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ABSTRACT2

Providing high degree of personalization to a specific need of each patient is invaluable to3
improve the utility of robot-driven neurorehabilitation. For the desired customization of treatment4
strategies, precise and reliable estimation of the patient’s state becomes important, as it can5
be used to continuously monitor the patient during training and to document the rehabilitation6
progress. Wearable robotics have emerged as a valuable tool for this quantitative assessment as7
the actuation and sensing are performed on the joint level. However, upper-limb exoskeletons8
introduce various sources of uncertainty, which primarily result from the complex interaction9
dynamics at the physical interface between the patient and the robotic device. These sources of10
uncertainty must be considered to ensure the correctness of estimation results when performing11
the clinical assessment of the patient state. In this work, we analyze these sources of uncertainty12
and quantify their influence on the estimation of the human arm impedance. We argue that this13
mitigates the risk of relying on overconfident estimates and promotes more precise computational14
approaches in robot-based neurorehabilitation.15

Keywords: reliable automated assessment, sensitivity analysis, human-exoskeleton interaction, uncertainty quantification, uncertainty-16
aware simulation, neuromechanical state estimation17

1 INTRODUCTION
Medical robotics have advanced greatly with application in many domains, such as robot-assisted18
surgery (D’Ettorre et al., 2021), service robots in healthcare (Holland et al., 2021) or rehabilitation19
robotics (Laut et al., 2016). Particularly in the field of physical rehabilitation, an ever-increasing demand20
for automation technology is observed. Stroke, for instance, is the second leading cause of death21
worldwide (Feigin et al., 2014) with an increasing trend due to rising life expectancy in many parts22
of the world (Boehme et al., 2017; Donkor, 2018). However, while stroke is a highly relevant cause23
for motor impairment, many other neurological disorders, such as cerebral palsy, multiple sclerosis24
or Parkinson’s disease, require similar treatment strategies during rehabilitation to improve or retain25
motor functions (Krebs et al., 2008). In particular, high-intensity (Ringleb et al., 2008) and repetition26
training (Kwakkel et al., 1999) have been shown to produce promising recovery results. Due to these27
requirements, effective rehabilitation is time- and labor-intensive, therefore, both patients and healthcare28
professionals can benefit greatly from robot-assisted rehabilitation strategies.29
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In recent years exoskeletons, also referred to as wearable robotic devices (Lo and Xie, 2012), have30
emerged as a powerful tool for rehabilitation. Since they are designed in a manner that the kinematic chain31
aligns with the user, sensing and actuation can be performed at the joint level here. One of the main benefits32
of rehabilitation robotics lies in their application during robot-aided patient assessment. Here, robotic33
devices are used to monitor patients before. after, or during training, thereby tracking the recovery progress34
and informing the treatment strategy. In the case of neurological disorders, there are multiple functional35
impairments, e.g., arm hemiparesis, limited hand dexterity or over-rigid joints, that inhibit motor functions36
of affected individuals (Carvalho-Pinto and Faria, 2016). Thus, the quantitative estimation of the dynamic37
parameters underlying these effects using wearable robotic devices can greatly benefit neurorehabilitation.38
Particularly relevant in the case of stroke is spasticity, a motor disorder described by hyperactivity in tonic39
stretch reflexes (Mclellan, 1981) which leads muscles to be overly resistive to elongations and thus reduced40
mobility of the affected limb (Sommerfeld et al., 2004). In current clinical practice, spasticity assessment41
scales, such as the Modified Ashworth Scale (MAS) are used to evaluate the muscle tone of patients. Here,42
the clinician induces a passive motion by manually perturbing the target joint of the patient. Concurrently,43
the muscle tone is assessed by tactually observing the movement resistance. Even though this method has44
been proven to be useful in clinical practice (Gregson et al., 1999), there are shortcomings that could be45
alleviated through robotic assessment. Specifically, the coarse and discrete nature of the scales limit the46
level of precision. Additionally, the evaluation is subjective at its core, which can lead to possibly unreliable47
and biased estimates that are not consistently reproducible (Blackburn et al., 2002; Raghavan, 2015).48

Hence, the deployment of robot-aided assessment is expected to improve the objectivity and repeatability49
of clinical evaluations (Lambercy et al., 2012). In particular, joint impedance is commonly used as a50
concise measure for the patient state (Maggioni et al., 2016), since it describes the relationship between51
joint motion and opposing torque, which is often abnormally increased (Chung et al., 2004). In recent52
years, a multitude of these assessment approaches based on exoskeletons for upper-limb rehabilitation have53
emerged. In Ren et al. (2013), an upper-limb exoskeleton quantitatively estimates the joint stiffness of the54
shoulder, elbow and wrist joints. More recently, a decomposition of the coupled human arm dynamics is55
proposed to allow the estimation of local and inter-joint stiffness effects following stroke (Zhang et al.,56
2017). A more extensive impedance estimation is conducted in Wang et al. (2021), where an exoskeleton is57
used to identify the inertia, viscosity and stiffness components of the elbow joint of patients’ with spastic58
arms using genetic algorithms. Despite the fact that the benefits of robot-aided assessment in comparison to59
human-administered clinical scales have been demonstrated in studies (Bosecker et al., 2010), exoskeleton60
applications suffer from the introduction of unintended interaction forces to the user (Jarrassé et al., 2010)61
with adverse effects on the clinical evaluation. These interaction forces cannot be avoided completely due to62
uncertainties in the complex physical human-exoskeleton interaction. In particular, sources of uncertainty63
are known to arise due to kinematic incompatibilities, soft coupling and inaccuracies in the human dynamics64
model (Pons, 2008). So far, the influence of these sources of uncertainty on the arm impedance estimation65
has not been analyzed sufficiently, and a quantitative ranking of their impact is missing. However, since the66
assessment is used to guide the therapy of patients, it is paramount to make these uncertainties explicit in67
order to increase precision and ensure that clinicians are not misinformed by overconfident assessment68
results. Therefore, it is important to investigate how uncertain the obtained impedance parameter estimates69
are and how to effectively reduce uncertainty for exoskeleton-based automated assessment.70

1.1 Related Work71

The influence of uncertainties on the robot-aided impedance estimation can be quantified by mean of72
a sensitivity analysis. These methods investigate how uncertainty in the output of a system, e.g., the73
result of the automated assessment, is influenced by variations in the input of a system (Pianosi et al.,74
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2016), e.g., sources of uncertainty in the complex human-exoskeleton interaction. Thus, by analyzing these75
sensitivities and ascribing quantitative measures of importance to each source of uncertainty, the robustness76
of the automated assessment can be quantified (Thabane et al., 2013). Previously, it has been shown how77
sensitivity analysis methods are used to support efforts in uncertainty reduction (Hamm et al., 2006) and78
facilitate robust decision making under uncertainty (Nguyen and de Kok, 2007; Singh et al., 2014).79

In general, sensitivity analysis can be approached in multiple ways, with three principle classes80
identified in (Christopher Frey and Patil, 2002): Analytical, statistical and graphical methods. Typically,81
analytical methods, such as (Kohberger et al., 1978; Ma et al., 2021), require access to a differential82
equation model of the system and perform analysis by monitoring the partial derivative over the uncertain83
parameters (Abraham et al., 2007). In Schiele (2008), an analytical 1 DoF model of the interaction forces84
induced by kinematic incompatibilities on the elbow joint is proposed. While the presented model was85
validated experimentally, remaining sources of uncertainty are not considered and it limits the utility of86
the model as interaction effects cannot be captured by it. Due to the complexity of the human-exoskeleton87
interaction dynamics, a closed-form description that captures all sources of uncertainty concurrently is not88
available, which makes analytical sensitivity analysis methods impractical. On the other hand, statistical89
and graphical approaches solely require access to input-output samples of the system (Christopher Frey and90
Patil, 2002). Here, samples are generated by evaluating the examined system for a factorial combination91
of all sources of uncertainty to obtain pertinent statistical information and gain rigorous insights, which92
is infeasible to do experimentally. Thus, simulations are often used instead (Iooss and Saltelli, 2017).93
However, to the best of the authors’ knowledge, no human-exoskeleton simulation environment considers94
all of the key sources of uncertainty present during the complex, physical interaction. In (Agarwal et al.,95
2010), for instance, the authors analyzed challenges due to kinematic misalignments on the elbow joint96
to inform the simulation-based design of an arm exoskeleton. On the other hand, the effect of the human97
musculoskeletal model on lower-limb exoskeleton control during gait is investigated in (Khamar et al.,98
2019). Lastly, (Kühn et al., 2018) present an upper-limb simulation of the human, exoskeleton and their99
respective coupling where simplified 6 DoF springs are used to model soft-contacts. However, in order100
to fully understand the effect of uncertainty in exoskeleton-based impedance assessment, all sources101
of uncertainty and their interaction effects must be considered. Thus, a simulation platform which can102
systematically express the uncertain human-exoskeleton interaction is required in order to quantify the103
impact of sources of uncertainty on the estimated impedance parameter.104

1.2 Contribution105

In this work, we perform a sensitivity analysis that quantitatively investigates the influence of various106
sources of uncertainty on the exoskeleton-based arm impedance estimation. Through this process, a more107
precise understanding of the uncertainty composition and their prioritization is achieved, which facilitates108
effective measures to increase the performance of exoskeleton-based automated assessment and reduces the109
risk of relying on overconfident results. We propose a two-phase approach, where initially the negligible110
sources of uncertainty are identified, and then a ranking of the most influential factors is performed in111
the second phase. Due to the complexity of the human-exoskeleton interaction dynamics, we adopt a112
sampling-based sensitivity analysis which allows us to quantify the influence of each source of uncertainty113
independently as well as the interaction effects among them. In order to generate the samples required114
for the analysis, we develop a high-fidelity simulation environment of the human-exoskeleton system that115
includes the key sources of uncertainty, which are informed by the physical understanding of the system116
and identified in the literature.117
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Figure 1. Depiction of the complete, proposed sensitivity analysis scheme. From top to bottom the
blocks illustrate the different steps taken during the proposed scheme. First, during the phase selection
the sampling strategy is determined. Subsequently, in the input parameter sample block input samples in
the form of human-exoskeleton simulation instances are drawn. The output sample block illustrates the
generation of output samples using the automated assessment process. Lastly, the input-output samples are
used to obtain sensitivity measures which is visualized in the sensitivity analysis.

This is a provisional file, not the final typeset article 4



Tesfazgi et al. Uncertainty-aware Exoskeleton-based Automated Assessment

2 MATERIALS AND METHODS
In this section, the technical problem is formulated and the relevant material and methods are shown. An118
overview of the proposed uncertainty quantification procedure is shown in Figure 1. From top to bottom the119
colored blocks illustrate the phase selection, the process of obtaining input parameter samples, the process120
of obtaining output samples and the evaluation procedure using quantitative sensitivity analysis methods.121
First, during the phase selection the sampling strategy is determined, which is chosen in accordance to the122
objective of the respective sensitivity analysis method. Following this, the input parameter samples are123
generated. Here, the examined sources of uncertainty are sampled depending on the previously selected124
sampling strategy. Then, the input parameter samples are retrieved in the form of parameterized human-125
exoskeleton simulation instances, where the varied parameters are associated with different sources of126
uncertainty. Subsequently, the output sample block is applied. Here, the exoskeleton-based automated127
assessment is run for the sampled simulation parameterizations to obtain impedance parameter estimates for128
the human arm. Finally, the sensitivity analysis is performed. Depending on the sampling strategy chosen129
beforehand, different sensitivity analysis methods are deployed on the estimated impedance parameters130
to investigate the impact of the modelling uncertainties with respect to the observed estimation error. By131
deploying this sensitivity analysis scheme we are able to derive the most influential sources of uncertainty132
that influence the exoskeleton-based arm impedance estimation.133

The remainder of the section is structured as follows: In Section 2.1, the dynamics governing the human-134
exoskeleton system are introduced and a qualitative account on uncertainties in the automated assessment135
is provided. Subsequently, a high-fidelity simulation of the human-exoskeleton interaction is presented136
in Section 2.2 with particular focus on including the key sources of uncertainty present in the system. In137
Section 2.3, the proposed assessment procedure is explained and technical details regarding the estimation138
process are provided. Finally, in Section 2.4, the deployed sampling strategies and sensitivity analysis139
methods are presented.140

2.1 Uncertainty during Human-Exoskeleton Interaction141

In order to perform the sensitivity analysis in an interpretable manner it is necessary to have an142
understanding of the investigated system. To this end, we first formulate the nominal human-exoskeleton143
interaction model. Subsequently, uncertainties are introduced to the nominal model. Finally, an automated144
spasticity assessment scheme is described and the impact of uncertainties on the assessment result is145
investigated.146

2.1.1 Nominal Human-Exoskeleton Interaction Model147

The instrumented assessment using an upper-limb exoskeleton is considered in this work. Therefore, we148
start by establishing the dynamics governing motion of the human arm. We model the dynamics using149
Euler-Lagrange equations (Featherstone, 2007) of the form,150

Mh(q)q̈ +Ch(q, q̇)q̇ + gh(q) = τhum + τint,h. (1)

Here, q ∈ Rd is the d-dimensional state vector containing the joint configuration of the human arm, with151
q̇ ∈ Rd describing the angular velocities and q̈ ∈ Rd describing the angular accelerations. On the left152
side of (1) the matrix Mh : Rd → Rd×d denotes the human inertia matrix, Ch : Rd × Rd → Rd×d the153
human Coriolis matrix and gh : Rd → Rd the human gravitational component. In addition to the human154
generated joint torques τhum, an interaction torque τint,h acts on the human arm, due to the contact with155
the robotic system. In (1), τhum represents the projected joint-level torques induced through variations of156
muscle lengths, muscle activation and the resulting tensions (Shin et al., 2009). Therefore, τhum describes157
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the summed dynamics of internal origin and contains the relevant joint dynamics parameter necessary158
to quantify the patient’s inner state. In the case of stroke, a viscoelastic model of the human-generated159
torque during passive mobilization tasks is proposed (McCrea et al., 2003). Thus, we can formulate the160
human-generated torque τhum as161

τhum = Kh(q, q̇)q +Dh(q, q̇)q̇, (2)

where Kh : Rd × Rd → Rd×d and Dh : Rd × Rd → Rd×d correspond to the joint stiffness and viscosity162
matrix, respectively. In McCrea et al. (2003) the validity of linear viscoelasticity parameters for the163
modelling of resistive torques in personas with chronic stroke is demonstrated. Therefore, it can additionally164
be assumed that the parameters are independent of the current configuration, which allows the application of165
standard regression methods. Thus, the instrumented assessment of the patient’s state can be reformulated166
as a linear regression problem using the parametric model167

τhum = Khq +Dhq̇. (3)

In order to estimate the impedance parameters Kh and Dh, it is first necessary to extract the human168
generated torque τhum in (1). This is not trivial in general, as the intrinsically generated human muscle169
torque cannot be measured directly. Hence, τhum has to be inferred using the available measurements and170
dynamics knowledge. For wearable robots deployed in clinical applications, measurements regarding joint171
positions and motor torques are typically available (e.g., Trigili et al., 2020). Unless additional expensive172
and possibly inconvenient force-torque sensors are mounted at the physical interface between human and173
exoskeleton (An and Hollerbach, 1987), the interaction torque τint,h is also unknown. To overcome this issue,174
knowledge regarding the dynamics model of the robotic system can be exploited to replace the unknown175
interaction torque τint,h. Similar to the human, the exoskeleton is described by its rigid body dynamics176

Me(θ)θ̈ +Ce(θ, θ̇)θ̇ + ge(θ) = τm − τint,e, (4)

where Me : Rn → Rn×n is the inertia, Ce : Rn × Rn → Rn×n the Coriolis matrix and ge : Rn → Rn the177
gravitational component of the exoskeleton dynamics. The joint positions, velocities and accelerations of178
the robotic system are given by θ ∈ Rn, θ̇ ∈ Rn and θ̈ ∈ Rn respectively. In the following, we assume179
that the kinematic chain of human and exoskeleton align, thereby, resulting in n = d. Furthermore, the180
movement of the joints is driven by the motor torques τm and analogue to (1), an interaction torque τint,e181
is exerted on the exoskeleton, which acts in the opposing direction in (4).182

In the nominal model, three idealized assumptions are made: first, a perfect alignment of the human183
and exoskeleton kinematic chain is assumed. Second, no displacement of the attachments occurs during184
movement. Third, a completely rigid interface transmits forces between the human and exoskeleton. If these185
assumptions hold, both the human’s and exoskeleton’s joint kinematics match q=θ and the interaction186
torques can be written to187

τint,h = τint,e . (5)

For the sake of the derivation of the nominal model we hypothesize the dynamics of the robotic system and
human to be known. Then, it is possible to derive the human generated torque τhum from (1), (4) and (5):

τhum = Mh(θ)θ̈ +Ch(θ, θ̇) + gh(θ) +Me(θ)θ̈ +Ce(θ, θ̇) + ge(θ)− τm︸ ︷︷ ︸
τint,h

(6)
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Since the motor torque τm and exoskeleton kinematics {θ, θ̇, θ̈} are measurable and the dynamics are188
assumed to be known, the human torque τhum, as given in (6), is directly computable. Therefore, all the189
necessary input and output information are available to estimate the human joint viscoelasticity parameters190
Kh and Dh via linear regression using the parametric model (3):191

y = Xω, (7)

where the labels y follows from the human torque computation according to (6), the input matrix X192
contains the human joint measurements under the assumption that q=θ and the viscoelasticity parameters193
of interest are described by ω. Thereby, performing the regression analysis for each joint yields194 

τ1hum,i

τ2hum,i
...

τThum,i


︸ ︷︷ ︸

y

=


q1i q̇1i
q2i q̇2i
...

...
qTi q̇Ti


︸ ︷︷ ︸

X

[
kh,ii
dh,ii

]
︸ ︷︷ ︸

ω

, (8)

with
{
τ thum,i

}T
t=1

denoting the computed human torques and
{
qti , q̇

t
i

}T
t=1

representing the kinematics195
measurements of the i-th joint at discrete time step t over the duration T of the assessment. Here, kii and dii196
are the i-th main diagonal entries of the joint stiffness and viscosity matrices, respectively. The parameter197
vector ω can be computed directly given access to inputs X and labels y as such:198

ω = (X⊺X)−1X⊺y. (9)

However, while the approach is mathematically convenient and can straight forwardly be implemented,199
it can result in large estimation errors, because it does not account for the uncertainties in the human-200
exoskeleton interaction dynamics.201

2.1.2 Sources of Uncertainty202

There are multiple factors that introduce uncertainties to the above described nominal model, which203
stem from variations in the biomechanics of individuals. In particular three key sources of uncertainty204
that adversely affect the physical interaction are identified in the literature (Pons, 2008): kinematic205
incompatibilities, soft contact dynamics and inaccuracies in the nominal dynamics model. In the following206
these sources of uncertainty and their impact on the nominal dynamics are presented in more detail.207

Kinematic Incompatibilities208

First, we consider kinematic incompatibilities between the exoskeleton and human, which are particularly209
prevalent in wearable robots with kinematic chains mirroring the human kinematics. These kinematic210
incompatibilities arise due to anatomical variations between users and variations within a user that occur211
during motion. Therefore, achieving a perfect alignment is infeasible (Jarrassé and Morel, 2012). Depending212
on the extent of the mismatch, it is considered a macro-misalignment or a micro-misalignment. Here,213
macro-misalignments are typically induced by offsets in the center of rotation (CoR) between the human214
and exoskeleton joints. These CoR offsets are the result of a multiple factors, such as an imprecise donning215
procedure or translations that occur in the instantaneous center of rotation of human joints for certain216
movements (Grant, 1973). In Figure 2A, the macro-misalignment due to CoR offsets is shown conceptually217
for a simplified two-link human-exoskeleton-system moving in the vertical plane. The top and bottom218
links represent the upper arm and forearm, respectively, emulating motion in flexion/extension direction.219

Frontiers 7



Tesfazgi et al. Uncertainty-aware Exoskeleton-based Automated Assessment

Here, the CoR offsets are visualized by xoff and yoff using red arrows. While macro-misalignment can220
be reduced by performing careful donning and including redundant DoFs in the robotic kinematic chain,221
micro-misalignments still occur despite these mitigation strategies. This is for instance because the human222
kinematic chain is not comprised of idealized, circular joints. Therefore, misalignments cannot be removed223
completely in practice and must be explicitly considered for a robust automated assessment.224

A

•

•

•

•

θ1

θ2

q1

q2

xoff,1

xoff,2

yoff,2

B

•

•

θ2

q2

xoff,2

yoff,2

kst

dst

Figure 2. Two-link mechanical model of an interaction between a human (blue) and exoskeleton (grey)
arm. Sub figure (A) illustrates kinematic incompatibilities and the resulting CoR offsets depicted with
xoff and yoff. Sub figure (B) visualizes soft coupling between the human and exoskeleton link using a
Voight-element.

The main consequence of these kinematic incompatibilities is induced displacements of the attachments225
between the exoskeleton and human limb during joint motion. Consequently, these displacements result in226
forces at the physical interface. The resulting impact on the nominal dynamics of the human-exoskeleton227
interaction can be observed at multiple points. First, the previously assumed joint alignment does not hold228
anymore, leading to a discrepancy in the joint angles, i.e., q ̸= θ in general. Moreover, an offset and joint229
angle dependent displacement of the attachments along the axial direction occurs, which leads to a change230
in the interaction torque transmission (5):231

∼
τ int,h = B

(
xoff,yoff, q,θ

)
τint,e , (10)

where B : Rd×d is a d-dimensional diagonal matrix with the main diagonal entries describing the displaced232
attachment points. In (10),

∼
τ int,h represents the uncertain interaction torques which now depends on the233

CoR offsets denoted by xoff and yoff. Similarly, the induced displacement torques depend on the CoR234
offsets and joint angles deviations (Schiele, 2008). Therefore, we obtain following uncertain human torque235
under consideration of kinematic incompatibilities:236

∼
τ hum = Mh(q)q̈ +Ch(q, q̇) + gh(q) +

∼
τ int,h

(
xoff,yoff, q,θ

)
+

∼
τ d

(
xoff,yoff, q,θ

)
, (11)

where
∼
τ d denotes the uncertain displacement torques. In addition to

∼
τ int,h and

∼
τ d, uncertainty also arises in237

(11) due to the dependence on q, since the human joint angle cannot be measured directly and cannot be238
inferred accurately from θ, since q = θ no longer holds. Note that, given completely rigid bodies, these239
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kinematic incompatibilities would theoretically make movements impossible and lead to extremely high240
interaction forces, due to the kinematic system being hyperstatic (Jarrassé and Morel, 2012). However, in241
practice deformation occurs at the physical interface, since the human limb is not rigid, which allows to242
retain mobility. The uncertainty that arises due to this plasticity is addressed in the following.243

Soft-tissue Contact Dynamics244

The second important aspect that introduces uncertainty to the physical human-exoskeleton interaction245
are morphological factors at the coupling between the robot and human. Specifically, the robotic system246
induces the desired movement by transmitting forces through the soft-tissue of the human limb at the247
attachment straps. Here, the considered soft-tissue primarily includes muscles, fat tissue and skin, but may248
also include smaller anatomical parts, such as ligaments, tendons or blood vessels. This is in contrast to the249
nominal dynamics model which assumes a rigid connection (11). Therefore, the dynamic properties of the250
human soft-tissue impact the description of the physical interaction.251

Soft-tissue is most commonly modelled by elastic or viscoelastic components (Maurel, 1999). Viscoelastic252
dynamic behavior can for instance be represented by Voight-elements as illustrated in Figure 2B. Here, the253
soft coupling between the human and exoskeleton link is achieved via a Voight-element at the attachment.254
Hence, the displacement torques

∼
τ d and the interaction torque

∼
τ int,h become functions of the viscoelastic255

parameters, since all interaction forces are transmitted through soft contacts. It leads to256

∼
τ hum = Mh(q)q̈+Ch(q, q̇)+gh(q)+

∼
τ int,h

(
xoff,yoff, q,θ,Kst,Dst

)
+
∼
τ d

(
xoff,yoff, q,θ,Kst,Dst

)
, (12)

where Kst and Dst denote the lumped viscoelastic properties of the coupling due to soft-tissue. In (Schiele,257
2008) a more detailed analysis of the displacement forces and their transmission through soft-tissue258
modelled as Voight-elements is presented. However, while linear, uniaxial models as shown in (12)259
are used for practicality, they describe the complex relationship between applied pressure and resulting260
deformation of the soft-tissue in a simplified manner. A more rigorous approach is to use discrete finite261
element to approximate the continuous medium and propagating the evolution of the deformation in262
simulations (Maurel et al., 2002). However, since this is an iterative procedure, it cannot straightforwardly263
be translated to an analytical model.264

Inaccuracies in the Human Dynamics Model265

Another source of uncertainty that needs to be considered are inaccuracies in the human dynamics266
model. This is due to significant variations in the biomechanics of each human. To mitigate this, precise267
measurements of geometrical and inertial properties of the anatomical links are necessary to compute268
the personalized model parameters required for the human rigid body dynamics (1). However, gathering269
the information needed to estimate the human model parameter can be expensive, cumbersome and270
time-intensive (Zajac et al., 2002). Therefore, in clinical practice most commonly standard tables of271
anthropometric parameters are used (de Leva, 1996) to infer model parameters by scaling the default272
dynamics model to the height and weight of a particular individual. However, since the approach only273
yields an approximate measure, uncertainties are introduced. Thus, the uncertain human torque

∼
τ hum under274

additional consideration of the modelling inaccuracies is275

∼
τ hum =

∼
Mh(q)q̈+

∼
Ch(q, q̇)+

∼
gh(q)+

∼
τ int,h

(
xoff,yoff, q,θ,Kst,Dst

)
+
∼
τ d

(
xoff,yoff, q,θ,Kst,Dst

)
, (13)

where
∼
Mh,

∼
Ch and

∼
gh denote the uncertain inertial, Coriolis and gravitational component of the human arm276

dynamics, which differ from the approximation obtained from the anthropometric tables. We summarize277
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the torque due to the uncertain passive dynamics of the human limb with278

∼
τ rbd,h =

∼
Mh(q)q̈+

∼
Ch(q, q̇)+

∼
gh(q). (14)

Thereby, we can write (13) to a more compact form for improved readability279

∼
τ hum =

∼
τ rbd,h +

∼
τ int,h +

∼
τ d. (15)

Here,
∼
τ rbd,h denotes the uncertain rigid body dynamics of the human arm due to unknown parameters in280

∼
Mh,

∼
Ch and

∼
gh. Differently to the human limb, the model parameters governing the dynamics of the281

exoskeleton (4) can reasonably be assumed to be known or can be obtained accurately using classical282
identification procedures (Hollerbach et al., 2008). Note that in (15), both

∼
τ int,h and

∼
τ d are in principle283

torques that are induced by the interaction with the exoskeleton. However, they differ in the sense that
∼
τ int,h284

represents the desired loads that should be transmitted to the human limb, while
∼
τ d are purely undesired285

torques due to kinematic incompatibilities. Since the human torque under consideration of uncertainties286
∼
τ hum (15) differs from the nominal human torque τhum (6) used in the regression analysis (8), errors are287
introduced to the estimated impedance parameters. In particular, deploying (6) for the computation of the288
human torque τhum implicitly allocates torques that are unaccounted for by the nominal dynamics model289
to be generated due to joint spasticity. Thus, solving the regression problem will not result in the true290
viscoelasticity parameter Kh and Dh. By directly comparing the nominal human torque τhum to the true,291
uncertain human torque

∼
τ hum, we obtain292

τ hum︸︷︷︸
y

=
∼
τ hum︸︷︷︸

∼
y

−∆τ rbd,h −∆τint,e −
∼
τ d︸ ︷︷ ︸

∆y

. (16)

Here, ∆τ rbd,h denotes residual torques due to differences in the nominal human dynamics model τ rbd,h and293

the unknown, true dynamics model
∼
τ rbd,h. Similarly, ∆τint,e represents residual torques due to errors in the294

interaction torque modelling, while
∼
τ d are the displacement torques due to kinematic incompatibilities.295

From (16) it can be seen that the labels y deployed in (8) do not agree with the true output
∼
y, i.e., the296

human torque
∼
τ hum under consideration of uncertainties. The difference is summarized in (16) using ∆y.297

Moreover, the measurements for the desired input matrix X according to (8) are not available, since298
kinematic incompatibilities result in a mismatch between the human joint angle q and exoskeleton joint299
angle θ. Hence, it can be seen how the uncertainties qualitatively influence the outcome of the regression300
analysis and impact the automated assessment negatively. However, it remains unclear exactly how sensitive301
the assessment is with respect to the different sources of uncertainty, which we propose to quantify with a302
sampling-based sensitivity analysis in this work.303

2.2 High-fidelity Human-Exoskeleton Simulation304

In order to perform a sampling-based sensitivity analysis, a highly controlled environment is required.305
Obtaining the samples experimentally is infeasible, due to the missing ground-truth information and the306
large sample size that is required. Therefore, in this work we deploy a high-fidelity simulation environment307
of the human-exoskeleton system to generate samples. To this end, we develop a novel human-exoskeleton308
simulation which explicitly accounts for the complex contact dynamics present during physical interaction.309
Here, an optimization-based physics engine called MuJoCo (Todorov et al., 2012) is deployed which is310
widely used in the modelling of robotic and biomechanical systems in contact-rich environments (Acosta311
et al., 2022; Lowrey et al., 2016). In particular, three key features of the proposed simulation enable the312
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realistic emulation of the effects caused by sources of uncertainty and thereby facilitate the sampling-based313
sensitivity analysis: A musculoskeletal model to simulate the human, the consideration of soft contact314
dynamics at the attachments and a realistic load transmission via a mechanical interface. The proposed315
human-exoskeleton simulation is shown in Figure 1 in the input parameter sample block. Here, the human316
skeletal system is depicted in gray, while the muscular system is visualized with red lines. Furthermore, the317
two red cylindrical shapes on the forearm and upper arm represent the simulated human soft-tissue. Also, it318
can be seen that the physical interface is realized via cuffs and straps that wrap around the human upper and319
forearm. The complete human-exoskeleton simulation environment is made publicly available 1. A brief320
summary of the key components is presented below. Following this, a more detailed explanation of each of321
the components of the simulation, their working principles and the performed validations is provided.322

Human Musculoskeletal Model: A musculoskeletal model is implemented for the shoulder and elbow.323
Deploying a musculoskeletal model of the human arm here is necessary for two reasons. First, the324
simulated muscular system is used to generate the human torque and emulate spastic behavior. Second,325
the rigid skeletal system facilitates the introduction of variability in the human kinematics and dynamics.326
Thereby, it is possible to sample over two of the three sources of uncertainty described in Section 2.1.2.327

Soft-tissue Simulation: In the proposed simulation, soft-tissue is explicitly implemented by a composition328
of multiple micro-elements, which together form an object with viscoelastic material properties. The329
viscoelastic properties of the soft-tissue object can be varied, thereby allowing to sample over viscoelastic330
properties of the soft-tissue.331

Physical Human-Exoskeleton Interface: We simulate the mechanical interface explicitly by implementing332
cuffs and straps, which enclose the human arm and facilitate a realistic load transmission. Thereby effects333
that typically arise at the interface, such as attachment displacements, can be emulated.334

2.2.1 Simulation of the Human Musculoskeletal System335

A musculoskeletal model is used in the proposed simulation environment. Here, the rigid component of336
the human arm has five DoFs, three on the shoulder joint and two at the elbow joint. For the shoulder, the337
human simulation can rotate along the flexion-extension, abduction-adduction and internal-external axis.338
Regarding the elbow, the simulation allows movement along the flexion-extension and pronation-supination339
rotations. While a rigid wrist-hand model is also included in the simulation, in our envisioned interaction340
scenario with the exoskeleton it is not pertinent. The inertial properties of the rigid skeletal system are341
designed using statistical anthropometric data (Ramachandran et al., 2016) with a default reference person342
of height 1.75m weighting 70kg. Thereby resulting in a nominal upper arm length of 36.37cm, a nominal343
forearm length of 34.9cm, a nominal upper arm mass of 2.25kg and a nominal forearm mass of 1.31kg.344
However, it is possible to adjust all of the parameters to account for variations in the target population.345

In addition to the multi-link rigid body dynamics, the simulation accounts for the dynamics induced by346
the muscular system. In MuJoCo, biological muscles are modelled by means of muscle-tendon systems347
which induce dynamics dependent on origin and insertion sited and the forces generated by a muscle348
actuator. Here, the generated muscle force Fm follows the dynamics349

Fm(l, v, a) = −F0Flv(l, v, a), (17)

1 Open-source code of the upper-limb human-exoskeleton simulation environment is available at: https://github.com/stesfazgi/rehyb_mujoco
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where l is the scaled length of the muscle, v is the the scaled velocity and a ∈ [0, 1] denotes the muscle350
activation level. Additionally, F0 describes the peak active force and Flv the force-length-velocity function,351
which are both fitted according to values derived from the experimental findings in (Holzbaur et al., 2005).352
The origin and insertion sites of the muscles are also implemented in accordance with anthropometric353
data (Ramachandran et al., 2016), thereby ensuring that the dynamics of the simulated musculoskeletal354
system follow the real-world dynamics closely.355

Validation of the Human Musculoskeletal Model356

In order to check the validity of the simulated human musculoskeletal model, a simulation experiment357
is performed. Specifically, it is examined whether the moments generated by the muscular system lie in358
similar ranges as those observed in real experiments. A common clinical procedure to assess the muscle359
strength is by means of the maximal isometric torque test (Amis et al., 1980; Garcia et al., 2016). Here,360
we use this procedure to adapt and validate the simulated elbow muscle contraction, which is a useful361
measure to quantify the neuromuscular properties of spastic muscles (Wang et al., 2019). In the proposed362
simulation, the dynamics of the elbow are governed by eight muscles. Specifically, four extensor muscles363
are considered, namely, the long, lateral and median triceps and the anconeus. Moreover, four flexor364
muscles are regarded, including the long and short biceps, the brachialis and the brachioradialis. The365
experimental procedure for the isometric torque test in flexion direction is as follows: First, the shoulder is366
flexed in the sagittal plane at 90 deg and mechanically locked in this configuration. While the shoulder is367
fixed in place, the elbow is flexed in discrete steps of 1 deg increments. At each of the discrete increments368
a maximum contraction of the elbow flexor muscles is applied, and the resulting torque is measured.369
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Figure 3. Results of the maximum isometric torque test. Here, the torque generated by the elbow flexors
(left) and extensors (right) is shown over different elbow joint angle. Our human musculoskeletal model
(blue) is shown to agree more closely with experimental data than the comparison simulation (red).

The results of performing the maximum isometric torque test in the simulation are shown in Figure 3.370
Here, the left-hand side shows the isometric flexion torque, while the right side depicts the extension torque.371
We compare our simulation results (blue) against related biomechanical models of the musculoskeletal372
system (Holzbaur et al., 2005) (red) and two experimental data sets (Amis et al., 1980; Buchanan et al.,373
1998). For the isometric flexion torque on the left, it is possible to see that our simulation results match the374
observed maximum torque of around 80 Nm closely, while the comparison simulation exhibits a higher375
peak at 100 Nm. Analogously, our simulation obtains a similar value for the peak extension torque as376
the experimental data set at −50 Nm, while the simulation in (Holzbaur et al., 2005) results in a lower377
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A
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C D

Figure 4. Sub figure (A), (B) and (C) depict a composite object with an ellipsoid shape from different
viewing angles. (D) A cross-section of the composite object with the central element in light gray and
external elements in dark gray. Three types of soft constraints hold the elements together: central-external
constraints (green), external neighbors constraints (orange), and a global volume constraint (blue).

absolute value at at −41 Nm. With respect to the curve shape both data set 1 (Amis et al., 1980) and data378
set 2 (Buchanan et al., 1998) display different behaviors. This is to be expected due to variability in real379
experiments and between different subjects, however, the simulation results indicate that our model lies380
within this range. Particularly, when observing the joint angle at which the peak extension torque is reached381
for instance, it is clearly visible that our simulation agrees with the experimental data more closely.382

2.2.2 Simulation of the Upper-limb Exoskeleton383

In this work, the simulated robotic system is inspired by the specification detailed in Trigili et al. (2020),384
where an upper-limb exoskeleton with three actuated DoFs on the shoulder level and one actuated DoF385
for the elbow (flexion-extension) is presented. For the envisioned scenario, we consider all passive and386
regulatory DoFs to be fixed, therefore, the simulated upper-limb exoskeleton is a four-DoF open chain.387
Joint friction is implemented via viscous dampers and the inertial properties are designed to roughly match388
comparable robotic devices. While each joint is associated with an actuator in the simulation, we do not389
consider elastic actuators here. The actuating motors are also scaled in accordance with the maximum390
torques the real system can provide according to Trigili et al. (2020). Note that while the simulated391
exoskeleton is inspired by (Trigili et al., 2020), this represents an exemplary device and may be replaced392
by a different wearable robotic system of interest. The proposed method for the spasticity assessment and393
sensitivity analysis constitute a general methodology and are therefore not limited to this specific hardware394
and could be applied to other exoskeleton designs as well.395

2.2.3 Physical Interface and Complex Contact Dynamics396

In our simulation, the physical interface is composed of two contact areas which represent the exoskeleton397
attachments on the upper and lower arm of the human. On the human side, complexity of the contact398
dynamics is primarily caused by soft-tissues and their influence on the force transmission at the linkage399
between the human arm and exoskeleton. In order to replicate the behavior of human soft-tissue in the400
simulation, three-dimensional composite objects are used, where one central element is surrounded by401
multiple external elements. Here, the elements of the three-dimensional composite object are arranged402
such that the resulting geometry approximates the human limb shape and thus a simplification of the403
commonly used finite element method (Maurel et al., 2002) is achieved. Figure 4A, B and C depicts the404
composite object which takes an ellipsoid shape in the simulation environment, where the large sphere405
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A B C

Figure 5. Depiction of the mechanical support at the physical interface in the simulation environment. (A)
An illustration of the semi-cylindrical cuff composed of welded box primitives. (B) An illustration of the
placement of the human limb within the cuff. (C) The implementation of straps using composite objects to
fix the limb to the semi-cylinder.

at the center of the ellipsoid visualizes the central element of the composite object, while the external406
elements are illustrated by the smaller spheres. The viscoelastic behavior of the resulting composite object407
is determined by several soft equality constraints on the relative distance between the different elements,408
which is illustrated in Figure 4D. Each soft equality constraint generates a force that can be approximately409
interpreted as a spring-damper link between two elements. Additionally, one constraint acting on all the410
elements is set to preserve the global volume of the composite object. The parameters of all constraints are411
fitted to approximate the viscoelastic behaviour of real human soft-tissue.412

On the exoskeleton side, forces are generally transmitted to the human arm via the mechanical supports,413
e.g., cuffs and straps, which induce movement by pushing or pulling the limb (Pons, 2008). Therefore,414
we follow the same design principle in the simulation in order to render the contact dynamics in high415
fidelity. First, the arm supports are implemented using a hollow semi-cylinder shape. Since MuJoCo416
does not directly handle concave bodies, the desired shape is approximately realized by an arrangement417
of welded box primitives (Figure 5A). Second, the human arm is placed inside the support (Figure 5B).418
Third, the implementation of the arm straps is realized using composite objects which are arranged in a419
two-dimensional grid. By welding two opposing sides of the strap to the arm support, the human limb is420
fixed to the attachment as illustrated in Figure 5C.421

Validation of the Human-Exoskeleton Contact Dynamics422

In order to validate the geometric compliance of the simulated limb, the stress-strain relationship of the
composite object is investigated in the form of a compression test. In the validation, a uniaxial tension
is applied to a solid material and the relationship between compressing stress σ and axial strain ε is
quantified (Pelleg, 2012). This property is called Young’s modulus E and is computed as

E =
σ

ε
=

F/A

dl/l
, (18)

where F is the applied force, A is the unit area and dl/l is the relative, normalized displacement of the423
composite body. It characterizes the compressive properties of a material, i.e. a higher Young’s modulus424
E describes a stiffer material and a lower E indicates a softer material.425

During the compression test, an incrementally increasing compressive stress is applied to the composite426
body via two rigid objects to opposing sides of the body. Subsequently, at each incremental step, the427
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Figure 6. Result of the compression test. The green shaded area depicts the potential range of Young’s
moduli (Ogneva et al., 2010) determined by relaxed muscles (solid green) and active muscles (dashed
green) from experimental data. The range of achievable Young’s moduli in the simulation is bound by the
soft configuration of the composite object (solid blue) and the rigid configuration (dashed blue).

Young’s modulus was computed from the strain, i.e. the relative deformation, of the composite body. The428
results are compared with experimental data acquired from mammal muscular tissue (Ogneva et al., 2010)429
to verify the validity of the simulated soft-tissue. The results of this comparison are shown in Figure 6.430
Here, the green lines visualize the experimentally determined Young’s moduli for relaxed (solid line) and431
contracted (dashed line) muscle fibers (Ogneva et al., 2010) and the green shaded area indicate the resulting432
range of potential Young’s moduli. Analogously, the blue lines bound the range of achievable Young’s433
moduli via the simulated composite object. The upper and lower bound are obtained by performing the434
above-described compression test for different parameterizations of the composite object. Given that the435
simulated, admissible values enclose the experimental data for higher strains, it is possible to approximate436
the elastic properties of muscle soft-tissue partially. Note however, that the Young’s modulus provided437
from the experimental data (Ogneva et al., 2010) constitutes a linear fit and therefore does not exhibit438
the typical nonlinear stress–strain relationship which is normally characterized by a region of increasing439
modulus (Pons, 2008) as depicted by our simulation in Figure 6. Thus, the slight difference for lower440
strain levels can be explained due to approximation error caused by the linear fit in (Ogneva et al., 2010).441
Furthermore, the experimental data only considers muscle fibers and is therefore expected to vary from442
the considered soft-tissue, e.g., due to additional fat tissue at the attachments. The additional flexibility in443
the simulation environment to parameterize lower Young’s moduli is thus favorable, since the expected444
variation generally leads to softer materials.445

2.3 Exoskeleton-based Automated Assessment446

With the nominal and uncertain dynamics model (Section 2.1) and a human-exoskeleton simulation447
that includes the key sources of uncertainty (Section 2.2) introduced, the required input samples for the448
sensitivity analysis can be generated. Here, the input samples are instantiations of the simulation with449
varying parameters for the different sources of uncertainty. Since we investigate how these uncertainties450
impact the results of an automated assessment, the output samples are in the form of estimated impedance451
parameter. The procedure by which these output samples are generated is explained in this section.452

In order to perform the spasticity assessment in an automated manner, two components are necessary.453
First, a data generation procedure is required during which the robotic system interacts with the human454
arm to induce observations from which the impedance parameters can be inferred. Secondly, the captured455
data needs to be used to estimate the parameters. In this work, we propose a fully automated scheme for456
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the data generation and estimation that leverages model knowledge to produce the required labels y. The457
complete scheme is illustrated with a block diagram in Figure 7. Here, the real system represents the true,458
uncertain human-exoskeleton system which is reproduced in the simulation environment. On the other459
hand, the nominal model block describes the idealized dynamics model that can be computed analytically.460
The reference trajectory θd, θ̇d is depicted in the blue block and is used to observe the joint resistance along461
a predefined movement, similar to the passive mobilization that is typically performed by a clinician. It462
acts as an input to the PD-controller, which replicates the manual perturbation generated by the clinician463
using the exoskeleton.464

Real
system

PD-controller
(19)

Nominal
model
(20)

Regression
Analysis (18)

Data: {θt; τ t
hum}

θd, θ̇d e, ė τm θ, θ̇

τhum

Reference trajectory

Position θd Velocity θ̇d

Figure 7. Block diagram of the data collection and estimation scheme for the automated assessment.

For the reference trajectory a sigmoid function is selected, since it is known to generate a minimum465
jerk profile on the joint level (Flash and Hogan, 1985), thus, leading to a natural and comfortable motion466
for the patient. With the reference trajectory being defined, the exoskeleton applies a torque on the467
human arm to emulate the manual perturbation performed by the clinician. This is achieved by using the468
feedback provided by the exoskeleton measurements θ, θ̇ and feeding the current tracking error e, ė into a469
PD-controller to compute the required motor torque:470

τm(e, ė) = Kpe+Kdė, (19)

where e=θd−θ and Kp,Kd are the feedback gains of the controller. By applying the motor torque (19),471
the human-exoskeleton system is moved and, given sufficiently high control gains, the desired trajectory472
θd is tracked. For the gains of the exoskeleton PD-controller Kp = 50 and Kd = 15 is set. In order to473
induce spastic behavior in the human simulation, a constant, co-contracting muscle activation of a = 0.4474
is simulated for the muscles associated with the examined joint. Thereby the human arm will produce475
a resisting torque opposing the exoskeleton during a change in joint position. The data that is generated476
during the passive mobilization is used for the regression analysis (8).477

For the data generation according to the nominal model, perfect alignment between the human and478
exoskeleton kinematic chain is assumed. Thus, the measured angles θ, θ̇ are assumed to match the human479
joint kinematics q, q̇, thereby providing the nominal input variables X for the linear regression (8).480
Furthermore, the output vector y is required, which comprises measurements of the human internal torque481
τ hum. Since τ hum is not directly measurable, we exploit the nominal model in Figure 7 to overcome this482
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problem. Specifically, using the known motor torque (19) and the nominal dynamics model (6) we can483
compute the nominal human torque τ hum to be484

τ hum(θ, θ̇, e, ė) = Mh(θ)θ̈ +Ch(θ, θ̇) + gh(θ)︸ ︷︷ ︸
τ rbd,h

+Me(θ)θ̈ +Ce(θ, θ̇) +Ge(θ)− τm(e, ė)︸ ︷︷ ︸
τ int,h

. (20)

Here, The parameters of the nominal human model are chosen according to anthropometric485
data (Ramachandran et al., 2016) with a nominal reference person of height 1.75m weighting 70kg,486
which results in a nominal upper arm length of 33.37cm, a nominal forearm length of 31.9cm, a nominal487
upper arm mass of 2.25kg and a nominal forearm mass of 1.31kg. Thus, by measuring the trajectory of the488
exoskeleton joint kinematics θ, θ̇ over time and computing the corresponding nominal human torques τhum489
according to (20), the regression analysis (8) can be performed for each joint independently.490 

τ1hum,i

τ2hum,i
...

τThum,i


︸ ︷︷ ︸

y

=


θ1i θ̇1i
θ2i θ̇2i
...

...
θTi θ̇Ti


︸ ︷︷ ︸

X̂

[
kh,ii
dh,ii

]
︸ ︷︷ ︸

ω

, (21)

where, differently to (8), X̂ represent the inputs when the exoskeleton kinematic measurements θ, θ̇ are491
used as a placeholder for the human joint kinematics q, q̇. Note that deploying (20) for the computation of492
the human torques implicitly allocates torques that are unaccounted for by the nominal dynamics model to493
be generated due to spasticity in the patient’s joints. Intuitively, this is analogue to the principle applied494
during manual assessment, where the human limb is assumed to be passive and any encountered resistance495
is allocated to spasticity. However, as detailed in Section 2.1.2, different sources of uncertainty impact496
the human-exoskeleton interaction, which result in interaction torques that are not considered in (20).497
Thus, solving (21) will not result in the true viscoelasticity parameter Kh and Dh, due to the impact of498
uncertainties on the regression analysis.499

2.4 Sensitivity Analysis of Uncertainties500

The goal of this section is to quantify the impact of the uncertainties on the estimated impedance501
parameters during the exoskeleton-based automated assessment. To this end a sensitivity analysis is502
performed to examine how variations in the output of a numerical model or simulations can be ascribed503
to variations of its inputs. We consider uncertainties in the modelling of physical human-exoskeleton504
interaction as input factors to quantitatively assess their importance. Analogously, do the estimated505
viscoelasticity parameters Kh and Dh represent the output samples of the sensitivity analysis. Thereby,506
sensitivity is defined as the induced variability in the parameter estimates Kh and Dh due to variability507
in the uncertain inputs and is quantified by means of so-called sensitivity indices (Saltelli et al., 2004).508
Intuitively, these sensitivity indices represent importance measures, which are allocated to each input509
parameter of the simulation, i.e., each source of uncertainty (Pianosi et al., 2016). In this section, the510
methods used for the sampling-based sensitivity analysis procedure are presented. First, the input sample511
generation is described in Section 2.4.1. Following this, Section 2.4.2 details the deployed methods for the512
computation of the sensitivity indices.513

2.4.1 Sampling Sources of Uncertainty514

For the input sample generation, we draw samples over different parameterization of the human-515
exoskeleton simulation. Here, each sampled simulation instance represents a distinct patient with the516
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individual variations present in the population. Six biomechanical parameters are chosen as input factors,517
where each parameter is associated with a different source of uncertainty. An overview of the parameters,518
their respective uncertainties and the value ranges is depicted in Table 1. Here, kinematic incompatibilities519
are produced by varying the length of the human limb. In particular, changes in the upper arm length lead to520
macro-misalignments and a resultant CoR offset, since the exoskeleton link length remains unchanged. In521
contrast, varying the human forearm length induces micro-misalignments. The second source of uncertainty522
investigated during the sensitivity analysis are inaccuracies in the dynamics model. By perturbing the523
mass of the upper and forearm, errors in the nominal model are evoked, as the gravitational component524
and inertia of the human limb are dependent on the mass. Lastly, uncertainties due to soft-tissue contact525
dynamics are considered by sampling over different elasticities of the human upper arm and forearm at the526
attachments. The value ranges of the samples shown in Table 1 are derived from statistical information527
provided by anthropometric data (Ramachandran et al., 2016). Here, a fixed viscosity of 100Ns/m is chosen528
for the micro-elements comprising the soft-tissue to avoid numerical instabilities.529

Table 1. Sources of uncertainty and associated simulation parameters for the input sample generation.

Uncertainty Simulation Parameter Value range

Kinematic incompatibilities Length upper arm 27.28cm - 37.78cm
Kinematic incompatibilities Length forearm 28.27cm - 34.55cm
Inaccuracies in dynamics model Mass upper arm 0.3kg - 3.41kg
Inaccuracies in dynamics model Mass forearm 0.1kg - 1.82kg

Soft contact dynamics Elasticity upper arm 100.5N/m - 974.43N/m

Soft contact dynamics Elasticity forearm 100.5N/m - 974.43N/m

In addition to defining the input variability space, i.e., the value ranges shown in Table 1, further design530
choices regarding the sampling strategy have to be made. In general two classes of sampling concepts can531
be differentiated, One-At-a-Time (OAT) and All-At-a-Time (AAT) methods (Pianosi et al., 2016). While in532
OAT methods variations are induced by perturbing one input parameter only and keeping all other fixed,533
AAT methods induce output variations by varying all input parameters concurrently. The main advantage534
of OAT in comparison to AAT sampling is the reduced computational load due to fewer samples being535
required. However, because of the concurrent sampling in AAT methods, the joint influence of input factors536
due to interaction between the parameters can be analyzed, thereby, providing more insights (Pianosi et al.,537
2016). Depending on the deployed method to estimate the importance measures, both approaches can be538
beneficial. Therefore, the following section presents sensitivity analysis methods with distinct sampling539
strategies for different investigation purposes.540

2.4.2 Sensitivity Analysis Methods541

Depending on the setting and purpose of the sensitivity analysis, different methods are appropriate. In542
Saltelli et al. (2008) two main purposes are introduced. First, the goal of ranking the most relevant input543
factors which is called factor prioritization. Second, identifying input factors with negligible impact which544
is called factor fixing. Beyond these two main settings, other purposes are introduced as well. However,545
given that the proposed sensitivity analysis is supposed to inform the decision making process in clinical546
practice and lead to more robust spasticity assessment, our quantitative analysis is mainly focused on547
factor prioritization and factor fixing, since these information lead to a practical guide to performing more548
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robust automated assessment. Additional information may also be derived by qualitative sensitivity analysis549
methods, e.g., using scatter plots (Beven, 1993; Kleijnen and Helton, 1999).550

Furthermore, potential interactions between the investigated sources of uncertainty should also be551
considered. Since these interactions may emerge for various parameters and it is a-priori unknown how552
the interactions behave with respect to the magnitude of the parameters, we ideally want to perform553
a dense sampling over the input variability space. To this end global sensitivity analysis methods are554
preferred, which investigate variations over the complete range of admissible inputs. Global sensitivity555
analysis methods have previously been shown to facilitate tasks such as supporting efforts in uncertainty556
reduction (Hamm et al., 2006) and facilitating robust decision making (Nguyen and de Kok, 2007; Singh557
et al., 2014).558

Elementary Effects Method559

Given these requirements, there are multiple viable sensitivity analysis methods. First, Morris560
method (Morris, 1991), also referred to as elementary effects test, is an efficient and suitable approach to561
perform factor prioritization and fixing. Here, a perturbation-based design is deployed, where the whole562
input space is explored by applying perturbations to each input factor separately and computing global563
sensitivity measures from the probed samples. This is done by computing so-called elementary effects EE564
for each input factor xi565

EEi =
f(x1, . . . , xi−1, xi +∆i, xi+1, . . . xK)− f(x1, . . . , xK)

∆i
, (22)

where x = (x1, x2, . . . , xK) represents a set of input parameters, f(x) denotes the function that maps
inputs to model responses, K is the total amount of examined input parameters and ∆i is the perturbation
applied to the i-th input parameter. In order to achieve a global measure of sensitivity, the input space is
sampled with r trajectories, each consisting of K+1 sampling points, where each point differs in just one
input factor by a fixed amount ∆ (Morris, 1991). Thereby, each trajectory allows for the computation of
one EE per input factor and the sensitivity measures for each parameter can be computed as such:

µi =
1

r

r∑
j=1

EEj
i (23)

=
1

r

r∑
j=1

f(xj1, . . . , x
j
i +∆j

i , . . . x
j
K)− f((xj1, . . . , x

j
K)

∆j
i

σ2i =
1

r − 1

r∑
j=1

(EEj
i − µi)

2, (24)

where ∆j
i represents the perturbation of the i-th input parameter xji in trajectory j and EEj

i denotes the566
computed elementary effect associated with parameter xi along trajectory j. Here, the mean µ and standard567
deviation σ of the elementary effects EE are proposed as sensitivity measures (Saltelli et al., 2008). In568
particular, µ (23) represents how much the input parameter affects the output, while σ (24) is a measure569
for the induced effects due to interaction with other inputs, i.e., how much EEi varies when changes in570
the remaining i−1 parameters occur. Specifically, a small σi implies that the effect of parameter xi on571
the output, which is shown by µi, is independent of the other parameters. Therefore, Morris method is572
particularly well suited for factor fixing, since a simultaneous consideration of both µ and σ allows the573
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identification of negligible input factors, which have both little interaction with the other inputs (small σ)574
and do not influence the output strongly (small µ). Moreover, applying this approach requires relatively few575
samples, which further increases its utility for factor fixing in cases where model evaluations are expensive.576
However, since it is a perturbation-based OAT method, it may lead to erroneous results if the target system577
exhibits high-frequencies in its response to variations in the input (Pianosi et al., 2016).578

Variance-based Sensitivity Analysis579

An alternative approach that facilitates the analysis of output sensitivity with respect to each input580
factor over their complete value range are variance-based sensitivity analysis methods, also referred to581
as Sobol method (Sobol, 1993). Here, modelling uncertainty is specifically considered by regarding the582
input parameters as stochastic variables with a defined probability distribution. Thereby, a conceptual link583
between sensitivity and uncertainty is exploited and sensitivity is analyzed by investigating how uncertainty584
in the input propagates to the output variables. Subsequently, the relative contribution of each input is585
decomposed and used as a measure of sensitivity. To this end variance is used as a measure to quantify586
uncertainty. The so-called first-order effect Si, which is a measure for the individual contributions of inputs587
to the output variance, is computed as588

Si =
V(z)− Exi

[
Vx−i(z | xi)

]
V(z)

, (25)

where z=f(x) is the output variable, E denotes the expectation and V the variance. Here, Vx−i(z | xi)589
expresses the conditional variance of the output z over x−i, i.e., all inputs except xi, given that xi is590
fixed. Analogously, Exi(z | xi) denotes the conditional expected value. Therefore, the second term in (25)591
expresses the expected variance in the output given that the i-th input xi is fixed. A small value for this592
expectation, and consequently a high value for Si, implies that a significant reduction in output variance593
can be achieved by fixing xi (Saltelli et al., 2008). Thus, the first-order index Si is a measure for the direct594
contribution of an input to the output variance, which in turn functions as a place-holder for sensitivity.595

On the other hand, the total-order index ST i indicates the total effect of an input xi on the output variance596
including interactions with other input factors (Homma and Saltelli, 1996) and is defined as597

ST i =
Ex−i

[
Vxi(z | xi)

]
V(z)

. (26)

Moreover, variance-based methods allow for the computation of further, higher-order indices, such as598
second-order or third-order ones. Thereby, by computing all 2K−1 orders, variance-based sensitivity599
measures can theoretically capture the sensitivities present in the system completely. However, since this600
is computationally infeasible in practice, a good approximation can be achieved by computing only the601
first-order and total-order terms (Saltelli et al., 2004).602

Thus, variance-based methods are well equipped to analyze sensitivities in a principled manner by both603
quantifying the importance of individual inputs and groups of inputs. Moreover, an uncertainty-aware604
modelling paradigm is supported and, by sampling the input space using probability distributions, the605
full range of input variations can be investigated. However, due to their sampling-intensive nature, it606
is impractical to deploy them directly when model evaluations are expensive. Therefore, we propose607
to use both the elementary effect test and variance-based sensitivity analysis in conjunction. Thereby,608
non-influential input parameters are detected by the efficient elementary effect method and can be discarded609
prior to performing a more extensive analysis using variance-based methods.610
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3 RESULTS
In this section we present the findings of performing the proposed two-phase sensitivity analysis scheme.611
First, in Section 3.1 the elementary effect test is deployed to screen parameters that do not effect the612
automated assessment outcome significantly and can therefore be fixed for subsequent investigations.613
Second, the variance-based sensitivity analysis is performed on the remaining input parameter in Section 3.2614
to determine the relative importance of the different model uncertainties. Lastly, a qualitative analysis of615
the obtained samples is conducted in Section 3.3 to provide further insights. For clarity of presentation the616
automated assessment is limited to the estimation of the elbow joint stiffness. The presented sensitivity617
analysis is implemented in Matlab using the SAFE toolbox (Pianosi et al., 2015), while the simulation618
model is implemented in Python using the MuJoCo physics engine (Todorov et al., 2012).619

3.1 Factor Fixing using Elementary Effects620

In order to identify non-influential parameters, we deploy the elementary effect method as described in621
Section 2.4.2. To this end, input parameter samples are drawn for which the human-exoskeleton simulation622
is instantiated and subsequently the automated assessment is run for each model instance to generate the623
respective output samples. Here, we use a radial design for sampling the input parameter hyperspace, since624
it has been shown to achieve superior performance for computing elementary effects (Campolongo et al.,625
2011). A total of r=150 trajectories is generated for k=6 input parameters, which are listed in Table 1,626
resulting in 1050 sampling points. For the generation of the random sampling vectors required in the radial627
design, the well-established Latin hypercube approach (McKay et al., 1979; Helton and Davis, 2003) is628
used. Moreover, a uniform distribution of the input parameter space is assumed.629
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Figure 8. Estimated mean µ versus standard deviation σ of the elementary effects EE (left) and
approximated 95% confidence bounds via bootstrapping (right). Here, each input factor is represented by
one marker and the confidence bounds are represented by the patterned area associated with each marker.

The results of the elementary effect test are depicted in Figure 8. On the left-hand side, it is clearly visible630
that the estimated sensitivity measures indicate the mass of the upper arm x3 as the least influential input631
parameter. The low value estimated for both the mean and standard deviation implies that the input factor632
has both little direct impact on the estimated joint stiffness during the automated assessment procedure633
and moreover does not interact strongly with the remaining parameters. This makes sense intuitively since634
the mass of the upper arm is not expected to influence the estimated torque on the elbow level. However,635
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due to the design of the passive mobilization experiment in Section 2.3, it is first necessary to drive the636
human arm into the desired initial configuration to start the procedure. Thereby, different upper arm mass637
parameterization could potentially influence the precise starting state, which in turn can lead to slight638
changes in the estimated stiffness. However, from the results of the elementary effect test it is apparent639
that these disturbances do not impair the assessment process. Differently, the length of the upper and640
forearm exhibit the highest sensitivity both with respect to the mean and standard deviations. Therefore,641
the elementary effect method identifies the parameters associated with uncertainties due to kinematic642
incompatibilities as the most dominant ones. Lastly, the remaining parameters regarding the soft-tissue643
contact dynamics and the mass of the forearm are estimated to have a comparable sensitivity measure with644
the mass having a slightly bigger impact in both µ and σ.645

Sampling-based sensitivity analysis methods inherently approximate the true sensitivity indices given646
the observed samples. Therefore, especially when working with small to medium sample sizes, it is647
pertinent to validate the robustness of the obtained results. In order to investigate this, an additional648
robustness analysis can be performed (Pianosi et al., 2016), which assesses whether similar sensitivity649
measures would have been obtained with different input samples. This can be achieved in a sample-efficient650
manner by approximately computing the confidence bounds of the estimated similarity measures using651
bootstrapping (Efron and Tibshirani, 1993). Note that while bootstrapping is an efficient technique, the652
obtained confidence intervals do not constitute theoretically guaranteed bounds in general and can result653
in overly optimistic estimates when applied to Morris method (Romano and Shaikh, 2012; Yang, 2011).654
However, applying the method still allows to retrieve valuable insights regarding the estimated sensitivity655
indices. The results of the robustness analysis are displayed in Figure 8 on the right. Here, a total of 300 µ656
and σ values are computed for each input factor, where each value is generated by drawing 150 samples657
with replacement from the original 1050 sampling points. Notably, the confidence bounds for the upper658
arm mass x3 are very small, thereby, indicating that the mass of the upper arm can confidently be regarded659
as a non-influential input factor that can be fixed for subsequent analysis. Differently, the upper arm length660
x1 and forearm length x2, which are identified as the most important ones by the elementary effect test,661
are associated with large confidence intervals. In particular the forearm length x2 features the highest662
uncertainty in the estimated sensitivity measures. Therefore, the results are not conclusive to make reliable663
statements beyond the screening of the upper arm mass and the deployment of further sensitivity analysis664
methods is required.665

3.2 Factor Prioritization using Variance-based Sensitivity Analysis666

Following the elementary effect test in the previous evaluation, we perform an additional variance-based667
sensitivity analysis to obtain a more rigorous understanding of the uncertain sensitivity patterns present in668
the human-exoskeleton system. To this end we exploit the findings of the prior section to fix the upper arm669
mass x3, as it is identified as a non-influential factor, which leads to a reduction of the computational load670
of the proposed variance-based analysis. For the input sample generation of the remaining parameter we671
use the two-phase sample procedure proposed for the variance-based approximation of the first-order and672
total-order indices (Saltelli et al., 2010). In the first phase, a total of 2N random samples is generated, which673
are referred to as base samples. Subsequently, KN additional input samples are produced by resampling674
vectors of the base samples. Thereby, this method requires N(K + 2) model evaluation for the estimation675
of the first-order and total-order effects and is computationally more efficient than a naive approach (Saltelli676
et al., 2010). Here, we set N = 3000 and investigate K = 5 input factors leading to a total of 21000677
simulation runs. The random base samples are again obtained using the Latin hypercube method assuming678
a uniform distribution over the input parameters.679
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Figure 9. Visualization of the output distribution, i.e., error in the impedance parameter estimation, due to
the sampled input parameters. Here, the empirical probability distribution function (PDF) is shown.

The resulting output distributions is shown in Figure 9 with the empirical probability distribution function680
(PDF), which is approximated from the output samples. Here, the output distribution, i.e., the estimation681
error in Kh, resembles a Normal distribution with a mean estimation error slightly larger than 0Nm/rad.682
Thereby, it can be seen how the sampling of uncertainties in the input variability space induces an683
output distribution and impacts the assessment results. Note that an implicit assumption in variance-based684
sensitivity analysis is that variance is an appropriate measure to capture uncertainty (Pianosi et al., 2016).685
Since the empirical PDF in Figure 9 resembles a Normal distribution and is neither multi-model nor686
highly-skewed, this assumption holds true, thus strengthening the viability of deploying the approach here.687

Figure 10 depicts the resulting first-order indices Si on the left and total-order indices ST i on the688
right. Additionally, the 90% confidence interval are shown by the error bars, which are computed using689
bootstrapping. From the first-order effects it is clearly visible that the factors x1, x2 and x3 are the most690
influential ones, with the length of the forearm x2 having the highest impact. Moreover, the results indicate691
that the softness of the upper and forearm x5 and x6 are negligible, since their respective total-order indices692
are close to zero. Note that a total-order index of value zero constitutes a necessary and sufficient condition693
for an input factor to be non-influential (Pianosi et al., 2016). The negative signs for the first-order indices of694
x5 and x6 can be attributed to numerical errors, which are known to occur for input factors with negligible695
sensitivity indices when using the deployed sampling method (Saltelli et al., 2008). Moreover, the sum of696
the first-order effects computes to 0.78, while the sum of the total-order effects is 1.13. Since both sums are697
not equal to 1, it can be concluded that there are interaction effects present among the input factors in the698
system. Additionally, it can be seen in Figure 10 that the total-order indices of each factor are greater than699
the respective first-order indices. Thus, it can be inferred that all of the studied input parameter participate700
in the interactions.701

Finally, we perform a convergence analysis to affirm the reliability of the obtained results. Since the702
sensitivity indices are approximated from samples, a convergence analysis assesses whether the evaluated703
sample size is sufficiently large to make a statement regarding the importance of the input factors. This704
can be done efficiently by recomputing the results from increasing sets of sub-samples of the original data705
set and analyzing the convergence of the observed indices (Nossent et al., 2011; Pianosi et al., 2016). The706
results of the performed convergence analysis are shown in Figure 11. Here it can be seen that both the first707
and total-order indices converge quickly when increasing the size of the sub-samples with few changes in708
the indices after sub-samples of half the size of the original set. This indicates that a sufficiently large input709
sample size is chosen in the evaluation. Since the error bars in Figure 10 are also small when compared710
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Figure 10. Estimated first-order indices Si (left) and total-order indices ST i (right) with 90% confidence
intervals using the variance-based sensitivity analysis. The left figure shows the most influential factor is
x2 followed by x1 and x4. The total-order effects on the right identify both x5 and x6 to have no impact,
since ST i = 0 constitutes a necessary and sufficient condition.
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Figure 11. Convergence plot illustrating the estimated sensitivity indices using an increasing amount of
sub-samples. Both the first-order and total-order indices converge quickly, which implies that a sufficient
sample size is chosen for the variance-based sensitivity analysis.

to the estimated indices, the obtained results can be deemed robust. Therefore, we can conclude that the711
length of the forearm is the most influential source of uncertainty, with the upper arm length and the mass712
of the forearm following as the next most important factors.713

3.3 Qualitative Sensitivity Analysis714

In previous sections, we have analyzed the impact of uncertainties on the human-exoskeleton interaction715
from a quantitative manner, which is a particularly suitable approach when screening for influential and716
non-influential factors and when ranking those. By applying the elementary effect test and variance-717
based sensitivity analysis in Section 3.1 and Section 3.2, input parameters associated with kinematic718
incompatibilities and erroneous dynamics model are identified as the most relevant uncertainties. However,719
little information regarding their functional influence on the system is retrieved and, while interaction720
between the inputs is indicated, their exact nature remains unclear. Therefore, we perform an additional721
qualitative sensitivity analysis to gain further insights into the most influential sources of uncertainty.722

Figure 12 visualizes the relationship between input and output samples for x1, x2 and x4. Each black723
dot in the scatter plot indicates an input-output sample pair, while the larger red dots depict the average724
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Figure 12. Scatter plot visualizing the output samples against input samples for variations of the upper
arm length x1 (left), variations of the forearm length x2 (middle) and variations of the forearm mass x4
(right). The red dots illustrate the mean output for equidistant bins along each input.

output values over an interval range of the respective input. Here, equidistant intervals that split the input725
value ranges into 10 bins are used, which result in a width of 0.02 for x1 and x2, and 0.17 for x4. For the726
evaluation, a total of 1500 input samples are generated assuming a uniform distribution for each parameter.727
Note that here the x2 sample range is slightly larger compared to the previous evaluation, since the sampling728
strategy of the qualitative sensitivity analysis is more robust to erroneous model responses, which can occur729
due to simulation failures caused by unreasonable input parameter combinations. In Figure 12 it is clearly730
visible that variation in the length of the upper arm x1 induce a nonlinear change in the output, while both731
forearm length changes x2 and forearm mass changes x4 have a linear influence. The linear relationship732
in x2 and x4 is consistent with the physical intuition for the examined system, since the gravitational733
component of the human arm dynamics in (1) is a linear function in the link length and the mass. Thus,734
it is indicated that the forearm length x2 has to be considered as a source of uncertainty with respect735
to both kinematic incompatibilities and modelling errors, which leads to a better understanding of the736
high sensitivity ranking of x2 in the variance-based analysis. Differently, the output exhibits a nonlinear737
behavior in x1 with a continuous decrease in the slope for larger upper arm lengths. Thereby, it can be738
derived that beyond a certain threshold the misalignment in the center of rotations due to variations in x1,739
lead to extreme errors in the output value any may cause catastrophic failures. Thus, despite the relative740
lower prioritization in Section 3.2, the upper arm length remains a significant uncertainty and it needs to be741
ensured that the mismatch to its nominal values is below certain runaway boundary conditions.742

Finally, we visualize the interaction between the input parameters using colored scatter plots in Figure 13,743
where one input factor is depicted x-axis against another one on the y-axis with the marker color indicating744
the output value. Here, the emergence of patterns provides an indication for the interaction between two745
factors. From Figure 13 on the far right it can be seen that little interaction is taking place between upper746
arm length x1 and forearm mass x4, since the output values do not change significantly with concurrent747
changes in the input parameters. However, it can be detected that the upper arm length x1 is dominant748
for very large values, since the markers along the maximal y-axis values are all colored in red. On the749
other hand, a slight interaction between the forearm length x2 and mass x4 can be inferred from the middle750
plot, where the estimation error appears to grow strongly, if both input parameters are increased jointly.751
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Figure 13. Colored scatter plot depicting samples of the i-th input parameter on the x-axis against the j-th
on the y-axis, where the marker color indicates the respective estimation error. By observing emerging
pattern in the plot, conclusions regarding the interaction of two input factors can be derived.

Intuitively, this can be ascribed to the fact that an increase in the forearm length also shifts the center of752
mass of the link, which in turn increases the influence of the forearm mass. Lastly, in Figure 13 on the left753
it can clearly be seen that for very high values of x1 the upper arm length dominates the output, which is754
indicated by the red marker coloring along maximal x-axis values.755

4 DISCUSSION
The present study performed a quantitative sensitivity analysis of the major sources of uncertainty present756
in an upper-limb human-exoskeleton system, and their impacts on the arm impedance parameter estimation757
was investigated. The performed analysis indicates kinematic incompatibilities and errors in the nominal758
dynamics model as the most influential sources of uncertainty. Specifically, variations in the assumed759
forearm length belong to both classes of uncertainty and appear to be the most significant factor according760
to the results in Figure 10. However, given a wider input variability space, the influence due to variations761
in the upper arm length dominates, as shown in the qualitative analysis in Figure 12 and Figure 13. Here,762
the results indicate that for slight kinematic misalignments within a 5% range of the nominal upper arm763
length, the resulting estimation error only grows approximately linearly. However, when the upper arm764
misalignment increases beyond the approximately linear range, the nonlinear functional behavior results in765
a blow up of the estimation error. While qualitative sensitivity analysis approaches are more ambiguous, this766
finding makes sense intuitively, as the upper arm length is associated with offsets in the center of rotation,767
which is typically considered a significant source of uncertainty (Jarrassé and Morel, 2012; Schiele, 2008).768
In addition to the above-described link lengths, the mass of the forearm is the third-most relevant source769
of uncertainty according to both the elementary effect test and the variance-based sensitivity analysis. Here,770
the forearm mass has implications regarding the nominal dynamics model, since it is relevant for both the771
gravitational and inertial properties of the human arm. In contrast, the contact dynamics due to soft-tissue772
at the attachment are the least relevant as the results in Figure 10 indicate them to be non-influential.773

Given the results, it can be seen that uncertainty has a significant effect on the exoskeleton-based774
arm impedance estimation. In order to help reduce overconfidence in assessment results, the estimation775
procedure may benefit from employing uncertainty-aware regression techniques, e.g. Gaussian Processes,776
which model uncertainty explicitly, and thus make it transparent for the clinician (Rasmussen and Williams,777
2005). Besides modelling the uncertainty, practical steps can be taken to increase the precision of the778
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assessment by exploiting insights provided by our sensitivity analysis. In particular, reducing the effect779
of kinematic incompatibilities should be prioritized here. More specifically, a close alignment of the center780
of rotations has to be ensured. Inclusion of passive DoFs on the shoulder as well as the elbow level can781
mitigate the influence of kinematic incompatibilities (e.g., Vitiello et al., 2013). Additionally, special care782
should be taken during the donning procedure to ensure an ideal alignment before and during the usage.783
Second, our sensitivity analysis shows that errors in the nominal dynamics model, due to inaccuracies in784
the modelling of gravitational and inertial properties of the human arm, adversely affect the impedance785
estimation result. Therefore, measures should be taken to reduce these effects. This can be achieved786
by performing more extensive identification procedures for the human arm model instead of relying on787
standardized models derived from anthropometric data. The benefits of deploying more personalized models788
has been demonstrated recently in rehabilitation scenarios (Just et al., 2020). While modelling inaccuracies789
are expected to be less prevalent for the robotic system, they may also adversely affect the assessment. For790
example in scenarios where unknown and nonlinear friction components influence the robot joints (Chang791
et al., 2009), the device dynamics may differ from the original identification. Therefore, ensuring the792
accuracy of the robot model also needs to be considered in practice when performing automated assessment.793

The simulation environment proposed in the presented study emulates realistic load transmissions between794
the human and exoskeleton via a mechanical interface composed of supporting cuffs and straps. In addition,795
we facilitate soft contacts by augmenting the human musculoskeletal model by simulated soft-tissue at796
the attachment areas. To the best of the authors’ knowledge, it is the first upper-limb human-exoskeleton797
simulation that acknowledges the contact dynamics at the mechanical interface between human and robot798
by implementing both the interface and the human soft-tissue explicitly. Therefore we believe that the799
developed high-fidelity simulation platform lends itself well for exploitation in diverse use cases and is800
particularly suitable to investigate safety and ergonomics in control development. The consideration of801
ergonomics in physical human-robot interaction is a field that has recently gained growing attention and is802
considered crucial for driving advances in human-robot collaboration (Gualtieri et al., 2021; Sunesson et al.,803
2023). Having an explicit implementation of the physical interface is particularly relevant here, in order to804
accurately represent loads arising at the human limb during interaction with an exoskeleton. Moreover, our805
proposed simulation platform also provides utility in assisting simulation-based hardware development of806
wearable robotics, as the consideration of safety and ergonomics is desirable here (Agarwal et al., 2010).807

While the present study quantitatively analyzed how uncertainties in the human-exoskeleton interaction808
impact the arm impedance estimation, some simplifying assumptions were made. First, an idealized,809
fully known robotic system is assumed. Despite the fact that inertial and gravitational components can810
reasonably be derived for the exoskeleton, commonly, unknown friction dynamics remain. However, we do811
not expect this to be a significant issue, since a multitude of friction compensation strategies exist (Huang812
et al., 2019), which can straight-forwardly be applied in the considered scenario. Another assumption813
was made with respect to the simulation of spastic behavior of the human arm. In particular, we did not814
consider joint synergies or phase-dependent descriptions of spasticity. Since in this work the focus lied on815
isolating the influence of uncertainties on the mechanical interaction and consequently on the assessment,816
the consideration of a more complex spasticity model would provide limited additional benefit to the817
objective of the study. Still the presented human musculoskeletal simulation allows for the inclusion of818
different spasticity behaviors in principle. Thus, despite these limitations, the presented results enable us819
to derive the most relevant sources of uncertainty that impact the physical human-exoskeleton interaction,820
and thereby help increase the precision of exoskeleton-based arm impedance estimation.821

Frontiers 27



Tesfazgi et al. Uncertainty-aware Exoskeleton-based Automated Assessment

5 CONCLUSION
We conclude that this work presents a novel framework to analyze the influence of sources of uncertainty822
in the human-exoskeleton interaction and their impact on the exoskeleton-based impedance estimation.823
Due to an increasing demand for robot-based neurorehabilitation and assessment, we argue that the824
explicit consideration and quantification of uncertainties is paramount, as this allows for more robust and825
trustworthy estimates. To this end, a human-exoskeleton simulation environment is developed to facilitate826
the use of sampling-based sensitivity analysis methods. The performed sensitivity analysis indicates that827
uncertainties significantly impact the impedance estimation, and are primarily caused due to kinematic828
incompatibilities and inaccuracies in the nominal rigid body dynamics model of the human arm. Therefore,829
the findings of the study may also be used to increase the precision of exoskeleton-based automated830
assessment, i.e. by extending model calibrations of the human arm, more careful donning procedures or831
by deploying uncertainty-aware regression techniques. In the future, we plan to exploit this framework to832
develop approaches for uncertainty reduction during exoskeleton-based impedance estimation, in order to833
reduce the estimation uncertainty below pre-defined tolerances. Thus, providing a constructive approach834
for improving exoskeleton-based automated assessment.835
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