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1 | INTRODUCTION

Kinetic models like the Vlasov equation provide the most accurate description for a plasma beyond the interaction of
individual particles. While physically comprehensive, such models are often too expensive to be solved numerically under
realistic conditions, especially in many-query contexts like uncertainty quantification, inverse problems or optimization.
In such situations, reduced complexity models can provide a good compromise between computational cost and physical
completeness of numerical models and facilitate the solution of problems that are otherwise unfeasible.

A common approach for the construction of reduced complexity models are modal decomposition techniques such
as proper orthogonal decomposition (POD, see ref. [1]), also known as principal component analysis (PCA, see ref. [2]),
and dynamic mode decomposition (DMD, see ref. [3]). Here, existing complex models are replaced by reduced models,
which preserve the essential features of the original systems, but require less computational effort.

Algorithms obtained by such model order reduction techniques usually consist of two stages: an offline stage, where
the reduced basis is constructed from empirical or simulation data of a physical system, referred to as snapshots, and an
online stage, where the system is solved in the reduced basis. These techniques use singular-value decomposition (SVD)
to identify dominant global modes in the snapshots, in such a way that the basis constructed from these modes spans
the data optimally. Standard Galerkin projection methods are used to obtain approximate operators on such a basis.[4]
This approach is often amended by techniques such as the discrete empirical interpolation method to allow for efficient
evaluation of non-linearities.!*!

While model order reduction has been successfully applied to finite difference and finite volume discretizations of
fluid equations (see ref. [6] for an overview), its applicability is not yet well studied for kinetic equations. Thus, the main
goal of this work is to demonstrate the usefulness of model reduction techniques for numerical simulations of the Vlasov
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equation using particle methods. Further, we will show that preserving the Hamiltonian structure of the system in the
reduction procedure is key to obtaining stable and accurate reduced models.

1.1 | Particle methods for the Vlasov equation

In this work we consider the Vlasov equation

of  of of _
Vs mE= =0, ey

for the particle density function f = f(¢, x, v) of plasma consisting of charged particles of unit mass and unit negative
charge, where E(x) = —‘;—i is an external electrostatic field with the potential ¢ = ¢(x), and x and v are vectors in RY with
d =1, 2, 3. The standard approach to particle methods consists of the Ansatz

Ft.x,0) = Y\ wid (x = X)) 6 (v = Vi(1), )
i=1

for the particle density function, where X;(t) and V;(t) represent the position and velocity of the i-th particle, respectively,
and w; its weight. Substituting Equation (2) in Equation (1), one obtains a system of ordinary differential equations (ODEs)
for X;(t) and V(t), namely

. 9
Xi=v, Vvi=2x), i=1,...,n 3)
ox

It can be easily verified that Equation (3) has the form of a Hamiltonian system of equations

. oH . oH ,
X.=_’ V<=——, =1,..., 5 4
i v, i X, l n 4)
with the Hamiltonian H given by
n
1
HE V) = Y [5VE -0 (), 5)
i=1
where X = (X4, ..., X)) and V = (V, ..., V,,) are vectors in R™. Note that, for simplicity and brevity, we express the

Hamiltonian in terms of the velocity vector V rather than the canonical conjugate momentum vector P, since for a fixed!
external electric field and particles of unit mass we have P; = V;.

1.2 | Geometric integration

The Hamiltonian system (4) possesses several characteristic properties. Its flow F; : R - R preserves the Hamil-
tonian, that is, the total energy, as well as the canonical symplectic form w = Z?zlzj’.i:lde A dVi. The latter property

expressed in terms of the standard basis for R** takes the form of the condition

(DF))"J204DF; = Jands (6)

where DF; denotes the Jacobi matrix of the flow map Fy, J,,4 denotes the canonical symplectic matrix defined as

0 I,
Jona = ( d>, )
—La O

Tn the general case of self-consistent electromagnetic fields we have that P, = mV; + gA(X;, t), where A is the vector potential of the electromagnetic
field, and m and q are the mass and charge of the particles./”]

and I, is the nd x nd identity matrix.[$-10]
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In principle, general purpose numerical schemes for ODEs can be applied to Hamiltonian systems such as
Equation (3). However, when simulating these systems numerically, it is advisable that the numerical scheme also pre-
serves geometric features such as symplecticity (6). Geometric integration of Hamiltonian systems has been thoroughly
studied (see ref. [9,11-23] and the references therein) and symplectic integrators have been shown to demonstrate superior
performance in long-time simulations of such systems, compared with non-symplectic methods. Long-time accuracy and
near preservation of the Hamiltonian by symplectic integrators have been rigorously studied using the so-called backward
error analysis (see, e.g., ref. [9] and the references therein). Application of geometric integration to particle-in-cell (PIC)
simulations of the Vlasov equation coupled to self-consistent electromagnetic fields satisfying the Maxwell equations (i.e.,
the Vlasov-Maxwell system) was proposed in ref. [24-28].

1.3 | Symplectic model reduction

For the aforementioned reasons it appears desirable to preserve the Hamiltonian structure also in model reduction.
In fact, it has been found that preserving the Hamiltonian structure in the construction of the reduced spaces pre-
serves stability,!?°l which is not guaranteed using non-structure-preserving model reduction techniques.[*>3!! To this
end, standard model reduction techniques such as POD have been modified towards the so-called proper symplec-
tic decomposition,[32-3*] which does indeed preserve the canonical symplectic structure of many Hamiltonian systems
in the reduction procedure. Similarly, greedy algorithms[?>353] can be used to construct the reduced basis in a
Hamiltonian-structure preserving way, and recently also non-orthonormal bases have been considered,*’! showing
improved efficiency over orthonormal bases. See also ref. [38-41].

1.4 | Outline

The main content of the remainder of this paper is as follows. In Section 2, we review several model reduction techniques
and set the appropriate notation. In Section 3, we present the results of our numerical experiment demonstrating the
applicability of model reduction techniques to particle methods for the Vlasov equation. Section 4 contains the summary
of our work.

2 | MODEL REDUCTION

In this section, we briefly review several model reduction techniques and set the notation appropriate for the problem
defined in the introduction.

2.1 | Proper orthogonal decomposition
Proper orthogonal decomposition (POD) is one of the standard model reduction techniques.’?! Consider a general ODE
u=gu), withg:RY > RN, (8)

and with the initial condition u(0) = u,. Equation (3) has this form with N = 2nd, u = (X, V), and g(u) =
(Vl, e s Vs ‘;—‘)’C’ X1, ... ,3—:’: (Xn)). When N is a very high number, as is typical for particle methods, the system

(8) becomes very expensive to solve numerically. The main idea of model reduction is to approximate such a
high-dimensional dynamical system using a lower-dimensional one that can capture the dominant dynamic properties.
Let A be an N X M matrix representing empirical data on the system (8). For instance, A can be a collection of snapshots
of a solution of this system,

A=[ut)u(ty) ... utwl, ©)

at times ty, ..., ty. These snapshots are calculated for some particular initial conditions or values of parameters that the
system (8) depends on. A low-rank approximation of A can be done by performing a singular-value decomposition (SVD)
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of A and truncating it after the first K largest singular values, that is,

A=UZVT » Uy Zg VY, (10)

where ¥ = diag(o1, 02, ...) is the diagonal matrix of the singular values, U and V are orthogonal matrices, Zx is the
diagonal matrix of the first K largest singular values, and Uk and Vi are orthogonal matrices constructed by taking the
first K columns of U and V, respectively. Let £ denote a vector in RX. Substituting u = Uk¢ in (8) yields a reduced ODE
for £(t) as

&= Ugg(Uxd), an

with the projected initial condition £(0) = & = Uguo. If the singular values of A decay sufficiently fast, then one can
obtain a good approximation of A for K such that K <« N (see Section 2.3). Equation (11) is then a low-dimensional
approximation of Equation (8) and can be solved more efficiently. For more details about the POD method, we refer the
reader to ref. [1]. In the context of particle methods for the Vlasov equation, the reduced model (11) allows one to perform
numerical computations with a much smaller number of degrees of freedom. Note, however, that while Equation (3) is
a Hamiltonian system, there is no guarantee that the reduced model (11) will also have that property. In Section 3, we
demonstrate that retaining the Hamiltonian structure in the reduced model greatly improves the quality of the numerical
solution.

2.2 | Proper symplectic decomposition
Note that the Hamiltonian system (4) can be equivalently written as
u=JnV.H), (12)

where u = (X, V) and N = nd. A model reduction technique that retains the symplectic structure of Hamiltonian sys-
tems was introduced in ref. [34]. In analogy to POD, this method is called the proper symplectic decomposition (PSD).
A 2 N x 2 K matrix is called symplectic if it satisfies the condition

ATJoNA = Dok (13)

For a symplectic matrix A, we can define its symplectic inverse A™ = JZTKATJZN. It is an inverse in the sense that
A*A = L. Let & be a vector in R*. Substituting u = A¢ in (12) yields a reduced equation

E=AT NV Hu) = IV H(AE), (14)

which is a lower-dimensional Hamiltonian system with the Hamiltonian a (&) = H(A¢). Given a set of empirical data
on a Hamiltonian system, the PSD method constructs a symplectic matrix A, which best approximates that data in a
lower-dimensional subspace. We have tested two PSD algorithms, namely the cotangent lift and complex SVD algorithms.

221 | Cotangent lift algorithm

This algorithm constructs a symplectic matrix A, which has the special block diagonal structure

A=<q) 0), (15)
0 @

where @ is an N x K matrix with orthogonal columns, that is, ®’® = Ix. Suppose snapshots of a solution are given as an
N X 2 M matrix A of the form

A=[X@) ... X))V (&) ... V(). (16)
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The SVD of A is truncated after the first K largest singular values, similar to Equation (10). The matrix ® is then
chosen as ® = Ug. More details can be found in ref. [34].

222 | Complex SVD algorithm

By allowing a broader class of symplectic matrices, we may get a better approximation. The complex SVD algorithm
constructs a symplectic matrix of the form
o  -¥
A= : a7
Y o

where ® and ¥ are N X K matrices satisfying the conditions
OTo +PTY =1, OTY =¥To. (18)
Suppose snapshots of a solution are given as an N X M complex matrix A of the form
A=[Xt)+iV(h) ... X () +iV(Em)], 19
where i denotes the imaginary unit. The complex SVD of A is truncated after the first K largest singular values, that is,
A=UsV' ~ UgZgVy. (20)

The matrices ® and ¥ are then chosen as the real and imaginary parts of Uk, respectively, that is, Ux = ® +i¥. More
details can be found in ref. [34].

2.2.3 | Preservation of the Hamiltonian

Let u(t) be a solution of Equation (12) with the initial condition uy, and let £(¢) be a solution of the reduced system (14)
with the projected initial condition &, = A*u,. Since the solutions of both the unreduced and reduced equations preserve
their respective Hamiltonians, we have that the error of the Hamiltonian AH(t) = H(u(t)) — a (&(?)) arising due to the
symplectic projection is constant in time and equal to its initial value AH(0) = H (ug) — H (&), whose magnitude can be

controlled by choosing a sufficiently high K. If geometrlc integrators are used to solve the reduced model (14), then the
numerical values of the reduced Hamiltonian H stay very close to the exact value H (&), and therefore they also stay close
to the exact energy H(uo) of the unreduced system (12).

2.3 | Approximation of data by linear subspaces

The POD and PSD methods described in Sections 2.1 and 2.2, respectively, rely on the assumption that the set of the
empirical data Q = {u(ty), ... ,u(ty)} C RY can be approximated well by a linear subspace of dimension K < N, other-
wise these techniques do not bring computational savings. The so-called Kolmogorov n-width di(£2) describes the error
arising from the projection of Q onto the best-possible subspace of RY of a given dimension K (see ref. [42]). It has
been proven that for a class of problems written as parametrized PDEs, the Kolmogorov n-width decays exponentially
fast, that is, dg(Q) = O(e~7X) with some constant y > 0.14344] This extremely fast decay plays a critical role in any model
reduction strategy based upon projecting to linear subspaces, since it allows one to select a low to moderate K to achieve
small approximation errors. Such theoretical results have not yet been proven for particle-based simulations of the Vlasov
equation. We will show by performing explicit numerical computations that for the example presented in Section 3 the
evolution of the particles is indeed well approximated in a low-dimensional subspace. In case the empirical data do not
appear to lie in a linear subspace, instead of the POD and PSD methods described above, one may apply online adaptive
methods that update local reduced spaces depending on time,[*>#®] as well as a structure-preserving dynamic reduced
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basis method for Hamiltonian systems.[’l The application of the latter two techniques to the Vlasov equation will be
investigated in a follow-up work.

3 | NUMERICAL EXPERIMENT

In this section, we present the results of a simple numerical experiment demonstrating the applicability of model
reduction techniques to particle methods for the Vlasov equation.

3.1 | Initial and boundary conditions

We consider the Vlasov equation (1) on a one-dimensional (d = 1) spatial domain —co < x < oo with the initial condition

_ 1l _ 1 (p—v.)?
f0,x,v) = fo(x,v) = L e " 1 1 ey 4 1 ¢ 22 (%) , (21)
V2rn l+a,/z l+a,\ /76

where the parameters are set as follows:
n=10, a=03, vy=4, oc=0.5. (22)

This is a “bump-on-tail” distribution in velocity space combined with a Gaussian distribution in position space. The
initial conditions for the particle positions X;(0) and velocities V;(0) in Equation (3) are generated as random variables
drawn from the probability distribution (21) using rejection sampling.

3.2 | Empirical data

Let the Vlasov equation (1) be parameter-dependent. For example, the external electric field may depend on some param-
eter f, that is, E = E(x; ). Suppose we have the following computational problem: we would like to scan the domain of g,
that is, compute the numerical solution of (1) for a large number of values of 5. Given that in practical applications the
system (3) is very high-dimensional, this task is computationally very intensive. Model reduction can alleviate this sub-
stantial computational cost. One can conduct full-scale computations using high-fidelity numerical methods only for a
selected small number of values of 8. These data can then be used to identify reduced models, as described in Section 2.
The lower-dimensional equations (11) or (14) can then be solved more efficiently for other values of 4, thus reducing the
overall computational cost. For our simple experiment, we consider a linear external electric field, namely

E(x; ) = f*x, (23)
where f is a real parameter. While this is a rather academic example, it allows an easy demonstration of how model

reduction works in the case of particle methods for the Vlasov equation. With this electric field one can solve the Vlasov
equation (1) using the method of characteristics to obtain the exact solution

ft,x,v) =fy <x cos ft — %v sin ft, fxsin ft + vcos ﬁt) , (24)
satisfying the initial condition (21). Moreover, the equation for the trajectories of the particles (3) is solved by
Xi(t) = %Vi(O) sin ft + X;(0) cos pt,  Vi(t) = Vi(0) cos ft — pX;(0) sin pt. (25)

Instead of solving the full-scale system numerically, for convenience we used the exact solution (25) to generate the
empirical data for the following six values of the parameter f:

p1 =595 p=597, B3=599, pi=601, Ps=6.03, ps=6.05. (26)
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FIGURE 1 The decay of the singular values as calculated for the empirical data with each of the singular-value decomposition-based
algorithms

The exact solution (25) was sampled for n = 1000 particles at times ¢, = kAt for At =0.01 and k=0, 1, ..., 100,000,
that is, over the time interval 0 <t <1000. It should be noted that the same initial values for the positions and velocities
of the particles were used for each value of g. The generated data for all values of f were put together and used to form
the snapshot matrices (9), (16), and (19). For instance, for the POD snapshot matrix (9) we used

A = [u(to; fr)u(ty; p)u(ty; fr) ... u(to: fp)u(tr; f2) u(tz; o) ... 1. (27)

Then, following the description of each algorithm in Section 2, reduced models were derived. The decay of the singular
values for the POD, PSD cotangent lift and complex SVD methods is depicted in Figure 1. Since the sizes of the snapshot
matrices A in our experiment were not exceedingly high (e.g., 2000 x 600,006 for (27)), we computed the full SVD decom-
positions using the standard SVD algorithm implemented in the Julia programming language. This algorithm requires
memory and time that are superlinear in the dimensions of A,“8! which is prohibitive for very large data sets. However,
the purpose of model reduction is to determine only a small number of the largest singular values and their correspond-
ing singular vectors, therefore algorithms such as the truncated!*! or the randomized!*’! SVD decompositions can be
used instead. These algorithms require significantly less memory and time than the full SVD decomposition. Overall, this
offline stage of model reduction is expensive, but it is performed only once. Then, in the online stage, the reduced systems
can be solved cheaply for an arbitrary number of values of f.

3.3 | Reduced model simulations

To test the accuracy of the considered model reduction methods, we have compared the results of reduced model simula-
tions to a full-scale reference solution. The reference solution for f = 6.0 was calculated on the time interval 0 <t <1000
in the same way as the empirical data in Section 3.2. Note that for this choice of g the period of the reference solution is
T ~1.05 (see (25)), and the considered time interval encompasses roughly 955 periods. The reduced models were solved
numerically on the same time interval using the second-order explicit and implicit midpoint methods. Note that when
applied to a Hamiltonian system, the implicit midpoint method is a symplectic integrator, while the explicit midpoint
method is not.[] All simulations were carried out with the time step At = 0.0001. The POD model (11) was solved for
K = 5 and K = 10 (thus reducing the dimensionality of the problem from 2n = 2000 to 5 and 10, respectively). Simi-
larly, the PSD model (14) was solved for K = 5 and K = 10, both for the cotangent lift and complex SVD algorithms,
in both cases reducing the dimensionality to 10 and 20, respectively. The choice of K is a compromise between the
speed and the accuracy: the smaller K the faster the computation, but also the larger the projection error. In practice,
one may choose K based on the initial value of the error (28), that is, the value of the projection error for the initial
condition. For instance, in our experiment, the initial relative error for the POD simulations was equal to 1.09 x 10714
for K = 5, and 7.81 x 10~ for K = 10. All computations were performed in the Julia programming language with the
help of the GeometricIntegrators.jl library.[>!! The three main conclusions from the numerical experiments are described
below.
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FIGURE 2 Top: The relative error of the proper orthogonal decomposition (POD) simulations on the time interval 0 < ¢ < 50. Both the
explicit and implicit midpoint methods yield accurate approximations. Note that the plots for the explicit midpoint method with K = 5 and
K =10, as well as for the implicit midpoint method with K = 5 and K = 10, overlap very closely and are therefore indistinguishable. Bottom:
The same plot over the whole simulation interval 0 <t <1000. It is evident that over a long integration time the errors blow up and both the
explicit and implicit method simulations become unstable

3.4 | Long-time instability of the POD simulations

As a measure of accuracy of the reduced models we take the relative error

& = ures()|
o]

where u,¢ is the reference solution of Equation (8), as described above, and u = Ugé is the reconstructed solution, with
£ being the numerical solution of the reduced model (11). The relative error as a function of time is depicted in Figure 2.
We see that the POD simulations give very accurate results on shorter time intervals, but the errors blow up over a long
integration time, and both the explicit and implicit midpoint method simulations become unstable. This is a consequence

(28)
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FIGURE 3 The relative error of the proper symplectic decomposition (PSD) simulations carried out with the cotangent lift algorithm
on the time intervals 0 <t < 50 (Top) and 0 <t <1000 (Bottom). The errors on the interval 0 <t < 50 are essentially identical for the POD and
PSD simulations, but the PSD simulations retain good accuracy and stability over the whole integration time. The results for the complex
singular-value decomposition algorithm are nearly identical. Note that the same colour code is used for the plots that overlap very closely and
are therefore indistinguishable

of the fact that there is no guarantee that the reduced system (11) retains any stability properties of the original system
(8). In fact, the reduced equation for our example takes the form of the linear equation & = A&, where the K x K matrix
Ak is given by

0 I
K="k (-ﬂZ]In 0) K (29)

In our experiment, for K = 5 the matrix Ag has five eigenvalues with positive real parts, the largest one of which equals
Re 4~ 0.0655. Similarly, for K = 10, the eigenvalue with the largest real part is Re 4~ 0.0403. The modes corresponding
to these eigenvalues grow exponentially, and after a certain amount of time dominate the solution. This means that the
reduced system is unstable; therefore, the errors arising from projecting the initial condition & = Uy u and from applying
numerical integration schemes amplify over the simulation time, eventually leading to the observed loss of accuracy. 3311
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FIGURE 4 The relative error of the total energy of the particles as a function of time is depicted for the proper orthogonal
decomposition simulations. The energy eventually blows up for both the explicit and implicit midpoint methods

3.5 | Long-time stability of the PSD simulations

In the case of the PSD models, the reconstructed solution u = A¢ is obtained from the numerical solution & of the reduced
Hamiltonian system (14). The relative error as a function of time for the cotangent lift algorithm is depicted in Figure 3.
We see that both the explicit and implicit midpoint methods retain good accuracy and stability over the whole integration
time. It is therefore evident that by preserving the Hamiltonian structure of the particle equations, symplectic model
reduction significantly improves the stability of the numerical computations even if a non-symplectic integrator (here the
explicit midpoint method) is used. The numerical results for the complex SVD algorithm are nearly identical, therefore
for brevity and clarity we skip presenting a separate figure.

3.6 | Long-time energy behaviour

As the particle equations (4) are Hamiltonian, the total energy (5) of the particles should be preserved. In our numerical
experiment, the Hamiltonian for the reference solution (25) with g = 6.0 was H ¢~ 1.803 x 10°. The relative error of the
total energy of the particles for each of the algorithms is depicted in Figures 4 and 5. One can clearly see that while the POD
simulations initially retain the total energy relatively well, there is an evident linear growth trend for both the explicit and
implicit midpoint methods, and the energy eventually blows up over a long integration time. On the other hand, the energy
behaviour for the PSD simulations is more stable. The non-symplectic explicit midpoint method applied to the cotangent
lift algorithm also shows the same linear growth trend, but does not blow up. Furthermore, the implicit midpoint method,
which is symplectic in this case, demonstrates near preservation of the total energy, with only a minor linear growth
throughout the whole simulation time. This demonstrates another important advantage of symplectic model reduction:
since the reduced equations (14) are also Hamiltonian, one can employ symplectic time integrators to obtain a numerical
solution that nearly conserves energy.

4 | SUMMARY AND FUTURE WORK

We have compared several model reduction techniques and demonstrated their usefulness for particle-based simulations
of the Vlasov equation. We have pointed out the importance of retaining the Hamiltonian structure of the equations gov-
erning the evolution of particles. Our work can be extended in several directions. First, model reduction methods can be
applied to the Vlasov equation coupled to a self-consistent electric field satisfying the Poisson equation, or electromagnetic
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FIGURE 5 Top: The relative error of the total energy of the particles as a function of time is depicted for the proper symplectic
decomposition simulations. The energy behaviour is more stable than for the proper orthogonal decomposition (POD) simulations. While the
non-symplectic explicit midpoint method shows a linear growth trend, the symplectic implicit midpoint method appears to nearly preserve
the total energy. For comparison, also two POD simulations are depicted. Bottom: Same plot, but only the simulations for the symplectic
implicit midpoint method are depicted in order to show the scale of energy preservation. In fact these simulations also show a linear trend,
which is nevertheless four orders of magnitude smaller than for the non-symplectic explicit midpoint method. Note that the same colour
code is used for the plots that overlap very closely and are therefore indistinguishable. The results for the complex singular-value
decomposition algorithm are nearly identical, and are therefore omitted for clarity

fields satisfying the Maxwell equations.?*] Second, model reduction of collisional Vlasov equations stemming from
metriplectic brackets!*?! or stochastic action principles!>*->*] would be an interesting and useful extension of the work
presented here.
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