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”Über den Wolken muss die Freiheit wohl grenzenlos sein.
Alle Ängste, alle Sorgen, sagt man,

Blieben darunter verborgen und dann
Würde, was uns groß und wichtig erscheint,

Plötzlich nichtig und klein.”

— Reinhard Mey, Über den Wolken (1974)



Abstract

The natural occurrence of clouds, haze, and other atmospheric disturbances poses a
persistent obstacle for passive spaceborne sensors to seamlessly observe our planet.
Concretely, most optical satellites can only receive sun-radiated signals reflected from
Earth’s surface at daytime and if the weather allows to. Due to its fundamental and long-
standing nature, the restoration of satellite images by reconstructing cloud-covered pixels
is an established problem in signal processing and remote sensing. As of more recently,
solutions based on deep neural networks tackle the problem in a data-driven manner.
While accomplishing substantial improvements over prior approaches, the novel tech-
niques still suffer from drawbacks and limitations. First, their need for copious amounts
of training data is oftentimes not met. Moreover, the common focus on narrowly defined
regions of interest is in contrast with the diversity of Earth and the ambition to provide
a generally applicable solution for cloud removal. Finally, existing techniques may in-
accurately reconstruct a given satellite image, but thus far there is a lack in methods
for obtaining indications of potential error at inference time. These are among the key
challenges that cloud removal is posing today, and which are subsequently addressed
herein. Specifically, this dissertation promotes a better and more faithful reconstruction
of optical satellite images by making the following five key contributions:

� Handling clouds in practice. To begin with, the practical implications of haze,
clouds and cloud shadow in the context of an established remote sensing use case
are investigated. For this sake, the effects of clouds on optical satellite image scene
classification are systematically explored. The performances and confidences of
neural networks commonly utilized for this sake are assessed, and the outcomes
are analyzed via a dedicated interpretability analysis. This serves to investigate the
importance of carefully handling cloud-covered observations, and points towards
further directions of handling the problem in practice.

� Data and Benchmarks for cloud removal in optical satellite imagery. To
promote cloud removal with the aim of making it applicable on real data in the wild
and anywhere on Earth, two datasets are gathered for training and evaluating solu-
tions. First, SEN12MS-CR is a large-scale, global and all-season dataset of paired
radar and (non-)cloudy multi-spectral optical satellite image triplets for mono-
temporal cloud removal. Second, to support the endeavor of multi-temporal cloud
removal, SEN12MS-CR-TS is curated. SEN12MS-CR-TS builds upon SEN12MS-
CR to provide time series data for high quality image reconstruction. The benefits
and value of both datasets are highlighted by the subsequent contributions, which
extensively rely and build upon this initial effort.
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� Methods for mono-temporal multi-sensor cloud removal. Building on
the curated SEN12MS-CR dataset, a total of three different deep neural archi-
tectures fusing radar and optical observations for mono-temporal cloud removal
are proposed: First, a multi-modal residual network architecture that encourages
the preservation of cloud-free pixels through a custom loss designed for satellite
image reconstruction. Second, a Generative Adversarial Network which learns
a bi-directional relationship between optical and radar sensors to restore cloud-
obscured pixels. Finally, a visual transformer that locally fuses both sensors and
reconstructs multi-spectral observations via a global attention mechanism. Alto-
gether, these architectures advance mono-temporal cloud removal and demonstrate
the benefits of multi-sensor fusion for satellite image reconstruction.

� Methods for multi-temporal multi-sensor cloud removal. Historical data
are a precious source of information to better reconstruct the rich multi-spectral in-
formation contained in optical satellite imagery. Hence, two solutions are proposed
using a time series approach to satellite image reconstruction: First, a sequence-
to-point model that learns to integrate cloud-free information over a time series
of cloudy optical data. Second, a deep prior network to address the sequence-
to-sequence problem of translating cloudy to clear time series while preserving
temporal resolution. As in the mono-temporal case, it is shown how auxiliary
radar observations are facilitating the image reconstruction problem.

� Calibrated uncertainty predictions for cloud removal. The aforementioned
contributions allow for assessing cloud removal approaches in a general purpose
setting by measuring grand average performances of image reconstruction. Yet,
practical applications may necessitate goodness estimates on a sample-by-sample
basis. To address this need, the final contribution of this thesis is in developing
UnCRtainTS, a novel multi-temporal multi-sensor architecture introducing uncer-
tainty estimation to multi-spectral satellite image reconstruction. Experimental
evaluations show that UnCRtainTS learns well-calibrated uncertainty predictions
and that uncertainty-based filtering allows for risk-sensitive control of the empirical
image reconstruction error.

In sum, this thesis provides a complete treatment on the topic of cloud removal in optical
satellite imagery. Following a more detailed summary of the individual contributions
outlined above, the work closes by providing a conclusion, further outlook on the subject
and proposals for future research on the topic.
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Zusammenfassung

Das natürliche Auftreten von Wolken, Dunst und anderen atmosphärischen Störungen
stellt ein Hindernis für die lückenlose Beobachtung unseres Planeten mittels passiven
satellitengestützten Sensoren dar. Konkret bedeutet dies, dass die meisten optischen
Satelliten die von der Erdoberfläche reflektierten Sonnenstrahlen nur tagsüber emp-
fangen können und wenn das Wetter es zulässt. Aufgrund der grundlegenden und
langjährigen Natur des Problems, ist die Wiederherstellung von Satellitenbildern mittels
der Rekonstruktion wolkenbedeckter Pixeln ein etabliertes Aufgabenfeld in der Signalver-
arbeitung und Fernerkundung. In jüngster Zeit wurden Lösungen auf der Grundlage
von tiefen neuronalen Netzen entwickelt, welche das Problem datengetrieben angehen.
Obwohl die neuen Techniken gegenüber früheren Ansätzen erhebliche Verbesserungen
erzielen, leiden sie immer noch unter Nachteilen und Einschränkungen. Erstens wird ihr
Bedarf an großen Mengen von Trainingsdaten oft nicht genügend gedeckt. Darüber hin-
aus steht der übliche Fokus auf räumlich eng definierte Areale im Gegensatz zur Vielfalt
der Erde, ihrer unterschiedlichen Bodenbedeckung und dem Bestreben, eine allgemein
anwendbare Lösung für die Wolkenentfernung zu entwickeln. Schließlich ist es möglich,
dass die vorhandenen Techniken ein bestimmtes Satellitenbild ungenau rekonstruieren—
aber bisher fehlt es an Methoden, um Hinweise auf mögliche Fehler zum Zeitpunkt der
Inferenz zu erhalten. Dies sind einige der wichtigsten Herausforderungen, die die Wolke-
nentfernung heutzutage mit sich bringt, und die im Folgenden behandelt werden. Diese
Dissertation leistet einen Beitrag zu einer besseren und getreueren Rekonstruktion von
optischen Satellitenbildern, indem sie folgende fünf Schlüsselbeiträge liefert:

� Der Umgang mit Wolken in der Praxis. Anfangs werden die Auswirkun-
gen von Dunst, Wolken und Wolkenschatten im Zusammenhang eines etablierten
Anwendungsfall der Fernerkundung untersucht. Zu diesem Zweck wird der Ef-
fekt von Wolken auf die Klassifizierung von Szenen in optischen Satellitenbildern
systematisch erforscht. Die Leistungen und die Konfidenz von üblicherweise zu
diesem Zweck eingesetzten neuronalen Netzen werden bewertet und die Ergeb-
nisse werden mittels einer netzwerkbasierten Interpretierbarkeitsanalyse gedeutet.
Dies dient dazu, die Wichtigkeit eines sorgfältigen Umgangs mit wolkenbedeckten
Beobachtungen zu untersuchen, und weist letztlich auf weitere Richtungen für den
Umgang mit dem Problem in der Praxis hin.

� Daten und Benchmarks zur Wolkenentfernung in Satellitenbildern. Um
Wolkenentfernung auf reale Daten überall auf der Welt zu ermöglichen, werden
zwei Datensätze für die Entwicklung neuer Methoden erstellt. Erstens, SEN12MS-
CR, ein groß angelegter, globaler und ganzjähriger Datensatz von gepaarten Radar-
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und (nicht-)bewölkten multispektralen optischen Satellitenbild-Tripletts für die
mono-temporale Wolkenentfernung. Zweitens wurde SEN12MS-CR-TS kuratiert,
um den multi-temporalen Ansatz der Wolkenentfernung zu fördern. SEN12MS-
CR-TS baut auf SEN12MS-CR auf, um Zeitreihendaten für eine hochwertige Bil-
drekonstruktion bereitzustellen. Die Vorteile und der Wert beider Datensätze wer-
den in den nachfolgenden Beiträgen deutlich, die weitgehend darauf aufbauen.

� Methoden zur mono-temporalen Multi-Sensor-Wolkenentfernung. Auf-
bauend auf dem kuratierten SEN12MS-CR Datensatz werden insgesamt drei ver-
schiedene tiefe neuronale Architekturen vorgeschlagen, die Radar- und optische
Beobachtungen zur mono-temporalen Wolkenentfernung zusammenführen. Zuerst
eine multimodale Residualnetzwerkarchitektur, welche die Erhaltung wolkenfreier
Pixel durch eine speziell für die Satellitenbildrekonstruktion entwickelte Kosten-
funktion fördert. Zweitens ein generatives adversariales Netzwerk, das die bidi-
rektionale Beziehung zwischen optischen und Radarsensoren lernt, um wolkenver-
hangene Pixel wiederherzustellen. Zuletzt ein visueller Transformer, der beide
Sensoren lokal fusioniert und multispektrale Beobachtungen über einen globalen
Aufmerksamkeitsmechanismus rekonstruiert. Allesamt setzen diese Architekturen
neue Standards für die mono-temporale Wolkenentfernung und demonstrieren die
Vorteile der Multisensor-Fusion für die Rekonstruktion von Satellitenbildern.

� Methoden zur multi-temporalen Multisensor-Wolkenentfernung. Histor-
ische Daten sind eine wertvolle Informationsquelle, um optischen Satellitenbilder
und deren reichhaltige multispektrale Information besser zu rekonstruieren. Es
werden zwei Lösungen vorgeschlagen, die einen Zeitreihenansatz zur Rekonstruk-
tion von Satellitenbildern verwenden: Erstens ein Sequenz-zu-Punkt-Modell, das
lernt, wolkenfreie Information über eine Zeitreihe von bewölkten optischen Daten
zu integrieren. Zweitens ein Deep-Prior-Netz, dass das Sequenz-zu-Sequenz-Problem
löst, bewölkte in klare Zeitreihen unter Beibehaltung deren zeitlicher Auflösung
zu übersetzen. Wie im mono-temporalen Fall zeigt sich, dass zusätzliche Radar-
beobachtungen die Bildrekonstruktion erleichtern.

� Kalibrierte Unsicherheitsvorhersagen für die Wolkenentfernung. Bis-
herige Ansätzen der Wolkenentfernung werden lediglich anhand der durchschnitt-
lichen Qualität ihrer Bildrekonstruktion gemessen. Praktische Anwendungen kön-
nen jedoch Güteabschätzungen einzelner Stichproben erfordern. Um diesen Bedarf
zu decken, wird UnCRtainTS entwickelt, eine neue multi-temporale Multisensor-
architektur, die eine Einschätzung pixelweiser Unsicherheiten der Rekonstruktion
multispektraler Satellitenbilder liefert. Experimentelle Auswertungen zeigen, dass
UnCRtainTS gut kalibrierte Unsicherheitsvorhersagen erlernt und eine risikosen-
sitive Kontrolle des empirischen Bildrekonstruktionsfehlers ermöglicht.

Allesamt liefert diese Arbeit eine umfassende Behandlung des Themas der Wolkenent-
fernung in optischen Satellitenbildern. Nach einer umfangreicheren Zusammenfassung
der Beiträge schließt die Arbeit mit einer Schlussfolgerung, einem weiteren Ausblick und
Vorschlägen für künftige Forschungen zu ihrem Thema.
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1 Introduction

Remote sensing is the measurement of the properties and characteristics of an object of
interest, at a distance and without any requirements of a direct physical contact. As
such, remote sensing allows for an analysis of Earth at a global scale. Specifically, multi-
spectral satellites provide data about the molecular material composition of our planet’s
surface, at an extent unmatched by any other sensors. Yet, one of the main challenges
of a seamless monitoring of our planet via optical satellite imagery is the existence of
clouds, which obscure the line of sight between the sensor and a region of interest.
This obstacle poses a fundamental limitation for passive optical spaceborne sensors,
which are conventionally employed to provide multi-spectral observations at an otherwise
high availability. The central goal of this dissertation is in developing high-quality and
reliable automated image reconstruction approaches to provide analysis-ready multi-
spectral data at any time—even, and particularly, in the presence of clouds.

Due to cloud-occluded vision posing a long-standing and fundamental problem for the
remote sensing community, there readily exist numerous established approaches to cloud
removal which share the core motivations of this work. However, the established solutions
are oftentimes tailored to specific regions of interest, may not provide sufficient image
restoration quality or lack in trustworthiness and reliability. In short, they do not yet
meet the goals outlined below. Yet, these prior contributions in many respects serve as
valuable starting points for the work at hand. Reaching the outlined aims by building on
these existing solutions for the following motivations is what this thesis aspires to.

1.1 Motivation

Thanks to ongoing technological advancements, such as ever-new sensors in combination
with products becoming more or easier available to scientific staff and industry clients
alike, Earth observation has entered a golden age [1, 2]. One ambition of spaceborne
remote sensing at a global scale is to offer high quality measurements of any location
on our planet at any given time. This accomplishment—at least for the workhorse of
remote sensing; optical satellites—is fundamentally impeded by the natural occurrence of
haze, clouds and other atmospheric disturbances. Passive optical sensors, making up the
bulk of imaging instruments operational in the field [3, 4], measure a region’s molecular
material composition by receiving the sun’s radiation reflected from the surface area of
a region of interest. This path of transmission however is interrupted in the presence of
clouds. On average, about 67 % of our planet and 55 % of its land surface is covered by
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clouds [5]. The issue is even more pronounced for regions close to the equator (such as
rainforests [6]) and during meteorological winter season, when cloud coverage can persist
for extended periods [5]. The principal motivation of this dissertation is in resolving this
fundamental shortcoming of spaceborne optical satellites by developing an automated
approach to faithfully and reliably reconstruct cloud-covered satellite images.

The consequences of cloud coverage directly affect subsequent applications relying on
clear multi-spectral imagery. For instance, the interpretability of obscured images by
a human observer is severely impaired—dense clouds cover the underlying ground area
and cloud shadows darken any affected pixels. Consequently, another motivation for
cloud removal is to restore human interpretability by recovering the hidden information.
Moreover, noisy data likewise affects the computer-assisted automatization of remote
sensing downstream tasks. Most automated processing is developed on satellite images
acquired under ideal conditions, free of clouds and any other noise, such that data at
inference time is assumed to likewise reflect these ideal conditions. By addressing the
primary issue of cloud coverage in optical satellite imagery, such strict requirements may
be relaxed and the detrimental effects of clouds on Earth observation may be eased—
which serves as a final motivation for this thesis.

1.2 Objectives

The primary objective of this dissertation is to provide general-purpose means to make
multi-spectral optical satellite imagery usable where and whenever needed—even, and
particularly, in the presence of clouds, haze and other atmospheric disturbances. To
achieve said goal, this dissertation builds on modern data-driven computer-based image
reconstruction techniques, by which the information in cloud-covered and otherwise noisy
pixels can be recovered. The developed methodology is meant to be general-purpose in
the sense of being applicable to every region of interest on Earth, without being confined
to any particular kinds of land cover or any specific meteorological season.

A secondary goal is in providing a rich and general framework for developing and evalu-
ating such methodology. Contemporary machine learning approaches are able to achieve
state-of-the-art performances, but rely on extensive amounts of diverse and high qual-
ity data. Therefore, an aim of this thesis is in providing a curated dataset for training
data-intense deep neural networks on the task of cloud removal and allowing them to gen-
eralize to any other region of interest. Likewise, the performance of any method should
be quantified such that it is indicative of translating to any other yet unseen region of
interest. Hence, any curated dataset is required to reflect the richness of our planet in
a diverse test split for benchmarking. The availability of such datasets and benchmarks
will subsequently promote the development of better cloud removal approaches, assessed
and compared with one another in a more competitive environment.

A final aim of this dissertation is in making cloud removal techniques more safe and
reliable. Remote sensing is a safety-critical domain, with many of its applications ne-
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1.3 Outline

cessitating precise, reliable and trustworthy data to draw conclusions on. First, it is
instructive to raise awareness about the impacts of clouds on common remote sensing
applications. Second, the process of cloud removal itself needs to become more reliable.
Currently, it is common practice for any satellite image reconstruction method to solely
be evaluated in terms of its average reconstruction goodness, which provides an overall
indicator of its quality but only a coarse guide of its reliability. However, practical ap-
plications may rely on predictors of quality on a per-sample basis, at inference time and
indicative of any potential reconstruction errors. This critical need is currently not met
by any existing approaches and filling this gap is the last goal of this dissertation.

1.3 Dissertation Outline

The structure of this dissertation is as follows: Chapter 1 serves as an introduction to
the topic, outlining the motivation and goals. Chapter 2 provides background knowl-
edge, such as the underlying methodology and remote sensing specifics. In chapter 3,
related work is reviewed such that the contributions of this work can be considered in
their context. In chapter 4, a summary of the publications constituting this cumulative
dissertation are provided. Finally, chapter 5 provides a summary and further outlook on
the subject. Appended are publications constituting this cumulative dissertation.

Furthermore, the interested reader is referred to the website of https://patrickTUM.
github.io/cloud_removal/, which serves as a project page accompanying the publi-
cations constituting this work. In particular, it features the benchmark tables reported
herein at the time of writing this thesis, but additionally allows to include and commu-
nicate future results as well as distributing any related source code.

Figure 1.1: QR code referencing to https://patrickTUM.

github.io/cloud_removal/. The website pro-
vides code accompanying the research herein, and
may communicate update benchmarking results.
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2 Theoretical Background

This chapter serves to familiarize the reader with core concepts of this work, and to
convey an appreciation for the problems that haze or clouds pose for optical Earth
observation—but also what it takes to address these challenges. Accordingly, the first
section of this chapter introduces key concepts from the broader machine learning lit-
erature as well as architectures that served as starting points or building blocks for
the methods proposed herein. This includes convolutional and generative architectures,
both temporal and spatial attention mechanisms, as well as likelihood optimization for
uncertainty quantification in machine learning. What follows in the second section is to
convey an understanding of clouds and their properties, the characteristics of radar plus
optical spaceborne imaging and how the former causes problems to the latter. Finally,
background knowledge on image reconstruction for remote sensing is communicated,
wherein the cloud removal problem at the heart of this thesis is defined in combination
with important metrics for image reconstruction quality assessment.

2.1 Deep Learning at a Glance

Deep learning, originating from the study of artificial neural networks [7, 8, 9, 10], is
too broad a field to be covered in depth within the scope of this dissertation. There-
fore, this section focuses on providing a brief overview of specific topics and methods
relevant to follow the work at hand. In particular, this includes convolutional architec-
tures and Generative Adversarial Networks introduced in section 2.1.1, attention-based
networks that are covered in section 2.1.2 and likelihood-based uncertainty optimization
as outlined in section 2.1.2. For further background knowledge, the interested reader is
referred to the popular textbooks of [11, 12, 13].

2.1.1 Convolutional Neural Networks and Generative Adversarial
Networks

Convolutional Architectures. Following the seminal success of AlexNet [14] in the
ImageNet competition [15], deep neural networks established themselves as state-of-the-
art on various computer vision benchmarks. While their architectures may vastly differ,
a commonality shared among many of them is the usage of learnable filters. A common
implementation of learnable filters is in terms of the discrete convolution operation. The
discrete convolution operation over two-dimensional tensors I,K is defined as
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Figure 2.1: Residual connections. Left: residual block [22]. Right: MBConv block [24].
Both configurations utilize residual mappings, but the MBConv block decomposes
the multi-channel convolution layers into separate multi-channel point-wise and
per-channel depth-wise operations. Figures adapted from [22].

(I ∗ g)(i, j) =
∑

a

∑

b

I(a, b)K(i− a, j − b) (2.1)

where i, j pertain to indices of the respective dimensions, shifted by integer steps a, b [13].
K is conventionally referred to as a filter or kernel of learnable parameters, optimized
according to some cost function and applied onto image I. In practice, kernels may
integrate information over more than one input channel, and involve adjustments such
as padding or a varying stride [16]. Furthermore, implementations that slide along more
than two dimensions are referred to as 3D convolutions and may be helpful for purposes
such as video inpainting [17, 18], where spatio-temporal context is required.

Influential convolutional neural network architectures relevant for this thesis are: VGG16
[19], that advanced deeper architectures and is commonly used as an encoder for style or
perceptual losses in the image generation context [20]. U-Net [21], which is an encoder-
decoder architecture processing information along two separate ’where’ and ’what’ path-
ways. Residual networks [22] and variations thereof such as MobileNets [23, 24], which
model differences within the input-output mapping via residual connections. Finally,
Generative Adversarial Networks [25], consisting of a tandem of networks oftentimes
involving U-Nets, to learn sampling from a high-dimensional target distribution of data.
Of particular importance for this dissertation are residual architectures and Generative
Adversarial Networks, so they are subsequently introduced in greater detail.

Residual networks are an influential architecture in computer vision, and for satellite
image reconstruction in remote sensing [26, 27]. At the heart of residual networks is the
residual block, consisting of two or more convolutional layers constituting a mapping
F (x) and a residual connection. While the two convolutional layers process information
in the usual sequential manner, the residual connection fast-forwards the input tensor x
and adds it onto the output of F (x), such that the resulting mapping is F (x)+x. Hence,
the network only models the residual change applied to x, making it easier to learn the
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X Y

DY

G
X Y

DY
G

DX

F
Figure 2.2: GAN architectures. Left: Conditional GAN [31], consisting of a tandem of

a generator G and a discriminator D. Right: Cycle GAN [32] features two
generators G and F mapping between two domains, plus two discriminators DX

and DY to classify real versus generated data in each domain. Figures adapted
from [32].

identity mapping and facilitating optimization [28]. The residual block structure is
illustrated on the left in Figure 2.1. In practice, residual connection are particularly
appealing if only little modifications need to be applied—such as in the case of removing
semi-transparent haze [29] or, as in the context of this thesis, for removing clouds.

A variation on the residual block, referred to as MBConv block and depicted on the
right in Figure 2.1, is introduced by [24]. The MBConv building block is a parameter-
efficient rearrangement of the original residual block, separating the convolutions into
point-wise and depth-wise operations. First applying [1× 1] kernels across all channels
followed by [H ×W ] kernels on a channel-wise basis reduces the filters’ dimensionality
and thus the model’s overall memory requirements. The efficiency of MBConv blocks is
beneficial in particular for networks that may otherwise consume prohibitive amounts
of memory, while the cost in performance compared to conventional spatio-spectrally
operating convolution blocks is minimal [23, 24, 30].

Generative Adversarial Networks learn a generative model of an distribution im-
plicitly described by training samples, such that target data can be drawn from this
distribution [33]. The classical GAN architecture is a tandem consisting of a generator
G and a discriminator network DY as depicted on the left of Figure 2.2. Both networks
are in competition with one another, where it is the generator’s task to synthesize re-
alistic samples from the target distribution Y and the discriminator’s objective is to
classify whether provides samples are from the empirical distribution Y or the distribu-
tion induced by G. Moreover, both networks can be conditioned on data from a source
distribution X, such that the learned distribution is conditional rather than marginal
[31]. In the pix2pix approach of [25], both the input and the output of a U-Net generator
[21] as well as the input to the discriminator are an image, such that the network can
be used for image-to-image translation. Training this tandem involves minimizing an
adversarial loss [33], for which many improvements have been suggested [34, 35, 36] with
LSGAN [37] being of particular interest for this thesis. It is defined as
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LLSGAN(D) =
1

2
Ey∼Y [(D(y)− b)2] +

1

2
Ex∼X [(D(G(x))− a)2] (2.2)

LLSGAN(G) =
1

2
Ex∼X [(D(G(x))− c)2] (2.3)

where x and y are samples drawn from their respective distributions X and Y , a and b
refer to the labels encoding real versus generated data and c is the value of the label whose
data G generates. That is, G and D are simultaneously optimized in a zero-sum game
until reaching equilibrium in a game theoretical sense [33]. Conventionally, supervised
training of G involves a linear combination of adversarial and L1 losses [25].

Finally, Cycle-GAN [32] introduces a cycle-consistent loss term, which encourages a
bijective mapping between the domains of the input and the target distribution. That
is, after translating from the input to the target and back again, the original input should
be recoverable. For this purpose, Cycle-GAN uses two generators G and F as well as two
discriminators DX and DY in a configuration as shown on the right of Figure 2.2. Cycle
consistency is then learned in both directions via an auxiliary objective function

Lcycle(G,F ) = Ex∼X [||F (G(x)− x)||1] + Ey∼Y [||G(F (y)− y)||1] (2.4)

Notably, cycle consistency provides two benefits: First, it allows for learning a bi-
directional relationship between X and Y , which may teach a tighter coupling between
two related modalities compared to simple conditioning [38]. Second, cycle consistency
provides pixel-level supervision to the networks without the requirement of paired images
across both domains. This is particularly useful in any cases where other supervision is
unavailable due to a lack in pixel-wise correspondences across domains [32] .

2.1.2 Attention

While convolutional architectures have been the convention in computer vision and re-
current architectures were the dominant paradigm in natural language processing, the
recent emergence of the attention mechanism [39] has revolutionized both fields alike.
Principally, attention refers to a correlation-based feature extraction mechanism with a
global receptive field. It is given by

attention(q, k, v) = softmax(
qkT√
dk

)v (2.5)

where q denotes a [dk × 1] query vector, k is a [dk × 1] key vector, v denotes a [dv × 1]
vector of values and

√
dk is a scaling factor to counteract diminishing gradients. The

outcome is a [dv × 1] attention vector of the weighted values. Intuitively, the formula
correlates queries of interest q by their associated keys v via dot-product, normalized the
weighted vector, which is in return utilized to attend to particularly relevant values v. In
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Figure 2.3: Attention mechanism, a correlative operator to weight values v by associating
queries q with their closest keys k. Left: The attention operand as formalized
in equation 2.5. Right: Multi-head attention, with h parallel heads of attention
as shown on the left. Before each scaled dot-product attention operation, every
head has a dedicated linear layer and their outputs get concatenated before being
processed by a final linear transformation. Illustrations adapted from [39].

practice, q, k and v are learned according to the task at hand. Furthermore, while this
operand describes a single so-called attention head, it is typically generalized to matrix
operations implementing h heads in parallel. The concept is shown in Figure 2.

While attention is very expressive and neither constrained to e.g. a local view nor limited
by technicalities such as fading gradients, its power may come at a cost. Specifically, its
runtime of O(n2d) in sequence length n and feature dimension d can be prohibitively
expensive, requiring engineering prowess to make the approach affordable nonetheless.
To resolve this, recent approaches in remote sensing have e.g. proposed to compute
attention on downsampled feature maps [40] or within local windows combined with
global shifts [41]. Moreover, attention lacks the inductive bias of convolutions, which
may be beneficial in common computer vision tasks. Therefore, an attention-based
model has to learn previously hard-wired properties such as translation equivariance
from the data, which requires ample training resources.

Within the scope of this dissertation, of particular importance are temporal attention as
formalized above and originally proposed in [39], as well as visual attention as suggested
in [42]. As visual attention also suffers from a computational complexity quadratic in
the sequence length, which poses a hurdle for applying it to image tensors, the attention
operation of equation 2.5 is mostly applied in modified forms. In a simple adaptation
[42], images are divided into smaller patches that are separately encoded to summarize
several pixels, and handled as individual tokens by the established mechanism. A more

9



2 Theoretical Background

recent modification, of particular relevance for the visual transformer in this thesis,
implements attention on hierarchical feature maps by merging patches in deeper layers.
Furthermore, attention is computed within windows and, to maintain global interactions,
windows are shifted systematically in subsequent layers to vary neighborhoods [41]. This
briefly summarizes the approaches to attention most relevant for this thesis.

2.1.3 Uncertainty Quantification in Machine Learning

Modeling probability distributions via neural networks is an established approach in
machine learning [12, 43, 44]. Uncertainty quantification is an established technique in
safety-critical applications, such as biomedical imaging [45]. Specifically, with respect
to image reconstruction, there is an increase in awareness of the challenges of solving
inverse problems [46] and uncertainty-based solutions to address these in a risk-aware
manner [47, 48, 49, 50].

Uncertainty can be distinguished into epistemic and aleatoric uncertainty [51]. Epistemic
or model uncertainty originates from the uncertainty in model weights, which are due
to randomness at initialization and stochastics during the training process. For neural
networks, it may be estimated via e.g. deep ensembles [52] or monte-carlo dropout [53].
Aleatoric or data uncertainty is due to noise in the data or its labels [54, 55, 56, 57, 58].
While epistemic uncertainty may be explained away under optimal conditions and in
the limit of infinite data, aleatoric uncertainty is inherent to the data at hand.

Within the scope of this dissertation, aleatoric uncertainty is learned to be predicted by
a deep neural network trained via a negative log-likelihood loss [12]

LNLL(x, θ) = −
n∑

j=1

log(Ψ(x, θ)) . (2.6)

such that the reggression loss evaluating a single variable µ is now a cost function on
the variables θ of a parametric noise distribution Ψ. For its simplicity and generality,
a Gaussian noise assumption is made such that the aleatoric uncertainty on the recon-
structed pixel is modeled with a K-variate Normal distribution centered at the predicted
value ŷj and with positive definite covariance matrix Σ:

N (yj|ŷj,Σ) =
1√

|Σ|(2π)
K
2

exp

(
−1

2
‖ŷj − yj‖M

)
, (2.7)

with ‖.‖M the Mahalanobis distance, defined as:

‖ŷj − yj‖M = (ŷj − yj)
TΣ−1(ŷj − yj) . (2.8)

Subsequently, the negative log likelihood loss writes as:
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LNLL(yj |ŷj ,Σ) ∝
n∑

j=1

log(|Σj|) + ‖ŷj − yj‖M . (2.9)

Complementary, epistemic uncertainty in this thesis is described by an ensemble of M
models. For this sake, |M | neural networks are trained with different weight initializa-
tions and under differing batch draws, as originally suggested in [52]. The individual
Gaussian fits are then combined to approximate a single, unimodal and centered Normal
distribution. For mean estimates ŷm and variance predictions (σm)2 of the collection of
members m = 1, ..., |M |, the ensembled predictions are then given by

ŷM =
1

M

M∑

m=1

ŷm (2.10)

(σM)2 =
1

M

M∑

m=1

(σm)2 +
1

M

M∑

m=1

(ŷm)2 − (ŷM)2 (2.11)

Recently, uncertainty quantification became a trending topic in remote sensing [59], with
applications to e.g. biomass or flood hazard monitoring [60, 61, 62].

2.2 Clouds: Definition & Properties

Clouds are defined as a visible mass of drops of water, suspended in the atmosphere [63].
Their physical properties are constituted by about 100 million of such droplets within
each cubic meter of air, and every droplet being about 10 micrometers in size. It’s these
properties which pose an obstacle for passive spaceborne sensors, because the mass of
tiny particles scatters light in any direction and makes the cloud opaque. Moreover,
clouds are associated with precipitation such as rain or snow, which itself can obscure
a satellite’s view. The extent to which clouds block the view depends on their optical
thickness, which may range from constituting solely a filmy and semi-transparent layer
to a dense and total occlusion of all that lays below [64, 65, 66]. Optical thickness,
together with the shape and location of clouds allows to categorized them into different
types. Notably, the primary discrepancy between haze and clouds is their altitude, so
both terms may often be used interchangeably. The nuances in the nature and severity
of coverage are remarkable in the context of image reconstruction, as it differentiates
cloud-covered pixels from other kinds of noise that may be more dichotomous in nature
[67, 68, 69], and conveys the diversity of the problem that optical satellites face.

Clouds are a naturally occurring weather phenomenon. They form in conditions of the
atmosphere being saturated by water vapor, through condensation or evaporation. That
is, the air reaches maximum humidity and holds as much suspended water droplets or ice
particles as it can [70]. All in all, the global cloud fraction averages to about 67 % [71].
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The coverage over land is at 55 %, with distinct seasonal and geographical variation
[5]. In particular, the cloud fraction is elevated during meteorological winter months
and over equatorial regions. That is, some land cover such as rainforests [6] may be
obscured by clouds throughout most of the year because of their geographical location,
or for extended periods due to seasonality. In such cases, optical sensors are constrained
and the remote sensing practitioner may refer to alternative information sources.

2.3 Basics of SAR and Optical Imaging

This section gives a brief overview of optical and radar remote sensing, with its two
imaging modalities being of a central importance in this thesis. In both cases the focus
is on spaceborne sensors measuring the interaction of electromagnetic radiation with
Earth’s surface. Yet, the two sensor modalities differ in many other regards, among which
are the recorded wavelengths and the measured physical versus molecular properties, the
discrepancy in active compared to passive sensor usage, and their difference in viewpoint
directions. Figure 2.4 provides an illustration of the differences of both modalities and
the challenges of interpreting SAR imagery. While the multi-sensory observations are
clearly pertaining to multiple views of a common region of interest, the multimodal
pairings differ considerably and offer complementary sources of information [72].

Figure 2.4: Imaging differences between optical and radar sensors. Left: co-registered
Sentinel-1 and Sentinel-2 observations, visualizations from the data of [73]. Right:
corresponding TerraSAR-X satellite measurements and aerial UltraCAM photog-
raphy, plots from [74]. In both cases, the differences between modalities are
apparent. The discrepancies get more apparent at higher spatial resolution.

2.3.1 Optical Imaging

Optical satellite sensors measure electromagnetic waves between circa 10−8 to 10−6 me-
ters length, including the visible light range and beyond. In practice, most optical satel-
lite sensors measure solar lights, reflected off the surface of Earth that is being imaged.
While there exist active optical spaceborne systems emitting radiant energy themselves
[75], the majority of satellite missions mount passive sensors capturing sun-emitted re-
flections. The optical sensor‘s passivity implies they only function during daytime and,
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most critically, their view can not penetrate haze or clouds. Given the frequency of
cloud coverage, this poses a fundamental limitation of optical satellite sensors.

Optical sensors make up the majority of spaceborne imaging [4], featured by missions
such as Landsat, Modis/Aqua constellation, Planet Labs Doves, Airbus SPOT 6/7, Air-
bus Pléiades or, of primary importance for this thesis, Sentinel-2 from ESA‘s Copernicus
mission. Sentinel-2 measures reflective radiance in 13 spectral bands at down to 10 me-
ters resolution, with a revisit time of 5 days. Figure 2.5 illustrates the spectrum of
Sentinel–2, ranging from visible bands to short-wavelength infrared.

Figure 2.5: Spectral sensitivity of ESA’s Sentinel-2 satellites. The instrument captures
spectral intensities assigned to 13 separate bands. Figure from [76].

2.3.2 Synthetic Aperture Radar

Imaging Radar sensors measure microwaves of about 10−2 meters wavelength, about
four orders of magnitude larger than the visible spectrum. Synthetic Aperture Radar
(SAR) refers to a moving imaging radar system whose physical antenna is synthetically
prolonged along the flight path, resulting in a finer spatial resolution of the measured
backscatter. Notably, SAR systems are two-part, composed of a transmitter and a
receiver—whereas the aforementioned optical sensors only consist of the latter compo-
nent. Importantly, the actively emitted microwaves are able to penetrate through clouds
before and after backscattering off the imaged land, which makes SAR applicable in-
dependent of daytime and weather conditions. The backscattered echoes are received
by a radar antenna, measuring complex-valued data containing amplitude and phase
information. The recorded signal represents a measure of the imaged scene’s reflectivity,
as influenced by its physical and electrical properties. Further accounting of the physics
underpinning SAR and its signal processing is out of the scope of this work, but the
interested reader is referred to the corresponding literature [77, 78, 79].

Examples of common or representative SAR satellites are TanDEM-X, TerraSAR-X
and, of primary interest in the context of this dissertation, the two satellites from the
Sentinel-1 constellation. Their sensors provide two channels of polarization, pertaining
to microwaves that are vertically emitted and either vertically (VV) or horizontally
received (VH). Sentinel-1’s wide-swath mode spatial azimuth resolution is at 20 meters
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and revisits are about every 5-6 days. Figure 2.4 illustrates the discrepancies between
the two modalities. Among the factors that pose challenges for interpreting SAR are its
sensor-inherent speckle noise [80] and a sideways-looking view, which make radar data
challenging to relate to optical imaging in particular at a high resolution.

2.4 Image Reconstruction for Remote Sensing

Following the characterization of optical satellite imagery in section 2.3.1, clouds in
section 2.2, and the problems that the latter poses for the former, this section introduces
the image reconstruction task as a formalization of the problem of cloud-covered satellite
images. For clarity, cloud removal is defined as a regression task and defined as

Task: cloud removal

Input: A potentially cloudy optical satellite image tensor I of dimensions [TI ×
CI × H × W ]. Optionally, further data J , such as co-registered radar
satellite data or cloud masks of dimensions [TI ×CJ ×H×W ], where CJ
denotes the channels of the auxiliary data J .

Output: A cloud-free reconstruction Î of I with dimensions [TT × CT ×H ×W ],
where T denotes a cloud-free and co-registered optical view on the region
of I with dimensions [TT × CT ×H ×W ]. Î is optimal if its closeness or
similarity to T as measured under a given metric m is optimal.

For all tensors (ignoring subscripts), T pertains to the temporal dimension, C refers
to the spectral channels and H, W are the spatial dimensions of height and width.
If J is given and includes data from a secondary sensor, the cloud removal task is
considered to be multi-modal or multi-sensory, otherwise it is a single-sensor setting.
With the datasets part of this distribution featuring optical as well as paired radar data,
the multi-sensory case is usually considered unless specified otherwise. In the case of
TI = TT = 1 the task is termed mono-temporal, else it is referred to as multi-temporal
cloud removal. In the setting of TI > 1 but TT = 1, this is referred to as sequence-to-
point multi-temporal cloud removal. Finally, the case of TI = TT > 1 is referred to as
sequence-to-sequence multi-temporal cloud removal. For brevity, unless stated otherwise,
sequence-to-point multi-temporal cloud removal is commonly abbreviated as just multi-
temporal cloud removal.

Note that depending on the context T may be utilized for supervision or evaluation of the
goodness of Î. Commonly, as a metric m the L1 or L2 cost functions are utilized

L1(x,y) =
1

n

n∑

j=1

‖xj − yj‖1 , (2.12) L2(x,y) =
1

n

n∑

j=1

‖xj − yj‖22 , (2.13)
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where ‖.‖1 and ‖.‖2 pertain to the L1 and L2 norms respectively.

For all cloud removal methods benchmarked in this dissertation, their image reconstruc-
tion performance is quantitatively evaluated in terms of mean absolute error (MAE)
analogous to equation 2.12 or root mean squares error (RMSE) (either of both, follow-
ing the conventions of the considered benchmark dataset) as well as Peak Signal-to-Noise
Ratio (PSNR), structural similarity (SSIM) [81] and the Spectral Angle Mapper (SAM)
metric [82]. The metrics are each defined as

MAE(x, y) =
1

C ·H ·W

C,H,W∑

c=h=w=1

|xc,h,w − yc,h,w| (2.14)

RMSE(x, y) =

√√√√ 1

C ·H ·W

C,H,W∑

c=h=w=1

(xc,h,w − yc,h,w)2 (2.15)

PSNR(x, y) = 20 · log10
(

1

RMSE(x, y)

)
(2.16)

SSIM(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µx + µy + ε1)(σx + σy + ε2)
(2.17)

SAM(x, y) = cos−1




∑C,H,W
c=h=w=1 xc,h,w · yc,h,w√∑C,H,W

c=h=w=1 x
2
c,h,w ·

∑C,H,W
c=h=w=1 y

2
c,h,w


 (2.18)

with images x, y compared via their respective pixel-values xc,h,w, yc,h,w ∈ [0, 1], dimen-
sions C = 13, H = W = 256, means µx, µy, standard deviations σx, σy, covariance
σxy as well as infinitesimally small constants ε1, ε2 to stabilize the calculations. Both
MAE and RMSE are pixel-level metrics and quantify the average discrepancy between
target and predicted pixels in units of the measure of interest. PSNR quantifies the
signal-to-noise ratio of the prediction as a reconstruction of the target image. SSIM is
another image-wise measure that builds on PSNR and captures the structural similarity
of the prediction to the target in terms of perceived change, contrast and luminance
[81]. Finally, the SAM measure is a image-level metric that provides the spectral angle
between the bands of two multi-channel images [82]. Combined, these metrics are meant
to provide a complete and multifaceted view on a model’s performance.
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3 Related Work

Given that haze, clouds or other atmospheric disturbances are persistent and regularly
reoccurring weather phenomena, their presence poses a long-standing problem for space-
borne Earth observation. Consequently, the past decades of research in remote sensing
have yielded a sizable amount of works addressing the corresponding problem of cloud
removal. This chapter serves to provide an overview of the corpus of literature on this
subject. For this sake, past contributions are coarsely divided into classical techniques
involving designed features and more contemporary approaches based on deep learning,
which are more recent but of particular relevance for this thesis. For each of these two
paradigms, techniques are categorized as operating either on mono-temporal or multi-
temporal data, corresponding to the respective variants of the cloud removal task as
formally introduced in chapter 2.4. The focus of this chapter is on the matter of cloud
removal, but the interested reader is likewise referred to overviews of closely related tasks,
such as super-resolution, missing data reconstruction or denoising [83, 84, 85, 86].

3.1 Methods Based on Hand-Crafted Features

3.1.1 Mono-temporal Approaches

Much of the early work on mono-temporal cloud removal is inspired by related works
on image inpainting in the classical computer vision literature [87, 88, 89, 90, 91, 92].
Examples of adapting inpainting techniques for cloud removal in aerial or spaceborne
optical imagery are given by [93, 94, 95], which use existing methods such as exemplar-
based inpainting, multi-scale fragment transplanting or wavelet-based geometric flow
propagation. More domain-specific adaptations inpaint pixel-values guided by closest
spectral fit [96]. A drawback of inpainting approaches is their reliance on the availability
of cloud-free source regions, that are furthermore required to be sufficiently similar to
the target region in terms of their structure and texture.

Closely related are interpolation methods, which are capable to fill information shrouded
even by thick clouds via spatial interference from neighboring or sufficiently close-by
cloud-free pixels. This includes techniques based on nearest neighbors [97] or kriging [98].
A limitation of the spatial interpolation paradigm is that clouds may continuously cover
large adjacent spaces such that its proximity assumption is oftentimes violated.
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Besides the two aforementioned approaches that extrapolate from local information,
several techniques rely on global filtering. For instance, the authors of [99] perform thin
cloud removal via low-frequency homomorphic filtering, and [100] propose filtering cloud-
associated principal components. Moreover, the closely related hyperspectral image
restoration literature demonstrates many use cases of low-rank tensor decomposition
methods to dissect irregular noise from the lower-dimensional signal [101, 102, 103, 104,
105]. Albeit potent, these techniques make strong assumptions on the statistics of the
images and their cloud coverage—which may not always be met, such that the cloudy
foreground is not sufficiently separable from the underlying land cover.

Finally, a special mention deserve early approaches to SAR-optical data fusion, as rep-
resented by the works of [106, 107]. The initial work of [106] proposes a cross-modal
correlation approach to inpaint cloud-covered pixels with cloud-free optical intensities
whose co-registered SAR recordings are closest to those SAR measurements of the pixels
to be replaced. Eckart et al. [107] extend on this work by fusing radar data with infor-
mation from an auxiliary optical image via the closest spectral fit approach [96]. While
optical and radar sensors measure different quantities and are thus challenging to relate
to one another, these initial efforts influenced subsequent deep learning approaches to
SAR-to-optical domain transfer and multi-sensor data fusion [72], not at last including
the models introduced in this thesis.

3.1.2 Multi-temporal Approaches

The simplest yet practically relevant approach to dealing with cloud coverage in time
series is to choose the most recent, least cloudy of all available observations. While
this strategy is appealing in its simplicity and defines a minimum goodness for better
approaches to beat, it has its limitations: If no entirely cloud-free observation is available
at any time, then the resulting prediction will as well contain noisy pixels. Workarounds
to resolve this restriction may be increasing the sampling frequency or going further
back in time in the hope of clear views—but cloud coverage may persist for long periods
depending on geolocation and seasonality [5], so the closest cloud-free observation may
only be found in outdated historical data.

As an alternative strategy, inpainting approaches that have been used in the mono-
temporal setting can be adapted to transplant information across the spatio-temporal
dimensions. For instance, the work of [108] proposes temporal inpainting via Bayesian
sparse dictionary learning, which was subsequently extended by [109]. In terms of
multi-sensor approaches, [110] extend the previous mono-temporal radar-optical fusion
paradigm of [107] to a time series and reconstruct the satellite image by blending it with
dictionary patches learned from both modalities.

Another approach that can be adjusted from the single timepoint setting to the multi-
temporal scenario are interpolation techniques. For example, the authors of [111] in-
troduce a bi-temporal interpolation of pixels close in space or sharing similar spectral
properties. In case the interpolation technique includes explicitly inferring across the
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temporal dimension, then it is commonly referred to as temporal mosaicing. As an ex-
ample, the work of [112] performs interpolation via a spatial and temporal adjacency
weighting and [113] reconstruct cloud-covered pixels via least angle regression over the
temporal evolution of a dictionary of cloud-free pixels. The authors of [114] propose two
approaches—once, local cloud removal via an ensemble of linear predictors and second,
based on support vector machines (SVM). Further works following the SVM regression
approach include [115, 116]. Mosaicing abolished the need for any entirely clear sample,
but may introduce image artifacts into the end product as a result of the composition
process. Furthermore, mosaicing techniques commonly rely on accurate cloud mask, yet
cloud detectors themselves may be prone to imperfections [117] and subsequently impact
the reconstruction quality.

More principled approaches to satellite image reconstruction involve algebraic methods
such as variants of principal component analysis [118, 119, 120], non-negative matrix
factorization [121, 122, 123], tensor decomposition [124], as well as matrix or tensor
completion [125, 126, 127], originating from the broader signal processing literature.
Specifically adapted for satellite image reconstruction, a compressed sensing approach
to cloud removal in bi-temporal sequences is proposed in [128]. [129] implement robust
matrix completion with a temporal consistency constraint, adjusted to handle even ex-
tensive cloud cover. Relatedly, [130] propose a weighted modification of low-rank tensor
completion to reconstruct cloud-covered information. Based on robust principal com-
ponent analysis, the authors of [131] remove clouds with a sparsity constraint. The
subsequent works of [132, 133] propose low-rank tensor ring decomposition with a total
variation regularization. Finally, [134] apply nonnegative matrix factorization to remove
clouds based on guidance from nonlocal filters. In sum, there exist a pletora of alge-
braic techniques to support the endeavor of cloud removal, which still remain popular
today. Yet, like many of the other aforementioned handcrafted approaches, they have in
common that they are fit specifically to the region of interest. This can be a benefit for
case studies, where a single area is of relevance and data is rare. The downturn is the
methods need to be re-fitted anew for each other region and can’t transfer knowledge
from one to another. This promotes failure in inherently challenging cases, which may
have otherwise been resolvable by data-driven generalization from earlier scenes.

3.2 Methods Based on Deep Neural Networks

Given their initial success in computer vision, deep neural networks soon after became
the predominant approach to many problems in remote sensing, and likewise for the
purpose of satellite image reconstruction. Early works adapted established architectures,
oftentimes with minimal changes to the backbone, but eagerly experimented with multi-
spectral information or auxiliary sensors to overcome challenges very specific to the
task of cloud removal. The following two subsections provide an overview of seminal
works utilizing deep neural networks for optical satellite image reconstruction in a mono-
temporal or multi-temporal setting, respectively.
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3.2.1 Mono-temporal Approaches

One of the first deep neural networks for cloud removal is McGAN [135], a generative ar-
chitecture with a pix2pix backbone [25]. The model maps cloudy RGB and near-infrared
spectral bands to a cloud-removed prediction. Alternatively to GAN, the network of [136]
was among the first to implement a residual architecture for haze removal. However, a
shortcoming of these seminal works and many subsequent contributions is their focus on
narrowly defined regions of interest as well as their reliance of synthesized cloudy sam-
ples , which makes a generalization to different areas and real world conditions unclear.
Finally, it is questionable to which extent purely optical data, including a supplementary
near-infrared band, may suffice in recovering information from and for the very same
sensor modality that is critically affected by cloud coverage.

Different from optical inpainting, the SAR-to-optical (SAR2OPT) paradigm of [6, 137,
138] takes inspiration from earlier cross-modal approaches [106, 107, 110] and translates
radar satellite measurements to cloud-free optical imagery. As SAR is invariant to
daylight conditions and robust to atmospheric noise [78] yet different in its measured
quantities to optical sensors, the novel problem becomes that of bridging a modality gap.
The inpainting aim is thus reframed into a domain transfer objective. While these early
works demonstrate the feasibility of mapping radar data to optical information, both
modalities principally differ in their measured quantities and not all spectral properties
of land cover may be inferred from their corresponding radar backscatter, fundamentally
constraining the SAR2OPT framework.

A third approach is in unifying both preceding paradigms, by combining cloudy op-
tical inputs with co-registered SAR recordings. The principal motivation of this data
fusion approach is that there may be complementary information contained in multiple
modalities [72]. Training a deep feature extractor then includes learning to integrate mul-
timodal representations and weighting their benefits in a data-driven manner. Among
the earliest representatives of this approach is SAR-Opt-cGAN [139], whose architecture
resembles that of McGAN [135] but uses 10 spectral bands of Sentinel-2 combined with
paired Sentinel-1 measurements for cloud removal. Likewise, the model of [140] is among
the first which combine optical with radar sensors. While their philosophy of utilizing
multi-sensory information greatly influences the contributions contained in this thesis,
the manner in which many of these premier efforts pursued this objective is relatively
crude and oftentimes limited to a simple, initial feature stacking followed by an early
fusion stage. To make more principal modifications to adopted architectures originally
tried and tested on conventional camera data, and to integrate multi-sensory informa-
tion in a way tailored to satellite image reconstruction, is an open challenge still left for
following contributions to address.

A crucial part of the above networks is not only their architectures and any adjustments
undertaken to adapt them for satellite image processing, but also the data on which
they have been trained and tested. Concretely, the availability of sizable amounts of
domain-specific data became of increasing importance with the advent of deep neural
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networks. However, at the time of the aforementioned initial contributions it was not
yet feasible or common practice to make the employed training or testing data publicly
accessible. This is unfortunate, as the lack of shared data makes comparisons across
models challenging. Neither was it common for models to be evaluated on publicly
accessible benchmarks, due to the mere lack of any. Furthermore, the employed data
typically featured synthetic clouds, generated via Perlin noise [141], alpha blending [142]
or by using Rayleigh simulation [143] which does subsequently not resemble the physical
and spectral characteristics of real clouds. A notable exception to these limitations mark
the RICE datasets of [144], which feature paired cloudy and cloud-free aerial as well
as spaceborne observations, curated via Google Earth or from the Landsat-8 mission.
However, all data curated thus far are focused on narrowly-defined regions of interest,
leaving the challenge of general purpose and planet-wide cloud removal still unaddressed
and for future work to resolve.

3.2.2 Multi-temporal Approaches

Among the premier contributions to propose a neural network for multi-temporal cloud
removal are the works of [145, 146]. The approach of [145] is outstanding, as it does
not only aim to remove clouds but also other sensor artifacts such as dead scan lines
[67] in a unifying manner. For this sake, the authors propose a residual architecture,
with a Siamese processing of satellite images, whose features get stacked and integrated
into a reconstructed satellite image. Similarly, [146] propose a network for bi-temporal
cloud removal, which reconstructs cloud-covered information in one satellite image by
translating co-registered representations from an auxiliary cloud free optical image and
adjusting them to match the receiving image’s structure and spectrum. A major restric-
tion of these works are their need of cloud-free supplementary optical data. Furthermore,
the input time series is expected to be bi-temporal, with the image to be reconstructed as
the first sample and the second image being the cloud-free source of information.

These limitations are addressed by the works of [147, 148]. The model of [147] is a
convolutional architecture, composed of a temporal and a spatial subnetwork as well as
a final fusion module. The authors of [148] propose a similar network, but complement
it with a hand-crafted feature aggregation and an iterative refinement procedure. As
with the preceding contributions, both approaches rely on accurate cloud masks from an
external detector without discriminating between semi-transparent haze or dense cloud
coverage. Moreover, the models are trained on only a few and narrowly defined areas,
with quantitative evaluations solely conducted on simulated data, as is common practice
in the literature thus far.

A final mention deserves the spatio-temporal generative model called STGAN [149].
STGAN ingests a temporal sequence of cloudy Sentinel-2 images to predict a cloud-free
optical image. Other than many of its successors, it is both trained and evaluated on
real and globally distributed data, which is kindly made publicly accessible for further
research and benchmarking purposes. Among its limitations is that the provided data
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solely contains RGB and near-infrared spectral bands, such that STGAN solely oper-
ates on a reduced spectrum and without any involvement of radar data. While this
design choice has its precedents in the literature [135], it may limit the resulting model’s
reconstruction goodness and applicability for remote sensing downstream applications.
A final shortcoming is due to STGAN’s architecture, which stacks and fuses temporal
representations in a pairwise manner, and thus becomes impermissibly costly for any
but very short input sequences.
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This chapter summarizes the key contributions of this dissertation. The presented works
all relate to the topic of cloud removal in satellite imagery and correspond to the ap-
pended peer-reviewed publications which constitute this cumulative thesis. At first, this
dissertation analyzes the impacts of clouds and the benefits of cloud removal in practice.
Second, the task of curating data for future training and benchmarking of methodology
is addressed, which provides the basis for all further models considered herein. Third,
contributions for the mono-temporal multi-sensor cloud removal setting are summarized.
Fourth, the case of multi-temporal multi-sensor cloud removal is considered. Finally, the
matter of uncertainty estimation is addressed to ensure reliable and trustworthy cloud
removal. In combination, these contributions are meant to provide a comprehensive
overview of the state-of-the-art in cloud removal and its further directions.

4.1 The Impact of Clouds on Earth Observation

Cloud coverage is an ubiquitous and persistent issue for a global and seamless optical
monitoring of our planet. Clouds and their physical properties have been researched
in depth [63], as well as the statistics of their spatio-temporal distribution across the
surface of Earth [5]. Yet, little attention has thus far been spent on investigating their
effects on contemporary machine learning approaches, deployed in the setting of common
remote sensing tasks. Moreover, the majority of curated optical satellite datasets are
explicitly cleaned from clouds and remote sensing models are subsequently (pre-) trained
on (predominantly) clear-view data [150, 151, 152]. This common practice, however, is
in contrast to the application of networks typically trained on non-cloudy datasets to
data in the wild, which may be polluted by haze or clouds. To shed light on the matter
of whether and how clouds affect remote sensing in practice is the aim of this section,
which serves as a thematic opening to the summary of contributions of this thesis.

Peer-reviewed publications associated with this section

� J. Gawlikowski∗, P. Ebel∗, M. Schmitt, and X. X. Zhu. Explaining the
effects of clouds on remote sensing scene classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
15:9976–9986, 2022.
∗ Authors contributed equally to this work.
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The contribution of [153] analyzes the effects of haze, clouds and cloud shadow on a
common remote sensing application, full scene land cover classification. For this sake,
the work combines the intersection of regions in the two datasets of SEN12MS [151]
and SEN12MS-CR [154] to get paired and co-registered patches of cloudy and cloud-free
Sentinel-2 observations, as well as associated patch-wise single-label land cover anno-
tations [155]. The resulting data exhibits an extent of cloud coverage that coarsely
coincides with statistics observed empirically [5]. Comparing the multi-spectral finger-
prints of cloudy versus cloud-free data on a land cover-wise basis reveals a drastic shift
in band statistics. To investigate the effects of this distribution shift on classification
performances, five architectures [22, 156, 19] frequently employed for the task [155] are
trained on cleaned-up and cloud-free data, as is a common practice in research. As is
shown in Figure 4.1, the networks are fitted to cloud-free data and A further analysis of
issues is provided by a subsequent Grad-CAM interpretation [157] of selected samples,
which shows that outlier intensities or high contrast areas such as clouds or cloud shad-
ows oftentimes redirect a network’s focus and thereby drive the misclassifications.

At last, the study analyses classification accuracy and prediction confidence as a function
of the percentage of cloud cover. The primary outcome is that performance drastically
decreases as coverage increases. Notably, a presence of at most 10% of cloudy pixels
(which may be hard to avoid in practice, as a consequence of imperfect cloud detection
[117]) readily constitutes a salient drop in whole scene classification performance.
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Figure 4.1: The effects of clouds on scene classification. The visualization shows two
examples of clear images, cloudy images and the corresponding predicted class
probabilities. In both cases the cloud-free image is classified correctly, but the
cloudy version is misclassified. In the first example, much of the croplands are
obscured by cloud shadow which causes the misclassification as water body at
a high confidence. In the second example, the clouds cover a large range of the
water but keep a part of a city visible such that the sample containing clouds is
misclassified as Urban with a high conviction. The cloud coverage of the samples
is 19% and 77%, respectively. Though parts of the images are still visible, the
classifier’s predictions are misguided by the clouds and the resulting shadows.
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Furthermore, the gradual drop in performance is not reflected in terms of the network’s
confidence, as measured by a concentration of its logit values onto a single class. This
dichotomy, at perpetually high confidences, indicates the network being unaware of the
presence of any outlier pixels. At the same time, it shows the risk of deploying popular
models on data in the wild, as the remote sensing practitioner may neither rely on their
classifications nor on their confidence in the presence of any haze, clouds or cloud shadow
left unfiltered. The outcomes of this experiment are visualized in Figure 4.2.

Figure 4.2: Confidently wrong. The
performance of ResNet50 [22]
as a function of varying ranges
of cloud coverage. While ac-
curacies detriment with in-
creasing cloud coverage, the
network’s confidence remains
consistently high.
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Finally, while not constituting key contributions of this dissertation, the interested reader
is furthermore referred to the related publications of [158, 159]. Both studies explore
the practical benefits of cloud removal in the context of a subsequent downstream task,
such as scene classification [158] or semantic segmentation [159].

4.2 Data & Benchmarks for Global and All-Season
Cloud Removal

Early approaches to cloud removal were based on hand-crafted features inspired by the
computer vision literature and classical signal processing algorithms. While these tech-
niques may be valuable for case studies, they are specifically fit and hence geospatially
constrained to particular regions of interest rather than being able to generalize to our
entire planet. More recent contributions build on contemporary neural networks. Yet,
early adaptations of the new paradigm oftentimes still retain the focus on selected re-
gions of interest [145], more akin to case studies on selected areas in the geosciences.
While special interests in narrowly defined areas are a common motif, a limiting factor
is the lack of sufficiently large and representative datasets for cloud removal in remote
sensing: Firstly, deep neural networks require large amounts of training data beyond
what has been used in prior work. Besides, the curated data should be diverse enough
to represent the variety of land cover on Earth and subsequently allow the trained model
to generalize to any unseen places on our planet. Second, the collected data should be in-
dicative of real conditions—in particular, clouds should be as encountered in the wild to
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Table 4.1: Overview of datasets and benchmarks for cloud removal in optical aerial and
satellite imagery that are publicly available. The two datasets of SEN12MS-CR
and SEN12MS-CR-TS contained in this thesis (highlighted in bold) are the first
in offering a global and multi-modal collection of curated optical satellite images
for reconstructing cloud-covered pixels in multi-spectral remote sensing.

dataset source resolution # ROI # patches patch size spectral bands SAR time points
RICE-I [144] Google Earth < 15 m 1 500 512 3 7 1
RICE-II [144] Landsat-8 30 m 1 450 512 3 7 1

cloudy City-OSM [162] Google Maps 0.1 m 2 104 500 3 7 4
STGAN [149] Sentinel-2 10 m 945 3101 256 4 7 3

SEN12MS-CR [154] Sentinel-2 10 m 169 122,218 256 13 3 1
WHUS2-CR [163] Sentinel-2 10 m 36 17,182 256 13 7 1

SEN12MS-CR-TS [73] Sentinel-2 10 m 53 15,578 256 13 3 30

capture their complex microphysical and electromagnetic properties. Finally, the afore-
mentioned generalization capability of any candidate approach should be put to test by
an equally comprehensive test split, to provide a faithful benchmark for general purpose
cloud removal. These motives guide the collection of the following datasets.

Peer-reviewed publications associated with this section

� P. Ebel, A. Meraner, M. Schmitt, and X. X. Zhu. Multisensor data fu-
sion for cloud removal in global and all-season Sentinel-2 imagery. IEEE
Transactions on Geoscience and Remote Sensing, 2020.

� P. Ebel, Y. Xu, M. Schmitt, and X. X. Zhu. SEN12MS-CR-TS: A remote-
sensing data set for multimodal multi-temporal cloud removal. IEEE Trans-
actions on Geoscience and Remote Sensing, 60:1–14, 2022.

In the spirit of the parent dataset SEN12MS [151], all satellite observations collected
for this thesis are provided with their full multi-spectral information. That is, all
datasets introduced in this dissertation consist of a collection of 13-bands level 1-C
top-of-atmosphere reflectance Sentinel-2 products. The decision for level 1-C processing
is made in order to leave atmospheric corrections to the cloud removal approach, rather
than being taken care of by an external preprocessing pipeline. Furthermore, following
earlier sensor fusion experiments [139, 160, 140] indicating the benefits of radar mea-
surements, all datasets feature co-registered Sentinel-1 measurements to complement
any Sentinel-2 images. Notably, all curated observations reflect real conditions and all
paired cloudy images are natural, rather than being simulated as was conventional in
many of the earlier works [135, 161, 162] reviewed in chapter 3.

An overview of publicly available cloud removal datasets is given in Table 4.1. Datasets
are listed in chronological order, with the contributions of this dissertation marked in
bold. Their completeness, diversity and scale place both SEN12MS-CR and SEN12MS-
CR-TS at a unique position in the the satellite image reconstruction benchmarking
ecosystem. The benchmarking tables reported in this section evaluate seminal cloud
removal models based on the metrics defined in section 2.4. Scores are maintained and
updated on https://patrickTUM.github.io/cloud_removal/.
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Mono-temporal Cloud Removal. SEN12MS-CR, a multi-sensor dataset for mono-
temporal cloud removal is proposed. SEN12MS-CR builds on the established SEN12MS
dataset [151] for whole-planet land cover classification, which has previously laid the
groundworks for the 2020 IEEE GRSS Data Fusion Contest for global land cover map-
ping [164]. As such, 169 out of the original 252 non-overlapping regions of interest are
subsampled with equal distribution across all continents and meteorological seasons.
The geospatial distribution of the samples areas is illustrated in Figure 4.3, with points
of any color indicating a region of interest contained in SEN12MS-CR. For every region,
a Sentinel-1 radar image, a co-registered cloudy as well as a paired cloud-free Sentinel-2
image are acquired within the same meteorological season to limit intermediate sur-
face changes The resulting full-scene images have an average size of approximately 52
Ö 40 km2 ground coverage, corresponding to complete-scene images of about 5200 Ö

4000 px2. Each image is manually checked for any potential artifacts and subsequently
translated from Partitioned into patches of size 256 × 256 px2 with a spatial overlap
of 50% between neighboring patches, yielding an average of over 700 patches per ROI.
Each patch consists of a triplet of ortho-rectified, geo-referenced cloudy and cloud-free
13-band multi-spectral Sentinel-2 images Finally, each patch triples is automatically
controlled for potential imaging artifacts and exclusively artifact-free patches are pre-
served to constitute the final cleaned-up version of SEN12MS-CR. Table 4.2 provides
benchmark results on SEN12MS-CR for models at the time of writing this thesis.

Figure 4.3: Map of data locations. SEN12MS-CR and SEN12MS-CR-TS are datasets of
regions of interest samples over the whole globe and throughout all seasons.

One hallmark of SEN12MS-CR is it consisting of exclusively real world data, featuring
clouds as they occur in the wild and representing all their natural characteristics as
outlined in chapter 2. This novelty is in contrast to previous research, which solely
conducted quantitative analysis on synthetic data—with clouds cropped out [111, 140],
simulated through Perlin noise [135, 169, 161] or alpha-blended with secondary images
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Table 4.2: Benchmarking on SEN12MS-CR, with data and splits as described in [154].

Method ↓ MAE ↑ PSNR ↑ SSIM ↓ SAM
McGAN [135] 0.048 25.14 0.744 15.676
SAR-Opt-cGAN [139] 0.043 25.59 0.764 15.494
SAR2OPT [6] 0.042 25.87 0.793 14.788
SpA GAN [165] 0.045 24.78 0.754 18.085
Simulation-Fusion GAN [166] 0.045 24.73 0.701 16.633
DSen2-CR [167] 0.031 27.76 0.874 9.472
GLF-CR [168] 0.028 28.64 0.885 8.981
UnCRtainTSL2 0.027 28.90 0.880 8.320

Table 4.3: Comparing training on real versus synthesized clouds and the capability
of networks trained in these manners to generalize to real world data, featuring
clouds as they occur in the wild. The results show that testing on synthetic data
strongly overestimates performances when compared to evaluating on real data.
Furthermore, networks trained on simulated data perform worse on real data than
networks trained on real data do. This indicates a gap in the realism of established
simulations of clouds, missing parts of their properties outlined in chapter 2.

training data
test performance

↑ precision ↑ recall ↑ F1
synthetic real synthetic real synthetic real

Perlin 0.239 0.168 0.800 0.592 0.368 0.262
copy 0.692 0.458 0.856 0.586 0.766 0.514
real — 0.564 — 0.551 — 0.557

[110, 162, 170]. To investigate the merits of training and benchmarking on real data,
the following experiment on SEN12MS-CR from the accompanying publication of [154]
is outlined: A given single-image cloud removal neural network is trained trice: on data
of real clouds, on samples of Perlin-simulated cloud noise and finally by overlaying plus
alpha-blending clouds from another image. After training, the tree networks are tested
on their respective simulated test data (if any) as well as on real data. This serves to
check for any differences in performances. Performances for this experiment are reported
in terms of the measures of [171], as utilized in [154]. The outcomes of the experiment
show that there is a considerable domain gap between simulated and real cloudy data.
Moving from simulated to real data deteriorates performances. Furthermore, evaluating
on simulated data may grossly overestimates reconstruction performances, as compared
to benchmarking on real data. This implies that any reconstruction goodness quantified
on simulations is a poor indicator of the actual performances on real data. In sum,
training on real data yields better performances on real data, and testing on real data
avoids any kinds of misestimate of the model’s actual goodness.
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Finally, one concern to be addressed is that of potential intermediate land cover change
between the acquisition dates of the cloudy input and the paired cloud-free target data.
This deserves attention, as any pronounced discrepancy may pose a challenge for evaluat-
ing cloud-removed predictions under controlled conditions. To analyse potential surface
area changes, Figure 4.4 analyzes the empirical distributions of pixel-value differences
between paired cloud-free (in blue) and cloudy (in green) input pixels to their cloud-
free target pixel counterparts. The residual mismatch is calculated by subtracting input
pixel values minus the co-registered pixel value in the co-registered target patch, such
that brighter input pixels obtain a positive residue. The respective histograms are pa-
rameterized by independently fitting two asymmetric Laplace distributions [172, 173].
The mode of the cloud-free distribution, i.e. the most probable value, is at 0.006 with
the first and third quartiles at −0.09 and 0.01. That is, there is a tight correspondence
between cloud-free input and output pixels. The mode and the mean of the cloudy fit
are at 0.028 and 0.14, respectively. The 0.25 and 0.75 percentiles are located at −0.04
and 0.2, indicating a pronounced skew towards higher values. This matches the intu-
ition that bright, cloud-covered input pixels have higher reflectance values compared to
their paired pixels in the cloud-free target patch. To conclude, the analysis confirms the
paradigm of SEN12MS-CR to benchmark on real data by controlling for intermediate
changes by collecting paired data sufficiently close in time.
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Figure 4.4: Discrepancy of pixel values between paired input and target Sentinel-2 data
in SEN12MS-CR. Blue visualizations display the mismatch for cloud-free input
pixels to their target image counterparts, while green visualizations pertain to
the mismatch of cloudy-pixels to the respective cloud-free target pixels. The first
distribution peaks at close by zero, indicating a strong correspondence between
input and target pixels. The second distribution is clearly shifted off-zero, with
a skew towards higher values, reflecting the typical brightness of cloudy pixels.

29



4 Summary of Contributions

Multi-temporal Cloud Removal. To promote multi-sensor time series cloud removal,
the dataset and benchmark of SEN12MS-CR-TS is curated. The dataset consists of 53
large scale regions of interest, which are globally distributed and cover a total surface of
over 80, 000 km2. The selected regions are a subsample of the areas in the SEN12MS-CR
precursor, such that both datasets are compatible and complementary to one another.
Figure 4.3 shows the distribution of collected areas, with gray points being exclusive to
SEN12MS-CR, blue points belonging to the train splits of both datasets and green pins
representing test split areas of either benchmark. For each region, 30 co-registered and
paired S1 and S2 full-scene images are collected, evenly spaced in time throughout the
year of 2018. All full-scene images are preprocessed and sliced into 256×256px2 patches,
and quality-controlled as for SEN12MS-CR. Figure 4.5 depicts exemplary input data,
composed of paired Sentinel-1 and Sentinel-22 samples as well as cloud masks predicted
via s2cloudless [174]. Finally, Table 4.4 provides benchmark outcomes on SEN12MS-
CR-TS for cloud removal models at the time of writing this thesis.

Figure 4.5: Example SEN12MS-CR-TS data. Rows: S1 data, S2 data and binary cloud
masks.Columns: Samples of five different time points, four for input and one as
target. The illustrations show that the observed region is affected by variable
atmospheric disturbances and covered by a dynamic extent of clouds, changing
over time. The detected cloud coverage of the individual input samples is 49,
23, 48 and 26 percent, and the target sample is cloud-free. While some pixels
are clear at least at one point in the input sequence and may thus be inferred
by integrating across time, others are cloud-covered throughout the sequence and
require spatial context or cloud-robust sensor information to be reconstructed.
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Table 4.4: Benchmarking on SEN12MS-CR-TS. All models are evaluated on time series
of T = 3 inputs. For further details, please see the respective publications and
[73].

Model ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM
least cloudy 0.079 — 0.815 12.204
mosaicing 0.062 31.68 0.811 14.324
DSen2-CR [167] 0.060 26.04 0.810 12.147
STGAN [149] 0.057 25.42 0.818 12.548
CR-TS Net [73] 0.051 26.68 0.836 10.657
U-TAE [40] 0.051 27.05 0.849 11.649
UnCRtainTSL2 0.049 27.23 0.859 10.168
UnCRtainTSN 0.051 27.84 0.866 10.160

4.3 Deep Learning Methods for Mono-Temporal
Multi-Sensor Cloud Removal

The scenario of translating a single cloud-covered image to a reconstructed version
thereof is a data-efficient approach to the cloud removal task. However, this version
of the task is nonetheless challenging, as spatio-spectral correlations with clear neigh-
boring or distant pixels may only inform about cloud-covered information to a limited
extent. This raises the question of how to facilitate inpainting of obscured pixels. Poten-
tial facilitation provides the inclusion of paired SAR measurements, which are robust to
detrimental weather phenomena [78] and can thus provide valuable guidance even in the
case of dense and thick cloud coverage [139, 140]. Consequently, all models associated
with key publications introduced in this section follow a multimodal paradigm of inte-
grating optical information with complementary and paired radar data. This scenario
is depicted in Figure 4.6, with exemplary predictions by the network of [167]. This and
any other benchmarked mono-temporal cloud removal approaches are trained and tested
on SEN12MS-CR, with their scores reported in Table 4.2. What follows is a summary
of the three mono-temporal cloud removal models associated with this section.
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Figure 4.6: Exemplary full scene prediction. Depicted are a cloudy Sentinel-2 im-
age, Sentinel-1 measurements, the cloud-removed prediction by DSen2-CR and
a cloud-free target image of Istanbul. Despite thick cloud coverage, DSen2-CR
succeeds in inferring the test scene’s structure thanks to the auxiliary radar data.

Peer-reviewed publications associated with this section

� A. Meraner, P. Ebel, X. X. Zhu, and M. Schmitt. Cloud removal in Sentinel-
2 imagery using a deep residual neural network and SAR-optical data fusion.
ISPRS Journal of Photogrammetry and Remote Sensing, 166:333–346, 2020

� P. Ebel, A. Meraner, M. Schmitt, and X. X. Zhu. Multisensor data fu-
sion for cloud removal in global and all-season Sentinel-2 imagery. IEEE
Transactions on Geoscience and Remote Sensing, 2020.

� F. Xu, Y. Shi, P. Ebel, L. Yu, G.-S. Xia, W. Yang, and X. X. Zhu. GLF-
CR: SAR-enhanced cloud removal with global–local fusion. ISPRS Journal
of Photogrammetry and Remote Sensing, 192:268–278, 2022

Residual Architectures. Inspired by prior work adapting a residual backbone [22] for
super-resolution [26] or hyperspectral image denoising [27] in remote sensing, DSen2-CR
is proposed in [167]. DSen2-CR is noteworthy in being among the first cloud removal
models to use and predict the complete spectrum of Sentinel-2 observations, as well as
combining it with paired Sentinel-1 data. The network consists of stacked residual blocks
and a long residual connection directly forwarding the input multi-spectral Sentinel-2
data to the output, as depicted in Figure 4.7. While prior image reconstruction networks
are conventionally trained with a pixelwise L1 or L2 loss as in equations 2.12 or 2.4, a
novelty of this work is the Cloud-Adaptive Regularized Loss (CARL), which teaches
the reconstruction of obscured pixels while explicitly encouraging the preservation of
clear areas. CARL consists of a cloud-adaptive part implementing the aforementioned
distinction, as well as a target regularization part for smooth predictions with a tradeoff
controlled by hyperparameter λ. It is defined as

LCARL =

cloud-adaptive part︷ ︸︸ ︷
‖M� (P − T ) + (1−M)� (P − I) ‖1

Ntot

+ λ

target reg.
part︷ ︸︸ ︷

‖P − T‖1
Ntot
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4.3 Mono-temporal Cloud Removal

where T is the cloud-free target image, P denotes the cloud-removed predicted image,
I refers to the cloudy input image M pertains to a binary cloud mask as predicted via
a separate cloud mask detector [175, 176] and Ntot is the total pixel count. Follow-
ing earlier studies that an L1 loss yields sharper satellite image reconstructions than
an L2 cost function [177, 26], distances within CARL are described in terms of the L1
norm. As shown by [167], training via CARL outperforms conventional pixelwise losses.
Furthermore, the inclusion of Sentinel-1 radar measurements complements the multi-
spectral optical inputs and yields further gains in performance. An exemplary full-scene
reconstruction is illustrated in Figure 4.6. Note how the overall scene is successfully
reconstructed despite dense occlusions, and the cloud-covered coastlines are clearly out-
lined in the radar image as well as in the subsequent cloud-removed prediction.
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Figure 4.7: DSen2CR architecture. The network maps a concatenation of co-registered
radar and cloudy optical satellite images to a cloud-free optical satellite image.
The architecture of DSen2CR consists of a sequence of B stacked residual blocks,
as introduced in section 2. This sequence predicts a residual modification, applied
to a long skip connection passing the optical input directly to the output. In com-
bination with the proposed CARL loss, this encourages the faithful preservation
of cloud-free pixels, while only obscured image parts need to be reconstructed.
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Generative Adversarial Networks. In the spirit of preceding cloud removal models
[135, 139, 161], the network of [154] follows a generative adversarial approach to learn
sampling from a distribution of cloud-free images. Distinct from most prior efforts,
its generator is multi-modal by being conditioned on co-registered radar plus cloudy
optical samples to map to cloud-free optical images. To better internalize the relation
between the two sensors, the proposed model adopts the cycle-consistent setup of [32]
introduced in chapter 2, which encourages learning a bi-directional mapping between
both modalities. For this sake, the complete setup is composed of a generator and
a discriminator networks per each of the two modalities. That is, a second generator
complements the first by mapping from the cloud-free optical domain back into the radar
modality, and one discriminator classifies real versus generated images per domain.

Different from any prior generative work [135, 139], the proposed network replaces the
conventional U-Net backbone [21] by a generator designed specifically for optical satel-
lite image reconstruction. Following recent residual architectures [26, 136, 27, 167], the
generator features a long-skip connection bypassing the encoder-decoder processing to
directly forward cloudy inputs to the output. Thereby, only residual modifications need
to be learned, which an auxiliary cloud map regression task encourages to be sparse and
limited to cloudy pixels while cloud-free input information is preserved. Any residual
changes are processed via the encoder-decoder structure, connected by a deep bottle-
neck composed of residual blocks. The generator mapping paired Sentinel-1 and cloudy
Sentinel-2 data to cloud-free Sentinel-2 observations is shown in Figure 4.8.
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Figure 4.8: GAN architecture. Generator of the Cycle-GAN architecture in [154]. The net-
work maps cloudy optical samples, their associated cloud maps and co-registered
radar data to cloud-free optical data. The network follows an encoder-decoder
structure with a deep residual bottleneck part. A long-skip connection bypasses
these components and directly forwards the optical input data towards the out-
put layer, such that only residual modifications need to be learned. To encourage
sparse modifications, a shallow cloud map regression module is applied on the
residual features—enforcing sparsity, such that cloud-free pixels are left mostly
untouched while solely obscured pixels are modified.
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The cycle-consistent cost function supervising the generators allows for pixel-level su-
pervision even when there exists no pixel-level correspondence between domains, as the
similarity between the original input and its reconstruction in the same modality is eval-
uated. In the work of [154], input optical images may be cloudy yet generated optical
images are cloud-free, so the cycle-consistent loss is guided via a cloud mask and only
evaluated over clear pixels to keep the principle intact. This encourages a faithful preser-
vation of cloud-free pixels comparable to the CARL loss of [167] while the adversarial loss
teaches removing the spectral statistics of cloudy data, with neither relying on pixel cor-
respondence between cloud-covered inputs and clear target samples. The hypothetical
infeasibility of controlling for this pixel correspondence and the possibility of intermedi-
ate land cover changes was a common criticism of benchmarking on real data, serving as
an argument for rather simulating clouds instead [111, 110, 135, 169, 161, 140, 162, 170].
As the SEN12MS-CR dataset accompanying the work of [154] provides such paired
cloudy and cloud-free observations, whether its close acquisition times rebut such criti-
cism can be put to test: By interpolating from unpaired training as described above to
paired supervision via a conventional L1 loss, the proposed generative network can make
use of variable amounts of paired input-output data. The outcomes of this experiment
show that pixel-based supervision on paired cloudy and clear data yields better image re-
construction performances compared to an unpaired approach not requiring pixel-based
correspondences. This further evidences that training on paired real data of clouds in
the wild is beneficial and that models can make use of the extra supervision enabled by
SEN12MS-CR in practice, supporting the dataset’s underlying philosophy.

Finally, the work of [154] introduced several other mentionworthy concepts into the cloud
removal literature. For instance, it proposes perceptual losses for better internalizing
features and style [20] of the target distribution. Moreover, real-valued cloud maps in-
stead of binary segmentations are utilized, acknowledging the continuum of permeability
in (semi-transparent) haze or clouds. Finally, as GAN can be notoriously challenging to
train this work employed recent techniques for more stable a optimization, such as a more
informative adversarial loss [37] plus spectral normalization [178] of the discriminator,
and demonstrated their effectiveness in the mono-temporal cloud removal setting.

Visual Transformers. At last, GLF-CR [168] introduces the visual transformer para-
digm to cloud removal and combines it with a global-local fusion (GLF) approach to
augmenting optical with radar representations as well as the other way around. More
specifically, the model builds on shifted-window transformers [41, 179], that partition
input patches into smaller windows to compute visual attention in, followed by a tile shift
operation that induces global interactions. Following the narrative of the two preceding
mono-temporal cloud removal models, GLF-CR aims to further strengthen the learned
relation between features extracted from both radar and optical sensors.

For this sake, the architecture of GLF-CR consists of two branches initially encoding
sensor-specific representations separately, followed by a global and local merging of the
modalities at multiple hierarchical levels.
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Figure 4.9: GLF-CR architecture. GLF-CR is a two-stream network, hierarchically merg-
ing information from radar and optical modalities to reconstruct cloudy pixels.
For global-local fusion, features are processed by stacks of SGCI and SLFC mod-
ules mediating between both modalities. Finally, the hierarchical representations
are agglomerated and integrated by a decoder for residual image reconstruction.

For its global-local fusion approach, GLF-CR introduces two new components: First, a
SAR-guided global context interaction (SGCI) module and second, a SAR-based local
feature compensation (SLFC) module. The idea of the SGCI block is that cloud-free
and cloudy land cover can not be correlated straightforwardly due to the coverage of
the latter, but spatial attention masks between their respective radar views can be used
as a proxy. This way, radar data refines visual attention in the optical domain and
thus guide the borrowing of features from distant clear pixels. The subsequently applied
SLFC module first computes a dynamic filter on SAR features for despeckling purposes
and then modulates the representations of optical data via their corresponding radar
features and vice versa. Following this dual propagation mechanism, the refined features
are then passed to a downsampling operator and the global-local processing is repeated
at the next deeper layer. In sum, the refined features are processed by a sequence of
global-local fusion stacks, whose multi-hierarchical representations are finally integrated
by a residual image reconstruction decoder. A conceptual overview of the described
architecture is provided in Figure 4.9.

Exemplary predictions of a mosaiced full-scene image are shown in Figure 4.10. Despite
intense cloud coverage, GLF-CR can reconstruct the scene of interest at a high fidelity.
Remarkably, minor details such as a dam in a lake (highlighted by an orange box) are
much clearer reconstructed with the aid of the proposed SAR guidance mechanism, as
compared to the single-sensor approach.
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Figure 4.10: Exemplary full scene prediction. The figures show a cloudy Sentinel-2
scene, together with paired Sentinel-1 measurements, the cloud-removed predic-
tion by GLF-CR (with and without using SAR) and a cloud-free target image
of the scene. Note the intense cloud coverage, but GLF-CR still being able to
faithfully reconstruct the scene. Remarkably, reconstructions of small details
are considerably cleaner when using SAR versus without.
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4.4 Deep Learning Methods for Multi-Temporal
Multi-Sensor Cloud Removal

While mono-temporal cloud removal can use spatio-spectral correlations or radar data
as a leverage to reconstruct otherwise entirely obscured information, the restriction to
a single time point also brings its limitations. Specifically, with respect to multi-sensor
fusion, Sentinel-1 quantifies the physical arrangement of land surface while Sentinel-2
provides insights into its molecular material compounds. As such, the sensors provide re-
lated yet complementary measurements [72]. Hence, not all properties of a multi-spectral
image can be derived solely from a co-registered radar view. To incorporate further in-
formation, one may thus consider historical data. One of the earliest approaches to
cloud removal is temporal mosaicing—as outlined in section 3, its underlying idea is to
integrate across repeated measures and gather a cloud-removed collage of the optical
images. Analogously, contemporary deep learning solutions may harness a time series
of observations to arrive at better reconstructions of the regions of interest. This may
serve to include information that may otherwise not be attainable from a single noisy
optical view or paired radar measurements. In this sense, multi-temporal multi-sensor
cloud removal may be considered as a generalization of the mono-temporal setting.

Peer-reviewed publications associated with this section

� P. Ebel, Y. Xu, M. Schmitt, and X. X. Zhu. SEN12MS-CR-TS: A remote-
sensing data set for multimodal multi-temporal cloud removal. IEEE Trans-
actions on Geoscience and Remote Sensing, 60:1–14, 2022.

When a time series of cloudy optical satellite images is provided, this raises the question
whether the main interest is in the agglomerated information contained in the sequence,
or whether the temporal dynamics of the time series should be preserved. The first aim
is addressed in the sequence-to-point setting of the cloud removal task, where the desired
output is a single cloud-free image prediction. The latter is covered by the sequence-
to-sequence scenario, where an output sequence of the same temporal length as the
input time series is expected. This section covers both the sequence-to-point and the
sequence-to-sequence task for cloud removal, as introduced in the context of [73].

Sequence-to-point Cloud Removal. Addressing the challenge of multi-temporal
multisensor cloud removal, the architecture of CR-TS Net initially processes each in-
put satellite image independently and equally in parallel via weight-shared branches
before merging representations across time points. CR-TS net draws inspiration from
the Siamese structure of STGAN [149] as well as prior residual architectures for satellite
image reconstruction [26, 167] preserving the original spatial resolution throughout all
layers. Moreover, it replaces the costly cross-wise feature combination for every pair
of time points [149] with more efficient 3D convolutions across both spatial and the
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temporal dimension. The architecture of CR-TS Net is shown in Figure 4.11. Its more
efficient design permits CR-TS Net to scale to longer input time series than was pre-
viously computationally affordable, while preserving feature maps at a high resolution
for more detailed reconstructions. The network furthermore processes satellite images
at their complete spectrum, and complements the optical information with radar data
for multi-sensor fusion. The test scores in Table 4.4 show that CR-TS Net outperforms
all preceding benchmarked approaches to multi-temporal cloud removal.
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Figure 4.11: CR-TS Net architecture, designed for sequence-to-point cloud removal. The
network is based on the architecture of [149] and consists of n siamese residual
branches [167] doing single time point cloud removal on n individual time points.
Subsequently, the feature maps are stacked in the temporal dimension and 3D
convolutions are applied to integrate information across time. The output of
the network is a single cloud-free image prediction.

Sequence-to-sequence Cloud Removal. Furthermore, the work of [73] considers the
challenge of cloud removal over long sequences while preserving temporal resolution.
Following the internal learning paradigm of [180, 18] and later successors [181, 182], a
convolutional neural network is fitted directly onto the target data of interest to learn
representing their signal. In this view, the observed clear pixels at any spatio-temporal
coordinate are signal to be internalized, providing supervision to a tabula rasa neural
network. Pixels shrouded by clouds or haze get reconstructed thanks to the inductive
bias hardwired into convolutional neural networks [180]. That is, rather than gener-
alizing across regions of interest, generalization within the internal learning framework
amounts to translating information from clear pixels towards cloud-covered ones within
a single region. In this sense, the sequence-to-sequence model of [73] is notably close to
the classical approaches of section 3.1.

The sequence-to-sequence model of [73] is based on a 3D convolution U-Net [21], as
previously considered for RGB video foreground inpainting in [18]. Exemplary qualita-
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Figure 4.12: Exemplary sequence-to-sequence cloud removal results of the proposed
internal learning approach, compared to baseline methods. The presented re-
sults show a cloudy image of the input sequence, the outcomes obtained via the
matrix factorization or decomposition techniques of [120, 122, 121, 123, 124] as
well as the prediction of the proposed model and finally the cloud-free image to
be predicted. The results indicate that the presence of large and dense clouds
poses a challenge for conventional methods. In comparison, the internal learn-
ing model biased via radar data achieves a close reconstruction of the cloud-free
image.

tive results of the proposed approach, compared to classical signal processing baselines,
are presented in Figure 4.12. Notably, the proposed model yields considerably better
reconstructions than any of the baselines and provides valuable reconstruction even in
the presence of intense cloud coverage. Further ablations in [73] show that conditioning
the model on Sentinel-1 data rather than random noise to drive predictions provides a
valuable prior to learn better scene representations, making it not entirely dissimilar to
earlier SAR2OPT approaches as in [6, 137, 138].
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4.5 Deep Learning Methods for Trustworthy Cloud
Removal

While any sufficiently large and heterogeneous benchmarking dataset may provide over-
all indicators of a method’s image reconstruction goodness, grand average performances
provide little insight into a model’s sample-by-sample trustworthiness. This is specif-
ically problematic for risk-sensitive domains such as remote sensing, which relies on
accurate observations and precise measurements. To resolve this shortcoming of current
approaches, a novel model called UnCRtainTS is introduced []. UnCRtainTS is a neural
network for multi-temporal and multi-sensor cloud removal, trained to predict recon-
structed images and associated uncertainty maps implying potential errors alike.

Peer-reviewed publications associated with this section

� P. Ebel, V. Garnot, M. Schmitt, J. Wegner and X. X. Zhu. UnCRtainTS:
Uncertainty Quantification for Cloud Removal in Optical Satellite Time Se-
ries. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2023.

With respect to its architecture, UnCRtainTS draws inspirations from residual networks
for mono-temporal satellite image reconstruction [26, 27, 167] as well as recent attention-
based approaches to vegetation monitoring [40]. Pertaining to the first, UnCRtainTS
consists of a resolution preserving main branch of residual blocks to better conserve or re-
construct high-frequency spatial details. This kind of backbone is particularly beneficial
when training with conventional pixelwise losses rather than a cost function dedicated
for image reconstruction. With respect to the latter, UnCRtainTS makes efficient use
of temporal pixel-wise attention [183] to integrate information across time points. In to-
tal, the network’s architecture is composed of three main components: an encoder part
that parallely processes input time points, a temporal attention and aggregation part
which efficiently integrates information across time points, and finally a decoder that
provides further spatio-spectral processing. The architecture is depicted in Figure 4.13.
Tables 4.2 and 4.4 highlight that the backbone of UnCRtainTS performs competitive in
mono-temporal as well as multi-temporal reconstruction settings alike.

To predict reconstructed images in combination with uncertainty maps, an NLL loss as
introduces in equation 2.6 is utilized. This allows learning to predict the parameters of
a distribution that are most likely to explain the sampled data. Due to its simplicity
and its generality, it is assumed that the observations follows a Normal distribution,
centered around the cloud-free target data. In this setting, the spread is indicative of
the associated uncertainty. Following the multi-spectral nature of the to-be-reconstruced
satellite image, a multivariate Normal distribution over the 13 bands of Sentinel-2 sam-
ples is assumed. Subsequently, the resoluting cost function with which UnCRtainTS is
optimized corresponds to the Gaussian NLL loss of equation 2.9.
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Figure 4.13: UnCRtainTS. The network consists of three main parts, applied along a main
branch of MBConv blocks [24] that is processing feature maps at full input
resolution: First, an encoder is applied in parallel to the T time points. Then,
an attention-based temporal aggregator computes attention mask by applying
an L-TAE to downsampled feature maps, used to aggregate the sequence of
observations. Finally, the temporally integrated feature map is processed by a
decoding block, yielding the image reconstruction and aleatoric uncertainty.

Finally, it is demonstrated that UnCRtainTS learns well-calibrated pixelwise uncertainty
predictions and how these may be employed in practice: The predicted variances should
be indicative of the model’s empirical error. This objective is formalized in terms of the
Uncertainty Calibration Error (UCE) [184]

UCE(e, u) =
P∑

p=1

Np

N
|e(Bp)− u(Bp)| (4.1) u(Bp) =

√√√√ 1

Np

∑

j∈Bp

1

K

K∑

k=1

ukj (4.2)

where e(Bp) denotes the RMSE of Np pixel predictions in bin Bp, P is the bin count
and a bin’s uncertainty u(Bp) is given in terms of Root Mean Variance.UCE quantifies
the deviation between the predicted uncertainty and the reconstruction error.

Lastly, by sorting samples according to their image-wise uncertainty, UnCRtainTS can
be utilized for a fine control of the committed error, as is shown in Figure 4.14.

Figure 4.14: Controlling error on the
test split by discarding the
most uncertain samples,
when images are ranked by
their predicted variances.
Discarding the top 50% of
uncertain reconstructions al-
most halves prediction error,
enabling risk management
for optical satellite image
reconstruction.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of samples, sorted ascendingly by variance

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

S
q
u
a
re

d
 E

rr
o
r 

(S
E
)

SE, sorted by uncertainty

linear fit, f(x) = 0.001 + 0.003 x

42



5 Conclusion & Outlook

5.1 Summary and Conclusion

This dissertation addressed the topic of reconstructing cloud-covered information in op-
tical satellite images. The nature of the problem and this work’s objectives were outlined
in section 1. Clouds pose a long-standing challenge to the remote sensing practitioner,
so the topic has garnered a correspondingly voluminous amount of publications over the
years. This literature is reviewed in chapter 3. Open challenges of existing approaches
were covered in section 3 of this dissertation. In chapter 4, the main contributions of this
dissertation were outlined: First, investigating the effects of clouds on remote sensing
applications in practice, followed by developing methods for mono-temporal as well as
multi-temporal multi-sensor cloud removal, curating the required data for training and
benchmarking such methodology—and at last, researching approaches to trustworthy
satellite image reconstruction. Finally, this chapter provides a conclusion of the work at
hand. To compactly summarize its curated insights:

� Distribution shift. Clouds pose a severe obstacle to established remote sensing
applications, such as land cover classification. The presence of clouds or cloud
shadow causes a salient distribution shift of the spectral characteristics for any
land cover type. Beyond its direct effects on learned feature extration, this shift
also puts to question any preprocessing pipelines with normalization based on the
sufficient statistics computed on cloud-free data.

� Confidently wrong. The presence of clouds or cloud shadow is detrimental to
scene classification performance, while the neural networks remain fairly confident
of their predictions. That is, the margins at which classes get correctly or erro-
neously predicted over alternatives remain constantly large, even at an increasing
level of noise in the observations to be classified.

� Clouded minds. An interpretability analysis of scene classification in the pres-
ence of clouds or cloud shadow reveals that outlier pixels drive most of a network’s
misclassifications. Specifically, outstandingly bright, very dark or high-contrast
areas often coincide with a focus of attention, shifted away from the remainder of
the scene. This indicates a need for more robust models or prior cloud removal.

� Data needs. Large scale and real data are required for general cloud removal.
Training on synthetic data is facing a domain gap towards real data, such that
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models trained on real data perform considerably better than their counterparts
trained on generated data.

� Model diversity. Several different architectures can be used to to reconstruct
cloud covered pixels—residual architectures, generative networks or attention-
based models, with the more recent attention-based models performing best. The
latter may implement visual attention over the spatial domain, or sequence-based
attention for multi-temporal cloud removal.

� SAR with benefits. As demonstrated throughout the zoo of networks intro-
duced in this thesis, including radar data to complement the cloud-covered optical
observations is beneficial in providing better reconstructions. Furthermore, this
may promote a better calibration of predicted uncertainty.

� Deep learning for time series cloud removal in globally distributed multi-
spectral satellite data is feasible, and outperforms preceding approaches in the
sequence-to-point as well as sequence-to-sequence setting alike. With regards
to sequence-to-point approaches, longer input time series steadily improve recon-
struction quality and auxiliary radar information further boosts performance. For
sequence-to-sequence cloud removal, it is shown that deep neural networks follow-
ing the internal learning approach outperform hand-crafted reconstruction meth-
ods which thus far have been the dominant paradigm to the task at hand.

� Well-calibrated uncertainty estimates that are indicative of the committed
empirical error can be obtained in a pixel-wise manner for the task of multi-spectral
satellite image reconstruction. Filtering reconstructions based on their aggregated
predicted variances allows for a fine control of error, which may support safety-
critical downstream applications.

� More evidence leads to better reconstructions as well as improved calibration.
Notably, two manners of reaching this goal have been demonstrated to be effective:
First, collecting longer time series of satellite data, where additional samples are
likely cloud-free, facilitate the restoration task and provide growing evidence for
better calibration. Second, the complementary information of SAR inputs for a
multi-sensor approach is beneficial to improve the trustworthiness of the recon-
structions

� Stronger together. Deep ensembles of independently trained neural networks
not only provide straightforward means to quantify the epistemic uncertainty of
the ensemble, but also boost further benefits in both reconstruction performance
and calibration. This may offer a straightforward approach to obtaining better
predictions in practice, whenever highly reliable predictions are needed.
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5.2 Open Challenges

Although approaches to reconstruct cloud-covered information in optical satellite im-
agery have progressed considerably, there is still many open challenges for further work
to resolve. According to the author of this thesis, the following may be particularly
promising directions for future research to investigate:

� Unified image reconstruction. The topic of cloud removal is closely related to
the tasks of super-resolution [26, 185, 186], image denoising [101, 102, 103, 104,
105, 27] and reconstructing missing data [67, 145]. Methodologically, these four
subjects have in common that they may be unified as a single regression task, such
that it is primarily the type of data and noise that tells them apart [83, 84, 85, 86].
Hence, future research should consider the interaction between the entirety of these
related problems in a common framework for satellite image reconstruction.

� Higher spatial or spectral resolution. Furthermore, it may be promising to ex-
tend the set of optical sensors that cloud removal models are researched and devel-
oped for. Currently, the majority of methods are designed for medium-resolution
multi-spectral imagery such as provided by Sentinel-2, owing to its widespread
adaptation and ease of availability. However, it would as well be interesting to
consider e.g. hyperspectral products [27] or very high resolution spaceborne op-
tical sensors. Either may pose particular technical challenges, associated with the
high dimensionality of images to be reconstructed or the more complex composi-
tions and geometry apparent in high resolution imagery.

� Sequence-to-sequence cloud removal. Deep learning approaches to sequence-
to-sequence cloud removal, while they have initially been covered in the context
of the internal learning paradigm by [187, 73], deserve further attention. Specifi-
cally, adapting and conventionally training deep sequence-to-sequence reconstruc-
tion models [188] on a large dataset such as SEN12MS-CR-TS and subsequently
defining a suitable manner of evaluating them is still an open task. It is a promis-
ing enterprise nonetheless, as sequence-to-sequence approaches allow to pass in-
formation across time points while preserving temporal information rather than
integrating it away, as is the case for the established sequence-to-point approach.
As such, sequence-to-sequence models should likewise aim for better capturing the
temporal dynamics of the processed region of interest, such as changes in land
cover due to seasonality or other events.

� Self-supervised learning. As deep learning models become increasingly expres-
sive, the need for more data and better supervision grows likewise. Self-supervised
learning emerged as a recent paradigm in remote sensing to meet these demands.
As initially evidenced in [158], cloud-covered data can serve as an abundantly avail-
able source for self-supervised pretraining. Moreover, the task of cloud removal
itself may be well-suited for self-supervised pretraining, which should be explored
in the future. With a combined volume of over 2 terabytes of curated multi-modal
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data pairings, SEN12MS-CR and SEN12MS-CR-TS are well-positioned to serve
for further explorations in self-supervised learning.

� Downstream task evaluation. Finally, any cloud removal efforts should ul-
timately prove their practical benefits for common remote sensing applications.
Currently, cloud removal methods are primarily evaluated in terms of image recon-
struction metrics—which may correlate with their benefits for further downstream
applications, but is only an indirect indicator thereof. Originally, the works of
[158] and [158] explicitly explored the benefits of reconstructed satellite imagery in
the context of common surveying tasks, such as land cover classification and seg-
mentation. Beyond these initial efforts, further research may underline the value
proposition of cloud removal and explore additional downstream applications, such
as change detection.

5.3 Outlook

Spaceborne Earth observation becomes of ever increasing relevance for urban and en-
vironmental monitoring at scale, with more governmental bodies, public institutes and
companies adapting remote sensing approaches. In the light of this development, specif-
ically optical multi-spectral satellite data grow increasingly important. While satellite
data—overcoming past legislative, technical and infrastructure hurdles—become easier
available to the public in raw and preprocessed formats alike, the natural occurrence of
haze, clouds and cloud shadow remains a fundamental and persistent problem.

To tackle this principal challenge for optical Earth observation, several promising so-
lutions of both software and hardware-based nature emerged in the recent years. This
begs to ask whether research on satellite image reconstruction, and cloud removal in par-
ticular, may remain as needed in the future as it has been for the past decades. Closing
the thesis at hand, this section briefly contemplates the subject’s future outlook.

One emerging trend on the hardware side is the growth in volume of satellite con-
stellations, documented by the rise in launches of industrial and amateur CubeSats
[189, 190, 191] This allows for lower revisit times, resulting in an increase of the frequency
of image acquisition. Frequent sampling is partly motivated by circumventing clouds and
the intention to coincidentally capture clear views. However, this is not for granted as
large clouds can linger around for several days in a row, such that shorter revisits may
only yield a surplus of cloudy observations. Moreover, current large-volume fleets mostly
focus on visible optical measurements, with more costly multi- or even hyper-spectral
instruments remaining rare and thus having lower revisit times [4]. Another objective
of large constellations is in achieving global low-latency imaging for continuous moni-
toring and rapid mobilizing [192]. While short revisit times greatly benefit this matter,
it foremost indicates an emerging appetite for seamless and low-latency space imagery.
By making every acquired image usable and enabling seamless monitoring at any time is
how cloud removal can provide value in the future of a rapidly advancing industry.
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On the software side, recent publications demonstrated cloud-covered pixels in multi-
spectral images can be ignored whenever irrelevant, yet certain tasks may still remain
solvable [193, 40]. This raises the question of what the additional benefits may be of
including an explicit cloud removal task or performing image reconstruction prior to
another downstream task. Recent work confirms the preceding findings but, impor-
tantly, also highlights that cloud removal can further improve performance and enhance
robustness [158]. Demonstrating the practical benefits of cloud removal in the context
of established applications will be a critical objective as the field matures, and choos-
ing suitable tasks for this matter will be a vital endeavor: In general, whenever a task
safely permits integrating over one or more dimensions of the data of interest, there
may readily exist alternatives to image reconstruction. Where cloud removal is without
any alternatives, is whenever none of any spatio-temporal information is redundant and
preserving any dimension of data is necessary.

In sum, the natural occurrence of clouds poses a fundamental issue which will continue
to persist in the future. Yet, the remote sensing practitioner’s repertoire has been
growing substantially over the last years in order to meet an equally expanding amount
of awaiting challenges. Some of these obstacles can be addressed with a dedicated setup
or paradigm, and circumvent the general necessity for cloud removal. Opportunities
where cloud removal can in the future demonstrate its benefits, are whenever analysis-
ready, seamless or undelayed optical imagery are needed. In particular, this includes
manual monitoring by human interpreters, but also automated downstream applications
relying on the spatio-temporal integrity of multi-spectral information. The majority of
research on optical Earth observation is conducted on idealized, carefully curated data
free of any clouds, noise and other artifacts. This creates ample opportunities for cloud
removal to demonstrate its benefits, as most readily existing methodology can not be
deployed in practice without any further pre-processing.

What is important for the future perspectives of cloud removal and satellite image re-
construction in general, is to mature and prove their value in the remote sensing practi-
tioner’s workflow. The author of this thesis thinks that the accumulated contributions
of his work have laid the foundation for continuing along this route.
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”What does it mean, to see? The plain man’s answer
(and Aristotle’s, too) would be, to know what is where by looking.

In other words, vision is the process of discovering from images
what is present in the world, and where it is.”

— David Marr, Vision (1982)
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A B S T R A C T

Optical remote sensing imagery is at the core of many Earth observation activities. The regular, consistent and
global-scale nature of the satellite data is exploited in many applications, such as cropland monitoring, climate
change assessment, land-cover and land-use classification, and disaster assessment. However, one main problem
severely affects the temporal and spatial availability of surface observations, namely cloud cover. The task of
removing clouds from optical images has been subject of studies since decades. The advent of the Big Data era in
satellite remote sensing opens new possibilities for tackling the problem using powerful data-driven deep
learning methods.
In this paper, a deep residual neural network architecture is designed to remove clouds from multispectral

Sentinel-2 imagery. SAR-optical data fusion is used to exploit the synergistic properties of the two imaging
systems to guide the image reconstruction. Additionally, a novel cloud-adaptive loss is proposed to maximize the
retainment of original information. The network is trained and tested on a globally sampled dataset comprising
real cloudy and cloud-free images. The proposed setup allows to remove even optically thick clouds by re-
constructing an optical representation of the underlying land surface structure.

1. Introduction

1.1. Motivation

While the quality and quantity of satellite observations dramatically
increased in recent years, one common problem persists for remote
sensing in the optical domain since the first observation until today:
cloud cover. As thick clouds appear opaque in all optical frequency
bands, the presence thereof completely corrupts the reflectance signal
and obstructs the view of the surface underneath. This causes con-
siderable data gaps in both the spatial and temporal domains. For ap-
plications where consistent time series are needed, e.g. agricultural
monitoring, or where a certain scene must be observed at a specific
time, e.g. disaster monitoring, cloud cover represents a serious hin-
drance.

The problem of cloud cover becomes even more apparent con-
sidering the amount of cloud coverage the Earth’s surface experiences
every day. An analysis over 12 years of observations by the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument aboard the

satellites Terra and Aqua showed that 67% of the Earth’s surface is
covered by clouds on average (King et al., 2013). Over land surfaces,
the cloud fraction averages to 55%, featuring distinctive seasonal pat-
terns. Considering the importance of these cloud occlusion percentages,
it becomes clear how a successful cloud removal algorithm would
greatly increase the availability of useful data. The task of detecting and
removing clouds from satellite images has been tackled since the be-
ginning of Earth observation activities, and is still today an area of
active research. In this work, we present a deep learning model capable
of removing clouds from Sentinel-2 images. The network design and the
integration of additional Sentinel-1 SAR data makes it robust to ex-
tensive cloud coverage conditions. The model is trained on a large
dataset containing scenes acquired globally, ensuring its general ap-
plicability on any land cover type.

1.2. Related works

The reconstruction of missing information in remote sensing data is
a long-studied problem. In Shen et al. (2015), a comprehensive review
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of traditional techniques in provided. In the last decades, a multitude of
approaches have been proposed for the specific task of cloud removal in
optical imagery. Methods that follow traditional approaches can be
categorized into three major clusters, namely multispectral, multi-
temporal and inpainting techniques. Many methods are a hybrid com-
bination of these categories. Multispectral approaches are applied in the
case of haze and thin cirrus clouds, where optical signals are not
completely blocked but experience partial wavelength-dependent ab-
sorption and reflection. In such cases, surface information is partly
present and can be restored, e.g. using mathematical (Xu et al., 2019;
Hu et al., 2015) or physical models (Xu et al., 2016; Lv et al., 2016).
Multispectral methods have the advantage of exploiting information
from the original scene without requiring additional data, but are
limited to filmy, semi-transparent clouds. Multitemporal approaches
restore cloudy scenes by integrating information from reference images
acquired with clear sky conditions (Lin et al., 2013; Li et al., 2015;
Ramoino et al., 2017; Ji et al., 2018). For this, also multitemporal
dictionary learning techniques can be used (Li et al., 2014). The mul-
titemporal data may also come from different sensors on different sa-
tellites (Li et al., 2019). Multitemporal methods are the most popular as
they substitute corrupted pixels with real cloud-free observations.
However, problems arise when reconstructing scenes with rapidly
changing surface conditions (e.g. due to phenological events) because
of the time difference between the scene to be reconstructed and the
reference acquisition. Inpainting approaches fill corrupted regions by
exploiting surface information from clear parts of the same cloud-af-
fected image (Meng et al., 2017). Such direct inpainting methods do not
require additional images, but achieve good results only with small
clouds. To mitigate this problem, the process of selecting the most
suitable similar pixel to be cloned is often guided by auxiliary data, e.g.
multitemporal (Cheng et al., 2014) or SAR images (Eckardt et al.,
2013). Such methods deliver good results but have an increased com-
plexity due to the requirement of multitemporal or multisensorial ad-
ditional data.

In parallel to traditional approaches for cloud removal, data-driven
methods using deep learning have been gaining attention recently.
Many of the problems arising from traditional algorithms can be po-
tentially solved by the end-to-end learning of deep neural networks
(DNN). For example, the detection and segmentation of clouds as a
preliminary step is often not required, as it can be learned implicitly by
the networks. In the case of multisensor data fusion, the translation
between different sensor domains can also be learned. Moreover, DNNs
can be trained to cope with any type of cloud and residual atmospheric
conditions. A first paper exploiting the potential of DNNs for restoring
missing information in remote sensing imagery was published in Zhang
et al. (2018). The method uses a spatial–temporal-spectral convolu-
tional neural network (CNN) to restore data gaps in Landsat TM data. In
the case of clouds, an additional multitemporal image of the same scene
is used to support the reconstruction. Recent papers have been focusing
on using a modern CNN architecture called conditional generative ad-
versarial network (cGAN) (Mirza and Osindero, 2014). In Enomoto
et al. (2017), a cGAN is trained to remove simulated clouds from
Worldview-2 RGB images using NIR images as auxiliary data, while in
Grohnfeldt et al. (2018) a cGAN removes simulated clouds from Sen-
tinel-2 imagery using SAR data as additional information. An evolution
of the cGAN, called Cycle-GAN, can be used to avoid the need of paired
cloudy-cloudfree images for training (Singh and Komodakis, 2018). A
different approach for generating cloud-free images is to perform a
direct translation from SAR to optical using cGANs (Bermudez et al.,
2018; Bermudez et al., 2019; He and Yokoya, 2018; Fuentes Reyes
et al., 2019). Besides their powerful generative capabilities, cGANs can
suffer from training and prediction instabilities when fed with bad input
data (e.g. large cloud coverage), as reported in some of the referenced
studies and in Mescheder et al. (2018). Based on these experiences, the
work presented in this paper develops a model architecture that is ro-
bust to the presence of large and optically thick clouds in the input data.

In addition to the conceptual considerations, the need of large datasets
is also a prominent problem in deep learning for cloud removal. The
studies cited above achieve promising results, but the used datasets are
very limited and the performance is evaluated on non-independent
data. An assessment of the generalization capability of the networks,
i.e. their ability to remove clouds on previously unseen scenes, is
therefore not directly possible. In contrast, we present and use a large
dataset that is suited for a deterministic separation of images for
training and testing purposes and thus provides a sound idea of how
well the network will generalize to unseen Sentinel-2 data.

1.3. Paper structure

This paper is structured as follows. After this introductory section,
the characteristics of the used dataset are presented in Section 2. The
proposed methodology, including the designed neural network archi-
tecture and custom loss, are explained in Section 3. The conducted
experiments and obtained results are then presented in Section 4 and
further discussed in 5. Finally, a summary and conclusions are given in
Section 6.

2. Data

While the data-driven method proposed in this paper is of generic
nature and sensor-agnostic, the specific model we train and our ex-
periments focus on satellite imagery provided by the Sentinel satellites
of the European Copernicus Earth observation program (Desnos et al.,
2014), as these data are globally and freely available in a user-friendly
manner.

2.1. Sentinel-1 and Sentinel-2 missions

The cloud removal algorithm developed in this work is applied on
optical data from the Copernicus Sentinel-2 mission (Drusch et al.,
2012). The mission provides data for risk management, land use/land
cover and environmental monitoring, as well as urban and terrestrial
mapping for humanitarian and development aid. Imagery is available
over all main land areas from −56° to 84° of latitude with a global
revisit time of 5 days at the equator. The optical payload is called Multi
Spectral Instrument (MSI) and comprises 13 spectral bands. Four 10 m
high-resolution bands are placed in the visible and NIR domain for core
mapping applications. Six 20 m resolution bands are used for en-
vironmental monitoring and high-level products. Three 60 m bands are
used for detection and correction of atmospheric effects. The swath
width is 290 km.

The SAR data used in this work originates from the Copernicus
Sentinel-1 mission (Torres et al., 2012). The C-band radar instrument
(5.4 GHz center frequency) on board of the two constellation satellites
can operate in various modes depending on the position of the satellite
and the scope of the observations. The main operational mode, called
Interferometric Wide Swath (IW), is used over land surfaces and fea-
tures a swath of 250 km and a resolution of 5 m in range and 20 m in
azimuth direction. The combined revisit time is of 6 days. The Sentinel-
1 mission was designed to provide data in all weather situations for
maritime and land monitoring, emergency response, climate change
and security.

2.2. SEN12MS-CR Dataset

The dataset presented and used in this work, called SEN12MS-CR, is
an evolution of the SEN12MS dataset (Schmitt et al., 2019b). SEN12MS
is publicly available and contains triplets of cloud-free Sentinel-2 op-
tical images, Sentinel-1 SAR images and MODIS land cover maps. It was
developed for common remote sensing applications, such as scene
classification or semantic segmentation for land cover mapping. Using
the same procedure as described in the original paper, SEN12MS-CR
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was created specifically as a dataset for training deep learning models
for cloud removal.

SEN12MS-CR contains 169 non-overlapping regions of interest
(ROIs) sampled across all inhabited continents during all meteor-
ological seasons. The scene locations are randomly drawn from two
uniform distributions, namely one over all landmasses and one over
urban areas only. This introduces a bias towards urban landscapes, that
are often in the focus of remote sensing studies and contain more
complex patterns. The ROIs have an average size of approx. ×5200 4000
px, which corresponds to ×52 40 km ground coverage due to the pixels
having 10 m ground sampling distance. Each ROI is composed of a
triplet of orthorectified, geo-referenced cloudy and cloud-free Sentinel-
2 images, as well as the correspondent Sentinel-1 image. All three
images were acquired within the same meteorological season to limit
surface changes. To assess the cloud coverage of the optical images, the
cloud detector described in Schmitt et al. (2019a) was used. The cloud-
free Sentinel-2 images have been selected with a threshold of 10%
cloud coverage, while cloudy images are within 20% and 70% of cloud
coverage.

The Sentinel-2 data is from the Level-1C top-of-atmosphere re-
flectance product and has values in the range [0, 10,000]. All 13 ori-
ginal bands were included. The Sentinel-1 data is from the Level-1 GRD
product acquired in IW mode with two polarization channels (VV and
VH). The values are 0 backscatter coefficients that have been trans-
formed into dB scale.

To adapt the images for the ingestion into a CNN, the ROIs were cut
into small ×256 256 px patches with a 128 px stride. The amount of
overlap between neighboring patches is therefore 50%. This has been
chosen to maximize the number of patches extractable from an image,
while still ensuring an acceptable independency. An automated and
manual check of the generated patches was performed to eliminate
mosaicking artifacts and other corrupted regions. The final quality-
controlled SEN12MS-CR dataset contains 157, 521 patches-triplets with
a total of 28 layers, amounting to around 620 GB of storage size. Fig. 1
shows examples of patch triplets from the dataset. In the deep-learning
based cloud removal algorithms cited in the related works, the net-
works are trained on datasets with clear limitations. E.g., in Enomoto
et al. (2017), Grohnfeldt et al. (2018), Zhang et al. (2018) the networks
are trained exclusively on simulated clouds, by using simple Perlin
noise or introducing manually gaps into the imagery. In Singh and
Komodakis (2018), a dataset of real unpaired cloudy and cloud-free
Sentinel-2 images is used, which however is limited to the RGB chan-
nels and comprises only 20 cloudy and 13 cloud-free scenes. In Hu et al.
(2015), a dataset of ten paired cloudy and cloud-free scenes acquired by
Landsat-8 is used. However, the cloud-contaminated images contain
only filmy, partly-transparent clouds. To the best of the authors’
knowledge, SEN12MS-CR is the first dataset used for training cloud
removal networks that comprises a large and representative number of
scenes sampled worldwide, with full multispectral information, con-
taining different types of real-life clouds with their characteristic sig-
nature in all channels.

2.3. Train, validation and test datasets

To properly assess the generalization capability of a network, a
training, validation and test dataset split must be performed. For this,
the 169 ROIs of SEN12MS-CR were split into 149 scenes for training, 10
for validation and 10 for testing, following a random global distribu-
tion. Fig. 2 shows the spatial distribution of the ROIs. The split ac-
cording to the ROIs, rather than the patches, ensures that the three
datasets are spatially and temporally completely disparate. All three
datasets contain acquisitions from all meteorological seasons. A visual
and automated analysis confirmed that all three datasets also have a
similar distribution of cloud types and coverage amount. When separ-
ating the patches according to this split, the training dataset amounts to
134, 907 patches-triplets, the validation to 11, 921 and the test to 10, 693.

3. A ResNet architecture for cloud removal

3.1. ResNet principle

The deep learning model used as backbone for this work is based on
the popular ResNet architecture (He et al., 2016a). ResNets make use of
shortcut connections, operations that skip some layers to shuttle the
information to lower parts of the network, acting as a direct path for
information flow. In the original ResNet case, the shortcut connection
performs an additive identity mapping, i.e. the input state of a residual
block is added to the output of the bypassed layers.

To further understand the residual learning rationale, let xH ( ) be
the mapping that the skipped layers are supposed to learn as in a tra-
ditional plain network starting from the input x . By adding the additive
skip connection, we let the layers explicitly learn a residual function

xF ( ) instead:

=x x xF H( ) ( ) . (1)

This is helpful since it preconditions the task: learning a residual cor-
rection to the input has proven to be easier for current optimizers than
learning the entire input–output mapping from scratch. This is espe-
cially true when the optimal mapping for a residual unit is actually
close to the identity, i.e. when the network has to just reproduce the
input data in the output.

3.2. Residual learning for cloud removal

For the task of cloud removal, the residual skip connections of a
ResNet are helpful in several ways:

• Filmy clouds correction: Residual learning offers a clear advantage
in the presence of filmy clouds. In this case, the network has to learn
only an additive correction that compensates for the thin cloud
disturbance in the overcast regions. Through the band concatena-
tion, the network is able to access both the spectral and spatial
features; the still partially present ground information acts as a good
preconditioning for the restoration process.
• Cloud-free parts reproduction: Due to the large field of view and the
comparably small size of clouds, satellite images are typically a
mixture of cloudy and cloud-free regions. Over clear-sky regions, the
residual connections offer a direct path to transfer unmodified sur-
face information directly to the output.
• Stability of prediction: a ResNet architecture for cloud removal is
robust to the presence of large and optically thick clouds in the input
data. Even if an input cloudy image is mostly covered by opaque
clouds, the network is at least able to reproduce adequately the
cloud-free sections. C-GAN based methods (e.g. see Singh and
Komodakis, 2018), tend to suffer from prediction instabilities or
complete failures with bad input data.
• Optimized learning of deep models: High representational capacity
given by a large number of layers and filters in CNNs is required to
reconstruct the signal under thick clouds, where complex structures
need to be restored. The ResNet architecture allows to optimize
large and deep models in a comparably fast way and with good
performance (He et al., 2016b).

3.3. DSen2-CR model

The proposed model, called DSen2-CR, is based on the super-re-
solution Deep Sentinel-2 (DSen-2) ResNet presented in Lanaras et al.
(2018), which is itself derived from the state-of-the-art single-image
super-resolution EDSR network (Lim et al., 2017). Similarly to super-
resolution, cloud removal can be seen as an image reconstruction task,
where missing spatial and spectral information has to be integrated into
the image to restore the complete information content. To guide the
reconstruction process under thick, optically impenetrable clouds
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where no ground information is available, DSen2-CR leverages a SAR
image as a form of prior. For this, a Sentinel-1 image of the same scene
is introduced to the network as an additional input. The image's SAR
channels are simply concatenated to the other channels of the input
optical image. The highly non-linear SAR-to-optical translation, as well
as the cloud detection and treatment, are learned and performed im-
plicitly inside the network. The training is done in an end-to-end setup,
and a cloud-free image of the same scene is presented to the network as
a target for the loss computation. Fig. 3 shows a diagram of the DSen2-
CR model and the used residual block design. In the following, further
properties and peculiarities of the network are described:

• Long skip connection: An additive shortcut shuttles the input
cloudy image to an addition layer right before the final output, as
originally proposed in Lanaras et al. (2018). This basically means
that the entire network is learning to predict a residual map that
contains corrections to each pixel of the input cloudy image. In the
case of a clear sky input or filmy clouds, the predicted corrections
will be minor or non-existent. Conversely, for thick clouds with
bright appearance, the corrections will be larger.
• Residual blocks: The main part of the network consists of several
residual units stacked in sequence. The specific number of units B in

the network is a hyperparameter that defines the depth of the net-
work. The residual units each contain four layers and an addition
layer for the residual connection. The four skipped layers are a 2D
convolution layer with subsequent ReLU activation, a second 2D
convolution layer and a final residual scaling layer (see next point).
Only one ReLU activation is used after the first convolutional layer
but not after the second, since the network is supposed to predict
corrections that can be both positive and negative. For both con-
volutional layers, 3 × 3 kernels are used, following the general
community trend to use smaller kernels in deeper models (Lanaras
et al., 2018). The output feature dimension F, i.e. the number of
different filters, is fixed for all units and is a hyperparameter. A
stride of one pixel and zero padding is always used in order to
maintain the spatial dimensions of the data throughout the network.
Compromising between representational capacity and computa-
tional complexity, as well as considering own experiments and the
reported experiences in Lanaras et al. (2018), Lim et al. (2017),
residual units with =F 256 features were selected as a baseline for
the DSen2-CR architecture.
• Residual scaling: This residual scaling layer is a custom layer that
multiplies its inputs with a constant scalar. First proposed in
Szegedy et al. (2017), this activations scaling has the effect of

Fig. 1. Example 256 × 256 px patch triplets from the SEN12MS-CR dataset. (a,d,g) are the input cloudy optical images, (b,e,h) are the input SAR channels, and
(c,f,i) are the target cloud-free optical images. Throughout the paper, the shown optical images are enhanced true-color RGB composites from the Sentinel-2 10 m
resolution B4-B3-B2 bands. The shown SAR images are a composite of the two polarization channels (G = VH, B = VV, R = 0).
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stabilizing the training without introducing additional parameters,
such as in batch normalization layers. The value of 0.1 is selected for
the scaling constant in this work.
• Additional convolutions: At the beginning of the network, a con-
catenation layer stacks vertically the input optical and SAR layers to
enable the joint processing. After this, a 3 × 3 convolution layer

with ReLU activation is introduced to treat the concatenation before
the data is passed through the residual blocks. After the last residual
unit, a final 3 × 3 convolution restores the spectral dimensions to
match the number of bands of the optical image before reaching the
residuals addition layer.

Fig. 2. Global distribution of the 169 ROIs of the SEN12MS-CR dataset. Orange markers denote ROIs selected for training, green for validation and azure for testing.
Background image credits: Google Earth/Mapmaker.

Fig. 3. Left: DSen2-CR model diagram. Right:
Residual block design. For each part of the network,
the number of layers and the two spatial dimensions
are indicated inside parentheses. Since the network
is fully convolutional, it can accept input images of
arbitrary spatial dimensions m during training and
prediction time. F indicates the selected feature di-
mension and B the selected number of residual
blocks included in the network.
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Several experiments on the network structure and residual block
design confirmed the validity and quality of the original DSen-2 ar-
chitecture. The modifications in DSen2-CR with respect to the original
network include the adaptations required to accommodate the two SAR

input layers used for guiding the reconstruction, the different number of
input and output optical channels, and network depth as described
above.

(a) (b) (c) (d)
Fig. 4. Example images showing changes in surface conditions between the input cloudy acquisitions (a,c) and the target cloud-free images (b,d) taken on a different
date.

Fig. 5. Flowchart of the cloud (left stream) and shadow (right stream) detectors employed for the mask creation used in the CARL loss.
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3.4. Cloud-adaptive regularized loss

As described in the dataset section, the input cloudy image and the
target cloud-free optical images have been acquired on different days,
but within the same meteorological season. Although the time differ-
ence is limited, changes in the surface conditions between the images
can still often be observed, especially on agricultural landscapes (see
Fig. 4). Since the objective of a cloud removal algorithm is to restore

ground information below clouds without modifying clear parts, it is of
strong importance that the most possible information from the input
image is retained in the output. To minimize the influence of ground
changes in the target image, a custom training loss was developed in
this work.

Following the recommendation of Lanaras et al. (2018), the L1
metric (mean absolute error) was used as a basic error function due to
the robustness to large deviations and the high dynamic range of the
Sentinel-2 data. Defining the predicted output image as P and the
cloud-free target image as T , the classic target loss T based on the
simple L1 distance between prediction and target can be formulated as

= P T
N

,
tot

T
1

(2)

with Ntot being the total number of pixels in all channels of the optical
images. The optimization on this plain L1 loss is simple and straight-
forward, but it has a drawback: the network is induced to learn, predict
and apply unwanted surface changes, due to being trained on multi-
temporal data with changing ground conditions. To reduce these arti-
facts, a novel loss principle was developed. The idea is to incorporate a
binary cloud and cloud-shadow mask (CSM) into the loss computation,
and use this information to steer the learning process towards a max-
imized retainment of input information. This custom loss, which we call
Cloud-Adaptive Regularized Loss ( CARL), is formulated as

= + +P T 1 P I P T
N N

CSM CSM( ) ( ) ( )

target reg.
part

CARL
1

tot

cloud adaptive part

1
tot (3)

with P T I, , denoting respectively the predicted, target, and input op-
tical images. The CSM mask has the same spatial dimensions of the
images and pixel values 1 for clouds and shadows pixels or 0 for un-
corrupted pixels. 1 denotes a matrix of ones with the same spatial di-
mensions as the images and the CSM. The multiplications marked with
between the CSM and the image differences are element-wise and

applied over all channels. In the cloud-adaptive part, the mean absolute
error loss is computed w.r.t. the target image for cloudy or shadowed
pixels of the input image, and w.r.t. the input image itself for clear-sky
pixels. With this, the network learns that it shall optimize the predic-
tions to match the cloud-free parts of the input, and use the multi-
temporal information only when needed, i.e. for the cloud and shadow
reconstruction. However, when training with this cloud-adaptive part

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 6. Example images showing the influence of the SAR input on an agricultural and an urban scene under heavy cloud coverage. (a,f) show the cloudy input
images, (b,g) the input auxiliary SAR images, (c,h) the target cloud-free images. (d,i) are the model predictions without the SAR input, and (e,j) are the predictions
of the full DSen2-CR model including the SAR input.

Table 1
Quantitative results computed on the hold-out test dataset. Results are reported
for the proposed DSen2-CR network in different configurations: trained on the
proposed CARL loss, trained on the plain L1 target loss T, and trained on

CARL and T but without the SAR input. In the tables, Target refers to the error
computed between the predicted image and the target cloud-free image. This is
the loss as optimized using T. Reprod denotes the reproduction error, namely
the error between the predicted image and the clear parts of the input image.
This is part of the CARL loss that is explicitly optimized. Recon is the re-
construction error, namely the error between the predicted image and the
target image inside the reconstructed clouds and shadow regions.

(a) Test results on pixel-wise metrics

MAE ( TOA) RMSE
( TOA)

PSNR (dB)

Method Target Reprod Recon Target Target

DSen2-CR on CARL 0.0290 0.0204 0.0266 0.0366 28.7
DSen2-CR on T 0.0270 0.0398 0.0266 0.0343 29.3
DSen2-CR on CARL w/o SAR 0.0306 0.0188 0.0282 0.0387 27.6
DSen2-CR on T w/o SAR 0.0284 0.0389 0.0281 0.0361 28.8

pix2pix 0.0292 0.0210 0.0274 0.0424 28.2

(b) Test results on spectral and structural fidelity metrics.

SAM (°) SSIM

Method Target Reprod Recon Target

DSen2-CR on CARL 8.15 3.94 8.04 0.875
DSen2-CR on T 8.07 6.33 8.13 0.878
DSen2-CR on CARL w/o SAR 8.98 3.86 8.97 0.870
DSen2-CR on T w/o SAR 8.97 6.17 9.05 0.873

pix2pix 13.68 13.93 12.67 0.844
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only, it was observed that the network introduced artifacts in the pre-
dicted images due to a too precise learning of the mask. To avoid this
effect, an additional target regularization term in the form of a classic
mean absolute error loss between prediction and target (equivalent to

T in Eq. (2)), was added to the loss function. This additional loss in-
duces the network to learn to produce images that still have a natural,
smooth appearance similar to the target image. The regularization
factor , that scales this target regularization term in Eq. (3), is a hy-
perparameter that effectively balances the input information retain-
ment and the prediction artifacts. After extensive tuning, the value of

= 1 was found to provide the best trade-off.
The authors have found that a methodically similar context-aware

loss was proposed in Li et al. (2019) in a more generic image processing
context. The novelty of the described CARL approach still resides in
how a cloud and cloud-shadow mask is created and used in the context
of cloud removal, with the specific intent of guiding and improving the
reconstruction performance.

For the CSM mask implementation, which is needed during training,
a combination of the methods proposed in Schmitt et al. (2019a) (cloud
detection) and in Zhai et al. (2018) (cloud-shadow detection) was used.
Fig. 5 shows the flowchart of the different processing steps for the mask
creation. The threshold =T 0.2CL for the cloud binarization was selected
after a visual evaluation. The thresholds for the cloud detection were
computed using the parameters =TCSI

3
4 and =TWBI

5
6 . The threshold

values were chosen in a conservative manner to reduce false negative
detections. We refer to the original papers for further details on the
algorithm implementations.

3.5. Preprocessing and training setup

Prior to the ingestion into the network, the images are value-clipped
to eliminate small amounts of anomalous pixels. The clipping range for

the Sentinel-2 bands is [0, 10,000], for the Sentinel-1 VV and VH po-
larizations it is [−25,0] and [−32.5,0], respectively. For the Sentinel-2
data, a division by 2000 is further applied to all bands to ensure nu-
merical stability (Lanaras et al., 2018). Similarly, the Sentinel-1 values
are shifted into the positive domain and scaled to the range [0, 2] to
approximately match the optical data values distribution after scaling.
As a data augmentation step, random rotations and flips are applied to
the images before the ingestion.

The training framework has been implemented in the Keras open
source deep-learning Python library with Tensorflow (Abadi et al.,
2016) as backend, basing on the code from (Lanaras et al., 2018). The
models were trained on a NVIDIA DGX-1 machine containing 8 P100
GPUs.

The weights of the network have been initialized using a uniform He
distribution (He et al., 2015), and the biases were initialized to zero.
Several tests with common optimizers showed that the Adam algorithm
with integrated Nesterov momentum (Dozat, 2015) delivers the best
performance. After a systematic search, the optimal learning rate has
been found to be 7·10 5 for a batch size of 16.

4. Experiments & results

For a quantitative evaluation, we report the error metrics obtained
by evaluating the results from the entire hold-out test dataset on dif-
ferent network configurations in the following. The used metrics are the
mean absolute error (MAE) and the root-mean-square error (RMSE) in
units of top-of-atmosphere reflectance TOA, the peak signal-to-noise
ratio (PSNR) in decibel units, the spectral angle mapper (SAM) (Kruse
et al., 1993) in degrees, and the unitless structural similarity index
(SSIM) (Wang et al., 2004). The MAE, RMSE, and PSNR are popular
evaluation metrics for pixel-wise reconstruction quality. The SAM gives
a measure of the spectral fidelity of the reconstructed images, while the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Example images showing the influence of the CARL loss on two agricultural scenes. (a,c) are the input images. (b,d) are the target images. (e,g) are the
predictions obtained by training the DSen2-CR model on the plain T, and (i,k) are the predictions obtained using CARL. (f,h) and (j,l) are the respective re-
production error maps in units of top-of-atmosphere radiance. The areas within the cloud and cloud-shadow mask (CSM) are depicted in black.
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SSIM assesses spatial structure quality based on visual perception
principles.

4.1. Influence of SAR-optical data fusion

Several experiments were dedicated to verify the usefulness of the
SAR-optical data fusion setup used in DSen2-CR. For this, we performed
a full network training with and without including the SAR auxiliary
input. In Fig. 6, example results obtained on the hold-out test dataset
are visually compared. For better comparability, both networks were
trained using the plain L1 loss T. It can clearly be seen that the results
which make use of SAR-optical data fusion contain much more struc-
ture than the results relying on pure optical-to-optical image transla-
tion.

Especially large structures that have regular shapes and a distinctive
appearance in the SAR image, e.g. the large fields in the agricultural
example scene, are correctly included in the predicted image. Complex
objects, e.g. in cityscapes, are harder to integrate due to their more
complicated patterns. Here, the model is able to reconstruct the scene
only on a coarse scale. For example, the urban example area, with the
core town and the river entering from the south, is at least roughly
recognizable in the predicted image generated using the SAR in-
formation, whereas it is not reconstructed at all if no SAR data is used.

Considerations about the effectiveness of the SAR input can also be
made by evaluating the test results reported in Table 1. Here, results
from experimental training runs without SAR are provided alongside
the full configurations. Comparing the numbers, the network with the
SAR input scores better results for most evaluated metrics. Interest-
ingly, however, the networks without SAR achieve lower MAE and SAM
reproduction errors. This indicates that the network partly integrates

SAR information also when reproducing cloud-free regions of the input
image. Since such artifacts do not have a correspondence in the original
optical image, this leads to a higher reproduction error (for MAE and
SAM respectively 2% and 3% using T, and 9% and 2% using CARL).
However, the benefit in terms of reconstruction error (approx. 6% for
MAE and 11% for SAM for both losses) outbalances this problem,
making the SAR-optical data fusion concept beneficial for the overall
cloud removal task.

This becomes also clear by a qualitative analysis of the produced
images. In Fig. 6, exemplary detail patches under thick cloud cover are
presented. By comparing the predicted images with and without SAR
prior, the gain in structural content provided by the SAR fusion is clear.

4.2. Influence of the cloud-adaptive regularized loss

One of the main contributions of this work is the design of the so-
called cloud-adaptive regularized loss CARL. This custom loss is cloud-
and shadow-aware and introduces an optimization w.r.t. to the input
image, in order to retain the most possible amount of information from
the uncorrupted input regions. To assess the effectiveness of this pro-
posed loss, we compare the predictions of DSen2-CR models trained on

CARL to models trained only on the plain T. Fig. 7 shows example
images from the test dataset containing two different agricultural
landscapes subject to substantial surface changes between the input and
the target images. By comparing the RGB composites of the results
obtained using T and CARL with the input and the target images, it
becomes clear how the network optimized on CARL is able to optimally
retain input information and limit the artifact generation in the pre-
dicted images. In the left image series, for example, the blooming ra-
peseed fields captured in the input image are kept in a bright yellow

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)
Fig. 8. Example images comparing the cloud removal results of our model with the pix2pix baseline network, both models receiving cloudy optical and SAR data as
input. (a,f,k) show the cloudy input images, (b,g,l) the input auxiliary SAR images, (c,h,m) the target cloud-free images. (d,i,n) are the predictions of our DSen2-CR
model, and (e,j,o) are the predictions of the pix2pix baseline. The results show that our model achieves higher-fidelity results, removes cloud shadows better and is
less prone to artifacts.
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color by the CARL, while being changed to green by T.
The shown error maps are the pixel-wise mean absolute error be-

tween the predicted image and the cloud-free parts of the input image.
In the following, we call this measure reproduction error, i.e. the error
introduced by the network while reproducing the already cloud-free
parts of the input image into the prediction. A low reproduction error
indicates an optimal retainment of useful input information. Moreover,
it signifies a low artifact generation caused by the training on multi-

temporal images with differing ground conditions.
Observing the reproduction error maps shown in the figure, the

influence of the adaptive loss is evident, with predictions from T
showing much higher reproduction errors in the clear-sky pixels. An
evaluation of the final test results in Table 1 shows that model trained
on the CARL loss achieves 49% less MAE reproduction error and 38%
less SAM reproduction error w.r.t. to the network optimized on T. The
reconstruction errors between the two models are comparable, showing

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Fig. 9. Example results from the final setup of DSen2-CR using the CARL loss. (a,d,g,j) are the input cloudy images, (b,e,h,k) the predicted images, and (c,f,i,l) the
target images.
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that CARL does not affect negatively the cloud reconstruction perfor-
mance of the network while optimizing the information retainment
capabilities. Considering these observations, we conclude that the usage
of CARL in the optimization process is beneficial for the cloud removal
task. This is particularly true for agricultural areas, which exhibit
phenological changes even within the limited time span lying between
the acquisition of the cloud-affected image and the acquisition of the
cloud-free target image. It may be noted, however, that using T
naturally leads to better results in target-only based metrics (here

RMSE, PSNR and SSIM) since the optimization and the evaluation is
performed on the same objective. This however does not necessarily
signify an improvement in the overall cloud removal performance, due
to the artifact generation in cloud-free part as discussed above.

4.3. Comparison against baseline model

In order to compare our model against a standard baseline, we
utilized the popular pix2pix architecture (Isola et al., 2017) that was as

Fig. 10. Left column: channel-wise normalized root-mean-square error (nRMSE) in units of percentage for each image shown in Fig. 9. The normalization was
performed using the value range of each band. Right column: Pixel spectra of the central pixel in the respective input, predicted, and target images. The point markers
denote the band resolution: circles for 10 m, triangles for 20 m, and squares for 60 m resolution. (a) additionally contains labels for each band following the Sentinel-
2 bands na.ming convention.
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well adapted in previous studies on cloud removal (Grohnfeldt et al.,
2018; Bermudez et al., 2018). The architecture of our baseline consists
of a U-net (Ronneberger et al., 2015) generator and a PatchGAN dis-
criminator (Karacan et al., 2016). The generator takes 13 channel
multi-spectral optical and dual-polarimetric SAR patches as input, both
of size ×256 256 pixels. The discriminator takes as input a concatena-
tion of dual-polarimetric SAR patches, the 13-channel multi-spectral
cloudy and the real or generated cloud-free patches. SAR patches are
clipped to values [−25, 0] and rescaled to range [−1, 1]. Optical
patches are clipped to values [0, 10,000] and rescaled to range [−1, 1].

The network weights are initialized with a Normal initialization and
biases are set to zero, The network is trained on the complete training
set via ADAM (Karacan et al., 2016) (momentum 0.5) for a total of 10
epochs with the original GAN loss (Isola et al., 2017) and an L1 loss,
weighted with =, 1, 100L LGAN 1 as in the original study (Goodfellow
et al., 2014). Batch normalization (Ioffe and Szegedy, 2015) is applied
to the generator. The initial =Niter 5init epochs are trained at a learning
rate of =lr 2·10init

4, followed by =Niter 5decay epochs with lambda
learning rate decaying lrinit by the multiplicative factor

= + +max epoch Niter Niter1.0 (0, 2 )/( 1)decay init decay , where epoch
denotes the number of the current epoch. Both the quantitative results
presented in Table 1 and the example images shown in Fig. 8 illustrate
the superiority of the our DSen2-CR approach – especially in terms of
spectral and structural fidelity.

4.4. Application of the full model on large scenes

For a qualitative evaluation of the operational performance of the
full DSen2-CR model trained on the CARL loss including the SAR input,
Fig. 9 shows a selection of large reconstructed scenes, i.e. images larger
than the ×256 256-pixel patches the model was trained and validated
on. These scenes were concatenated from patches belonging to the hold-
out test dataset. To assess the reconstruction performance in all optical
channels, Fig. 10 shows the normalized root-mean-square errors
(nRMSE) averaged over each optical channel for the pictures shown in
Fig. 9. The normalized representation was chosen for better

Fig. 11. Average of channel-wise nRMSE over all test images.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. 60-m resolution channels (B1, B9, B10) for the second image in Fig. 9. Left column: input image. Central column: prediction. Right column: target image.
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interpretability, since the absolute RMSE spectra have been observed to
correlate with the reflectance spectra. Additionally, in Fig. 10 we also
show spectra of the central pixel of each image. To assess the overall
band-wise reconstruction quality, averages over all test images of each
band-wise normalized RMSE are shown in Fig. 11. It can be seen that
the channels, which experience the overall worst reconstruction
quality, are B10, followed by B9, and B1 – all of which observe the
atmosphere rather than the land surface (see Fig. 12).

Therefore, the performance of the model in reconstructing ground
information even below large and thick clouds can still be appreciated
on a large scale. The central pixel of the last image (Fig. 10h) is a cloudy
pixel, which can be recognized by the high reflectance values of the
input image. Here it can be seen how the model successfully re-
constructs the entire cloud-free pixel spectrum. For the third image
(Fig. 10f) the reconstructed spectrum is also very close to the target,
while for the first two images (Figs. 10d and 10b) the reconstruction lies
between input and target, either due to prediction inaccuracy or due to
the partial retainment of input information induced by the CARL loss.

5. Discussion

As the results summarized in Section 4 show, the DSen2-CR network
is generally capable of removing clouds from Sentinel-2 imagery. This is
not limited to a purely visual RGB representation of the declouded input
image, but includes the reconstruction of the whole pixel spectrum with
an average normalized RMSE between 2% and 20%, depending on the
band. It should be noted, however, that the worst reconstruction results
are achieved for the 60 m-bands, which are not meant to observe the
surface of the Earth, but rather the atmosphere: B10, which shows the
worst normalized RMSE values, is dedicated to a measurement of Cirrus
clouds with a short-wave infrared wavelength; B9 is dedicated to
measuring water vapor, and B1 is supposed to deliver information
about coastal aerosoles (cf. Fig. 11). Since the SAR auxilary image uses
a C-band signal with much longer wavelength, it is not affected by those
atmospheric parameters at all and just provides information about the
geometrical structure of the Earth surface. This, of course, distorts the
reconstruction of the atmosphere-related Sentinel-2 bands, as can be
seen in Fig. 11. However, most classical Earth observation tasks, which
benefit from a cloud-removal pre-processing step, do not employ those
bands anyway and restrict their analyses to the 10 m- and 20 m-bands,
which provide actual measurements of the Earth surface. Thus, the
inclusion of the SAR auxiliary image can definitely be deemed helpful,
which is also confirmed by the numerical results listed in Table 1 and
the qualitative examples shown in Fig. 6: The overall best result with
respect to pure numbers is achieved when the classic loss T and SAR-
optical data fusion are used. The new cloud-adaptive loss CARL,
however, leads to a much better retainment of the original input and
introduces less image translation artifacts, which are usually caused by
training on images with a temporal offset. In summary, the combination
of SAR-optical data fusion and the cloud-adaptive loss CARL provides
the results that generalize best to different situations and also provide
reliable cloud-removal for both rather thick clouds and vegetated areas
which exhibit phenological changes. In the worst case, i.e. when the
scene is comprised of complex patterns and the cloud cover is optically
very thick, the network fails to provide a detailed and fully accurate
reconstruction (c.f. the urban example in Fig. 6). It has to be stressed
again, however, that the dataset used for training of the DSen2-CR
model is globally sampled, which means that the network needs to learn
a highly complex mapping from SAR to optical imagery for virtually
every land cover type existing. By restricting the dataset or fine-tuning
the model to a specific region or land cover type, it is expected that the
SAR-to-optical translation results would improve significantly.

6. Summary and conclusion

In this paper, we have presented a deep residual neural network for

cloud-removal in single-temporal Sentinel-2 satellite imagery. The main
features of the proposed approach are threefold: On the one hand, we
have incorporated a data fusion strategy to the cloud removal process in
order to provide further information about the surface characteristics of
the target scene based on Sentinel-1 SAR imagery. On the other hand,
we have proposed a cloud-adaptive loss to circumvent the problem that
cloud-affected and cloud-free training images can never be acquired at
the same time. Finally, we have trained our model on a dataset sampled
across the globe and over all meteorological seasons. Based on a de-
terministic split of training and test data, our experiments confirm the
generic applicability of the final cloud-removal model. Both qualitative
and quantitative results show that both the SAR-optical data fusion
component and the cloud-adaptive training loss help significantly to
predict reasonable cloud-free image content. In many cases, the pixel
spectra are also improved. Due to the free availability of both Sentinel-2
and Sentinel-1 satellite imagery for all regions of the Earth, it is ex-
pected that the presented cloud-removal approach will be beneficial to
a more temporally seamless monitoring of our environment.
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A Appendix: Publications

A.2 Multisensor data fusion for cloud removal in global
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Abstract— The majority of optical observations acquired via
spaceborne Earth imagery are affected by clouds. While there
is numerous prior work on reconstructing cloud-covered infor-
mation, previous studies are, oftentimes, confined to narrowly
defined regions of interest, raising the question of whether an
approach can generalize to a diverse set of observations acquired
at variable cloud coverage or in different regions and seasons.
We target the challenge of generalization by curating a large
novel data set for training new cloud removal approaches and
evaluate two recently proposed performance metrics of image
quality and diversity. Our data set is the first publically available
to contain a global sample of coregistered radar and optical
observations, cloudy and cloud-free. Based on the observation
that cloud coverage varies widely between clear skies and
absolute coverage, we propose a novel model that can deal with
either extreme and evaluate its performance on our proposed data
set. Finally, we demonstrate the superiority of training models
on real over synthetic data, underlining the need for a carefully
curated data set of real observations. To facilitate future research,
our data set is made available online.
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I. INTRODUCTION

ON AVERAGE about 55% of the Earth’s land surface is
covered by clouds [1], impacting the aim of missions,

such as Copernicus, to reliably provide noise-free observations
at a high frequency, a prerequisite for applications relying
on temporally seamless monitoring of our environment, such
as change detection or monitoring [2]–[5]. The need for
cloud-free Earth observations, hence, gave rise to a rapidly
growing number of cloud removal methods [6]–[12]. While
the aforementioned contributions share the common aim of
dehazing and declouding optical imagery, the majority of
methods are evaluated on narrowly defined and geospatially
distinct regions of interest (ROIs). Not only is this specificity
posing challenges for a conclusive comparison of methodology
but also, furthermore, may cloud-removal performance on a
particular ROI poorly indicate performances on other parts
of the globe or at different seasons. Moreover, it would be
desirable for a cloud removal method to be equally applicable
to all regions on Earth, at any season. This generalizability
would allow for large-scale Earth observation without the need
for costly redesigning or retraining for each individual scene
that a cloud removal method is meant to be applied to.

This concern is sustained by previous analysis demonstrat-
ing that landcover statistics differ across continents [13] and
cloud-coverage is highly variable depending on meteorological
seasonality [1]. A major reason for these issues, which is
still remaining open nowadays, is the current lack of available
large-scale data sets for both training and testing of modern
cloud removal approaches. In this work, we address this issue
by curating and releasing a novel large-scale data set for
cloud removal containing over 100 000 samples from over
100 ROIs distributed over all continents and meteorological
seasons of the globe. Especially, we address the challenge
of cloud removal in observations from Copernicus mission’s
Sentinel-2 (S2) satellites. While optical imagery is affected
by bad weather conditions and lack of daylight, sensors
based on synthetic aperture radar (SAR) as mounted on
Sentinel-1 (S1) satellites are not [14] and, thus, provide a valu-
able source of complementary information. Recent advances
in cloud removal combine multimodal data with deep neural
networks recovering the affected areas [6], [7], [12], [15].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Exemplary raw data and declouded images. Rows: S1 data
(in grayscale), S2 data (in RGB), predicted Ŝ2 data, and cloud-free (target)
S2 data. Columns: three different samples. The outcomes show that our model
learns to preserve optical data of cloudless areas while replacing cloudy
regions by the translation from the SAR domain.

However, many networks are trained on synthetic data or on
real data while making strong assumptions on the type and
amount of cloud coverage. Moreover, the majority of methods
do not explicitly model the amount of cloud coverage and
treat each pixel similarly, thereby making unneeded changes
to cloud-free areas.

In this work, we address the problem of cloud removal in
optical data by means of SAR-optical data fusion, as illustrated
in Fig. 1. To redeem the current lack of sufficiently sized
and heterogeneous Earth observation data for cloud removal,
we release a novel large-scale global data set of coregistered
optical cloudy, cloud-free, and SAR observations to train and
test the declouding methods. Our data set consists of over
100 000 samples, allowing the training of large models for
cloud removal and capturing a diverse range of observations
from all continents and meteorological seasons. In addition, we
propose a novel generative architecture that reaches competi-
tive performance, as evidenced by two very recently proposed
metrics of generated image goodness and diversity. Finally,
we show that synthetic data utilized in previous studies are a
poor substitute for real cloud coverage data, underpinning the
needs for the novel data set proposed in our work.

A. Related Work

The first deep neural architecture to reconstruct cloud-
covered images combined near-infrared and red-green-blue
(RGB) bandwidth optical imagery by means of a conditional

generative adversarial network (GAN) [6], motivated by
infrared bandwidth being to a lesser extent impacted by
cloud coverage. Subsequent studies replaced the infrared input
with SAR observations [7], [15] due to SAR microwaves
not being affected by clouds at all [14]. While the early
works of [6] and [7] provide a proof-of-concept solely on
synthetic data of simulated Perlin noise [16], the networks
of [8] and [15] were first to demonstrate performances on
real-world data, though focusing primarily on the removal
of filmy clouds. Comparable to these studies, we investigate
the benefits of SAR-optical data fusion for cloud removal.
Unlike the prior work, we address declouding on a carefully
curated data set of real imagery sampled over all conti-
nents and meteorological seasons, relying neither on synthetic
data nor making any strong assumptions about the type
and percentage of cloud coverage. Building on the previous
studies, the models of [8] and [17] replace the conditional
GAN by a cycle-consistent architecture [18], relaxing the
preceding models’ requirements for pixelwise corresponding
training data pairs. While [8] relies solely on cloudy optical
input data at inference time, only SAR observations are
utilized in [17]. Similar to these two networks, the model
that we propose uses a cycle-consistent GAN architecture.
We combine cloudy optical with SAR observations and extend
on the previous models by incorporating a focus on local
reconstruction of cloud-covered areas. This is in line with
very recent work [12], [19] that proposed an auxiliary loss
term to encourage the model reconstructing information of
cloud-covered areas in particular. The network of [12] is
noteworthy for two reasons: first, for departing from the
previous generative architectures by using a residual network
(ResNet) [20] trained supervisedly on a globally sampled data
set of paired data; second, for adding a term to the local
reconstruction loss that explicitly penalizes the model for
modifying off-cloud pixels. Comparable to [12], our network
explicitly models cloud coverage and minimizes changes to
cloud-free areas. Unlike the model of [12], our architecture
follows that of cycle-consistent GAN and has the advantage
of not requiring pixelwise correspondences between cloudy
and noncloudy optical training data, thereby also allowing
for training or fine-tuning on data where such a requirement
may not be met. Complementary to the SAR-optical data
fusion approach to cloud removal, recent contributions pro-
posed integrating information of repeated observations over
time [10], [11]. The work indicates promising results but trades
temporal resolution for obtaining a single cloud-free observa-
tion, whereas our approach predicts one cloud-free output per
cloudy input image and, thus, allows for sequence-to-sequence
translation. Moreover, current multitemporal approaches make
strong assumptions about the maximum permissible amount
of cloud-coverage affecting individual images in the input
time series, which is required to be no more than 25% or
50% of cloud coverage for the method of [10] and 10%–30%
in the work of [11]. Our curated data sets evidence that
such strict requirements on the percentage of cloudiness may,
oftentimes, not be met in practice. Consequently, our model
makes no assumptions on the maximum amount of tolerable
cloud coverage per observation and can gracefully deal with
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samples ranging from cloud-free to widely obscured skies due
to minimizing changes to cloud-free pixels and using SAR
observations unaffected by clouds.

II. METHODS

We propose a novel model to recover cloud-occluded infor-
mation in optical imagery. Our network explicitly processes a
continuous-valued mask of cloud coverage computed on the
fly, as described in Section II-A, to preserve cloud-free pixels
while making data-driven adjustments to cloudy areas. The
continues-valued assignment of each pixel in the processed
cloud mask can be interpreted as the likelihood of the pixel
being cloud-covered according to the cloud detector algo-
rithm of [21]. Our model explicitly processing cloud coverage
information is in contrast to previous generative architectures
that are agnostic to cloud-coverage [6], [8] and networks that
only utilize binary cloud mask information [12] as opposed to
more fine-grained continuous-valued masks proposed in this
work. A cycle-consistent generative architecture detailed in
Section II-B allows for training without the need for coreg-
istered cloudy and noncloudy observations of strict pixelwise
one-to-one correspondences compared with earlier approaches
that required strict pixelwise alignments [7], [15]. We adapt
the architecture to integrate SAR with optical observations
and propose a new auxiliary cloud map regression loss that
enforces sparse reconstructions to minimize modification on
cloud-free areas, as described in Section II-C.

A. Cloud Detection and Mask Computation

To evaluate the cloud coverage statistics of our collected
data set and model cloud coverage explicitly while reconstruct-
ing cloud-covered information, we compute cloud probability
masks m. The masks m are computed online for each cloudy
optical image and contain continuous pixel values within
[0, 1], indicating, for a given pixel, its probability of being
cloud-covered. We compute m via the classifier s2cloudless
of [21], which demonstrated cloud detection accuracies on
par with the multitemporal classifier MAJA [22], running on
single-shot observations. While s2cloudless originally applies
classification to compute a sparsified binary cloud mask,
we wish to obtain a continuous-valued cloud map. We, there-
fore, take the intermediate continuous-valued representation
of the pipeline of [21], then apply a high-pass filter to only
keep values above 0.5 intensity, and, finally, convolve with a
Gaussian kernel of width σ = 2 to get a smoothed cloud map
with pixel values in [0, 1]. We note that m may alternatively
be computed by a dedicated deep neural network [23], but our
solution is lightweight and, thus, perfect to support methods
running on very large data sets, at almost no additional compu-
tational cost in either memory or run time. Exemplary samples
of cloud probability masks are presented in Appendix A.

B. Architecture

The model proposed in this work follows the architecture
of cycle-consistent GAN [18], i.e., we use two generative
networks GS1→S2 and GS2→S1 that translate images from
the source domain of S1 to the target domain of S2, and

vice versa. Distribution Ṡ1 (or Ṡ2) denotes the target when
the generator performs a within-domain identity mapping,
preserving the input image’s sensor characteristics. For each
domain, there exists an associated discriminator network,
denoted as DS1 and DS2, respectively, classifying whether a
given image is a sample from the domain’s true distribution
S1 (or S2) or from the synthesized distribution Ŝ1 (or Ŝ2).
An overview of our model ensemble is given in Fig. 2.
While we keep the network GS2→S1 as in the original work,
we apply spectral normalization [24] to both discriminators
and make adjustments as follows: GS1→S2 receives an image
from domain S1 as input and is additionally conditioned on
the corresponding cloudy image from S2, as well as the cloud
probability mask m. For our cloud-removal network, we keep
the encoder–decoder architecture of the generator but add a
long-skip connection [20] such that the output is given by

Ŝ2 = GS1→S2(·) = tanh(S2 + S2res)

where S2res denotes the residual mapping learned by the
generator. To demodulate the effects of the output nonlinearity
on the long-skipped pixels, the inverse hyperbolic tangent is
applied to the cloudy input image from S2 before the residual
mapping. Furthermore, we insert a regression layer taking
the residual maps S2res as input and returning a prediction
m̂ of the cloud map m. The purpose of the regressor is to
enforce a meaningful relation between the learned S2res and
the conditioning m, making the residual maps sparse. Here,
sparseness refers to the residual maps being (close to) zero
over noncloudy areas, as opposed to having widespread small
values, which would indicate many unneeded changes made
to cloud-free pixels. We enforce sparseness of the residual
maps by formulating an L1 loss on the cloud mask regression,
as defined in Section II-A. The loss term effectively acts as a
regularizer on changes made to noncloudy areas, penalizing
unnecessary adjustments. The regression layer consists of
a [3 × 3] convolutional kernel mapping the generated 3-D
image to a single-channel map and, thus, adds little to the
overall number of learnable parameters. The architecture of
generator GS1→S2 is depicted in Fig. 3, and the details on its
parameterization are provided in Table I. Discriminator DS2
is well-conditioned on the cloud probability maps m. Impor-
tantly, we forward the (unpaired) noncloudy optical images to
the discriminator DS2, which learns the noncloudy patchwise
statistics and, thus, implicitly forces GS1→S2 to synthesize
cloud-free images. In sum, our main contribution with respect
to architectural changes is twofold. First, we adjusted the gen-
erator predicting cloud-free optical images to learn a residual
mapping by introducing a long-skip connection forwarding
optical information, removing the previous need to reconstruct
(even cloud-free) pixels from scratch. Second, our generator
learns to constrain modifications to cloud-covered pixels while
keeping clear areas unchanged, which is encouraged by intro-
ducing a novel layer regressing the cloud coverage map by the
learned residual map.

C. Losses

We adjust the losses such that regions regressed as
cloud-free in map m remain untouched, while cloudy areas are
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Fig. 2. Overview of our model ensemble based on cycle-consistent GANs [18]. The model consists of two generative networks G S1→S2 and G S2→S1 that
translate images from the source domain of S1 to the target domain of S2, and vice versa. Distribution Ṡ1 (or Ṡ2) denotes the target when the generator
performs a within-domain identity mapping, preserving the input image’s sensor characteristics. For each domain, there exists an associated discriminator
network, denoted as DS1 and DS2, respectively, classifying whether a given image is a sample from the domain’s true distribution S1 (or S2) or from the
synthesized distribution Ŝ1 (or Ŝ2). The network architectures are as in [18]—except for the generator G S1→S2, which is modified as detailed in the main
text and in Fig. 3. The losses Ladv,Lcyc,Lidt, and Laux are defined in Section II-C.

recovered given the information from domain S1. The losses
minimized by the generators are

Ladv = (DS1(Ŝ1) − 1)2 + (DS2(Ŝ2) − 1)2

Lcyc = �m · (S1 − S̆1)�1 + �(1 − m) · (S2 − S̆2)�1

Lidt = �m · (S1 − Ṡ1)�1 + �m · (S2 − Ṡ2)�1

Laux = �(1 − m) · (m − m̂)�1

Lall = λadvLadv + λcycLcyc + λidtLidt + λauxLaux

where λadv = 5.0, λcyc = 10.0, λidt = 1.0, and λaux = 10.0 are
the hyperparameters to linearly combine the individual losses
within Lall. The loss weightings are set similar to those in [18],
with minor adjustments made manually. Ladv is the adversarial
loss originally proposed in LSGAN [25], implementing a
least-squares error function on the classifications of the dis-
criminators DS1 and DS2. Lcyc and Lidt are introduced in [18]
but weighted pixelwise with the cloud map m. The purpose of
the cycle-consistent loss Lcyc is to regularizing the mapping
S1 → S2 by requiring S2 → S1 being able to reconstruct
the original input again (likewise for the direction S2 →
S1 → S2), constraining the potential mappings between both

domains. The idea behind Lidt is to motivate generators to
perform an identity mapping and limit unneeded changes in
case the provided input is a sample of the target domain.
Laux is the loss associated with the cloud map regression
in GS1→S2, introduced to enforce sparseness of the learned
residual feature maps S2res such that the noncloudy pixels of
S2 experience little to no adjustments. Our modified generator
architecture, the usage of probabilistic cloud maps, and the
adjusted losses are showcased in context of a cycle-consistent
GAN ensemble, but we remark that they may as well be used
within alternative models, such as conditional GAN [26] or
ResNet architectures [20].

III. EXPERIMENTS AND ANALYSIS

A. Data

To conduct our experiments, we gather a novel large-scale
data set called SEN12MS-CR for cloud removal. For this
purpose, we build upon the openly available SEN12MS data
set [27] of globally sampled coregistered S1 plus cloud-free
S2 patches and complement the data set with coregistered
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Fig. 3. Detailed architecture of the generator G S1→S2 of Fig. 2. The generator receives S1, m, and S2 as input, the latter of which is long-skip forwarded
and modified by the learned residual map S2res. The result is passed via a nonlinearity as input to the next network, or treated as output. In parallel, S2res is
regressing m to enforce sparseness of the residual map.

TABLE I

ARCHITECTURE OF OUR GENERATOR G S1→S2. THE ARCHITECTURE IS DIVIDED INTO FOUR COMPONENTS, AS ILLUSTRATED IN FIG. 3, AND

INFORMATION FLOW IS FROM LEFT TO RIGHT ACROSS COMPONENTS AND TOP TO BOTTOM WITHIN COMPONENTS. SYMBOLS: R (RELU),
N (INSTANCE NORMALIZATION), C (CONVOLUTION), AND T (TRANSPOSED CONVOLUTION). FOR (TRANSPOSED) CONVOLUTION,

THE PARAMETERIZATION IS (KERNEL HEIGHT × KERNEL WIDTH, NUMBER OF FILTERS, STRIDE, AND PADDING SIZE).
THE ARCHITECTURE OF GENERATOR G S2→S1 IS SIMILAR TO THE 9-RESNET BLOCK GENERATOR IN [18], AND

THE TWO DISCRIMINATORS ARE KEPT AS THE PATCHGAN DISCRIMINATORS IN [18]

cloudy images close in time to the original observations.
SEN12MS-CR consists of 169 nonoverlapping ROIs evenly
distributed over all continents and meteorological seasons.
The ROI has an average size of approximately 52 × 40 km2

ground coverage, corresponding to complete-scene images
of about 5200 × 4000 pixels. Each complete-scene image
is checked manually to ensure freedom of noise and arti-
facts. The cloud-free optical images of four exemplary ROI
observed in four different meteorological seasons are depicted
in Fig. 4 to highlight the heterogeneity of landcover captured
by SEN12MS-CR. Each scene in the data set is subsequently
translated into Universal Transverse Mercator coordinate sys-
tem and then partitioned into patches of size 256 × 256 pixels
with a spatial overlap of 50% between neighboring patches,
yielding an average of over 700 patches per ROI. Each patch
consists of a triplet of orthorectified, georeferenced cloudy, and
cloud-free 13-band multispectral Sentinel-2 images, as well as
the correspondent Sentinel-1 image (see Fig. 1 for the exam-
ples of SAR, cloud-free, and cloudy optical patch triplets).
Paired images of the three modalities were acquired within
the same meteorological season to limit surface changes.
The Sentinel-2 data are from the Level-1C top-of-atmosphere
reflectance product. Finally, each patch triples is automatically
controlled for potential imaging artifacts, and exclusively,
artifact-free patches are preserved to constitute the final
cleaned-up version of SEN12MS-CR.

Evaluating the cloudiness of each patch with the algorithm
of [21], as described in Section II-A, yields a mean cloud

coverage of circa 47.93% ± 36.08%, i.e., about half of all
the optical images’ information is affected by clouds and
the amount of coverage varies considerably. This amount of
coverage is notably close to the approximately 55% of global
cloud fraction over land that has previously been observed
empirically [1]. The distribution of cloud coverage is shown
in Fig. 5 and is relatively uniform over the entire domain, with
slightly more samples showing (almost) no clouds or being
entirely cloud-covered. Note that the computed cloud proba-
bility masks are not used to filter any observations or actively
guide the data set creation in any manner, and they are solely
used post hoc to quantify the distribution of cloudiness. For the
sake of comparability across models in our experiments and
for further studies, we define a train split and a split of hold-out
data, which is reserved for the purpose of testing. The train
split consists of 114 325 patches sampled uniformly across all
continents and seasons and is open to be entirely used for
training or in parts for training and validating. The test split
consists of 7893 geospatially separated images sampled from
ten different ROI distributed across all continents and meteo-
rological seasons, capturing a heterogeneous subset of data.

B. Experiments and Results

A total of three experiments are conducted. First, we train
our network and extend it by adding supervised losses for
the model to benefit of paired noncloudy and cloudy optical
observations in our data set at training time. We systematically
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Fig. 4. Cloudless S2 imagery of four exemplary ROI, illustrating the
diversity of SEN12MS-CR. The four different scenes are of four different
meteorological seasons from the test split of the data set. On average, an ROI is
split into over 700 patch samples, each observation of size 256 × 256 pixels.

Fig. 5. Statistics of cloud coverage of SEN12MS-CR. On average, approx-
imately 50% of occlusion is observed. The empirical distribution of cloud
coverage is relatively uniform and ranges from cloud-free views to total
occlusion.

vary the amount of available supervision to investigate its
effects on model performance. Second, we evaluate it against
a set of baseline models. Third, we retrain the architectures
from the previous experiment on synthetic data of generated
cloudy observations and evaluate them on real data in order to
quantify to which extent models trained on simulated data are
capable to generalize to real-world scenarios. To the best of
our knowledge, neither of these experiments has previously
been conducted in depth. All experiments were conducted
on a machine of 8 Intel Core i7-8700 CPU @ 3.20-GHz

processors, 16 GB of DIMM DDR4 Synchronous 2667-MHz
RAM, and an NVIDIA GeForce RTX 2080, running Ubuntu
18.04. Computation clock time for the training procedure may
vary according to the overall task load but is estimated to be
about seven days for model ours-0 and about 10–12 days for
model ours-100.

1) Metrics to Quantify the Goodness of Cloud Removal:
In order to evaluate model performances quantitatively, we uti-
lize the recently developed metrics of improved precision and
recall [28], as proposed in the context of generative modeling
and improving on previous metrics, such as Inception score
or Frechét Inception distance [29], [30]. Improved precision
and recall are measures of goodness quantifying similarities
between two sets of images in a high-dimensional feature
embedding space. Precision is a metric of sample quality,
assessing the fraction of generated images that are plausible
in the context of the target data distribution. In our context,
a generated image is plausible if its high-dimensional feature
embedding is sufficiently close to the high-dimensional fea-
ture embedding of a cloud-free target image. The distance
between both embeddings is sufficiently small if there is no
fixed number of neighbors closer to the target embedding
than the query embedding. For the formalities behind this
metric and motivation of the chosen parameterization, please
see Appendix B. Recall measures the diversity in generated
images and the extent to which the distribution of target data
is covered. Analogous to the metric of precision, a target
image is recalled if its high-dimensional feature embedding is
sufficiently close to the high-dimensional feature embedding of
a generated cloud-free image. Note that this allows interpreting
recall as a measure of generated image diversity as the metric
can score high only if the generated samples are spread
out in the feature embedding’s space and provide sufficient
coverage of the distribution of target images, capturing the
heterogeneity of the target images. To summarize, in the
context of our data set of Section III-A, precision specifies
the closeness of cloud-recovered information to its cloud-free
counterpart, whereas recall captures how well the declouded
images capture the heterogeneity of the test data (e.g., its
diversity in land-cover and seasonality).

While we emphasize the benefit of both measures to disen-
tangle image quality and image heterogeneity, we also define
the F1 score as

F1(X, Y ) = 2 · PR(X, Y ) · RC(X, Y )

PR(X, Y ) + RC(X, Y )

where X and Y are sets of images to be compared, and
PR and RC denote the functions of precision and recall,
respectively. In contrast to the first two experiments, the gen-
eration of synthetic data in the third experiment guarantees
a one-to-one pixelwise correspondence between cloudy and
ground-truth cloud-free images (i.e., perfect coregistration,
no atmospheric disturbances other than the simulated noise,
control for no landcover, and daylight changes between both
observations), ensuring that pixelwise metrics are well-defined.
Therefore, complementary to the previous measures of good-
ness, we additionally assess performances on synthetic data
in the third experiment by means of mean absolute error
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(MAE), root-mean-square error (RMSE), peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [31], and spectral
angle mapper (SAM) [32], as given by

MAE(x, y) = 1

C · H · W

C,H,W�

c=h=w=1

|xc,h,w − yc,h,w|

RMSE(x, y) =
���� 1

C · H · W

C,H,W�

c=h=w=1

(xc,h,w − yc,h,w)2

PSNR(x, y) = 20 · log10

�
1

RMSE(x, y)

�

SSIM(x, y) = (2μxμy + �1)(2σxy + �2)

(μx + μy + �1)(σx + σy + �2)

SAM(x, y) = cos−1

×
⎛
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⎞
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where x and y are images to be compared with pixel-values
xc,h,w, yc,h,w ∈ [0, 1], dimensions C = 3, H = W = 256,
means μx , μy , standard deviations σx , σy , covariance σxy , and
small numbers �1 and �2 to stabilize the computation. MAE
and RMSE both are pixel-level metrics quantifying the mean
deviation between target and predicted images in absolute
terms and units of the measure of interest, respectively. PSNR
is an imagewise metric to measure how good of a reconstruc-
tion in terms of signal-to-noise ratio a recovered image is
to a clear target image. SSIM is a second imagewise metric,
quantifying the structural differences between the target and
predicted images. It is designed to capture perceived change
in structural information between two given images, as well as
differences in luminance and contrast [31]. The SAM metric is
an imagewise measure, quantifying the spectral angle between
two images, measuring their similarity in terms of rotations in
the space of spectral bands [32]. Further technical information
with respect to the metrics utilized in our experiments to
quantify goodness of predictions is provided in Appendix B.

2) Quantifying the Benefits of Paired Data: First, we train
the architecture described in Section II without using any
pixelwise correspondences, as in a manner conventional for
cycle-consistent GAN. For our generative model, we consider
the VV and VH channels of images from the S1 domain
and add a third mean (VV and VH) channel to satisfy the
dimension-preservation requirement of cycle-consistent archi-
tectures. For images from the S2 domain, all multispectral
information is used when computing cloud probability maps,
while the S1–S2 mapping uses exclusively the three RGB
channels. All images are value-clipped and rescaled to contain
values within [−1, 1], while the cloud probability map values
are within [0, 1]. Value-clipping is within ranges [−25; 0]
and [0; 10 000] for S1 and S2, respectively. Notably, before
training, we perform an imagewise shuffling of the optical
data of paired cloudy and cloud-free observations to remove
the pixelwise correspondences satisfied when cloudy and
cloud-free patches would be available as sorted tuples. That
is, the optical cloudy and noncloudy patches presented at
one training step may be no longer strictly aligned or could

TABLE II
EFFECT OF PERCENTAGE OF PAIRED TRAINED DATA ON PERFORMANCE

OF CLOUD REMOVAL MODEL. THE MORE THE PAIRED TRAINING DATA
IS AVAILABLE, THE BETTER THE RESULTING PERFORMANCES

reflect differences in landcover and atmosphere, reflecting
practical challenges commonly encountered when gathering
data for remote sensing applications. We train our network
on a 10 000 images multiregion subset of the training split
introduced in Section III-A. Network weights w are initialized
by sampling from a Gaussian distribution w ∼ N (μ = 0,
σ 2 = 0.02). The optimizer and the hyperparameters for the
optimizer and loss weightings are set as in [18]: We use
ADAM with an initial learning rate �lr = 0.0002, momentum
parameters β = (0.5, 0.999) for computing sliding averages
of the gradients, and their squares and a small constant of
10−8 added to the denominator to ensure numerical stability
of the optimizer. Instance normalization [33] is applied to the
generators as in the original architecture [18], with adjustments
detailed in Fig. 3 and Table I. Spectral normalization [24] is
applied to the discriminators as in [34] in order to prevent
mode collapse during training [35]. The networks are trained
for niter = 50 epochs at the initial learning rate of �lr
and then for another ndecay = 25 epochs with a multiplica-
tive learning rate decay given by lrdecay(ncurrent) = 1.0 −
max(0, 1 + ncurrent − niter)/(ndecay + 1), where ncurrent denotes
the current epoch number. The gentle learning rate decay
over a long period of epochs serves to ensure a well-behaved
optimization process during training [18], [35]. All our gen-
erator networks are trained on center-cropped 200 × 200 px2

patches but tested on full-sized 256 × 256 pixels patches
of the hold-out split, as the generator architecture is fully
convolutional. As proposed in [36] and implemented in [18],
we maintain two pools of the last 50 generated images to
update the discriminators with a random sample from the
respective image buffers such that oscillations during training
are reduced [18], [35]. Representative qualitative outcomes are
depicted in Fig. 1. The results highlight that our model can
reconstruct cloud-covered areas while preserving information
that is not obscured. A quantitative evaluation of the described
model (ours-0) is given in Table II.

Second, we retrain the model, as described earlier, but on
paired cloudy–cloudless optical observations in order to assess
the benefits of paired training data, as provided by our data set.
To let the cycle-consistent architecture described in Section II
benefit of paired training data, we combine the losses defined
in Section II-C with cost functions defined on paired images:
first, a pixelwise L1 loss penalizing prediction errors between
generated and paired target images as in [37]; second, per-
ceptual losses for features and style [38], as evaluated on
the features extracted at ReLU layers 11, 20, and 29 of an
auxiliary pretrained VGG16 network [39]. We retrain our
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network with these losses and systematically vary the percent
of paired cloudy and cloud-free optical data available. The
paired patches are equally spaced across the training split at
the beginning of the training procedure, and patch pairings
are fixed across epochs. During training, the presentation of
paired and unpaired samples occurs in random order. Table II
shows the different models’ performances. The base model
trained on unpaired data (ours-0) performs worst, while the
model fully trained on paired samples (ours-100) achieves the
best performances. In general, the more paired samples are
available the better the model performs.

3) Model Ablation Experiment: To put the results of
the previous experiment into perspective and further eval-
uate the factors benefiting the robust reconstruction of
cloud-covered information, we conduct an ablation study.
Especially, we investigate the effectiveness of the novel
cloud detection mechanism explained in Section II-A and
the local cloud-sensitive loss introduced in Section II-C. For
this purpose, we retrain the model ours-0, as described in
Section II, but omit the cloud-sensitive terms by fixating
the values of all pixels in the cloud probability masks m
to 1.0. The effect of this is that the ablated model is no
longer encouraged to minimize the changes to areas free of
cloud coverage, thus potentially resulting in unneeded changes.
As additional baselines, we evaluate the goodness of simply
using the S1 observations (VV- or VH-polarized), as well as
cloud-covered S2 images as predictions and comparing against
their cloud-free counterparts. Table III reports the declouding
performance of baseline models and our models (0% and
100% paired data from Table II). Our network of 100% paired
data performs best in terms of precision and F1 score. The raw
S1 and S2 observations perform relatively poorly, except for
the cloudy optical images scoring high on image diversity due
to random cloud coverage. While it may be useful to consider
the raw data as baselines, it is necessary to keep in mind
that modalities, such as SAR, maybe at a disadvantage when
directly comparing against the cloud-free optical target images.

4) Assessing the Goodness of Synthetic Data: To com-
pensate for the lack of any large-scale data set for cloud
removal, previous works simulated the artificial data [6], [7],
[10], [40], [41] of synthetic cloudy optical images. This raises
the question of the goodness of the simulated observations,
i.e., how good of an approximation such simulations are to any
real data. In this experiment, we consider the two architectures
ours-0 and ours-100 from Table III and retrain them on
synthetic data to subsequently evaluate the retrained models
on the real test data and assess if performance generalizes to
real-world scenarios. Two approaches to generating synthetic
data are evaluated.

1) Perlin: We generate cloudy imagery via Perlin noise [16]
and alpha-blending as in the preceding studies of [6], [7],
and [40]. This approach has the limitation of adding
Perlin noise to all of the multispectral bandwidths
evenly, due to lack of a better physical model of mul-
tispectral cloud noise. Since cloud detectors trained on
real observations are expected to fail in such a case,
we substitute the cloud map of Section II-A by the
synthesized alpha-weighted Perlin noise.

TABLE III

CLOUD-REMOVAL PERFORMANCE OF BASELINE METHODS AND OUR

MODELS ON TEST SPLIT OF SEN12MS-CR. ROWS S1 VV AND

VH REFER TO THE RAW S1 IMAGE, CHANNELS VV AND VH,

RESPECTIVELY, COMPARED WITH THE GRAY-SCALE

CLOUD-FREE S2 IMAGE. S2 CLOUDY REFERS TO THE

RAW CLOUDY S2 IMAGE COMPARED WITH THE RGB

CLOUD-FREE S2 IMAGE. ALL MODELS’ METRICS

BEAT THE LOWER-BOUND PERFORMANCES

ESTABLISHED BY THE RAW DATA, EXCEPT

ON THE RECALL METRIC. THE FULL MODELS

PERFORM BETTER THAN THE ABLATION

MODELS WITHOUT THE CLOUD-SENSITIVE

LOSS AND CLOUD PROBABILITY MASKS.

MODEL OURS-100 PERFORMS BEST IN

TERMS OF PRECISION AND F1 SCORE.

NOTE THAT THE RESULTS DEPICT A

PRONOUNCED TRADEOFF BETWEEN

PRECISION AND RECALL, AS

ANALYZED, IN DETAIL, IN [28]

2) Copy: We generate cloudy imagery by taking the
ground-truth cloud-free optical observations and com-
bine them via alpha-blending with clouded observa-
tions as in the approach of [10]. Different from [10],
we benefit from our curated data set and alpha-blend
paired cloudy–cloudless observations, whereas the
prior study mixed the two unrelated images. More-
over, we alpha-blend weighted by the cloud map of
Section II-A, whereas the original study alpha-blended
via sampled Perlin-noise. We believe that these modi-
fications better preserve the spectral properties of real
observations and keep cloud distribution statistics closer
to that of real data, as shown in Figs. 6 and 7.

Furthermore, this allows for synthesizing coverage ranging
from semitransparent to fully occluded clouds, which would
be less straightforward on unpaired observations. Exemplary
observations generated by both simulation approaches and
empirical observations are presented in Fig. 6.

The outcomes of this experiment are presented in Table IV.
For all data simulation approaches, training a network on
generated data and, subsequently, evaluating it on synthetic test
data are overestimating the performances on the corresponding
real test data. This observation holds for both models evaluated
in the experiment. The models display a drop in performance
when moving from synthetic to real testing data. The drop
being considerably smaller in the case of copy–paste data
than for Perlin noise data may be due to the copy-pasted
data closer resembling the real data and its underlying sta-
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Fig. 6. Exemplary cloud-free, real cloudy, and generated cloudy optical
observations. Rows: cloud-free S2 data (plotted in RGB), real cloudy S2 data,
real cloud coverage maps (same for copy–paste), Perlin-noise simulated
cloudy S2 data, Perlin-noise cloud coverage maps, and copy–paste simulated
cloudy S2 data. Columns: three different samples.

Fig. 7. Exemplary cloudy optical observations and cloud maps. Rows: cloudy
S2 data and cloud probability masks. Columns: four different samples.

tistics of cloud coverage and spectral distributions. In this
context, it is instructive to investigate spectral distortions by
means of SAM, which indicates that models trained and
tested on synthetic data are considerably poorer to predict
spectral distributions on Perlin-simulated data compared with
the copy-pasted observations, which is arguable more alike

TABLE IV

CLOUD-REMOVAL PERFORMANCE OF MODELS OURS-0 AND

OURS-100 FROM TABLE III, RETRAINED ON SYNTHETIC CLOUD

DATA (EITHER PERLIN-SIMULATED OR COPY-PASTED) AND

TESTED ON SYNTHETIC AND REAL DATA. BOTH MODELS,

WHEN TRAINED ON SYNTHETIC DATA, PERFORM MUCH

BETTER ON SYNTHETIC TEST DATA THAN ON REAL

TEST DATA. IMPORTANTLY, THE TEST PERFORMANCE

OF MODELS TRAINED ON SYNTHETIC AND TESTED ON

REAL DATA IS CONSIDERABLY POORER THAN THAT

OF THE SAME ARCHITECTURES TRAINED ON

REAL DATA (REPORTED IN TABLE III)

to real data in terms of its spectral properties. The findings
in this experiment underline the need for synthetic data to
closely capture the properties of real data, yet even when
real and synthetic observations may be hardly distinguishable
by eye (as the examples shown in Fig. 6), there persist
important discrepancies unaccounted for, which hinders the
models trained on synthetic sampled to perform equally on
real data.

IV. DISCUSSION

The contribution of our work is in providing a large-scale
and global data set for cloud removal and developing a new
model for recovering cloud-covered information to highlight
the data sets benefits. With over 55% of the Earth’s land
surface covered by clouds [1], the ability to penetrate cloud
coverage is of great interest to the remote community in order
to obtain continuous and seamless monitoring of our planet.
While the focus in this work is on providing the first glob-
ally sampled multimodal data set for general-purpose cloud
removal, future research should also address the benefits of
cloud removal approaches for particular applications common
in remote sensing. An example application is in semantic
segmentation, which necessitates clear-view observations for
accurate land-cover classification. Another, in the context of
having consecutive observations over time, would be change
or anomaly detection where cloud removal methods may be
beneficial particularly for the purpose of early stage detection,
which could, otherwise, be delayed in the presence of clouds.
A limitation of our proposed cloud removal model is its
restriction to work on a subset of the optical observation’s
spectral bands. While this constraint is required due to the
choice of the network architecture as necessitated by our
experiments conducted, we are certain that it will be beneficial
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for future research to consider the full spectral information.
To allow for this, our curated global data set is released with
all available information for both modalities, including the full
spectrum of bands for the optical observations.1

V. CONCLUSION

We demonstrated the declouding of optical imagery by
fusing multisensory data, proposed a novel model, and released
the, to the best of our knowledge, first global data set com-
bining over a 100 000 paired cloudy, cloud-free, and coregis-
tered SAR sample triplets. Statistical analysis of our data set
shows a relatively uniform distribution of cloud coverage, with
clear images occurring just as probable as wide and densely
occluded ones—indicating the need for flexible cloud removal
approaches to potentially handle either case. Our proposed
network explicitly models cloud coverage and, thus, learns
to retain cloud-free information while as well being able to
recover information of areas covered by wide or dense clouds.
We evaluated our model on a globally sampled test set and
measure the goodness of predictions with recently proposed
metrics that capture both prediction quality and coverage of
the target distribution. Moreover, we showed that our model
benefits from supervised learning on paired training data as
provided by our large-scale data set. Finally, we evaluated the
goodness of synthetically generated data of cloudy–cloudless
image pairs and show that great performance on synthetic
data may not necessarily translate to equal performance on
real data. Importantly, when testing on real data, the networks
trained on real observations consistently outperform models
trained on synthetic observations, indicating the existence of
properties of the real observations not modeled sufficiently
well by the simulated data. This underlines the need for
a set of real observations numerous enough to train large
models, as provided by the data set released in this work.
In further studies, we will address the fusion of multitemporal
and multisensory data, combining and comparing across both
currently segregated approaches. To support future research
and make contributions comparable, we share our global data
set of paired cloudy, cloud-free, and coregistered SAR imagery
and provide our test data split for benchmarking purposes.

APPENDIX A
CLOUD DETECTION

We present exemplary cloudy optical observations and cloud
maps in Fig. 7. The cloud masks are as predicted by our cloud
detection pipeline detailed in Section II-A. The illustrated
examples show that our proposed method can reliably detect
clouds and provide continuous-valued cloud masks.

APPENDIX B
IMPROVED PRECISION AND RECALL

We provide a definition of improved precision and
recall in line with the definitions in [28]. For further

1The SEN12MS-CR data set is shared under the CC-BY 4.0 open access
license and available for download provided by the library of the Techni-
cal University of Munich (TUM): https://mediatum.ub.tum.de/1554803. This
article must be cited when the data set is used for research purposes.

details, the interested reader is referred to the original
publication.

Definition (Improved Precision and Recall [28]): Let
Xr ∼ Pr and Xg ∼ Pg denote paired samples drawn from
the real and generated distributions of cloud-free images,
where Pg is the distribution learned by the generator network
whose quality is to be assessed. Each sample is mapped via
an auxiliary pretrained network M2 in a high-dimensional
feature space to obtain latent representations φr = M(Xr ) and
φg = M(Xg) such that the two sets of samples are mapped
into two feature sets �r and �g . A distribution P ∈ {Pr , Pg}
is approximated by computing pairwise distances between
feature embeddings of the observed samples � ∈ {�r ,�g}
and, centered at each feature φ ∈ �, forming a hypersphere
with a radius corresponding to the distance to its kth nearest
neighbor embedding Nk(φ). Hence, whether an embedded
sample φ falls on manifold � or not is given via

f (φ,�) =
�

1, if ∃φ� ∈ � : �φ − φ�� ≤ �φ� − Nk(φ
�)�2

0, else.

The fraction of samples that fall on the paired distribution’s
manifold are then defined in [28] as

precision(�r ,�g) = 1

|�g|
�

φg∈�g

f (φg,�r )

recall(�r ,�g) = 1

|�r |
�

φr ∈�r

f (φr ,�g).

We set parameters |�| = 7893 corresponding to the size of
the test split of SEN12MS-CR and k = 10 because every
sample has up to 50% overlap with its neighboring samples.
This setting removes the paired target itself plus its eight
overlapping samples when computing Nk(φ).

APPENDIX C
CLOUD COVERAGE STATISTICS ON TEST SPLIT

In addition to the cloud coverage statistics on the entire data
set, as reported in Section III-A, Fig. 8 provides the empirically
observed distribution of cloud coverage on the data sets test
split. Even though the histogram of the test split is less smooth
than that of the complete data set due to the test split being
much smaller, both distributions are considerably alike.

APPENDIX D
EXEMPLARY PROBLEMATIC CASES

For the sake of completeness, we discuss cases that we con-
sider challenging for cloud removal approaches, specifically
our method, and present exemplary data and predictions of
such cases in Fig. 9. We consider the following challenges.

1) Changes in landcover, atmosphere, day time acquisition,
or seasonality that may occur between (visible parts of)
the cloudy reference image and the cloud-free target
optical image. While our data set is curated to minimize
such cases by selecting observations that are close in

2Here, VGG16 [39], with features extracted at the second fully connected
layer, as argued for in [42]. Metric evaluation on alternative pretrained
networks has shown to provide virtually identical results [28].
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Fig. 8. Statistics of cloud coverage of test split of SEN12MS-CR. As for
the statistics on the complete data set, an average of circa 50% of occlusion
is observed.

Fig. 9. Exemplary cases posing challenges to our cloud-removal
approach. Rows: S2 data (in RGB), predicted cloud map m, predicted Ŝ2
data, and cloud-free (target) S2 data. Columns: three different samples.
Reconstructing optical information obscured by clouds is a hard problem.
Among the challenges faced by cloud removal approaches may be: 1) overtime
changes in landcover, atmosphere, day time acquisition, or seasonality;
2) precise detection of clouds with few misses and false alarms; and 3) correct
reconstruction of information fully covered by large and dense clouds.

time, strict ground-truth correspondence is challenging
to establish and may only be guaranteed by simulating
synthetic data as in experiment III-B4.

2) Precise detection of clouds and accurate cloud masks
that minimizes false alarms and misses. With respect to
our cloud detection algorithm, there exist cloud masks

where, even for completely cloud-free images, pixels
are assigned a nonzero (albeit rather low) probability
of being cloudy.

3) Correct reconstruction of cloud-covered information.
In particular, for the case of complete coverage by large
and dense clouds, this is a very challenging problem.
We observed the cases where the information recon-
structed by our model did not match the target images;
for instance, urban-like landcover was predicted in place
of agricultural areas.
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A B S T R A C T

The challenge of the cloud removal task can be alleviated with the aid of Synthetic Aperture Radar (SAR)
images that can penetrate cloud cover. However, the large domain gap between optical and SAR images
as well as the severe speckle noise of SAR images may cause significant interference in SAR-based cloud
removal, resulting in performance degeneration. In this paper, we propose a novel global–local fusion based
cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images.
Exploiting the power of SAR information to promote cloud removal entails two aspects. The first, global
fusion, guides the relationship among all local optical windows to maintain the structure of the recovered
region consistent with the remaining cloud-free regions. The second, local fusion, transfers complementary
information embedded in the SAR image that corresponds to cloudy areas to generate reliable texture details
of the missing regions, and uses dynamic filtering to alleviate the performance degradation caused by speckle
noise. Extensive evaluation demonstrates that the proposed algorithm can yield high quality cloud-free images
and outperform state-of-the-art cloud removal algorithms with a gain about 1.7 dB in terms of PSNR on
SEN12MS-CR dataset.

1. Introduction

Earth observation through satellites plays a vital role in under-
standing the world, and has attracted attention from a wide range of
communities (Xia et al., 2018; Requena-Mesa et al., 2021; Girard et al.,
2021). However, optical satellite images are often contaminated by
clouds, which obstruct the view of the surface underneath, as shown
in Fig. 1(a). A study conducted by the MODIS instrument shows that
the overall global cloudiness is roughly 67% and the cloud fraction
over land is about 55% (King et al., 2013). Thus, cloud removal
becomes an indispensable pre-processing step for applications relying
on data streams of continuous monitoring (Ebel et al., 2021). Due
to the erasure of textures in cloud-covered regions, the task of cloud
removal is severely ill-posed. Benefiting from Synthetic Aperture Radar
(SAR) (Bamler, 2000) (as shown in Fig. 1(b)), which is not affected
by clouds due to its advantage of strong penetrability and measures
the backscatter, the challenge of cloud removal can be essentially
alleviated. However, the recovery of high-quality cloud-free images
with the aid of SAR images is nevertheless a challenging problem due
to the following issues:

∗ Corresponding authors.
E-mail addresses: yangwen@whu.edu.cn (W. Yang), xiaoxiang.zhu@tum.de (X.X. Zhu).

• Domain Gap. SAR and optical images reveal different character-
istics of observed objects due to their different imaging mecha-
nisms, and thus a large domain gap exists between them (Schmitt
et al., 2017; Liu and Lei, 2018). Transferring the complementary
information from a SAR image to compensate for the missing
information in cloudy regions is non-trivial.

• Speckle Noise. SAR images exhibit bright and dark pixels, i.e.,
speckle noise, which is uneven, even for homogeneous regions (Yu
et al., 2018; Zhu et al., 2021). Moreover, the speckle noise usually
exists in the same wave front as the surface information of the
target. This undesirable effect leads to performance degradation
on reconstruction (Fuentes Reyes et al., 2019; Liu et al., 2021b).

A few SAR-based cloud removal methods to learn to transfer the
concatenation of multi-modal images to cloud-free images have been
proposed (Gao et al., 2020; Meraner et al., 2020; Ebel et al., 2021).
However, the pixel-to-pixel translation does not take into account
the long-range varying contextual information of the cloud-free re-
gions, leading to texture and structure discrepancies. Furthermore,
this concatenation method only partially explores the interactions or
correlations between optical and SAR data, in which complementary

https://doi.org/10.1016/j.isprsjprs.2022.08.002
Received 26 April 2022; Received in revised form 4 July 2022; Accepted 6 August 2022
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Fig. 1. Illustrative example of SAR-based cloud removal on a large scale cloudy image. (a) Cloudy optical image; (b) SAR image; (c) result of DSen2-CR (Meraner et al., 2020);
(d) result of our proposed GLF-CR; (e) cloud-free image. The GLF-CR can restore images with more details and fewer artifacts. The size of each image is 1000 × 1000 pixels.

information cannot be effectively transferred. Moreover, simply stack-
ing multi-modal images is susceptible to speckle noise, which hinders
the cloud removal performance.

To tackle the issues and limitations above, we propose a novel
global–local fusion-based cloud removal (GLF-CR) algorithm by ex-
ploring the full potential of SAR image. It has been shown that SAR
images help to recover texture details by compensating for the missing
information in cloudy regions (Meraner et al., 2020). In addition, since
a SAR image is not obscured by clouds, it contains reliable global con-
textual information that can provide valuable guidance for capturing
global interactions between contexts to maintain global consistency
with the remaining cloud-free regions. Specifically, GLF-CR contains
two parallel backbones developed for optical and SAR image represen-
tation learning, where SAR features are used in a hierarchical manner
to compensate for the loss of information. Inspired by Transformer
architectures (Vaswani et al., 2017) that can capture global interactions
between contexts, we propose a SAR-guided global context interaction
(SGCI) block in which SAR features are used to guide the interactions of
global optical feature. Furthermore, a SAR-based local feature compen-
sation (SLFC) block is proposed to transfer complementary information
from the corresponding regions in the SAR features to the optical
features, where dynamic filtering is used to handle speckle noise.
Consequently, the proposed algorithm can generate knowledgeable
features with comprehensive information, thereby yielding high-quality
cloud-free images.

To sum up, the contributions of this work are three-fold:

• We propose a novel SAR-based cloud removal algorithm, GLF-CR.
It incorporates the contribution of SAR to restoring reliable tex-
ture details and maintaining global consistency, thus enabling the
region occluded by cloud cover to be effectively reconstructed.

• We propose a SAR-guided global context interaction (SGCI) block,
in which the SAR feature is used to guide the global interac-
tions between contexts in order to ensure that the structure of
the recovered cloud-free region is consistent with the remaining
cloud-free regions.

• We propose a SAR-guided local feature compensation (SLFC)
block to enhance the transference of complementary information
embedded in the SAR image while avoiding the influence of
speckle noise, and thus generate more reliable texture details.

2. Related work

Cloud Removal. Cloud removal aims to reconstruct the missing infor-
mation caused by clouds in optical satellite imagery. Early attempts
address this problem by assuming the corrupted regions and the re-
maining regions share the same statistical and geometrical structures.
They view cloud removal as an inpainting task and use the information
around the corrupted regions to predict the missing data (Chan and

Shen, 2001; Maalouf et al., 2009). Many recent studies learn the
mapping between cloudy and cloud-free images by benefiting from the
remarkable generative capabilities of Generative Adversarial Networks
(GANs) (Singh and Komodakis, 2018; Wen et al., 2021; Zi et al., 2022).
These methods fail to make accurate inferences when the corrupted
region occupies a large portion of the image. To mitigate this prob-
lem, a series of studies make use of multispectral data to recover
the missing information (Shen et al., 2013; Xu et al., 2015; Enomoto
et al., 2017). For example, McGANs (Enomoto et al., 2017) and CR-
GAN-PM (Li et al., 2020) utilize additional near-infrared (NIR) images,
which process higher penetrability through clouds, to improve visibil-
ity. However, as the thickness of clouds increases, all the land signals
in the optical bands are obstructed. Consequently, multitemporal-based
approaches have been proposed to restore the missing information with
data from other time periods (Scarpa et al., 2018; Shen et al., 2019;
Zhang et al., 2021; Gao et al., 2021; Ebel et al., 2022). However, when
encountering continual cloudy days, cloud-free reference data from an
adjacent period is largely unavailable.

Synthetic Aperture Radar (SAR) images are cloud-penetrable and
thus provide missing information due to optically impenetrable clouds
(Bamler, 2000). There is promising potential in SAR-to-optical image
translation. Some researchers have tried to generate optical images
directly from SAR (Bermudez et al., 2018; Fuentes Reyes et al., 2019).
However, since SAR lacks spectrally resolved measurements, there are
domain-specific potentials and peculiarities that cannot be compen-
sated. It is challenging to guarantee the quality of the generated optical
image translated from a SAR image. Recently, a few studies have ex-
plored the means of SAR-optical data fusion, exploiting the synergistic
properties of the two imaging systems to guide cloud removal. Meraner
et al. (2020) concatenate the SAR image to the input optical image
and use a deep residual neural network to predict the target cloud-
free optical image. Gao et al. (2020) utilize a two-step approach, first
translating the SAR image into a simulated optical image, and then
concatenating the simulated optical image, the SAR image, and the
optical image corrupted by clouds to reconstruct the corrupted regions
using the generative adversarial network (GAN). Experiments have
verified the usefulness of SAR-optical data fusion, but its gain is limited
because the concatenation approach has limited ability to utilize the
complementary information from the SAR image. To boost the gain
that comes with the additional SAR information, we propose a novel
cloud removal algorithm, GLF-CR, which incorporates the contribution
of SAR to restoring reliable texture details and maintaining global
consistency to compensate for information loss in cloudy regions.
Image Restoration. Cloud removal is essentially an image restoration
task in which a high-quality clean image is reconstructed from a low-
quality, degraded counterpart. Recent advances in image restoration
follow convolutional neural network (CNN), and numerous CNN-based
models have been proposed to improve restoration performance (Zhang
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et al., 2018a, 2020; Wang et al., 2021). Global context plays an im-
portant role in local pixel-wise recovery. However, convolution is not
effective for long-range dependency modeling under the principle of
local processing (Liang et al., 2021). To ensure visually consistent
restoration results, a series of research focuses on the attention mech-
anism to obtain global dependency information. Wang et al. (2019)
exploit a two-round four-directional IRNN architecture to accumu-
late global contextual information. Zheng et al. (2019) introduce a
short+long term attention layer to ensure appearance consistency in
the image domain. Recently, Transformer that employs a self-attention
mechanism to capture global interactions between contexts (Liu et al.,
2021c) has been proposed and shows promising performance in image
restoration (Liang et al., 2021). While the task of SAR-enhanced cloud
removal studied in this paper needs to integrate both the information
from the degraded image itself and the information from auxiliary SAR
image, which is more challenging.

Most existing cloud removal methods are carried out by extending
the input channels of the popular CNN architectures. For example,
McGAN (Enomoto et al., 2017) extends the input channels of the
conditional Generative Adversarial Networks (cGANs) so that they are
compatible with multispectral images. DSen2CR (Meraner et al., 2020)
is derived from the EDSR network (Lim et al., 2017), and concatenates
the SAR’s channels and the other channels of the input optical image
as input. These architectures are usually designed for tasks like super-
resolution and motion deblurring, where the local information from the
original low-quality image is only partially lost. For the cloud removal
task, all the local information in the area covered by thick clouds is
missing because the clouds completely corrupt the reflectance signal.
Thus, the cloud removal methods extended from these architectures
have limited ability to fully utilize the spatial consistency between
the cloudy and the neighboring cloud-free regions. In comparison, the
architecture presented in this work is designed to integrate the global
context information under the guidance of the SAR image.
Multi-Modal Data Fusion. Commonly used fusion strategies include
element-wise multiplication/addition or concatenation between differ-
ent types of features (Sun et al., 2019; Fu et al., 2020; Xu et al., 2021);
this multi-modal data fusion yields limited performance gain (Wu and
Han, 2018; Audebert et al., 2018; Liu et al., 2021a). To better exploit
the complementary information of the auxiliary data, Hazirbas et al.
(2016) propose FuseNet for semantic segmentation. FuseNet contains
two branches to extract features from the RGB and depth images,
and constantly fuses them via element-wise summation. Liu et al.
(2021a) propose an information aggregation distribution module for
crowd counting, which consists of two branches for modality-specific
representation learning (i.e., RGB and thermal image) and an additional
branch for modality-shared representation learning. It dynamically en-
hances the modality-shared and modality-specific representations with
a dual information propagation mechanism. These methods increase
the utilization of complementary information of auxiliary data. Nev-
ertheless, little consideration has been given to SAR-optical data fusion
for cloud removal, the specific challenges of which are addressed and
resolved in this work.

3. Problem statement

Given a cloudy image 𝐼 defined over  ≜  +  with  and 
respectively denoting the cloud-covered and cloud-free regions, the task
of cloud removal aims at restoring the cloud-covered region of the
image, i.e., 𝐼 . Generally, this task is severely ill-posed due to the
missing information caused by clouds in optical satellite observations.
Inpainting. The basic strategy is to infer the cloud-covered region 𝐼
from the cloud-free part 𝐼, and thus it can be considered as inpainting
task, i.e.,

𝐼 = 𝐅INP(𝐼;𝑆(𝐼)), (1)

where 𝐅INP is an inpainting operator conditioned by latent structures
of the whole image, i.e., 𝑆(𝐼). Specifically, 𝑆(𝐼) represents priors of
images, e.g., smoothness, non-local similarities, or learned features
embedding from data, with which the task of cloud removal is tractable.
However, latent structures of 𝑆(𝐼) are not generally holistic or are even
unavailable in a cloud removal task when the cloud-covered region is
dominant, leading to the failure of reconstruction if only a cloudy image
𝐼 is utilized.
Translation. The SAR image 𝐵 is cloud free and can provide a valuable
source that compensates for the information missing from the cloudy
region. Inspired by the great success in style transfer work achieved by
deep learning, existing SAR-based cloud removal methods mainly trans-
late the SAR image to an optical image to remove clouds pixel-by-pixel:

𝐼 = 𝐅TRF(𝐵 ;𝑅(𝐵, 𝐼)), (2)

where 𝐅TRF is a transfer operator conditioned by the inherent re-
lationship between SAR image 𝐵 and optical image 𝐼 , i.e., 𝑅(𝐵, 𝐼).
Specifically, 𝑅(𝐵, 𝐼) represents the cross-modality transferring, which
is usually learned from the dataset using the generative adversarial
network (GAN) by feeding the stack of multi-modal data channels.
However, the pixel-by-pixel translation does not take the spatial con-
sistency between the cloudy and neighboring cloud-free regions into
consideration. It consequently leads to the failure to maintain global
consistency. Moreover, its method of stacking the channels of SAR and
optical images is somewhat straightforward but only partially explores
interactions or correlations between multi-modal data. It thus leads to
limited performance improvement despite the assistance of the SAR
images. And it is further influenced by the speckle noise in the SAR
images, leading to reconstruction error.

Thus the main obstacles to boosting cloud removal performance are
two-fold.

• The network should effectively transfer the complementary infor-
mation from SAR image 𝐵 to the optical image while overcoming
the influence of its speckle noise to generate reliable texture
details.

• The surface information from the cloud-free region 𝐼 should be
considered to maintain the structure of the recovered cloud-free
region consistent with the remaining cloud-free regions.

Global–Local Fusion. Thus the task of SAR-enhanced cloud removal
is to develop an operator 𝐅fusion conditioned by both the inherent
relationship between SAR and optical images and latent structures of
the whole image, i.e.,

𝐼 = 𝐅fusion(𝐼, 𝐵 ;𝑆(𝐼∕𝐵), 𝑅(𝐵, 𝐼)), (3)

where 𝑆(𝐼∕𝐵) is the non-local context information of the cloudy image
learned under the guidance of SAR image. Since the SAR image is not
affected by cloud cover, it can provide valuable guidance for capturing
global interactions between contexts, so as to maintain the structure of
the recovered cloud-free region consistent with the remaining cloud-
free regions. 𝑅(𝐵, 𝐼) in 𝐅fusion is different from its counterpart in 𝐅TRF,
which incorporates the information of the SAR image by stacking its
channels to the optical image. We propose instead a more effective
fusion strategy to transfer the complementary information from the
corresponding region in the SAR image, so as to generate more reliable
texture details.

4. Method

4.1. Overview

The overall framework of the proposed GLF-CR algorithm is illus-
trated in Fig. 2. It is a two-stream network in which the SAR feature
is hierarchically fused into the optical feature to compensate for infor-
mation loss in cloudy regions. Exploiting the power of SAR information
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Fig. 2. Overview of the proposed global–local fusion based cloud removal (GLF-CR) algorithm. It is a two-stream network in which the SAR feature is hierarchically fused into the
optical feature to compensate for information loss in cloudy areas. Exploiting the power of SAR information to promote cloud removal entails two aspects: global fusion, to guide
the relationship among all local optical windows based on the SAR-guided global context interaction (SGCI) block; and local fusion, to transfer the SAR feature corresponding to
cloudy areas based on the SAR-based local feature compensation (SLFC) block.

to promote cloud removal entails two aspects: global fusion, to guide
the relationship among all local optical windows with the SGCI block;
and local fusion, to transfer the SAR feature corresponding to cloudy
areas with the SLFC block. Specifically, a cloudy image 𝐼 and its
corresponding SAR image 𝐵 are first fed into different branches to
extract modality-specific features 𝐹 0

𝑜𝑝𝑡 and 𝐹 0
𝑠𝑎𝑟 with the shallow feature

extraction (SFE) block,

𝐹 0
𝑜𝑝𝑡 = 𝐻𝑆𝐹𝐸𝑜𝑝𝑡

(𝐼), 𝐹 0
𝑠𝑎𝑟 = 𝐻𝑆𝐹𝐸𝑠𝑎𝑟

(𝐵), (4)

where 𝐻𝑆𝐹𝐸𝑜𝑝𝑡
(⋅) and 𝐻𝑆𝐹𝐸𝑆𝐴𝑅

(⋅) denote the functions to extract the
shallow features of the cloudy image and the SAR image, respectively.
Then, 𝐹 0

𝑜𝑝𝑡 and 𝐹 0
𝑠𝑎𝑟 are fed into 𝐷 functions composited from the SGCI

and SLFC block to obtain knowledgeable features with comprehensive
information. More specifically, the intermediate features {𝐹 1

𝑜𝑝𝑡, 𝐹
1
𝑠𝑎𝑟},

{𝐹 2
𝑜𝑝𝑡, 𝐹

2
𝑠𝑎𝑟}, . . . , {𝐹𝐷

𝑜𝑝𝑡, 𝐹
𝐷
𝑠𝑎𝑟} are obtained as

𝐹 𝑖
𝑜𝑝𝑡, 𝐹

𝑖
𝑠𝑎𝑟 = 𝐻𝑆𝐿𝐹𝐶 (𝐻𝑆𝐺𝐶𝐼 (𝐹 𝑖−1

𝑜𝑝𝑡 , 𝐹
𝑖−1
𝑠𝑎𝑟 )), (5)

where 𝐻𝑆𝐺𝐶𝐼 (⋅) and 𝐻𝑆𝐿𝐹𝐶 (⋅) denote the functions of the SGCI block
and the SLFC block, respectively. The purpose of the SGCI block is local
feature extraction and cross-window feature interaction, where the SAR
feature is used to guide the relationship among all local optical win-
dows. Each SGCI block is followed by an SLFC block, which is designed
to fuse the complementary information from the corresponding area in
a SAR image into the optical feature of a cloudy area. More details
about these two blocks will be given in Sections 4.2 and 4.3. Finally,
the high-quality cloud-free image 𝐼 is reconstructed by aggregating all
the intermediate optical features,

𝐼 = 𝐼 +𝐻𝐼𝑅([𝐹 1
𝑜𝑝𝑡, 𝐹

2
𝑜𝑝𝑡,… , 𝐹𝐷

𝑜𝑝𝑡]), (6)

where 𝐻𝐼𝑅 denotes the function of cloud-free image reconstruction,
and [𝐹 1

𝑜𝑝𝑡, 𝐹
2
𝑜𝑝𝑡,… , 𝐹𝐷

𝑜𝑝𝑡] refers to the concatenation of the intermediate
optical features.

4.2. SAR-guided global context interaction

The SGCI block, whose detail is shown in Fig. 3, has two parallel
streams for the input optical and SAR features. Each stream adopts
dense connections in an approach similar to the residual dense block
(RDB) (Zhang et al., 2018b), which is able to extract abundant local
features via dense connected convolutional layers. As previously men-
tioned, SAR image clearly contributes to compensating for the missing
information about cloudy regions, but not for the specific properties
of optical images. Nevertheless, the cloud-free regions are conducive

Fig. 3. Detail of the SAR-guided global context interaction (SGCI) block.

to the specific properties. The use of global texture information is nec-
essary for the cloud removal task. Inspired by Transformer’s ability to
efficiently propagate information across the entire image to accumulate
long-range varying contextual information, a Swin Transformer layer
(STL) (Liu et al., 2021c) is added after each local convolutional layer
for cross-window feature interaction.

The STL first partitions the input feature into non-overlapping
𝑀 ×𝑀windows, then computes the standard self-attention separately
for each window. Specifically, a local window optical/SAR feature
𝑋𝑜𝑝𝑡∕𝑋𝑠𝑎𝑟 ∈ R𝑀2×𝐶 is linearly transformed to query 𝑄𝑜𝑝𝑡∕𝑄𝑠𝑎𝑟 ∈ R𝑀2×𝑑 ,
key 𝐾𝑜𝑝𝑡∕𝐾𝑠𝑎𝑟 ∈ R𝑀2×𝑑 , and value 𝑉𝑜𝑝𝑡∕𝑉𝑠𝑎𝑟 ∈ R𝑀2×𝑑 , where 𝑑 is the
dimension of the query or key. The attention weight matrix is computed
as follows:

𝑀𝑜𝑝𝑡=
𝑄𝑜𝑝𝑡𝐾𝑇

𝑜𝑝𝑡
√

𝑑
+ 𝐵,𝑀𝑠𝑎𝑟=

𝑄𝑠𝑎𝑟𝐾𝑇
𝑠𝑎𝑟

√

𝑑
+ 𝐵, (7)

where 𝐵 is the learnable relative positional encoding. The essence
of this attention matrix is the weight of a particular region that is
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Fig. 4. Detail of the SAR-based local feature compensation (SLFC) block.

absorbing information from other regions. For a cloudy region, due
to the information loss, it is difficult to estimate its interactions with
cloud-free regions. For the same region in a SAR image, its interactions
with other regions can be estimated easily, which provides valuable
guidance for the interactions between cloud-free and cloudy regions
in the optical image. Thus, we transfer the attention map of the SAR
image to refine the attention map of the optical image, i.e., we use 𝑀𝑠𝑎𝑟
to improve 𝑀𝑜𝑝𝑡. We first obtain the attention map of the optical and
SAR features 𝑀𝑜𝑝𝑡 and 𝑀𝑠𝑎𝑟 by Eq. (7). Then we compute the difference
between 𝑀𝑜𝑝𝑡 and 𝑀𝑠𝑎𝑟 and obtain 𝑀𝑟𝑒𝑠. Finally, we apply a gating
function to adaptively refine 𝑀𝑜𝑝𝑡:

�̂�𝑜𝑝𝑡 = 𝑀𝑜𝑝𝑡 +𝑀𝑟𝑒𝑠 ⊙𝐺(𝑀𝑟𝑒𝑠), (8)

where 𝐺(⋅) is the gating function fed with the residual term 𝑀𝑟𝑒𝑠 and
⊙ denotes the element-wise multiplication operation. The optical and
SAR output are computed as:

𝑌𝑜𝑝𝑡=Softmax(�̂�𝑜𝑝𝑡)𝑉𝑜𝑝𝑡, 𝑌𝑠𝑎𝑟=Softmax(𝑀𝑠𝑎𝑟)𝑉𝑠𝑎𝑟. (9)

This module considers the relationship among all local window optical
features under the guidance of the SAR feature, denoted in this paper
as global fusion.

4.3. SAR-based local feature compensation

The detail of the SLFC block is shown in Fig. 4. Because the
SAR image is corrupted by severe speckle noise, we utilize dynamic
filtering for SAR features before information transference. Standard
convolution filters are shared across all pixels in an image, while the
dynamic filters vary from pixel to pixel. Therefore, the dynamic filters
can handle the spatial variance issue (Jia et al., 2016; Zhou et al.,
2019), thus helping to suppress the spatially unevenly speckle noise.
Specifically, a filter is dynamically generated for each position in the
SAR feature using the Dynamic Filter Generation (DFG) module. The
DFG module takes the concatenation of the optical and SAR features
𝐶𝑜𝑛𝑐𝑎𝑡(𝐹 𝑖

𝑜𝑝𝑡, 𝐹
𝑖
𝑠𝑎𝑟) ∈ R𝐻×𝑊 ×2𝐶 as input. The dimension of the generated

filter  𝑖 is 𝐻 ×𝑊 × 𝐶𝑘2 and is reshaped into a five-dimensional filter.
Then, for each position (ℎ,𝑤, 𝑐) in the SAR feature 𝐹 𝑖

𝑠𝑎𝑟 ∈ R𝐻×𝑊 ×𝐶 , a
specific local filter  𝑖(ℎ,𝑤, 𝑐) ∈ R𝑘×𝑘 is applied to the region centered
around 𝐹 𝑖

𝑠𝑎𝑟(ℎ,𝑤, 𝑐) as

𝐹 𝑖
𝑠𝑎𝑟(ℎ,𝑤, 𝑐) =  𝑖(ℎ,𝑤, 𝑐) ∗ 𝐹 𝑖

𝑠𝑎𝑟(ℎ,𝑤, 𝑐), (10)

where ∗ denotes the convolution operation.
After transforming the extracted SAR feature 𝐹 𝑖

𝑠𝑎𝑟 using the dynamic
filter to improve tolerance of speckle noise, we propagate the comple-
mentary information from the SAR feature to refine the optical feature,
in the same way that the attention map is refined. We compute the
difference between the optical and SAR features to obtain the residual
information 𝐹 𝑖

𝑠−𝑜 = 𝐹 𝑖
𝑠𝑎𝑟 − 𝐹 𝑖

𝑜𝑝𝑡, and apply a gating function to transfer
the complementary information,

𝐹 𝑖
𝑜𝑝𝑡 = 𝐹 𝑖

𝑜𝑝𝑡 + 𝐹 𝑖
𝑠−𝑜 ⊙𝐺(𝐹 𝑖

𝑠−𝑜). (11)

To better exploit interactions among elements of the optical and SAR
features for a further performance gain, we adopt a dual information

propagation mechanism, i.e., updating the SAR feature as well. We
compute the difference between the SAR feature and the updated
optical feature 𝐹 𝑖

𝑜−𝑠 = 𝐹 𝑖
𝑜𝑝𝑡 − 𝐹 𝑖

𝑠𝑎𝑟, and also propagate the information
through use of a gating function,

𝐹 𝑖
𝑠𝑎𝑟 = 𝐹 𝑖

𝑠𝑎𝑟 + 𝐹 𝑖
𝑜−𝑠 ⊙𝐺(𝐹 𝑖

𝑜−𝑠). (12)

The enhanced optical and SAR features are then introduced into the
next SGCI for further representation learning. This module considers
the information transference between local features, denoted as local
fusion in this paper.

5. Experiments

5.1. Experimental settings

Dataset and Metrics. The experiments are conducted on the large-
scale dataset SEN12MS-CR (Ebel et al., 2021), which is built from
freely available data acquired by the Sentinel satellites in the Coper-
nicus program. The dataset contains 1,22,218 samples from 169 non-
overlapping regions of interest (ROI) distributed over all inhabited
continents during all meteorological seasons. Each sample consists of a
triplet of an orthorectified, geo-referenced Sentinel-1 dual-pol SAR im-
age, a Sentinel-2 cloud-free multi-spectral image, and a cloud-covered
Sentinel-2 multi-spectral image where the observations of cloud-free
and cloud-covered images are close in time. The size of each image
is 256 × 256 pixels. The VV and VH polarizations of the SAR images
are clipped to values [−25, 0] and [−32.5, 0], and rescaled to the range
[0, 1]. All bands of the optical images are clipped to values [0, 10000],
and rescaled to the range [0, 1] as well. We split the 169 ROIS into 149
ROIs for training, 10 ROIs for validation, and 10 ROIs for test. To avoid
overall performance being biased towards specific cloud cover level,
we calculate the percentage of cloud cover of each image by utilizing
the cloud detection flowchart in Meraner et al. (2020) and randomly
select 800 samples from the samples with cloud cover of 0% to 20%,
20% to 40%, 40% to 60%, 60% to 80%, and 80% to 100% as the
test set, respectively. Specifically, the training, validation and test set
consist of 101,615, 8,623 and 4,000 samples respectively. The results
of cloud removal are evaluated with the normalized data based on the
peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM), spectral angle mapper (SAM), and mean absolute error (MAE).
Implementation Details. The proposed GLF-CR network is imple-
mented using publicly available Pytorch and trained in an end-to-end
manner supervised by L1 loss on 4 NVIDIA TITAN V GPUs. We im-
plement the gating functions in Sections 4.2 and 4.3 by employing a
convolution layer as well as a Softmax layer, and the dynamic filter
generation (DFG) module in Section 4.3 is constituted by a convolution
layer followed by two residual blocks. During training, we randomly
crop the samples into 128 × 128 patches. In an empirical manner, the
batch size is set to 12 and the maximum epoch of training iterations
is set to 30. The Adam optimizer is used and the learning rate starts
at 10−4, which decays by 50% every five epochs. By trading off the
performance and complexity of the model, the number of the SGCI and
SLFC blocks 𝐷 is set to 6; the number of dense connections in each
stream of the SGCI block is set to 5; the window size and the attention
head number for the STL layer are set to 8 and 8, respectively; and the
size of the dynamic filter 𝑘 is set to 5. The codes, models, and more
results are released at: https://github.com/xufangchn/GLF-CR.

5.2. Comparisons with state-of-the-art methods

We compare the proposed GLF-CR networks to state-of-the-art cloud
removal methods, including multi-spectral based approaches, SpA GAN
(Pan, 2020), the SAR-to-optical image translation approach, SAR2OPT
(Bermudez et al., 2018), and SAR-optical data fusion based approaches,
SAR-Opt-cGAN (Grohnfeldt et al., 2018), Simulation-Fusion GAN (Gao
et al., 2020) and DSen2-CR (Meraner et al., 2020). SpA GAN takes all
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Table 1
Quantitative comparisons of proposed GLF-Nets to state-of-the-art methods.

Method Input PSNR (dB) ↑ SSIM ↑ SAM (◦) ↓ MAE (𝜌𝑇𝑂𝐴) ↓
Optical SAR

SpA GAN (Pan, 2020) ✓ ✗ 24.8688 0.7533 16.0454 0.0444

SAR2OPT (Bermudez et al., 2018) ✗ ✓ 25.7223 0.7918 14.0501 0.0427

SAR-Opt-cGAN (Grohnfeldt et al., 2018) ✓ ✓ 25.2948 0.7594 14.4389 0.0441
Simulation-Fusion GAN (Gao et al., 2020) ✓ ✓ 24.5519 0.6947 15.5929 0.0455
DSen2-CR (Meraner et al., 2020) ✓ ✓ 27.3780 0.8705 8.5073 0.0319
Concat (Ours) ✓ ✓ 28.5324 0.8804 8.1088 0.0284
GLF-CR (Ours) ✓ ✓ 29.0793 0.8855 7.6455 0.0266

channels of the input optical image as input. It uses the spatial attention
network (SPANet) (Wang et al., 2019) as a generator to model the
map from a cloudy image to a cloudless image. SAR2OPT performs
SAR-to-optical translation by taking the U-Net as the generator, not
relying on any (cloudy) optical satellite information. SAR-Opt-cGAN
and DSen2-CR both leverage the SAR image as a form of prior to guide
the reconstruction process under thick, optically impenetrable clouds.
The SAR’s channels are simply concatenated to the other channels of
the input optical image to predict the full spectrum of optical bands.
SAR-Opt-cGAN is extended from U-Net, while DSen2-CR is extended
from the EDSR network (Lim et al., 2017). Simulation-Fusion GAN first
translates the SAR image into simulated optical data, then takes the
concatenation of the simulated optical image, SAR and the corrupted
optical image as input for prediction.

To validate the superiority of GLF-CR in leveraging the power of
SAR images, we also refer to the fusion strategy in SAR-Opt-cGAN
and DSen2-CR to train the proposed network, by using concatenation,
denoted as Concat. We concatenate the SAR’s channels and optical
image’s channels as input, and remove the branch for SAR feature
learning, the attention map update in the SGCI blocks, and the SLFC
blocks. The quantitative results are presented in Table 1. The proposed
GLF-CR network brings remarkable improvements compared to state-
of-the-art methods. We choose 3 scenes to evaluate qualitative results,
as shown in Fig. 5. For each scene, from top-left to bottom-right
are respectively the cloudy image, the SAR image, the results from
SpA GAN, SAR2OPT, SAR-Opt-cGAN, Simulation-Fusion GAN, DSen2-
CR, Concat and GLF-CR, and the cloud-free image. We find that the
proposed GLF-CR network achieves the best visualization performance.
Detailed analyses are presented below.

We first compare the cloud removal performance of SAR-based
methods to the conventional method, SpA GAN. As the SAR image
encodes rich geometrical information about cloud-covered regions, it
facilitates the ground object construction. SpA GAN, which relies solely
on cloudy optical images, are less effective than SAR-based cloud
removal methods. As shown in Fig. 5, it fails to tackle the thick cloud re-
moval and generates undesirable artifacts, especially for cloud-covered
regions.

We next compare the cloud removal performance of the SAR-to-
optical image translation approach, SAR2OPT to the SAR-optical data
fusion based approaches. SAR2OPT, which relies solely on SAR images,
can reconstruct prominent geometric characteristics related to roads,
crop fields, etc. But it suffers from content vanishing because the
specific potentials and peculiarities of optical images cannot be fully
compensated from the SAR images. Moreover, a distinct difference in
the color distribution of SAR2OPT’s reconstruction results and ground
truth can be observed. SAR-Opt-cGAN adopts the same generator ar-
chitecture as SAR2OPT while taking both the cloudy optical image and
the SAR image as input. However, it performs worse than SAR2OPT
which only takes the SAR images as input. And as shown in the second
scene of Fig. 5, the SAR image clearly emphasizes the surface’s physical
properties. SAR-Opt-cGAN fails to reconstruct it while SAR2OPT does.
It demonstrates the challenge of taking advantage of multi-modal data
fusion while avoiding the performance degradation caused by the
undesirable effects in each modality. Simulation-Fusion GAN suffers

from the performance degradation caused by the undesirable effects in
simulated optical image besides the cloudy optical and SAR images, and
also has poor color fidelity. To some extent, DSen2-CR alleviates the
performance degradation caused by the undesirable effects by utilizing
a tailored generator. However, its gain is still limited.

Our methods perform favorably when compared with DSen2-CR,
which exploits the inherent advantage of SAR image. Among them,
Concat adopts the same approach as SAR-Opt-cGAN and DSen2-CR to
utilize the complementary information embedded in SAR images. It
achieves higher performance than SAR-Opt-cGAN and DSen2-CR, as
shown in Table 1. Unlike the approach of SAR-Opt-cGAN and DSen2-
CR, Concat contains global context interactions, which takes the infor-
mation embedded in neighboring cloud-free regions into consideration,
thus performing better in terms of global consistent structure. But those
methods still leave distinct clouds or blur some image textures, which
reflects the limitations of the concatenation method. Furthermore,
It can be observed that the proposed GLF-CR network outperforms
other methods by a large margin. It can restore images with more
details and fewer artifacts, as shown in Fig. 5. These significant im-
provements demonstrate that the proposed method can better use the
complementary information embedded in SAR images.

5.3. Analysis on different cloud cover levels

We further compare the proposed GLF-CR networks to state-of-the-
art cloud removal methods on different cloud cover levels. We evaluate
the performance of cloud removal on the images with cloud cover of
0% to 20%, 20% to 40%, 40% to 60%, 60% to 80%, and 80% to 100%,
and show the comparison results in terms of the PSNR, SSIM, SAM, and
MAE quality metrics in Fig. 6. The proposed methods perform favorably
when compared with state-of-the-art methods on all cloud cover levels.

It is observed that the overall performance of multispectral-based
approaches, SpA GAN, is negatively correlated with the cloud cover
level. With the higher cloud cover level, they get less prior information
and thus perform worse. And the performance of the SAR-to-optical
image translation approach, SAR2OPT, is not related to the cloud cover
level.

SAR-Opt-cGAN and Simulation-Fusion GAN utilize the prior in-
formation from both cloudy images and SAR images. It suffers the
performance degradation caused by the undesirable effects in both
modalities. When the cloud cover is low, it is not as good as the
multispectral-based methods due to the interference from additional
SAR image or simulated optical image from SAR image. When the cloud
cover is high, it is not as good as the SAR-to-optical image translation
approach due to the interference from clouds.

DSen2-CR alleviates the performance degradation to some extent,
and thus outperforms the single-modality-based methods. Concat adopts
the same fusion strategy in DSen2-CR to utilize the complementary
information embedded in SAR images while takes the information
embedded in neighboring cloud-free regions into consideration, thus
its performance is more superior to that of DSen2-CR when more prior
information from cloud-free regions is available. And the proposed
method is superior in exploiting the power of SAR information in
addition to considering the information embedded in neighboring
cloud-free regions, and thus steadily outperforms DSen2-CR on all cloud
cover levels.
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Fig. 5. Qualitative results of cloud removal for 3 different scenes. For each scene, from top-left to bottom-right are respectively the cloudy image, the SAR image, the result from
SpA GAN, SAR2OPT, SAR-Opt-cGAN, Simulation-Fusion GAN (SF GAN), DSen2-CR, Concat, GLF-CR, and the cloud-free image. The size of each image is 128 × 128 pixels.

5.4. Ablation study

The proposed GLF-CR network improves the performance of SAR-
based cloud removal by incorporating global fusion to guide the rela-
tionship among all local optical windows with SAR features and local
fusion to transfer the SAR feature corresponding to cloudy areas to
compensate for the missing information. To determine what contributes
to the superior performance of the proposed approach, we analyze the
effectiveness of each component by comparing a few variants with and
without the use of SAR image (SAR), Concatenation fusion (Concat),
STL layer (STL), global fusion (GF), and dynamic filter (DF). The
qualitative and qualitative results are shown in Table 2 and Fig. 7, and

the results on different cloud cover levels is shown in Fig. 8. From the
table and the figure, we can draw the following conclusions:
Importance of SAR Image. We validate the importance of the SAR
image by training the GLF-CR network without SAR images, denoted
as w/o SAR. Since the input is a single source signal, i.e., the cloudy
optical image itself, a single-stream network is adopted and no fusion
strategy is used. As shown in Fig. 8, it performs comparable to the
networks employing SAR images when the cloud cover level is low.
However, when the cloud cover level gets higher, the performance gap
between the networks with and without SAR images gets larger. And
as shown in Fig. 7, w/o SAR tends to generate over-smoothed effects
for cloud-covered regions, while the networks with SAR images can
recover texture details. This demonstrates that the rich complementary
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Fig. 6. Quantitative comparisons of proposed GLF-Nets to state-of-the-art methods on different cloud cover levels in terms of the PSNR, SSIM, SAM, and MAE quality metrics.

Table 2
Quantitative ablation study of proposed algorithm with and without use of the SAR
image (SAR), concatenation fusion (Concat), STL layer (STL), global fusion (GF), and
dynamic filter (DF).

Method PSNR (dB) ↑ SSIM ↑ SAM (◦) ↓ MAE (𝜌𝑇𝑂𝐴) ↓

w/o SAR 28.3657 0.8759 8.1783 0.0299
Concat 28.5324 0.8804 8.1088 0.0284
w/o STL 28.5079 0.8825 8.1783 0.0287
w/o GF 28.4983 0.8816 8.0595 0.0287
w/o DF 28.2867 0.8800 7.9853 0.0297
GLF-CR 29.0793 0.8855 7.6455 0.0266

information encoded in SAR images can effectively improve the cloud
removal performance.
Limitation of Concatenation Fusion. Compared with w/o SAR, Concat
only adds two channels to the input to utilize the SAR image. The gain
of utilizing the concatenation fusion is 0.17 dB, while the proposed
GLF-CR network obtains a gain of 0.71 dB. As observed from Fig. 8,
when the proportion of cloud-free regions is higher, the performance
gap between Concat and GLF-CR is larger, since the proposed GLF-CR
network can better exploit the power of SAR information compared
with the concatenation fusion. Fig. 7 shows that the proposed GLF-CR
network can recover more complete texture structure and obtain better
visual effects.
Effectiveness of Global Interactions. Capturing global interactions
between contexts plays a vital role in maintaining global consistent
structure. We train the GLF-CR network by removing the STL layers
in the SGCI blocks, denoted as w/o STL. It can be observed that
the proposed GLF-CR method which captures the global interactions
between contexts can improve cloud removal performance effectively.
It recovers clearer and more complete structure for the land in the
second and fourth scenes in Fig. 7.
Effectiveness of SAR-Guided Global Interactions. We further val-
idate the effectiveness of guiding the global interactions of optical
features with SAR features. We train the GLF-CR network by reserving
the STL layer but not using the SAR feature to guide the global optical
interactions, denoted as w/o GF. Compared with w/o STL, it can be
observed that w/o GF has only a slight performance improvement in
terms of SAM, despite using additional STL layers to maintain the
spatial consistency, since estimating the interactions from the cloudy
optical image itself will introduce some error. As shown in the third
scene in Fig. 7, w/o GF generates undesirable artifacts. As the SAR
image is not affected by cloud cover, it can provide valuable guidance
for capturing global interactions between contexts. This point can be
validated by comparing the results of w/o GF and GLF-CR. It can be
seen that guiding the global interactions of optical features with SAR

features can effectively improve the performance of cloud removal and
make the structure of the predicted cloud-free image more consistent
with ground truth.
Effectiveness of the Dynamic Filter. The proposed GLF-CR network
uses dynamic filtering to handle the speckle noise of SAR images. To
validate the effectiveness of the dynamic filter, we train the GLF-CR
network by removing the dynamic filter in SLFC blocks, denoted as w/o
DF. It can be seen from Fig. 8 that the performance of w/o DF degrades
more severely in terms of PSNR and MAE that measure the quality
of reconstructed images than in terms of SSIM and SAM that quantify
spectral and structural similarity. And it can be observed that the trends
of w/o DF and GLF-CR relative to the cloud cover level are similar.
As both methods adopt the same strategy to utilize the information
of the cloud-free regions and SAR images, while the proposed GLF-CR
network can alleviate the problem of speckle noise in the SAR image
and generate clearer images.

6. Discussion

Performance on Challenging Conditions. Cloud removal is quite
challenging when the image to be processed is completely cloudy. To
see how the proposed method behaves in the challenging conditions,
Fig. 9 shows the results on the images where the ground information is
almost obscured by clouds. It can be found that the proposed method
can recover the approximate information of ground objects while with
poor texture details. Since the images are completely cloudy, no cloud-
free part can be accessed and only SAR information is available to
reconstruct the cloud-free images. The quality of reconstructed cloud-
free images depends entirely on the information embedded in the SAR
image. While the SAR image fails to feature the different agricultural
landscapes, as seen in the first scene in Fig. 9, the reconstructed
cloud-free image loses the corresponding details. And since no spec-
tral information is available, the spectral fidelity of the reconstructed
cloud-free image degrades.
Speckle Noise in SAR Data. The SAR data in SEN12MS-CR dataset
is from the Level-1 GRD product, which has been multi-looked for
reduced speckle. Notwithstanding, the multi-looked data still exhibits
a high degree of speckle noise, as seen from Figs. 1, 5 and 7, since
speckle noise is multiplicative in nature and difficult to distinguish
from the original signal. And, while commonly referred to as ‘‘speckle
noise’’, speckle is not only noise but in some sense has an informa-
tion content (Argenti et al., 2013). At this point, we do not consider
an explicit despeckling preprocessing step, but implicitly handle the
spatially varying speckle distribution by the dynamic filter embedded
in the network. It is also possible to preprocess the SAR data with
a despeckling technique before feeding it to the network. Therefore,
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Fig. 7. Qualitative ablation study with 4 scenes by different GLF-CR networks. For each scene, from left to right, are respectively the cloudy image, the SAR image, the cloud-free
image, and the result by w/o SAR, Concat, w/o STL, w/o GF, w/o DF, and GLF-CR. The size of each image is 128 × 128 pixels.

Fig. 8. Quantitative ablation study on different cloud cover levels in terms of the PSNR, SSIM, SAM and MAE quality metrics.

we train the GLF-CR network by removing the dynamic filter in SLFC
blocks while feeding the SAR data despeckled with a median filter. As
shown in Table 3, we can see that preprocessing the SAR data with
a despeckling technique can reduce the influence of speckle noise on
cloud removal. While the proposed method implicitly mitigates the
influence of speckle noise based on the dynamic filter and can achieve
better performance.
Geometric Distortion in SAR Data. It is well-known that there is an
inherent geometric distortion in SAR data when the terrain is undulat-
ing, due to the sensor’s sideways view. It will lead to the inconsistency
between the information in the SAR data and the actual state of the
ground objects, adversely affecting the cloud removal performance. The
experiments in this paper are conducted on the SEN12MS-CR dataset
(to our best knowledge, the only open-source cloud removal dataset
with SAR data), where the SAR data is provided by the Sentinel-
1 satellites. Its resolution is 10𝑚 and thus does not show excessive
distortion. Furthermore, depending on the large scale of the dataset,
the proposed powerful model can address this aspect to some extent.
Registration error between the optical and SAR Data. The registra-
tion error between the optical image and its corresponding SAR image
is expected to affect the learning process. The data instructions given by
ESA illustrate that the Sentinel-1 SAR L1 productions and the Sentinel-
2 optical L1C productions have a co-registration accuracy of within 2
pixels. We set the size of the dynamic filter in the SLFC blocks to 5 for a

Table 3
Performance of proposed algorithm with use of despeckled SAR data.

Method PSNR (dB) ↑ SSIM ↑ SAM (◦) ↓ MAE (𝜌𝑇𝑂𝐴) ↓

w/ despeckled SAR 28.5377 0.8818 8.0719 0.0286
w/o DF 28.2867 0.8800 7.9853 0.0297
GLF-CR 29.0793 0.8855 7.6455 0.0266

larger receptive field, which allows the proposed model to work when
tiny deviations exist between the SAR and optical images.
Nuisances between Cloudy Reference Image and Cloud-Free Target
Image. The cloud removal performance in the paper is assessed on the
SEN12MS-CR dataset by comparing the prediction with the cloud-free
image temporally close to the cloudy one. There are some inevitable
nuisances determined by the sunlight condition, acquisition geometry,
humidity, pollution, change of landscape, etc, while the SEN12MS-CR
dataset is curated to minimize such cases. However, the inevitable
nuisances are negligible for a relatively large-scale test split that is
globally and seasonally sampled without any bias to specific sunlight
condition, etc. It implies that models biased to specific condition will
not have any unfair advantages on the test split. Overall, the influence
of nuisances can be averaged out. It poses no concern about the fairness
of benchmarking the proposed model on the considered dataset.

In addition, we test the proposed method on images where the
interval between the cloud-free and cloudy image is different. The date
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Fig. 9. Example results of GLF-CR on the images completely obscured by clouds.

Table 4
Evaluating cloud removal performance using the cloud-free images with different
intervals from cloudy images.

Interval Method PSNR (dB) ↑ SSIM ↑ SAM (◦) ↓ MAE (𝜌𝑇𝑂𝐴) ↓

13 days DSen2-CR 27.6299 0.8618 6.9426 0.0293
GLF-CR 28.6470 0.8707 6.9005 0.0260

25 days DSen2-CR 26.3796 0.8403 8.0728 0.0334
GLF-CR 26.9173 0.8444 8.6355 0.0317

72 days DSen2-CR 25.1544 0.8247 10.0843 0.0382
GLF-CR 25.3110 0.8324 10.6852 0.0378

of input cloudy image is July 17, 2018, and we use the SAR image with
the closest interval to cloudy image as auxiliary data, whose date is July
18, 2018. And the date of cloud-free images used for the assessment are
July 30, 2018, August 11, 2018 and September 28, 2018, respectively.
The results are shown in Table 4. We can observe that the proposed
method performs better than the best baseline DSen2-CR overall, which
is consistent with the results on the SEN12MS-CR dataset. It shows the
feasibility of assessing the performances with temporally close cloud-
free images. And we can observe that, when the interval between the
reference cloud-free image used to calculate the value of the metrics
and the cloudy image is larger, the methods performs worse in terms
of the metrics. It indicates that the method is able to restore the surface
information of the input cloudy image, and thus the cloud-free image
with the larger interval to input cloudy image has less reference value.

Strict ground truth correspondence may only be guaranteed by
generating synthetic cloud coverage superimposed on cloud-free ob-
servations, as done in Enomoto et al. (2017) and Gao et al. (2020).
However, the experimental results in Ebel et al. (2020) has indicated
that popular synthetic cloud simulation techniques suffer from severe
limitations in approximation to the real data. The great performance
on synthetic data may not necessarily translate to equal performance
on real data. Hence we follow the approach of using real observations,
despite acknowledgeable shortcomings at other ends.

7. Conclusion

In this work, we propose a novel global–local fusion based cloud
removal (GLF-CR) algorithm for high quality cloud-free image recon-
struction. It boosts cloud removal performance from two aspects, on the
one hand, it guides the relationship among all local optical windows
with the SAR feature to fully utilize the spatial consistency between
the cloudy and the neighboring cloud-free regions, and on the other
hand, it enhances the utilization of SAR data to compensate for missing
information while alleviating the performance degradation caused by
speckle noise. Extensive experiments demonstrate that the power of
the information embedded in neighboring cloud-free regions and cor-
responding SAR data over different cloud cover levels. The proposed
method can achieve state-of-the-art performance on all different cloud
cover levels.
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Abstract— About half of all optical observations collected via
spaceborne satellites are affected by haze or clouds. Conse-
quently, cloud coverage affects the remote-sensing practitioner’s
capabilities of a continuous and seamless monitoring of our
planet. This work addresses the challenge of optical satellite
image reconstruction and cloud removal by proposing a novel
multimodal and multitemporal data set called SEN12MS-CR-TS.
We propose two models highlighting the benefits and use cases of
SEN12MS-CR-TS: First, a multimodal multitemporal 3-D con-
volution neural network that predicts a cloud-free image from a
sequence of cloudy optical and radar images. Second, a sequence-
to-sequence translation model that predicts a cloud-free time
series from a cloud-covered time series. Both approaches are
evaluated experimentally, with their respective models trained
and tested on SEN12MS-CR-TS. The conducted experiments
highlight the contribution of our data set to the remote-sensing
community as well as the benefits of multimodal and multitem-
poral information to reconstruct noisy information. Our data set
is available at https://patrickTUM.github.io/cloud_removal.

Index Terms— Cloud removal, data fusion, image recon-
struction, sequence-to-sequence, synthetic aperture radar
(SAR)-optical, time series.

I. INTRODUCTION

THE majority of our planet’s land surface is covered by
haze or clouds [1]. Such atmospheric distortions impede
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the capability of spaceborne optical satellites to reliably and
seamlessly record noise-free data of the earth’s surface. The
presence of clouds is detrimental to typical remote-sensing
applications, for instance, land cover classification [2], seman-
tic segmentation [3], [4], and change detection [5], [6].

Hence, the need for cloud-free earth observation gave rise
to a rapidly growing number of haze and cloud removal
methods [3], [7]–[14]. Most previous methods focus on a mul-
timodal approach [8], [13]–[15] to reconstruct cloud-covered
pixels via information translated from synthetic aperture
radar (SAR) or other sensors more robust to atmospheric
disturbances [16], yet focus on only a single time point of
observations. In comparison, recent models attempt a temporal
reconstruction of cloudy observations by means of inference
across time series [12], [17], [18], utilizing the circumstance
that the extent of cloud coverage over a particular region is
variable over time and seasons [1].

The work at hand aims to combine both preceding
approaches and thus considers the challenge of cloud removal
in optical satellite imagery by integrating information across
time and within different modalities. For this purpose,
we curate a new data set called SEN12MS-CR-TS, which
contains multitemporal and multimodal satellite observations.
Specifically, SEN12MS-CR-TS consists of 1-year long time
series of coregistered radar Sentinel-1 (S1) as well as mul-
tispectral Sentinel-2 observations (S2) acquired in a paired
manner, covering regions of interest (ROIs) from all over the
world. We highlight the benefits of the proposed data set by
training and testing two different models on our data set: First,
a multimodal multitemporal 3-D-Convolution Neural Network
that predicts a cloud-free image from a sequence of cloudy
optical and radar images. Second, a sequence-to-sequence
translation model that predicts a cloud-free time series from
a cloud-covered time series. Both approaches are evaluated
experimentally, with their respective models trained and tested
on SEN12MS-CR-TS. Exemplary outcomes are highlighted in
Fig. 1. The conducted experiments highlight the contribution
of our curated data set to the remote-sensing community
as well as the benefits of multimodal and multitemporal
information to reconstruct noisy information.

A. Related Work

As the presence of clouds in optical satellite imagery poses
a severe hindrance for remote-sensing applications, there has
been plenty of preceding research on cloud removal meth-
ods [3], [7]–[10], [12]–[14], [20]. The focus of this overview
is on data sets for cloud removal methods. Much of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Example observations and cloud-free predictions. Columns: Samples
at two different time points. Rows: S1 data (in grayscale), cloudy S2 data (in
RGB), predicted cloud-free Ŝ2 data, and reference cloud-free S2 data of a
later point in time. The results highlight that our network is able to integrate
multimodal and multitemporal information to predict a clear-view sequence
of multispectral observations, even in the presence of heavy cloud coverage.

early work on cloud removal considered data of simulating
cloudy observations [3]. Copying cloudy pixel values from
one image to another clear-view one [3] captures the spectral
properties of naturally cloudy observations more faithfully
than synthetic noise (e.g., Perlin noise [21]) [7], [8], [20], but
neither precisely reproduce the statistics of satellite images
containing natural cloud occurrences [14]. Consequently, our
data set contain cloud-free as well as naturally occurring
cloud-covered optical satellite recordings. The SEN12MS-
CR data set [14] provides a globally distributed collection
of coregistered mono-temporal Sentinel-1 as well as cloudy
and cloud-free Sentinel-2 observations. Our data set is an
extension of SEN12MS-CR in the sense that we collect
repeated measures per ROI and therefore provide a time
series of coregistered S1 and S2 observations, gathered such
that matched observations of both modalities are no more
than two weeks apart. In comparison to the preceding data
set, ours allows integrating information not solely across
different sensors, but also across different points in time
distributed throughout the year. Similarly, the work of [12]
allows for time-series cloud removal by providing a col-
lection of tri-temporal RGB (NIR)-channel optical data and
corresponding models. Our contribution extends this work
by providing true multimodal data recorded by two distinct
sensors, SAR Sentinel-1 measurements, as well as 13-band

multispectral Sentinel-2 observations. Furthermore, the length
of each time series is increased considerably, from 3 to 30 sam-
ples. Finally, [12] exclude observations with greater than 30%
cloud coverage from their data set, which deviates from real
conditions. Our approach aims to model the complete spectrum
of cloud coverage, including conditions commonly encoun-
tered by remote-sensing practitioners. In sum, our work and
its main contribution, a large-scale multimodal multitemporal
data set for cloud removal in optical satellite imagery, build
on a history of research and improve upon the current state of
image reconstruction in remote sensing by providing a novel,
carefully curated data set.

II. DATA

This work introduces SEN12MS-CR-TS, a multimodal and
multitemporal data set for training and evaluating global
and all-season cloud removal methods. The data set con-
sists of 53 globally distributed ROI, curated as detailed in
Section II-A. The ROIs are over 4000 × 4000 px2 each,
covering about 40×40 km2 of land such that the total surface
area covered by the data set is over 80000 km2. Of all collected
ROI, 40 are defined as a training split and 13 as a hold-out
split to evaluate cloud removal approaches on. For every ROI,
we collect 30 coregistered and paired S1 and S2 full-scene
images evenly spaced in time throughout the year of 2018.
Each acquired image is inspected and quality-controlled manu-
ally. The spatial distribution of all ROI is depicted in Fig. 2 and
highlights the global sampling of our data set. The empirical
distribution of the cloud coverage of all optical observations
(examples are shown in Fig. 3) is computed as detailed in
Section II-C and the statistics are presented in Figs. 4 and 5
for the train and the test splits, respectively. The cloud-free
Sentinel-2 (RGB-channel) observations of four example ROI
illustrating the diversity of our data set are illustrated in Fig. 6.
Importantly, the data set is curated without excluding any
interval of cloud coverage such that the collected observations
also reflect conditions of high cloud coverage as commonly
encountered in practice [1]. The data is made available under
https://patrickTUM.github.io/cloud_removal. It is about 2 Tb
in size and compatible with the SEN12MS-CR data set [14].
That is, no train ROI of SEN12MS-CR is part of our data set’s
test ROI and vice versa.

A. Data Collection

All curated data are recorded via the SAR Sentinel-1
and multispectral Sentinel-2 (level 1-C top-of-atmosphere
reflectance product) instruments of European Space Agency’s
(ESA’s) Copernicus mission. The recorded observations are
acquired via Google Earth Engine [22] and a custom semiauto-
matic processing pipeline. We randomly sample the geospatial
locations of 53 ROIs from SEN12MS-CR [14]. To minimize
mosaicing, observations of cells covered by a single pass
are collected. The samples are referenced within the World
Geodetic System 1984 (WGS84) coordinate system. For every
ROI, 30 time intervals are evenly spaced throughout the year of
2018. For every time interval, a coregistered, geo-referenced,
and full-scene S1 image as well as a paired full-scene S2
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Fig. 2. Spatial distribution of the ROI constituting SEN12MS-CR-TS. Areas belonging to the training split are denoted in blue, and regions of the testing
split are colored in green. The ROIs of SEN12MSCR [14], nonoverlapping and compatible with our data set, are depicted in gray. Any graphical overlap of
the semitransparently plotted dots is rendered in darker tones so close-by dots can easier be discerned.

image (level 1-C) are collected. The acquisition within the
same interval window is such that corresponding multimodal
images are no more than two weeks apart. Further statistics
regarding the pairing of observations are provided in appendix.

B. Preprocessing

To prepare the collected raw data and translate it into a
format that neural networks for cloud removal can handle
the following preprocessing steps are taken: Each band of
every observation is upsampled to 10-m resolution (i.e., to the
native resolution of Sentinel-2’s bands 2, 3, 4, and 8). Every
full-scene image is sliced into nonoverlapping patches of
dimensions 256×256 px2. The S1 observations are processed
via the Sentinel-1 toolbox [23] (including border and thermal
noise removal, radiometric calibration, and orthorectification)
and decibel-transformed. An example patch-wise tuple of
paired S1 and S2 data is illustrated in Fig. 3. Input patches
to any ResNet model [24] are preprocessed in line with
the pipeline of [13] as follows: the vertical-vertical (VV)
and vertical-horizontal (VH) channels of S1 observations are
value-clipped in the ranges [−25; 0], [−32.5; 0] and rescaled
to the interval [0; 2], while S2 patches are value-clipped to
[0; 10000] and normalized to the range [0; 5]. For all other net-
works with a different backbone architecture, preprocessing is
done as follows: each patch is value-clipped and then rescaled
for every pixel to take normalized values within the unit range
of [0, 1]. The modalities S1 and S2 are value-clipped within
the intervals of [−25; 0] and [0; 10000], respectively. This
way, we follow the preprocessing protocol of the preceding
work and avoid any unnecessary adjustments, for the sake of
simplicity. For evaluation, the pixel values of all input patches,
target images, and predictions are remapped to the unit interval

[0, 1], where the goodness of predictions is assessed according
to the metrics stated in Section IV-A.

C. Cloud Detection and Mask Computation

In order to analyze the statistics of cloud coverage in
SEN12MS-CR-TS and to model the spatio-temporal extent of
clouds, we compute binary cloud masks m. For each optical
image, the masks m are computed on-the-fly via the cloud
detector of s2cloudless [19], which provides a binary mask
of pixel-wise values in {0, 1} that indicate cloud-free and
cloud-covered pixels, respectively. The cloud mask accuracy
of s2cloudless is reported to be on par with the multitemporal
classifier MACCS-ATCOR joint algorithm (MAJA) [25], but
the considered detector can be applied on mono-temporal
satellite observations. Note that, alternatively to s2cloudless,
the masks m may be computed via a dedicated neural net-
work for cloud detection [26], [27]. However, s2cloudless has
proved to be lightweight and provides sufficient performance
at little extra computational cost in run time or memory,
making it an appealing cloud detector to be applied on a
large-scale data set such as SEN12MS-CR-TS. Example cloud
detections are illustrated in Fig. 3.

III. METHODS

We consider two distinctively different methods to highlight
the benefits of our curated data set and the diverse tasks it
allows to approach. The first method is a neural network recon-
structing cloud covered pixels in time series of multimodal
data to predict a single target image acquired at a cloud-free
time point. The second approach introduces a neural network
that performs sequence-to-sequence cloud removal, that is,
it predicts a time series of cloud-free observations the same
length as the cloudy input sequence.
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Fig. 3. Example data, preprocessed as stated in Section II-B. Rows: S1 data (in grayscale), S2 data (in RGB), and binary cloud masks (as per s2cloudless [19]).
Columns: Samples of five different time points. The illustrations show that the observed region is affected by variable atmospheric disturbances and covered
by a dynamic extent of clouds, changing over time. The detected cloud coverage at the individual time points is 36%, 49%, 23%, and 48%, with an average
of about 39% across all illustrated samples. While some pixels are clear at least at one point in the series and may thus be reconstructed by integrating across
time, whereas others are cloud-covered throughout the sequence and require spatial context or cloud-robust sensor information to be reconstructed.

Fig. 4. Statistics of cloud coverage of SEN12MS-CR-TS train split, computed
on full-scene images via the detector of [19]. On average, approximately 44%
(±42%) of occlusion is observed. The empirical distribution of cloud coverage
is bimodal and ranges from cloud-free views to total occlusion.

A. Multitemporal Multimodal Cloud Removal

For multitemporal multimodal cloud removal, we consider
a deep neural network that builds on the generator of [12].
Our model receives a sequence of t = 1, . . . , n input
tuples (S1, S2)t and predicts a cloud-removed multispectral

Fig. 5. Statistics of cloud coverage of SEN12MS-CR-TS test split, computed
on full-scene images via the detector of [19]. On average, approximately 50%
(±42%) of occlusion is observed. The empirical distribution of cloud coverage
is bimodal and ranges from cloud-free views to total occlusion.

image Ŝ2. The architecture of the proposed model uses
a ResNet [24] backbone, with Siamese residual branches
processing the individual time points until their information
gets integrated. That is, we replaced the pairwise concatenation
of 2-D feature maps in [12] by stacking features in the
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Fig. 6. Four different regions contained in SEN12MS-CR-TS, highlighting the diversity of sampled landcovers. The depicted S2 observations (RGB channels)
are cloud-free samples of their respective time series. The average ROI covers about 40 × 40 km2 and is split into over 700 patch samples, with each patch
of size 256 × 256 px2.

temporal domain, followed by 3-D convolutions. Moreover,
as the first part of the generator of [12] is effectively a
single time-point cloud removal subnetwork (as each time
point is processed individually up to this point), we substitute
this component by the established ResNet-based [24] cloud
removal network of [13]. Subsequently, the feature maps
are stacked in the temporal dimension and 3-D convolutions
are applied to integrate information across time. The output
of the network is a single cloud-free image prediction Ŝ2.
A schematic overview of the described architecture is shown
in Fig. 7.

B. Internal Learning for Sequence-to-Sequence
Cloud Removal

The sequence-to-sequence cloud removal method [28] fol-
lows the 3-D encoder–decoder architecture of [29], constituted
of an encoder as well as a decoder component. Both compo-
nents are arranged symmetrically in the style of U-Net [30] and
linked via skip connections between paired layers. The input
to the network is a sequence of multitemporal S1 samples

and its output is a sequence of multitemporal cloud-removed
S2 predictions. With regard to its input-to-output mapping,
the proposed architecture resembles earlier SAR-to-optical
translation method [31], [32]. Similar to these earlier domain
translation approaches, our network learns information of the
target domain (i.e., the optical imagery) via the supervision
signal. Different from these approaches, the internal learning
framework described below removes clouds and directly learns
to denoise the target image sequence.

The architecture of the network is summarized in Fig. 8.
Note that the key difference between the given model and the
sequence-to-point method of Section III-A (depicted in Fig. 7)
is in the output dimensions: Whereas the sequence-to-point
architecture maps a sequence of n cloudy inputs to a single
cloud-removed prediction, the sequence-to-sequence approach
preserves the temporal information by mapping to a time series
of n cloud removed outputs. Moreover, the point estimator
receives tuples of S1 and S2 inputs, whereas the network
of Fig. 8 is driven solely by S1 data (or Gaussian noise,
as proposed in [33] and [29]). Finally, the sequence-to-point
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Fig. 7. Conceptual illustration of the sequence-to-point cloud removal architecture Gseq2point. The network is based on the architecture of [12] and consists
of n Siamese ResNet branches [13] doing single time-point cloud removal on n individual time points. Subsequently, the feature maps are stacked in the
temporal dimension and 3-D convolutions are applied to integrate information across time. The output of the network is a single cloud-free image prediction.

Algorithm 1 Internal Learning to Remove Clouds
1: procedure SEQ2SEQDECLOUDING(S1, S2, i ter Max)
2: GS1→S2 = init. new NeuralNetwork()
3: iterCount = 0
4: while iterCount < iterMax do
5: Ŝ2 = GS1→S2(S1)
6: GS1→S2.backpropagate(Lall(S2, Ŝ2))
7: iterCount = iterCount + 1
8: Return Ŝ2

network of Fig. 7 builds on the Siamese architecture of [12]
with a ResNet backbone [13] plus 3-D convolutions, whereas
the sequence-to-sequence approach of Fig. 8 follows a 3-D
convolutional variant of U-Net [30], as proposed in [29].

The training procedure of the sequence-to-sequence network
follows that of internal learning for image inpainting [29],
[33], which is formalized in Algorithm 1. In this framework,
for a given target sequence, a neural network is trained from
scratch directly on the target sequence (without any need for
additional or cloud-free training data) in order to reconstruct
its noisy pixels. The observations exhibit spatio-temporal
regularities and patterns (i.e., signal in the data), which is first
modeled and learned by the network. The irregularities in the
sequence (i.e., noise in the target data) are only internalized
after, similar to a conventionally trained network overfitting to
noise on training data. The internal learning approach exploits
this signal–noise dichotomy and teaches a model to reconstruct
cloud-covered pixels in the target sequence of S2 observations,
without need for any external or cloud-free training data.
In detail, a neural network is initialized and trained from
scratch directly on the target sequence. At each iteration, the
model receives input driving its activations (e.g., Gaussian
noise or S1 recordings) and predicts a sequence Ŝ2. The

predictions Ŝ2 are compared against the target sequence S2
(e.g., according to a cost function Lall as in 5) and the network
learns to reproduce the cloud-free pixels. The training stops
before the network overfits to internalizing the cloudy pixels.

With respect to its application and functionality, our
sequence-to-sequence neural network resembles classical
low-rank and sparse signal decomposition methods
[34]–[37]: First, while neural networks are typically
trained on a dedicated training data set separated from the test
observations, numeral signal decomposition methods can be
directly utilized on the data of interest. Similarly, our model
can be directly applied on the test data. Second, unmixing of
signals is very generic and can be applied to matrices as well
as tensors. In comparison, the deep image prior approach
applies to single images as well as time series [29], [33], too.
Finally, the decomposition itself is into a low-rank part and
a sparse component. The low-rank part denotes the data’s
compact representation and regularities. That is, spatial,
spectral, or temporal (auto-)correlations such as the land
cover mapped by a satellite. The sparse component consists
of the irregular part of the data which has only a few nonzero
entries, such as the appearance of clouds. In comparable
terms, the internal learning technique allows our network to
discover the regularities in the data and generalizing it to
cloud-covered samples, before overfitting to the noise.

IV. EXPERIMENTS AND RESULTS

This method details the experimental design and the cor-
responding results on the considered cloud removal methods
as well as their ablation variants. Section IV-A specifies
the measures of goodness used to assess the quality of the
individual techniques’ predictions. Section IV-B introduces the
baselines compared against the proposed model of III-A on the
sequence-to-point cloud removal task. Sections IV-C and IV-D
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Fig. 8. Conceptual illustration of the 3-D encoder–decoder architecture Gseq2seq employed in the sequence-to-sequence cloud removal model [28]. The network
is based on the architecture of [29] and consists of encoder and decoder parts arranged symmetrically in the style of U-Net [30], with skip connections between
paired layers. Input to the network is a batch of multitemporal S1 observations. The output is a predicted batch of multitemporal multispectral S2 observations.
For the ablation model considered in Section IV-D, Gaussian noise is used as an input as in [33] and [29].

detail the experiments and outcomes for the sequence-to-point
and sequence-to-sequence cloud removal tasks, respectively.

A. Metrics
We evaluate the quantitative performance in terms of nor-

malized root mean squares error (NRMSE), peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [38], and
Spectral Angle Mapper (SAM) [39], defined as
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with images x, y compared via their respective pixel values
xc,h,w, yc,h,w ∈ [0, 1], dimensions C = 3, H = W = 256,
means μx, μy , standard deviations σx , σy , covariance σxy as
well as constants �1, �2 to stabilize the computation. NRMSE
belongs to the class of pixel-level metrics and quantifies the
average discrepancy between the target and the predicted
pixels in Units of the measure of interest. PSNR is evaluated
on the whole image and quantifies the signal-to-noise ratio
of the prediction as a reconstruction of the target image.
SSIM is another image-wise measure that builds on PSNR
and captures the SSIM of the prediction to the target in terms
of perceived change, contrast, and luminance [38]. The SAM
measure is a third image-level metric that provides the spectral
angle between the bands of two multichannel images [39].
For further analysis, the pixelwise NRMSE is evaluated in
three manners: 1) over all pixels of the target image (as per

convention), 2) only over cloud-covered pixels (visible in nei-
ther of any input optical sample) to measure reconstruction of
noisy information, and 3) only over cloud-free pixels (visible
in at least one input optical patch) quantifying preservation of
information. The pixel-wise masking is performed according
to the cloud mask given by the detector of [19].

B. Baseline Methods

To put the performances of our proposed model and abla-
tions into context, we consider the following baseline methods.
First (“least cloudy”), taking the least-cloudy input obser-
vation and forwarding it without further modification to be
compared against the cloud-free target image. This provides a
measure of how hard the cloud removal task is with respect
to the extent of cloud-coverage present in the data. Second
(“mosaicing”), we perform a mosaicing method that averages
the values of pixels across cloud-free time points, thereby
integrating information across time. That is, for any pixel,
if there is a single clear-view time point, then its value is
copied; for multiple cloud-free samples, the mean is formed
and in case no cloud-free time point exists, then a value
of 0.5 is taken as a proxy. This is to avoid any extreme
values, such as cloudy pixels of high intensity. The mosaicing
technique provides a measure of how much information can
be reconstructed across time, from multispectral optical obser-
vations exclusively. Third, ResNet refers to a residual neural
network as described and trained in Sections III-A and IV-C.
The architecture is based on the model of [13] and serves as
a relevant baseline because parts of this model are used as
Siamese residual branches within our model, as detailed in
Section III-A. It provides an estimate of how well a point-
to-point cloud removal model can perform as a baseline.
Fourth, the baseline spatio-temporal generative adversarial
network (STGAN) denotes the “Branched ResNet generator
[infra-red (IR)]” architecture of [12]. It is a sequence-to-
point cloud removal model, and the architecture of our own
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sequence-to-point neural network closely follows its design,
as detailed in Section III-A. In sum, the purpose of assessing
these baselines is to analyze whether trivial solutions to the
multimodal multitemporal sequence-to-point cloud removal
problem exist, and how any more sophisticated deep learning
approach compares against these methods and our proposed
model trained on SEN12MS-CR-TS.

C. Sequence-to-Point Cloud Removal

This section details the training specifics of the sequence-to-
point cloud removal architecture introduced in Section III-A.
As detailed in Section III-A, up to the temporal concatenation
layer, we use a version of the ResNet-based [24] cloud removal
network of [13] and pretrained it on SEN12MS-CR [14]
according to the training specifics of [13]. All our consid-
ered sequence-to-point cloud removal networks and ablation
models share this pretrained single-temporal cloud removal
network as a starting point for the sake of comparability and
in order to reduce the duration of training. The networks are
trained for a total of ten epochs on one tuple of patches per
location for every ROI in the training split. For training, the
input S2 patches are filtered to display within 0%–50% of
cloud coverage. The target S2 patch is selected to be the
sample showing the minimum cloud coverage over the given
time series, that is, it is not necessarily temporally preceding
or following the input patches. For the first 25 000 steps in the
training procedure, the networks are trained with the initial
ResNet Siamese components frozen, exclusively optimizing
the subsequent 3-D convolution layers. After the steps with
the pretrained weights frozen and once the deeper layers have
been calibrated to the initial network’s latent feature maps,
the full network is trained end-to-end for the remainder of the
process. During training, the network minimizes the loss Lall

Lall = λL1LL1 + λpercLperc (1)

LL1 = ||S2 − Ŝ2||1 (2)

Lperc = ||VGG16(S2), VGG16(Ŝ2)||2 (3)

with λL1 = 100 according to [12] and λperc = 1 as hyper-
parameters weighting the individual pixel-wise loss LL1 and
the perceptual loss Lperc. The perceptual loss is computed by
means of an auxiliary Visual Geometry Group 16 (VGG16)
network [40] resulting in sharper image reconstructions [41].
In comparison to other VGG16 pretrained on classical com-
puter vision data sets such as ImageNet [42] and thus limited
to RGB channel data, we pretrained a VGG16 for landcover
classification on the SEN12MS data set [43] according to the
training protocol of [2]. The proposed sequence-to-point cloud
removal network and its ablation variants are optimized via
Adaptive Moment Estimation (ADAM) [44], with a learning
rate of 0.0002 and momentum parameters [0.5, 0.999] as
in [12]. A batch size of one tuple of samples per iteration
is used for training.

To evaluate performances on the test split, samples con-
taining S2 observations from the complete range of cloud
coverage (between 0 and 100%) are considered for input.
Table I compared the results of our proposed model with the
baselines detailed in Section IV-B. The results show that the

TABLE I

QUANTITATIVE EVALUATION OF THE PROPOSED SEQUENCE-TO-POINT
MODEL WITH BASELINE APPROACHES IN TERMS OF NORMALIZED

ROOT MEAN SQUARED ERROR (NRSME), PSNR, SSIM [38], AND

THE SAM [39] METRIC. OUR MODEL PERFORMS BEST IN THE

MAJORITY OF METRICS, DEMONSTRATING THAT A DEEP
NEURAL NETWORK APPROACH YIELDS ADDITIONAL

BENEFITS OVER TRIVIAL SOLUTIONS

TO THE MULTIMODAL MULTITEMPORAL
CLOUD REMOVAL PROBLEM

proposed network outperforms the baselines in the majority
of metrics, except for PSNR (where mosaicing comes first)
and the NRMSE (clear) preservation metric (where the “least
cloudy” approach performs best). This demonstrates that a
deep neural network approach can typically outperform trivial
solutions to the multimodal multitemporal cloud removal
problem. Exemplary outcomes for the considered baselines
on four different samples from the test split are presented
in Fig. 9. The considered cases are cloud-free, partly cloudy,
cloud-covered with no visibility except for a single time point,
and cloud-coverage with no visibility at any time point. The
results show that the considered models typically outperform
the simple heuristics. One exceptional case is least cloudy
in the absence of clouds, which manages to accomplish a
faithful prediction in such settings. Moreover, the illustrations
underline that multitemporal and multimodal data may benefit
image reconstruction: While most methods perform well in
the cloud-free or partly cloudy cases, multisource integra-
tion is needed if individual time points contain dense cloud
coverage over wide areas. When all input data is covered
by thick clouds, then this poses a severe challenge for all
approaches considered. To analyze the benefits of including
S1 SAR data, we perform an ablation study and compare
a multisensor model against one only utilizing multispectral
S2 input. Table II compared the results of the multimodal
model with an ablation version not using S1 SAR data. The
comparison illustrates the benefits of including SAR data
when reconstructing cloud-covered pixels. Next, we conduct
an ablation experiment to assess the additional benefits of
utilizing the introduced perceptual loss. Table III compared
the results of our proposed model with an ablation version
not using the perceptual loss (i.e., setting λperc = 0 in
eq 1). The outcomes imply that the usage of a perceptual
loss results in cloud-removed predictions of a higher quality.
Finally, we consider the extension of the proposed model
into networks integrating four and five time points of input
information. Table IV compared the performance of our model
as a function of input time points (n = 3, 4, 5). The results
indicate that considering longer time series may provide fur-
ther improvements in terms of reconstructing cloud-covered
information. In a final experiment on sequence-to-point cloud
removal, Table V reports the performance of our proposed
model (n = 3, with S1 and perceptual loss) as a function
of cloud coverage. That is, for a given interval of cloud
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Fig. 9. Exemplary predictions and cloud-free target images for all baselines reported in Table I. Columns: Four different samples from the test split. The
considered cases are cloud-free, partly cloudy, cloud-covered with no visibility except for a single time point, and cloud-covered with no visibility in any
time point. Rows: Predictions of least cloudy, mosaicing, ResNet, STGAN, ours (n=3), as well as the cloud-free reference image. The results show that
the considered models outperform the simple heuristics. Moreover, the illustrations underline that multitemporal and multimodal data may benefit image
reconstruction.
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TABLE II

COMPARISON OF THE PROPOSED SEQUENCE-TO-POINT MODEL
INCLUDING SAR OBSERVATIONS VERSUS AN ABLATION VERSION

WITHOUT SAR OBSERVATIONS IN TERMS OF NRSME, PSNR,
SSIM [38], AND THE SAM [39] METRIC. THE COMPARISON

ILLUSTRATES THE BENEFITS OF INCLUDING SAR DATA
WHEN RECONSTRUCTING CLOUD-COVERED PIXELS

TABLE III

COMPARISON OF THE PROPOSED SEQUENCE-TO-POINT MODEL

INCLUDING PERCEPTUAL LOSS VERSUS AN ABLATION VERSION

WITHOUT PERCEPTUAL LOSS IN TERMS OF NRSME, PSNR,
SSIM [38], AND THE SAM [39] METRIC. THE OUTCOMES

IMPLY THAT THE USAGE OF A PERCEPTUAL LOSS DURING

TRAINING RESULTS IN CLOUD-REMOVED PREDICTIONS

OF A HIGHER QUALITY AT TEST TIME

TABLE IV

QUANTITATIVE EVALUATION OF THE PROPOSED

SEQUENCE-TO-SEQUENCE MODEL WITH VARYING NUMBERS

OF TIME POINTS (n = 3, 4, 5) IN TERMS OF NRSME,
PSNR, SSIM [38], AND THE SAM [39] METRIC.

OUR MULTITEMPORAL NETWORK WITH

SAR GUIDANCE OUTPERFORMS THE
MULTITEMPORAL ABLATION MODEL

WITHOUT PRIOR SAR INFORMATION

TABLE V

PERFORMANCE OF OUR SEQUENCE-TO-POINT CLOUD REMOVAL METHOD

(n = 3, WITH S1 & WITH PERCEPTUAL LOSS) AS A FUNCTION
OF CLOUD COVERAGE. FOR A GIVEN INTERVAL, ALL n = 3

INPUT IMAGES ARE SAMPLED TO CONTAIN A CORRESPONDING

EXTENT OF CLOUDS. THE OUTCOMES SHOW THAT IMAGE

RECONSTRUCTION PERFORMANCE IS HIGHLY DEPENDENT
ON THE PERCENTAGE OF CLOUD COVERAGE. WHILE

PERFORMANCE DECREASE IS NOT STRICTLY

MONOTONOUS WITH AN INCREASE IN
CLOUD COVERAGE, A STRONG

ASSOCIATION PERSISTS

coverage, all n = 3 input images are sampled to contain
a corresponding extent of clouds. The outcomes show that
image reconstruction performance is highly dependent on the
percentage of cloud coverage. While performance decrease is
not strictly monotonous with an increase in cloud coverage,
a strong association persists.

TABLE VI

QUANTITATIVE EVALUATION OF BASELINE METHODS AND THE PROPOSED
SEQUENCE-TO-SEQUENCE MODEL IN TERMS OF ROOT MEAN

SQUARED ERROR (RSME), PSNR, SSIM, AND THE

SAM [39] METRIC. OUR MULTITEMPORAL NETWORK

WITH SAR GUIDANCE OUTPERFORMS THE CONSIDERED
BASELINES AS WELL AS THE MULTITEMPORAL

ABLATION MODEL WITHOUT PRIOR

SAR INFORMATION

D. Sequence-to-Sequence Cloud Removal

A key characteristic of training the sequence-to-sequence
cloud removal model described in Section III-B is the model
being trained directly on the time series of images one aims
to removes clouds from, without the use of any external
training data as in [33] and [29]. More specifically, the training
procedure teaches the network to replicate cloud-free pixels
and inpaint cloud-covered ones in the target sequence S2
according to the cost function Lall formulated in [29] as

Lall = λL2LL2 + λpercLperc (4)

LL2 = ||S2 · (1 − m), Ŝ2 · (1 − m)||2 (5)

Lperc = ||VGG16(S2) · (1 − m), VGG16(Ŝ2) · (1 − m)||2 (6)

where λL2 = 1 and λperc = 0.01 refer to hyperparameters
that linearly combine the terms constituting Lall. L2 is a
pixel-wise reconstruction loss evaluated over the cloud-free
pixels via an auxiliary VGG16 network [40] as explained
before. The pseudo-code formalizing the intrinsic learning
procedure is given in Algorithm 1 described in Section III-B
and further justifications are stated in the original work
of [33]. For a given target sequence, the network is trained
for 20 passes with batches of n = 5 samples consisting of
temporally adjacent images, for 100 iterations per pass. The
network is optimized via ADAM [44] with a learning rate of
0.01 and the hyperparameters of Algorithm 1 set as stated
in [29].

To quantitatively evaluate the considered model on
SEN12MS-CR-TS, we propose the following protocol for a
sequence-to-sequence cloud removal task: For a given target
sequence, the least cloud-covered S2 observation is identified
and denoted as a target image S2t . The most cloudy S2
sample is observed and denoted as a source image S2s . The
cloud-covered pixels of S2s according to a cloud mask m
are alpha-blended with the cloud-free pixels of S2t simi-
lar to the approach of [3]. Finally, the cloud-removed pre-
diction Ŝ2t is then compared against the originally cloud-
free S2t in order to get a measure of goodness of cloud
removal.

Table VI shows the results of the proposed network on
the sequence-to-sequence cloud removal task following the
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Fig. 10. Illustration of baseline methods for the sequence-to-sequence cloud removal task. The presented results show a cloudy image to be declouded,
as well as the predictions via Riemannian Robust Principal Component Pursuit (RPCP) [45], Nonnegative Matrix Factorization Incremental Subspace
Learning (NMFISL) [46], Probabilistic Nonnegative Matrix Factorization (PNMF) [47], Manhattan Nonnegative Matrix Factorization (MNMF) [48], and
Online Stochastic Tensor Decomposition (OSTD) [49]. The results indicate that the presence of large and dense clouds poses a severe challenge for the
considered methods. Most baselines decloud the image except for some residual artifacts, and some techniques display discolorization. For comparison with
ours (no S1), ours (with S1), and the cloud-free target image, see Fig. 11.

aforementioned protocol. Furthermore, the considered model
is compared against an ablation model, conditioned on random
Gaussian noise as in [33] and [29] in place of the meaningful
S1 input observations. Example outcomes of sequence-to-
sequence cloud removal on a given ROI are depicted in Figs. 1
and 10. Furthermore, Fig. 11 provides a qualitative comparison
between the predictions conditioned on SAR versus no prior
information, underlining the benefits of multimodal informa-
tion. The results highlight that the internal learning approach
can learn to reconstruct cloud-covered pixels on a very limited
amount of data. Furthermore, the results demonstrate that
including SAR data results in performance benefits over the
single-sensor baseline.

V. DISCUSSION

The main contribution of this work is in curating and pro-
viding SEN12MS-CR-TS, a multimodal multitemporal data set
for cloud removal in optical satellite imagery. Our large-scale
data set covers a heterogeneous set of ROIs sampled from
all over earth, acquired in different seasons throughout the
year. Given that the contained observations cover clear-view,
filmy, as well as nontransparent dense clouds, the objective of
reconstructing cloud-covered information poses a challenging
task for the considered methods and future approaches. For
the sake of demonstrating the usefulness of the presented
data set, we propose a sequence-to-point as well sequence-
to-sequence cloud removal network. The considered methods
are evaluated in terms of pixel-wise and image-wise metrics.
We provide evidence that taking time-series information into
account is facilitating the reconstruction of cloudy pixels and
that including multisensor measurements does further improve
the goodness of the cloud-removed predictions, justifying
the design of SEN12MS-CR-TS to include multitemporal
and multimodal data. The major difference to the preced-
ing mono-temporal SEN12MS-CR data set [15] for cloud
removal is that SEN12MS-CR-TS features a time series of
30 samples per ROI. This allows for developing methods that

integrate information across time to more faithfully reconstruct
cloud-obscured measurements. The sensitivity to temporal
information may be particularly valuable for future research
investigating the benefits of cloud removal to time-sensitive
applications, such as change detection. On the other side, there
is a tradeoff in terms of size, and while SEN12MS-CR-TS is
more than twice as large as its mono-temporal precursor, the
latter contains about two times as many ROIs sampled over
all continents. However, both data sets are fully compatible,
meaning that holdout ROIs of one belong to the test split of
the other data set and vice versa. As there is no geo-spatial
overlap across splits between both data sets, they can be
combined for training or validation purposes. Finally, the two
data sets exhibit a comparable extent of cloud coverage—about
50% and 48%, respectively, both covering the full spectrum
from semitransparent haze to thick and dense clouds. A dis-
crepancy between both data sets is in SEN12MS-CR having
between 25% and 50% overlap between neighboring patches
(following the design of [43]), whereas SEN12MS-CR-TS
has no intersection between adjacent samples. SEN12MS-CR
contains 122 218 patch triplets of S1, cloudy S2, and cloud-
free S2 data, whereas SEN12MS-CR-TS consists of 30 time
samples for each of the 15 578 patch-wise observations, for
every S1 and S2 measurement. Due to the differences in
preprocessing the two data sets are not coregistered patch-
wise but, importantly, they share a common definition of
ROIs as well as train and test splits. This way, they are
compatible with one another such that SEN12MS-CR-TS can
be utilized for time-series cloud removal, while SEN12MS-CR
can provide further geospatial coverage of additional ROIs on
individual time points. Thanks to the different designs of both
data sets, they may prove beneficial facilitating a variety of
downstream tasks, such as semantic segmentation [43], scene
classification [2], or change detection [5], even in the presence
of clouds.

Beyond the design of our novel data set, additional contri-
butions of this work are in introducing the internal learning
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Fig. 11. Illustrations on the effect of prior guidance via SAR information.
Columns: SAR input to the SAR-conditioned model, cloud-free prediction of
the model conditioned on Gaussian noise, cloud-free prediction of the model
conditioned on SAR information, and cloud-free observation as a reference
image. The structural information provided by the SAR input provides a strong
prior to the model, guiding it toward learning to remove clouds in the cloudy
input time series.

approach to cloud removal in optical satellite data, as well
as demonstrating that SAR-to-optical cloud removal performs
better than the original noise-to-optical translation framework.
While our data set aims to provide a global distribution
of samples, we think that the internal learning approach to
cloud removal may be of particular interest for remote-sensing
practitioners focusing on a single a spatially confined ROI,
as no further external data is necessary.

Fig. 12. Histogram of temporal differences between paired observations.
The mean time differences across all paired observations are 2.61 (± 2.41),
indicating a close proximity between paired samples.

VI. CONCLUSION

As a large extent of our planet is covered by haze or
clouds at any given point in time, such atmospheric distortions
pose a severe constraint to the ongoing monitoring of earth.
To approach this challenge, our work presented SEN12MS-
CR-TS, a multimodal and multitemporal data set for training
and evaluating global and all-season cloud removal methods.
Our data set contains Sentinel-1 and Sentinel-2 observations
from over 80000 km2 of landcover, distributed globally and
recorded through the year. The globally distributed ROIs are
large-sized and capture a heterogeneous mass of landcover.
We demonstrated the practicality of SEN12MS-CR by con-
sidering two methods: First, a model for sequence-to-point
cloud removal. Second, a network for sequence-to-sequence
cloud removal which, to our knowledge, provides the first
case a model preserving temporal information is proposed in
the context of cloud removal. Both methods benefited from
the presence of coregistered and paired SAR measurements
contained in our data set. The conducted experiments highlight
the contribution of our curated data set to the remote-sensing
community as well as the benefits of multimodal and multitem-
poral information to reconstruct noisy information. SEN12MS-
CR is made public to facilitate future research in multimodal
and multitemporal image reconstruction.

APPENDIX

TEMPORAL COINCIDENCE OF PAIRED OBSERVATIONS

Full-scene observations of Sentinel-1 and Sentinel-2 are
collected within a 14-day time window in a paired man-
ner, as specified in Section II-A. To further analyze the
temporal distance within paired data, Fig. 12 illustrates the
empirically observed coincidences within SEN12MS-CR-TS.
The mean time differences across all paired observations are
2.61 (± 2.41), which is considerably smaller than the inter-
val bound and implies a close proximity between paired
samples.
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I. INTRODUCTION

C LOUD coverage is detrimental to common remote sens-
ing applications, such as remote sensing scene classifi-

cation [1], [2], [3] and semantic segmentation [4], [5]. While
clouds are characterized in great detail [6], [7] and different
approaches for handling them have been investigated, less effort
has been spent to investigate what exactly its effects on remote
sensing applications are. The existing approaches range from
learning cloud removal for preprocessing [8], [9], [10], [11],
[12], [13] to familiarizing neural networks with clouds by in-
cluding cloud-covered observations in the training dataset, such
that the models learn to ignore clouds irrelevant to the task at
hand [3], [4], [14]. Such approaches that include cloudy images
in the training process are limited to samples with transparent
clouds or samples where the crucial features for classification are
not covered. Although recent work demonstrated that explicitly
performing cloud removal may improve model robustness [15],
the coverage of important features or the misinterpretation of
features induced by clouds still poses a significant problem for
remote sensing tasks sensitive to inter- and intraclass feature
differences [16], [17]. Furthermore, the majority of curated
optical satellite datasets are explicitly cleaned from clouds
and remote sensing models are subsequently (pre-) trained on
(predominantly) clear-view data [1], [2], [18]. This common
practice, however, is in contrast to the application of networks
typically trained on noncloudy datasets to data in the wild,
which is to a large extent polluted by haze or clouds [6]. Fig. 1
illustrates the possible negative effects of cloud cover on scene
classification. Fine-tuning such models on cloudy observations
would require the post-hoc collection of new data plus task-
related labels, which may thus be impracticable for the remote
sensing practitioner. Hence, the issue of cloud-agnostic networks
confronted with out-of-distribution data at test time commonly
persists. That is, classifiers trained on cloud-free data may in
practice still encounter samples significantly deviating from the
distribution of data that the model has been trained on.

In order to understand the causes of the experienced drops
in task performances [3], [14], we provide detailed insights
into how clouds affect every single part of the remote sens-
ing pipeline—from raw data to a model’s predictions. To our
knowledge, the only prior study explaining neural network’s
scene classifications focuses on clear data without taking the
effects of clouds into account [19]. In our work, we explain
the causes of overconfident miss-classifications resulting from
scenes fully or partially covered by clouds. Specifically, we
consider single-label scene classification on the SEN12MS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Two examples of the effect of clouds on single-label scene classifi-
cation. The visualization shows two examples of clear images, cloudy images,
and the corresponding predicted class probabilities. While in both cases, the
cloud-free image is classified correctly with respect to the ground truth, the
cloudy version is misclassified. In the upper example, much of the croplands
are obscured by cloud shadow, which causes the misclassification as a water
body with a high soft-max probability. In the lower example, the clouds cover
a large range of the water but keep a part of a city visible such that the sample
containing clouds is misclassified as Urban with a high conviction. The cloud
coverage of the samples is 19% and 77%, respectively. Although parts of the
images are still visible, the classifier’s predictions are misguided by the clouds
and the resulting shadows.

dataset [2]. We use the Sentinel-2 images of the dataset, which
have a resolution of 256× 256 pixels and are assigned to one
of 10 classes of land cover types. For cloud-covered samples,
we utilize the corresponding and co-registered observations of
the SEN12MS-CR dataset [20]. Our analysis is fourfold, as we
consider the effects of clouds on the following.

1) Data distribution, by describing the effects of clouds on
the statistics of the input dataset and how this affects
individual land cover types.

2) Classification performance, by evaluating the impact of
cloud coverage on a task performance level with respect
to the considered single-label classification task, including
individual class confusions.

3) Effects on the network output, by investigating the changes
in the network predictions and the capability to separate
cloudy samples from clear samples based on the network’s
output.

4) Feature importance and network focus, by analyzing
which parts of an image drive a classifier’s predictions
and how this changes in the presence of clouds.

In sum, the contribution of this work is to provide a more
thorough qualitative as well as quantitative analysis and in-
terpretation of the effects of clouds on remote sensing ap-
plications, to subsequently allow further research to handle
cloud-covered data more gracefully than currently feasible. The
code base for the presented results and experiments can be

found in our github repository: https://github.com/JakobCode/
explaining_cloud_effects.

II. DATA

A. Remote Sensing Data

To assess the effects of clouds on the scene classification
task, both cloudy observations and patchwise land cover class
annotations are required. For single-class labels and cloud-free
observations, this work builds on the SEN12MS dataset of
globally sampled Sentinel-1 and Sentinel-2 data [2], [21]. The
Sentinel-2 data correspond to the Level-1 C top-of-atmosphere
reflectance products. Semantic land cover annotations are given
by the MODIS-derived [22] simplified IGBP scheme of [21],
which consists of 10 different land cover types. For single-class
labels, we use the provided target values in [2] which, for any
sample, are given by the mode of its pixel-based simplified IGBP
land cover type map. For every 252 globally distributed regions
of interest, a large-scale observation is acquired within a given
meteorologically defined season for each of the three sensors and
collected semiautomatically via Google Earth Engine [23]. Each
region on average covers an area of approximately 52× 40 km2

land surface, equating to images of about 5200× 4000 pixels.
All full-scene observations are translated into the Universal
Transverse Mercator coordinate reference system. Afterward,
the images are sliced into patches of sizes 256× 256 pixels with
a stride of 128 pixels, such that neighboring patches have an over-
lap of 25% to 50%. Patches that contain invalid pixels, either due
to sensor noise or due to the coordinate transformation, are auto-
matically removed from the dataset. For cloud-covered data, we
utilize the compatible and co-registered SEN12MS-CR dataset
of cloudy Sentinel-2 data [20].1 The additional cloud-covered
full-scene observations are acquired in the same year and season
as their respective cloud-free counterparts to minimize surface
changes and are preprocessed analogously. For training and
testing data of this study, we use the intersection of both datasets’
splits, respectively. That is, for each considered testing sample a
cloud-free and a co-registered, potentially cloud-covered version
exists.

In order to compute statistics on the extent of cloud coverage
in the considered dataset, a pixelwise cloud map is required.
We utilize s2cloudless [24] to compute binary cloud masks. The
resulting distribution of cloud coverage on the considered test
split is depicted in Fig. 2. The statistics indicate that the complete
range of cloud coverage is present in the test split, from clear
view to fully obscured. The distribution exhibits a concentration
at high cloud coverage, implying an often impossible classifi-
cation task. For hard or even impossible classification tasks, the
predictions should be given with a larger entropy among the
predicted soft-max probability vectors.

B. Data Distribution

The distribution of land cover types in the test split is reported
in Fig. 3. The globally sampled land cover types are unbalanced,

1https://patrickTUM.github.io/cloud_removal
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Fig. 2. Histogram of test split samples per percentage of cloud coverage. All
extent of cloud coverage is present in the test split. The distribution exhibits a
concentration at high cloud coverage, implying a challenging or even infeasible
classification task.

Fig. 3. Histogram of the land cover class distribution in the original test
split of the SEN12MS dataset and the considered test split that is based on
the intersection with the cloudy SEN12MSCR dataset. The globally sampled
land cover types are unbalanced, with majority classes like Savanna while other
classes hardly occur.

with majority classes like Savanna while other classes (Snow,
Barren) hardly occur. The distribution of land cover in the
training split is comparable, which makes it representative of
the holdout data.

The bandwise statistics of each class’s spectral properties are
illustrated in Fig. 4. The illustrated band intensities are computed
by calculating the grand mean across all samples, averaging spa-
tial dimensions for each class and band separately. The statistics
show that the presence of clouds results in an average increase
in band intensities as well as a considerable increase in standard
deviations. That is, clouds result in land cover types being less
separable based solely on their spectral properties. Furthermore,
the considerable shift in the data distribution makes the behavior

Fig. 4. Bandwise spectral fingerprint of each land cover class. The figures
illustrate amplitude as a function of spectral bands and land cover type. Band
intensities are computed as the grand mean across all samples, averaging across
spatial dimensions for each class and band separately. The presence of clouds
results in an average increase in band intensities and standard deviation. This
indicates that, in the presence of clouds, land cover types become less separable
on the basis of their spectral fingerprint. (a) Statistics of cloud-free data. (b)
Statistics of 95% cloud-covered data.

of neural networks unreliable and sensitive to misinterpretations
caused by very confident but false predictions [25], [26].

III. SCENE CLASSIFICATION UNDER CLOUDY AND

NONCLOUDY CONDITIONS

A. Scene Classification Models

We investigate the scene classification performance of a
ResNet50 as well as a ResNet101 [27], a DenseNet121 [28],
a VGG-16, and a VGG-19 model [29], which were already
previously considered for this task [2]. Other than [2], we make
use of all Sentinel-2 bands to include atmospheric information,
which is of particular relevance in the presence of clouds. We
trained on the cloud-free SEN12MS training data and randomly
held out 10% of the training data for a validation set. The
models were trained for 30 epochs and the models with the
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Fig. 5. Classification performances on cloudy and cloud-free data. The eval-
uated metrics demonstrate comparable performances for the different architec-
tures considered in [2].

best performance on the validation set were saved during the
training. For the optimization procedure, we utilized the ADAM
optimizer [30] with a learning rate and weight decay of 10−5.
For the implementation, we extended the PyTorch [31] imple-
mentation provided by Schmitt and Wu.2 The trained networks
perform comparably to the baselines proposed in [2], which were
trained on the 10 surface-relevant bands of Sentinel-2 only.

B. Classification Performance

Our trained networks achieve an average accuracy score be-
tween 0.61 and 0.75 (see also Fig. 5), which is comparable
to the performance of the available networks pretrained on
only 10 bands of Sentinel-2 [2]. In the following parts, we
take the ResNet50 network as a representative use case for our
further evaluations. The network can be seen as representative
in a way that the presented findings based on the application
of GradCam hold for all the trained networks. In contrast to

2https://github.com/schmitt-muc/SEN12MS

Fig. 6. Performance of the ResNet50 architecture as a function of varying
ranges of cloud coverage. While accuracies are detriment with increasing cloud
coverage, the network’s confidence remains consistently high.

the subset of clear images, the networks achieve only average
accuracy scores between 0.26 and 0.32 on the cloudy test data.
This denotes a considerably detrimental effect of clouds on the
model’s classification performance, in line with the high cloud
coverage rates reported in Section II-A. In Fig. 5, the effects
of the clouds on the accuracy, the average accuracy, and the
confidence are illustrated. In general, the largest value within a
network’s soft-max output vector can be interpreted as the model
confidence. Networks where the predicted probability represents
the actual fraction of correct predictions are called calibrated
while uncalibrated networks lead to over- or underconfident
predictions [25]. We indicated the confidence by the average
over the highest probabilities received from the network for
the single samples. While there is a clear drop in classification
performances, there is considerably less decrease in confidence.

Complementary, Fig. 6 details the performance of the
ResNet50 network for different ranges of cloud coverage. The
analysis shows that classification performances decrease with
an increase in cloud coverage while confidence stays high.

To attribute the decrease in performance to specific land types,
we analyze the confusion matrices for clear and for cloudy
observations shown in Fig. 7(a) and (b), respectively. For the
cloud-free data, class 4 (Grasslands) is often confused with
other types, specifically with class 6 (Croplands). The presence
of clouds generally results in more misclassifications, but, in
particular, reinforces the bias of predicting class 5 (Wetlands).
Remarkably, especially the already harder-to-differentiate veg-
etation classes are much more distracted by the (partial) cloud
cover with a clear bias toward class 4 and class 6.

IV. ANALYSIS OF CLOUD EFFECTS

A. Separability and Out-of-Distribution Analysis

The eventual occurrence of clouds poses the question of
whether a given set of samples can be divided into cloudy and
noncloudy images, solely based on a neural network’s output.
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Fig. 7. Confusion matrices of the cloudy and cloud-free test samples resulting
from the intersection of SEN12MS and SEN12MS-CR. The true class labels are
plotted versus the predicted class labels, with the row-normalized probabilities
color-coded. Specifically, class 4 (Grasslands) is often confused with others, in
particular with class 6 (Croplands). The presence of clouds generally results in
more misclassifications, but in particular reinforces the bias of predicting class 6
(Croplands). Remarkably, the already harder-to-differentiate vegetation classes
are much more distracted by the (partial) cloud cover with a clear bias toward
classes 4 and 6. (a) Confusion matrix on cloud-free data. (b) Confusion matrix
on cloud-covered data.

This can be seen as a case of Out-of-Distribution detection,
which is a broadly studied topic in the field of machine learn-
ing [25], [32] and also applied in different remote sensing sce-
narios [26]. In order to evaluate the out-of-distribution detection
performance of a classifier, one in general evaluates how well
metrics can be used to separate a given test dataset into so-called
in-distribution samples (in our case the noncloudy samples) and
out-of-distribution samples (in our case the cloudy samples).

For every classification neural network, one can apply different
metrics on the logit values as well as on the predicted probability
vector. The motivation behind this analysis is driven by findings
that predictions for data points from unknown data distributions
might give a very confident prediction, but often differ consid-
erably in the pure network output, the so-called logits [26]. An
ideal model confronted with cloudy samples would express its
uncertainty for example by a low confidence value or a high
entropy in the resulting probability vector. Also, the features
derived from a cloudy sample would fit relatively bad to the
possible classes, and therefore, the predicted logit values should
be small for all classes. Popular metrics are for example the
maximum probability (or confidence), the mutual information,
the entropy, the sum of the logit values (log-sum), and the pre-
cision. The precision is motivated by the Dirichlet distribution
(a multivariate generalization of the Beta distribution) and can
be interpreted as a description of the certainty on the predicted
probability vector [25]. The precision is computed as the sum of
the exponential of the logit values and the larger the precision
value, the less variation in the prediction is assumed. In this
article, we investigate the separability of cloudy and noncloudy
samples based on the maximum probability, the entropy, the
mutual information, the sum of the logit values, and the precision
value.

B. Grad-CAM for Saliency Map Computation

Complementary to analyzing the effects of clouds on the scene
classification performance via established statistics, we use
Gradient-weighted Class Activation Mapping (Grad-CAM) [33]
to inspect the workings of the considered classifier when facing
noisy optical data. Grad-CAM is a popular method to analyze
which input region of an image contributed most to a given
prediction. Grad-CAM can be applied post-hoc to a trained
network to provide heat mapsMc of the models’ attention on the
image conditioned on a specific target class c, so-called saliency
maps. To do so, the derivative δyc

δAk
of the output logit yc for

the conditioned class c with respect to the feature maps Ak is
computed. The gradients are then global average pooled across
the spatial dimensions H and W to obtain mapwise attention
weightings

αc,k =
1

H ×W
Σi=1,...,HΣj=1,...,W

δyc
δAk,i,j

which can be interpreted as the attribution of feature map Ak to
drive the classification of c. The feature maps Ak at that layer
are averaged across all output channels and the gradients for
each channel are weighted by the respective layer’s activations
αc,k in a simple linear combination. On the resulting pixelwise
attribution of activations, a rectified linear unit σ is applied

Mc = σ(Σkαc,kAk)

and the saliency map Mc is upsampled via bilinear interpolation
to the dimensions of the input image. The resulting attention
map specifies which areas in a given input to the network drive
its classification as a scene of class c. We utilize Grad-CAM to
analyze which regions of a land cover are salient in classifier’s
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Fig. 8. Separability of samples from the cloudy and from the clear dataset,
based on the PR and receiving-operating-characteristic (ROC) of different
metrics applied to the output of different network architectures proposed in [2].
The evaluation shows that cloudy and noncloudy samples affect the output of
different architectures differently. The best separability is reached with the
VGG16 and the ResNet50 architecture and the mutual information metric,
followed by the ResNet101 and the DenseNet121 architectures.

receptive fields, and how the presence of clouds affects these
saliency maps.

V. RESULTS

A. Effects on the Network Output

This section details the effects of clouds on the network
output, including the predictions before applying the soft-max
function to compute the categorical probability vectors. We
utilize the metrics defined in Section IV-A and analyze the
separability of the set of cloudy samples (with a coverage of
at least 10%) to their cloud-free pairings and present in Fig. 8
the outcomes for the considered metrics in terms of the average
under the curve of precision recall (PR) as well as the receiver
operating characteristic curve (ROC). There is an effect of the
different architectures on separability, dependent on the con-
sidered metric. Overall, separability works best for the mutual
information and the entropy metric and the VGG16 architecture,
followed by the ResNet50 and the DenseNet121 architecture. It
is important to realize that a perfect separability, i.e., a value of
100, is unrealistic to reach in our setup, since several samples
are only covered by clouds on a small fraction or do not contain
any thick clouds at all (cmp. Fig. 2).

B. Feature Importance and Network Focus

To further analyze what drives misclassifications in the pres-
ence of clouds, we apply Grad-CAM to compute saliency maps
as detailed in Section IV-B. Within our investigation, we encoun-
tered four different manners in which clouds affect the network’s
attention, presented in the following.3

3Please note that these chosen examples are exemplary in the sense that their
class labels and the classifier’s predictions are indeed representatives according
to the land cover distribution of Fig. 3 and the confusion matrices of Fig. 7: The
analyzed cases feature prominent land cover types such as Grassland, Croplands,

Fig. 9. (a) Clear and (d) 77% cloud-covered image with ground truth class
water corresponding saliency maps with respect to the (b) and (e) classes water
and (c) and (f) urban. In (g), the network’s predictions are shown. This is an
example of data where clouds partially cover the image such that homogeneous
features are covered but “small feature classes” are still visible. Specifically, the
few small buildings visible on the very edge of the image, and the small clouds,
cause this confident misclassification.

1) Clouds Partially Cover the Image Such That Homoge-
neous Features are Covered But “Small Feature Classes” are
Still Visible: Depending on the type of cloud coverage, a few
clear features can already be enough to make the network predict
a specific class with a high confidence value. Especially the ur-
ban class is an example of such behavior. Complementing Fig. 1
with the corresponding Grad-CAM results, Fig. 9 illustrates the
saliency maps of a water-type land cover scene for both cloudy
and cloud-free views. Evidently, the correct Water classification
focuses on the whole water body, whereas the Urban mispredic-
tion is driven by the peripheral urban parts not covered by clouds.
In both cases, the scenes are (in-)correctly classified at very high
confidence, as shown in Fig. 1. Interestingly, the confidence of
the network on the cloudy sample prediction is 86%, compared
to 90% for the water prediction on the clean image.

Urban, and Forest—which, according to Fig. 2, make up a large proportion of
the overall test data. Moreover, the considered cases are representative of salient
changes to the network’s performance. For instance, in the presence of clouds, the
TPR of classifying Forest, the ground truth class in Fig. 13, drops drastically from
0.76 to 0.24. Meanwhile, the FPR to confuse Forest with croplands increases
from 0.01 to 0.25, as shown in Fig. 7. As another example, Fig. 11 illustrates a
confusion between the ground truth Grassland and the prediction of Cropland.
In the presence of clouds, the FPR of this confusion is at 0.48, which is twice as
large as the TPR of predicting Grassland correctly as shown in Fig. 7(b).
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Fig. 10. (a) Clear and (d) 19% cloud-covered input images with ground truth
class croplands and corresponding saliency maps for the (b) and (e) classes
croplands and (c) and (f) water. In (g), the network’s predictions on the clear
and on the cloudy image are visualized. The illustrated example shows the
case of large cloud shadow regions causing a confident misclassification. It
is representative in featuring the majority class “croplands,” constituting a large
part of our dataset.

2) Structures are Hidden by Shadows: Even clouds that
cover an image only partially on a small fraction can still have a
considerable effect on the image caused by their shadow. Optical
sensors are sensitive to illumination and large shadows impact
the illumination. Based on this, shadows can hide structures and
characteristics on the floor, leading to a more homogeneous-
looking area. In Fig. 10, a very inhomogeneous side is visualized.
As shown in Fig. 1, the confidence in the predictions is hence
not very large. In contrast to this, the cloudy version covers
most of the picture in a very dark monotonic-looking side. As
a result, the network predicts the sample as a water body with
high confidence. While the saliency map for the clear image
shows several single regions that caused the correct prediction,
the saliency map of the cloudy version clearly shows that the
shadow caused the false prediction as a water body.

3) Small Clouds and Their Shadows Make the Ground Look
Less Homogeneous: Clouds and their shadows cannot only
cause homogeneity but also make images look more inhomoge-
neous. Especially many small clouds with many corresponding
shadows make the image indicates more structure in the land side
as their actually is. In Fig. 11, the cloud-free patch is accurately
classified as “grassland.” The cloudy patch of 40% cloud cover-
age is misclassified as “croplands.” The corresponding saliency

Fig. 11. (a) Clear and (d) 40% cloud-covered input images with ground truth
class grasslands and corresponding saliency maps for the (b) and (e) classes
grasslands and (c) and (f) croplands. In (g), the network’s predictions are shown.
This is a case of small clouds and their shadows making the ground look less
homogeneous. Altogether, one can clearly see that the intensity of cloudy pixels
and their high-contrast neighborhood capture the network’s attention and result
in misclassification. The shown misclassification is representative for many
cases, as croplands are erroneously predicted twice as often as the correct class
of grassland in the presence of clouds, according to Fig. 7(b).

maps clearly show that while for the correct prediction on the
clear image, most of the image is taken into account, the false
prediction on the cloudy image is based mainly on cloudy and
shadow parts of the image.

4) Homogeneous and Semitransparent Clouds Make Ground
Look More Homogeneous: Besides the above-considered non-
transparent clouds with clear shapes and shadows, there also
exist semitransparent and very homogeneous clouds. In Figs. 12
and 13, two examples are shown where these types of clouds lead
to a wrong water and a wrong croplands prediction, respectively.

VI. DISCUSSION

Following the four levels of analysis provided in Section V,
this section communicates an interpretation of the observed
results. The provided interpretations follow the preceding four
stages of analysis to detail our views on the effects of clouds,
from the raw data to network decisions and clarify how each
step relates to one another.
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Fig. 12. (a) Clear and (d) 100% cloud-covered input images with ground
truth class savanna and corresponding saliency maps for the (b) and (e) classes
savanna and (c) and (f) water. In (g), the network’s predictions are shown. The
shown samples represent the case of homogeneous and semi-transparent clouds
making ground appear more homogeneous. Altogether, one can clearly see that
the lower contrast and the dark water shimmering through the clouds result in
the water prediction.

1) Distribution Shift: As presented in Section II-B, the pres-
ence of clouds changes the bandwise data statistics. That is, an
overall shift in the data distribution is observable. Distribution
shifts have previously been shown to make the behavior of neural
networks unreliable and sensitive to misinterpretations caused
by very confident but false predictions [25], [26]. Moreover,
the bandwise standard deviations increased considerably. This,
in return, causes the individual land cover classes to be less
separable on their spectral statistics alone. While convolutional
neural networks do also incorporate spatial information via local
context, the spectral statistics of a sample become less indicative
of its class belongings. Finally, preprocessing pipelines based
on statistics priorly computed on the cloud-free training data (as
in [2]), are no longer appropriate as they do not match the cloudy
data distribution and thus do not normalize the cloud-covered
data.

2) Classification Performance and Overconfidence: The per-
formance and confidence metrics presented in Section III-B in-
dicate that the classifier is oblivious to the presence of previously
unencountered clouds and their effects caused by the shift in the
input data distribution as described in Section II-B. Interestingly,
the drop in the accuracy is not uniformly distributed, but the
confusion matrix in Fig. 7(b) shows a bias toward particular

Fig. 13. (a) Clear and (d) 87% cloud-covered input images with ground truth
class forest and corresponding saliency maps for the (b) and (e) classes forest
and (c) and (f) croplands. In (g), the network’s predictions are shown. This is a
case of homogeneous and semitransparent clouds making ground appear more
homogeneous. Specifically, some small regions with structured clouds result
in the croplands prediction. This sample is represented as, in the presence of
clouds, the correct classification of “forest” drops to a third of the original rate.
Moreover, the probability of misclassifying “forest” as “croplands” outgrows
the chance of a correct prediction, as analyzed in Fig. 7.

classes. Moreover, this bias is not toward the class with the most
training samples (savanna). In addition to the biased decrease in
classification performance, the classifier’s high overconfidence
in the cloudy samples is an undesirable effect caused by clouds.
Even though the data are very different from the data known
from the training (as seen in the band statistics), the network
still gives predictions with high confidence. This behavior is
in line with prior observations that neural networks are overly
confident in their predictions even in the presence of noise and
on changing data domains and distributions [25], [34].

3) Cloudy Noncloudy Separability: Even though the clouds
have such a strong effect on the classification performance,
the results in Section V-A showed that the separation between
cloudy and noncloudy images based on different metrics on
the network output is only possible to a certain extent. Even
the most discriminative network architectures and measures can
only separate in-distribution from out-of-distribution samples in
roughly two-thirds of the considered cases. This behavior was
also observed when the threshold for the cloud coverage was
increased from 10% to a larger value or even to 100%. Besides
this, the classifiers and metrics also differ in the extent to which
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Fig. 14. Violin plot visualization of the pixelwise saliencies with respect to the
correct class over the noncloudy (left) and cloudy (right) test data. The violin
bodies indicate a smoothed empirical probability distribution, per class. The
mean and the median intensities for each class are given by the red (mean) and
the green (median) line, respectively. For the clear case, the plots clearly show
classwise differences in the average number of pixels and intensities contributing
to the prediction. For the cloudy case, they show a reduction of saliency for all
classes but the water class.

they can grasp differences between representations of cloudy
and cloud-free images. Especially the performances based on
the precision value and the maximum probability underline the
findings that networks are overly confident and further support
the interpretation that the scene classifier is oblivious to the
presence of previously unencountered clouds.

4) Outliers as Distractors: As evidenced by the Grad-CAM
analysis in Section V-B, cloud coverage poses an obstacle to
land cover classification in four different kinds: First, clouds
partially cover the image such that large areas are covered but
relatively irrelevant “small feature classes” may still be visible.
Second, otherwise apparent structures may be hidden by cloud
shadows. Third, small clouds and their shadows make the ground
look less homogeneous. Fourth, transparent clouds lead to a
different representation of the (often already on clear images
hard to differentiate) classes of land cover. These four cases can
be directly related to the shift in the confusion matrix represented
in Fig. 7(b), as, for example, the large shift from water to urban
classes can be explained and the interplay of houses and water
was presented as shown in Fig. 9. Moreover, samples across all
four cases highlight that the network’s spatial attention often
shifts toward clouds, their shadows, or the transition between
both. That is, outstandingly bright, very dark, or high-contrast
areas often coincide with a focus of attention. As these are often-
times entailed by the presence of clouds, we interpret that out-
of-distribution image intensities function as a distractor. In sum,
clouds and their shadows distract classifiers on a macroscale by
obscuring large areas—but also on a per-pixel level, as cloud
or cloud-shadow induced intensity changes equally distract the
classifier from the actual land cover. Moreover, the evaluation
of the pixelwise saliencies in Fig. 14 shows that all areas of the
water land cover type contribute to a relatively high relevance. In
contrast, for the more feature-based urban class, the majority of
the class is not that relevant for the prediction. At the same time,

the values for the urban saliency sometimes reach larger values
than for all other classes. Interestingly, an equivalent but less
significant trend of larger areas of an image into account also
appears for the forest and the shrubland class. For the Wetland
class, the relevance is not that concentrated on single values but
seems to also take a variety of areas into account. Those classes
also have the largest relative drop in the true positives, indicating
that the coverage of clouds harms these types of classes more
than those, which focus on smaller areas.

Hence, clouds and shadows covering parts of an image and
hiding information for specific areas affect the scenewise clas-
sification of regions differently. When comparing the pixel-
wise saliency of cloud-free data to one of cloudy samples, a
clear decrease in saliency is visible while the outliers become
more extreme. That is, on average, a smaller fraction of a
scene’s pixels contributes to its classification in the presence
of clouds, except for a few extrema. This finding validates
the hypothesis that less information covering multiple pixels
leads to class prediction but mainly local information. This
is also what the presented saliency maps, except of the false
water prediction in Fig. 10, indicate. Fewer pixels driving a
classification are in contrast to the majority principle that the
most prominent class (i.e., the one covering the largest area)
defines a scene’s label. The only exception from the trend of
shrinking saliencies is the Water class, for which larger areas
of cloud shadows in other scene types tend to be misclassified
as water. Altogether, the presented analysis clearly shows that
conventionally (pre-)trained networks are not fit for domain
shifts in data common in remote sensing. Specifically, the
derived features cannot be used to give a strong idea of the
underlying class, even if only parts of the image are covered by
clouds.

Overall, our multistage analysis reveals that the effects of
clouds on remote sensing applications manifest in many different
aspects of the pipeline, from the raw data to the information a
trained network extracts from these images. As the visualiza-
tions and evaluations of the Grad-CAM images underlined, the
structure caused by clouds and their shadows contain misleading
information leading to very confident but false predictions.

While our analyzed data comprise a large cohort of globally
distributed regions acquired through several seasons that should
be sufficiently heterogeneous and representative, our analysis
may nonetheless be dependent on, e.g., the choice of datasets
and cloud detection algorithms. For instance, future work may
conduct our analysis focused on a single-country level, e.g., on
the dataset in [35]. Moreover, recent publications have provided
novel large-scale datasets for cloud detection or removal in
time series [12], [13], [36], which may serve as an extended
version of our analysis. With respect to the cloud detector algo-
rithm, s2cloudless was chosen for being commonly deployed,
easily applicable, and performing well [37], [38]. However,
many alternative approaches exist [35], [39], [40], [41], [42],
whose variable sensitivity thresholds may result in qualitatively
different cloud masks and thus different downstream analysis
results. The chosen s2cloudless algorithm is reported to show a
fair “balance (within 10%) between commission and omission
errors” [38], which may avoid any one-sided biases to either
false alarms or misses of clouds in our subsequent analysis.
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VII. CONCLUSION

With over 50% of our planet’s surface covered by clouds at
any point [6], haze and clouds pose a considerable obstacle to
the continuous monitoring of Earth. In this work, we investi-
gated in detail the effects of clouds on a deep neural network
performing remote sensing scene classification. To start with,
clouds considerably alter the spectral characteristics of data
and make individual land cover types less separable from one
another. In terms of performance, we observed a considerable
drop in overall classification accuracy to almost half of the rates
at clear views. A confusion matrix analysis revealed that existing
biases toward predicting certain classes are reinforced in the
presence of clouds. Even though the network remains highly
confident in its predictions, it cannot separate between cloud-
free and cloud-covered observations—indicating the classifier’s
unawareness of clouds. Finally, we complemented the reported
statistics with a qualitative analysis of the classifier’s attention
maps. The saliency maps highlighted that clouds distract the
network from the actual land cover surface. That is, rather than
focusing on the actual land cover, previously unseen noise is
so salient that it becomes the focus of the classifier’s attention.
These insights contribute to a better understanding of the effects
of clouds on remote sensing applications and may consequently
guide the future development of more robust models. We plan
to continue our research and develop a methodology that is
more robust to the effects of outliers and noise detailed in this
contribution. For future approaches, evaluating the distribution
of image regions relevant to the prediction is an interesting way
to identify misconceptions and misclassifications. In addition,
training methods that incorporate clouds and shadowy regions
and can express the uncertainty and the lack of knowledge due
to obscured parts of the image are a promising route to more
robust approaches in the future.
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Abstract

Clouds and haze often occlude optical satellite images,
hindering continuous, dense monitoring of the Earth’s sur-
face. Although modern deep learning methods can implic-
itly learn to ignore such occlusions, explicit cloud removal
as pre-processing enables manual interpretation and al-
lows training models when only few annotations are avail-
able. Cloud removal is challenging due to the wide range of
occlusion scenarios—from scenes partially visible through
haze, to completely opaque cloud coverage. Furthermore,
integrating reconstructed images in downstream applica-
tions would greatly benefit from trustworthy quality assess-
ment. In this paper, we introduce UnCRtainTS, a method for
multi-temporal cloud removal combining a novel attention-
based architecture, and a formulation for multivariate un-
certainty prediction. These two components combined set a
new state-of-the-art performance in terms of image recon-
struction on two public cloud removal datasets. Addition-
ally, we show how the well-calibrated predicted uncertain-
ties enable a precise control of the reconstruction quality.

1. Introduction

Multispectral, optical satellite imagery allows for large-
scale assessments of the environment like crop monitor-
ing [58,71] and global vegetation height estimation [45,46].
Clouds, haze and other atmospheric disturbances, however,
often occlude large parts of optical satellite images, partic-
ularly during meteorological winter season [40] and over
landcover such as rainforests [4]. Neural networks trained
on extensive amounts of annotated data may implicitly learn
to ignore task-irrelevant cloudy observations [55, 58, 59].
Yet, explicit cloud removal as a pre-processing step can fur-
ther improve model performance and is valuable if ground

UnCRtainTS

Reconstructed Image

Input time series

Aleatoric uncertainty

Figure 1. Overview: Our attention-based UnCRtainTS architec-
ture predicts a single cloud-free image from a sequence of cloudy
observations. For each reconstructed pixel, our method also es-
timates the aleatoric uncertainty of the prediction. Note how
higher uncertainties (in red) are associated with persistent occlu-
sion, cloud shadow, or with specific land cover types.

truth annotations for supervised training are scarce [30].
Cloud removal prior to training or applying a pre-trained
task-specific model also permits a seamless analysis using
traditional non-learning methods or visualisation [51].

Hence, cloud removal is an active field of research boast-
ing a large body of literature on image reconstruction meth-
ods to recover cloud-free observations [4, 12, 17, 20, 29, 54,
61, 62]. Such methods are typically evaluated in terms of
image restoration metrics, e.g. mean squared error or struc-
tural similarity (SSIM), providing an aggregated measure of
reconstruction quality. These metrics, however, provide lit-
tle insight into how reliable a given reconstruction is on a
pixel-wise or image-by-image basis. To address this short-
coming, we introduce uncertainty estimation to satellite im-
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age reconstruction, specifically to the task of multi-temporal
cloud-removal in optical satellite images. Predicting uncer-
tainties that correlate with the empirical errors of a neu-
ral net is at the core of the growing field of probabilistic
deep learning [39, 65, 68]. By modelling the uncertainty
and training for a negative log likelihood (NLL) objective,
such approaches allow to jointly learn a model for making a
prediction and estimate the prediction’s variances. If well-
calibrated, the predicted uncertainties can be very valuable
for downstream usage by providing a measure of a recon-
struction’s confidence. Uncertainty quantification has been
successfully applied in univariate remote sensing regression
problems such as canopy height regression [46] or flood risk
estimation [8]. Here, we extend uncertainty quantification
to multivariate regression for satellite image reconstruction.
We obtain experimentally well-calibrated uncertainties that
enable flagging poorly reconstructed images. We also show
that multivariate uncertainty prediction requires a multivari-
ate uncertainty model for better calibration.

Aleatoric uncertainty prediction implies training with
a pixel-based Negative Log Likelihod (NLL) loss. On
the other hand, image reconstruction losses like SSIM or
perceptual loss are typically used in existing cloud re-
moval methods to better retrieve high-frequency details
[10, 12, 74]. Here, we introduce a novel neural architec-
ture that operates on feature maps at full resolution. It
leverages attention-based temporal encoding, allowing it to
outperform previous state-of-the-art approaches even when
trained via a pixel-based loss. In sum, our contributions are:

• We introduce multivariate uncertainty quantification to
the task of multispectral satellite image reconstruction,
to obtain both reconstructions and variance estimates.

• We propose a novel neural network architecture
achieving state-of-the-art results on two challenging
benchmark datasets for optical satellite cloud removal.

• We obtain well-calibrated uncertainties that allow to
measure and control the quality of reconstructed im-
ages for risk-mitigation in downstream applications.

2. Related Work
2.1. Cloud Removal in Satellite Image Time Series

Optical satellite image reconstruction [64], and specif-
ically cloud removal, pose a long-standing challenge in
remote sensing [15, 33, 35, 49, 50]. Contemporary deep
learning approaches can be categorised into mono-temporal
[4, 17, 20, 56, 75], mono-temporal & multi-modal [12, 29,
54], multi-temporal [61] and multi-temporal & multi-modal
methods [14,62]. Here, we consider the reconstruction task
in a multi-temporal & multi-modal setting.

Spatial encoding of image reconstruction is either done
with UNet-like encoder-decoder backbones [37,57,76] that

spatially down-sample the intermediate representations [12,
17, 29], or with architectures preserving the full resolution
of the images [44, 54]. While the first are computationally
more efficient especially in the multi-temporal setting, the
latter tend to better preserve the spatial structure in the re-
constructed images. In fact, downsampling architectures of-
ten necessitate auxiliary perceptual [12, 13, 36, 38] or struc-
tural similarity losses [72,73] to recover high-frequency in-
formation. The combination of such cost functions with a
probabilistic training objective for uncertainty prediction is
not straightforward. Therefore, we design an architecture
that operates on full resolution feature maps and make de-
sign choices to reduces its computational complexity. For
temporal encoding, we draw inspiration from recent work
in satellite time series encoding [21,22,59] and rely on self-
attention to integrate the temporal information.

2.2. Uncertainty Quantification

Uncertainty can be partitioned into epistemic or model
uncertainty, and aleatoric or data uncertainty. Epistemic
uncertainty accounts for the uncertainty on the model’s
weights, and can be estimated for instance with ensem-
ble methods [43, 70], or monte-carlo dropout [19] in deep
nets. Aleatoric uncertainty captures the randomness in-
herent to the data. In the case of optical satellite image
reconstruction, aleatoric uncertainty may thus help flag-
ging restorations based on too little evidence. In the re-
cent deep learning literature, aleatoric uncertainty estima-
tion is achieved via likelihood maximization with a para-
metric model of the noise distribution [1, 63, 65, 67, 68].
This is a common technique in safety-critical applications,
such as solving inverse problems in biomedical imaging
[2, 5, 9, 16, 27, 47, 48, 69]. Uncertainty quantification is of
growing interest in remote sensing [26], with applications
to forest assessments, flood hazard monitoring, geophysical
modeling, landcover classification and out-of-distribution
detection [8,24,25,45,46,52]. As prior remote sensing work
covers uncertainty quantification for univariate regression
problems, the multivariate extension has yet to be explored.
To our knowledge, the aforementioned contributions are ei-
ther on image reconstruction in the biomedical domain or
target specific remote sensing downstream tasks, such that
ours is the first work to investigate uncertainty quantifica-
tion for multispectral satellite image reconstruction. The
current lack of uncertainty quantification in the cloud re-
moval literature is a significant research gap because re-
constructed satellite images may guide safety-critical down-
stream applications or human judgement alike, such that
pixel-wise measures of confidence would be beneficial.

3. Methods
We follow the problem statement of the public cloud

removal benchmark SEN12MS-CR-TS [14]. Each sam-
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Figure 2. UnCRtainTS. The network consists of three main parts, applied along a main branch of MBConv blocks [60] that is processing
feature maps at full input resolution: First, an encoder is applied in parallel to the T time points. Then, an attention-based temporal
aggregator computes attention mask by applying an L-TAE to downsampled feature maps, used to aggregate the sequence of observations.
Finally, the temporally integrated feature map is processed by a decoding block, yielding the image reconstruction and aleatoric uncertainty.

ple i of the N -sized dataset consists of a pair (Xi, Y i),
where Xi = [Xi

1, · · · , Xi
T ] is the input time series of size

[T × Cin ×H ×W ] containing cloudy pixels, and Y i is
the target cloud-free image of shape [K ×H ×W ]. T de-
notes the number of dates in the input sequence, Cin and K
the number of input and output channels, and H × W the
two spatial dimensions of the images. As in [14], we set
T = 3, Cin = 15, K = 13, H = W = 256. Note that
Cin ̸= K because Sentinel-1 radar observations are uti-
lized as additional input. Furthermore, aleatoric uncertainty
quantification introduces additional output channels to de-
scribe the modeled noise distribution. For convenience, we
drop the i superscript in the rest of this section.

3.1. Network Architecture

Our proposed UnCRtainTS network architecture maps a
cloudy input time series to a single cloud-free optical im-
age. As explained in Sec. 2.1, we make the explicit choice
to perform spatial encoding only on full-resolution feature
maps to allow for good performance when training with a
pixel-based loss. To ease the impact of this choice on the
computational load of the architecture, we rely on efficient
MBConv blocks [60]. They combine depthwhise convolu-
tion and regular pointwise convolutions for computationally
efficient spatial encoding. We perform temporal encoding
on downsampled feature maps via the attention-based L-
TAE [21], which is designed for satellite image time series
and computationally more efficient than transformers. The
network architecture is illustrated in Fig. 2 and further de-
scribed in the following paragraphs.

Pre-aggregation shared encoder The T different input
images are processed in parallel by a shared spatial encod-
ing branch. This encoder is composed of a pointwise con-
volution Cin → dm, followed by a specifiable number ne

of MBConv blocks. Following [22] we use group normal-

isation in the encoding branch. All MBConv blocks map
to dm → 2 × dm → dm channels and contain Squeeze-
Excitation layers [34]. Ultimately, each input image Xt is
mapped to a feature map ft of the same resolution.

Attention-based temporal aggregation Following re-
cent literature, we employ self-attention to aggregate a se-
quence of feature maps [f1, · · · , fT ] into a single one.
We first down-sample features ft with a single max-
pooling operation to low resolution feature maps ft of size[
dm ×H ×W

]
. We set H = W = 32, to limit compu-

tation while providing sufficient resolution to group cloudy
pixels, which typically cluster in space. We re-project the
downsampled features via a linear layer dm → 2 × dm.
Next, as in [22], the low-resolution features ft are processed
pixel-wise with an L-TAE [21, 23]: we obtain attention
masks over the T observations for each pixel position of the
low resolution feature maps. Contrary to previous work, we
only use the L-TAE’s attention masks, and omit attention-
weighting of the sequence of low resolution feature maps.
We upsample the attention masks to the full resolution via
bilinear interpolation, and apply them to the sequence of
high resolution feature maps [f1, · · · , fT ]. This results in
a single feature map f̂ of shape [dm ×H ×W ]. We use a
dropout rate of 0.1 on the attention masks after upsampling,
and the temporal aggregation is done with L-TAE’s channel
grouping strategy [21].

Post-aggregation decoding The temporally aggregated
feature map f̂ is processed by a decoding branch, which
consists of a specifiable number nd of batch-normalized
MBConv blocks and a final dm → Cout pointwise convolu-
tion followed by a non-linearity. For every channel predict-
ing image reconstruction, we use a sigmoidal function to
squash the outputs into the data’s valid range. For channels
predicting aleatoric uncertainty (see next section), we use a
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softplus activation to ensure positivity, as in [32, 63, 67].

3.2. Aleatoric uncertainty prediction

Here, we explain how our UnCRtainTS method predicts
an aleatoric uncertainty value for each reconstructed pixel.
As UnCRtainTS is trained with pixel-wise losses, we hence-
forth adopt a pixel-based notation. We consider the set
of pixels of cardinal n contained in the dataset. We de-
note each pixel reconstruction by ŷj and the corresponding
ground truth by yj , both vectors of dimension K.

Image reconstruction In the default setting of satellite
image reconstruction, the network only regresses the tar-
get pixel values. Hence, in this setting, Cout = K and the
predictions are typically supervised with L2 loss [3, 11]:

L2(ŷ,y) =
1

n

n∑

j=1

∥ŷj − yj∥22 . (1)

Multivariate negative log-likelihood loss Predicting
aleatoric uncertainty assumes a parametric noise distribu-
tion with a likelihood function. We then optimise the likeli-
hood of the observed data as a function of the input and the
distribution’s parameters, using a negative log-likelihood
(NLL) cost function [6]. Following the literature [39], we
model aleatoric uncertainty on the reconstructed pixel with
a K-variate Normal distribution centered at the predicted
value ŷj and with positive definite covariance matrix Σ:

N (yj |ŷj ,Σ) =
1√

|Σ|(2π)K
2

exp

(
−1

2
∥ŷj − yj∥M

)
,

(2)
with ∥.∥M the Mahalanobis distance, defined as:

∥ŷj − yj∥M = (ŷj − yj)
TΣ−1(ŷj − yj) . (3)

Subsequently, the negative log likelihood loss writes as:

LNLL(yj |ŷj ,Σ) ∝
n∑

j=1

log(|Σj |) + ∥ŷj − yj∥M . (4)

Fitting a multivariate distribution raises the question of
whether a full description of the covariance matrix should
be pursued or if any structural constraints on Σ are prefer-
able. NLL optimization does become notoriously difficult
when involving full covariance matrices [63, 65].

Diagonal covariance matrix We define Σ as a diagonal
matrix with diagonal elements σ2 = (σ2

1 , · · · , σ2
K). This

greatly simplifies the inverse and determinant computations
in Eq. 4. The diagonal model allows for different vari-
ance predictions per channel, which we experimentally find

to be beneficial. However, cross-channel interactions in
aleatoric predictions are not captured under this assumption,
and such modelling is left for further research. To predict
the variances, we set Cout to 2 × K = 26. The diagonal
entries of Σ serve as aleatoric uncertainty prediction for the
corresponding output channel:

uj = [u1
j , · · · , uK

j ] = [σ2
1 , · · · , σ2

K ] . (5)

4. Experiments
4.1. Data

We conduct our experiments on the SEN12MS-CR [12]
and SEN12MS-CR-TS [14] datasets for mono-temporal and
multi-temporal cloud removal. Both are challenging image
reconstruction benchmark datasets with about 50% cloud
coverage over regions distributed across the whole planet
and all seasons. The datasets contain ground range de-
tected dual-polarization C-band S1 measurements as well
as co-registered level-1C top-of-atmosphere reflectance S2
products, curated from Google Earth Engine [28] and sub-
sequently handled as documented in the two associated pub-
lications. The mono-temporal dataset contains 169 regions,
whereas SEN12MS-CR-TS focuses on a global subset of
53 large areas. All regions of the datasets are utilized for
training, validation and testing, with the respective splits as
originally defined. Unless specified otherwise, experiments
on SEN12MS-CR-TS are run on T = 3 time points, which
is a reasonable number of revisits for the cloud removal task
and has been a prevalent choice in prior work [14, 61, 62].
All data are of spatial dimensions H = W = 256 px and
we use the full spectrum of all 13 optical bands. Analo-
gous to preceding studies combining information of SAR
and optical imagery [14,15,35,54,75] we use both Sentinel-
1 and Sentinel-2 data to reconstruct images of the latter (i.e.,
CS1 = 2, CS2 = Cout = 13, and Cin = CS1+CS2 = 15).
S1 data are preprocessed as in [12, 14] and S2 pixel-values
are divided by 1000. Finally, binary cloud masks are cal-
culated via s2cloudless [77]—a lightweight and commonly
deployed cloud detector [7, 66]. The cloud masks are used
for sampling cloud-free target images at train time, statisti-
cal evaluations of results, and in prior work for losses that
are cloud-sensitive [54].

4.2. Implementation details

Architectures We train the proposed UnCRtainTS in its
default setting with ne = 1 pre- and and nd = 5 post-
aggregation MBConv blocks. The input convolution maps
to dm = 128 channels, so that MBConv blocks map to
128 → 256 → 128 channels with the default expansion
factor 0.25 in their Squeeze-Excitation layers. The L-TAE’s
parameters are kept to their default values nhead = 16,
and key dimension dk = 4. For mono-temporal considera-
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tions, we use the same architecture and simply discard the
unnecessary L-TAE-based aggregation. We compare our
architecture against the baselines already evaluated on the
SEN12MS-CR [12] and SEN12MS-CR-TS [14] datasets.
We also evaluate the performance of U-TAE [22] a state-of-
the-art satellite image time series encoder, using the official
implementation with minor adaptations to our task 1.

Training To assess the contribution of uncertainty mod-
elling we train two variants: UnCRtainTS - no σ, trained
with L2 loss only, i.e., without uncertainty prediction, and
UnCRtainTS trained with the NLL loss of Eq. 4 predict-
ing uncertainties together with the reconstructed image. We
use the ADAM optimizer [41] with an initial learning rate
of 0.001, at a batch size of 4 as in [22]. All models are
trained for 20 epochs with an exponential learning rate de-
cay of 0.8, such that the rate decays by roughly one order
of magnitude every 10 epochs. Models are evaluated on
the validation split each epoch and the checkpoint with best
validation loss is used for testing.

Evaluation For image reconstruction performance, we
report the Mean Absolute Error (MAE) or Root Mean
Squared Error (RMSE) as well as Peak Signal-to-Noise Ra-
tio (PSNR), Structural SIMilarity (SSIM) [73] and the Spec-
tral Angle Mapper (SAM) metric [42]. We assess the qual-
ity of the uncertainty predictions via Uncertainty Calibra-
tion Error (UCE) [31]

UCE(e, u) =
P∑

p=1

Np

N
|e(Bp)− u(Bp)| , (6)

where e(Bp) denotes the RMSE of Np pixel predictions
in bin Bp, P = 20 is the bin count and a bin’s uncertainty
u(Bp) is given in terms of Root Mean Variance (RMV):

u(Bp) =

√√√√ 1

Np

∑

j∈Bp

1

K

K∑

k=1

uk
j . (7)

UCE quantifies the deviation between the predicted un-
certainty and the empirical reconstruction error. Low UCE
corresponds to well-calibrated uncertainties. We also re-
port a patch-wise calibration metric termed UCEim, where
RMSE and RMV are spatio-spectrally averaged across all
pixels of a given image before calculating calibration.

4.3. UnCRtainTS

In this section we show the experimental performance
of our approach, both in terms of image reconstruction and
aleatoric uncertainty prediction.

1github.com/VSainteuf/utae-paps

Table 1. Multi-temporal image reconstruction experiment. We
evaluate models for T = 3 inputs on SEN12MS-CR-TS bench-
mark. UnCRtainTS outperforms all learnable approaches on every
metric, and performs best on all measures while predicting well
calibrated uncertainties (bottom table).

Model ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM

least cloudy 0.079 — 0.815 12.204
DSen2-CR [54] 0.060 26.04 0.810 12.147
STGAN [61] 0.057 25.42 0.818 12.548
CR-TS Net [14] 0.051 26.68 0.836 10.657
U-TAE [22] 0.051 27.05 0.849 11.649
UnCRtainTS - no σ (ours) 0.049 27.23 0.859 10.168
UnCRtainTS (ours) 0.051 27.84 0.866 10.160

UCEim UCE
UnCRtainTS (ours) 0.010 0.007

Multi-temporal image reconstruction We benchmark
our method against established heuristics and baselines of
[14,22,54,61]. We report the performance of these methods
in Table 1. UnCRtainTS sets a new state-of-the-art perfor-
mance in terms of PSNR, SSIM, and SAM. Our architecture
trained without uncertainty prediction (UnCRtainTS - no σ)
scores second best on all those metrics and first in RMSE.
This shows that our neural architecture alone outperforms
existing approaches, and uncertainty prediction further im-
proves the reconstruction performance. Compared to U-
TAE, the architecture improves by 1pt SSIM while the un-
certainty prediction increases the performance by another
0.7pt. Note that uncertainty prediction has a slightly detri-
mental impact on RMSE performance (−0.002). This is in
line with recent evidence that NLL optimization involves a
trade-off between mean and variance estimate optimization
that may hinder regression performance [63, 65]. However
this does not impact the image similarity metrics. Lastly, in
terms of parameter efficiency, our model counts 0.5M pa-
rameters. For comparison, the competitive U-TAE baseline
[22] which performs third-best consists of 1.2M trainable
weights, such that UnCRtainTS is relatively lightweight.

Aleatoric uncertainty prediction We show the uncer-
tainty calibration metrics of our method at image and pixel
level in Table 1. Those values should be compared to the
test RMSE: at the pixel (resp. image) level the average error
made on the reconstruction uncertainty is around 7 (resp. 5)
times smaller than the average reconstruction error, showing
satisfactory calibration. In other words, our method predicts
uncertainty values that correlate well with the empirical re-
construction error. To demonstrate how uncertainty predic-
tions can be useful in practice, we show how they allow
filtering bad predictions. We rank all reconstructed images
of the test set sorted by increasing UCEim and accumulate
squared errors from the least to the most uncertain samples.
The monotonous curve in Fig. 3 displays a linear relation
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Figure 3. Controlling error on the test split by discarding top un-
certain samples. Discarding the top 50% of uncertain reconstruc-
tions almost halves prediction error, enabling risk management.

between error and uncertainty, such that error can be step-
wise decreased by uncertainty-based filtering. In practice,
this enables controlling risk in downstream applications on
the restored satellite images.

4.4. Architecture design

To support the previous results and our architecture de-
sign choices, we systematically investigate UnCRtainTS’
hyper-parameter sensitivity. Here, all model instances are
trained with L2 loss only. Because UnCRtainTS operates
on feature maps at full resolution, computational complex-
ity is an important design criterion. In addition to its image
reconstruction metrics, we report each model’s number of
trainable parameters and Floating Point Operations Per Sec-
ond (GFLOPS), estimated via FAIR’s fvcore package [18].

Table 2. Block setup. Evaluation of the UnCRtainTS backbone
for varying numbers of pre- and post-aggregation MBConv blocks.

MBConv params (k) GFLOPS ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM
ne nd

1 3 400 29.3 0.052 27.03 0.859 11.614
1 4 483 34.0 0.050 27.00 0.851 11.771
1 5 568 38.7 0.049 27.23 0.859 10.168
1 6 654 43.4 0.050 27.55 0.860 10.471
1 7 740 48.1 0.049 27.21 0.859 10.300

0 5 483 24.6 0.052 26.97 0.853 11.002
1 5 568 38.7 0.049 27.23 0.859 10.168
2 5 654 52.9 0.048 27.55 0.864 10.641

Spatial processing We explore the influence of the num-
ber of MBConv blocks before (ne) and after (nd) temporal
aggregation in Table 2. Using ne = 2 blocks in the en-
coder instead of one, brings a 0.5pt increase in SSIM, while

the performance gain is marginal on the three other met-
rics. More pressingly, due to the parallel processing of the
input sequence of feature maps, this setup incurs the high-
est computational complexity of 52.9 GFLOPS. In terms of
post-aggregation blocks, performance peaks around 5 − 6
modules, with 5 modules being best on one metric and a
close second on two more. For these reasons we choose
ne = 1 pre and nd = 5 post aggregation blocks as default
configuration. We also note that the (ne = 0) model per-
forms competitively while being very lightweight and di-
rectly aggregating the input features. Indeed, it performs
comparable to the U-TAE baseline. This secondary result
shows that competitive performance can be obtained with
very light architectures.

Table 3. Head count. Quantitative evaluation of the UnCRtainTS
backbone with varying number of self-attention heads.

nhead params (k) GFLOPS ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM

1 556 38.7 0.049 27.56 0.856 10.497
4 559 38.7 0.052 27.40 0.856 10.825
8 563 38.7 0.051 27.00 0.851 11.131

16 568 38.7 0.049 27.23 0.859 10.168
32 588 38.8 0.051 27.12 0.861 10.245
64 621 38.9 0.051 27.24 0.858 11.054

Temporal aggregation Second, we explore the effect of
the number of attention heads on the reconstruction qual-
ity. Table 3 shows that performances are closeby and dif-
ferences in computational costs are negligible. We opt for
16 heads, in line with the literature [22].

Mono-temporal image reconstruction To validate our
resolution-preserving network design, we re-train and eval-
uate UnCRtainTS on the mono-temporal SEN12MS-CR
dataset for cloud removal. That is, we consider the spe-
cial case of T = 1 to investigate the model’s spatio-spectral
restoration qualities and benchmark against the competitive
baselines of [4, 17, 20, 29, 54, 56, 75]. Albeit being primar-
ily designed for time series cloud removal, UnCRtainTS
achieves best performances on all metrics except for SSIM,
where it ranks second best following the recently published
mono-temporal vision transformer architecture of [75]. The
competitive performance achieved by the spatial encoding
part of our architecture supports our choice of relying on
MBConv blocks operating on full resolution feature maps.

4.5. Uncertainty Modelling

In this section, we provide additional experiments and
ablations on the uncertainty prediction part of our method.

Comparison of covariance models UnCRtainTS pre-
dicts aleatoric uncertainties using a diagonal covariance
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Table 4. Mono-temporal image reconstruction experiment.
Evaluation of models for T = 1 inputs on the SEN12MS-CR
benchmark. UnCRtainTS is best on all metrics except SSIM,
where it is second following the recent vision transformer of [75].

Method ↓ MAE ↑ PSNR ↑ SSIM ↓ SAM
McGAN [17] 0.048 25.14 0.744 15.676
SAR-Opt-cGAN [29] 0.043 25.59 0.764 15.494
SAR2OPT [4] 0.042 25.87 0.793 14.788
SpA GAN [56] 0.045 24.78 0.754 18.085
Simulation-Fusion GAN [20] 0.045 24.73 0.701 16.633
DSen2-CR [54] 0.031 27.76 0.874 9.472
GLF-CR [75] 0.028 28.64 0.885 8.981
UnCRtainTS (ours) 0.027 28.90 0.880 8.320

Table 5. Uncertainty models. Evaluation of different uncertainty
models and of two ensembles of 5 UnCRtainTS instances (bot-
tom), with and without SAR measurements as auxiliary input data.

model ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM ↓ UCEim ↓ UCE

isotropic Σ 0.053 26.74 0.842 11.77 0.029 0.023
UnCRtainTS 0.051 27.84 0.866 10.16 0.010 0.007

ensemble 0.049 28.19 0.872 10.18 0.012 0.002
ensemblenoSAR 0.048 27.97 0.869 10.76 0.018 0.014

model, enabling different uncertainty predictions across
channels. Here, this choice is compared to the simpler op-
tion of an isotropic covariance model. In the isotropic set-
ting, we model the covariance matrix as Σ = σ2IK where
σ2 is scalar and IK the K-dimensional identity matrix.
This model assumes that the aleatoric uncertainty across
channels can be described with a single value. We com-
pare the performance of those two methods in Table 5.
The diagonal matrix model is best overall, outperforming
on all metrics. These results clearly demonstrate that uncer-
tainty prediction for satellite image reconstruction requires
channel-specific uncertainty predictions. Indeed, modeling
a diagonal covariance matrix over a simplistic isotropic de-
scription entails a three-fold reduction of the final uncer-
tainty calibration error.

Combined epistemic and aleatoric modelling To give a
full picture of uncertainty, we complement aleatoric uncer-
tainty modelling with epistemic uncertainty estimation. We
re-train the diagonal model with different weight initializa-
tions and samples of training batches to obtain a deep en-
semble of M = 5 member networks [43]. The members’ re-
constructions and uncertainty predictions are averaged via:

ŷM =
1

M

M∑

m=1

ŷm (8)

(σM )2 =
1

M

M∑

m=1

(σm)2 +
1

M

M∑

m=1

(ŷm)2 − (ŷM )2 (9)

to obtain the ensemble reconstruction ŷM and total uncer-
tainty (σM )2. As shown on Table 5, the 5-member ensem-
ble achieves the best reconstruction performances overall.
The full ensemble also achieves the best pixel-based cali-
bration at 0.002 UCE, Deep ensembles come at a computa-
tional cost both at training and inference time, but can prove
valuable for the integration in downstream applications.

Table 6. Repeated Measures. Evaluation of our ensemble of Un-
CRtainTS models with varying numbers of input time points.

input length T ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM ↓ UCEim ↓ UCE

2 0.051 27.78 0.861 10.86 0.012 0.004
3 0.049 28.19 0.872 10.18 0.012 0.002
4 0.047 28.41 0.875 9.99 0.013 0.001

Uncertainty vs. sequence length To evaluate the effect
of the number of input time points T on performances, we
perform inference with the UnCRtainTS ensemble on in-
put time series of lengths T = 2, 3, 4. Table 6 shows
that longer sequences help achieve both better image recon-
struction quality and uncertainty calibration. This confirms
the intuition that longer sequences, where additional sam-
ples are likely cloud-free, facilitate the restoration task and
provide growing evidence for better calibration. Table 6
also underlines that the T = 3 case considered in the main
experiments makes for a challenging setting.

SAR reduces uncertainty We obtain a second ensem-
ble trained without using SAR as auxiliary inputs, to ex-
plore the benefits of radar data. We show its performance
on the bottom row of Table 5. The single-sensor ensem-
ble achieves a considerably higher UCE at both image and
pixel level. This suggests that the additional information
contained in the SAR inputs is beneficial to improve the
trustworthiness of the reconstructions.

Qualitative results Complementary to the quantitative
measures, Fig. 4 shows UnCRtainTS’ image restorations
and uncertainty maps across varying levels of cloud cov-
erage. Of particular interest is the uncertainty predictions
not only being sensitive to clouds and cloud shadows, but
also capturing other dynamics such waves breaking on a
shore or the coloring of maturing crops. UnCRtainTS at-
tends to differences in the input time series—not entirely
unlike sequence-based cloud detectors explicitly designed
for spotting transients across repeated measures [53]—and
then, due to their temporary nature, attributes them an ele-
vated aleatoric uncertainty.

5. Conclusion
We introduced UnCRtainTS, a novel method for com-

bining uncertainty quantification with cloud removal from
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(a) Cloudy input. (b) Prediction. (c) Target. (d) Error map. (e) Uncertainty map.

Figure 4. Exemplary images. Detail view on exemplary satellite images and predictions by UnCRtainTS with a diagonal covariance
matrix model. Rows: Four different samples from the test split. The illustrated cases show mild atmospheric distortions, semi-transparent
haze, partly dense cloud coverage and cloud coverage with no visibility at all. Columns: The input sequence’s least-cloudy image (T = 3),
UnCRtainTS’ image reconstruction, the clear-view target image, the map of squared error residuals as well as the map of UnCRtainTS’
variance predictions. Note the model’s sensitivity to transients captured in the input time series, such as the ocean’s white wash, changing
crops as well as clouds and cloud shadow. UnCRtainTS captures these changing circumstances as data-inherent, aleatoric uncertainty.

optical satellite image time series. While prior contributions
applied uncertainty prediction in biomedical imaging or
to univariate remote sensing downstream applications, our
work is the first to investigate multivariate uncertainty quan-
tification for multispectral satellite image reconstruction.
UnCRtainTS features an attention-based neural architecture
that outperforms all competitors benchmarked on the satel-
lite image reconstruction task. Our proposed method in-
cludes a formulation of aleatoric uncertainty prediction for
image reconstruction based on diagonal covariance matri-
ces, as well as an estimation of epistemic uncertainty via
deep ensembles. The conducted experiments show that
both of our contributions, the new architecture combined
with uncertainty quantification, set a new state-of-the-art
image reconstruction performance on SEN12MS-CR-TS.
Finally, the outcomes highlight how our well-calibrated un-
certainties can effectively serve as a measure to control re-

construction quality and help integration in risk-sensitive
downstream applications. Our results encourage further ex-
plorations of more complex multivariate uncertainty mod-
els for image reconstructions. Our code is provided at
https://patrickTUM.github.io/cloud_removal/.
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