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Abstract
The Bureau of Public Roads (BPR) function is a widely used link cost function in transportation planning because of its simple
mathematical form, easily measurable field variables, and consistent performance. However, the BPR function is deterministic
and does not capture the stochastic relation between travel time and traffic flow. The present study develops a modified BPR
(MBPR) function by incorporating travel time uncertainty (TTU) in the deterministic BPR function. In the MBPR function, the
effect of TTU is incorporated using two parameters, g and d. A nonlinear optimization problem is formulated, and the gener-
alized reduced gradient method is used to calibrate the BPR and the MBPR function. The applicability of the proposed MBPR
function is demonstrated using empirical data collected for an urban arterial in India and simulated data developed for a real-
world urban road network. The proposed MBPR function captures the heterogeneity in travel time for different traffic flow
values. The function (a) captures the variability in travel time under oversaturated conditions and (b) captures the time-
dependent relation between traffic volume and delay. The physical meaning of g and d in the context of inter-day heterogene-
ity, infrastructure potential, and traffic flow heterogeneity are discussed. The practical application of MBPR as an analytical
tool for system-wide performance evaluation is demonstrated by investigating the impact of traffic signal control on travel
times using a before–after perspective. Compared with the before case, a 13% reduction in travel time is observed for the
after case. Therefore, the installation of traffic signal control has reduced congestion.
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The link cost function plays a vital role in transportation
planning applications as it explains the variation in travel
times along the segment as a function of link volume. A
typical link cost function should consider free-flow travel
time, link delay, and intersection delays in its formulation.
The Bureau of Public Roads (BPR), Davidson’s, Akcelik’s,
and conical delay functions are the most commonly used
link cost functions. The BPR function has profound appli-
cations in transportation planning primarily as a result of
its simple mathematical form, easily observable field
inputs, and consistent performance (1, 2).

The BPR function is formulated as a polynomial func-
tion with respect to the ratio of traffic volume to capac-
ity. The alpha (a) and beta bð Þ are parameters of the
BPR function and, thus, represent the performance of a
network (3). The a is the scale parameter; the b is the
shape parameter, and its value varies between cities. The

parameter of BPR function a is the ratio of travel time
per unit distance at practical capacity to the free flow,
and parameter b determines how fast the curve increases
from the free-flow travel time (4). Generally, a=0.15
and b=4 are used. A higher value of b indicates that
the onset of congestion becomes more and more sudden
(5).

Manzo et al. (6) argued that the BPR function may be
suitable only when the traffic flow is below capacity (V/
C\ 1). For V/C. 1, the BPR function was observed to
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overpredict the average speed (7). For the links with flow
far below the capacity, especially when the values of a

are very high, the function always yields free-flow times
independent of the actual flow on the link (5, 8).
Huntsinger and Rouphail (9) reported that bottleneck
analysis and queue length estimation effectively pro-
vide a valuable tool for improving volume–delay func-
tions (VDFs) with locally collected data. Wong and
Wong (10) correlated the topological network metrics
and the macroscopic Bureau of Public Roads (MBPR)
function parameters. Free-flow travel time and conges-
tion sensitivity parameters of the MBPR function were
correlated with the average number of junctions per
unit distance and the road density. The BPR function
does not consider traffic control and roadway-based
parameters, forming its major drawback (7). The BPR
function is crucial in static user equilibrium analysis
(11). Researchers in the past calibrated the VDFs pre-
cisely, the BPR function, to develop traffic assignment
and travel demand models (1, 12–14). Further, the
BPR function was also adopted to develop combined
trip distribution and assignment models (15), mixed
traffic equilibrium models integrating mode, route, and
transfer choices under logit based framework (16),
optimization of transit road space priority at the net-
work level (17), and evaluation of the price of anarchy
in the network (18).

Research Motivation

Researchers have widely used the BPR function for
transportation planning purposes. It can be noted that
most studies are carried out for homogeneous traffic
conditions. However, limited studies have calibrated the
BPR function under heterogeneous traffic conditions
prevailing in India (19, 20).

Traditionally, most traffic flow models are determinis-
tic because they are theoretically and computationally
traceable. However, traffic flow on urban networks is
highly stochastic and random because travelers make
unpredictable decisions. The random characteristics of
traffic flow are attributed to the interaction between (a)
vehicles with diverse static and dynamic properties, (b)
diverse drivers with different perceptions, responses and
driving habits, (c) frustration, and (d) roadway and traf-
fic control features. This random nature of traffic flow
leads to stochastic values of travel time, thereby giving
rise to uncertainties in travel time. The uncertainties in
travel time significantly affect travelers’ frustration and
scheduling of trips. Therefore, without accounting for
the heterogeneity in traffic flow, the deterministic traffic
flow models and link cost functions limit their capacity
to represent traffic flow practically and may result in

inaccurate or misleading results in modeling traffic con-
trol strategies. The traffic flow on the urban network and
corridors is highly dynamic and rarely is in a steady state.
The variation in roadway geometry and traffic control
characteristics over space creates a wide variation in traf-
fic flow. The existing BPR function is deterministic and
does not effectively capture the stochastic travel time to
traffic flow relation. However, to the best of the authors’
knowledge, no studies have examined the effect of travel
time uncertainty (TTU) on the performance of the BPR
function and subsequently developed a modified BPR
(MBPR) function by incorporating TTU.

The present study proposes an MBPR created by
incorporating TTU in the existing deterministic BPR
function. In the MBPR function, the effect of TTU is
incorporated using two parameters, g and d. The physical
meaning of these parameters in the context of inter-day
heterogeneity, infrastructure potential, and traffic flow
heterogeneity is explained. The applicability of the pro-
posed MBPR function is demonstrated using empirical
data collected for an urban arterial in India and simu-
lated data developed for a real-world urban road net-
work. Based on the investigations, it is concluded that
the proposed MBPR function can capture the heteroge-
neity in travel time for a specific value of traffic flow very
well and therefore is stochastic. The contributions of the
proposed MBPR function are twofold: (a) quantifying
the effect of TTU on travel time and (b) incorporating
TTU in the existing BPR function to capture the hetero-
skedastic relation of travel time to traffic flow.

The remainder of the manuscript is organized into
four sections. The following section explains the metho-
dology adopted for developing the MBPR function. The
physical meaning of g and d parameters and calibration
methodology are explained in the ‘‘Methodology’’ sec-
tion. The section titled ‘‘Data’’ briefly introduces the
data, followed by simulation modeling. The estimation
of the fundamental diagram (FD) and macroscopic fun-
damental diagram (MFD) using empirical and simulated
datasets is subsequently explained. The performance of
the BPR and MBPR function for both empirical and
simulated datasets and the physical meaning of g and d

are discussed in the ‘‘Results and Discussions’’ section.
The practical application of the MBPR function is also
discussed in the ‘‘Results and Discussion’’ section. The
final sections give the conclusion.

Methodology

Bureau of Public Roads Function

The BPR function, as given by Pan et al. (21) and Qiu
et al. (22), is represented as
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Ta = tf 1+a 3
Qa

Ca

� �b
 !

ð1Þ

where
Ta=travel time of road segment (s);
tf=free-flow travel time (s);
Qa=average traffic flow on road segment (vehicles

per hour [vph]);
Ca=capacity of road segment (vph); and
a and b=model parameter.
The boundary condition of the BPR function can be

represented as follows.
For Qa = 0

Ta = tf , ð2Þ

For Qa =C

Ta = tf 3 1+að Þ: ð3Þ

The above formulation has known drawbacks. First, the
BPR function performs well in free-flow and congested
states (broadly undersaturated conditions). However, the
BPR function cannot represent the oversaturated
conditions—that is, it cannot capture phenomena like
queue buildup, queue dissipation, and queue spillover.
For the BPR function to represent the oversaturated con-
ditions, it is argued that a modified volume or ‘‘oversatu-
rated’’ demand (capacity volume plus the residual queue)
should be used (9). Second, the BPR function presented
in Equation 1 does not capture the time-dependent rela-
tion between traffic volume, travel time, and delay.
Finally, the formulation is deterministic. However, the
changes in travel time under similar traffic flow condi-
tions vary significantly with different circumstances (23).
This highlights that the relationship between travel time
and traffic flow is stochastic. The drawbacks mentioned
above warrant the development of an MBPR. Ideally,
the MBPR function should (a) represent oversaturated
conditions, (b) explain the time-dependent relation
between traffic flow and travel time, and (c) capture the
stochastic relation between traffic flow and travel time.

Modified BPR Function

Travel time is the travel distance over the travel speed;
therefore, examining the speed–flow relationship can
help better understand the travel time–flow relation. It is
well-known that a wide variation exists in the speed–flow
relationship (24). The wide scatter of the speeds or travel
times for a given flow can be broadly attributed to two
factors:

(a) The variation in speed or travel time for a specific
traffic flow value could indicate that the

observations may belong to different traffic states
(free-flowing, more or less congested, or con-
gested conditions).

(b) The variation in speed or travel time for a given
traffic state (i.e., free-flow, more or less con-
gested, or congested condition) can also be
attributed to the uncertainty of the speeds/travel
times.

Therefore, for understanding the wide variation in travel
time or speed with traffic flow, it is essential to consider
that the traffic can be in different states, and, more
importantly, that the magnitude of TTU for a given traf-
fic flow condition can also induce variation in travel
times or speeds. From this simple analysis, it can be
inferred that travel times are influenced by the traffic
flow and the magnitude of TTU for the given value of
traffic flow.

The present study adopted the difference between 90th
percentile and 10th percentile travel time at a given traffic
flow level to measure TTU (25). Mahmassani et al. (26)
and Yildirimoglu et al. (27) proposed standard deviation
and interquartile range to measure TTU. Therefore, the
definition of TTU proposed by Mahmassani et al. (26)
and Yildirimoglu et al. (27) could also be used.

Higher TTU values indicate that travel times are
uncertain for a given traffic flow condition. The TTU, as
proposed by Tu et al. (25), is given as

TTU s=kmð Þ= T90 � T10

lr

� �
ð4Þ

where T90=90th percentile travel time, T10=10th per-
centile travel time, and lr=length of route.

The percentile-based measures have several practical
advantages. First, their statistical properties are more
robust than mean, standard deviation, or other moment-
based indicators. Here, the meaning of ‘‘robust’’ in a sta-
tistical context reflects that since the travel time distribu-
tion is either left- or right-skewed, the value of the mean,
standard deviation, and other moment-based indicators
will be sensitive to outliers, and therefore percentile-
based measures are used. Second, the statistic defined is
normalized per unit space, which allows its comparison
with links of different lengths. Third, interpretation
becomes simple. The TTU calculated using Equation 4
can be interpreted ‘‘as the expected amount of travel time
variation (seconds) per km travel for a given inflow’’
(24).

TTU results from two primary sources. From the
demand side, uncertain traffic flow causes uncertain
travel time (based on the assumption that travel time
depends on link density or volume). TTU can also result
from the supply side as a result of recurrent factors (such
as the variation in traffic composition on different days,
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lane changes, control characteristics, driver perception,
driving habits) and non-recurrent factors (like incidents
and environmental factors) (28, 29). It is expected that
TTU proposed by Tu et al. (25) would capture the effect
of both the demand- and the supply-side factors.

Model Development

Travel time as traffic flow and TTU can be expressed as
a multivariate function, as shown in Equation 5.

T = f Q, TTU x, tð Þð Þ : R
+,R,R+,O

� �
7!R

+ ð5Þ

where f is a real-valued continuous function defined on a
real space R. Here, TTU is the randomness component
for a given value of Q, defined as a set of real numbers in
the domain of O. O is the probability space equipped with
a measure Px, t �ð Þ.

Equation 5 suggests that the travel time along the road
segment is a function of traffic flow and TTU. Including
x and t enables us to model inhomogeneous roads and
time-varying conditions like road accidents. So, when Q,
x, and t are fixed, travel time is influenced by the value of
TTU.

Ngoduy (30) and Li et al. (31) reported that TTU sig-
nificantly affects free-flow conditions, especially free-flow
travel time. Therefore, the free-flow travel time for the
proposed MBPR function is defined as

tf
d[tf

s 3 u ð6Þ

where tf
s =free-flow travel time for the stochastic model,

tf
d =free-flow speed for the deterministic model, and

u=the stochastic induction factor.
The factor u would induce a stochastic variation in

travel time at a given level of traffic flow based on values
of TTU and, therefore, would account for the heteroge-
neity in the travel time–traffic flow relation. Based on
the value of tf

d and u, the domain of the travel time for
the stochastic model can be written as

T = tf
s, tmax

� �
ð7Þ

where tmax =maximum travel time, which would be
dependent on the value of Q and TTU.

If the TTU is high, the travel time under free-flow con-
ditions can be higher than the free-flow travel time and
vice-versa. However, the values of tf

s should be bounded
as one can accidentally compute relatively low travel
time, which otherwise is impossible. Therefore, a numeri-
cal boundary condition on the tf

s is introduced, which is
represented as

Tmin\tf
s\f Q, TTUð Þ ð8Þ

where Tmin =minimum possible travel time between the
segments. Note that this value should be defined in an
empirical context.

The stochastic induction factor (u) is defined as a
power function based on the value of TTU for a given
traffic flow.

u= g 3 TTUð Þq
d ð9Þ

where g and d are the non-negative model calibration
parameters. g is the travel-time variation sensitivity
parameter expressed as kilometers per second. Note
that both g and d absorb the effect of TTU correspond-
ing to a given value of traffic flow to generate varying
travel time values. It should be noted that the value of
TTU would govern the value of g and d. For a given
traffic flow, a higher value of g and d indicates that
traffic flow is uncertain compared with lower values of
g and d. Further, it is essential to note that for a similar
value of Q, TTU, a & b, a higher value of g and d

would result in a higher value of travel time compared
with lower values of g and d: The physical interpreta-
tion of g and d is explained in detail in the following
subsection.

Therefore, the free-flow travel time for the MBPR
function is defined as

tf
d[tf

s 3 g 3 TTUð Þq
d

� 	
: ð10Þ

The above formulation is incorporated into the existing
deterministic BPR function. Thus, substituting for tf

d in
Equation 1 yields

T Q, TTUð Þa = tf
s 3 g 3 TTUð Þq

d
� 	

3 1+a 3
Qa

Ca

� �b
" #

:

ð11Þ

Rearranging Equation 11 gives

T Q, TTUð Þa = tf
s 3 1+a 3

Qa

Ca

� �b
" #

3 g 3 TTUð Þq
d

� 	
:

ð12Þ

Equation 12 expresses travel time as a multivariate
function of traffic flow and TTU. The coefficient

g 3 TTUð Þq
d

� 	
induces variability in the travel time for

a given traffic flow based on the values of TTU.
Therefore, the stochastic nature of the travel time–traffic
flow relation can be preserved. It should be noted that
the values of both g and d would also govern the values
of travel time in addition to a and b for similar values of
Q and TTU.
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Properties of the MBPR Function

For Qa = 0

Ta = tf 3 g 3 TTUð Þq
d

� 	
: ð13Þ

For Qa =C

Ta = tf 3 1+að Þ3 g 3 TTUð Þq
d

� 	
ð14Þ

From Equation 13, it is clear that for Qa=0, the
travel time is a function of TTU. Based on the values of
TTU, travel time can be either greater or less than free-
flow travel time. However, if significantly lower travel
times, which are not feasible, are observed, then, under
such cases, the minimum allowable travel time (Tmin)
should be considered. It should also be noted that the
BPR function can be derived from MBPR by setting
g= 1 and d= 0. Therefore, the MBPR can be rendered
a generalized form of the BPR function.

As discussed earlier, TTU is a function of both
demand and supply. For instance, the variation in TTU
for a constant supply can be attributed to variation in
demand or observed volume. Similarly, for constant
demand, the variation in TTU could also be attributed
to constant changes in the supply or capacity of arterials
or networks as a result of traffic control (type of intersec-
tion and its characteristics, that is, red time, cycle time,
green time for signalized intersections) and roadway geo-
metry (number of lanes). Therefore, TTU inherently
accounts for the changes in demand and supply; by
incorporating TTU in the BPR function, the variations
in travel time caused by changes in demand and supply
are captured.

Physical Interpretation of g and d

The physical interpretation of g and d is explained as
follows.

The first interpretation is that the values of g and d

are indicators of the magnitude of TTU. A higher value
of g and d for a particular link or a day would indicate
higher uncertainties in travel times. g and d values, when
compared between links or between different days for a
particular link, can explain the inter-day heterogeneity in
travel times and its variability. The second interpretation
is that for the same values of TTU, Q, a, and b, higher g

and d would yield higher travel time compared with
lower values of g and d: This means the g and d can cap-
ture the potential effect of different factors from both the
demand and the supply side on travel time and conges-
tion. In the present paper, such effects are summarized as
infrastructure potential. A smaller value of g and d would
indicate that the infrastructure can produce stable and

certain travel times and, thus, indicate that the infrastruc-
ture is used more efficiently. The third interpretation is
that a higher value of g and d would indicate that the
traffic flow is unstable, that is, the distribution of traffic
flow over density is heterogeneous. The ‘‘Results and
Discussion’’ section considers these interpretations using
empirical and simulated data.

Calibration of BPR and MBPR Function

A nonlinear optimization technique was adopted to cali-
brate the BPR and the MBPR function. The objective
function is defined as minimizing the sum of the squared
deviations.

min Z =
X

x0 � xp

� �2 ð15Þ

where xo=observed value and xp=predicted value.
For the BPR function,

min Z =
X

t0 � tf 3 1+a 3
Qa

Ca

� �b
 !" #" #2

ð16Þ

subject to constraints STCð Þ
tf =field observed value

Ca =derived from FD or MFD

a,b, t0,Ca ø 0

8><
>: :

ð17Þ

For the MBPR function,

min Z =
X

t0 �
tf 3 1+a 3

Qa

Ca

� 	b
� �

3 ( g 3 TTUð Þq
d

2
64

3
75

2
64

3
75

2

ð18Þ

subject to constraints STCð Þ
tf =field observed value

Ca =derived from FD or MFD

a,b, t0,Ca, g, d ø 0

8><
>:

ð19Þ

where FD and MFD represent the fundamental diagram
and macroscopic fundamental diagram.

In the present study, tf and Ca represent free-flow
travel time and capacity, respectively, and were fixed for
calibrating the BPR and the MBPR function. This was
done to derive a more robust fit (32). The travel-time
data for low flow conditions (early morning hours) were
filtered, and the 15th percentile travel time of the data
was computed and denoted as free-flow travel time (33).
A generalized polynomial function was fitted to the
flow–density scatter to estimate the capacity (34).
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Performance Measure of Model

The above nonlinear optimization problem was solved
using the generalized reduced gradient method. The per-
formance of the model is measured as mean absolute per-
centage error (MAPE), root mean square error (RMSE),
and mean percentage error (MPE). The following formu-
las are used to determine the MAPE, RMSE, and MPE.

MAPE %ð Þ ¼ 100

n

Xn

i¼1

x0 � xp

� �
x0










, ð20Þ

RMSE sð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i= 1

x0 � xp

� �2

n

s
, ð21Þ

MPE %ð Þ ¼ 100

n

Xn

i¼1

x0 � xp

� �
3 100

x0

ð22Þ

where xo=observed value, xp=predicted value, and
n=number of observations.

Data

Empirical Data

The traffic data were collected using Wi-Fi sensors for
an urban arterial corridor along the Rajiv Gandhi IT
expressway in Chennai (the southern part of India). The
selected test bed section is a six-lane, divided (with access
lane on either side), interrupted urban arterial corridor.
It has two signalized intersections (one at 2nd Avenue
and another at Tidel Park) along its length of 1.70 km, as
shown in Figure 1a. The intersection at 2nd Avenue is a

three-legged police-controlled, undersaturated signalized
intersection. The average red time is about 60 s with a
cycle time of 120 s. Tidel Park is a four-legged fixed-time
signalized intersection. The average red time for the
Tidel intersection is 244 s, with an average cycle time of
396 s. The intersection operates under oversaturated con-
ditions during peak hours, with an average queue length
of over 200m.

Wi-Fi sensors were placed along the median at the
midblock and the signalized intersections (35, 36).
However, it was deemed appropriate to position the sen-
sor along the downstream end of the signalized intersec-
tion. The sole motive for placing the sensor at the
downstream end was to incorporate the effect of the sig-
nalized intersection on travel times. Further, the sensors
were mounted on an electrical pole (for providing a con-
tinuous power supply) at the height of 2.5 ft at the signa-
lized intersection. At the midblock section, sensors were
placed on Foot Over Bridge (FOB) (16 ft height). An
antenna gain of 5 dBi (average coverage radius=70m)
was polarized vertically to maximize data collection effi-
ciency (37). The data were collected for 7weeks, from
May 18, 2018 to July 4, 2018. Videography surveys were
also conducted during peak hours to comprehend the
performance of the Wi-Fi sensors.

Data Processing

The travel time of an individual media access control
(MAC) address from Wi-Fi sensor x upstream of sensor
y is computed by matching the unique address of the

Figure 1. Snapshot of study locations: (a) urban arterial in Chennai and (b) urban network in central business district of Surat city.
Note: FOB = Foot Over Bridge.
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device carried by the vehicle and the corresponding time
stamps. The present study considered the first to last
(FILO) component for deriving travel time (38). Note
that since the sensors were kept at three locations, only
those MAC addresses whose trajectory was detected at
all three locations were considered. This was done to
retain the characteristics of the trip by extracting infor-
mation using the intermediate sensor (the sensor placed
at 2nd Avenue). The data processing procedure suggested
by Singh et al. (38) was adopted in this study. For the
empirical data, the traffic flow descriptors, such as travel
time, traffic flow, traffic density, and TTU, were com-
puted at a 15min data aggregation interval. For 7weeks,
a total of 3265 data points were obtained. The travel time
values derived using Wi-Fi detections were compared
with the travel time collected using Google API. The
error in travel time varied from 6% to 11%. The density
plot of residuals was also observed to follow a normal
distribution.

Data for Simulation

A network in the central business district of Surat city,
India, was selected. The study network is about 6.0 km
in length and has varying roadway geometry (four-lane
divided, four-lane undivided, and six-lane divided road-
way configuration) and intersection control (signalized,
unsignalized, roundabouts); it is shown in Figure 1b. The
subject study network consists of six major intersections,
of which three are signalized, and the remaining three
are unsignalized or uncontrolled intersections. The traffic
video data for 21 h (from 3 a.m. to midnight) for all the
signalized intersections and major access points were col-
lected simultaneously under normal weather conditions.
The classified volume count was extracted manually
from the recorded videos because of the absence of a reli-
able automatic traffic data extractor. Therefore, 50 h of
manual effort were put into extracting the time-series
traffic volume data for one intersection. Travel time data
were collected using a Performance Box (Racelogic).
Performance Box is an instrument that has a GPS unit
that records the latitude, longitude, and velocity at every
0.1 s. The recorded data are then used to obtain travel
time (for links and network) and delay (for each intersec-
tion approach). Since traffic is heterogeneous in India,
travel time data for 15 runs for each vehicle type during
various conditions are collected. These data are used as
input into simulation modeling.

Simulation Modeling

In India, the absence of proper instrumentation for effec-
tive data collection makes it difficult to simultaneously
collect traffic data (traffic volumes and travel time) over

space and time. Therefore, in the present study, the
applicability of the proposed MBPR is also justified for
an urban network using microsimulation. The present
study simulated the urban network in VISSIM 9.0 (39).
The framework adopted for calibration and validation
of the traffic simulation model is illustrated in Figure 2.

Model Calibration

The network in the simulation model was developed by
first modeling intersections using links and connectors.
Using the road geometry detail extracted using Google
Earth, the links between intersections were modeled. The
static dimensions (length and width) of different vehicle
types were adopted as reported in the literature (40) and
given inputs to the simulation model to replicate the
Indian traffic conditions. The stochastic variables such
as classified volume count, routing decisions, and pro-
portions of turning traffic were inputted into the simula-
tion model at every 5min aggregation interval. VISSIM
includes the distribution of vehicle acceleration and
deceleration performances as a function of the speed pro-
file. Specific distributions were assigned to specific
modes. The travel time data collected using the
Performance Box were used to define different vehicle
types’ desired speed distribution profiles. The intersec-
tion timing scheme for signalized intersections, conflict
areas, and priority rules for unsignalized intersections
were also provided as inputs to the simulation model. In
India, traffic conditions are heterogeneous and show
weak lane discipline. Therefore, the driving behavior
parameters for three types of behaviors, namely vehicle
following, lane change, and lateral movement, were cali-
brated. The present study used a genetic algorithm to
calibrate the driving behavior parameters. The objective
function was formulated as

min Z =
X

observed response�modelled response½ �2:
ð23Þ

Network travel time was considered a measure of effec-
tiveness (MOE) to calibrate the driving behavior para-
meters. A MATLAB script was developed to operate the
VISSIM through the COM interface. The optimization
runs were carried out repetitively with a change in popula-
tion size and number of stall generations. An initialization
period or warm-up time of 30min was adopted before
extracting outputs. This was done to ensure that the sys-
tem reached equilibrium (41). The driving behavior para-
meters were calibrated for each vehicle type, and the
results are summarized in Tables 1 to 3. In the case of the
vehicle-following behavior, the Wiedemann-74 model was
calibrated. The selection of the Wiedemann-74 model was
appraised based on past literature (42, 43).
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The optimized values of driving behavior parameters
were in close approximation to those reported by
Chepuri et al. (42) and Paul et al. (43). The developed
simulation model was run using the 21 h collected field
data. Corresponding travel time data for each link were
collected using travel time counters to validate the simu-
lation model. Figure 3 illustrates the cumulative distribu-
tion plot of field observed travel time and simulated
travel time for the network on the same axes.

Figure 3 shows that the travel time obtained through
simulation is close to those observed in the field.
Consistent observations can be noted for different vehi-
cle categories. MAPE values for different vehicle cate-
gories were computed. It was observed that MAPE

values for different vehicle types are less than 8% which
highlights the robust calibration of the simulation model
(driving behavior parameters). Further, a two-sample K-
S test at a 5% significance level was also performed. It
was concluded that the K-S test statistic was lower than
the critical value at a significance level of 0.05% for dif-
ferent vehicle categories. This highlights that the traffic
simulation model is well-calibrated.

Model Validation

The well-calibrated model was also validated at three
resolutions (a) link volumes, (b) turning proportions
at intersections, and (c) delay at intersections. The

Figure 2. Methodology for calibration and validation of microsimulation model.
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simulation model was validated for data corresponding
to evening peak hours (5 to 8 p.m.), whereas the morning
peak data (8 to 11 a.m.) and off-peak hours (periods
other than morning and evening peak) were used for cali-
bration of the simulation model.

Validation of Link Volumes. The link volumes for each link
extracted using simulation were compared with those
observed in the field, and errors in link volumes were esti-
mated. Table 4 summarizes the error values observed in
traffic volumes for each intersection of the study network.

From the table, it can be noted that the errors (MAPE
and MPE) in link volumes are less than 20% for all the
links considered in the study. This highlights that the cali-
brated simulation model can predict the link volumes
and, thus, represent the field condition aptly.

Validation of Turning Proportion at Intersections. The turning
proportions were extracted from the simulation model
and were compared with the field observed turning pro-
portions. A node boundary was created around each
intersection to extract turning movements at the intersec-
tion. The comparison of field observed turning propor-
tions and turning proportions extracted from the
simulation model is shown in Figure 4 for two intersec-
tions as an example. Figure 4 shows that the turning pro-
portions from the simulation model match those
observed in the field. Consistent observations were noted
for other intersections as well.

Validation of Delay at Intersections. Delay values for each
intersection approach were computed using the
Performance Box data. The results were compared with
the delay values obtained using the simulation model, as
shown in Figure 5. Here, delay comparison is shown for
all approaches of one intersection.

Delays obtained using simulation are similar to those
observed in the field. The statistical validation of this
observation was done by performing a one-sample paired
t-test at a 5% level of significance. The results revealed
no significant difference between the delay extracted
from the simulation model and the delay observed in the
field. MAPE values were calculated and observed to be
less than 10% for all the approaches. Consistent observa-
tions were noted for other intersections in the network.
Overall, it can be concluded that the developed simula-
tion model is well-calibrated and, thus, represents the
field observed conditions reasonably well (error less than
15% for all resolutions of validation).

Table 3. Calibrated Lane Change Parameters

Parameters

Vehicle category

M2W M3W Car/LCV Bus/truck

L F L F L F L F

Maximum deceleration (m/s2) 4.85 5.22 4.39 4.76 3.82 2.24 4.13 3.90
Negative 1 m/s2 per distance 20 20 25 25 45 45 45 45
Accepted deceleration (m/s2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Minimum headway (front/rear) (m) 0.40 0.40 0.50 0.40
Safety distance reduction factor 0.50 0.50 0.50 0.50
Maximum deceleration for co-operative braking (m/s2) 4.58 3.35 1.12 2.41

Note: M2W = motorized two-wheelers; M3W = motorized three-wheelers; LCV = light commercial vehicle; L = Leader; F = Follower.

Table 1. Calibrated Wiedemann-74 Parameters for Different
Vehicular Categories

Parameter

Vehicle category

M2W M3W Car/LCV Bus/truck

Average standstill
distance (m)

0.2 0.2 0.4 0.4

Additive part of safety
distance

0.3 0.3 0.5 0.5

Multiplicative part of
safety distance

0.5 0.5 0.7 0.75

Note: M2W = motorized two-wheelers; M3W = motorized three-wheelers;

LCV = light commercial vehicles.

Table 2. Calibrated Lateral Clearance Values

Vehicle category

Lateral clearance share (m)

@ 0 km/h @ 50 km/h

M2W 0.20 0.35
M3W 0.20 0.35
Car/LCV 0.20 0.5
Bus/Truck 0.40 0.7

Note: M2W = motorized two-wheelers; M3W = motorized three-wheelers;

LCV = light commercial vehicles.
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Fundamental and Macroscopic
Fundamental Diagram Estimation

Fundamental Diagram Estimation Using Wi-Fi
Detections

In a real-world application, the traffic parameters like
traffic flow and density can be computed if the detailed
trajectories of all the vehicles are provided. However, if
these data are only provided for a subset of vehicles (like
Wi-Fi probes), Edie’s generalized definition to estimate

the traffic parameters cannot be applied directly. Nagle
and Gayah (44) and Du et al. (45) adopted the penetra-
tion rate as an approximation to estimate flow and den-
sity, assuming that the penetration rate is known. Nagle
and Gayah (44) and Shim et al. (46) adopted a uniform
penetration rate across the network to compute flow and
density. Considering that the penetration rates are likely
to be non-uniform across space and time (45, 47), a rela-
tion between sensor-recorded volume and penetration
rate was developed in the present study. This relation

(a) (b)

(c)

Figure 3. Cumulative travel time distribution profiles for: (a) cars, (b) motorized two-wheelers, and (c) motorized three-wheelers.

Table 4. Validation of Entry–Exit Volumes

Link direction MPE (%) MAPE (%) Link direction Error (%) MAPE (%)

A–C 13.77 14.77 C–A 9.653 12.45
C–B 14.01 15.98 B–C 15.96 15.87
B–DG 0.261 6.26 DG–B 14.43 17.77
DG–LD 6.287 9.65 LD–DG 8.002 10.93
LD–PA 11.76 15.76 PA–LD 5.834 9.53

Note: MPE = mean percentage error; MAPE = mean absolute percentage error; A = Adajan Patiya; C = Chowk junction; B = Bhagal intersection; DG =

Delhi-gate intersection; LD = Lal-Darwaza intersection; PA = Podder Arcade Vaishali.
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was used to derive penetration rates, traffic flow, and
density.

Three main variables to visualize the traffic stream
(traffic flow, density, and speed) were computed using
the data derived from the Wi-Fi sensor and the video
data. A directional factor (ADD) was introduced since

Wi-Fi sensors could capture traffic volumes on either
side. Further, since multiple patches from a single vehicle
(evidence of vehicle occupancy) can occur, an average
vehicle occupancy (AVO) factor was introduced to esti-
mate flow and density. The methodology suggested by
Gore et al. (48) was adopted to derive vehicle occupancy

(a) (b)

Figure 4. Comparison of turning proportions: (a) Lal-Darwaza intersection and (b) Poddar Arcade intersection.

(a) (b)

(c) (d)

Figure 5. Comparison of field observed delay and delay obtained through simulation model. Legends are as follows: (a) Hirabaug to
Railway Station, (b) LH Road to Hirabaug, (c) Railway Station To Hirabaug, and (d) Railway Station to LH Road.
Note: s/veh = seconds per vehicle.
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for the present section. The traffic stream variables were
computed for a 15min aggregation interval. The traffic
stream variables are given by

Q=
QS

rAVOADD
, ð24Þ

K =

Pn
i= 1

ti
lr

� �
mTAVO

, ð25Þ

V =
lrPn

i= 1
ti

n

ð26Þ

where
Q=traffic flow (in one direction);
QS=traffic flow recorded by the sensor;
r=penetration rate;
m=matching rate;
AVO=average vehicle occupancy (in the case of Wi-

Fi or Bluetooth data) (AVO is 1.65 for the present case);
ADD=average directional distribution factor (60%

for FOB to Tidel and 40% for Tidel to FOB from field
data);

K=traffic density;
ti=travel time by ith vehicle;
lr=length of the route;
T=observation window (15min for the present case);
n=number of vehicles recorded by the sensor; and
V=traffic speed.
The penetration rate is not considered in extrapolat-

ing traffic density. It was observed from the dataset that
not all the vehicles identified at the inflow location
matched at the other end. Therefore, only the vehicles
matched at both ends were considered for extrapolating
traffic density. It is important to note that the penetra-
tion rate derived using the penetration rate model varies
over time based on the sensor-recorded traffic flow for
the subject corridor. Further, the matching rate, which
can also be expressed as a function of penetration rate,
also varies over time. Therefore, dynamic values of both
penetration rate and matching rate are considered in the
present study. It should be noted that an error in traffic
flow estimated using Equation 24 ranges from 100 vph to
350 vph. Similarly, an error in estimating traffic density
ranged from 5% to 15%.

Macroscopic Fundamental Diagram Using Simulated
Data

The calibrated simulation model was run using the 21 h
field data. Traffic flow descriptors such as traffic flow,
speed, and travel time extracted for each link, were used
to compute network-wide traffic flow parameters. The
density for each link was computed using the fundamen-
tal equation of traffic flow (49). The network-wide traffic

flow parameters were computed using the following
equations at every 5min aggregation interval (50).

K =

P5
x= 1 (kx 3 lx)P5

x= 1 lx
ð27Þ

V =

P5
x= 1 (vx 3 lx)P5

x= 1 lx

, ð28Þ

Q=

P5
x= 1 (qx 3 lx)P5

x= 1 lx

ð29Þ

where K, V, and Q are network-level macroscopic flow
parameters; k, v, and q are macroscopic flow parameters
for each link; l is the length of each link.

It is essential to mention that traffic flow variables like
traffic flow, traffic density, travel time, speed, and TTU
are computed at every 15min aggregation interval for
empirical data and every 5min aggregation interval for
the simulated dataset.

Results and Discussions

Fundamental Diagram: Empirical Data

Figure 6 represents the FD for the study corridor. Here,
FD is plotted for individual days. The motive for plotting
an FD for individual days was to understand the varia-
tion in speed and traffic flow across different days for a
given traffic density value. This assists in comprehending
whether the systems are in stable or unstable states. Here,
the traffic density is not computed per lane because of
non-lane-based traffic conditions in India. Under such
traffic conditions, the vehicles do not follow lane disci-
pline and can occupy any position on the roadway, and
as a result, density or flow is not expressed as per lane.

From the figure, it can be inferred that a wide varia-
tion in stream speed and traffic flow exists for similar
density values. Further, it is interesting to note that lower
speeds correspond to lower densities for some days.
Thus, higher congestion can be observed during low-
density conditions as well. This could be attributed to
traffic incidents, weather (heavy rains), or special events
like holidays/festivals. Further, high proportions of turn-
ing movements during specific periods (49) and the effect
of the cyclic nature of signalized intersections (51, 52)
could also lead to reduced speeds during low flow condi-
tions. For the present case, the two signalized intersec-
tions (at 2nd Avenue and Tidel Park) are closely spaced
(the distance between the two is less than 600m) with dif-
ferent cycle lengths of 120 s and 396 s and a green-to-
cycle time (g/C) ratio of 0.25 and 0.50, respectively. The
average queue length between the two intersections also
varies significantly. This variation in g/C ratio, signal
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cycle length, and queue length results in large variations
in the FD.

Macroscopic Fundamental Diagram: Simulated Data

Figure 7 illustrates the MFD developed for the urban net-
work between Adajan Patiya (A) and Podder Arcade (PA)
using simulated data. Here, the MFDs are plotted by the
direction of travel—that is, a separate MFD is developed
for (A–PA) movement and (PA–A) movement.

The MFD and speed–density relation varied when
analyzed by direction of travel, attributed to varying
roadway geometry, traffic control, and its characteristics.
For example, the difference in g/C ratio and phasing
scheme between north–south and south–north movement
can induce a variation in MFD. Further, it can be noted

that lower speeds are observed for low-density condi-
tions. This could be attributed to the cyclic nature of
intersections, variations in turning proportions, and road-
way and traffic control characteristics. Ambühl et al. (53)
reported three reasons for the variation in MFD: (1) traf-
fic is dynamic in cities and is rarely in a steady state, (2)
heterogeneity in the spatial distribution of vehicles, and
(3) interaction of public transport operations with vehicle
flows. In addition, the variation in MFD can be attrib-
uted to the variation in road functional classes and net-
work topological factors (roadway geometry, traffic
control type and its characteristics) (54).

From Figures 6 and 7, it can be concluded that the
changes in travel time under similar traffic flow condi-
tions may vary significantly with different circumstances
(23) and indicate that the relation between traffic flow
variables is stochastic.

(a) (b)

(c) (d)

Figure 6. Flow–density and speed–density relations for weekdays and weekends using empirical data: (a) Q–K relation (weekdays), (b)
Q–K relation (weekends), (c) V–K relation (weekdays), and (d) V–K relation (weekends).
Note: vph = vehicles per hour; vpk = vehicles per kilometer; Q = traffic flow; K = traffic density; V = speed.
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Effect of TTU

To investigate the effect of TTU, a scatter of TTU
against traffic density is plotted for both empirical
(Figure 8, a and b) and simulated (Figure 8, c and d)
datasets, as shown in Figure 8.

Figure 8 shows that TTU increases with an increase in
density. The observations are consistent for both empiri-
cal and simulated datasets. Vehicle-to-vehicle interaction
influences travel time distribution at higher densities;
therefore, higher TTU at higher density can be attributed
to unstable traffic flow. Further, it is interesting to note
that, for low-density conditions, higher values of TTU
can be noted, highlighting that the travel time under low-
density conditions is uncertain. Higher TTU for lower
densities indicates that uncertain travel times are caused
by supply-side influencing factors, that is, the cyclic

nature of signalized intersections, varying roadway, traf-
fic control characteristics, and variation in traffic compo-
sition. Lower speed values for lower density values could
be attributed to higher values of TTU. Therefore, it can
be concluded that TTU significantly affects travel time,
especially in free-flow conditions. The observation is con-
sistent with Ngoduy (30) and Li et al. (31).

Calibration Results

As discussed in the ‘‘Methodology’’ section, two para-
meters, free-flow travel time (tf ) and capacity (Ca),
derived using empirical and simulated datasets, were
fixed for calibrating the BPR and the MBPR function.
This was done to derive a more robust fit (32). The
free-flow travel time and capacity values are estimated

(a) (b)

(c) (d)

Figure 7. Flow–density and speed–density relations for the network using simulated data: (a) Q–K relation (A–PA), (b) Q–K relation
(PA–A), (c) V–K relation (A–PA), and (d) V–K relation (PA–A).
Note: vph = vehicles per hour; vpk = vehicles per kilometer; Q = traffic flow; K = traffic density; V = speed; A = Adajan Patiya; PA = Podder Arcade.
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as discussed in the ‘‘Methodology’’ section, and the
estimated values of free-flow travel time and capacity
for empirical and simulated datasets are explained
next.

Empirical Dataset. A free-flow travel time of 102 s was
obtained for empirical data, corresponding to a free-
flow speed of 60 km/h for a route length of 1.70 km.
The obtained free-flow speed for the empirical dataset
is consistent with that reported by Thankappan and
Vanajakshi (55) for the same study section. The capac-
ity value 5550 vph or 1850 vphpl (vehicles per hour per
lane) for a three-lane urban arterial corridor was
obtained using the generalized polynomial function.
The capacity value of 5550 vph is also in line with Das
and Rama Chilukuri (2) reported for the same study
corridor.

Simulated Dataset. Free-flow travel time of 648.59 s for
A–PA (network length of 5.69 km) and 665.26 s for PA–
A (network length of 5.93 km) was obtained. Capacities
of 4715 vph and 4365 vph were obtained for the network
in a north–south direction (A–PA) and south–north
(PA–A), respectively. Similarly, free-flow travel time and
capacity were evaluated for each of the links of the
network.

Calibration Results: Empirical Data

The BPR and MBPR function was calibrated for 17 days,
that is, from May 18 to July 4, 2018, where 24 h time-
series data were available. The optimization program was
repeated until the convergence was not obtained. Sample
calibration results for 2 days are shown in Figure 9 as an
example. Consistent results were noted for other days as
well.

(a) (b)

(c) (d)

Figure 8. Variation in TTU with traffic density: (a) TTU–k relation (weekdays empirical data), (b) TTU–k relation (weekends empirical
data), (c) TTU–k relation (A–PA simulated data), and (d) TTU–k relation (PA–A simulated data).
Note: TTU = travel time uncertainty; k = traffic density; A = Adajan Patiya; PA = Podder Arcade.
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Calibration Results: Simulation Data

The BPR and MBPR function was calibrated separately
for each link, and the network in the north–south and
south–northbound direction. The optimization program
was repeated until the convergence was not obtained.
The results are shown in Figure 10 for the network only.
Consistent results were also obtained for links considered
in the network.

Figures 9 and 10 show that the MBPR function fits
the data (both empirical and simulated) well compared
with the BPR function. This is visible from the reduction
in the value of different performance measures like
MAPE, MPE, and RMSE. Further, the MBPR function
can predict multiple values of travel time corresponding
to a specific value of traffic flow based on the values of
TTU. Therefore, the MBPR function can better charac-
terize and address the uncertainty or heterogeneity in

travel time and traffic flow relation than can the existing
BPR function.

Effectiveness of MBPR Function

The BPR function has known limitations that (a) it does
not represent the oversaturated conditions (volume to
capacity ratio greater than one) effectively, and (b) it
ignores the time-dependent relation between traffic vol-
ume and delay. In the present study, the effectiveness of
the MBPR function is justified by (a) comparing travel
time and its variability in oversaturated conditions and
(b) exploring the time-dependent relation between traffic
volume and delay.

Performance in Oversaturated Conditions. For empirical and
simulated datasets, traffic volume higher than the

(a) (b)

(c) (d)

Figure 9. Calibration result of BPR and MBPR function for empirical dataset: (a) BPR, (b) MBPR, (c) BPR, and (d) MBPR.
Note: BPR = Bureau of Public Roads function; MBPR = modified BPR; ATT = actual travel time; PTT = predicted travel time; RMSE = root mean square

error; MAPE = mean absolute percentage error; MPE = mean percentage error; vph = vehicles per hour.
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capacity was observed. Therefore, for the oversaturated
conditions (V/C. 1), the observed travel time and travel
time computed using BPR and MBPR were compared
using cumulative percentile plots, as shown in Figure 11.
It is essential to mention that oversaturated conditions
were observed for a few links for the simulated dataset.
The result related to one link is shown in Figure 11b as
an example. However, for the entire network, oversatu-
rated conditions were not observed.

Figure 11 shows that the observed travel time and the
travel time predicted using MBPR are in close approxi-
mation, unlike those predicted using the BPR function.
This implies that the MBPR function could also capture
the variability of travel times under oversaturated condi-
tions better than the BPR function. The statistical

validation of this observation was done by performing a
one-way ANOVA (analysis of variance) between the
observed travel time and the travel time predicted using
the MBPR function. For the MBPR function, the results
revealed no significant difference between the observed
and predicted travel time. A significant difference
between the observed and predicted travel times was
noted for the BPR function. Therefore, it can be con-
cluded that the MBPR function can represent the oversa-
turated conditions better than the BPR function.

Time-Dependent Relation between Traffic Volume and
Delay. Another drawback of the static volume–delay
function is that it cannot capture the time-dependent
relation between volume and delay. On the other hand,

(a) (b)

(c) (d)

Figure 10. Calibration result of BPR and MBPR function for the simulated dataset: (a) BPR (A–PA), (b) MBPR (A–PA), (c) BPR (PA–A),
and (d) MBPR (PA–A).
Note: BPR = Bureau of Public Roads function; MBPR = modified BPR; A = Adajan Patiya; PA = Podder Arcade; RMSE = root mean square error; MAPE =

mean absolute percentage error; MPE = mean percentage error; ATT = actual travel time; PTT = predicted travel time; vph = vehicles per hour.
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MBPR would capture the time-dependent relation
between volume and delay. This can be attributed to the
inclusion of TTU in the formulation. The TTU would
vary based on demand- and supply-side factors. For
instance, if the traffic flow transits from an undersatu-
rated to an oversaturated condition, then the magnitude
of TTU for both the conditions will be correlated. The
temporal comparison between the observed and pre-
dicted travel time using the BPR and the MBPR function
is shown in Figure 12.

From Figure 12, it can be concluded that the MBPR
function also accounts for the time-dependent relation
between traffic volume and delay. The normalized
RMSE (RMSN) was evaluated for travel times predicted
using the BPR and the MBPR. It was observed that

RMSN was 0.20 for the BPR function, whereas the same
for the MBPR function was 0.10. The reduction in
RMSN for MBPR highlights that the MBPR function
has better prediction capabilities than the BPR function
Further, Figure 12 highlights specific trends in the evolu-
tion of traffic flow over a given day. A spike can be
observed during peak hours 5 p.m. This peak can be
attributed to an increase in traffic volume and changes in
the cycle time at signalized intersections. The intersection
at 2nd Avenue is police controlled. This means that the
cycle time and the green time varies as per the perception
of the traffic police. This is quite similar to adaptive sig-
nal control. The continuous changes in green time and
the cycle time during peak periods cause a change in sup-
ply. Therefore, changes in demand and supply cause a

(a) (b)

Figure 11. Comparison of BPR and MBPR under oversaturated conditions for: (a) empirical data and (b) simulated data.
Note: BPR = Bureau of Public Roads function; MBPR = modified BPR; ATT = actual travel time.

Figure 12. Temporal comparison between the observed and predicted travel time using BPR and MBPR function.
Note: BPR = Bureau of Public Roads function; MBPR = modified BPR.
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significant change in the magnitude of TTU, resulting in
significant travel times. This phenomenon is captured if
uncertainties are incorporated. However, this spike is not
captured by the deterministic BPR. Therefore, the uncer-
tainties or TTU in the present case capture the variation
in travel time arising from changes in capacity (or sup-
ply) and demand. The spike in travel time at 4 a.m. could
be a result of factors like heavy rains and lane closure
and needs further detailed investigation, thus forming
the future scope of the study.

One can argue that adding new variables to an equa-
tion would improve the model’s performance. It is
important to note that the added variable (TTU) in the
present case captures the uncertainties in traffic flow,
and because of this, varying travel time values for a given
traffic flow condition are predicted. The uncertainties in
traffic flow are attributable to two broad reasons: (a)
demand or traffic volume and (b) supply (change in
capacity resulting from traffic control, roadway geome-
try, and weather conditions). If the evolution of traffic
flow is examined, it can be observed that the traffic flow
constantly transits from one traffic state to another (refer
to Figure 12, for example). This variation in traffic states
results in varying TTU and travel time values. The varia-
tion in TTU between different traffic states and over
periods is correlated, highlighting that TTU inherently
entails the time-dependent nature of traffic flow. Because
of this property of TTU, the MBPR function proposed
in the present study (a) explains the stochastic nature of
traffic flow, (b) represents the oversaturated conditions
without the need for modified or oversaturated demand,
and (c) explains the time-dependent relation between
traffic flow and travel time. Therefore, incorporating
TTU adds physical meaning to the BPR function.

Overall, it can be concluded that the MBPR function
overcomes the disadvantages or limitations of the tradi-
tional BPR function. It is also important to note that the

variables used in the MBPR function are easy to measure
in the field using loop detectors, Wi-Fi/Bluetooth sen-
sors, RFID (radio-frequency identification) sensors, and
probe vehicle data.

Interpretations of g and d

In the ‘‘Methodology’’ section, the physical interpreta-
tions of g and d in respect of inter-day heterogeneity,
infrastructure potential, and heterogeneity in the traffic
flow distribution were discussed. Since the interpreta-
tions are related to inter-day heterogeneity, infrastructure
potential, and traffic flow stability, they thus have signifi-
cant practical applicability in traffic flow theory. In this
subsection, these three interpretations are discussed in
detail.

Inter-Day Heterogeneity. g and d are representative of the
value of TTU. A higher value of g and d would indicate a
higher value of TTU. It is expected that TTU would vary
among links, and for a given link, TTU would vary
between days. Therefore, variation in g and d can poten-
tially explain the inter-day heterogeneity and variability
in travel times. To support this observation, a line plot
between TTU and the ratio of g to d is plotted for empiri-
cal data over different days, as shown in Figure 13. Here,
the ratio of g to d is taken to consider the combined effect
of g and d.

Figure 13 shows that both TTU and the ratio of g to
d vary over different days. A higher ratio of g to d can
be noted for the days with higher TTU values indicating
a positive correlation between the TTU and the ratio of
g to d. Therefore, the ratio of g to d can potentially rep-
resent the inter-day heterogeneity in travel times. The
higher the value of the ratio of g to d, the more is the
inter-day heterogeneity in traffic flow. Similarly, the

Figure 13. Analysis of inter-day heterogeneity.
Note: TTU = travel time uncertainty.
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ratio of g to d can be compared between links of the net-
work to conclude on heterogeneity in travel times and its
uncertainty.

Infrastructure Potential. The second interpretation, as dis-
cussed in the ‘‘Methodology’’ section, suggests that for
similar values of Q, TTU, a, and b, higher values of g

and d would yield higher travel time than would lower
values of g and d: To support this interpretation, two
sets of g and d (0.32, 0.37; 0.49, 0.21) are considered. a

and b values are fixed as 1.09 and 1.40, respectively.
Figure 14 illustrates the variation in travel time for
similar values of Q, TTU, a, and b for varying values
of g and d.

From Figure 14, it is evident that for a similar a and
b, Q, and TTU values, g and d have a significant effect
on the values of travel time. For instance, if the ratio of g

and d is higher (blue points), then for similar values of Q,
TTU, a, and b, higher travel time values are observed
compared with travel time values where the ratio of g

and d is lower (orange points). This highlights that for a
similar V/C ratio, days with a higher value of g and d,
would indicate higher congestion in respect of travel
times. Therefore, the infrastructure is not used efficiently.
Thus, the values of g and d can represent the infrastruc-
ture potential.

Heterogeneous Distribution of Traffic Flow. The third interpre-
tation relates the value of g and d to heterogeneity in the
distribution of traffic flow. It is argued that if the ratio of
g to d is higher, then the distribution of traffic flow over
a given value of density is heterogeneous. The heteroge-
neous distribution of traffic flow over a given density
value is estimated by analyzing the size of the hysteresis
in MFD. Saberi and Mahmassani (56) reported that the
size of the hysteresis could be quantified by its width and
height and the area covered by the loop. A sample hys-
teresis plot is shown in Figure 15.

The size of the hysteresis can be expressed as an
ordered pair of its width and height:

SH = Dk,DQð Þ: ð30Þ

The area of the hysteresis can be computed as

AH = Dk 3 DQð Þ: ð31Þ

The area of hysteresis was computed for different links
and networks. The area of hysteresis was normalized
using capacity and critical density. The higher the value
of the area of hysteresis, the more heterogeneous is the
distribution of traffic flow. The normalized area of

hysteresis was then correlated with the ratio of g to d, as
shown in Figure 16.

From Figure 16, a positive correlation between the nor-
malized area of hysteresis and the ratio of g to d is evident.
It can be inferred that the higher the ratio of g to d, the
larger the area of hysteresis. Thus, traffic flow is heteroge-
neously distributed over density, indicating instabilities in
traffic flow. Therefore, the values of g and d can explain
the heterogeneous distribution of traffic flow and thus can
help comprehend the stability in traffic flow.

Figure 14. Variation in travel time values with changes in g and d

values for similar values of a and b, traffic volume, and TTU.
Note: TTU = travel time uncertainty; vph = vehicles per hour. Orange

points: g= 0.32 and d = 0.37; blue points: g= 0.49 and d = 0.21.

Figure 15. Flow–density relation and size of hysteresis loop.
Note: vph = vehicles per hour; vpk = vehicles per kilometer.
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Application of the MBPR Function

The application of the MBPR function is demonstrated
by quantifying the impact of signal control through a
before–after perspective. In response to increasing con-
gestion levels, the local government authority installed a
traffic signal control at 2nd Avenue in February 2018.
Before that, the link FOB–Tidel had one signalized inter-
section at Tidel Park. For the present study, for the corri-
dor (FOB–Tidel), the traffic signal control at 2nd Avenue
was operational from February 2018. The signal is police
controlled, and therefore, as per the perception of traffic
police about the inflow, the cycle time is observed to
vary. The traffic signal control installed at NI has an
average cycle length of 120 s, with an average red time of
60 s. For the before case, travel time data were collected
using Wi-Fi sensors for 3 days in November 2017.

The MBPR function was calibrated using the metho-
dology discussed in the earlier sections. The calibrated
MBPR link function for the before case is shown in
Figure 17.

For similar values of traffic flow and TTU, travel time
for the before and after case was computed using the cali-
brated MBPR function, and the results are illustrated in
Figure 18.

From Figure 18, it can be concluded that for similar
values of traffic flow and TTU, higher travel times can be
noted for the before case compared with the after case.
The statistical validation of this observation was per-
formed by performing a one-way ANOVA at a 5% level
of significance. The results of one-way ANOVA revealed
a significant difference in travel time between the before
and after cases. Compared with the before case, an aver-
age reduction of 13% in travel time was noted for the
after case. Therefore, the installation of traffic signal

control has reduced travel time and therefore reduced
traffic congestion in the corridor.

Conclusions and Way Forward

The BPR link function has profound application in
transportation planning primarily because of its simple
mathematical form, fewer and easily observable field
inputs, and reasonable performance. However, the deter-
ministic BPR function does not capture the stochastic
relation between travel time and traffic flow and this
forms its major limitation. The present study proposes a
modified BPR link function by incorporating TTU in

(a) (b)

Figure 16. Variation in normalized area of hysteresis with ratio of g to d for: (a) empirical data and (b) simulated data.

Figure 17. Calibrated MBPR function for the before case.
Note: MPBR = modified Bureau of Public Roads function; ATT = actual

travel time; PTT = predicted travel time; MAPE = mean absolute

percentage error; veh/h = vehicles per hour.
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the existing BPR formulation. The effect of TTU is
incorporated using two parameters, g and d. The applic-
ability of the proposed MBPR function has been shown
using empirical and simulated datasets. The following
are some of the important conclusions drawn from the
present study:

� TTU significantly affects travel time values in
addition to traffic flow. The effect of TTU is pro-
nounced during free-flow conditions. The TTU
inherently captures the effect of changes in
demand and supply (capacity).

� The MBPR function can replicate the stochastic
relation between travel time and traffic flow better
than the existing BPR function. Based on the
value of TTU, for a given traffic flow, varying
travel times are computed.

� The proposed MBPR function (a) captures the
variability in travel time under oversaturated con-
ditions and (b) captures the time-dependent rela-
tion between traffic volume and delay.

� The parameters of the MBPR function, namely g

and d, have three critical physical interpretations
as reflecting inter-day heterogeneity in travel
times, infrastructure potential, and heterogeneity
in the distribution of traffic flow.

� It is revealed that the ratio of g to d, when com-
pared among links or between days for a given
link, can explain the inter-day heterogeneity in
travel times. A higher value of the g to d ratio indi-
cates higher variability in travel times than does a
smaller value of the g to d ratio.

� It is also exemplified that a higher ratio of g to d

for a given value of Q, TTU, and a and b, gener-
ates higher travel time values than does a lower

ratio of g to d, highlighting that the infrastructure
is not effectively utilized.

� A higher ratio of g to d results in a higher value of
the area of hysteresis, highlighting that traffic flow
is heterogeneously distributed over a given value
of density. Therefore, the values of the g to d ratio
can be potentially used to analyze traffic flow
stability.

The modified BPR function model was only checked for
performance in the present study. The MBPR function
can also be extended to traffic assignment problems and
needs further investigation. TTU has a significant effect
during free-flow conditions; therefore, characterizing
traffic flow stability using density and TTU also forms
the future scope of the study. The impact of different
policies such as adaptive traffic signal control, vehicle
segregation, and connected and autonomous vehicles can
be studied using the values of g and d and also forms the
future scope of the study. The application of MBPR for
real-time or online studies needs further investigation.

Contribution of the Study

The present study proposes a stochastic extension of the
deterministic BPR link cost function, referred to as the
modified Bureau of Public Roads (MBPR) link cost
function. The deterministic BPR function was converted
into its stochastic version by integrating TTU. The TTU
inherently incorporates the effect of changes in demand
and supply (capacity). In the MBPR function, the effect
of TTU is incorporated using two parameters, g and d.
It is well articulated that traffic flow constantly transits
from one traffic state to another. This variation in traffic
states causes a variation in TTU and travel time values.
The variation in TTU between different traffic states and
over time periods is correlated, highlighting that TTU
inherently entails the time-dependent nature of traffic
flow. Because of this property of TTU, the MBPR func-
tion proposed in the present study (a) explains the sto-
chastic nature of traffic flow, (b) represents the
oversaturated conditions without the need for modified
or oversaturated demand, and (c) explains the time-
dependent relation between traffic flow and travel time.
Therefore, the MBPR function proposed in the study
significantly contributes to the existing literature.
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