
Research Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 37(2) 61–81
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221107880
journals.sagepub.com/home/hpc

Enhancing data locality of the conjugate
gradient method for high-order matrix-free
finite-element implementations
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Abstract
This work investigates a variant of the conjugate gradient (CG) method and embeds it into the context of high-order finite-
element schemes with fast matrix-free operator evaluation and cheap preconditioners like the matrix diagonal. Relying on a
data-dependency analysis and appropriate enumeration of degrees of freedom, we interleave the vector updates and inner
products in a CG iteration with the matrix-vector product with only minor organizational overhead. As a result, around
90% of the vector entries of the three active vectors of the CG method are transferred from slow RAM memory exactly
once per iteration, with all additional access hitting fast cache memory. Node-level performance analyses and scaling studies
on up to 147k cores show that the CG method with the proposed performance optimizations is around two times faster
than a standard CG solver as well as optimized pipelined CG and s-step CG methods for large sizes that exceed processor
caches, and provides similar performance near the strong scaling limit.
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1. Introduction

The conjugate gradient (CG) method is one of the most
popular algorithms for the iterative solution of large sparse
symmetric positive-definite linear systems arising from
discretization of partial differential equations (PDE). While
it needs to be combined with strong preconditioners such as
multigrid when applied to elliptic equations, the conjugate
gradient method with simple preconditioners like the matrix
diagonal can be the most efficient choice for parabolic
partial differential equations with small to moderate time
steps. For example, in computational fluid dynamics, many
splitting schemes eventually lead to a positive definite
Helmholtz-like equation with a mass matrix and a diffusive
operator scaled by the time step and viscosity, see, for
example, Tufo and Fischer (1999), Deville et al. (2002,
Section 6.5), and Fehn et al. (2018) for application in in-
compressible flows as well as Demkowicz et al. (1990) and
Guermond et al. (2021) for compressible flows. Another
important application is the projection with consistent finite-
element mass matrices, possibly including some regulari-
zation through diffusion (Kronbichler et al., 2018).

In the conjugate gradient method with simple precondi-
tioners, the matrix-vector product has traditionally been the
most expensive operation. With the increase in computing

power through parallelism on the one hand and algorithmic
progress on the other hand, the matrix-vector product may in
fact be so cheap that attention must be turned to the other
operations in the CG method.

On large-scale parallel computers, the global reductions
involved in the two inner products in each CG iteration are
generally seen as the main threat to strong scaling, ad-
dressed by the development of lower-synchronization
variants, such as the pipelined conjugate gradient method
(Cornelis et al., 2018; Ghysels and Vanroose, 2014) or s-
step methods (Chronopoulos and Gear, 1989). These al-
ternatives rely on mathematical transformations of the basic
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CG algorithm with redundant vector operations that break
some dependencies. The s-step method not only allows to
combine global communication for several CG iterations
into one block, but also to schedule the communication of
several matrix-vector products together through matrix-
power kernels.

The guiding theme of these recent contributions has been
the reduction of the communication latency, see also Eller
et al. (2019) for a broader overview on large-scale methods.
However, less attention has been paid to the throughput of
the memory hierarchy, that is, bandwidth requirements from
and to main memory (RAM). This can be the more severe
performance limit in a number of applications, especially for
solvers that combine different algorithms in tight sequence.
One example is incompressible fluid flow discretized with
splitting methods, where the pressure Poisson equation
solved with multigrid sets the limit for strong scaling, but
the much larger symmetric positive-definite system in the
velocity contributes with 50% or more of the runtime (Fehn
et al., 2018; Krank et al., 2017). As an illustration, Figure 1
shows the share of runtime of different operations in a
preconditioned conjugate gradient solver as a function of
problem size on a single compute node. While the matrix-
vector product indeed dominates the runtime for small sizes
with less than 3 million degrees of freedom, this is not the
case for larger sizes relevant to those fluid dynamics ap-
plications where AXPY-style vector updates, dot products
and the application of the preconditioner take up two thirds
of the total run time.

The aim of the present work is to design a solver with
primary focus on the memory bandwidth behavior of the
CG algorithm in the context of high-order finite-element
methods implemented with matrix-free sum-factorization
algorithms (Deville et al., 2002). The main novelty is a set
of techniques that allow to interleave the vector updates
and inner products in a CG iteration with the matrix-
vector product for a specific pipelined-like CG formu-
lation originally presented as Algorithm 2.2 in
Chronopoulos and Gear (1989). As a result, we are able to
perform the access to the three active vectors in inner
products and vector updates of a complete CG iteration
with a single load from RAM memory for around 90% of
the vector entries, serving all other accesses from the fast
cache memory on contemporary cache-based CPU ar-
chitectures. Our experiments show similar performance
as for pipelined and s-step methods near the strong
scaling limit when all vector entries are hit in the caches,
but we reach a significantly higher throughput when the
vectors spill out of the caches. While not directly re-
ducing the minimum achievable wall time, our contri-
bution allows to reach a predefined throughput already on
a smaller machine.

The proposed techniques rely on introspection of the
matrix-vector product and simple preconditioners. The
idea of using the structure of the operations in the CG
iteration to increase performance is not new and can be
traced back to at least Eisenstat (1981). However, the
context of minimizing data movement for high-order
finite-element solvers within a single iteration appears
to be novel. These developments are necessary, because
the wide stencils from high-order finite-element methods
as well as multi-component systems make traditional
optimizations such as matrix-power kernels and temporal
wavefront blocking (Malas et al., 2017) in the context of s-
step Krylov methods ineffective.

The implementations used for the present study are
available as open-source software on GitHub.1 They build
on the general-purpose finite-element library deal.II (Arndt
et al., 2021) and have been verified on supercomputer scale
(Arndt et al., 2020b). The remainder of this contribution is
structured as follows. Section 2 introduces the state of the art
of fast matrix-free operator evaluation for higher-order
finite-element discretizations. In Section 3, the classical
conjugate gradient algorithm as well as pipelined and s-step
variants are reviewed in terms of the memory access.
Section 4 discusses a variant of CG that avoids the two
synchronization points of the conventional CG algorithm
when using cheap diagonal preconditioning, whereas
Section 5 presents the ingredients necessary to efficiently
embed the vector operations into the matrix-vector product.
In Section 6, large-scale computations are given to show the
effectiveness of the method, before Section 7 summarizes
our results.

Figure 1. Breakdown of times per CG iteration in the Center of
Efficient Exascale Discretizations (CEED) benchmark problem
BP4 (Fischer et al., 2020) with finite elements of degree p = 5 on 2
× 24 cores of Intel Xeon Platinum 8174. See Section 3.1 below for
a more detailed explanation of the steps.
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2. Fast matrix-free operator evaluation

We consider a benchmark problem in the context of high-
order finite element methods to investigate the benefits of
the proposed techniques, in comparison to well-studied
optimized CG alternatives from the literature. It involves
the vector-valued Poisson equation in a d = 3 dimensional
domain V � R

3

�=2u ¼ f (1)

with the vector field uðxÞ ¼ ðu1ðxÞ, u2ðxÞ, u3ðxÞÞ 2
ðH1ðVÞÞ3 and a forcing f 2 ðL2ðVÞÞ3. On the domain
boundary ∂V, Dirichlet boundary conditions u = g are set.

The finite-element discretization is derived from the
weak form of equation (1), restricted to a space of poly-
nomials on a mesh of elements Ve of the computational
domain, e = 1, …, ncells. On a hexahedral element Ve, the
solution interpolation is given by

uhðxÞx2Ve
¼

X3ðpþ1Þ3

j¼1

φj

�bxðxÞ�ue, j (2)

Here, ue ¼ ½ue, j�j denotes the vector of unknown coeffi-
cients on Ve in an expansion with a polynomial basis
fφj, j ¼ 1,…, 3ðpþ 1Þ3g. The basis functions are con-
structed as the tensor product of one-dimensional poly-
nomials of degree p for each of the vector components.
Collecting the functions defined on all the elements and
inserting the expansions as tentative solutions and test
functions into the weak form, we arrive at a matrix system

Au ¼ b (3)

with a sparse matrix A2R
n×n, the right-hand-side vector

b2R
n and the discrete solution vector u2R

n. The number
n ∼ 3ncellsp

3 denotes the number of degrees of freedom
(DoFs), counting the unique free coefficients in the ex-
pansion. The solution of this matrix system is the subject of
the present study.

The relatively dense coupling of degrees of freedom in
the matrix stencil makes sparse matrix-vector products in
iterative solvers inefficient for higher-order finite ele-
ments with degree p ≥ 2. Considerable speedups can be
obtained by replacing the sparse matrix-vector product by
a matrix-free evaluation of the action of the matrix on a
vector. Whereas stencil-like approaches are most bene-
ficial for the lowest-order elements on structured meshes
(Bauer et al., 2018), the method of choice for hexahedral
elements with general deformed shapes and higher de-
grees is to compute the integrals underlying the finite-
element method on the fly (Brown, 2010; Deville et al.,
2002; Fischer et al., 2020; Kronbichler and Kormann,
2012). The matrix-vector product is computed as a sum of
cell-wise contributions

v ¼ Au ¼
Xncells
e¼1

PT
eAeðPeuÞ (4)

where Ae is the representation of the operator on elementVe

and Pe denotes the local-to-global mapping of unknowns
such that ue = Peu gives restriction of the global solution
vector u to the element. The local operation Aeue is again
implemented in a matrix-free fashion without building the
element stiffness matrix Ae

½Aeue�i ¼
Z
Ve

ð=φiÞT=uhdx

¼
Xnq
q¼1

�b=φi

�T

J�1
e, q

�
wqdetJ e, q

�
J�T
e, q

X3ðpþ1Þ3

j¼1

b=φjue, j

(5)

The integrals are approximated by numerical quadrature
on nq points. In this work, we consider the BP4 benchmark
problem proposed by Fischer et al. (2020), which selects
the tensor-product Gaussian quadrature formula with nq =
(p + 2)3 points bxq per cell and the associated quadrature
weight wq. The integrals are transformed to reference
coordinates bx via a polynomial mapping xðbxÞ and the
derivatives in real space = are transformed to derivatives
in reference coordinates b= by multiplication with the in-
verse and transpose of the Jacobian ½J eðbxÞ�ij ¼ ∂xi

∂bxj. Thelocal result Aeue is obtained by evaluating equation (5) for
all test functions φi, i ¼ 1, …, 3 (p + 1)3.

The efficiency of the matrix-free algorithm (4)–(5)
crucially depends on evaluating b=uh at the quadrature points
and the multiplication by the test function gradient b=φi
as well as the summation over quadrature points, respectively.
For tensor-product shape functions that are integrated on a
tensor-product quadrature formula, sum factorization allows to
decompose these two steps into a series of one-dimensional
interpolations of total cost Oðpdþ1Þ per element in d di-
mensions (or OðpÞ per unknown), compared to the naive
evaluation cost ofOðp2dÞ. The sum-factorization approach has
been developed in the context of the spectral element method
by Orszag (1980), Patera (1984), and Tufo and Fischer (1999),
see also the book by Deville et al. (2002) as well as recent
implementation and vectorization studies by Kronbichler and
Kormann (2012, 2019), Świrydowicz et al. (2019), Fischer
et al. (2020), Sun et al. (2020),Moxey et al. (2020), andKempf
et al. (2021).

2.1. Experimental setup

Our experiments use the implementation of matrix-free
operator evaluation in the deal.II finite-element library
(Arndt et al., 2020a, 2021), described in Kronbichler and
Kormann (2012, 2019). The main computational kernels are
fully vectorized across elements, that is, operation (5) is

Kronbichler et al. 63



evaluated on several cells for the different lanes in the
single-instruction/multiple-data (SIMD) paradigm, and use
an even-odd decomposition (Solomonoff, 1992) in sum
factorization to further reduce the arithmetic cost. The
solution vectors store unique unknowns, which necessitates
indirect addressing for the access of elemental data, rep-
resented as a matrix Pe in equation (4). Indirect addressing
involves additional instructions compared to duplicating
unknowns shared by several cells as used, for example, in
Nek5000 (Fischer et al., 2021), but avoids redundant
storage and speeds up the other parts of the solver. In our
implementation, the indices describing Pe use a compressed
format of 33 four-byte integers, from which all 3 × (p + 1)3

indices are deduced on the fly. The meshes are partitioned
by space-filling curves according to Bangerth et al. (2011).

The code has been compiled with the GNU compiler g++,
version 9.2, with optimization flags -O3 -march=native
-funroll-loops, which is the compiler with the best performance
among GNU, Intel and clang for our code. The experiments
have been conducted within a pure MPI setting. To reduce the
overhead due to communication between processes within a
single compute node, we perform the exchange of ghost values
manually via memcpy and MPI-3.0 shared-memory features
(Munch et al., 2021), instead of relying on plain MPI_Isend
and MPI_Irecv.

Following the benchmark description by Fischer et al.
(2020), the algorithms are mainly compared in terms of the
throughput, that is, the number of degrees of freedom
processed per second (DoFs/s) for one matrix-vector
product in this section or one iteration of the conjugate
gradient method in the subsequent sections. The throughput
is obtained by the ratio of the number of degrees of freedom
in the linear system and the measured runtime. The runtime
is taken as the minimum of two separate jobs with four
experiments each in order to reduce the noise caused by
other concurrent jobs on the supercomputer. Apart from
isolated outliers, the arithmetic mean of those eight runs is
within 2% of the reported minimum.

Unless noted otherwise, the numerical experiments are
run on a dual-socket Intel Xeon Platinum 8174 (Skylake)
system of the supercomputer SuperMUC-NG.2 The CPU
cores run at a fixed frequency of 2.3 GHz, which gives an
arithmetic peak of 3.5 TFlop/s. The 96 GB of random-
access memory (RAM) are connected through 12 channels
of DDR4-2666 with a theoretical bandwidth of 256 GB/s
and an achieved STREAM triad memory throughput of
205 GB/s.

2.2. Identification of fast matrix-vector product

Contemporary implementations of matrix-free methods
with sum factorization often precompute and store the
metric terms in J�1

e, qðwqdetJe, qÞJ�T
e, q at each quadrature point

and load them during operator evaluation. The precomputed

setup is applicable to deformed (curvilinear) cells and to
variable coefficients. As shown in Kronbichler and Ljungkvist
(2019), the evaluation (4)–(5) is then memory-bound on
modern hardware. For an implementation that aims to
maximize the throughput for cell integrals according to
Kronbichler and Kormann (2019), it might be more economic
to evaluate the metric terms on the fly as well. To identify a
suitable method, we compare the following variants regarding
the terms representing the geometric factors:

· tri-quadratic geometry evaluated on the fly from 33 =
27 points (“quadratic geomet. compute"), loading
27 × 3 doubles per cell, giving a matrix-vector
product with 395 Flops/DoF for p = 5,

· geometry evaluated on the fly from (p + 2)3 points at
the position of the quadrature points (“isoparametric
compute”), loading 3 doubles per quadrature point,
yielding 417 Flops/DoF for p = 5,

· precompute and load the inverse Jacobian J�1
e, q and

the Jacobian determinant times quadrature weight
(“inverse Jacobian load”) at each quadrature point,
loading 10 doubles per quadrature point, yielding 316
Flops/DoF for p = 5,

· precompute and load the final symmetric coefficient
tensor, J�1

e, qðwqdetJ e, qÞJ�T
e, q (“final tensor load”) at

each quadrature point, loading 6 doubles per quad-
rature point, yielding a matrix-vector product with
267 Flops/DoF for p = 5, as done, for example, in
Świrydowicz et al. (2019); Fischer et al. (2020).

Figure 2 compares the computational throughput of these
variants on a single compute node. The operator evaluation

Figure 2. Comparison of different implementations of matrix-
free operator evaluation for polynomial degree p = 5 on 2 × 24
cores of Intel Xeon Platinum 8174.
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reaches a maximum for intermediate sizes of around 106

DoFs when most data fits into caches. As the problem size
further increases, data must be fetched from main memory,
leading to a slowdown for the cases that are dominated by
memory access. We note a slight zig-zag pattern in the
reported throughput, which is caused by different costs of
ghost exchange, which changes when the number of cells is
divisible by 48 leading to cube-like subdomains (higher
throughput) or by 64 leading to more irregular MPI sub-
domains (lower throughput). Figure 2 also presents the
throughput of the evaluation on an affine mesh with a
constant inverse Jacobian J�1 throughout the whole mesh
and using nq = (p + 1)d points of Gaussian quadrature, a case
studied in detail in Kronbichler and Kormann (2012, 2019).
This reduces the arithmetic cost to 206 Flops/DoF and the
memory transfer to just the input and output vectors with
performance mainly limited by the vector access with in-
direct addressing.

For large sizes with n > 107, the “load” variants are
memory-limited at slightly more than 200 GB/s, whereas
the two “compute” variants involve a memory transfer of
100 GB/s and 140 GB/s for vector sizes of 100 million
DoFs, all measured from hardware performance counters
with the LIKWID tool (Treibig et al., 2010). Albeit slightly
slower than the “load” variants for the in-cache case with n <
106, this study concentrates on the quadratic geometry
representation evaluated on the fly with polynomial degree
p = 5 for the finite-element expansion (2). The represen-
tation of curved geometries differs from the other three
options in general, but we argue that a tri-quadratic ap-
proximation is nonetheless suitable for many applications.
The bulk of a 3D geometry can often be well-represented in
such a way, leading to a significant reduction of the memory
transfer and cache pressure against the isoparametric high-
order case. By contrast, a tri-linear representation (with
approximately 10% higher throughput) might be unac-
ceptable in a whole region around strongly curved
boundaries. It is conceivable to augment the present strategy
with a high-degree (isoparametric) geometry representation
of one element layer close to the boundary, without sig-
nificantly affecting the throughput.

From the throughput values listed in Figure 2 and the
operation counts mentioned above, it can be deduced that
the matrix-vector product with quadratic geometry runs at
1.1 TFlop/s with 50 million DoFs and at 1.3 TFlop/s with
1.2 million DoFs. While this is clearly below the arithmetic
peak of 3.5 TFlop/s, the value is high for this kind of al-
gorithm; the gap to the peak can be explained by the cost of
the indirect addressing into the vectors u, v, isolated ad-
ditions and multiplications that cannot be merged into fused
multiply-add operations, the throughput of caches, and, for
the larger case, insufficient data prefetching from RAM.

The throughput of 2.82 billion DoFs/s with 50 million
DoFs for a matrix-free operator evaluation (p = 5, quadratic

geometry computation) can be compared to a sparse matrix-
vector product: the lowest order p = 1 can reach a
throughput of between 590 million DoFs/s (separate matrix
entries for all three vector components, perfect caching of
vector entries) and 1.6 billion DoFs/s (same matrix for all
three vector components; only applicable for simple
boundary conditions), or between 50 and 147 million DoFs/
s for the p = 5 case. The effect of high-order matrix-free
algorithms being several times faster than low-order matrix-
based algorithms on a degree of freedom basis has been

examined in detail, for example, in Kronbichler and Wall
(2018).

3. Conjugate gradient algorithm

The high throughput of the matrix-free operator evaluation
has important implications for performance tuning of the
CG iterative method as the matrix-vector product might no
longer be the dominant operation. Despite using an accurate
integration with p + 2 points per direction, the throughput
shown in Figure 2 is around a third of that of simply copying
one vector to the other, which achieves a throughput of 8.5
billion DoFs/s at 205 GB/s due to 24 bytes of access per
unknown with 8 bytes read, 8 bytes write, 8 bytes of read-
for-ownership transfer (Hager and Wellein, 2011) on a dual-
socket Intel Xeon 8174 machine.

For preconditioning, this work considers the case of a
simple point Jacobi preconditioner, that is, the matrix di-
agonal. This preconditioner is representative for problems
including a strong mass matrix contribution besides the

Algorithm 1 Preconditioned conjugate gradient method.

1: r0 ¼ b�Ax0, z0 ¼ M�1r0, p0 ¼ z0, e0 ¼ rT0z0
2: k¼ 0
3: while not converged do
4: vk ¼ APk
5: αk ¼ ek

pTk vk
| 1st region:r:2

6: xkþ1 ¼ xk þ αkpk 2nd region:r:4/w:2
7: rkþ1 ¼ rk � αkvk
8: if ffiffiffiffiffiffiffiffi

γkþ1
p ¼ krkþ1k< ε then

9: break
10: end if
11: zkþ1 ¼ M�1rkþ1

12: ekþ1 ¼ rTkþ1zkþ1 | 3rd region:r:2
13: βk ¼ ekþ1

ek
14: pkþ1 ¼ zkþ1 þ βkpk | 4th region: r:2/w:1
15: k ¼ kþ1
16: end while
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Laplacian (1), as argued in Fischer et al. (2020). Since the
same coefficient is used for all 3 vector components of u,
only the diagonal to a scalar Laplacian (computed with
Gauss–Lobatto integration on p + 1 points) is stored and
applied to all three components.

3.1. Breakdown of runtime

Figure 1 shows a breakdown of the runtime per unknown for
one CG iteration, plotted over the number of unknowns for
the basic CG variant presented in Algorithm 1. In this study,
we consider the termination by the unpreconditioned re-
sidual norm krkk, which involves a third global reduction in
each iteration. Other variants exist, and the main perfor-
mance characteristics carry over similarly. The following
kernels are considered:

· The sparse matrix-vector product with matrix-free
operator evaluation,

· AXPY-like vector operations (y = ax + y),
· Dot product computations (including l2 norm), and
· The application of the diagonal preconditioner.

The AXPY-like vector operations and preconditioner
application do not involve any communication, the matrix-
vector product communicates between nearest neighbors in
the mesh (e.g., 26 on a cube geometry with perfect split),
whereas the dot product involves a reduction among all
participating processes. The experiment of Figure 1 has
been conducted on a single compute node with 48 cores.

In the left part of the plot in Figure 1 with fewer than 105

DoFs, the load imbalance of the partitioning of the mesh
elements onto 48 processes as well as the latency of the
communication between the different cores on the node lead
to an approximately constant runtime of 6 × 10�5 seconds
per iteration. This appears as a decrease of time per un-
known as the size increases in the figure. The latency
limitations disappear for n ∼ 106 DoFs, indicating a
throughput limitation instead with a plateau in timings per
unknown. For very large sizes n > 107, the data set of the
conjugate gradient exceeds the caches and most data needs
to be fetched from main memory (RAM). Then, the vector
operations start to contribute significantly to the runtime,
causing a severe slowdown compared to intermediate sizes.

In order to understand the performance limitations of the
CG algorithm, we take a closer look at Algorithm 1.
Treating the matrix-vector product and the preconditioner as
black boxes, there are four separate regions of vector access
in the form of dot products and AXPY-like vector opera-
tions. Within each region, loop fusion leading to a single
loop over the entries of all vectors in the region may im-
prove the locality of reference. Loop fusion can for example
be used to compute the sum needed for the norm krk+1k

already during the computation of rk+1, avoiding an extra
vector load.

Between the regions, however, synchronization points
prevent loop fusion and all vector entries need to be touched
before starting the next region. For instance, the compu-
tation of xk+1 and rk+1 depends on pk, rk, vk, xk, and αk. The
latter itself depends on pk and vk and requires a full vector
sweep through them. If the size of the vectors pk and vk
exceeds the capacity of a particular cache level during the
computation of the dot product for αk and the entries are
already evicted from the cache in the form of capacity
misses, a second load from the upper levels of the memory
hierarchy is inevitable. Similarly, during the computation of
pk+1 in the fourth region, the vector entries of pk and zk+1
would have to be loaded again, despite being touched in the
second region and inside the preconditioner, respectively.
Note that even with an ideal cache replacement strategy this
problem cannot be resolved for vectors considerably larger
than the caches.

Summarizing the number of reads in each region of the
conjugate gradient algorithm, the preconditioned conjugate

Algorithm 2 Pipelined conjugate gradient method.

1: while not converged do
2: qk¼ Awk

3: βk ¼ γk�1=γk�2
4: αk ¼ γk�1=

�ak�1 � βk
γk�1
αk�1

�
5: pk ¼ rk þ βkpk�1 r:7/w:6
6: xk ¼ xk þ αkpk
7: sk ¼ wk þ βksk�1

8: rk ¼ rk�1 � αksk
9: zk ¼ qk þ βkzk�1

10: wk ¼ wk�1 � αkzk
11: γk ¼ rTk rk
12: ak ¼ wT

k rk
13: end while

Algorithm 3 s-step conjugate gradient method with the aliases
Rk ¼ Tkð:,1 : s � 1Þ and Qk ¼ Tkð:,2 : sÞ.

1: while not converged do
2: Tk ¼ ½rk, Ark;…, Asrk�
3: Bk ¼ �W�1

k�1ðQT
kPk�1Þ | r:2s/w:0

4: Pk ¼ Rk þ Pk�1Bk r:2s+1/w:1
5: Wk ¼ QT

k Pk
6: gk ¼ PTk rk
7: ak ¼ W�1

k gk
8: xk ¼ xk�1 þ Pkak | r:s+1/w:1
9: rk ¼ b� Akxk r:2/w:1
10: γk ¼ rTk rk
11: end while
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gradient algorithm requires 10 full vector reads in each
iteration besides the access for the matrix-vector product
and preconditioner, despite only 4 vectors participating in
the algorithm (assuming vk and zk+1 use the same memory).
This number can be slightly reduced to 9 by moving the
computation of xk+1 to the 4th region to reuse reads of pk.

3.2. Alternative CG methods

For a simpler comparison, we now consider plain conjugate
gradient algorithms without preconditioner. The basic
version (Algorithm 1 with zk+1 = rk+1 andM

�1 = I) requires
9 full vector reads and 3 vector writes besides the access for
the matrix-vector product.

In the literature, a series of alternative flavors of the CG
algorithm have been developed with the goal to reduce the
number of synchronization points, primarily driven by latency
considerations. However, they naturally also increase the
possibility for loop fusion andmight therefore also improve the
memory transfer (Rupp et al., 2016). As a point of comparison
of the algorithm structure, we present Algorithm 2 for the
pipelined conjugate gradientmethod andAlgorithm 3 for the s-
step conjugate gradient methods, respectively. To simplify the
presentation, hereafter we ignore the algorithms’ initialization
and focus on the structure of the main iteration.

In the pipelined CG method (Ghysels and Vanroose,
2014), the number of synchronization points is reduced to
one by introducing additional global auxiliary vectors.
Apart from the intended ability to overlap global commu-
nication with the matrix-vector product, this also allows
vector operations to be concentrated in one vector access
region. A naive implementation using a separate loop for
each line of Algorithm 2 would yield a total of 15 vector
reads per CG iteration for the 7 participating vectors. Using
loop fusion reduces the number of reads to 7, the number of
involved vectors. It is possible to slightly reduce the
memory transfer further by performing the update of x every
other iteration (before and after the update of p).

In contrast, s-step CG methods (Chronopoulos and Gear,
1989; Naumov, 2016) perform s CG iterations in a single
phase, reducing the number of global reductions to 3 per
phase, that is, to 3/s per CG iteration. This is especially
interesting when the global reductions are the bottleneck of
the CG algorithm. The global reductions are aggregated by
not working simply on vectors but on blocks of s vectors, for
example, Pk instead of pk and Rk instead of rk. Similarly, the
scalar factor αk becomes a vector ðak 2R

sÞ, βk a matrix
ðBk 2R

s×sÞ, and dot products become block dot products.
The communication time of a block operation is similar to
that of a scalar one, since modern networks are latency-
bound for global reductions up to a few dozens of values.

In the literature, the operation [Ark, …, Asrk] is referred
to as a “matrix-power kernel.” It is typically considered to
be uncritical for performance, since it only comprises of s

point-to-point communication steps in the worst case. For
low-order methods, increasing the number of ghost layers
allows to use a single communication step per matrix-power
kernel application (Malas et al., 2017), which might be
useful if the latency is the limiting factor. Furthermore, it can
also enable a higher throughput of the matrix-vector
product, since matrix and vector entries can be held in
caches. For the high-order (FEM) methods investigated
here, however, it does not pay off according to preliminary
investigations: The wide stencils lead to a much larger
dependency region and quickly saturate caches. Already in
the absence of communication, matrix-power kernel ap-
plications consisting of 3 matrix-vector products with the
present high-order FEM for p = 5 yield a lower throughput
than performing three operator evaluations in sequence.
Currently, we are not aware of more sophisticated im-
plementations for this class of algorithms that could exploit
this temporal locality. Furthermore, communication is
negatively affected as additional ghost layers involve all
unknowns on cells with a high surface-to-volume ratio
(MehriDehnavi et al., 2013). As shown in Kronbichler and
Kormann (2019), the cost of communicating all solution
coefficients from a single layer of elements is already
substantial and leads to pronounced slowdown of the
matrix-vector product for p > 3 in 3D.

In total, s + 1 matrix-vector multiplications are per-
formed per iteration and four update regions can be iden-
tified with a total of 5s + 4 reads and s + 2 writes per vector
entry. Finally, we would like to point out that the version of
the s-step CG method investigated in the following is nu-
merically unstable due to the loss of orthogonality of the
monomial Krylov subspace (Naumov, 2016). However, as
alternative formulations, which are numerically more stable
but involve additional steps, are structured similarly, results
obtained for this simple version are generally transferable to
other approaches.

Similarly to the s-step CG methods, enlarged CG methods
(ECG; Grigori and Tissot (2019); Lockhart et al. (2022)) also
work on blocks of vectors to accelerate convergence. The
motivation for the construction and the way to construct the
blocks are somewhat different, but the resulting high-level
algorithms are similar from the performance point of view
to those of s-step CG. Due to this similarity, we will not
consider ECG in the remainder of this work.

4. Minimize data access in standard CG

Inspired by the increased chances to fuse loops over vectors
in the pipelined and s-step conjugate gradient methods, we
now study a version of CG that has been introduced by
(Chronopoulos and Gear, 1989, Algorithm 2.2) and served
as a starting point for the derivation of pipelining methods.
However, in the present work, we do not further modify the
algorithm by Chronopoulos and Gear (1989) and instead
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aim to reduce the main memory transfer without introducing
additional auxiliary vectors, that inherently increase the
memory access.

We start our derivation by noting that the number of
synchronization barriers identified in Algorithm 1 can be
reduced by using redundant computations of partial sums,
which is possible in the case the preconditioner is cheap to
apply.

4.1. No preconditioner

We first consider the case of identity preconditioning (zk = rk
and M�1 = I) and aim to perform the computation of
contributions to βk before finalizing the computation of αk
and rk+1. We therefore expand rTkþ1rkþ1 into

rTkþ1rkþ1 ¼ ðrk � αkvkÞT ðrk � αkvkÞ
¼ rTk rk � 2αkr

T
k vk þ α2kv

T
k vk (6)

By computing the three sums for the inner products
rTk rk , r

T
k vk , v

T
k vk , the ingredients for βk can be scheduled in

parallel to the inner product pTk vk needed by αk, as shown in
Algorithm 4. Note that γk ¼ rTk rk is computed explicitly
rather than defined recursively from the previous iteration in
order to avoid detrimental influence of roundoff errors
(Chronopoulos and Gear, 1989; Saad, 1985). While this
scheme adds an additional read to rk during the summation
compared to the computation of vTk pk alone, this is com-
pensated by computing rk+1 at the same time as using the
respective entry for pk+1. In addition, the fused scheduling
uses pk for both xk+1 and pk+1. In the end, the number of
vector access regions is reduced to 2, one before (“pre”) and
one after (“post”) the matrix-vector product.

It is also possible to perform the updates to xk+1 only
every other iteration, reusing the content of the vector pk�1

and rk�1 before they get updated. All together, the number
of vector reads is reduced from 9 in the basic CG iteration to
6.5 in this improved variant.

Rupp et al. (2016) identified possibilities for additional
performance optimizations by the three phases “pre,”
“matrix-vector product,” and “post.” Specifically, that
contribution proposed to merge the matrix-vector product
with the “post” region on graphics processing units (GPUs)
for matrix-vector products through sparse matrix repre-
sentations in order to reduce the number of kernel calls.
Building upon this idea, we aim to merge both regions with
the matrix-vector product, which on the one hand allows to
reduce the memory transfer on the CPU, but is also more
involved in the context of matrix-free FEM.

4.2. Diagonal preconditioner

The ideas of the previous subsection can be extended to the
case of a preconditioner. Under the assumption that the pre-
conditioner is cheap and that there are no long-range de-
pendencies introduced to the computation of zk+1 =M�1rk+1, it
is more economic to apply the preconditioner several times.

Following equation (6), we decompose the computation
of the numerator for βk into several inner products that do
not depend on αk

βk ¼
zTkþ1rkþ1

zTk rk
¼

�
M�1rkþ1

�T
rkþ1

zTk rk

¼ rTkM
�1rk � 2αkrTkM

�1vk þ α2kv
T
kM

�1vk
rTkM

�1rk
(7)

Thus, βk can be obtained only based on the value of rk and vk
from the beginning of the iteration, prior to the update of the
vectors xk+1, rk+1, zk+1.

Similarly, the value of γkþ1 ¼ krkþ1k2 for the conver-
gence criterion can be computed in parallel to the reduction
for αk, using the expansion

Algorithm 4 Conjugate gradient method with merged vector
operations.

1: k ¼ 0, α0 ¼ β0 ¼ 0, r0 ¼ b�Ax0,p0 ¼ v0 ¼ 0
2: while not converged do
3: k ¼ kþ 1
4: if k > 1 odd then “pre” region:r:3.5/w:2.5
5: xk ¼ xk�2 þ αk�1pk�1

6: þ αk�1
βk�2

ðpk�1 � rk�1Þ
7: end if
8: rk ¼ rk�1 � αk�1vk�1

9: pk ¼ rk þ βk�1pk�1

10: vk ¼ Apk

(continued)

(continued)

11: ak ¼ pT
k vk “post” region:r:3/w:0

12: γk ¼ rTk rk
13: ck ¼ rTk vk
14: dk ¼ vTk vk
15: αk ¼ γk

ak
16: γkþ1 ¼ γk�2αkck þ α2kdk
17: if ffiffiffiffiffiffiffiffi

γkþ1
p < ε then

18: if k odd then
19: xkþ1 ¼ xk þ αkpk

20: else
21: xkþ1 ¼ xk�1 þ αkpk þ αk�1

βk�1
ðpk � rkÞ

22: end if
23: break
24: end if
25: βk ¼ γkþ1

γk
26: end while
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γkþ1 ¼ rTk rk � 2αkr
T
k vk þ α2kv

T
k vk (8)

Therefore, given the residual rk and the result of the matrix-
vector product vk, all scalars of the current conjugate gra-
dient iteration can be computed using one reduction region.
The vector zk+1 is no longer stored explicitly, since we
assume that the application of the preconditioner is cheaper
than the read and write of zk+1. As a result of this re-
structuring, all vector updates can be clustered in a single
region. Simplifying the notation and combining the ex-
pressions above, we obtain Algorithm 5.

The reformulated algorithm results in two vector access
regions, with loop fusion applicable within each region. As
in Algorithm 4, the xk update can be delayed and performed
only every other iteration. The first fused loop region now
consists of 3.5 full vector loads per iteration, plus the load of
the preconditioner that—under the assumption that a single
diagonal is used for each component of the block PDE system
(1)—consists of 1 =

3 doubles per vector entry. The number of
stores is one for rk and one for pk as well as one for xk every
second iteration. The number of vector loads in the second

region is equal to 3 plus 1 =

3 for the diagonal preconditioner.
The present reformulation results in seven global reductions,
which can be computed by summations local to each MPI
process and a single MPI_Allreduce carrying 7 variables.
Once the seven scalars are available, the coefficients αk and βk
can be computed locally. The presented reformulation also
enables a fusion into the matrix-vector product, as discussed
in the next section.

The proposed algorithm relies on three properties of the
preconditioner M�1:

· The preconditioner, which is applied twice in the first
vector access region and twice in the second vector
access region, is assumed to be cheap to apply, with
arithmetic costs hidden behind the memory transfer of
the involved vectors.

· We assume that there are no long-range dependencies
in the preconditioner, allowing to reuse the respective
entries of rk and vk from caches or registers when
M�1rk and M�1vk are computed.

· The memory access induced by the preconditioner is
assumed to be less expensive than the aggregated
store and load of zk+1 in Algorithm 1.

A diagonal preconditioner obviously fulfills these
properties, whereas, on the other extreme, a multigrid V-
cycle would violate all three requirements. Clearly, it needs
to be examined for each preconditioner whether it fits into
this scheme on a case-by-case basis, with preconditioners
with more global action requiring a separate storage step to
get M�1rk+1 before the reductions for βk.

5. Combining vector updates with
matrix-vector product

In the previous section, the matrix-vector product has been
treated as a black box. In order to further improve the data
reuse between the vector access regions of Algorithms 4
and 5, we propose to embed the vector updates and dot
products into the matrix-free operator evaluation, which
allows to re-use hits of the entries of p, r, v in caches during
the “post” stages, leading to a single memory read of the
vectors p, r, v, and x in the ideal case (3.83 doubles per
unknown).

This is realized by performing the operations identified in
the previous section on subranges of the vectors while
looping over cells according to equation (4) to exploit
temporal locality. In order to produce a valid algorithm, the
data dependencies during the matrix-vector product need to
be identified and translated into subranges, as detailed in the
following three subsections. Note that this approach is more
involved than previously proposed algorithms that fuse
vector operations following the matrix-vector product into

Algorithm 5 Preconditioned conjugate gradient method with
merged vector operations.

1: k¼ 0, α0 ¼ β0¼ 0, r0 ¼ b�Ax0,p0 ¼ v0 ¼ 0
2: while not converged do
3: k ¼ kþ 1
4: if k > 1 odd then “pre” region:r:3.83/w:2.5
5: xk ¼ xk�2 þ αk�1pk�1

6: þ αk�2
βk�2

ðpk�1 �M�1rk�1Þ
7: end if
8: rk ¼ rk�1 � αk�1vk�1

9: pk ¼ M�1rk þ βk�1pk�1

10: vk¼ Apk

11: γk ¼ rTk rk “post” region:r:3. 3/w:0
12: ak ¼ pT

k vk
13: bk ¼ rTk vk
14: ck ¼ vTk vk
15: dk ¼ rTkM

�1rk
16: ek ¼ rTkM

�1vk
17: fk ¼ vTkM

�1vk
18: αk ¼ dk

ak
19: if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γk�2αkbk þ α2kck

q
< ε then

20: if k odd then
21: xkþ1 ¼ xk þ αkpk

22: else
23: xkþ1 ¼ xk�1 þ αkpk þ αk�1

βk�1
ðpk �M�1rkÞ

24: end if
25: break
26: end if
27: βk ¼ dk�2αkekþα2k fk

dk
28: end while
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the loop over unknowns in sparse matrix-vector products
(Rupp et al., 2016) or over cells for discontinuous Galerkin
schemes, for example, in Kronbichler and Allalen (2018),
Charrier et al. (2019) and Munch et al. (2021).

5.1. Data dependencies in matrix-free loops

On a high level, the matrix-vector multiplication depends on
the source vector u and produces the destination vector v.
The cell-wise nature of our matrix-free algorithm, involves a
loop through each cell of the mesh that

· reads all unknowns ue = Peu attached to a cell, which
can be shared with other cells for continuous finite
elements, and

· accumulates integral contributions in the same way
ðPT

e veÞ.

We can hence refine the dependency statement for each
entry of the source and the destination vector: the entry ui, i
2 {1,…, n}, is only needed once the first cell reads its value.
Conversely, entry vi is available as soon as the last cell has
added its contribution. From an implementation point of

view, this means that we can postpone the update of ui until
its first usage and use the value of vi for the dot product as
soon as its value has been finalized. In the following, we are
going to refer to operations happening before the first read
access to u but still within the matrix-free loop—in line with
the region names in Algorithms 4 and 5—as a “pre” op-
eration and to operations happening after the last write
access to v as a “post” operation.

Figure 3 visualizes the data dependencies in a matrix-free
operator evaluation as well as its interplay with “pre” and
“post” operations. In an MPI-parallel context, the ghost
exchange adds additional constraints (Kronbichler and
Kormann, 2012, Algorithm 2.1). More precisely, all un-
knowns owned by a process in the vector u that need to be
sent to remote processes have to perform the “pre” operation
before the ghost exchange is initiated. Furthermore, the part
of integrals accumulated on remote processes needs to be first
sent to owner of the respective entry in the vector v before the
“post” operation can be scheduled on those unknowns. It
should, however, be noted that both communication steps can
be overlapped with computations on inner cells.

We conclude this subsection by discussing the major
differences to matrix-based implementations. The popular
compressed row storage and, similarly, other sparse-matrix
formats update an entry in the destination vector only once by
applying the whole row of the matrix. In such a context, it is
obvious when values in the destination vector are available
and it is straightforward to determine when to schedule the
“post” operation during the matrix-vector product in a
merged way, as was exploited by Rupp et al. (2016).
However, this relation is not given for the dependency region
of the source vector, allowing to embed the “pre” operation
closer to the user of vector entries only based on a depen-
dency analysis similar to the one proposed here.

5.2. Batching work from several cells

Tracking the state of each individual vector entry ui, vi for
scheduling the “pre” and “post” operations would lead to
excessive overhead and inhibit loop optimizations, such as
vectorization and unrolling of the vector operations in CG.
Therefore, the “pre” and “post” operations are tracked on
ranges of vector entries. The length of the range is given in
multiples of 64, a heuristic value that permits full vecto-
rization with typical SIMD lengths today, except for a single
spot at the end of the vectors.

The length of the ranges is crucially influenced by the
number of vector entries processed by the matrix-free inte-
grals in between. The intent is to reach a significant share of
overlap between the “pre” and “post” ranges, enabling to
reuse data read during the “pre” operations even during the
“post” operations from the fast cache memory. The range
lookup and the callback into matrix-free integration functions
come with some overhead in our implementation, which is

Figure 3. Illustration of data dependencies in matrix-free
operator evaluation with degree p = 3 for a lexicographic loop
through the cells starting from the bottom left. Each symbol
represents an unknown. Gray crosses denote unknowns where
the result of the operator evaluation is complete before the
highlighted cell. The 3 × 3 unknowns marked with black crosses
get the final contribution from the highlighted cell and can schedule
the “post” operation afterward together with the unknowns
marked with gray crosses. The 3 × 3 unknowns indicated by black
circles indicate unknowns that have their first access on the
highlighted cell, thus necessitating to be preceded by the “pre”
operation. Black squares denote unknowns with pending
integrals, that is, the “pre” operation has already been done, but
the “post” operation is not yet possible. Gray disks illustrate
unknowns not yet processed.
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especially noticeable for low and intermediate polynomial
degrees with small work per cell. We therefore schedule the
“pre” and “post” operations not around every individual cell,
but around batches of cells. The size of the batches is selected as

nbatch ¼ max

�	
1024

3ðpþ 1Þ3


, 2

�
nsimd lanes (9)

The first expression inside the maximum operation ensures
that more cells are grouped together for lower polynomial
degrees, by dividing by the number of unknowns on each
cell. The resulting number of cells is multiplied by the
number of SIMD lanes in the instruction set in order to
employ vectorization across elements (Kronbichler and
Kormann, 2012). For higher degrees (p ≥ 4), at least two
SIMD groups of cells are used.

Depending on the number of SIMD lanes, the number of
vectors accessed in the “pre” and “post” stages, as well as
the additional data access for the matrix-free integrals, the
criterion given by equation (9) leads to a few thousands to
tens of thousands of double-precision values corresponding
to up to few hundreds of kB of data. This fits well within
modern level-2 or level-3 caches, which is why no addi-
tional tuning has been performed.

We have integrated the proposed algorithm into deal.II
(Arndt et al., 2020a). It allows users to perform a “pre” and
“post” operation during any matrix-free loop by
providing—additionally to the cell operation—appropriate
anonymous functions in the style of

vmult(dst, src) := loop(dst, src, op cell, op pre, op post)

Since the operation op_cell, which contains the specifics of
the considered PDE/physics, is interchangeable, our ap-
proach is modular and the proposed algorithms are easily
applicable to other PDEs—not just those considered in this
publication. For CG, we provide off-the-shelf im-
plementations of op_pre and op_post.

5.3. Numbering of unknowns

The second ingredient is to minimize the number of ranges
with a high number of cell batches between the first and last
access in the matrix-free loop. As seen from Figure 3,
unknowns located on shared vertices, edges, and faces all
have the potential to reach over long distances. This effect is
exacerbated when working on blocks of 64 unknowns,
because a single entry out of 64 can lead to a delay of the
“post” operation. It is therefore crucial to develop a suitable
cell traversal and numbering of unknowns. The cell tra-
versal should aim for a high volume-to-surface ratio of the
cell batches, because all unknowns located inside the cell
batch have an optimal pre-post distance. In this work, a
Morton space-filling curve is used for the partitioning of

elements among the processes (Bangerth et al., 2011;
Burstedde et al., 2011) and for the process-local mesh
traversal.

Given the mesh traversal, unknowns are enumerated in
the sequence of the following four steps, see also the il-
lustration in Figure 4:

· In the first step, all unknowns touched only by a
single cell batch are enumerated following the or-
dering of the cells. Except for reaching the next
multiple of 64, this group will have a minimal dis-
tance of one between the “pre” and “post” phase.

· Next, the enumeration is continued on the unknowns
touched by several batches, but not in contact with
remote MPI processes. Here, some ranges will have a
high distance, whereas others can still be completed
reasonably close after the start.

· In the third step, the unknowns owned locally, but re-
quested by remote MPI ranks, are assigned. These un-
knowns will not profit from overlap between the “pre”
and “post” steps, because the “pre” step needs to be done
before the initial MPI_Isend command, whereas the
“post” step comes after the finalMPI_Recv command. A
contiguous numbering reduces the ranges of this unfa-
vorable part of the vector to a minimum, besides also
facilitating the pack/unpack operations.

· Unknowns that are subject to constraints (not shown
in Figure 4), such as Dirichlet boundary conditions,
will not receive contributions from the matrix-free
integrals with matrix A representing a homogeneous
operator. If they are kept in the linear system, like in
the implementation of deal.II, they are appended at

Figure 4. Illustration of the numbering of degrees of freedom for
a 2D setup with polynomial degree p = 3. Cells are grouped
together into batches of 6 cells and the interior unknowns are
numbered first (highlighted by green-shaded boxes). The second
set of numbers are unknowns located on more than one cell
batch (not marked). The third set consists of unknowns that need
to be exchanged with remote MPI processes (orange shades).

Kronbichler et al. 71



the end of the locally owned unknowns and updated
during the last cell batch.

Furthermore, the numbering is set up to ensure contig-
uous numbers of multiple unknowns associated with each
vertex, edge, face, and volume, in order to reduce the
memory for index storage from 3 (p + 1)3 numbers per cell
to 33 numbers (for consistently oriented meshes). This re-
duces the memory requirements of metadata, increases data
locality and effectiveness of prefetching as well as allows
for packed load operations.

Figure 5 visualizes the benefits of the proposed enu-
meration algorithm by plotting the cumulative distribution
function of the liveliness of each subrange. We define
“liveliness” as the number of cell batches processed be-
tween the first and the last access, respectively. As a ref-
erence, we also show the liveliness of the standard
enumeration of degrees of freedom in deal.II (enumeration
in cell order). The reduction of the liveliness is clearly
visible. For the vector Laplacian, around 76%—in contrast
to 54%—of the subranges is processed even in the same
batch of cells. While the possibility to process subranges
within the same batch of cells is not necessary, we can see
similar trends for subranges living less than 10 batches of
cells. This is an important threshold: Each cell batch of 16
cells touches 12 kB of unique data (geometry, indices) for
the matrix-vector product and

16½cells�× 3 � 53
�
unique DoFs

cell

�
× 8

�
byte

double

�
¼ 48½kB�

(10)

of unique data per vector or 208 kB for four vectors and the
preconditioner. For around 10 cell batches, the data thus
reaches the combined size of the L2 and L3 caches per core

on the Intel Skylake architecture. For the scalar Laplacian,
our heuristics use batches of 32 cells instead due to a lower
number of DoFs/cell. This gives slightly better liveliness for
our proposed numbering scheme, whereas the case with
deal.II’s default numbering scheme has even higher live-
liness than in the vector case, as the DoFs with long
liveliness are spread to many blocks of 64 DoFs when the
number of unknowns per cell is lower.

While the consideration of liveliness is a rather theo-
retical approach of quantifying the benefits for combining
the “pre” operation, the matrix-vector product, and the
“post” operation, a clear reduction in the data volume ac-
cessed from RAM can be observed. A cache analysis (see
Figure 6) conducted on the basis of hardware performance
counters using the LIKWID tool (Treibig et al., 2010) re-
veals that the combined version of the PCG algorithm, as
proposed here, only reads 5.7 doubles per degree of freedom
once the capacity of the caches is exceeded. This value is
lower by 4.6 doubles than the value of 10.3 reads for the
naive execution of Algorithm 5. Note that the renumbering
proposed above has further benefits beyond the liveliness
shown in Figure 5, as the proposed scheme leads to a more
linear data access pattern and fewer active streams, im-
proving the effectiveness of hardware prefetching and re-
ducing stress on the translation-lookaside buffers.

5.4. Comparison of CG variants

Since the reduction of the data volume to be transferred
from/to main memory is the key strength of the CG al-
gorithm proposed in this work, we conclude this section by

Figure 5. Liveliness of data in vector ranges for the 3D vector and
scalar Laplacians with polynomial degree p = 5 on 40 MPI
processes. The vector Laplacian involves 297 million DoFs
subdivided into 1229 cell batches on each MPI process, the scalar
Laplacian 99 million DoFs with 615 cell batches.

Figure 6. Comparison of measured memory transfer for 2 × 20
cores of Intel Xeon Gold 6230 for standard and combined
versions of Algorithm 5.
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comparing the measured read and write data volumes of
the basic CG, pipelined CG and s-step CG algorithms
(Algorithms 1–3, with loop fusion applied where possible)
with the results of the proposed combined Algorithms 4
and 5.

Table 1 shows the predicted memory read and write
transfer volumes in different regions of the CG versions. In
the proposed combined CG variants, we assume that the
reuse of memory reads allows vectors to be read only once
across the iteration of the algorithm and, as a consequence,
we do not separate estimates of the vector access regions
and of the matrix-vector product.

Figure 7 presents both the estimated and measured
averaged values of a complete iteration, derived from ex-
periments with 100 iterations. The cost of a single matrix-
vector product (“mat-vec”) is 3.0 double data reads and 1.3
double data writes, which is slightly higher than the the-
oretical expectation (2.0/1.0) due to non-perfect caching and
loading of the geometry data. Since the optimization of the
memory transfer of this portion of the algorithm is not the
focus of the current work, we use the measured values of
the matrix-vector multiplication as a baseline transfer also
for the CG algorithms.

In Figure 7, one can see that the measured values
match well with the predicted ones. Furthermore, it is
clear that while the amount of data to be written by the
combined versions is comparable with the s-step version,
they read up to 5 doubles less data from RAM compared
both to the pipelined and the s-step CG schemes. Given
the considerations in the previous subsection, this im-
provement is expected, since a large fraction of the vector
entries accessed during the “pre” operation remains in
caches until they are read again during the “post”
operation.

Compared to the theoretical transfer of 4.8 doubles per
degree of freedom, the excess transfer in the combined
preconditioned method can be explained to a good extent
by the liveliness in Figure 5 and the data-in-flight sug-
gested by equation (10): 13% of vector entries have a
liveliness of 10 or more cell batches, which can be ex-
pected to give 2 additional reads between the “pre” op-
eration and the matrix-vector product as well as a transfer
of 3:3 doubles to the “post” operation for the respective
part of the vector. This explains 0.7 out of the 0.9 excess
reads of doubles per DoF.

Furthermore, it is worth noting that the cost of the non-
preconditioned and of the Jacobi-preconditioned variant of
the proposed CG algorithm is very close, underlining that
the benefit is even clearer in the preconditioned case.

In the next section, we evaluate the influence of the
reduced access to RAM and the reduced number of global
reductions on the throughput of CG algorithms for dif-
ferent scenarios of high-order matrix-free finite-element
methods.

6. Numerical results

In Sections 4–5, we have proposed techniques that reduce
the access to main memory during CG iterations. Since
reducing the memory access is only a means to the

Table 1. Summary of the modeled ideal memory transfer of
vector access regions (see also the annotations in Algorithms 1–5)
and matrix-vector multiplication for different CG variants.

vector access mat-vec

Read Write Read Write

CG 9 3 2 1
Pipelined CG 7 6 2 1
s-step CG 5 + 4/s 1 + 2/s 2 1
Combined CG – – 3.5 3.5
PCG 13 4 2 1
Combined PCG – – 3.83 3.5

Figure 7. Comparison of measured and estimated memory
transfer for various methods on 2 × 20 cores of Intel Xeon Gold
6230 and 108 DoFs, using the measured values of the matrix-
vector multiplication as a baseline transfer.
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application goal of increasing the “throughput,” the CG and
PCG variants for different numbers of compute nodes are
evaluated in the following, including some variations of the
benchmark and the behavior for different hardware. Simi-
larly to Section 5.4, basic loop fusion is applied in Algo-
rithms 1–3 during evaluation.

6.1. Node-level performance

Figure 8 shows the throughput on a single compute node for
the different CG variants (no preconditioner) as well as the
preconditioned (PCG) case with a diagonal preconditioner. For
small sizes, the throughput is largely similar between the
methods, given that the matrix-vector product is the domi-
nating cost and fast caches can absorb the various vector access
patterns. As anticipated by the memory transfer analysis from
Section 5.4, the picture changes when going to larger sizes,
where the memory-transfer-efficient combined variants are
significantly faster. The advantage is particularly impressive
considering that the proposed CG and PCG variants, running
at 2.36 and 2.13 billion DoFs/s for the largest sizes, are
separated from any other method by a larger gap than what is
observed between the best and worst of the remaining
schemes, the s-stepCGmethod (s= 6)with 1.46 billionDoFs/s
and the preconditioned CG scheme with 0.98 billion DoFs/s.

The mix of memory-intensive operations on vectors and
the arithmetically heavy matrix-vector product makes the
throughput slightly deviate from the memory-transfer pre-
dictions of Figure 7. For example, the throughput of the
combined CG scheme of 2.36 billion DoFs/s corresponds to
an average memory transfer of around 170 GB/s aggregated
over the whole CG solver, whereas the s-step method with
1.46 billion DoFs/s involves an average transfer of 145 GB/s.
While neither of the two variants saturates the memory

bandwidth on the present architecture, the achieved band-
width demonstrates an additional benefit of our CG im-
plementation besides the lower memory transfer: Fusing
vector operations into an arithmetic-heavy matrix-vector
product allows to use spare memory bandwidth, leading to
a better distribution of the memory transfer.

Figure 8 also shows the throughput of the matrix-vector
product alone as a point of reference. As its throughput is
20–30% higher than that of the proposed merged variants,
without the latter fully saturating the available memory
bandwidth, we suppose that further performance im-
provements could be gained in the proposed algorithms by
suitable data prefetching. Note that the slight oscillations in
throughput are caused by differences in the amount of data
exchange when cells are divisible by 48 or 64 as discussed
before.

6.2. Scalability on up to 3072 nodes

Figure 9 shows the throughput for different CG and PCG
variants on 512 compute nodes. The plot scales the achieved

Figure 8. Throughput over the problem size on a single Intel
Xeon Platinum 8174 node for the different CG variants.

Figure 9. Throughput over the problem size per node (top) and
throughput over latency (bottom) on 512 nodes of Intel Xeon
Platinum 8174 (24,576 MPI ranks) for various formulations.
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throughput by the number of nodes, which allows a direct
comparison with Figure 8. It can be seen that the behavior
for large sizes is similar to the single-node case, with a slight
loss of around 5–10% in the parallel efficiency due to inter-
node communication. For intermediate sizes n ∼ 106 per
node, however, there is a pronounced difference. In this
regime, the timings of a single iteration are in the range of
the communication cost in terms of a global reduction,
canceling parts of the cache effect.

The experiments show that the proposed combined CG
variants achieve a similar performance for small sizes as the
pipelined and s-step methods, despite the latency optimi-
zation of the latter methods. This can be explained by the
number of MPI_Allreduce calls per iteration, which are one
for both the combined CG method and the pipelined CG
method (albeit overlapped with the matrix-vector product
for the latter), whereas the s-step method with s = 6 results in
an average of 0.5 global reductions per iteration. The scaling
limit becomes even clearer when plotting the measured
throughput over the time consumed by a single CG iteration
in the lower panel of Figure 9, directly showing the lowest
possible iteration time. While the CG and PCG methods are
slower due to two and three global reductions per iteration,
respectively, all other methods take around 1.3 × 10�4

seconds as a minimum time, which is caused by the global
reduction combined with a scaling limit of around 8 × 10�5

seconds for the matrix-vector product.
In Figure 10, the throughput on 3072 nodes against the

time of a single CG iteration is shown. By comparing with
the result on 512 nodes (dotted lines), a slight loss in
throughput for larger sizes can be seen, corresponding to a
small reduction in parallel efficiency for weak scaling. Near
the strong scaling limit in the left part of the figure, an

increase in the minimal time can be observed, which is due
to the higher cost of the global reductions on a larger scale.
However, the increase is similar between the proposed
combined PCG algorithm and the baseline methods. More
importantly, the combined CG algorithm with precondi-
tioner achieves a throughput that is 35–40% higher than the
unpreconditioned s-step method for large sizes, confirming
the beneficial behavior of the proposed variant.

6.3. Benchmark variations

In the following, we will consider variants of the benchmark
introduced in Section 2. For the sake of simplicity and given the
results from the previous subsection,we concentrate on the basic
PCG algorithm and the proposed combined PCG algorithm.

Figure 11. Throughput over the problem size on four nodes of
Intel Xeon Platinum 8174 (top) and on one node of 2 × 64 core
Advanced Micro Devices Inc. (AMD) Epyc 7742 (bottom) for the
BP4 benchmark for different polynomial degrees p, all with
quadratic geometry representation and nq = (p + 2)3 quadrature
points.

Figure 10. Throughput over the problem size per node (top) and
throughput over latency (bottom) on 3072 nodes of Intel Xeon
Platinum 8174 (147,456 MPI ranks) for various formulations. The
dotted lines show the scaled throughput on 512 nodes (see also
Figure 9).
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6.3.1. Variation of the polynomial degree

The results obtained for the polynomial degree p = 5 above are
transferable also to other polynomials degrees, as shown in
Figure 11 (top panel). As examples, p = 1, 3, 5, 7, 9 are
considered. For p = 1, the cost of computations compared to
the number of unknowns is overwhelming, as (p + 2)3 = 27
integration points are used per cell compared to one unique
unknown per cell, leading to a low throughput of 0.4 GDoFs/
sec. This behavior specific to the present matrix-free operator
evaluation behaves as (p + 2)3/p3 and thus gives less work per
unknown for higher degrees, as opposed to sparse matrix-
vector products (Kolev et al., 2021; Kronbichler andKormann,
2012). For higher degrees, we can observe significant
speedups of the proposed PCG variants compared to the basic
PCG, with the highest throughput observed for p = 5. Note that
the maximal achievable throughput decreases for the com-
bined PCG algorithm as the polynomial degree increases
beyond p ≥ 7, as opposed to constant throughput for the basic
PCG scheme. This suggests that the fusion of vector updates
within matrix-vector product as proposed in Section 5 loses its
benefits due to a limited cache size. Caches need not only hold
vector data of increasing size but also larger temporary arrays
for sum factorization (Kronbichler and Kormann, 2019), with
data of 8 elements in flight on the given AVX-512 hardware.
Note that no tuning of the parameters that have been identified
in Section 5 has been performed, relying on simple heuristics.

6.3.2. Variation of the geometric description

According to the discussion in Section 2.2, we have con-
centrated on a tri-quadratic geometry description as a com-
promise between higher-order geometry representation and
high throughput up to now. However, the beneficial behavior
observed is transferable to other geometric descriptions as
well. Figure 12 compares the proposed algorithmwith a basic
PCG scheme on the two extrema of matrix-vector products
from Figure 2, one loading the inverse Jacobian at each
quadrature point and the other using an affine mesh with nq =
p + 1 and constant Jacobians. While we observe a speedup of
2.17 in our base case of a bilinear geometry description, the
solver is 1.57× faster when loading the inverse Jacobians and
even 2.27× faster in the case of an affine mesh. The relatively
low improvement when loading the inverse Jacobians can be
understood by recalling the node-level performance analysis
of Section 6.1 as the matrix-vector product is itself limited by
the memory bandwidth. Therefore, no additional memory
transfer can be hidden behind computations, reducing the
advantage to the reduction in memory transfer only.

6.3.3. Variation of the partial differential equation

As a next set of tests, we consider variants of the benchmark
from Fischer et al. (2020), namely BP1 (scalar mass matrix,

nq = p + 2), BP2 (vectorial mass matrix, nq = p + 2), BP3
(scalar Laplace operator, nq = p + 2), and BP5 (scalar
Laplace operator, nq = p + 1, Gauss–Lobatto quadrature).
Figure 13 compares the throughput of the basic CG algo-
rithm and of the combined version for BP1–BP5. For large

Figure 12. Comparison of throughput of BP4 benchmark with
basic preconditioned CG algorithm and the proposed combined
variant with different implementations of matrix-free operator
evaluation for polynomial degree p = 5 on 2 × 24 cores of Intel
Xeon Platinum 8174.

Figure 13. Throughput over the problem size for the standard
preconditioned CG scheme and the proposed improved version
on #3 nodes of Intel Xeon Platinum 8174 for the CEED
benchmark problems BP1 (scalar mass matrix), BP2 (vector-valued
mass matrix), BP3 (scalar Laplace matrix), BP4 (vector-valued
Laplace matrix), and BP5 (scalar Laplace matrix, collocation
setting with Gauss–Lobatto quadrature on nq = (p + 1)3 points)
according to Fischer et al. (2020).
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problem sizes (≥5 × 106 DoFs/node), a clear trend is visible.
While the throughput is limited to 0.8–1.2 GDoFs/sec for
the basic CG scheme, the value is around two times higher
for the proposed algorithms with 1.8–2.3 GDoFs/sec for all
cases. Also note that the BP1, BP2, and BP5 cases with an
arithmetically lighter matrix-vector product saturate the
RAM bandwidth with around 200 GB/s for the combined
CG iteration, whereas BP3 and BP4 reach around 170 GB/s
bandwidth, as seen above.

6.4. Comparison of different hardware

In the following, we present results obtained on a dual-
socket AMD Epyc 7742 CPU and a Nvidia Tesla V100
GPU. The AMD CPU consists of 2 × 64 cores running at
2.25 GHz and uses code compiled for the AVX2 instruction
set extension (4-wide SIMD). This gives an arithmetic peak
performance of 4.61 TFlop/s. The memory configuration
uses 2 × 8 channels of DDR4-3200, resulting in a peak
bandwidth of 410 GB/s and a measured STREAM triad
bandwidth of 290 GB/s. The size of the last-level cache is
4 MB per core or 512 MB in total. The Nvidia V100
provides an arithmetic peak performance of 7.8 TFlop/s, a
peak memory bandwidth of 900 GB/s, and a measured
bandwidth of 720 GB/s. The performance specifications of
the V100 GPU are considerably higher on the GPU com-
pared to the two CPU systems, but with a less sophisticated
cache infrastructure.

6.4.1. Variation of the polynomial degree on Intel
and AMD CPUs

The lower panel of Figure 11 shows the experiment from
Subsection 6.3.1, varying the polynomial degree on an
AMD Epyc 7742 node. Here, we observe a maximal
throughput of 4 GDoFs/sec and maximal speedups of 3×
compared to the baseline CG solver (compared to 2 GDoFs/
sec and 2× speedup in the case of Intel). This difference can
be explained by the higher arithmetic performance of the
AMD system, shifting the performance limit with an
achieved bandwidth of around 270 GB/s closer to the
memory throughput limit of 290 GB/s. An interesting
observation is the fact that the performance does not drop
for the high polynomial degrees p > 5. This can be con-
tributed to larger caches as well as to the AVX2 instruction-
set extension with vectorization aggregating work from only
4 cells together, which increases the benefit of the com-
bination of “pre,” “mat-vec,” and “post” regions.

6.4.2. BP5 on CPU and GPU

As a last experiment, we run Algorithm 5 on a GPU ar-
chitecture. Given the much smaller available cache size

compared to compute units, we have not been able to embed
the vector access regions into the cell-based evaluation of
the matrix-vector product. As a result, we propose to run the
three regions “pre,” “mat-vec,” and “post” each as a separate
kernel with its own kernel call. Furthermore, the matrix-
vector product uses a precomputed final coefficient on the
GPU, due to a different balance between arithmetic per-
formance, available registers, and memory bandwidth
compared to CPUs, see also the analysis in Świrydowicz
et al. (2019). Details on the GPU infrastructure of deal.II can
be found in Ljungkvist (2017) and Kronbichler and
Ljungkvist (2019).

Figure 14 shows the throughput of the regular and the
combined CG method run on a single GPU device on
Summit3 (Nvidia V100). For small problem sizes, a clear
benefit can be observed due to the reduced number of kernel
calls (3). For large problem sizes, a speedup of about 18%
with 2.8 GDoF/s is reached. Note that this represents a
considerably lower improvement, which is due to the
missing overlap between the “pre” and “post” operations.
Nonetheless, Algorithm 5 also improves the throughput for
lower sizes because of fewer kernel launches. Reducing the
number of kernel calls in CG on GPUs has been also the
motivation in Aliaga et al. (2013), Dehnavi et al. (2011),
Rupp et al. (2016), and Chalmers and Warburton (2020).
The contribution by Rupp et al. (2016) was even able to
obtain two kernel calls for vector-matrix-multiplication
implementations based on sparse matrices. However, the
latter concept is not straightforwardly extensible to matrix-
free finite-element computations with contributions to the
result vector being accumulated from computations on
several cells, as discussed in Section 5.1. Since the GPU’s

Figure 14. BP5: Throughput over the problem size on a single
node for the basic preconditioned CG method and the
proposed combined variant.
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high-bandwidth memory is limited to 16 GB, the maximum
size of the problem that can be run is considerably smaller
on the GPU.

With the proposed combined CG method, the CPU
results appear more beneficial than the GPU results: Given
that both the memory bandwidth and arithmetic perfor-
mance is considerably higher on a single V100 device than
on the dual-socket Intel and AMD systems, one would
expect best performance on the GPU. However, the Intel
result is only 20% lower than the GPU, and the AMD
result from RAM is 20% better than on the GPU, because
of the reduction of memory transfer between the “pre” and
“post” regions. Furthermore, the CPU reach a higher
throughput for moderate sizes when the data fits into
caches.

7. Conclusions

We have presented an implementation of the conjugate
gradient method that aims to minimize the access to
auxiliary vectors for the case of high-order matrix-free
finite-element implementations with a diagonal pre-
conditioner. The development was motivated by the ob-
servation that matrix-free operator evaluation has become
so fast that AXPY-style vector updates, dot products and
the application of the preconditioner can consume around
two thirds of the total runtime for large problem sizes on
modern hardware, relevant for example for fluid dynamics
applications. The proposed solver relies on interleaving
the vector updates and dot products of the conjugate
gradient iteration with the loop through the mesh elements
of the matrix-vector product, combined with redundant
applications of the preconditioner and summation of
auxiliary quantities to break the dependencies. We have
shown that around 90% of the vector entries in the three
active vectors of a CG iteration can be re-used from fast
cache memory, resulting in a single load and store oper-
ation for each vector.

Both node-level performance analyses and strong/weak-
scaling studies on up to 147,456 CPU cores confirm the
suitability of the proposed algorithm for modern hardware.
Experiments have been conducted on CPU-based (Intel
Xeon Platinum 8174, AMD Epyc 7742) and GPU-based
(Nvidia Tesla V100 GPU) compute nodes for a large variety
of polynomial degrees, geometric descriptions, and PDEs
(scalar/vector-valued mass/Laplace matrix). Compared to a
baseline CG solver as well as optimized pipelined CG and s-
step CG implementations, speedups of 2–3× have been
reported. Besides reducing the memory transfer, the pro-
posed method allows to run memory-heavy vector opera-
tions near the arithmetic-heavy matrix-free operator
evaluation. As a result, new tuning opportunities for im-
plementing matrix-free methods appear, allowing to gain
performance from computing, for example, redundant

geometry information on the fly with reduced memory
transfer, an operation that might not be beneficial for the
matrix-vector product alone.

Future work aims to extend the algorithm towards the
data dependencies imposed by discontinuous Galerkin
discretizations as well as more sophisticated precondi-
tioners with longer-range data dependencies. Further-
more, it would be useful to apply analysis and
transformation tools from compiler constructions to re-
place the current manual dependency management for
interleaving the matrix-vector product with vector up-
dates and inner products by a more automatic approach
based on hardware characteristics, which would make the
application to other algorithms, like BiCGStab or
GMRES, simpler.
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