridae (2.03-31.68% in CT, 5.72-18.44% in BE,
3.72-11.01% in EAC) and Siphoviridae (8.28-79.60% in CT, 36.89-57.19% in BE, 41.48-75.69%
in EAC) showed great variation within each group (p > 0.05). Some viral contigs were
assigned to other phage or viral families including Inoviridae, Microviridae, Tectiviridae,
Herpesvirales, Marseilleviridae, and Pithoviridae with a relative abundance of less than 1%.
Meanwhile, the large difference in specific viral taxa between individuals was observed
in the same group, which may be attributable to multiple factors such as age, gender,
diet, or drug usage (Table S1). We next determined the dominant phage replication cycle
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(lytic versus lysogenic cycle). On average, EAC samples had more temperate phages
(lysogenic cycle) than BE and CT (p > 0.05), 11.97% =+ 2.43% in CT, 13.47% =+ 1.15% in BE,
19.13% =+ 4.90% in EAC (Figure S2).

a ¢ ..
10 1500
Unclassified virus
n Unclassified phages L] - ®
e Pithoviridae . o = e
5 i . 1000 e *. .
3 Marseilleviridae ™ ° . 54 » . ay
€ Herpesvirales . Py g ——i- )
2 [ | 7ectiviridae o ° £ .
3 [ Microviridae a L @ = .
c [ inoviridae . Y
g Il Unclassified Caudovirales
g Bl siohoviridae
o> I Podoviridoe r : . ; . .
2 [ yoviridae cT BE  EAC CT  BE EAC
k] W Herelleviridae
[
-3
cr BE EAC
cy R2=13.65%
P=0.16
" 7504
3
3
Low qualy
i " &
\ ©
\*’ g0
<}
(&)
Phyla Class o
W Actinobacteria W Actinobacteria W Fusobacterila -0.4
. § Coriobacteria W Alphaproteobacteria
Bactarckeye;  Bacteroidia W Betaproteoba
™ Fimicutes Flavobacteria
“ = sphingobacteria : ;
= o2 = paci 0 05 10
TR W Clostridia 0/
B Sircchiante a PCoA1 (13.65%)

W Synergistetes W Negativicutes

- Tissierolla

Figure 1. Composition of CT, BE, and EAC VLPs. (a) Relative abundance of viral families in CT, BE, and EAC; (b) The
percentage of predicted bacterial hosts in CT, BE, and EAC. The inner cycle represents bacterial hosts at the phylum level,
the outer cycle represents bacterial hosts at the class level. The low quality represents bacterial hosts predicted by contigs
with a length lower than 10 kb and the score was lower than 95%; (c) Viral alpha diversity including richness (Ace) and
diversity (Shannon) in samples from CT, BE, and EAC; (d) PCoA plot of the viral community composition based on the
Bray—Curtis distances in CT, BE, and EAC samples. CT represents stool samples from healthy controls; BE represents stool
samples from Barrett Esophagus patients; EAC represents stool samples from Esophageal Adenocarcinoma patients. Error
bars indicate the average & SE. Statistical significance was determined by Kruskal-Wallis, Dunn’s post hoc test, asterisk
indicates p < 0.05.

We next predicted the bacterial host range of the viral contigs from different groups
in the study (Figure 1b). We observed that the bacterial hosts mainly spanned the phyla
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, which were common across
all three groups. In addition, we found that less than 0.1% of the phages were pre-
dicted to infect Fusobacteria, Spirochaetes, and Synergistetes. When the predicted bacte-
rial host in class level was further compared, their relative abundance showed more
obvious variation among the different groups, but these results were not statistically
significant. For Actinobacteria, the relative abundance in CT (1.33% =+ 0.28%) and BE
(1.77% =+ 0.21%) was higher than EAC (0.37% = 0.11%) (p > 0.05). For Flavobacteriia, the
relative abundance in CT (5.02% =+ 1.45%) and EAC (5.38% = 1.45%) was higher than
BE (1.14% = 0.16%) (p > 0.05). Notably, the classes Betaproteobacteria, Deltaproteobacteria,
and Gammaproteobacteria were more abundant in CT compared with BE and EAC. More-
over, the relative abundance of Bacteroidia (13.08% =+ 2.34% in CT, 4.38% =+ 0.45% in BE,
1.25% =+ 0.22% in EAC), Bacilli (5.97% =+ 1.51% in CT,1.33% = 0.14% in BE, <0.1% in EAC),
and Erysipelotrichia (1.86% =+ 0.54% in CT, 0.65% == 0.093% in BE, <0.1% in EAC) were lower
in BE and EAC compared to CT, while the relative abundance of Clostridia (15.06% = 0.52%
in CT, 18.04% =+ 0.90% in BE, 29.20% =+ 5.60% in EAC) was higher in BE and EAC com-
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pared to CT. However, there was no significant difference (Jonckheere trend test, p > 0.05).
Furthermore, the remaining classes had a lower relative abundance (0.0001%-0.31%) across
the three groups.

We further examined how the changes in phages community composition affected
the overall diversity. For the alpha diversity, a significant difference in phage diversity
(Shannon) was found among the three groups (p = 0.036), while no significant difference
was observed in phage richness (Ace) (p > 0.05) (Figure 1c). Furthermore, the alpha
diversity showed differences among BE and EAC compared to CT samples (p > 0.05).
Specifically, in both BE (1136.17 4 19.48) and EAC (920.50 + 33.87), the richness (Ace) was
higher compared with that in CT (854.00 + 50.73). However, only in BE (6.50 + 0.11), the
diversity (Shannon) was higher compared with that in CT (4.53 & 0.15). Furthermore, BE
had a higher level of richness (Ace) and diversity (Shannon) than EAC. In addition, no
significant difference was detected (p > 0.05) in beta diversity (PCoA) among the three
groups (Figure 1d).

3.2. Abundant and Rare Phage Communities in the Gut May Contribute to the Progress of
Esophageal Carcinogesis

We used a sorting approach commonly applied in ecological study that classifies
microbes into three groups based on their abundance [55,56], aiming to explore the role
of less abundant microbes in different ecosystems. Using this approach, the contribution
of rare, less abundant, bacterial Operational Taxonomic Units (OTUs) to some of the
key ecological functions was revealed in the environment [57], which was previously
overlooked. We believe this approach can be beneficial for studying phages in the gut.
To this end, we divided phage contigs into abundant phages (relative abundance was
more than 1% in total viral contigs), moderate phages (relative abundance was more than
0.1% and less than 1% in total viral contigs), and rare phages (relative abundance was less
than 0.1% in total viral contigs). At these three relative abundance levels, members of the
order Caudovirales (Myoviridae, Siphoviridae, and Podoviridae) showed the highest relative
abundance in all three groups (Figure 2a). Subsequently, we observed that abundant phages
presented significantly higher relative abundance (79.54% = 2.28% in CT, 54.28% + 2.19%
in BE, and 72.25% =+ 4.06% in EAC) when compared with moderate (14.79% =+ 1.83% in CT,
34.38% £ 1.68% in BE, and 21.19% =+ 3.57% in EAC) and rare phages (4.51% =+ 0.52% in
CT, 11.34% = 0.85% in BE, and 6.56% =+ 0.52% in EAC) in all three groups (abundant vs.
moderate p < 0.001, abundant vs rare p < 0.001) (Figure 2b,c), while the highest number
of contigs was from rare phages (788 + 48 in CT, 994 £ 18 in BE, and 836 + 28 in EAC),
exceeding abundant (13 = 1in CT, 17 £ 1 in BE, and 11 & 1 in EAC) and moderate (54 + 8
in CT, 126 4 7 in BE, and 74 + 15 in EAC) phages in all three groups (Figure 2b,c). The
highest relative abundance of abundant phages and the highest number of contigs of rare
phages may suggest their different behaviors in relation to the gut bacterial community and
esophageal diseases. Moreover, a significant difference was observed in beta-diversity on
abundant (p = 0.004) and rare phages (p = 0.003) (Figure S3), which may imply that these two
groups of phages showed higher sensitivity to the changes in the upper GI tract through
esophageal disease progression. In addition, we found that the abundance of temperate
phages that displayed a lysogenic replication cycle increased with the development of
esophageal diseases. This may suggest a higher occurrence of HGT in these samples.

To further evaluate the importance of rare phages in HGT, we compared these
three groups of phages to the number of bacterial hosts they infect. On the class level,
we observed small differences between phage groups from different health conditions,
rare phages infected 18 different bacterial classes whereas abundant phages infected 14
(Figure 1c). However, when bacterial hosts were compared on the genus level, both diver-
sity and abundance showed large differences, 84 for rare versus 46 for abundant phages
(Table S2). In particular, contigs belonging to rare phages showed similar characteristics
regarding the number of hosts they infect over three groups, showing a broader bacterial
host range compared to moderate and abundant phages. For example, the contigs from
rare phages were able to infect 6 or 7 different bacterial hosts at the genus level (Table S3),
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which was relatively higher than the bacterial hosts predicted for the contigs from abundant
and moderate phages. The broader bacterial host range and higher number of contigs
(Figure 2b, Tables S2 and S3) of rare phages could potentially lead to storing more AMGs
in their genomes and, in turn, expand the frequency of HGT between gut bacteria.
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Figure 2. Composition of the rare, moderate, and abundant gut viruses in CT, BE and EAC samples. Rare, moderate, and

abundant viruses were cate;

gorized based on the viral contig level. Abundant viruses represent viral contigs whose relative

abundance was more than 1% in total contigs, moderate viruses represent viral contigs whose relative abundance was more
than 0.1% and less than 1% in total contigs, and rare viruses represent viral contigs whose relative abundance was less
than 0.1% in total contigs. (a) The relative abundance of viral families; (b) Number of contigs generated each viral contig
category, rare, moderate, and abundant, on left and relative abundance of them on right. (c) Negative correlation between
number of contigs, from rare, moderate, and abundant phages, and their relative abundance. CT represents stool samples
from healthy controls; BE represents stool samples from Barrett Esophagus patients; EAC represents stool samples from
Esophageal Adenocarcinoma patients. Statistical significance was determined by two-way analysis of variance [ANOVA],
Tukey’s post hoc test, asterisk indicates p < 0.05.

3.3. AMGs Found in Rare Bacteriophages Showed Increment in Esophageal Diseases

After annotation of the viral contigs, viruses were found to be involved in most
of the microbial functions related to metabolism, cellular processes, genetic information
processing, environment information processing, organismal system, and human disease
(Figures 3a and S4). Significant differences were found for genes related to metabolism of
cofactors and vitamins (p = 0.0083) and genes related to the prokaryotic defense system
among the three groups (p = 0.0202) (Figure 3a). Genes involved in metabolism of cofactors
and vitamins were found to be most abundant in CT phages, whereas genes related to the
prokaryotic defense system were more abundant in EAC phages, suggesting a stronger
arms race between phages and bacteria in this disease (Figure 3a). Notably, AMGs encoding
bacterial toxins were found to be more abundant in the genome of rare bacteriophages
including the spyA gene, tccC gene, entB gene and entD gene, which are involved in micro-
bial cellular processes. The spyA gene, which encodes a C3 family ADP-ribosyltransferase
(bacterial exotoxin) [58], showed a slightly higher level of relative abundance in BE and
EAC (p > 0.05) compared with the other three AMGs (Figure 3b). Moreover, the spyA gene
level was relatively higher in BE (0.00040 £ 0.00011) and EAC (0.0027 4 0.0012) compared
with CT (0.00031 £ 0.000012) (p > 0.05). Other AMGs that relate to LPS biosynthesis pro-
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teins were also found in the genome of rare phages including the [pxD gene, kdsC gene
and gmnB gene, which are involved in microbial metabolism (Figure 3b). The IpxD gene
only presented in BE with a relative abundance of 0.00031 & 0.000113. The kdsC gene
presented in BE (0.000089 + 0.000036) and CT (0.0000024 £ 0.00000097). For the gmnB gene,
it was relatively higher in EAC (0.00064 4= 0.00029) and BE (0.00024 =4 0.000094) compared
with CT (0.00015 £ 0.000044) (p > 0.05). The higher abundance of these genes in phages
from BE and EAC compared to CT may have resulted from the increase of pathogenic
bacteria, mainly Gram-negatives, in the esophageal diseases, leading to a higher chance of
obtaining AMGs, which are related to LPS biosynthesis proteins encoded by phages. We
next explored the appearance of these genes in the Gut Phages Database (GPD) containing
142,809 non-redundant globally distributed phage genomes. We found many phages en-
coding these genes in GPD with one exception, tccC, showing these AMGs are ubiquitous
in the human gut (Figure S5). Toxin complex (Tc) is a multisubunit toxin consisting of
three components (TcA, B, and C) encoded by pathogenic bacteria infecting both insects
and humans. TcAs that make functional pores combine with TcB-TcC subunits to create
active chimeric holotoxins. Tc toxins are encoded by human pathogens like Yersinia pestis,
Y. pseudotuberculosis, and Morganella morganii and are believed to significantly contribute
to these bacteria’s pathogenicity. Yet, their role in EAC remains to be revealed [59]. The
increase of these genes in phages from BE and EAC may contribute to the severity of these
diseases through exchanging genes that are involved in bacterial exotoxin production and
LPS biosynthesis in esophageal carcinogenesis. This warrants further investigation.
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Figure 3. Viral functional traits. (a) The relative abundance of different functional traits in viral sequences; (b) The relative
abundance of genes encoding four different bacterial toxins with higher abundance in BE and EAC samples compared
with CT on the top, and genes encoding the LPS biosynthesis proteins on the bottom. Error bars indicate the average + SE.

Statistical significance was
p <0.05.

determined by two-way analysis of variance [ANOVA], Tukey’s post hoc test, asterisk indicates
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4. Discussion

Barrett’s esophagus (BE) is a condition caused by the metaplastic replacement of
the normal squamous epithelium by columnar epithelium. BE is closely associated with
the development of esophageal adenocarcinoma (EAC), a disease in which cancerous
cells develop in the tissues of the esophagus with a high mortality rate [42]. It has been
recently shown that gut dysbiosis can activate oncogenic signaling pathways, leading to the
production of tumor-promoting metabolites, and further influence the esophageal mucosal
inflammation and tumorigenesis [60]. For example, gut bacteria regulate bile acid (BA)
metabolism. Under stimulation such as a high-fat diet, the gut bacteria changed, and the
level of BA increased accordingly [61]. The reflux of BA to the esophagus caused esophageal
damage, leading to BE and subsequent EAC. In an animal experiment simulating BA reflux,
overexpression of the inflammatory cells, IL-6 and TNEF- «, was found [62]. This indicated
that gut bacterial alterations could indirectly induce the esophageal mucosal inflammation
and carcinogenesis [62-64]. Despite a wealth of data on the role of gut bacteria in GI tract
disease, we have only recently recognized the association of gut viruses with some GI
tract diseases, including CRC in which the diversity of the gut viruses is significantly
increased in stool samples from CRC patients, suggesting a disease-specific signature that
can be used to differentiate CRC samples from controls [37]. The CRC-associated virome
includes primarily temperate bacteriophages belonging to Siphoviridae and Myoviridae
families [65]. The impact of phages on gut homeostasis is not restricted to their interactions
with gut bacteria as phages can directly interact with the human host. In vitro studies
have demonstrated that phages can cross the epithelial cell layer through transcytosis,
thereby stimulating the underlying immune cells [22,66-69]. For example, the interaction
between E.coli phages and the immune system has been associated with Type I Diabetes
autoimmunity [36]. It has been reported that phages can activate IFN-y produced by CD4+
T cells via the nucleotide-sensing receptor TLR9, which accelerates intestinal inflammation
and colitis, leading to a systemic inflammation response [70]. The consistent disease-specific
signature of gut viruses [27,37], suggests a potential association between gut viruses and
human disease.

Studies that investigated the esophageal virome, using metagenomic data of whole
microbial communities rather than profiling the isolated viral communities, have identified
a range of phages, including Streptococcus, Campylobacter, Lactococcus, and 7y-Proteobacteria
phages [71]. The aforementioned and those that only explored the bacterial community
of the esophagus have mainly used biopsy samples for virome and bacterium analy-
sis [10,72,73]. Although, biopsies could directly reflect the disease-associated microbial
signature at the lesion, the sampling procedure is invasive, time-consuming, costly, and
may induce potential complications [74]. Moreover, biopsy samples often have limited
microbial materials, with a lower probability of successful sequencing and downstream
analysis [75]. Thus, an amplification step (e.g., whole genome amplification) is necessary,
which might introduce biases to study results. On the contrary, stool samples collected by
non-invasive methods often supply sufficient materials for research purposes [76].

Here we explored stool samples from BE, EAC, and CT phages community com-
position in esophageal diseases. Our in-depth gut virome analysis during esophageal
carcinogenesis provided some evidence of gut phage community changes between differ-
ent stages of esophageal diseases. Consistent with previous studies that have explored the
gut viruses, mainly in the lower GI tract diseases such as IBD and CRC [27,65], phages from
the order Caudovirales were the most dominant phages in the samples from esophageal
diseases. Compared with CT, the alpha diversity has changed with the esophageal diseases
progress, and a relatively higher alpha diversity was observed in BE samples compared
to CT and EAC. This was not reflected in the beta diversity as no significant differences
were observed among three groups. Using a common sorting approach in microbial
ecology, we identified disease-associated differences in diversity and abundance of rare
phages, suggesting a potential link between these phages and esophageal diseases. In
addition, consistent with previous studies on diseases like IBD [77] and CRC [65], we

101



Microorganisms 2021, 9, 1701

10 of 14

observed changes in the proportion of lytic/lysogenic replication cycles of phages, and
more temperate phages were observed in esophageal carcinogenesis. These results further
support earlier studies that reported the dominance of virulent phages (lytic cycle) in the
healthy human gut replaced by temperate phages in Crohn’s disease and ulcerative coli-
tis [23,24]. Furthermore, the relatively higher percentage of temperate phages in samples
from esophageal diseases may imply more influence on the bacterial physiology through
phage mediated HGT in those groups. However, we did not study the bacterial community
of these samples, the community structure of the predicted bacterial hosts for the phages
identified in the study may suggest a complex relationship between bacteria and bacte-
riophage community in esophageal diseases. Earlier studies on lower GI tract diseases
such as CRC have observed that the effect of phages resulted from their interactions with
the whole bacterial community, rather than the bacterial taxa directly contributing to the
disease severity [65]. However, there was no direct correlation between bacterial diversity
and phage diversity [27,37].

In addition, we found several AMGs in the genome of the rare phages, further empha-
sizing the potential role of phages in regulating bacterial physiology by supplying their
host with beneficial genes. Specifically, a slightly higher abundance of spyA (p > 0.05) was
observed in BE and EAC, potentially contributing to the production of bacterial exotoxins,
which disrupt cytoskeletal structures and promote colonization of pathogenic bacteria [58].
The relatively higher abundance of AMGs related to LPS biosynthesis proteins were also
found in BE and EAC, which may indicate the dominance of Gram-negative bacteria and
the potential inflammatory effects of phage-bacteria interactions. Phages that carry these
AMGs can introduce these genes to the genome of gut bacteria via integration, which
may contribute to the severity of the esophageal diseases through lysogenic conversion.
This could further induce gut inflammation through expression of the phage-derived
virulence genes and deteriorate esophageal disease. Intestinal permeability caused by
phage-mediated changes of gut microbiota could also lead to systemic inflammatory re-
sponses [78]. Given the high variability of the microbiome between individuals and the
limited number of samples analyzed, it is difficult to identify significant differences in viral
community structure between different groups in the current study. Thus, our findings
should be further pursued with a larger sample size.

5. Conclusions

In summary, this study provides further evidence of potential relationship between
gut phages and esophageal diseases. Interestingly, the distinct gut phage community
structure was identified in two different stages of esophageal diseases, and these differences
were mainly found in abundant and rare bacteriophages. Notably, rare phages and HGT
mediated by them have been found to be more related to esophageal diseases. Specially,
the rare phages contributed to enriching AMGs related to bacterial exotoxin and LPS
biosynthesis proteins, and the possible upregulated level of these genes. These, in turn,
may contribute to changes in the gut bacterial composition and inflammation, which lead
to the development of esophageal diseases, as previously suggested [6]. However, given
the small sample size in our study, the potential diagnostic importance of AMGs and
disease-specific viral signature identified should be experimentally validated in further
studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9081701/s1, Figure S1: Gene-sharing taxonomic network of viral sequences in
this study, including viral RefSeq viruses v85. Figure S2: The proportion of lytic/lysogenic replication
cycles predicted for the viral contigs from three groups. Figure S3: PCoA plot of the viral community
composition based on the Bray-Curtis distances in CT, BE, and EAC samples. Figure S4: The relative
abundance of different functional traits in viral sequences. Figure S5: The number of phages that
contained the identified AMGs of this study in the Gut Phage Database (GPD). Table S1: Clinical
information of individuals from three groups. Table S2: The relative abundance of bacterial host at
genus level for abundant, moderate, and rare bacteriophages. Table S3: The percentage of contig
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relative abundance in different number of predicted bacterial genus types for abundant, moderate,
and rare bacteriophages. Table S4: The relative abundance of identified AMGs.
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protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed
the diverse evolutionary trajectories of VHYDEGs across habitats, revealing previously unknown biodegraders
linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic
hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydro-
carbon pollution bioremediation and promoting their propagation. To support future research, we developed
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vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of
hydrocarbon degradation AMGs and encouraging their bioremediation applications.

1. Introduction

The mining and processing of crude oil require vast amounts of water
resources. Despite efforts to recycle water, a significant amount of the
industry’s wastewater still ends up in tailing ponds. In addition, oil
product transportation is mainly through waterways, either by sub-
water pipelines or shipping. Although oil spillage is rare in this pro-
cess, it can still cause significant environmental disasters, leading to
adverse effects on both the environment and human health [62]. Every
year, more than two million tons of oil enter the marine ecosystem, and
over 85 % of it is from human activities [51]. Some hydrocarbons are
carcinogenic, neurotoxic, and genotoxic to both humans and other or-
ganisms in the environment. In aquatic organisms, crude oil causes DNA
damage, defects in cardiac function, and oxidative stress, resulting in
reduced abundance and diversity of fish, ultimately disrupting ecosys-
tems [1]. Bioremediation, which employs microorganisms to degrade
hydrocarbons, has emerged as a promising and eco-friendly strategy for
mitigating hydrocarbon pollution [37,87]. Despite the extensive
research on the role of bacteria and fungi in hydrocarbon biodegrada-
tion [25,61,89,97,98], the potential contribution of viruses, especially
bacteriophages, to this process remains unexplored.

Viruses, including (bacterio)phages, impact nearly all organisms on
Earth, including microbial communities and their associated biogeo-
chemical processes. Highly diverse viral communities have been iden-
tified in both soil and water ecosystems. Soil ecosystems are estimated to
contain between 107 and 10'° viruses per gram of soil. Over 200,000
virus species have been discovered in the ocean, a number that is two
orders of magnitude greater than earlier records [28]. Notably, viruses
in the ocean are responsible for killing 20 % of microbial biomass daily,
thereby playing a pivotal role in nutrient and energy cycles [78]. The
global distribution of these viruses seems to be driven by a combination
of multiple biotic and abiotic factors. In addition, recent studies have
demonstrated that phages often contain auxiliary metabolic genes
(AMGs), which contribute to the adaptive stress resistance of their
bacterial hosts [71], augment host metabolism [40], and enhance fitness
[47].

These findings suggest that phages may contribute to hydrocarbon
degradation through undiscovered AMGs. However, unlike the
numerous bacterial and non-methanogenic archaeal phyla known for
sulfur reduction, fewer bacteria have been reported to degrade crude oil.
Currently, anaerobic alkane degraders have been isolated or enriched
from only two phyla: Proteobacteria and Firmicutes [76], which may limit
the range of oil degradation-related genes acquired by phages. Addi-
tionally, some AMGs are frequently gained and lost from phage genomes
due to variable natural selection pressures [17]. This suggests that while
AMGs are ubiquitous in phages, their specific context and function in
phage genomes are subject to natural selection. These factors present
significant challenges in identifying oil-degradation-related AMGs
within phage genomes.

In this study, we aimed to investigate the potential role of viruses in
hydrocarbon biodegradation by identifying and characterizing virus-
encoded hydrocarbon-degradation genes (VHYDEGs). We performed a
systematic search for hydrocarbon-degradation genes in the Integrated
Microbial Genomes/Viruses (IMG/VR) database [15] and identified 595
putative VHYDEGs, of which 57 were classified as high quality according
to the defined trust index (see Methods). These VHYDEGs could be
grouped into 15 protein families involved in the initial key steps of
hydrocarbon degradation, such as hydroxylation, carboxylation, and
fumarate addition. Phylogenetic analyses revealed a diverse evolu-
tionary history of these proteins while also demonstrating their close
relationships with various known/unknown oil degraders. Protein

structural analyses showed high similarity of these phage-coding en-
zymes to experimentally validated protein references, some of them also
have identical activity sites that act as the binding site with their own
substrates, suggesting that they possess the same metabolic potential as
their homologous proteins in bacteria. All identified vVHYDEGs and their
annotations were integrated into the vHyDeg database to facilitate
future research. Overall, our study provides novel insights into the
contribution of bacteriophages to bioremediation and highlights the
importance of considering the role of bacteriophages in microbial
ecology and bioremediation strategies, while also have important
implication on the future development of eco-friendly and sustainable
bioremediation enzymes and methods.

2. Materials and methods
2.1. VHYDEG identification and classification

To identify viral proteins that participate in the initial activation step
of hydrocarbon degradation, we downloaded viral proteins from the
Integrated Microbial Genomes/Viruses (IMG/VR v4) [15] and PHROG
(v4) [80] database. Only clustered PHROG proteins and proteins from
high-confidence genomes in IMG/VR were included. Protein sequences
longer than 10,000 amino acids were removed. In total, more than 115
million proteins from ~5.6 million viral genomes and metagenomic
viral contigs (mVCs) were obtained. Protein sequences were first an-
notated using hmmscan [19] to search against the curated hydrocarbon
degradation gene database, CANT-HYD [38]. Each HYDEG family was
represented by a profile hidden Markov model (hydHMM), which has a
“trusted” cutoff (Table S1) to determine if a query sequence can be
confidently annotated for the function. Query sequences above the
trusted cutoff can be confidently assigned a function. The trusted cutoff
of each hydHMM was determined using full-length protein sequences of
that gene from non-viral genomes. However, using these cutoffs may
underestimate the number of VHYDEGs because viruses often encode
truncated versions of metabolic genes that can still perform functions
[16]. To overcome this limitation, we defined a relaxed cutoff for each
hydHMM using the following strategy. First, we downloaded all profile
HMM of viral genes (vHMMSs) and their protein sequences from the
PHROG database, which contains viral protein families with remote
homologous. Second, we annotated all protein sequences of each vHMM
using hydHMMs. As protein families in the PHROG database were
high-quality viral proteins, we assume they were not homologous of any
hydrocarbon-degradation genes and hydHMMs. Therefore, for each
targeted hydHMM, the highest bit-score of the PHROG viral protein
(named “bitscore_vmax™) was set as its relaxed cutoff. To further reduce
false positive rates, the relaxed cutoff was set to 150 if the respective
bitscore_vmax is smaller than 150. In fact, all relaxed cutoffs were
smaller than 150 and the original trusted cutoffs, indicating that there
are no full-length hydrocarbon-degradation proteins in the PHROG
database. Hits of IMG/VR proteins with a bit-score greater than the
relaxed cutoff, e-value< 0.00001, and genome length > 5 kbp were
considered VHYDEGs. For consistent genome annotation, viral genomes
were annotated using Pharokka [11]. To increase the accuracy of pro-
tein domain annotation, all VHYDEGs were further annotated using the
Pfam database [57]. To validate the identified VHYDEGs were AMGs,
both DRAM-v [72] and VIBRANT [39] were used to annotate viral ge-
nomes to detect AMGs. Since DRAM-v and VIBRANT take FASTA format
genome sequence as input and output protein headers differently, we
utilized the mmseqs easy-rbh module [77] to find the reciprocal-best hit
(RBH) among proteins annotated by DRAM-v, VIBRANT, and Pharokka.
If a VHYDEG was annotated as an AMG by either DRAM-v or VIBRANT,
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it was marked as "true" in the "AMG" column of Table S1. Otherwise, it
was marked as "unknown". All pmoA and pmoC, along with four out of six
alkB, were identified as AMGs by either DRAM-v or VIBRANT. However,
almA, CYP153 gene, and ladAa were not recognized as AMGs by either
tool. This discrepancy can be attributed to the fact that both DRAM-v
and VIBRANT use a curated list of known AMGs that does not
currently include almA, CYP153 gene, and ladAa. However, a manual
inspection of their genomic content suggests these are metabolic genes
in viral genomes.

VHYDEGs were further classified into three groups based on the
following criteria.

(1) A trust index value (trust_idx) was determined for each vHYDEG
by dividing its bit-score by the trusted cutoff of the corresponding
hydHMM.

(2) A VHYDEG was classified as high quality (HQ) if the trust_idx >
0.5, and its respective genomes are not prophage and have an estimated
contamination ratio of zero. The trust_idx threshold is set as 0.5 because
the confirmed phage-encoded particulate methane monooxygenase
gene pmoC [16] has a trust.idx equal to 0.56 using our annotation
method. Please note that the threshold “0.5” is selected based only on
pmoC gene, this threshold is a rough setting and can be adjusted for the
specific protein of interest in the future.

(3) A VHYDEG was classified as medium quality (MQ) if the trust_idx
> 0.5, but respective genomes were classified as prophage or had an
estimated contamination ratio greater than zero.

(4) All other vVHYDEGs were classified as low quality (LQ).

For each VHYDEG family, the one with the highest trust index value
in HQ was selected as the representative sequence (HQrep). In total, we
got 362 LQ, 176 MQ and 57 HQ vHYDEGs. Six HQreps were used for
downstream structural, phylogenetic and genome analyses.

2.2. VHYDEG protein structure prediction and comparison

Protein structures of six HQreps were predicted using ColabFold [55]
with default settings, which combines MMseqs2 [77] for fast homology
search and AlphaFold2 [35] for accurate structure prediction. Predicted
structures were then compared with protein structures in UniProt [81]
and RCSB PDB database [7] using Foldseek [85] with default settings.
Structural alignments of the Foldseek results were evaluated via
TM-score (Template Modeling score) normalized by the length of the
reference protein. TM-score is a measure used to assess the structural
similarity between two protein structures. It is less sensitive to the local
error and more focused on the global topology similarity. The TM-score
is a number between 0 and 1, where 1 indicates a perfect match between
two protein structures. Typically, a TM-score > 0.5 indicates a model of
correct topology and a TM-score < 0.17 means random similarity [99].
Structural comparison results were manually checked to select the top
hit that was annotated as relative function. The top hit in PDB database
was chosen if its annotation is the same function as the query protein,
otherwise, the top hit in UniProt database was chosen and the related
AlphaFold-predicted structure was selected from the AlphaFold Protein
Structure Database (AlphaFold DB) [86] as target structure. Binding
sites and domain features were extracted from UniProt database and
visualized on the structural alignment of the query and target structures
using PyMOL (https://github.com/schrodinger/pymol-open-source).

2.3. VHYDEG protein phylogenetic tree reconstruction

Phylogenetic analysis was used to investigate the evolutionary origin
of the representative vVHYDEGs. Protein sequences of each HQreps were
searched against the NCBI refseq_protein database [45] using BLASTp
with bit-score > 50 and e-value < 0.001 to recruit closely related se-
quences and to add non-viral context to the phylogenetic analysis.
Non-viral hits in the top 100 BLAST hits were clustered by 90 %
sequence similarity using MMsegs2 [77] to reduce redundancy. Viral
hits were combined with the representative sequences of each cluster
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and corresponding HQ vHYDEGs, and used to build multiple sequence
alignment (MSA) using MUSCLE [20]. Phylogenetic tree was then
created using MSA by IQ-TREE [58] with the “LG + G4” model. Visu-
alization of the phylogenetic tree was created using ggtree [94] with the
mVC metadata from IMG/VR database and taxonomy annotations.

2.4. mVC genome annotation and taxonomy assignment

Genome sequences of 593 VHYDEG-viruses were downloaded from
the IMG/VR database (v4). For consistent annotations, genomes were
annotated by Pharokka pipeline [11], which uses PHANOTATE [53] to
predict open reading frames, and PHROG database [80] to annotate
protein functions. BACPHLIP [30] was used to predict whether viruses
were temperate or virulent. BACPHLIP determines the presence or
absence of conserved protein domains associated with a temperate
lifestyle, attributing a probability of being temperate to each virus. The
identified protein sequences were further annotated using InterProScan
[34] to get more broad function annotation. Since some viruses use
sulfur or nitrogen as electron donors during hydrocarbon degradation,
we also annotated proteins using nitrogen metabolism genes [24] from
KEGG database [36], and sulfur metabolism genes from a custom HMM
database [5,92]. Genome annotations were visualized using pyCircos
v0.3.0 (https://github.com/ponnhide/pyCircos).

Taxonomy of mVCs was assigned using two approaches that were
implemented in the ViroProfiler pipeline [69]. The first one was the
protein-sharing network analysis using vConTACT2 [8], which clustered
mVCs with reference viral genomes based on their shared protein clus-
ters. NCBI viral RefSeq (v211) was selected as the reference database.
The second one was a protein-voting-based method using MMseqs2
taxonomy module [56], which searched proteins of mVCs against pro-
teins in NCBI viral RefSeq database, add then assign a lowest-common
ancestor (LCA) taxonomy based on majority voting of protein taxon-
omy in that mVC. Conflict taxonomic assignments of these two methods
were manually checked to select the LCA taxonomy. Finally, the
protein-sharing network and corresponding annotation table were im-
ported into Cytoscape [73] for network visualization.

2.5. Comparative genomic analysis

To compare the genomic context of a vVHYDEG with related genomes,
we downloaded the genome of the top bacterial hit in BLASTp results.
We then compared this genome with corresponding viral genomes using
Clinker [26]. Clinker used MMsegs2 to cluster proteins in these ge-
nomes, generating genome maps and linking genes belonging to the
same protein family through links. The annotation of bacterial genomes
was downloaded from NCBI in GenBank format. If no annotation was
available, the FASTA file of the genome was downloaded and annotated
using the Bakta annotation pipeline [70].

2.6. Database construction

To support future VHYDEG research, we have created the vHyDeg
database. This database contains all the identified VHYDEGs in this
study, and integrates information on VHYDEG classification, compre-
hensive functional annotations, and genomic and host information.
Functional annotations are linked to corresponding databases through
hyperlinks, and genome annotations can be accessed via IMG/VR
database links. The vHyDeg database can be accessed at https://deng-
lab.github.io/vhydeg.

3. Results
3.1. Viruses encode diverse hydrocarbon degradation genes

We identified 595 vHYDEG proteins from 593 of 5.6 million mVCs in
IMG/VR database, representing 15 of 37 hydrocarbon degradation gene
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families in the CANT-HYD database. Based on the trust index of each
hydHMM (see Materials and Methods), 362 VHYDEGs were classified as
low quality (LQ), 176 as medium quality (MQ) and 57 as high quality
(HQ). Detailed annotation of all VHYDEGs can be found in the vHyDeg
database. Distribution of mVCs based on the encoded VHYDEGs and
their quality is shown in Fig. 1A. The fifty-seven HQ vHYDEGs include
thirty-three pmoC, thirteen CYP153 gene, six alkB, two almA, one ladA«,
and one pmoA (Table. S1). Among these genes, alkB, CYP153 gene,
ladAa, and almA encode alkane hydroxylases, initiating aerobic long-
chain alkane degradation. pmoC and pmoA encode particulate
methane monooxygenase (pMMO) subunits, aiding methane-to-
methanol oxidation. The pmoC gene has been previously identified in
bacteriophage genomes [16]. The remaining nine MQ- and LQ-vHYDEG
protein families include various hydrolases and alkane mono-
oxygenases, targeting middle- and long-chain alkanes and polycyclic
aromatic hydrocarbons (PAHs).

The trust index value distribution of vHYDEGs was skewed towards
low values (Fig. 1B), with only 17 vHYDEGs (2.85 %) above one, and 78
(13.1 %) above 0.5. This suggests most VHYDEGs have low sequence
similarity to known hydrocarbon degradation genes, or their encoded
proteins contain domains for other metabolic functions. To identify
these domains that were not included in the CANT-HYD proteins, we
further annotated all vVHYDEG proteins using the Pfam database. The
annotation results showed that many of them are involved in hydro-
carbon degradation pathways (Fig. 1C). For example, in addition to the
most common fatty acid desaturase and cytochrome P450, other anno-
tations such as ring hydroxylating, molybdopterin oxidoreductase, and
pyruvate formate-lyase-like domains are all related to either aerobic or
anaerobic hydrocarbon degradation [49,66,75]. Besides, among all the
viral contigs that encode HQ and MQ vHYDEGs, four of them have
complete genome sequences which are determined by direct terminal
repeat (DTR) or inverted terminal repeat (ITR), 29 prophages, eight
giant virus metagenome-assembled genomes (GVMAG), and 228 linear
genomes. The divergent taxonomic origins of these viruses, coupled with
the identification of both virulent (92 %) and temperate (8 %) lifestyles,
underline the widespread distribution of VHYDEGs. This indicates a
broad range of diverse viruses have the potential to encode VHYDEGS,
contributing to the process of hydrocarbon degradation (Fig. 1D). To
some extent, it also highlights the under-characterization of the global
virosphere.

3.2. Viruses-encoded alkane hydroxylases are involved in key steps of
alkane degradation

Previous studies have shown that bacteria adapt to challenging
conditions like saline crude oil or engage in interspecies collaboration
for crude oil breakdown by developing related functional proteins or
metabolic systems via horizontal gene transfer [29,43,60]. Although
several bacteria were found to contain multiple types or copies of alkane
hydroxylases (AH) [59,88], mainly plasmid-transferred genes were re-
ported previously while few phage-contributed HGT were discovered
that contribute to long-chain (LC) alkane degradation. Among the HQ
VHYDEGs identified in this study, alkB, CYP153 gene, ladAa and almA
encode AHs which indicates the potential involvement of viruses in the
initial steps of aerobic alkane degradation. The AHs in bacteria that
catalyze the first step of alkane biodegradation, from alkane to
iso-ethanol, are key enzymes of aerobic degradation of alkanes. AlkB
and CYP450 family proteins are two common proteins of AH in bacteria,
besides, the flavin-binding LC-alkane hydroxylase (AlmA) and thermo-
philic soluble LC-alkane hydroxylase (LadA) were also proved to be
involved in the hydroxylation of alkanes [74,93].

A complete AlkB-virus UViG_3300035703_002088 has an unusual
giant genome of 719 kbp (with ITR detected) was chosen as an example
to show the genome assembling and AMGs’ distribution. It contains
majority genes with unknown functions and abnormal genome assem-
bling patterns, such as the massive genes responsible for nucleotide
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metabolism located throughout the genome, and dispersed tail fiber
genes (Fig. 2A). Giant viruses have been previously reported using
alternative codes and reassigning some of the stop codons to be trans-
lated as amino acids [2,10]. Interestingly, we observed alkB genes
frequently located in the beginning or ending part of the genome scaf-
folds (Fig. 2B, Fig. S1). In addition, almost all the AH-encoded genes in
this study were located where switch strands happened (Fig. 52, Fig. S3),
showing the mosaicisms of the viral genome that related to the different
origins of the genes [18,53]. The sequences of AHs were annotated and
compared within each VHYDEG. After screening the full set of phage
fragments that encode AlkB, we observed the amino-acid identity of
AIkB is between 30-50 % when compared with those of the reference
bacteria (Fig. 2B). When comparing the genomic content of
AlkB-viruses, it is obvious that AlkB is the only protein specific to all six
AlkB-viruses (Fig. 2B). This suggests that these viruses encoded AlkBs
were either arising independently or acquired via horizontal gene
transfer.

The CYP153-viruses have relatively higher amino acid identities
between 50 % and 95 % within the CYP153-virus group and the bac-
terial reference protein (Fig. 2D). The similarity between different
contigs  could be  observed in  scaffold  alignment,
UViG_3300020463_000001 and UViG_3300020438_000013 were high-
ly similar in the compared fragments of genome, same for
UViG_3300002092 000034 and UViG_3300032239_000241 (Fig. 2D).
The environmental origins of the former two contigs were marine eco-
systems, while the latter two were from freshwater (Fig. 4B). These di-
vergences in amino acid identities implied the possibility that two
independent evolutionary events existed when CYP153 gene was ac-
quired by viruses. The complete viral genome of
UViG_3300020463_000001 (200 kbp, DTR detected) included several
tRNA copies in the genome was shown as an example of CYP153-virus
(Fig. 2C). Notably, four other CYP153-viruses also encode multiple
tRNAs (Fig. S2). These tRNAs might contribute to avoiding bacterial
defense and compensate for the differences in codon usage between
phages and their bacteria hosts [6,64]. These tRNA-abundant viruses
indicate their potential active life cycles as the translation of the viral
genes is under self-regulation.

Although the genome length is relatively short in the case of LadA-
phage (~20 kb, Fig. 2E), the amino acid identity of LadAa in phage is
35 % when compared with bacterial reference protein (Fig. 2F). In
addition, this contig encoded another AMG that was annotated by
PHROG database as acyl-CoA N-acyltransferase, which is important for
lipid metabolism [23]. The HQ ladAx originated from a bioreactor
wastewater sample (Table. S1). Despite the rare incidence, ladAa in
phage was with high trust index value and when comparing the phage
genome with a bacteria reference, LadAx is the only protein shared
between the phage and reference (Fig. 2F). LadA homologues were
previously identified in Geobacillus thermodenitrificans NG80-2 as a
single copy on the plasmid pLW1071 [22], suggesting that it is an alien
gene. Later in Geobacillus thermoleovorans B23 chromosome, a “ladAB
gene island” was observed that consisted of three ladA homologues [9],
and all these three homologues are proved to be functional.

Two contigs with similar genomes were screened from the database
as AlmA-viruses (Fig. 2H), both originated from river water and with
DTR detected. They were identified as complete genomes, with a size of
364,247 bp (Table. S1). Notably, like the large CYP153-viruses, AlmA-
viruses encoded multiple copies of tRNA as well as other AMGs (Fig. 2G).
In summary, for all high-quality vHYDEG-viruses in this study, multiple
copies of AMGs could be observed in the genome, and high-quality AHs
are of great interest (Fig. S1, Fig. 52).

3.3. VHYDEGs have conserved protein structures and active catalytic sites
Phage proteins usually have low amino acid identity when compared

with homologies from their host, thus the sequence-based comparison
usually fails to detect remote homologous genes. Protein structures of
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homologous genes, however, are usually more conserved than their se-
quences. To validate that vVHYDEGs have the same metabolic potential as
their host’s homologues, we used a structural-based comparison
approach. Comparing the 3D structures of VHYDEG proteins ensures the
validation of viruses-encoded proteins have the necessary domain for
enzymatic reactions. The state-of-art computational methods were
applied to predict protein structures of VHYDEGs, and comparison with
those experimentally determined reference structures from either RCSB
PDB database or Alphafold2 predicted structures from UniProt database
were performed, to further confirm the most similar structures. Binding
sites were highlighted on the 3D structures if they can be obtained from
the UniProt feature annotations. Results showed that phage-encoded
VHYDEGs have high structural similarity with those reference struc-
tures (Fig. 3). Binding sites regions of AlkB, AlmA and LadAa in our
study overlapped with those in the reference proteins (Fig. 3A, B, C).
While CYP153, PmoA and PmoC have no binding sites annotation in the
reference database, their TM-scores are from 0.83 to 0.94, suggesting
they have the same structures as their reference proteins (Fig. 3D, E, F).
These observations indicate the functional domains were maintained by
VHYDEGs and might be active when infecting the host. While AlkB,
AlmA, CYP153 and LadA« are full-length proteins, PmoA and PmoC are
only subunits of the pMMO. This finding suggests that phages sometimes
encode part of the gene with essential functions from their host, which is
in line with previous studies that showed phages only encode core do-
mains of large enzymes [16]. Although structural comparisons suggest
VHYDEGs maintain conserved structures of their reference proteins,
further experimental evidence is needed to validate their
hydrocarbon-degradation potential.

3.4. Diversity and evolution of the vVHYDEGs

Phylogenetic analysis of these VHYDEGs showed they are related to
diverse bacterial species (Fig. 4), but the majority of which belong to
phylum Proteobacteria. For the AlkB-viruses, the amino acid sequences
from the mVCs formed four relatively distant phylogenetic groups,
closely related to Bacteroidota, Proteobacteria, Actinobacteria, and Can-
didatus Blackallbacteria, respectively (Fig. 4A). Many bacterial species
reported as oil degraders belong to the first two phyla [50,95], while the
recently discovered uncultivated phyla Candidatus Blackallbacteria,
which were identified from COj-derived geyser, have not yet been

TM-score: 0.94337

E
e

N

CYP153
TM-score: 0.88775

PmoA
TM-score: 0.90996
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reported to be associated with long-chain alkane degradation [65].

Phage-encoded CYP153 were grouped into two separate clusters in
the phylogenetic tree (Fig. 4B), which resemble their genome scaffold
alignment (Fig. 2D). The two clusters were closely related to Actino-
bacteria and Proteobacteria, respectively. Most of these related bacteria
were able to survive in oil-contaminated habitats, such as Pseudomonas
and Rhodococcus, which have been observed in Arabian gulf sediment
[3]. Additionally, Acinetobacter baumannii from the Acinetobacter
calcoaceticus-Acinetobacter baumannii complex (ACB complex) has
been reported to co-metabolite crude oil with Talaromyces sp [98]. This
evolutionary closeness revealed the possibilities of HGT between these
oil degradation bacteria and their phages, although only in rare cases.
The mVCs with a complete protein length of CYP153, however, are more
abundant compared with other three AHs (Fig. 4B). The potential
explanation might be both alkB and ladA are discovered to be located in
the plasmid of bacteria [4,75], thus the horizontal transfer might more
frequently happen via plasmid.

LadA and AlmA are similar in that they are flavin-dependent mon-
ooxygenases belonging to the family of bacterial luciferases. However,
the structure of LadA is unique in that it has three functional domains
that are segregated. One domain acts as a monooxygenase, while the
other two are for NADPH oxidation. This structure enables LadA to
hydroxylate alkanes without the need for rubredoxin and rubredoxin
reductase, which are required for other AHs enzyme systems [44]. In the
phylogenetic tree of LadA« (Fig. 4C), only one of the LadAa homologues
in phage was shown which was closely related to Rhodospirillales and
other Proteobacteria. It is interesting as in the previous studies on bac-
teria, LadAs were mainly found in Geobacillus and Aeribacillus [9,83],
which belong to phylum Firmicutes. LadA homologues have also been
discovered in fungi [63], and the metabolic gene clusters in fungi were
hypothesized to be a result of HGT as well [67]. Previous work also
showed that the KilA-N domain, which was first identified in bacterio-
phage P1, was later found as endogenized viral genes in the genome of
bacteria and fungi. All these evidence highlighting the HGT as a mech-
anism of genetic innovation in eukaryotes as well [27,54].

Two AlmA-phages are phylogenetically clustered together and the
amino acid is 42 % identical with bacterial reference (Fig. 2H). The two
most popular genera that encode almA gene are Alcanivorax and Mar-
inobacteria [90], and the latter has a close phylogenetic relationship with
the AlmA-phages in our results (Fig. 4D).

Fig. 3. The predicted protein structures of four AHs and
two subunits of PMMO. The experimentally validated
proteins are labeled gold as reference, while the virus
encoded enzymes in this study are labeled silver, activity
sites were labeled pink. (A). structure comparison and
active catalytic site of AlkB. (B). structure comparison and
active catalytic site of AImA. (C). structure comparison and
active catalytic site of LadAa. (D). structure comparison of
CYP153. (E). structure comparison of PmoA. (F). structure
comparison of PmoC.

PmoCA
TM-score: 0.92640
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Fig. 4. Phylogenetic trees of high-quality vVHYDEG proteins. The ecological distributions of the proteins are labeled with different colors based on the ecosystem type
(inner circle) and category (outer circle), and blank in each ring are for microbial references from RefSeq database. The background color indicating the phylum of
mVCs or references, only the proteins from HQ vHYDEGs were included in the trees. (A), (B), (C), (D), (E), (F), The phylogenetic tree of AIkB, CYP153, LadAa, AlmA,

PmoA and PmoC, respectively.

Both PmoC and PmoA are subunits of pMMO, which is involved in
methane oxidation [16]. We observed that PmoA is phylogenetically
related to methanotrophs such as Methylomag Methylocadum and
Methylococcus (Fig. 4E), indicating the potential co-evolution of phage
and their host bacteria. However, the PmoC is closely related to
nitrogen-cycling bacteria in Proteobacteria (Fig. 4F). This result re-
sembles the phage-encoded amoC genes from marine samples [24], and
we also observed that the protein structure of AmoC in that study is quite
similar to our PmoC (Fig. 3F), this is in line with a former study that the
pPMMO and AMO are evolutionarily related despite their different

physiological role [31]. These interesting results showed the potential
multiple functions of pmoC/amoC genes in phages, which suggests that
phages can potentially provide new metabolic capabilities to a microbial
community.

3.5. VHYDEG-viruses are taxonomically diverse

VHYDEG-viruses were annotated and clustered with NCBI reference
viral genomes based on shared proteins. Similar viruses are connected
and grouped closer within the network (Fig. 5). The protein-sharing
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network shows that VHYDEG-viruses are mainly clustered with the
family Podoviridae (cluster 1), Siphoviridae (clusters 2 and 5), and Myo-
viridae (cluster 3). Cluster 6 contains both Myoviridae and Siphoviridae.
Cluster 4 is an overlapping region of multiple families, including Myo-
viridae, Siphoviridae, and Podoviridae, and is not a true cluster. All these
families are bacteriophages that belong to the order Caudovirales.
Cluster 7 and cluster 8 were classified as Phycodnaviridae and Mimivir-
idae, respectively, and both belong to the phylum Nucleocytoviricota, also
known as nucleocytoplasmic large DNA viruses (NCLDV). NCLDV are a
group of viruses that infect a wide range of eukaryotic hosts, including
animals, plants, and protists. These viruses are characterized by their
large genomes and complex replication cycles [42]. Cluster 7 is
composed of five Phycodnaviridae and two unknow ones, all of them
encode CYP153, while cluster 8 contains four Mimiviridae and two un-
known viruses, all of which encode AlkB. vHYDEG-viruses with no
taxonomic annotation (unknown viruses) were prevalent in all
above-mentioned clusters, except cluster 2, indicating the novelty and
taxonomic diversity of vVHYDEG-viruses. Although they have no taxon-
omy annotation from either the protein-sharing or protein-voting-based
taxonomy assignment approach, clustering results suggest that they are
sharing high similarity to Myoviridae, Siphoviridae, and Podoviridae, as
well as NCLDV, respectively.

As shown in Fig. 5, vHYDEG proteins are not constrained by their
taxonomy, for example, Podoviridae in cluster 1 encodes four different
VHYDEGs, and same in cluster 5 of Siphoviridae. Especially in cluster 3 of
Myoviridae, viruses in this family could encode almost all AHs except for

LadAa«, as well as PmoC and PmoA. Based on these findings, we hy-
pothesize that functions of vVHYDEGs were more associated with specific
hydrocarbon degradation pathways than viral taxonomy. This means
that different viruses might obtain different HYDEGs independently, or
from horizontal gene transfer (HGT). This observation also coincides
with the phylogenetic analysis, that the mVCs with same vHYDEG have
diverse and independent evolutionary origins of these genes, and they
are closely related with bacteria from distinct phylum (Fig. 4).

3.6. VHYDEG-viruses inhabit in multiple ecological niches

To study the environmental sources of vVHYDEG-viruses, we obtained
environmental source metadata of mVCs from IMG/VR database. Our
findings revealed that these viruses could be found in a variety of
ecological categories, including aquatic, terrestrial, bioreactor, plant,
and host-associated samples. While most of these viruses were discov-
ered in freshwater and marine samples, there were a few cases found in
extreme environments, such as shale gas reservoirs, saline, and thiocy-
anate environments (Fig. 6). For example, two viruses that encode HQ
alkB were isolated from shale gas reservoirs (Fig. 4A), and one encodes
alkB from an anaerobic-aerobic thiocyanate-remediating bioreactor.
The only ladAx was from a wastewater bioreactor. All other viruses that
encoding HQ CYP153 gene, almA, pmoA and pmoC were from aquatic
samples. One of the possible explanations for the rare cases identified
from extreme environments could be attributed to the fact that there are
fewer public datasets available from these extreme environments as
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leading to discrepancies in the number of inflows and outflows. For instance, approximately one-fourth of marine viruses and most soil viruses lack annotations at the

fourth level of classification.

compared to freshwater and marine samples. This indicates that the
current database provides limited view of the actual diversity of viruses
that encode VHYDEGs. We anticipate that more viral metagenomics
samples from diverse environments be sequenced in the future would
help to expand current knowledge on vHYDEGs.

4. Discussion

Viruses encoded a vast range of genomic content that can profoundly
influence other organisms [18]. In addition to viral structural genes,
recent studies have shown that viruses can also encode various meta-
bolic genes that may affect their host’s metabolism [40,82]. As a result,
viruses play key roles in microbial evolution, marine nutrient cycling,
and human disease. We are just at the beginning of documenting the
diversity and host range of aquatic viruses, as well as their potential
impact on microbial communities and marine biochemistry. Since vi-
ruses can act as vectors of horizontal gene transfer, these genes can be
transferred to other organisms, influencing their metabolism, commu-
nity, and ultimately, the entire biological ecosystem. Therefore, study-
ing the function of viral-encoded genes, particularly their metabolic
functions, is crucial not only for the environment but also for potential
biotechnological innovations.

In this study, we identified plenty of vVHYDEGs, which can participate
in the initiation of degradation of various hydrocarbons, including
methane, long-chain alkanes, and aromatic hydrocarbons. The genomic
contents, evolutionary relationships, and protein structural analyses

validated their putative hydrocarbon-degradation capability. Our find-
ings are consistent with the previous hypothesis that phage-encoded
AMGs are largely involved in the key-step of host metabolism path-
ways. An explanation for this is that vHYDEGs participate in the initi-
ation of hydrocarbon activation and may provide more evolution
advantage for phages than those encode enzymes involved in the middle
or end of the degradation pathway, as AMGs that contribute to critical,
rate-limiting steps were thought to help phages to boost the host
metabolism during infection, which in turn benefit to phage propagation
[14]. The high proportion of virulent viruses aligns with previous
research, which suggested that AMGs primarily offer advantages to
phages during short-term, active lytic infections [40]. For temperate
phages, they integrate their genomes into the host chromosome during
the lysogenic cycle, lying dormant for extended periods. During this
dormant stage, they can still express AMGs, which may enhance the host
bacterium’s ability to adapt to its environment and increase its chances
of survival. In our study, HQ vHYDEGs encode six protein families: AIkB,
CYP153, AlmA, LadAa, PmoA and PmoC. The former four protiens are
alkane hydroxylases that initiate the first step of aerobic long-chain
alkane degradation, and the rest two are subunits of PMMO, a key
enzyme of methane degradation. Previous study identified nine glyco-
side hydrolase families encoded by viruses from permafrost samples,
which had capacities for pectin, hemicellulose, starch, and cellulose
cleavage [21]. In both studies, carbon degradation genes in viruses are
responsible for key-steps of substrate hydroxylation, the same is for the
sulfur dissimilatory metabolic genes and the photosynthesis genes that
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have been found in phages [12,40]. All these AMGs, despite their varied
functions and virus habitats, provide fitness benefits to their host bac-
teria, allowing them to better adapt to changing environmental condi-
tions. Some bacteria, such as Alcanivorax isolates, have multiple copies
of the CYP153 gene and alkB in their genome [48]. Other bacteria,
including Dietzia, Pseudomonas aeruginosa PAO1, and Rhodococcus
erythropolis, also have multiple AHs [46,52,84,91], which are thought to
provide the bacterium with a wider substrate range and better envi-
ronmental adaptation. It is reasonable to hypothesize that vHYDEGs
could work similarly by providing an extra copy of AH-coding genes.

The pmoC gene in phages have already been discovered before [16],
and thus not extensively discussed here. However, in our study, the
identified pmoC-phage is closely related with a Nitrosomonadaceae bac-
terium (Fig. S4), which is different from the large fresh water pmoC that
has high similarity with methanotrophs. The possible explanation might
be the multi-function of and evolutionary homologies of pMMO and
AMO, or due to the wide host range of the pmoC-encoding viruses.
Another difference between our study and previous study is, our
pmoC-viruses could be clustered into two big clusters. The larger cluster
are mVCs from marine ecosystem instead of freshwater (Fig. 4F), indi-
cating that marine ecosystem contains abundant methane degradation
related AMGs that were not discovered before. Besides, we identified
another subunit PmoA here in viral genomes. As discovered in the large
freshwater phages that PmoC is the substrate binding domain of the
enzyme, PmoA is also considered essential in methane oxidation and has
been regarded as a functional marker of anaerobic methanotrophs [79].
Similar to PmoC, the PmoA is also 28-30 kD, both of them are almost
entirely embedded in the membrane and comprise seven and five
transmembrane helices [41]. It’s the first identification of pmoA in the
phage genome. Considering that phages encode partial genes with vital
functional sites and recombined genes, we hypothesize that vHYDEGs
may be involved in hydrocarbon degradation in ways divergent from
those in bacteria. However, further research is needed to validate this
hypothesis.

Our study reveals frequent independent evolutionary origins of
VHYDEGs, such as AlkB, CYP153, and PmoC, across various geographic
locations (Fig. 4). These VHYDEGs are acquired and retained in distinct
ecological niches (e.g., CYP153 in marine and freshwater environ-
ments), highlighting their presumed importance in evolution and
retention within diverse phage taxonomies (Fig. 5) across different
niches (Fig. 6A). Given the potential costs of maintaining extra genetic
material for small phage genomes, only essential AMGs are likely
conserved evolutionarily [13]. This suggests that VHYDEGs might pro-
vide significant advantages to their hosts.

Protein function annotation can be challenging due to in-
consistencies in accuracy and sensitivity across databases and methods,
particularly for viral-encoded proteins. To address this issue, we first
used the CANT-HYD database [38] with a relaxed threshold to enhance
detection sensitivity and lower computational costs. Next, we used
multiple databases to obtain a thorough functional annotation for
detected proteins. Annotation results were classified into different
quality levels based on bit-score value and mVC quality. A trust index
was created for consistent annotation comparison. This approach
significantly improved detection sensitivity and reduced false positive
rates. Furthermore, we predicted protein structures of high-quality
VHYDEGs to assess their metabolic potential. Despite divergent amino
acid sequences, we observed high structural similarities between
viral-encoded enzymes and bacterial reference proteins for six key en-
zymes (Fig. 3). These structural differences in vHYDEGs provide insights
into enzyme catalytic mechanisms and valuable information for de novo
engineering of more effective enzymes through cutting-edge machine
learning technologies [96].

Previous studies have found a wealth of AMGs involved in carbon
metabolism, including energy production via the pentose phosphate
pathway (PPP) and tricarboxylic acid (TCA) cycle [32,33,68], as well as
glycoside hydrolase families capable of degrading pectin, hemicellulose,
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and starch [21]. The discovery of high-quality vHYDEGs in phages now
adds one previously missing piece to the whole map of carbon degra-
dation, suggesting that phages can potentially provide new degradation
capabilities to microbial communities.

To facilitate further investigation on the topic, we created a database
containing all identified VHYDEGs with their comprehensive annota-
tions, as well as links to external resources such as IMG/VR and PHROG
database. Researchers can screen their interested VHYDEGs in this
database, and get an overview of genomic content, as well as informa-
tion abount the viruses’ sources and their host. Most VHYDEG-viruses
were not similar to those in the NCBI viral RefSeq database in terms of
protein similarity, indicating that vHYDEGs-viruses are quite novel
regarding their unknown taxonomy. Notably, most viruses in the NCBI
viral RefSeq database were isolated from known host, this finding in-
dicates there are more diverse viruses in the environment that have yet
to be identified, and their role and contribution to the entire ecosystem
are yet to be understood.

5. Conclusions

In this study, we analyzed approximately 115 million viral proteins
from 5.6 million mVCs in the IMG/VR databases. Although less than
0.07 % (593) mVCs encode at least one VHYDEG, they are encoded by
taxonomically divergent phages including both major lifestyles of
virulent and temperate, and inhabit multiple ecological niches. We
chose 57 mVCs that encoding high quality VHYDEGs, distinguishing
them from prophages, and providing genome structures and complete
annotation of the full set of genes. These 57 mVCs were proven to encode
key step enzymes of hydrocarbon degradation, as well as other impor-
tant genes that are involved in e.g., protein translation, sulfur and lipid
metabolism. To further validate the metabolic potential of the observed
VHYDEG proteins, their 3D structures were predicted, and catalytic sites
were evaluated, showing a high level of structural identity when
compared with experimental validated homologous.

The habitat might contribute to the independent evolutionary events
of VHYDEGs. Phages acquired these genes originating from different
environments and ecosystems, primarily aquatic settings. With diverse
taxonomy, VHYDEGs-mVCs are evolutionarily related to a collective of
bacteria from varied phylum, and clustered into distinct clades.
Together with the facts that numerous unexplored environmental sam-
ples that are out of our current study, it is reasonable to hypothesize that
there are novel enzymes that participate in the hydrocarbon degradation
pathway, however, have not been recorded in the public protein data-
base. Finally, the vHyDeg database provides a comprehensive repository
of VHYDEGS, which could serve as a valuable resource for the devel-
opment of novel enzymes, thereby contributing to bioremediation
research targeting hydrocarbon and crude oil contamination.
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