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Zusammenfassung

Diese Dissertation befasst sich mit binadren, nicht-bindren und verallgemeinerten Low-
Density-Parity-Check (LDPC)-Codes. Die beiden Hauptthemen sind der Entwurf und die
Analyse von quantisierten Nachrichteniibermittlungs Dekodern und die Untersuchung von
sogenannten Error Floors. Fiir das letztere Thema analysieren wir die Anzahl der Trapping
Sets (TSs), Absorbing Sets (ASs) und Fully Absorbing Sets (FASs), die Dekodierungsfehler

verursachen konnen.

Es werden quantisierte Dekodieralgorithmen fiir binére, nicht-bindre und verallgemeinerte
LDPC-Codes vorgeschlagen und mit Hilfe der Verteilungsdichteevolution (density evolution)
analysiert. Die Algorithmen modellieren die eingehende Nachrichten der variablen Knoten
als Beobachtungen eines extrinsischen Kanals. Die Ubergangswahrscheinlichkeiten des
extrinsischen Kanals sind im Allgemeinen unbekannt, aber genaue Schiatzungen werden
durch Verteilungsdichteevolution erhalten. Die Verteilungsdichteevolution wird ferner zur
Ableitung der asymptotischen iterativen Dekodierungsschwelle verwendet. Code-Ensembles
werden entworfen, um diese Schwelle zu optimieren, und numerische Simulationen bestatigen
die durch die asymptotische Analyse vorhergesagte Leistung. Eine Stabilitdtsanalyse

unterstreicht die Rolle, die variable Knoten des Grades 3 spielen.

Die endlichen und asymptotischen Enumeratoren von (elementary) T'Ss und (fully) ASs fiir
unstrukturierte und Protograph-basierte binare LDPC-Code-Ensembles werden abgeleitet.
Die Enumeratoren werden zur Schiatzung der Fehlergrenzen verwendet. In &hnlicher Weise
werden die endlichen und asymptotischen Enumeratoren von TSs und (elementary) ASs
fiir unstrukturierte und (eingeschréankte und nicht eingeschrénkte) protograph-basierte
nicht-bindre LDPC-Code-Ensembles abgeleitet. Die normalisierten logarithmischen asymp-
totischen Verteilungen werden durch Losen eines Gleichungssystems erhalten. Die Defini-
tionen von (elementary) T'Ss und (fully) ASs werden auf verallgemeinerte LDPC-Codes
erweitert. Numerische Simulationen zeigen, dass die vorgeschlagenen Definitionen Graphen-
strukturen ergeben, die fiir Bit-Flipping-Dekoder schédlich sind. Die (elementary) TS-
und (fully) AS-Enumeratoren fiir unstrukturierte und protogrammbasierte verallgemeinerte
LDPC-Code-Ensembles werden mit Hilfe von Generierungsfunktionen abgeleitet.
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Abstract

This dissertation deals with binary, non-binary, and generalized low-density parity-check
(LDPC) codes. The two main topics are the design and analysis of quantized message-
passing decoders and the study of so-called error floors. For the latter topic, we analyze
the number of trapping sets (T'Ss), absorbing sets (ASs), and fully absorbing sets (FASs)
that may cause decoding errors.

Quantized decoding algorithms for binary, non-binary, and generalized LDPC codes
are proposed and analyzed using density evolution. The algorithms model the variable
node inbound messages as outputs of an extrinsic channel. The transition probabilities
of the extrinsic channel are unknown in general but accurate estimates are obtained by
density evolution. Density evolution is further used to derive the asymptotic iterative
decoding threshold. Code ensembles are designed to optimize this threshold and numerical
simulations confirm the performance predicted by the asymptotic analysis. A stability
analysis highlights the role played by degree-3 variable nodes.

The finite-length and asymptotic enumerators of (elementary) TSs and (fully) ASs for
unstructured and protograph-based binary LDPC code ensembles are derived. The enu-
merators are used to estimate the error floors. Similarly, the finite-length and asymptotic
enumerators of T'Ss and (elementary) ASs for unstructured and (constrained and uncon-
strained) protograph-based non-binary LDPC code ensembles are derived. The normalized
logarithmic asymptotic distributions are obtained by solving a system of equations. The
definitions of (elementary) TSs and (fully) ASs are extended to generalized LDPC codes.
Numerical simulations show that the proposed definitions yield graph structures that are
harmful for bit flipping decoders. The (elementary) TS and (fully) AS enumerators for
unstructured and protograph-based generalized LDPC code ensembles are derived using

generating functions.






Introduction

An end-to-end communication system model has three key components: transmitter,
channel, and receiver. The transmitter maps information to a signal, the channel corrupts
the signal by noise, and the receiver estimates the information from its channel output.
In his groundbreaking paper [3], Shannon proved that error-correcting codes can enable
reliable communication at rates below a channel capacity. Since then, error-correcting codes
have received a great deal of attention and many classes of codes have been discovered. For
example, Elias showed in 1955 that linear error-correcting codes can achieve the capacity
of a discrete memoryless channel (DMC). Channel codes designed in the 1950s and 1960s
include Hamming codes [4], Reed-Muller codes [5], Bose-Chaudhuri-Hocquengham (BCH)
codes [6], and Reed-Solomon (RS) codes [7].

A class of capacity-approaching codes called turbo codes appeared in 1993 [8]. Shortly
afterward, low-density parity-check (LDPC) codes introduced by Gallager [9] were rediscov-
ered. LDPC codes are a class of linear block codes characterized by a sparse parity-check
matrix. The decoding algorithms of LDPC codes operate by iteratively exchanging mes-
sages between the nodes of the code graph. LDPC codes with an associated iterative
decoding algorithm were shown to be capacity-approaching by MacKay [10]. Non-binary
LDPC codes have an outstanding error correction capability, outperforming their binary
counterparts substantially at short block lengths [11]. A more general class of LDPC codes
called generalized low-density parity-check (GLDPC) codes was introduced by Tanner
in [12]. GLDPC codes offer a trade-off between error floor and waterfall performance due to
their good distance properties and the improved block codes used at the check nodes (CNs)
(compared to single parity-check (SPC) codes employed by the CNs of LDPC codes). This
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comes at the cost of increasing decoding complexity.

After their rediscovery, LDPC codes found widespread use in many modern communica-
tion standards due to their outstanding performance. Much research has been devoted to
developing encoding and decoding algorithms for these codes. The growing requirement for
high data rates makes designing low-complexity and high-throughput decoding algorithms
crucial. The study of low-complexity message passing algorithms for LDPC codes originates
from the seminal work by Gallager [9]. In [9], Gallager introduced two decoding algorithms,
known as Gallager A and Gallager B, where the variable and check nodes exchange binary
messages. Coarse message quantization reduces the amount of information exchanged in
the decoder, but decoding complexity can also be reduced by using simplified update rules
at the CNs. Several works studied reducing the decoding complexity of LDPC and GLDPC
codes [13-32].

The performance of an LDPC code in terms of frame error rate (FER) /bit error rate (BER)
versus the signal-to-noise ratio (SNR) is characterized by two regions: the waterfall region
characterized by a fast decline of the error probability with the SNR and the error floor
region characterized by a flattening of the error probability. Density evolution (DE) analysis
evaluates the iterative decoding thresholds of LDPC code ensembles, i.e., the worst channel
parameter for which reliable transmission is possible for infinite block length. Thus, the DE
can be used to design code ensembles with good waterfall performance. Almost all codes
in the ensemble will have nearly the same waterfall performance [33]. In the error floor
region, the performance under iterative decoding of LDPC codes is frequently dominated
by the presence of specific graphical configurations in the code Tanner graphs [34-36].
Such structures, called trapping sets or near-codewords, were studied in [35,36] for binary
LDPC codes. A subclass of trapping sets, called (fully) absorbing sets, was introduced
in [37]. The definitions of trapping sets (TSs) and absorbing sets (ASs) were extended to
non-binary codes in [38-40]. As pointed out in [37], not all trapping sets cause decoding
failures. Nevertheless, characterizing (e.g., enumerating) trapping and (fully) absorbing
sets for LDPC code ensembles is useful to gain a deeper understanding of error floors. This
is especially interesting for applications requiring very low error floors [41,42], where Monte
Carlo simulation is impractical. While notable exceptions exist ( e.g. [43-45]), the impact
of trapping and (fully) absorbing sets on code performance has generally been studied using

code ensembles, following the approach of Gallager [37,46-49].
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1.1 Outline

The two main topics of this dissertation are reduced-complexity decoding algorithms of
binary, non-binary, and generalized LDPC codes and the finite-length and asymptotic
enumerators of trapping and (fully) absorbing sets of binary, non-binary, and generalized

LDPC code ensembles. The thesis is structured as follows.

> Chapter 2 provides basic notation and definitions necessary for the following chapters.

We also introduce the channel models that we used.

> Chapter 3 reviews linear error-correcting codes and their properties. The second
section is dedicated to the LDPC codes. We begin by defining binary, non-binary, and
generalized LDPC codes and code ensembles (unstructured and protograph-based).
We briefly explain the enumeration methods for analyzing LDPC codes, which will be
used to enumerate the trapping and (fully) absorbing sets in Chapters 6-8. Further,

we review iterative decoding algorithms for LDPC codes.

> Chapter 4 is devoted to the design and analysis of reduced complexity message
passing decoding algorithms for binary and non-binary LDPC codes. For binary
LDPC codes, we introduce the matched quantized min-sum (MQMS) decoder, where
the exchanged check and variable node messages are represented by b bits. We
consider two cases for the binary-input additive white Gaussian noise (biAWGN)
channel output: unquantized symbols and quantized symbols. For the latter case,
the biAWGN channel output is quantized using a by-bit uniform quantizer. For the
non-binary case, we consider transmission over g-ary symmetric channels (QSCs),
g-ary erasure channels (QECs), as well as additive white Gaussian noise (AWGN) and
Poisson channels with pulse position modulation (PPM). We introduce and analyze
the following decoders: symbol message passing (SMP), symbol and erasure message
passing (SEMP), scaled reliability list message passing (SRLMP), and 1 and 2- bit
reliability-based symbol message passing (RSMP).

> Chapter 5 studies the performance of GLDPC codes under binary message passing
(BMP) and ternary message passing (TMP) decoding. At the CNs, the binary and
ternary messages are obtained either by using bounded distance decoding (BDD) or
a posteriori probability (APP) soft-input soft-output (SISO) decoding.

> Chapter 6 deals with the (elementary) trapping and (fully) absorbing set enumerators

for binary LDPC code ensembles. First, we review the random matrix enumeration
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approach, which was previously applied to obtain the asymptotic enumerators for
(elementary) T'Ss for binary irregular LDPC code ensembles and the (elementary)
(fully) ASs of regular LDPC code ensembles. We extend the analysis to obtain the
(elementary) AS and fully absorbing set (FAS) enumerators of irregular LDPC code
ensembles. Next, we provide alternative derivations of the (elementary) trapping and
(fully) absorbing sets enumerators for binary unstructured LDPC codes based on
generating functions. We also derive the finite-length and asymptotic (elementary)
trapping and (fully) absorbing set enumerators for binary protograph-based LDPC
code ensembles. Numerical results illustrate how the proposed enumeration technique

can be used to estimate the error floor of LDPC codes.

> Chapter 7 addresses trapping and (elementary) absorbing set enumerators for
non-binary LDPC code ensembles. We consider unstructured and constrained, and
unconstrained protograph-based code ensembles. We provide numerical evidence that
these sets contribute to the error probability under certain hard-decision message

passing decoding algorithms.

> Chapter 8 focuses on (elementary) trapping and (fully) absorbing set enumerators for
irregular and protograph-based GLDPC code ensembles. We propose new definitions
of (elementary) trapping and (fully) absorbing sets for GLDPC codes. We derive
the finite-length and asymptotic distributions of (elementary) TSs, ASs, and FASs
for GLDPC code ensembles. The derivation is based on generating functions. The
impact of these sets on the performance of a GLDPC code is confirmed through

simulations. The enumerators are used to estimate the error floor of GLDPC codes.

> Chapter 9 concludes the thesis and discusses future research directions.

1.2 Contributions of the Thesis

Most results in this thesis appeared in the following conference proceedings and journal

publications:

> E. Ben Yacoub, F. Steiner, B. Matuz, G. Liva, “Protograph-Based LDPC Code
Design for Ternary Message Passing Decoding,” Proc. ITG. Int. Conf. Syst.,
Commun. and Coding (SCC), Rostock, Germany, pp. 17-22, Feb. 2019. [50]

> E. Ben Yacoub, F. Lazaro, A. Graell i Amat, G. Liva, “Symbol Message Passing
Decoding of Nonbinary Spatially-Coupled Low-Density Parity-Check Codes,” Proc.
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Int. Annual Conf. (AEIT), Florence, Italy, pp. 1-6, Sep. 2019. [51]
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Preliminaries

2.1 Notation and Definitions

This chapter introduces notation and definitions. The indicator function I(.4) takes on
the value 1 if the proposition A is true and 0 otherwise. For z = (z1,29,...,24) and
B = (b1, P2, -, La), we use the shorthand

d
2P = Hztt.
t=1

We denote random variables (RVs) with capital letters and the corresponding realizations
with lowercase letters. The probability mass function (PMF) of the RV X is referred to as
Py, while a probability density function (PDF) is written as py.

For positive values aq, ..., ay that sum to one, we define the natural entropy function as
d

H(a,...,aq) == a;In(ay). (2.1)
i=1

For d = 2, we use the shorthand

Hy(a) = —aln(a) — (1 — ) In(1 — «). (2.2)

Definition 2.1. Let z(n) and y(n) be two real-valued sequences, where y(n) # 0 Vn, x(n)
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is exponentially equivalent to y(n) as n — oo if and only if

i L (22) -0

We will use the notation z(n)=y(n) to specify that x(n) is exponentially equivalent to y(n).

2.2 Probability Theory

2.2.1 Random Variables

Let € be the set of all possible outcomes of a probabilistic experiment called a sample
space. A RV X is a mapping from €2 into another set X. The distribution of a discrete RV
X is characterized by the PMF Py, which gives the probability that X is equal to some

number, i.e., for all z € X

Px(z) = Pr{X = z}. (2.3)
We have
Px(z) >0 Vze X and Y Px(z)=1. (2.4)
zeX
The support of X is defined as
supp(Px) = {z € X : Px(z) > 0}. (2.5)

If X =R, the continuous RV is specified by its cumulative distribution function (CDF),
Fx(x)=Pr{X <z} VreR. (2.6)

If the CDF is continuous and differentiable, the PDF of X is defined as

px() v (2.7)

The PDF fulfills .
px(z) >0 and / px(z)dr = 1. (2.8)
We will define the moments and some information-theoretic quantities of discrete RVs in

the following. The extensions to continuous RVs are straightforward; one needs to replace

PMFs with PDF's and summation by integration.
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2.2.2 Moments of Random Variables

Consider a discrete RV X and the function f: X — R. The expectation of f(X) is

Ef(X)]= > f@)Px(x). (2.9)

z€supp(Px)

Let Y be a discrete RV. The conditional expectation of X given Y is defined for y €
supp(Py) as follows:

EX[Y =y= Y Purlely). (2.10)

z€supp(Px |y (-y))

The variance of a X is

VIX] =E [(X - E[X))’| = E[X?] - E[X]*. (2.11)

2.2.3 Information Measures

The self-information i(z) = — logy(Pyx(x)) measures the amount of information associated

with the realization  of X. The entropy of X is defined as

H(X) =Eli(X)]=— Y Px(x)log, (Px(x)). (2.12)

zesupp(Px)

Let Px and Py be two PMFs with supp(Px) C supp(Py). The information divergence

measures a difference of these distributions and is defined as

Px<x>
D(Px||Py) = Py (z)log, . (2.13)
xEsu%):(PX) g (Py(.%’)>

The mutual information of two discrete RVs X and Y is defined as

The capacity of a DMC with input X and output Y is the maximum rate for which reliable

communication can be achieved and is given by

C= II]lDaXI(X;Y). (2.15)
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2.3 Channel Models

2.3.1 Q-ary Erasure Channel

A g-ary erasure channel (QEC) has input alphabet X = F, and output alphabet )} =
{E} UF,, where E is an erasure denoting complete uncertainty about the transmitted

symbol. The transition probabilities of this channel are

l—€¢ y==x
Pyix(ylz) = Qe y=E (2.16)
0 otherwise.

The channel capacity (in bits per channel use) of the QEC is achieved by a uniform input

distribution and is computed as

Cqec = (1 — €)log,(q). (2.17)

2.3.2 Q-ary Symmetric Channel

Consider a g-ary symmetric channel (QSC) with error probability e and input and output
alphabet X =Y =F,. The QSC is illustrated in Fig. 2.1. The transition probabilities of
this QSC are

l—¢e ify==x
P(yle) = (2.18)

£ otherwise.
q—1

As the channel is strongly symmetric, the capacity in bits per channel use, is given by

Case = oy (0) + clomy (1) + (1 = oy (1 -0 (219

2.3.3 Q-ary Error and Erasure Channel

Consider a g-ary error and erasure channel (QEEC) with error probability €, erasure
probability 6, input alphabet X = F, and output alphabet Y = {E} UF,, where E
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il e ® (42

Figure 2.1: The QSC with error probability e.

represents an erasure. The transition probabilities of the QEEC are given by

l—e—0 ify=ux
P(ylz) =46 if y =E (2.20)

€
q—1

otherwise.

The capacity in bits per channel use is

Cqerc = €log, <q€1) +(1—€e—0)logy (1 —e—60)—(1—0)log, <1;0> . (2.21)

2.3.4 Poisson Pulse Position Modulation Channel

Consider the finite field F, = {0, 1, , ..., a%2, where g is a power of two and « is a primitive
element of F,. A pulse position modulation (PPM) symbol x = (xo, T1,... ,xaq—z) spans
q time slots of which one slot has a pulse and the remaining g — 1 slots are blank. With
slight abuse of notation we may write the slot index u as an element of a finite field. We
denote by P, a PPM symbol for which the u-th time slot contains a pulse. We denote the
channel input alphabet by X = {Pg, Py,...,Pa—2}. For orthogonal modulations, for all
a,a’ € F, we have

1 a=4d
(Po, Py = (2.22)
0 otherwise

where (-, -) is the inner product.
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We consider transmission over an optical channel with direct detection at the receiver.
Let y = (yo, Y, - - ,yaqu) be the received sequence, where ¥, is the number of received
photons in the u-th slot. Let ns be the average number of received signal photons per
pulsed slot and let ny, be the average number of received background noise photons per slot.
Considering the u-th slot, the channel transition probabilities follow a Poisson distribution,

i.e., for all y € Ny we have

exp(—(nb—l—n?))(nb-i-ns)y /
PY“|X(y|Pu/> - exp(—nb)ngy. (223)
y!

For a € F;, we have the likelihood

ng

Prix(wlPo) = TT Prux(ulPa) = (1+ )" exp(—(ne+ qn) T (224)

u€lFy b u€lFy Yu-

Let v = ng/q be the average number of received signal photons per slot. For the Poisson

channel with g-ary PPM, the channel capacity in bits per channel use is given by

I'(Y.)
I'(Yo)

C’PPM Poisson — logQ(q) —E

log, ( Z

u€lF,

) ’X _ Pol (2.25)
where for u € F,

r(Y,) — ( 4 1>Y“ exp(=ns). (2.26)

2.3.5 Additive White Noise Channel with Pulse Position
Modulation

Consider transmission over an additive white Gaussian noise (AWGN) channel with g-ary

PPM, where q is a power of two. The channel output is
y=x+n (2.27)

where n = (ng,n1,...,nq4-2) is the length-¢g noise vector sampled from ¢ independent

and identically distributed Gaussian RVs with zero-mean and variance 0. The likelihood
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X @ -y
|

N ~ N(0,0?)
Figure 2.2: The biAWGN channel.

py|x (y|z) can be written as

plylz) = ( w%) exp (—W) sep (- L) @)

Let E}, denote the energy per information bit, E5 the energy per modulation symbol, and

Ny is the one-sided noise power spectral density. Then, we have

Ey 1 E, 1 1
2 _-__ - s ___ - - 2.29
No ~ Rlogy(q) No  Rlogy(q) 207 (2:29)

The capacity of the AWGN with PPM is given by

log, (UZF: exp (YUU_QYE)>) ‘X = P0] . (2.30)

Cppum awen = logy(q) — E

2.3.6 Binary Input Additive White Noise Channel

The binary-input additive white Gaussian noise (hiAWGN) channel is depicted in Fig. 2.2
and takes as input a RV X € {—1,+1} and outputs Y = X + N, where N is a zero-mean

Gaussian RV with variance 0. Thus, the channel transition density is given by

1 (y —x)?
priole) = e (<50, 231)
The SNR is defined as B
NR = —= 2.32
SNR N, (2.32)

where Ny = 202 and FE; is the average signal energy, which is, in this case, equal to 1.

Another important measure is the normalized SNR

B, B 1
N(]—N()R—2O'2R

(2.33)
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where Ej, is the energy per information bit.

The capacity of the biAWGN is achieved by a uniform input distribution and is given by

+oo
2
Chiawan = 1 — / pyix (y| + 1) log, (1 +exp (—0?;>) dy. (2.34)



LDPC Codes

3.1 Linear Codes

Definition 3.1 (Linear codes). A g-ary (n, k) linear block code € of length n and dimension

k is a k-dimensional linear subspace of [y .

An (n, k) linear code € can be characterized by a generator matrix G € IF’;X”, whose rows
span €. The generator matrix G encodes the information sequence u into the codeword
c € % asc=u-G. The code € can be equivalently defined by its parity-check matrix

H e ]F((I”*k)xn, whose null space is €, i.e.,
¢ ={cecFlc-H" =0}. (3.1)

Definition 3.2 (Hamming weight). The Hamming weight of a vector & € [y is defined as
the number of its non-zero entries. Formally,
wy(z) = 1(z; #0). (3.2)
i=1
The weight distribution of a code € is typically described using its weight enumerator
function (WEF)

W(z) = z": Wiz (3.3)

where z is a dummy variable and coeff (W (x), z") gives the cardinality of codewords with

weight 7.
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The Hamming distance between two vectors @,y € Fy is the number of entries in which
they differ. We have

n

du(z,y) = > I(z; # yi) = wu(x — y). (3.4)

i=1
The minimum distance of a code is the minimum number of entries in which any two
codewords differ. For a linear code %, the minimum distance is equal to the minimal

Hamming weight among all non-zero codewords, i.e.,

dpin = cfﬂirég du(ey, e0) = Crer}(;{lo wg(c). (3.5)
c1#ces

Another code parameter of interest is the decoding radius, i.e., its guaranteed error correction
capability under bounded distance decoding (BDD)

dimin — 1
ot -

Bounded Distance Decoding

Consider a linear code € with minimum distance d,,;,. BDD can correct all error patterns
of Hamming weight ¢ = |(dpm — 1)/2] or less. For a received sequence z, the decoded

vector ¢ is given by

ce? if 3c € € withdu(c,z) <t

o
I

z otherwise
where dy(c, z) is the Hamming distance between ¢ and z.
Bounded Distance Decoding with Erasures

Consider a linear code ¥ with minimum distance d,,;,. For a received sequence z with v

erasures, the decoded vector ¢ is given by

ce€ ¢ if dc € € with 2dy(c, z) + v < dyin — 1

o>
Il

E otherwise

where dy(¢, z) is the Hamming distance between ¢ and z and E = (E,... E) .
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3.2 Binary LDPC Codes

3.2.1 Binary Unstructured LDPC Codes

Binary LDPC codes are linear block codes characterized by an m x n sparse binary parity-
check matrix H. The parity-check matrix can be represented by a Tanner graph, which is
a bipartite graph G = (V UC, &) consisting of n variable nodes (VNs) corresponding to
codeword bits and m CNs corresponding to parity checks. The set & of edges contains
the elements e;;, where e;; is an edge between VN v; € V and CN ¢; € C. Note that e;;
belongs to the set £ if and only if the parity-check matrix element h;; equals 1.

The sets NV (v;) and N (c;) denote the neighbors of VN v; and CN ¢;, respectively. The
degree of a VN v; is the cardinality of the set A/ (v;). Similarly, the degree of a CN c¢; is
the cardinality of the set N (c;).

The node-oriented degree distribution polynomials of an LDPC code graph are given by

Ax) = ZAﬂi, P(z) = X:PZxZ (3.7)

where A; corresponds to the fraction of VNs with degree ¢ and P; corresponds to the fraction
of CNs with degree i. The VN edge-oriented degree distribution polynomial of an LDPC
code graph is given by

Az) = Z Nz (3.8)

where \; corresponds to the fraction of edges incident to VNs with degree . Similarly, the

CN edge-oriented degree distribution polynomial is given by
pla) = (59)

where p; corresponds to the fraction of edges incident to CNs with degree i. One can
convert a node perspective degree distribution into an edge perspective degree distribution

as follows:
i\ iP;
A== Pi= -
> JA 2 JP;

(3.10)

Let di** (d2***) be the maximum VN (CN) degree. We denote by

max max
dv dc

dy = Y A, do= > iP; (3.11)

i=1 i=1
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the average VN and CN degrees, respectively. Note that nd, = md. represents the total
number of edges. We define

g (3.12)

c

&=

The rate of the LDPC code can be lower bounded as

m
n

o

3

R>1—— 3.13
>1-2 (3.13)

where equality holds if H is full rank.

An unstructured binary irregular LDPC code ensemble € (42F) is the set of all binary
LDPC codes with block length n and degree distributions A (z) and p (z) (A (x) and P (2)).

An LDPC code is called (d,,d.) regular if all the VNs have the same degree d, and all
the CNs have the same degree d, i.e.,

A(z) = 2%, P(z) = a%. (3.14)

We denote by €% the binary regular LDPC code ensemble, which is the set of all binary
LDPC codes with block length n, VN degree d, and CN degree d..

3.2.2 Binary Protograph-Based LDPC Codes

A protograph P = (VP,CP, &) is a small Tanner graph consisting of np VNs, mp CNs and
e edges forming the sets V7, CP and &7, respectively. It can be defined by an mp x np base
matrix B = [b; ;], where b; ; is the number of edges connecting v¥ to ¢f. Each VN/CN/edge
in a protograph defines a VN/CN/edge type. We denote by é"VF; (é”cF;) the set of edges in
the protograph connected to v© (cf’). The degree d,, of v¥ (d., of c) is then equal to ]5"5_]
(J&F]). The bipartite graph G of an LDPC code can be derived by lifting the protograph.
In particular, the protograph is copied @) times (where @ is referred to as the lifting factor),
and the edges of the protograph copies are permuted under the following constraint: if
an edge connects a type—v]F’ VN to a type-cf CN in P, after permutation the edge should
connect one of the @) type-v; VN copies with one of the @) type-c; CN copies in G. In the
following, we will denote by V and C the sets of CNs and VNs in G, respectively. The lifted
graph G defines the m x n parity-check matrix H, where m = mp(@) and n = np@). To
distinguish the VNs and CNs in the protograph from those in the lifted graph, we use the
subscript P. A protograph-based LDPC code ensemble €F is the set of length-n LDPC
codes whose bipartite graph G is obtained by lifting P.
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3.3 Protograph-Based Spatially Coupled LDPC Codes

Spatially coupled low-density parity-check code (SC-LDPC) codes are known to show a
threshold saturation effect [74] that allows approaching the bit-wise maximum a poste-
riori (MAP) decoding threshold of the underlying block code with (unquantized) belief
propagation (BP) decoding.

We consider protograph-based SC-LDPC codes with base matrix in the form

B,

B, B,
B, B,

B=|B, | B (3.15)

where p denotes the syndrome former memory of the SC-LDPC code. The protograph in
(3.15) is then lifted by a factor of @ to obtain the final parity-check matrix H.

For practical operation, the SC-LDPC code is commonly terminated after a number of
S spatial positions. Due to this termination, a rate loss occurs that vanishes for large S.

The resulting code rate is

p+ S m® ( u) mp”
R=1-—/———=1—-(14+5) == (3.16)

S n3¢ S/ np¢
where the base matrices By, ..., B, have dimensions m3® x n3®. The overall size of the

matrix B is mp x np where mp = (u + S)mi® and np = SniC.

3.4 Non-Binary LDPC Codes

3.4.1 Non-Binary Unstructured LDPC Codes

Non-binary LDPC codes are linear block codes characterized by an m x n sparse parity-
check matrix H with coefficients in [F,. The parity-check matrix can be represented by
a Tanner graph G = (V UC, &) consisting of n VNs corresponding to codeword symbols
and m CNs corresponding to parity checks. The set & of edges contains the elements e;;,
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H=|10a1l1l0a%0
0a2a 100 «

Figure 3.1: Tanner Graph and its corresponding parity-check matrix of a 4-ary LDPC code.

where e;; is an edge between VN v; € V and CN ¢; € C. Note that e;; belongs to the set &€
if and only if the parity-check matrix element h;; # 0. The edge label associated to the
edge connecting v; and c; is denoted by h;;, with h;; € F, \ {0}. Fig. 3.1 shows the Tanner
graph of a simple 4-ary LDPC code.

The definitions and notation of (maximum) node degrees, degree distributions, neighbor-
ing nodes and ¢ are the same as the binary LDPC codes in Section 3.2.

An unstructured irregular g-ary LDPC code ensemble €% (47 is the set of all g-ary
LDPC codes with block length n and degree distributions A () and p (z) (A (z) and P (x))
and edge labels uniformly chosen in F, \ {0}. Further, we denote by ‘qu,;{dc the regular
LDPC code ensemble, which is the set of all g-ary LDPC codes with block length n, VN
degree d,, CN degree d. and edge labels uniformly chosen in I, \ {0}.

3.4.2 Non-Binary Protograph-Based LDPC Codes

Similar to the binary case, non-binary protograph-based LDPC are obtained from a
protograph. The code Tanner graph is obtained by lifting the protograph. The lifted graph
has Q VNs of type v'; € VP, Q CNs of type cf € CP and Q edges of type g € &7. Upon
labelling its edges with elements from the order-q finite field F,, the Tanner graph defines
the m x n parity-check matrix H of a non-binary LDPC code over F,, where m = mpQ)
and n = np@. In [38], two classes of non-binary protograph LDPC code ensembles were
introduced. The main difference between the two classes deals with the way the edge labels

are assigned, as summarized next.

Unconstrained Non-Binary Protograph-Based LDPC Code Ensembles

An unconstrained non-binary protograph-based (U-NBPB) code ensemble 4" is defined
by the set of length-n LDPC codes over [F, whose Tanner graph is obtained by first lifting
P, followed by labeling each edge in the obtained Tanner graph with an arbitrary element

from F, \ {0} = {a° a,..., 0?2}, where a is a primitive element of F,. An example of
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(b) The original scaled protograph and an example of a C-NBPB code construction.

Figure 3.2: Different non-binary protograph based code constructions with ) = 3.

an U-NBPB code is shown in Fig. 3.2(a), where Q = 3, the CNs ¢y, ¢y, c3 are of type cf,
c4, C5, Cg are of type cb, the VNs vy, vo, v3 are of type vF, vy, vs, vg are of type v5, vr, vs, vo

are of type vk and hq, ..., h5 are the edge labels.

Constrained Non-Binary Protograph-Based LDPC Code Ensembles

A constrained non-binary protograph-based (C-NBPB) code ensemble is defined by the set
of length-n LDPC codes over F, whose Tanner graph is obtained by first assigning a label
to each edge in the protograph P, followed by lifting the protograph. By definition, in the
Tanner graph of a code from a C-NBPB code ensemble, all edges of the same type share the
same label. More specifically, consider f = (f,),es where f, € F,\ {0} is the label of edge
g in P. The set of length-n LDPC codes over F, obtained from lifting P while preserving
the edge labels specified by f is the C-NBPB code ensemble €:(f). An example of an
U-NBPB code is shown in Fig. 3.2(a), where @ = 3 and fi, ..., f5 are the edge labels.

Note that when the field size is ¢ = 2, both U-NBPB and C-NBPB constructions reduce

to the binary case presented in Section 3.2.2.
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3.5 GLDPC Codes

GLDPC codes introduced in [12], are a class of LDPC codes where the CNs represent more
general codes than the SPC codes in LDPC codes. The Tanner graph of a GLDPC code
is a bipartite graph G = (V UC, &) consisting of n VNs and m CNs. The set & of edges
contains the elements e;;, where e;; is an edge between VN v; € V and CN ¢; € C. The
sets N (v;) and N (c;) denote the neighbors of VN v; and CN ¢;, respectively. The degree
of a VN (CN) v; (c;) is the cardinality of the set N (v;) (NM(ci)). A CN of type 7 is an
(N7, k7, diin ) linear block code €. A CN is called a super check node if it is associated
with a linear block code different than the SPC code. Further, we assume that dyin, > 3
for super CNs and we denote by

- {dnﬁnﬁ _’1J
T 2

the component code decoding radius, i.e., its guaranteed error correction capability under
BDD.

The node-oriented VN degree distribution is denoted by A = (A;),=
corresponds to the fraction of VNs with degree j and dy'*** corresponds to the maximum
VN degree. Similarly, the CN-type degree distribution is denoted by P = (P,),;=1. n.,
where P, corresponds to the fraction of CNs of type 7 and n. is the number of CN types.

dww,\Vh@ﬁ<Aj

.....

The edge oriented VN degree distribution polynomial is defined as
Mz) =D N (3.17)

where )\; is the fraction of edges connected to VNs of degree i. The CN-type degree

distribution polynomial is given by

p(z) => pra™ (3.18)
T=1
where p, is the fraction of edges connected to CNs of type 7.

We denote by

max
dy

do = > jA;, do = inTPT (3.19)
j=1 =1
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the average VN and CN degree, respectively. Here again, we define

m d,
- _ v 3.20
(=T (3:20)
The number of parity-check equations for a GLDPC code is
S P k) = o S (12 ) 3.21)
mo =m TNy —R7) = 4~ Pr - |- .
=1 f()1 p(l‘) dz T=1 Nz

We denote by IT the m x n adjacency matrix of a GLDPC Tanner graph. In order to
obtain the mg X n parity-check matrix H of a GLDPC code, for each row of IT the ones
are replaced by the columns of the parity-check matrix of the corresponding component
code and the zeros by zero column vectors [75]. The rate of the GLDPC code can be lower

bounded as

R>1— o (3.22)
n

where equality holds if H is full rank.

A GLDPC code is called regular if all the VNs have the same degree d, and all the CNs
are of the same type, i.e., all CNs are associated with the same linear block code & of
length d..

An unstructured irregular GLDPC code ensemble ¢*F is the set of all GLDPC codes
with block length n, defined by a Tanner graph with node-oriented degree distributions A
and P (with a specified set of CN types).

3.6 Enumeration Methods for Analyzing LDPC Codes

In this section, we briefly describe the methods used in this thesis to enumerate (elemen-
tary) trapping and (fully) absorbing sets. The first approach is based on random matrix

enumeration and the second one follows the generating functions methodology.

3.6.1 Random Matrix Enumeration

Trapping and (fully) absorbing sets for binary LDPC codes (Chapter 6) impose a certain
structure and row/column weights for the parity-check matrix. Thus, the asymptotic

trapping and (fully) absorbing sets can be obtained by enumerating matrices with prescribed
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row and column weight profiles. The following Theorem on the number of binary matrices

with specific weight distribution properties will be useful to derive the enumerators.

Theorem 3.1. Let H>" be the set of all m x n binary matrices with row weight vector
R = (Ry,...,R,) and column weight vector L = (Lq,. .., L,), where R;, 1 <7 < m, is the
weight of the i-th row and L;, 1 < j < n, is the weight of the j-th column. The cardinality

of HEL for constant ratio £ = m/n and max{max; R;, max; L;} < (In(n))**~¢,¢ > 0, as
n — oo is given by [76], [77]
Hpn | == €xp 572 YRi(Ri—1) ) [ Y Ly(L; — 1)
IT L;V T Ry A\ =1 (3.23)
j=1 7 i=1

x (1+ o(n_1+6))

and for 0 > 0, with f = iLj: f)Ri.
=1 i=1

J]=

3.6.2 Generating Function Approach

The random matrix enumeration technique (Theorem 3.1) can only be applied to unstruc-
tured binary LDPC codes. Therefore, we present a more general method to obtain these
enumerators for binary /non-binary and generalized LDPC code ensembles. The method is
based on generating functions, previously adopted to study the distance spectrum and the
stopping set distributions of (generalized) binary LDPC code ensembles [9, 46, 78-80]. The
generating function approach is general and we can enumerate several graphical structures
by defining the appropriate generating functions. In particular, for the enumeration of
trapping and (elementary) absorbing sets, we need to impose VN and CN conditions.
Considering (a,b) TSs/ASs/elementary absorbing sets (EASs), the @ VNs in the set must
satisfy the VN condition according to the corresponding definitions in Chapters 6, 7 and
8. Moreover, given the set of edges, we need to obtain exactly b unsatisfied CNs. Finally,
we need to consider all possible edge permutations according to edge types. The average
number of VN/CN/edge sets satisfying a specific condition is the coefficient of suitably-
defined generating function. After deriving the finite-length enumerators, we obtain the

normalized logarithmic asymptotic distributions by using the following Lemmas.

Lemma 3.1. (Hayman formula for multivariate polynomials [79, Corollary 16]) Let
x = (x1,29,...,24) and let p(x) be a multivariate polynomial with p(0) # 0. Let
B = (61, P2,...,04) where 0 < 5, < 1 and fn is an integer for all ¢ € {1,2,...,d}.
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Then we have as n — oo
d
coeff ((p(a:))", J:"ﬁ) =exp {n [lnp(sc) —> Bin xtl }
=1

where coeff (p(:c)", :1:"5) represents the coefficient of £ in the polynomial p(x)", =

(x1,22,...,2q) and x1,xa, ..., T4 are the unique positive solutions to

Ip(z)

xtTmt:ﬁtp(w), Vt € {1,2,,61}

Lemma 3.2. Suppose 0 < 3, < x and fn is an integer V¢ € {1,2,...,d} with %, 3, = 1.
We have [81, Chapter 11]

<ﬁln 5271”. .. BdTl) = exp {nH (61a 527 ce ,ﬁd)} .

3.7 Iterative Message Passing Decoding

3.7.1 Sum Product Algorithm for Binary LDPC Codes

The sum product algorithm (SPA), also called BP decoder, was introduced by Gallager [9].
It is a soft decision decoding algorithm that can approach symbol-wise MAP decoding

performance and provide an estimate of the logarithmic APP ratio

Pr{X; = +1|y} .
L7PP =1 ¢ =1,2,... 3.24
j n(Pr{X]:—Hy} y ) < T ( )

where Pr{X; = +1|y} is the probability that the j-th codeword bit is 41, given the received
sequence y. To estimate L*, the VN decoders (repetition SISO decoders) and the CN
decoders (SPC SISO decoders) exchange messages iteratively.

Let i+ 1)
. Py |x\Yj
= () &2

be the channel log-likelihood ratio (LLR) associated with the VN v;. For biAWGN channel,

we have
2

We denote by LY, the message sent by the VN v, to the CN ¢; at the (-th iteration.

Vj—C4

Similarly, Lg)_wj is the message sent by c; to v;.
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Algorithm 1: Sum-Product of Binary LDPC Codes over a biAWGN

1 forj=1,2,...,ndo
2 | for ¢; € N(v;) do
s || LOL. =L,
4 end
5 end
6 for (=1,...,0,,. do
7 for i=1,2,...,m do
8 for v; € N (c;) do
-1
9 LY, =2tanh™! I1 tanh | —&
v v €N (ci)\v; 2
10 end
11 end
12 for j=1,2,...,ndo
13 for ¢; € N (v;) do
14 LY., =L+ > LY,
7 cr €N (vj)\ci ¢ J
15 end
16 end
17 for j=1,2,...,ndo
o _ 7. (0
18 L],app L] + cize%(v]-) Lci/—wj
&=41
w0 | | 10,2
&=—1
20 end
21 end

Algorithm 1 describes the iterative message passing decoding over a biAWGN channel.
The decoder stops if the maximum number of iterations is reached or & = (#1,...,4,) is a

valid codeword.

Note that, for the min-sum decoder, one replaces the expression in the CN message

update by

Lo - [T sien(LS70) | min (LD (3.27)

C;—Vj Vj/—>c7; LEN (¢ ) Vj/—>Ci
vaEN(CZ‘)\V]‘ Vj,e (CZ)\V]
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3.7.2 Sum Product Algorithm for Non-Binary LDPC Codes

The non-binary version of the SPA (Algorithm 1) can decode non-binary LDPC codes over
F,={0,1,a,0?% ...,a% 2} where « is a primitive element of F,. We consider a probability
domain SPA. The exchanged check and variable node messages are g-ary probability

vectors. Let m‘(,?_mi = (m‘(,?_mi(O), . ,m‘(,?ﬁcl_ (a?7?)) be the message sent from the VN v;

to its neighboring VN c; at the /-th iteration. The entry mf,? e, (@) for a € F, represents
the probability that the codeword symbol associated with the message takes the value a.

Similarly, mgfgvj = (m&ZLVJ (0),... ,mgfgvj(aq_z)) is the message sent from c; to v; at the

(-th iteration. Further, let M‘gf)_m (M, C(f)_wj) be the RV of the codeword symbol associated
with the message sent from v; to ¢; (c; to v;), i.e., m{),  (m{), ) is the PMFs of M{),
(M, C(f)_)vj) Initially, each VN sends to its neighboring CNs a g-ary vector with the symbol
probabilities given the corresponding channel observation. Formally, for all ¢; € N (v;), we

have
m{,  =m® (3.28)
Each CN represents a non-binary SPC code. Thus, for a € F, we have
m{,, (a) = Pr Do hpMy) L = —hgay. (3.29)
v E./\/—(Ci)\Vj

The PMF of hj; M, (©) is obtained by permuting the entries (except the first one) of

Vj/—>Ci
(£)
mVj/—>Ci :

associated to hj;. Under the independence assumption, we have

We write (mvj,_,cl_) =my) e Iy, o, where Iy, o, s a ¢ X ¢ permutation matrix

0 () ™
mci—)Vj vjleN@()Ci)\vj(mvj/—)Ci> (330)
where ® is the convolution in F,. For non-binary codes over binary extension fields,
the discrete convolution becomes a componentwise multiplication using the Hadamard

transform, yielding

milLy, =Hy I H{m{ o)} (3.31)

Vj/—>Ci
vj/EN(ci)\v]-
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Each VN computes

|
m‘(f?_)% - ms}; © (c-/GN?Vj)\Ci<m£?—Wj) ) (332)

where (m&?ﬁvj)wfl = (m{) I E by 1 o, is a reverse permutation of (m{)_,, ) and I, L dsa
g x g reverse permutation matrix associated to hjy. All multiplications are componentwise.
Note that it is necessary to normalize the elements of mf,‘;) ', to sum to 1. The estimation

of the codeword symbol associated to v; is the symbol that maximizes

m) :mCh®< © (mgfgvj)“). (3.33)

Vj,a v;
3,2PP J c; €N (vy)

The SPA in the probability domain is summarized in Algorithm 2.

3.7.3 Parallel Bit Flipping Algorithm for Binary GLDPC Codes

The parallel bit flipping (PBF) decoding [82] is similar to the algorithm proposed in [83,84]
for expander codes. It is closely related to the one introduced in [2] for decoding a class
of spatially-coupled GLDPC codes and to the one used in [85] to decode GLDPC codes
based on Reed-Solomon and BCH component codes, and it tightly follows the formulation
of bit flipping decoding of GLDPC codes outlined in [12,82].

For the PBF decoder, we transmit the all-zero codeword over a binary symmetric
channel (BSC). We denote by ég‘;) the estimate of the codeword bit associated with the VN
v; at the (-th iteration and n‘(,fj) the number of flip messages that the VN v; receives from its
ch

vt

neighboring CNs. Initially, the estimate of a VN is its channel observation, i.e., 652) =m
At the /-th iteration, each VN sends its estimate 6‘(,‘;) to its neighboring CNs. Each super
CN performs BDD on the received messages from the VNs and sends then flip messages
to the VNs whose values differ from the decoded vector. Special care is needed for SPC
component codes: Here, we follow the policy of flipping the component code decoder input
at the output whenever the SPC constraint is not satisfied, i.e., an unsatisfied single parity
check node sends flip messages to all its neighboring VNs. For a VN v; of degree d, if it
receives strictly more than d,;/2 flip messages, it flips its estimate, i.e., é‘(,i“) =1- 6‘(;?. A
VN is called correct if the corresponding estimate is zero, and it is called corrupt if it is one.
The VNs and CNs exchange messages iteratively until a maximum number of iterations
is reached or a valid codeword is found. Algorithm 3 shows the steps performed in each

decoding iteration, where /.., is the maximum number of iterations.
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Algorithm 2: Sum-Product Algorithm for Non-Binary LDPC Codes

1 for j=1,2,...,ndo

2 | for ¢; € N(v;) do

)

4 end

5 end

6 for /=1,... 0. do

7 for 1=1,2,...,mdo

8 for v; € N (c;) do

0 = (0) ™

9 mCi‘)Vj _ Vj,e-/\/@?cz‘)\vj(mvj/%ci)

10 end
11 end
12 for j=1,2,...,ndo

13 for ¢; € N (v;) do

14 m‘(’?ﬁci - m‘c’lfl © cy E./\/'@(w)\m(mg?_)vj
15 Normalize m{9 ,

j—rci

16 end
17 end
18 for j=1,2,...,ndo

—1
19 m‘(,l;)’app B ms,h © <cieﬂ<?(vj)(mgfgvj)ﬂ >
20 ¢y, = argmax m‘(,?app(a)
a€lFy

21 end

22 end

>>
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Algorithm 3: Parallel Bit Flipping Algorithm.

1 for j=1,2,...,ndo

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

end

&) = meh
J J
for / =1,... 0 do
for j=1,2,...,ndo
for c; € N( ;) d
‘ md — (1Z 1)
vj~>cl
end
end

for i=1,2,...,m do
if ¢; is an unsatisfied SPC then
for v; € N (c;) do
) = a0 41
end
end
if ¢; is a super CN then
Perform BBD (With output z)
for v, e N(c;) d
if z,, # c(e) then
‘ nf,]) f,) +1
end

end

end
end
for j=1,2,...,ndo
if nf,f;) > d,;/2 then
v; \Zi
end
end

30 end




Quantized Decoding Algorithms for
LDPC Codes

The deployment of high throughput communication links [42,86] is motivating a revived
interest in low-complexity, high-speed channel code decoders. Recently, attention has been
devoted to the design and analysis of iterative decoders where the messages exchanged
within the decoder are coarsely quantized. The study of low-complexity message passing
algorithms for LDPC codes originates from the work by Gallager [9] who introduced
two decoding algorithms, known as Gallager A and Gallager B, where the variable and
check nodes exchange binary messages. By introducing erasures, the performance of these
algorithms is improved [33]. Finite-alphabet iterative decoders were also studied, for
instance, in [13,15,50,67,87]. While coarse message quantization reduces the amount of
information exchanged within the decoder, the decoding complexity can also be reduced by
employing simplified update rules at the CNs. Examples are the min-sum decoder [16,88]
and some of its variations (see, e.g., [17,18,89]), that limit the losses due to the min-
approximation at the CNs by introducing simple corrections.

Non-binary LDPC codes show an outstanding error correction capability, outperforming
their binary counterparts [11]. Nevertheless, the complexity of the BP decoder for these
codes is very high, and several works considered reduced-complexity decoding algorithms
for non-binary LDPC codes over the bIAWGN channel [19-22,90] and the QSC [23-27,91].
Majority logic based algorithms were considered in [28-30,92]. In [20], an extension of the
min-sum algorithm to non-binary fields was presented.

In this chapter, we analyze and design reduced complexity decoding algorithms for binary
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and non-binary LDPC codes over different channel models.

4.1 Binary LDPC Codes

In this section, we analyze and design quantized min-sum decoders for binary LDPC codes
over the biAWGN channel. At the CNs, we use the standard min-approximation rule. In
contrast to the quantized min-sum (QMS) algorithm [14], the VN decoder converts all
incoming messages to LLRs by modeling the extrinsic channel as a DMC, extending the
approach introduced for binary message passing decoding in [13] to the case where messages
are represented by b bits. The transition probabilities of the extrinsic DMCs are derived
via DE analysis, which we develop for unstructured irregular LDPC ensembles. Because
the VN inbound messages are matched to the reliability of the underlying extrinsic DMC,
we refer to the proposed algorithm as MQMS decoding [55].

4.1.1 Extrinsic Channels

Consider a binary-input M-ary output DMC with input alphabet X = {—1,4+1} and
output alphabet Z = {—(M —1)/2,—(M —3)/2,...,0,..., (M —1)/2}, where M = 2° —1

and b is a positive integer. For a generic channel output z, LLRs can be obtained as

Lz)=In | /—F—FF| . 4.1
) L%X(Z\ —1) 4D
If the channel satisfies the symmetry constraint
Pz|X(—Z| —|— 1) = Pz|X(Z| — 1)
for all z € Z, we have
L(z) = sign(z)Dy;, (4.2)
where YVa € Z,a > 0
P2|X((Z| + 1) ‘|
D, :=1In 4.3
FArerey )

and where by convention the sign(x) function takes on the value 0 for = 0. We refer to
Dy.| as the reliability of z. The decomposition (4.2) will be instrumental to developing a
message-passing decoding algorithm for LDPC codes. In particular, we focus on a decoding
algorithm that exchanges quantized messages. In this case, a message sent from a CN to a

VN can be modeled as the observation of the RV X after transmission over a binary-input
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M-ary output discrete memoryless extrinsic channel [93, Fig. 3], where M is the number
of message quantization levels. While the transition probabilities of the extrinsic channel
are in general unknown, accurate estimates can be obtained via DE analysis, as suggested
in [13]. This observation will be used to derive the MQMS decoding algorithm.

4.1.2 Quantization

Throughout the paper, we consider uniform quantization. We denote by f : R — M the
quantization function of the exchanged messages, where the quantized message alphabet is
M={-SA,—(S—1)A,...,SA}. The function f is a b-bit uniform quantizer with step

size A and 2° — 1 quantization levels. Formally, we have

f(x) := sign(z)A - min { VZ’ + ;J ,s} (4.4)

where S = 2071 — 1.

For the channel output, we consider two cases: unquantized channel outputs and quantized
channel outputs. For the latter case, the biAWGN channel output is quantized using a
bo-bit uniform quantizer with step size Ag, where by and Ay may, in general, differ from
the corresponding parameters for the message quantization. The quantized channel output
alphabet is Mg = {—=SoAg, —(So — 1)Ao, - . ., SoAo} with Sy = 2%~1 — 1, and the quantized

version of y is denoted as mgy.

4.1.3 Matched Quantized Min-Sum Decoding

We denote by m{),  the message sent from CN c to its neighboring VN v. Similarly, m{®

c—V v—C
is the message sent from VN v to CN c at the /-th iteration.
Unquantized Channel Output
Each VN computes the LLR of the corresponding channel output

Len(y) = ny (4.5)

and the VN passes a b-bit quantized value to its neighboring CNs. Thus, Vc € N (v) we
have

me = f(Lan(y)) (4.6)

where f is defined in (4.4) and we choose A to minimize the iterative decoding threshold.
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The min update rule is performed at the CNs. We have

/ej\l:([ . sign (m‘(f;lc)) . (4.7)

o _ "mn
my’.. = min |mg,
Y WeN(e\w! V¢

At the /-th iteration, each VN converts its channel message and the incoming CN messages

to LLRs. The sum of these LLRs is then quantized into a b-bit message. Formally, we have

o, = (Lch<y> LY o (mggv)) s

/EN(V)\c
where
Lex (mg)_w) := sign (mg)_w) D’(fi(f) . (4.9)

The final hard decision at each VN is
wg%%%@+Zquw> (4.10)

Note that the reliability of mgLV depends on the iteration number and is in general
unknown. In fact, the transition probabilities of the underlying extrinsic DMCs are not
known. As proposed in [13], their values can be estimated via Monte Carlo simulations, or
via DE analysis. The latter approach provides accurate results for moderate to large block
lengths, as shown in [13,50]. We hence follow this direction and use the DE presented in
Section 4.1.4 to estimate the message reliability at each iteration. For the special case of

b =2, we will obtain the TMP decoder that we introduced in [50].

Quantized Channel Output

If the channel output is quantized as described in Section 4.1.2, we replace Lq,(y) in (4.8)
and (4.10) by

Lch (mch) = Sign(mch) D|mch‘ :

We choose A and Aj to minimize the decoding threshold. As mentioned in Sec. 4.1.1, the
decoder’s communication channel can be modeled as a binary-input | M,|-ary output DMC
that satisfies the symmetry condition. The value of Dy, | can then be computed from (4.3)

by using the transition probabilities of the quantized communication channel.
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4.1.4 Density Evolution Analysis

We provide a DE analysis of the MQMS algorithm for unstructured LDPC code ensembles.

Due to symmetry, we may assume that the all-zeros codeword is transmitted. Let M) _ be

v—cC
the RV associated to VN to CN messages at the (-th iteration. Similarly, M%)  represents
the RV associated to CN to VN messages. We denote by pl(»z) the probability that M)

takes the value Ai, with ¢ € {—S,—(S —1),...,S}. Similarly, we denote by qy) the
probability that M)

O, takes the value Ai. In the following, /;,.x denotes the maximum

number of iterations. In the limit of n — oo, the evolution of the message distributions

can be tracked as follows.

1. Imitialization. Conditioned on X = +1, the channel LLRs are Gaussian RVs with

mean /i, = 4RE,/Ny and variance 0% = 2j4,. Therefore, we have

Och

O
—

o0 = Q((S)A#) ifi =S8 (4.11)

Och

.1 i L
) (U—z)ﬁ—“h) —Q (WA_“) otherwise

Och Och

while if the channel output is quantized we have

P = > Prrgx (Mmen| +1). (4.12)
mch3f(Lch(mCh)):Ai
2. For { =1,2,... lpax
Check to variable update. For all j € {1,... ,Qb_l}, we define CIDEK) and \Ifg-e) as

The probabilities qi(z)

can be computed as

% [,0 ((I)l(e—n n ‘I}l(e—m) +p <®§e_1) B \1154_1)) >0
—p (27" + wiY) —p (@i — wiY)]

¢ =11-p (1 _pgf—D) ifi=0 (4.15)
Lo (@ + 0y = p (o) — ) if § < 0.
—p (@ + 9 ) +p (2 — v )]
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Variable to check update. For i € {—S,—(S —1),..., S}, the probabilities p”

7

for the unquantized channel output are given by

RESISEIATIESS S B e

SAEP{LY =1} Q ((5‘5”‘““‘“““) ifi=s
)
pl — i— h 4]_6
Z > Pr{ lm} [Q (( 22 Uchm —fe > else (4.16)

Och
lin

o)

while for the quantized output, we have

P =30 > Py ix(men| + 1) 3 Pr{Li) = I} (4.17)

d Mch linif(Lch(mch)‘i’lin):Ai

where Li(ﬁ) is a RV associated to the sum of the LLRs of the d — 1 incoming CN

messages at the (-th iteration. We have

A S Sl B R U (4.15)

o \U—§,...,

where the sum is over all integer vectors v for which
Y vy=d—1 (4.19)

> (v = v-i)DX) =l (4.20)

where

¢ Q-(g)
DY} i=Tn | =5 | - (4.21)

—1

Note that the vector entry v; represents the number of incoming CN messages with

value Aj.

The ensemble iterative decoding threshold (Ey/Np)* is defined as the minimum Ey /Ny
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Table 4.1: Decoding thresholds (Ey/No)*[dB] of MQMS for quantized and unquantized
channel output and for QMS.

MQMS MQMS

(dy,de) | b (unquant. channel) bo (quant. channel) QMS
2 2.39 2.66

2 1.85 3 1.9 2.66

4 1.86 2.58

3 1.45 1.8

36) |° 1.32 4 1.34 1.8
3 1.35 1.72

4 121 4 1.24 1.65

) 1.18 ) 1.19 1.62

2 2.71 2.78

2 2.11 3 2.22 24

4 2.11 2.43

3 1.85 2.17

4g8) |3 L73 4 1.76 2.12
3 1.77 2.14

4 1.65 4 1.68 2.08

5 1.63 ) 1.64 2.06

for which lim P =0 as n — oo, where
—00
0
PO =3 p. (4.22)
i=—$

A first set of results deals with the asymptotic performance of MQMS decoding. Table 4.1
compares the iterative decoding thresholds of MQMS for both quantized and unquantized
channel outputs and QMS [14] for (d,,d.) regular LDPC ensembles and different values
of b and by. MQMS decoding largely outperforms QMS, with gains of up to 0.7dB.
Remarkably, for b = by = 5 the MQMS thresholds are within 0.1 dB of the unquantized
belief propagation thresholds (which are at (F},/Ny)* =~ 1.1 dB for the regular (3, 6) ensemble,
and at (Ep/No)* ~ 1.58dB for the regular (4,8) ensemble).

Based on the DE analysis, we designed a set of optimized irregular ensembles with various
rates. For the design, we chose a MQMS decoder with b = 4 and unquantized channel
output. We set the maximum VN degree to d'** = 20. The optimized degree distributions,
obtained via differential evolution are provided in Table 4.2.

We next consider the performance for rate 4/5 and 7/8 codes, designed for a MQMS

decoder and unquantized channel outputs, where we set b = 4,d¥* = 15, £,.x = 30. The
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Table 4.2: Thresholds of optimized degree distributions for the MQMS decoder for unquan-
tized channel with b = 4 and quantized channel with b = by = 4.

* Ey/Ny)™ [dB
R Az) o) (B /Ny am] | o0 BT v, amy
2/3 | 0.0317x + 0.489x% + 0.03742° + 0.44192%° 0.32821 + 0.672z 1.47 1.5 1.06
3/4 | 0.0313z + 0.463x% + 0.00582" + 0.4999z™° | 0.53362° + 0.466422° 1.96 2 1.62
4/5 0.4961z” + 0.00512° 4 0.498821° 0.7907z% + 0.20932° 2.34 2.37 2.04
5/6 | 0.0205z + 0.4646x2 + 0.05342° + 0.46162° | 0.99262°° + 0.00742! 2.63 2.66 2.36
7/8 | 0.4789z% + 0.0021x* + 0.0322° + 0.487x'° | 0.3752x4! 4 0.6248z*2 3.08 3.11 2.85
9/10 | 0.444222 + 0.04032° 4 0.00252° + 0.5132% | 0.66042°3 + 0.33962°* 3.42 3.44 3.2
100 et g
E— 1 |--- RCU bound
I 1 | —+— unquantized SPA
ey =— e
E = 1 | —— MQMS unquantized channel
, - L» 1 MQMS quantized channel
1077 ¢ \ 4 |+ QMS
e [ ‘\ i
B 1073k =
~ B e
10~ E e
10° E e
10—6 L | | | |

| |
2 22 24 26 28 3 3.2 34 3.6
Ey /Ny [dB]

Figure 4.1: FER versus E, /N, [dB] for unquantized SPA MQMS for unquantized and
quantized channel output, QMS and RCU bound for R = 4/5.

codes have a block length n = 20000 bits and their graphs were designed via the progressive
edge-growth (PEG) algorithm [94]. The simulation results are shown in Fig. 4.1 and
Fig. 4.2 in terms of FER versus Ey,/Ny. As a reference, we provide the simulation results
of the optimized codes for MQMS under unquantized BP decoding, MQMS for both 4 bit
quantized and unquantized channel output and QMS with b = by = 4, as well as the random
coding union bound (RCU) of [95]. Observe that the MQMS algorithm outperforms the
QMS decoder although they both use the same CN update rule. Admittedly, the VN update
rule of MQMS is more complex than the one of the plain QMS decoder: An open question
is whether the VN update rule in (4.8) can be efficiently implemented in approximate form

(e.g., via look-up tables) without compromising the performance of the MQMS algorithm.

Remark 4.1. The cardinality of the message alphabet is 2° — 1, i.e., we are not taking full

advantage of the b bits. To have a message alphabet of cardinality 2°, one can replace the
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100 ¢ 3
5 1 |--- RCU bound
el 1 |——unquantized SPA
10 E 1 | ——MQMS unquantized channel
) - : MQMS quantized channel
10~ E 1 |~ QMmS
o i 1
-3 |
E 10 g g
1074 = |
1070 ¢
1076 L I |

Figure 4.2: FER versus E,/N, [dB] for unquantized SPA MQMS for unquantized and
quantized channel output, QMS and RCU bound for R = 7/8.

quantization function in (4.4) with

f(z) := sign(x)A - min { VQJ + ;, 2=t ;} . (4.23)
Using f(z) in (4.23) instead of (4.4), we obtain a remarkable gain for b = 2. For b > 3, the
thresholds using the two quantization functions nearly coincide. In fact, for b = 2, we obtain
the quaternary message passing (QMP) that we presented and analyzed in [67], [57]. We
investigate next the gains of QMP over TMP (MQMS with b = 2) in terms of the iterative
decoding threshold. For both algorithms we obtain individually optimized ensembles for
rates R € {1/2,2/3,3/4,4/5,7/8,9/10}, where we restrict the maximum VN degree to
20. Fig. 4.3 depicts the obtained iterative decoding thresholds of the optimized degree
distributions under TMP and QMP. QMP decoding improves TMP decoding especially for
low rates. For R = 1/2, the decoding threshold improves by 0.2dB as compared to TMP.

We also provide in Fig. 4.4 the iterative decoding thresholds for protograph-based
SC-LDPC codes. We follow the approach of [96] for code ensembles and window decoding.
For this, we apply the protograph-based DE analysis in [50] and [67] for TMP and QMP.
We consider the protograph matrix Bp.w,i.w) that has been derived from (3.15) for a
decoding window size of W with p+1 < W < L. The notation Bji.w,1.w) refers to the
block matrix of size W x W that is formed from the first W block rows and W block
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Figure 4.3: Decoding thresholds of optimized LDPC code ensembles under TMP and QMP.
columns of B. For instance, for p = 2 and W = 4 we have

B, 0 0 0
B, B, 0 0
By1.41.4) = BB B ol (4.24)
2 D1 Dy

0 B, B, B,

Convergence of the window decoder is declared when the probability of decoding error
for the VNs in the first block column is (approximately) zero. We consider (asymp-
totically) regular, protograph-based SC-LDPC codes with VN degrees d, = 6 and
dc € {12,18,24,30,36,48,60}. The submatrices B; in (3.15) are given by

B:=(1 1 ... 1), i=0,...,p4, (4.25)

dc

where p =d, — 1.

4.2 Non-Binary LDPC Codes

In this section, we introduce and analyze decoding algorithms for g-ary LDPC codes. We
start with the SMP decoder over the QSC introduced in [91]. We analyze the performance
of SMP for protograph-based SC-LDPC in [51]. We adopt the SMP to the QEC and to
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Figure 4.4: Decoding thresholds of spatially coupled LDPC code ensembles under TMP
and QMP.

the AWGN and Poisson channels with orthogonal modulations [58,60]. Further, we extend
the SMP to the SRLMP and RSMP decoders [56,59]. We denote by m{’, the message
sent from CN c to its neighboring VN v. Similarly, m{, _is the message sent from VN v
to CN c at the /-th iteration.

4.2.1 Log-Likelihood Vector

For a given channel output y of a DMC with input alphabet X = [F,, we introduce the

log-likelihood vector, also referred to as L-vector,

L(y) = [Lo(y), L1(y), - - -, Laa-2(y)] (4.26)
whose elements are
L,(y) =InP(ylu) YueTF,. (4.27)

The L-vector will be instrumental to the design of message passing decoding algorithms for

non-binary LDPC codes.
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4.2.2 ()-ary Symmetric Channel
SMP

In this section, we describe the proposed SMP algorithm [91] in detail, assuming transmission
over the QSC. An exchanged message between a check and a variable node is a symbol
from F,. We have m(®, ., m®, € Mgyp =F,.

Each VN sends its channel observation y to its neighboring CNs
m®_=y. (4.28)

Consider a CN ¢ and a VN v connected to it. The CN ¢ computes the symbol that satisfies
the parity check equation given the incoming VN messages. Formally,

m® = —h;! > hyr e D) (4.29)

c—v v,c
v'eN (c)\v
where the multiplication and the sum in (4.29) are performed over F,, h, . is the edge label
associated to the edge connecting v and c and h, !'is the inverse of h, . in F,.
At the /-th iteration, each VN computes

Lg() = [Lt(ei),O? Lgi),b s 7L((5i),aq72}
=Ly)+ Y. L(ml)). (4.30)
c’eN(v)\c

The outgoing VN message is the F, symbol with the maximum entry in Lgf), ie.,

— argmax L) (4.31)

()
m -
u€ly

v—c
Whenever multiple maximizing arguments exist, the arg max function outputs one of them
uniformly at random. The VN operation can be interpreted as if the CNs and the channel
would vote for the value of the code symbol associated to the VN. The VN assigns different
weights to the CN and channel votes and selects the symbol with the highest score.

In (4.30), the L-vector L(y) corresponding to the QSC channel observation is obtained
from (2.18) and (4.27). Moreover, we model each CN to VN message as an observation
of the symbol X (associated to v) at the output of an extrinsic channel with input and
output alphabets X = Z = F,. The transition probabilities of the extrinsic channel are
unknown in general. It was shown in [13,50] that, for moderate to large block lengths,

these probabilities can be accurately estimated via the DE analysis. They are then used to
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compute the L-vectors of the CN messages in (4.26) and (4.27).

To estimate its codeword symbol, each VN computes

o _[1® (9] ()
LE(ip)p - {Lapp,(b Lapp,b ey Lapp7a¢Z*2:|

¢ 4.32
=L(y)+ > L(mi,). (4.52)

c’eN(v)

The final decision is
2 = argmax Lgﬁ)p’u. (4.33)
u€ly

We present now a DE for SMP for non-binary LDPC codes over a QSC with error probability
e. We partition the message alphabet Mgyp into 2 disjoint sets Zy = {0} and Z; = {a :
a € F,\ {0}} where |Zy| =1, |Z;| = ¢ — 1. Due to symmetry, the messages in the same set
have the same probability. Let p(IZk) be the probability that a VN to CN message belongs to
the set Z, at the /-th iteration and S(Ii) the probability that a CN to VN message belongs
to the set Zy, where k € {0,1}. The ensemble iterative decoding threshold €* is defined as
the maximum e for which p(Z? — 1 as £ — oo. In the limit of n — oo, the DE analysis can

be summarized in the following steps.

1. Initialization.

p(z? =1—c¢ (4.34)
p(I?) =e. (4.35)

2. For 0 =1,2,... (.

Check to variable update. We have

OB PRI . S (4:36)
To q q p q—l :

3%) =1- s%). (4.37)
Variable to check update. The extrinsic channel has input alphabet X = F,,
output alphabet Z = F, and transition probabilities

sy, ifz=u
P(zlu) = RO (4.38)
Lo ifz=e, eelF,\{u}.
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Consider now the VN to CN messages. Define the random vector F(®) =
(FO(Z), e ,Fg;)_2> where F\Y), for u € F, denotes the RV associated to the num-
ber of incoming CN messages to a degree d VN that are equal to u at the ¢-th
iteration. Let £ be the realization of F(®. The entries of L (mgL‘J in (4.30) are
given by

Ly (m{,,) = (P(m{),[u)) (4.39)
where mg )_N €F,,ueF,and P( |u) can be computed from (4.36), (4.37) and (4.38)

Vz € F,. Hence, the elements LO
related to f{©) and the channel observation y by

of the aggregated extrinsic L-vector in (4.30) are

ex,u

LY =DYWY + Dyd,, + K VYucT, (4.40)

ex,u

where 0;; is the Kronecker delta function and

Den =In (1 —€) — In <q - 1) (4.41)
L0
DO =In(s{) — In [ 22— (4.42)
0 g—1
In (< n 52!

Note that K in (4.43) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

0 0 — $© . (0 €L gﬁ))
Py = Z A Y Pr{Y =y X =0} Y Pr{F® = fOIX =0} ~—"=  (444)
yeF, Fi) ’ﬁex |
) =1-pf) (4.45)

where the inner sum is over all length ¢ integer vectors f() whose entries are non-

negative and sum to d — 1 and

LY = max LY } (4.46)

0\ 1150
© _ p© d—1 00 [ 55
Pr{F® = fOIX =0} =( £ (0 L . (4.47)
0 s Jaa—2
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SRLMP

In this section, we introduce an extension of the SMP algorithm for transmission over a
QSC. An exchanged message between a check and a variable node can be an erasure or a
list of symbols from F, of size at most T, i.e., the message alphabet is Mr = {E} U O,
where Or contains all possible sets of symbols in F, of size less than or equal to I" and {E}

corresponds to an erasure. The cardinality of the message alphabet is
~ (4
Ml =3 (1)
i=0 \’

For I' = 1, we call the decoder SEMP.

Initially, each VN sends its channel observation to its neighboring CNs, i.e.,
m® =y (4.48)

where y is the channel observation associated to VN v.

Consider a CN c and a VN v connected to it. If all of the incoming messages to ¢ from
the other neighboring VNs are not empty, ¢ computes the set of all symbols that satisfy

the parity check equation given the received VN messages. Formally, it computes

U =-hyl > heemGZY. (4.49)

v eEN (c)\v

The multiplication in (4.49) is performed element-wise over F, and the sum is over sets of

symbols. The sum over two sets A and B is defined as the Minkowski sum, i.e.,
A+B={a+b:ac Abc B}. (4.50)

If the size of U!) is larger than I' or c receives at least one erasure from its neighboring

,C

VNs, then ¢ sends an erasure to v, otherwise it sends the set L{éfg Formally, we write

N us) if ml~ ) £ E W € N(c)\ v and Ul <r

mgﬁv - (4 51)
E otherwise.
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Algorithm 4: VN Update Rule.

1 Initialize the set 7 = ()
2 Find one symbol a € I, with Lgf()’a = max LY

ueF \T Y
Update the set T =T U{a}
if L, > LY, +A® Ve e T and VYu € F,\ T then
b =T
else
if |7| <T then
‘ return to 2
else
10 ‘ m® =FE
11 end

© 0 N O ook ®

12 end

At the (-th iteration, each VN computes

Lt(ei) = [Lg()Oa Lg()lv ce L(Z) q— 2}
=L(y)+ Y. L(md,). (4.52)
c’eN(v)\c

The outgoing VN message is then obtained by applying Algorithm 4. For I' = 1, Algorithm
4 simplifies to

{a} fJaeF,: LY, > LY, +A® VueF,\{a}

m‘(f_)m — o (4.53)
E otherwise
and for I' = 2
{a} ifFaeF,:LY,>LY, +AY YueF,\{a}
m®,_ = {a,e} if Ja,e € F, |Lexa gi)e| < A® and Lexa,L((eQe > (4.54)
Lg@u +A® vy e F,\ {a,e}
E otherwise.

In (4.52), the L-vector L(y) corresponding to the channel observation is obtained from
(4.27) using the transition probabilities of the QSC communication channel given in (2.18).
Further, we model each CN to VN message as an observation of the symbol X (associated

to v) at the output of an extrinsic channel with input alphabet X = F, and output alphabet
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Z = Mr. The transition probabilities of the extrinsic channel can be estimated via DE
and are used to compute the L-vectors of the CN messages as shown in (4.26) and (4.27).

) are chosen to maximize the iterative decoding threshold and are thus

The parameters Al
subject of optimization. They can be chosen for each iteration individually or kept constant
over the iterations. In the latter case, one can compute the iterative decoding thresholds

obtained for several values of A and choose the best one.

To estimate its codeword symbol, each variable node computes

0 _[70 €9) 0
LgP)P - {Lapp,(b Lapp,17 T Lapp,aq*Z}
¢ 4.55
~Ly)+ Y L(m.). (4.55)
c'eN(v)
We have
7 = argmax Lg‘?p u (4.56)
u€l, ’

In (4.56), if multiple maximizing arguments exist we choose one of them uniformly at
random.

Note that for I' = 1, the SRLMP is similar to the SMP but SRLMP includes an additional
erasure.

We present next a DE analysis for non-binary irregular LDPC codes under SRLMP with
=12

Density Evolution Analysis for SRLMP with [' =1

For I' = 1, the cardinality of the message alphabet is |[M;| = ¢+ 1. In the DE, the
probabilities of VN to CN and CN to VN messages are tracked as iterations progress
and we consider the limit as n — co. Due to symmetry and under the all-zero codeword
assumption, we can partition the message alphabet M; into 3 disjoint sets Zy,Z;,Z, such

that the messages in the same set have the same probability. We have

To ={{0}} (4.57)
T, ={{a} : a € F, \ {0}} (4.58)
7, ={E}. (4.59)

Note that |Zy| = |Zo| = 1, |Z1| = ¢—1. Let p%f be the probability that a VN to CN message
belongs to the set Zj at the (-th iteration, i.e., a VN to CN message takes the value a € Z;
with probability p(Ii) /|Zx|. Similarly 8%3 is the probability that a CN to VN message belongs
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to the set Z, where k € {0,1,2}. The ensemble iterative decoding threshold €* is defined
as the maximum e for which p%) — 1 as £ — oo. In the limit of n — oo, the DE analysis

can be summarized in the following steps.

1. Initialization. Initially, we have

p(I? =1—¢ (4.60)
Py =e (4.61)
py) =0. (4.62)

2. For { =1,2,... (o

Check to variable update. We have

(1)
o 1 —1 -1 Pry
s = [p (1—p5 ") +(a—1p (péo ) qI_ 1)] (4.63)
q 1 p(f—l)
[ - -1 -1 1
sy = 1p (1 — Y, )) —p P~ = (4.64)
q q—1
¢ {—
s =1—p(1-p5"). (4.65)

The extrinsic channel has input alphabet X = F,, output alphabet Z = M; and
transition probabilities

5(1? if z = {u}
P(zlu) =50, {e}  eeF,\{u} (4.66)

q—1
(0

sy, ifz=E.
Note that for I' = 1, the L-vectors of the CN messages in (4.52) can be computed
from (4.27) and (4.63)-(4.66).

Variable to check update. Consider now the VN to CN messages. We define the
random vector F) = (F {((%, o F {(i)q,Q}, FEM)), where F©) denotes the RV associated
to the number of incoming CN messages to a degree d VN that take value a € M; at
the (-th iteration, and f¥) is its realization. The entries of L ( © ) in (4.52) are

mc/g)v

Ly (m&),) = (P(mY),,Ju)) (4.67)

c'—v
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where m{, € My, u € F, and P(z|u) is given in (4.66) Vz € M;. Hence, the

c/—v

elements Lexu of the extrinsic L-vector in (4.52) are
Lgi),u :Dgg)f{(i)} + Dchauy + Kl (468)

O
€1> + 0 In(sE) + (d— 1= f) In (qsfll) (4.69)

K1 :1H<

Dy =In(1 — ¢) — In ( ‘ ) (4.70)

qg—1
¢ ¢ sy
D{” =In(s%)) —In % (4.71)

q_

and 0;; is the Kronecker delta function. Note that K in (4.69) is independent of w.

Thus, it can be ignored when computing the extrinsic L-vector. We obtain

Py = ZAdZPT{Y—le—O}ZPr{ )= FOIX =0} x

a ;
yeF ) FO (4.72)
H H(Lex 0 ex u + A E))
u€eF,\{0}
Py = =M Y Pr{Y =y|X =0} Y Pr{F" = fO|X = 0}
yeF, FO
(4.73)
1— Z H H<Lgx)a >Lexu_|—A )
(Fouchi\ (o)
4 4

where [(A) is an indicator function and the inner sum is over all length ¢ + 1

non-negative integer vectors f) whose entries sum to d — 1 and

0 _ £(0) d—1 2 [ sy &
pr{F® = fO|x =0 :< , 4> : (4.75)
{ j Figy - ,Eo A
O -3 1 vk e {0,1,2}. (4.76)
a€ly

Density Evolution Analysis for SRLMP with I' =2

This section gives a DE analysis for SRLMP with maximum list size I' = 2. For I' = 2,
the cardinality of the message alphabet is |[My| =14 g+ (g) Due to symmetry and under

the all-zero codeword assumption, we can partition the message alphabet Ms into 5 disjoint
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sets Zy, 11,71, 13,7, such that the messages in the same set have the same probability. We
have Zy,7Z,,Z; as defined in (4.57)-(4.59) and

Zs ={{0,a} : a € F, \ {0}} (4.77)
Iy ={{a,e} :a,e € F,\ {0} and a # e} . (4.78)

Note that |Zy| = |Z2| = 1, | 71| = |Z3] = g — 1 and |Z4| = (q;). Let p(Ii) be the probability
that a VN to CN message belongs to the set Z; at the ¢-th iteration. Similarly 3%3 is the

probability that a CN to VN message belongs to the set Zy, where k € {0,1,2,3,4}.

1. Initialization. Initially, we have

Py =1 —e (4.79)

py) =e (4.80)
0 0 0

P =p =p) = 0. (4.81)

2. For ( =1,2,... (.«
Check to variable update. For the CN to VN messages, S(I?, S(I? are given in

(4.63), (4.64), respectively and

o q—1 (=1) . (t=1) py ol (t-1) (1)
i O T T T ) B (v, " +p5 ")

ey e opE Y 2py, "
+q—2)p|pz, -+ — ’ (4.82
(=2 | Pz, g—1 q—1 (¢—1)(¢—2) )
( ) p(ffl)
/-1 7
—(g—2 _n
(q ),0(1910 q—l)]
(¢-1) (£-1)
o (¢—1)(qg—2) (-1 . (e-1) P Pr
2 L8 N A +q"’_1+7q4_1
(¢-1) (£-1) (¢-1)
1) . (e-1) -1 D1 Pz, 2p7,
—p(p, ' +0p —p|pn - + - 4.83
(IO . ) (IO g—1 q¢—1 (q—l)(q—Q)) (4.83)

- p(zq)
-1y Pz
+p (pzo P 1)]

4 J4 l 4 4
S(IQ) =1 - S(Io) - S(I:l) - S(Zg) - 8%4)‘ (484)
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In this case, the extrinsic channel has input alphabet X = F,, output alphabet
Z = M and transition probabilities

3%) if z ={u}

RO

\1111| if z = {e} eecF,\ {u}

P(zlu)={s9 ifz=E (4.85)
RO

\IITS| if z={u,e} eeclF,\{u}

RO

2 if z={a,e} a,eeF,\{u}.

|Z4|

Note that for I' = 2, the L-vectors of the CN messages in (4.52) can be computed
from (4.27), (4.63), (4.64) and (4.82)-(4.85).

Variable to check update. Consider now the VN to CN messages. We extend the
random vector FO to FO = (Fig),..., F{0 o), Fighy - Fiohos gasy, F) where
F9 denotes the RV associated to the number of incoming CN messages to a degree d
VN that take value a € My at the (-th iteration. The entries of L ( o _>v> in (4.52)

are given by
Ly (m&,) = (P(mY),[u)) (4.86)

where m{ € My, u € F, and P(z|u) is given in (4.85) Vz € M. Hence, the entries

c/—v

LY of the aggregated extrinsic L-vector in (4.52) are related to f) and the channel

ex,u

observation y by

Lg(),u = Dg)f{(?} + Dg) Z f{u a} + Dchéuy + K2 (487)
a€lF \{u}

where D, and D{” are given in (4.70) and (4.71) and we have

@ sg) S(ﬁ)
Dy’ =1In 3] —In 4.88
A . (488)
(f)
Ky =In + fa In
=i 5y) s 2 (2
(0) S(Z) 0y

a,e€lFy

(4.89)

Note that K3 in (4.89) can be ignored in the VN update rule since it is independent
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of u. We obtain

P = ZAdZPr{Y—le—O}ZPr{ )= FO1X =0} x

yel, Fil) (4 90)
[I 1Ll > LY, +A) '
ueF,\{0}
Py = ZA > Y Pr{y =y X =0} Y Pr{FY = U)X =0}
a€F,\{0} y€F, FO (4.91)
[ 1z, >rd,+A0) ’
u€Fq\{a}
py) = Z)\d Y Pr{y =y|X = O}ZPr{ FO = fO1X =0} x
IS
Z I (‘LexO Lg( a‘ < A Z)) (492)
a€lF,\{0}
[I 1(L8,>r8, +AM) (L8, > L, +A®)
u€F4\{0,a}
Py = Z)\d Y Pr{y =y|X = O}ZPr{ FO = 01X =0} x
IS
Z I (’Lg()a - Lex e| < A ) (493)
a,e€F\{0},a#e
H H (Lt(ei)a ex K7 + A ) ( gx)e > Lei)u + A £)>
u€F \{a,e}
py) =1 —p%) —pi) —p) — p (4.94)

where the inner sum is over all length | M| non-negative integer vectors f) whose

entries sum to d — 1

0 _ 0 d—1 L[ sy g
Pr{F" = fO1X =0 < ) '“ (4.95)
{ P\ o) Iz
D=3 9 vke{o,...,4}. (4.96)
a€Ty

We investigate the asymptotic performance of SRLMP with maximum list size 1 and
2 obtained by DE. Table 4.3 shows the iterative decoding thresholds of SRLMP for
(3,5) regular ensemble and various values of ¢q. For the sake of comparison, we provide
the belief propagation thresholds egp, the Shannon limit esp, and the thresholds of
the SMP decoder. By comparing the thresholds for I' = 1 with the SMP ones,

we see that significant gains are obtained if erasures are allowed in the decoding
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Table 4.3: Decoding thresholds €* of the (3,5) regular LDPC code ensemble
27] [27]  SMP SRLMP SRLMP

*

9 1=1 1r=2 9] TI=1 T=2 ‘B  ©h

2 0061 - 0061 0.0975 — 0.113 0.146
4 0092 0.153 0122 0.1283  0.1632 0.196 0.248
8 0.093 0.18 0.133 0.1430 0.1918 0.254 0.319
16 0094 02 0138 0,1627 02057 0.296 0.370
32 - - 0140 01906 0.2163 0.328 0.4086
64 - - 0.41 02153 0.2209 0.352 0.4369

algorithm. Increasing I" improves the threshold but this comes at the cost of an
increasing complexity. We believe that increasing I' further will significantly increase

the decoding complexity and will not achieve significant gains compared to the case
of ' = 2.

Note that the SRLMP outperforms the decoding algorithm in [27] for the same
maximum list size. Since the CN update rule of both decoders is the same, the
gain is probably due to the VN update rule which is more complex for the case of
the SRLMP decoder. In fact, the VNs in [27] compute the sum of binary vectors,
whereas, here the incoming messages are converted to L-vectors before summation.
To check the finite-length performance under SRLMP, we consider the performance
of a regular (3,5) code where we set the maximum number of iterations to £y, = 50.
The code has a block length n = 60000 and its Tanner graph is obtained via the PEG
algorithm [94]. Finite-length simulation results for I' = 1 and I" = 2 are shown in
Fig. 4.5 in terms of symbol error rate (SER) versus the QSC error probability e. We
keep A constant over the iterations and use A® =1 for I' =1 and A® = 1.25 for
[' = 2. As a reference, we provide the simulation results under the SMP decoder [91]

and under the decoding algorithm in [27] for I = 1.

RSMP

We introduce now a message passing algorithm for g-ary LDPC codes over the QSC, which
we dub RSMP. To decrease the data flow, instead of passing a list of symbols as in SRLMP,
the exchanged messages are symbols from [F, together with their reliability scores from
{H,L} for 1-bit RSMP and {vH,H,L,vL} for 2-bit RSMP. We improve the performance of
SMP by including reliability scores in the decoding.

1-bit RSMP

An exchanged message between a check and a variable node is a symbol from F, together
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Figure 4.5: SER versus channel error probability € for 4-ary regular (3,5) LDPC code with
n = 60000.

with its reliability score from {H,L}, where H and L correspond to symbols with high and
low reliability, respectively. We denote by (m{, ,r®

Y, ) the message sent from CN c to its

neighboring VN v. Similarly, (m{,_, 7). ) is the message sent from VN v to CN ¢ at the

v—C’) ' V—cC
(-th iteration. We have m{®, ., m, € F, and v, r¥ € {H L}.

CcC—V?) ' Vv—C

Initially, each VN sends its channel observation y to its neighboring CNs

mye =y. (4.97)
The reliability score of m{®)_ is
H if Dy, > A
ri0 = (4.98)

L otherwise

where

Den =In(1 — ¢) — In ( ‘ ) . (4.99)
qg—1
The real-valued parameter A is chosen to maximize the iterative decoding threshold and
can be chosen for each iteration individually. In this work, we keep A constant over the
iterations, i.e., we compute the iterative decoding thresholds for several values of A and
choose the best one.
Consider a CN ¢ and a VN v connected to it. The CN ¢ computes the symbol that
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satisfies the parity check equation given the incoming VN messages. We assign to the
outgoing symbol from c the reliability score L if any incoming symbols from the other
neighboring VNs has low reliability and the reliability score H otherwise. Formally, the

outgoing message is (m{, ,r{, ) with

mO, =—hit S heemlo) (4.100)
v'eEN (c)\v

and the reliability score of m{®,  is

H itV =H W eN(c)\v

¢ v/—c

r = (4.101)
L otherwise.

The multiplication and the sum in (4.100) are performed over F, and h . is the inverse of
hy o in I,

At the (-th iteration, each VN computes

LY =L L L) o]

ex,07 Hex,1» ex,aqd—2
4.102
=L+ > E(ml, ). (4102
c’eN(v)\c

Then, the VN determines the F, symbol with the maximum entry in LY. The outgoing
symbol has high reliability if its correspondmg entry in L is greater by A than each of
the other entries. Formally, the VN sends (m{’,_, 7, ) with

V—)C’ v—C

— argmax LY (4.103)

()
m ex,u
u€ly

v—cC

and the reliability score of m{, _ is

H ifJaeF,: LY, >LY, +A VueF,\{a}
r® = e ’ ! (4.104)
L otherwise.

In (4.103), if multiple maximizing arguments exist the arg max function outputs one of

them uniformly at random.
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To estimate its codeword symbol each VN computes

o _[r® () 9]
Lgp)p - [Lapp,m Lapp,la ce 7Lapp,o¢q—2}
4.105
L+ ¥ L{m,.r0.). (4.105)
c’eN(v)
The final decision is
79 = argmax Lg@mu. (4.106)

u€lFy

Note that we can easily include erasures in the decoding algorithm. We observed that both

decoding algorithms (with and without erasures) have similar performance.

Remark 4.2. The complexity of a message passing decoding algorithm can be studied
from 2 perspectives: the cost of the arithmetic operations and the decoder data flow. The
internal decoder data flow, defined as the number of bits that are processed in each iteration,
scales linearly in the number of bits that represent the exchanged CN and VN messages [42].
This work targets this second complexity, i.e., the reduction of the internal data flow. The
exchanged messages in BP decoder are (¢ — 1)-ary real valued vectors, whereas for RSMP
the exchanged messages are symbols from F, together with a reliability score from {H,L}.
This approach substantially reduces the number of bits needed to represent the exchanged

CN and VN messages and therefore the decoder data flow.

Density Evolution for 1-bit RSMP

This section provides a DE analysis for RSMP with 1-bit reliability for non-binary
irregular LDPC code ensembles. In the DE, the probabilities of VN to CN and CN to
VN messages are tracked as iterations progress. Due to symmetry and under the all-zero

codeword assumption, we can partition F, x {H,L} into the following 4 disjoint sets

Ty ={(0,H)} (4.107)
Z, ={(a,H) :a € F,\ {0}} (4.108)
T, ={(0,L)} (4.109)
T3 ={(a,L) :a € F,\ {0}} (4.110)

where (u,H) denotes a high-reliability symbol u and (u,L) denotes a low-reliability symbol
u € F,. Note that |Zy| = |Zo| = 1, |Z1| = |Z3| = ¢ — 1. Let p(Zi) be the probability that a VN
to CN message belongs to the set Z; at the ¢-th iteration. That means a VN to CN symbol
takes the value a € F, and has the reliability score r € {H,L} with probability p%} /| Zg| if
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(a,r) € Zy. Similarly S(Ii) is the probability that a CN to VN message belongs to the set
Ty, where k € {0,1,2,3}. The iterative decoding threshold €* is defined as the maximum

channel error probability such that p% ) 51 as - oco.

1. Initialization. Initially, we have

pIO =I(Da, > A)(1 —¢) (4.111)
pzl =[(Den > A)e (4.112)
pIQ =I(De, < A)(1 —¢) (4.113)
py) =I(De, < A)e (4.114)

where I(A) is an indicator function that takes the value 1 if the proposition A is true

and 0 otherwise.

2. For / =1,2,... lrax

Check to variable update. For the CN to VN messages, we have

(¢-1)
o 1 o o -1y P
sy = p (5 45 )+ (g = Dp P qu_ . (4.115)
0w q—1 -1 | (-1 (-1) py Y
= | (pzo + 1z, ) P | Pz, . p— (4.116)

] (Z 1)
— p

l -1 ] /-1 T

SI(Z) _— I - p ( ( ) I(l )> (q )p (pI( ) L )

ey e (4.117)
+(C]—1)P((Zo Vgl P TP )]
qg—1
o qg—1 (=1 . (e=1) (—1) p(zl;_l)
51, =T {1 —P(PIO + Pz, )+P (pzo q—l)
(4.118)

1), ()
1) P + 1z
—p (p(zo Dappf -t B - )]

Variable to check update. The extrinsic channel has input alphabet X = F,
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output alphabet Z =T, x {H,L} and transition probabilities

s%) if z = (u,H)

(

@
s,
P(zlu) =4 " =) echiul (4.119)
sg;) if z = (u,L)
540
q—31 (

if z=(e,L) eelF,\ {u}.

Consider now the VN to CN messages. Deﬁne the random vector F®) =
(F((é)H) F((ﬁ 2 1) F ((é)L) F((C?I 21 ) where F , for w € F, and r € {H,L}, de-
notes the RV associated to the number of i 1ncom1ng CN messages to a degree d VN
that are equal to (u,r) at the /-th iteration. Let £} be the realization of F). The
entries of L ((m@ r )) in (4.102) are given by

c'—=v) T c'—=v

Ly ((m,,r5)) = In (P((m,,r,) u)) (4.120)

c'—=v?) i c'—=v c'—v

where m{"), e F, ) e {H,L},u € F, and P(z|u) can be computed from (4.115),

c/'—v q> c~>v

(4.116), (4.117), (4.118) and (4.119) Vz € F, x {H,L}. Hence, the elements L{),
of the aggregated extrinsic L-vector in (4.102) are related to f{¥ and the channel
observation y by

LY, =Dy iy + D ) + Daduy + K Vu € F, (4.121)

ex,u

where §;; is the Kronecker delta function, Dg, is given in (4.70) and we have

(0
DY =In(sy)) — In (qs_ﬂl) (4.122)
¢ ¢ sy)
D{” =In(s%)) — In q_% (4.123)
NO X0
Kl—ln< >+Zfaﬁ> +ZfaL —1] (4.124)
q— a€lfy a€ly q—

Note that K7 in (4.124) can be ignored in the VN update rule since it is independent
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of the symbol u. We obtain

Py = ZM S Pr{y =y[X =0} > Pr{F® = fO|X =0} x

IS a2

(4.125)
11 ]I(L 0> LEXU+A)
ueF,\{0}
le Z)\ Z ZPr{Y:y\X:O}X
@€Fa M0} veFa (4.126)
S Pr{FO=fOIx =0} ] 1LY, >LY,+A)
£ uEF,\ fa}
py) = Z)\ S Pr{Y =y|X =0} > Pr{F® = fO|X =0} x
IS F£©
(4.127)
10 € U
1S #0) [ LLY, > 19,4+ U
u€F,\{0} |U|
Pr = ZA > Y Pr{y =yX =0} Y Pr{FY = fOIX =0} x
a€F,\{0} yeF, £
(4.128)
165, #0) [ LY, >0, + 12t
u€Fg \{a} |Z/{|

where the inner sum is over all length 2¢ integer vectors f) whose entries are

non-negative and sum to d — 1. For all u € IF,, we have

S, ={e €F, Lexu A< Lexe < Lgﬁ)u} (4.129)
U={e€F,: L), = max L, (4.130)
© _ £ d—1 2 [ s0) 5
Pryf” = folX =0 :< ¢ ¢ ) . (4.131)
{ } Sy ((aL—Q,L) kl;[() |Zs|
= 9 Wkedo,...,3). (4.132)
(a,r)EZLy

Tables 4.4 and 4.5 compare the iterative decoding thresholds €* of 1-bit RSMP, SMP,
SRLMP (for maximum list size I' = 1 and I' = 2) and BP decoding €gp for (4,8) and (3,4)
regular ensembles and several ¢ values. The tables also give the Shannon limit es, and
the thresholds of the list message passing algorithm in [27] for maximum list size ' = 1
and I' = 2. Observe that 1-bit RSMP outperforms SMP decoding. This gain is due to
including reliability scores in the decoding process. For 1-bit RSMP, the alphabet size of
the messages is 2¢ which is much smaller than the alphabet size of SRLMP and the list
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Table 4.4: Decoding thresholds €* of the (4,8) regular LDPC code ensembles
SMP  SRLMP SRLMP

q 91] r—1 r_o 1-bit RSMP  €gp €Sh

2 0.0516 0.0656 - 0.0687 0.076  0.110
4 0.0814 0.0923  0.1075 0.1041 0.134  0.189
8 0.1064 0.1151  0.1332 0.1321 0.175  0.247
16 0.137  0.1389  0.1533 0.1481 0.204 0.2897

32 0.1636 0.1636  0.1673 0.1697 0.226 0.3217
64 0.1758 0.1758  0.1758 0.1866 0.241 0.3462

Table 4.5: Decoding thresholds €* of the (3,4) regular LDPC code ensemble

SMP  [27] [27] SRLMP SRLMP
91 I'=1 I'=2 TI'=1 TI=2
0.1069 0.106 -  0.1439 - 0.1448  0.167 0.2145
0.1724 0123 0222 0.1842  0.2390 02213  0.280 0.3546
8 0.1867 0.124 0269 0.2096  0.2790 02791  0.355 0.4480
16 0.1930 0.120 0.287 0.2481  0.2977 0.3138  0.407 0.5120
32 0.1960 - - 02893 0.3110 0.3382  0.444 0.5570
64 01974 - - 03128 0.3175 0.354 0475 0.5894

1-bit RSMP EEP €Sh

N R

message passing [27] for maximum list size 2, which is equal to 1+ ¢(q + 1)/2. Remarkably,
for some values of ¢ and degree distributions, 1-bit RSMP outperforms both SRLMP and
the algorithm in [27] for maximum list size 2 and with reduced complexity and data flow.

To check the finite-length performance under 1-bit RSMP, we consider the performance
of a regular (4,8) code where we set the maximum number of iterations ., = 50.
The code has a block length n = 12000 and its Tanner graph is obtained via the PEG
algorithm [94] and edge labels uniformly chosen in F,\ {0}. Finite-length simulation results
for ¢ € {2,4, 8,16} are shown in Fig. 4.6 in terms of FER versus the QSC error probability
e. Weuse A =1.6forgq=2and8 A =1.5forq=4and A = 1.8 for ¢ = 16. The
parameters Dg), D,(f) are not provided but are obtained as a byproduct of DE analysis. As
a reference, we provide the simulation results under SMP decoding [91].

2-bit RSMP

We extend the 1-bit RSMP by using 2 bits for the reliability, i.e., an exchanged message
between a check and a variable node is a symbol from I, together with its reliability score
from {vH,H,L,vL}, where vH, H, L, vL correspond to symbols with very high, high, low and
very low reliability, respectively. We sort the reliabilities as vL < L < H < vH. We introduce
three real-valued parameters A, Ay and Ajz. These parameters are chosen to maximize the

iterative decoding threshold and can be chosen for each iteration individually. In this work,
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Figure 4.6: FER versus channel error probability e for regular (4,8) LDPC codes with
n = 12000 for SMP (dashed lines) and 1-bit RSMP (solid lines).

we keep them constant over the iterations.

Initially, each VN sends its channel observation y to its neighboring CNs

m,, =y. (4.133)

vH if Dy, > Ag

H ifAy<Dg <A
A0 _ 2o T =T (4.134)
L if Al < Dch < Ag

vL otherwise

where

Den =In(1 — ) — In ( < ) . (4.135)

qg—1
Consider a CN ¢ and a VN v connected to it. The CN ¢ computes the symbol that
satisfies the parity check equation given the incoming VN messages. We assign to the

outgoing symbol from c the lowest reliability score of the incoming symbols from the other



64 4 Quantized Decoding Algorithms for LDPC Codes

neighboring VNs. Formally, the outgoing message is (m(’,,r®

C—V)  Cc—V

) with

o _ L
mc%v - h‘ Z hV Cmv —>c

v eN (c)\v
and the reliability score of m{®),  is
r® = min #42Y

veN(e)\v V¢

The multiplication and the sum in (4.136) are performed over F, and h, |
hy.c in .

At the /-th iteration, each VN computes

LY — {L(Z) L(f) ) L(Z) }

ex ex,0r Hex,1s* - - ex,od—2
L+ Y E ().
c’eN(v)\c

Then, the VN determines the F, symbol with the maximum entry in L

(4.136)

(4.137)

. is the inverse of

(4.138)

. The outgoing

symbol has high reliability if its corresponding entry in LY is greater by A than each of

the other entries. Formally, the VN sends (m{?,_,r{), ) with
miP), = argmax Lex)u (4.139)
u€F,
and the reliability score of m{®, _ is
vH ifJa e Fy: LY, > LY, +As VueF,\{a}
H iffaeF,: LY, >LY, +A; YueF,\{a}&
O JaeF,: LY, > LY, + Ay YuecF,\ {a} (4.140)

JaeF,: LY, > LY, +A; VueF,\{a}

vL otherwise.

L iffacF,: LY, >L<ZU+A2 Vu € F,\ {a} &

In (4.139), if multiple maximizing arguments exist the arg max function outputs one of

them uniformly at random.
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To estimate its codeword symbol each VN computes

)
Lapp {Lapp 0 Lapp 1+~ Lapp ald— 2}
4.141
+ Z L ( C —>V7 C )—>V>> ° ( )
(4 6./\/( )
The final decision is
79 = argmax Lgﬁ)p u (4.142)
u€ly ’

Density Evolution for 2-bit RSMP
We provide a DE analysis for RSMP with 2-bit reliability for non-binary irregular LDPC
code ensembles. We partition F, x {H,L} into the following 8 disjoint sets

={(0,vH)} (4.143)

={(a,vH) :a € F,\ {0}} (4.144)
7, :{(O,H)} (4.145)
Zs ={(a,H) : a € F, \ {0}} (4.146)
7, ={(0,L)} (4.147)
Zs ={(a,L) : a € F,\ {0}} (4.148)
Zs ={(0,vL)} (4.149)
Z; ={(a,vL) :a € F,\ {0}} (4.150)

where (u,vH), (u,H), (u,L), (u,vL) denote a very high, high, low, very low reliable symbol
u € F, , respectively. Note that |Zy| = |Z2| = |Iu| = |Zs| = 1, |T1| = |Ls| = |T5| = |Z7| =
qg— 1.

Let p%c) be the probability that a VN to CN message belongs to the set 7 at the /-th
iteration. Similarly s(li) is the probability that a CN to VN message belongs to the set Z,
where k € {0,1,...,7}.

1. Initialization. Initially, we have

on =I(Dan, > Az)(1 —¢) (4.151)
pzl =[(Den, > Az)e (4.152)
P22 =I[(Ay < Dep < A3)(1 —¢) ( )
PIJ =I(Ay < Dap < Az)e ( )
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pI4 =I Al < Dg, < AQ)(l — 6)

p(z? Ay < Dap < Ag)e

(

I(

pzﬁ =I(Den < Aq)(1 —€)
pz7 =I(D. Ap)e.

2. For { =1,2,... lrax

Check to variable update. For the CN to VN messages, we have

(1)
o1 -1 -1 P
S5 = p(p5 405 ")+ a—Dp | pg - — o1

o q—1 (=1) . (=1 (z ) Pg_l)

0 _1 (e-1) , (=1 , (e=1) ,  (¢-1) (-1) P(zg Y

Sn, =, p (0% oy s V) = (g 1p | Y, T

o P
—1 /-1 /—1

—p (pz, V + 5, ))+(q—1)p(p(zo Vg - n’ q—l ﬂ
q 1 pf 1)

V4 - /-1 /-1 /—1 /-1

U ol ) ) o ;1_1)

p(£—1)+p(£—1)
-1 -1 -1 7 I
—p (0%, + 1Y, ))—p(p(zo V- q—l)]

-1 -1 -1 -1 —1
L R A N A AR N A

(1), (¢-1)
¢ pr, " +p
—(g—1)p (p(zo B R - o )

4
o -

Q\P—‘

/—1 /—1 /—1
—p(p% "+ %+ Y+l )
(e—1

) (-1) (£-1)
— e P +pr, ~t+Pp
N

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)
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¢ q—l -1 -1 1 -1
sp) =—— (p(zo R e U S Y - ))

R
—p (% "+ ”+p(12 D pl ) R
) p% 1)+p(12 )+p(z 1) P(L )+2;(zill)+p(zil))]
1—(¢—1)p (p%‘l)w‘zz g p ) T 0 U) +
(q—1)p (péo Dl VY Y _ 1;+f< vy U) (4.165)
—p (P + %+l Y+l Y+l )]
s, —q;1 [Hp(p% Dy g et D“fs L U)
—p (P VYl Yl el ) (4.166)
—p (p(zo I (N (W 1 TTU s U)] :

Variable to check update. The extrinsic channel has input alphabet X = F,,
output alphabet Z =T, x {H,L} and transition probabilities

S(I? if 2z = (u, vH)

KON

o ifz=(e,vH) eeF,\{u}
S(I? if z = (u, H)

0

s if = e,H) eecF U
P(zju) =4 " (€ 5) AR (4.167)
5(1? if z = (u,L)

O
o ifz=(eL) eeFy\{u}
S(I? if z = (u,vL)

L0
I if z = (e,vL) e€eF,\ {u}.

qg—1

Consider now the VN to CN messages. Define the random vector F(®) =
O] (0 () () O] () O] ()
(Flowy - Flaa-2.mp Fomy -+ Flan-2my Florys -+ Flaa-2y Flowys -+ F )

(@9=2vL)
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where F( , for v € F, and r € {vH,H,L,vL}, denotes the RV associated to the
number of mcomlng CN messages to a degree d VN that are equal to (u,r) at the
(-th iteration. Let £ be the realization of F¥). The entries of L ((m(é) r

c'—v? ' c —>V))

in (4.138) are given by
4 l l l
Ly (&, ri))) = (P(m),,, 78, ) (4.168)

where m{). e F,, vl € {vH,H L vL},u € F, and P(z|u) can be computed from

c/—v q c—)v

4.159)-(4.166) and (4.167) Vz € F, x {vH, H,L,vL}. Hence, the elements L of the
( q

ex,u

aggregated extrinsic L-vector in (4.138) are related to f{©) and the channel observation

vy © _p® () D ¢(©)
L) =D f(ihuy + D fiohy + DL () + DY Sy (4.169)
+ Denbuy + Ko Vu €F,
where D, is given in (4.70) and we have
S0
DY =In(s%)) —In % (4.170)
q —
, . RO
Dy =In(s%)) —In Ll (4.171)
q —
. , RO
DY =In(s%)) —In 151 (4.172)
q —
y RO
DY =In(s)) —In | “E (4.173)
qg—1
s<I sgf’
KQ:IH( >+ZfavH) : +Zf(aH .
q-— a€F, a€F, —1 4174
. 50 8(4) (4.174)
+Zf)1 +ZfavL1n = :
a€lFy 1 a€ly —1

Note that K in (4.174) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

py) = Z/\d S Pr{Y =y|X =0} > Pr{F“ = fOX =0} x
y€eF, FO
H H(‘Lgx)(] > Lexu + A3)
u€lg\{0}

(4.175)
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Py = Z)‘ Y. D Pr{V =y X =0} x

a€F \{0} y€Fq

(4.176)
S Pr{FY=fO1x =0} T[] LLY,>LY,+As)
FO uely\{a}
py) = ZAd S Pr{Y =yl X =0} > Pr{F® = fOX =0} x
vet " (4.177)
IA #0) [T HLelo > L&, + )
ueF,\{0}
Py = ZA > Y Pr{y =yX =0} Y Pr{FY = fOIX =0} x
a€Fq\{0} y€F, £ (4 178)
I[(Aa 7é Q)) H H(Le(f()a > Lexu + A2)
u€F \{a}
P ="M > Pr{Y =y|X =0} > Pr{F" = fOX = 0} x
d  yel, 0
© (4.179)
I[(BO # ®> H ]I(L x,0 > Lt(ef()u + A )
ueF\{0)
pI5 Z)\ >y Pr{Y_y\X_o}Zpr{ FO :f(f)\X:O} %
acF,\{0} yeFq FO (4180)
H(Ba # Q) H ]I(Lg()a > Lexu + A )
u€F \{a}
pY) = Z)\d S Pr{Y =yl X =0} > Pr{F“ = fO|X =0} x
y€lFy i
(4.181)
I(0eU
[H(DU 7é Q)) H ]I(L(K)O > Lex)u) g
weF\ {0} U]
Py = ZA > Y Pr{y =yX =0} Y Pr{FY = fOIX =0} x
a€F,\{0} y€F, £ (418)
[wa 20) TT 12, > 18, + LW
u€fy\{a} i

where the inner sum is over all length 4¢ integer vectors f) whose entries are

non-negative and sum to d — 1. For all u € ¥, we have

A, ={e€F, LY, — N < LY < LY, — A} (4.183)
B,={e€F,: LY, — A, < LeQe <LO, - A} (4.184)
D, ={e€Fy: LY, — A < LY, < LY } (4.185)
U={eeF,: LY, = max L(Xu} (4.186)
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Table 4.6: Decoding thresholds €* of the (3,6) regular LDPC code ensembles
SMP  [27] [27] SRLMP SRLMP

¢ g P—1 Fe2 I—=1 TI=2 1-bit RSMP  2-bit RSMP  €e5p  €s
2 0.0395 0039 - 0.0707 - 0.0741 0.0801 0.084 0.110
4 00890 0072 0.111 0.0946  0.1203 0.1102 0.1159  0.149 0.189
8 01039 0073 0.137 0.1086  0.1411 0.1390 0.1429  0.196 0.247
16 0.1075 0.075 0.148  0.122  0.1517 0.1676 0.1677  0.231 0.2897
32 01092 - - 0.1387  0.1560 0.1814 0.1814 026 0.3217
64 0.1101 - - 0.1576  0.1585 0.1915 0.1915  0.279 0.3462

(£)

© _ £(0) ) d—1 Ly &

{ f(O,vH)’ T f(a‘l—Q,vL) k=0 |Ik|
Y4 l
£ :( 2):1 foby Vke{o,....T} (4.188)
a,r)ELlg

Tables 4.6 compares the iterative decoding thresholds ¢* of 1- and 2-bit RSMP, SMP,
SRLMP (for maximum list size I' = 1 and I' = 2) and BP decoding egp for (3,6) regular
ensemble and several ¢ values. The tables also give the Shannon limit es, and the thresholds
of the list message passing algorithm in [27] for maximum list size ' = 1 and ' = 2.
Observe that 2-bit RSMP outperforms the 1-bit RSMP. This gain is due to using one bit
more for the reliability scores. We see that for some values of ¢, the 1- and 2-bit RSMP
algorithms outperform both SRLMP and the algorithm in [27] for maximum list size 2 and

with reduced complexity and data flow.

4.2.3 ()-ary Erasure Channel

We extend the SMP and SEMP (SRLMP with I' = 1) to a QEC with erasure probability .

In this case, the entries of the channel L-vector are

In(l—¢) a=y
La(y) = {In(e) y=E (4.189)

—00 otherwise.
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SMP

Initially, each VN sends the symbol that maximizes L(y), i.e.,

. = argmax L,(y). (4.190)

a€lFy

)

Ify € IF;, we have ml® =y and if y is erased, then m{%),_is an F, symbol chosen uniformly

v—C

at random.
The CN update is the same as (4.29).
At the (-th iteration, each VN computes (4.30). The outgoing VN message is the F,

symbol with the maximum entry in LY. We obtain

Y ity e I,
m = " (4.191)
argmax [’ € N(v)\ c:my’,, =u| ify=E.

u€lF,

c/—v

Whenever multiple maximizing arguments exist, the arg max function outputs one of them
uniformly at random.

The transition probabilities of the extrinsic channel are estimated via the DE analysis.
They are then used to compute the L-vectors of the CN messages in (4.26) and (4.27). To

estimate its codeword symbol each VN computes

o _[r@© 0) €9
Lgp)p - {Lapp,07 Lapp,17 R Lapp7aq—2}
¢ 4.192
=L(y)+ > L(my,). (4.192)
c'eN(v)
For the QEC, the final decision is

Y ity e F,

20 — ® (4.193)
argmax |c’ € N(v) :myl,, =u| y=

u€ly

Density Evolution SMP over QEC

We present now a DE for SMP for non-binary LDPC codes over a QEC with erasure
probability e. We partition the message alphabet Mgyp = F, into 2 disjoint sets Z, = {0}
and 7, = {a:a € F,\ {0}}. Let p(Ii) be the probability that a VN to CN message belongs
to the set 7 at the ¢-th iteration and S(Ii) the probability that a CN to VN message belongs
to the set Zy, where k € {0,1}. The ensemble iterative decoding threshold €* is defined as
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the maximum channel erasure probability e for which p%) — 1 as { — oo. In the limit of

n — oo, the DE analysis can be summarized in the following steps.

1. Initialization.

1

@g.;y_que (4.194)
1

pg:qqe. (4.195)

2. For ( =1,2,... (.«
Check to variable update. We have (4.36) and (4.37).

Variable to check update. The extrinsic channel has input alphabet X = [,
output alphabet Z =T, and transition probabilities in (4.38).

Consider now the VN to CN messages. We use the random vector F© =
(FO(L;), e ,Fg;),z) where FIEZ), for u € F, denotes the RV associated to the num-
ber of incoming CN messages to a degree d VN that are equal to u at the (-th
iteration. Let f) be the realization of F*). We have

I(0eF®
pg::1—e+e§:Ad§:Pr{F“%:f“HXz:O}(er’) (4.196)
PO
P =1 p¥ (4.197)

where the inner sum is over all length ¢ integer vectors f) whose entries are non-

negative and sum to d — 1 and

]:(é) — {u e Fq‘fy) = Héa]frx fg)} (4198)
d—1 ® SO —
—_ £
Pr {F(Z) _ f(€)|X — 0} _<fé€) f(g) )(5%))% (qfll) . (4.199)

SEMP

At the beginning, the message from VN v to a neighboring CN c is

y ifyelF
m® = 1 (4.200)
E ify=E.
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At the (-th iteration, CN c sends to a neighboring VN v the message

byt S heemUD) iEmUTY £ EW e N(e) \ v
m,, = vEN (N (4.201)
E otherwise.

For the QEC, the outgoing VN message is

E y=E&VeN c:ml) =E
ml, = A - (4.202)
y otherwise.

The final decision is

E y=E&Vd eNF):mY,, =E
M) = () mer (4.203)
y otherwise.

Density Evolution SEMP over QEC

We present now a DE for SEMP over the QEC. Due to symmetry and under the all-zero
codeword assumption, we can partition the message alphabet M into 3 disjoint sets
Ty,7Z1,Z, such that the messages in the same set have the same probability. We have
(4.57)-(4.59). Let p ) be the probability that a VN to CN message belongs to the set Z;,
at the (-th iteration, i.e., a VN to CN message takes the value a € Z; with probability
p(Ii) /|Zk|. Similarly S(Ii) is the probability that a CN to VN message belongs to the set
Ty, where k € {0,1,2}. The ensemble iterative decoding threshold €* is defined as the
maximum € for which p%) — 1 as £ — oo. In the limit of n — oo, the DE analysis can be

summarized in the following steps.

1. Initialization. Initially, we have

py) =1 —¢ (4.204)
P =0 (4.205)
py) =e. (4.206)

2. For 0 =1,2,... lhay

Check to variable update. We have (4.63)-(4.65).
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Variable to check update. Consider now the VN to CN messages. We obtain

P =1—ete(1-2(s2)) (4.207)
Py =ex (s) (4.208)
py) =0. (4.209)

4.2.4 AWGN Channel with PPM

We extend the SMP to AWGN channels with orthogonal modulations where the field order
q and the modulation order are equal. This makes non-binary LDPC codes a natural
choice since each g-ary modulation symbol is in one-to-one correspondence with a g-ary
code symbol. We aim to show that non-binary LDPC codes with low-complexity decoding

algorithms are favorable for certain coded-modulation scenarios.

Let the channel message be represented by a length-q L-vector

L(y) = (Lo(y), L1(y), .- ., Las—2(y)) (4.210)

with L,(y) = In (p(y|a)). Decoding proceeds as follows. Initially, Each VN computes the
channel L-vector defined in (4.210) and sends the symbol with the highest L-value. Since

_ylP+1

a q
La(y) = yf 5 1H(27T02) 202

i Va € F, (4.211)

finding the maximum of the length-q vector L(y) is equivalent to finding the maximum of
y. Hence, we have

. = argmax L,(y) = argmax y,. (4.212)
aclFy a€lf,

)

The complexity of the initialization step scales as O(ngq). The performed operation is

finding a maximum.

The CN update is the same as (4.29). From [97] the CN operation can be implemented
with 2d. — 1 g-ary additions and 2d. ¢g-ary multiplications. If g-ary additions/multiplications
are implemented using elementary operations the complexity may depend on ¢. For instance,
the sum of two g-ary symbols can be performed by log, ¢ binary XOR operations. Thus,

the complexity scales as O(md.g(q)), where g(-) is an implementation dependent cost.
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At the ¢-th iteration, each VN computes

LY =L L8, LY 0]

ex ex,0r Hex,1» ex,oﬂ‘Q
¢ 4.213
L)+ Y L(ml). (4213
c’eN(v)\c

The outgoing VN message is the F, symbol with the maximum entry in LY e,

ex

m{Y, . =argmax LY. (4.214)
u€el,
The final decision is
79 = argmax Lgf,)p,u (4.215)
u€lF,
where
o _[7(0 ) ()
LgP)P - {Lapp,m Lapp,l7 tt Lapp,aq_Q}
¢ 4.216
“Ly)+ Y L(ml,). (4.216)
c’eN(v)

The following Lemma will be useful for the complexity analysis of the decoder.

Lemma 4.1. Suppose the w®, i =1,2,...,d, are observations of a QSC with 1 — e > qT€1'

When summing d L-vectors L (w(i)), the elements of the sum with indices Z = U2, w®,

€

pg} and thus contain the maximum

where |Z| < min(d, q), all have values greater than dIn

value of the sum.

Proof. Observe that each L (w(i)) has a single maximum with index a = w® and that all
other entries are In(e/(q — 1)). |

The complexity of the VN operation scales as O(nd,): as shown in [97] all d, extrin-
sic messages can be computed efficiently from the sum LEQ of all incoming messages
Yeenw L (mﬁ%Lv) and L (y). Let the entry with index a be the maximum of L (y)
computed in (4.212).) By Lemma 4.1 the largest values of LEQ will be in Z U a, where
|Z Ual < min(dy + 1,¢) < d, + 1. This step requires O(d,) additions of floating-point
numbers. The identification of the (two) largest values of LEQ requires d, steps. Then,
the extrinsic messages and their maximum can be obtained from L,(f))t with d, additional

operations (subtractions, comparisons) and we have an overall complexity scaling of O(nd, ).

For an unquantized AWGN channel L (y) has a unique maximum with probability one.
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Density Evolution Analysis

We discuss DE analysis for SMP for non-binary irregular LDPC code ensembles over
the AWGN channel with PPM modulation. Due to symmetry, we can assume the all-
zero codeword was transmitted. We consider again the two disjoint sets Zy = {0} and
I, ={a:ae€F,\ {0}}. Due to symmetry, the messages in the same set have the same
probability. Let p%) be the probability that a VN to CN message belongs to the set Z; at
the /-th iteration and s%) the probability that a CN to VN message belongs to the set Zy,
where k € {0,1}. The ensemble iterative decoding threshold (FE,/Ny)* is defined as the
minimum £}, /Ny for which p(I? — 1 as £ — oo. In the limit of n — oo, the DE analysis

can be summarized in the following steps.

1. Imnitialization. Define the random vector
Z, =Y, 1,1 - Y] (4.217)

for a € F,, with Y], being the random vector Y of channel observations without the
entry Y, and 1,4 the length-(¢ — 1) all-one vector. Conditioned on the transmission
of the all-zero codeword, Y is a Gaussian random vector with mean puy = (1,0,...,0)
and covariance matrix Xy = 021, where I, is the size q identity matrix. Thus, Z,

is a Gaussian random vector with mean

and covariance matrix ¥z, with entries

202 i=3
(Eza)i,j = (4.219)

o otherwise.

The parameters of Z, Va € F,\ {0} do not depend on a and thus take the same value.
Therefore, Pr{Z, > 0} is the same Va € F, \ {0}. We have

P =Pr{Z, > 0} (4.220)
Py =1 —pd. (4.221)

2. For { =1,2,... lhax
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Check to variable update. For the CN messages, we again have sg; ) and S(I? ) in

(4.36) and (4.37). The extrinsic channel is a QSC with error probability 1 — S(I?)).

Variable to check update. We again use the random vector F') = (FO(E), o F C(f,)_g)
where F9), for u € F, denotes the RV associated to the number of incoming CN
messages to a degree d VN that are equal to u at the ¢-th iteration. Let £ be the
realization of F(¥). The entries of L (mg)_w) in (4.213) are given by

ex,u u

0, =p00 % g e, (4.222)
o

where 6;; is the Kronecker delta function and

(0
D =In(s¥) — In (311) (4.223)
q —
)
q oy lyl?+1 51,
K:—gln(Qwa)—T—i-(d—l)ln 1) (4.224)

Note that K in (4.224) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

p%) =Y A Pr {F(e) = fOIX = PO} Pr {argmax Lg()ﬂa = a’f(é)}

d Fil) u€ly
L (4.225)
=> M) Pr {F(e) = fOIX = Po} PF{ZO > UQD(Z)(f[(o]) — s )1q—1)}
P

where f[%) is the vector £ without its entry fée), Z, is defined in (4.217) and the
sum is over integer vectors f) for which one has 0 < f¥ < d —1Vu € F, and
> f¥=d—1and

u€l,

o\ d-1-£"
Pri{F® = $0|x —p,} = d=1 o0 (52 0 4.226
r{ = fY1X = o}— 500, (s1,) 1 . (4.226)

Stability Condition

We next derive the stability condition for SMP decoder over AWGN channels with PPM.
The stability analysis examines the convergence of the probability p(z-el) to zero under the

assumption that it is close to the fixed point p7, = 0. Note that S(IEI ) 50 as p(I? — 0. Thus,
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D® — ~o and

p%):ZAdZ Z Pr{F(E):f(f)’X:PO}
d

a€lFq | FOEF 4

(4.227)

+ Z Pr{F(z) = 91X = PO}Pr {argmaXYe = a}
FOEF, ceS

where Fi, is the set of all integer vectors f) for which one has Y f\¥ = d — 1 and
u€lFy

0< f < fOVy € F, \ {a}. Fa, is the set of all integer vectors f() for which one has
S fU=d-1and 0< f < fOvu € F,\ S, where

u€ly
S.={beF,|f" = 19} (4.228)

and |S,| > 1. Recall that for any a € F, \ {0}, we have

_1_ £
d—1 o [ SO\
- 4
Pr{F® = fO|X =Py} = ( © o )(1 — s¥hfo (ZO) . (4.229)

an"'?aq72 q_l
We obtain ©
dp7 1
lim —% = Ay + 2): — . 4.230
Oy a0 TRt A <v2a2) 20
Furthermore, we have
(£-1)
o q—1 qrz,
sy, =—— 1—p |1 - —"— 4.231
and
dsf
lim D =p(1). (4.232)
=1 (£-1)
le —0 le

The first order Taylor expansions via (4.230), (4.232) yield

: 1 _
Py =p'(1) lAQ +2X3Q <\/ﬁ>] py . (4.233)
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Table 4.7: Thresholds (E,/Ny)* of R =1/2 LDPC code ensembles under SMP. Shannon
limit (Ey/No)g, as a reference. Ensembles with constraints on low-degree nodes
are marked with e.

g Az) p(@) (Bo/No)” [AB] | (Eo/No)sp [AB]

4 | 00187z +0.55972 +0.003z° + 0.41862™" | 0.335827 + 0.66422° 3.22 106
0.36992° 4 0.27992* + 0.3502z:"! 0.008427 4 0.99162° | o 3.40 '

8 0.0465z + 0.57352° + 0.38z"! 0.85927 + 0.1412° 2.19 0.08
0.44072* + 0.26522° 4 0.29412"! 0.55762" + 0.44242° | o 2.39 ’

16 0.05952 + 0.58682° 4 0.35372"" 0.13512° 4 0.86492" 1.63 047
0.51992° 4 0.14362* + 0.33652"! 0.540727 4-0.45932° | o 1.82 '

39 0.0582z + 0.61412* + 0.3277z"" 0.3112° + 0.689z" 1.32 —_0.80

0.552% + 0.14242° + 0.30762"" 0.804527 4 0.19552° | o 1.48 '

The stability condition is fulfilled if and only if

p'(1) [)\2 + 200 (&)

Remark 4.3. The fraction of edges connected to degree 2 and 3 VNs impacts the stability

<1. (4.234)

condition for SMP decoding. Thus, certain degree distributions optimized for unquantized
BP (see, e.g., [98]) might be unsuitable for SMP due to their large number of degree 2 and
3 VNs.

Iterative Decoding Thresholds

The DE analysis suggests an optimization algorithm to find rate R = 1/2 irregular
LDPC ensembles with 'good’ thresholds for ¢ € {8,16,32}. We restrict the maximum
VN degree to 12 and perform two optimizations: one without further constraints and
one with constraints on the degree two and three VNs. Threshold results are depicted in
Table 4.7 and show a gap of at least 2.1 dB with respect to the Shannon limit for various
q. Thresholds of g-ary LDPC codes under full BP decoding in [98] show gaps of only
0.2dB, i.e., the simple SMP decoder yields a loss of around 1.9 dB. Interestingly, for binary
LDPC codes with orthogonal modulations and bit-interleaved coded modulation (BICM)
(no iterative detection) the gap to coded modulation capacity is comparable or even larger.
For instance, for ¢ = 16 the gap is 1.8dB [98, Fig. 1].

Monte Carlo Simulations

We designed three codes with ¢ € {8,16,32}, n = 10* (in F, symbols), and R = 1/2
based on the constraint degree distribution pairs from Table 4.7. Figure 4.7 shows the FER
versus Ey /Ny of g-ary PPM allowing a maximum of 50 decoding iterations. Observe that
the waterfall performance is predicted well by the DE analysis. In addition, we provide

the performance of three R = 1/2 binary accumulate-repeat-4-jagged-accumulate (AR4JA)
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1094
E ] SMP, ¢ = 32
“1L i BICM, ¢ = 32
1077 SMP, ¢ = 16
Ll | ] BICM, ¢ = 16
1072 E 5 E —— SMP, ¢ =8
. § 3 ] --- BICM, ¢ =38
E 10_3 E ‘I e
1074 \
107° :
—6 i | :\ | ]
10 1 1.5 2 2.5 3
Ey /Ny [dB]

Figure 4.7: FER versus Ey,/Ny of rate 1/2 codes under SMP and BP with BICM. Respective
thresholds are indicated by vertical lines.

LDPC codes assuming a BICM setting and g-ary PPM for ¢ € {8,16,32}. The AR4JA
protograph was taken from [99] and expanded to obtain block lengths (in bits) of nlog, g.
For ¢ > 16 the performance of the non-binary codes under SMP decoding is competitive
and for ¢ = 32 they outperform the AR4JA codes with BICM by almost 0.2 dB.

Complexity
Despite the gap to capacity in Table 4.7, SMP decoding might be a good choice when

low-complexity decoding is targeted. First, a comparison of the algorithmic complexity
of the SMP decoder and a binary LDPC decoder with BICM is given in Table 4.8. For
the binary decoder, the initialization step requires computing symbol-wise probabilities,
followed by a marginalization to obtain bit-wise LLRs. The CN operations in the binary
decoder follow the approximate min* rule [100]. The VN operations consist of summing
up LLRs. Table 4.8 indicates that the algorithmic complexity of SMP is competitive with
binary BP, but a fair comparison is difficult due to the different types of operations. E.g.,
the approximate min* rule and the SMP CN operations can be implemented by look-up
tables. Then, an elementary operation is a look-up with ¢g(¢) = 1 and complexity is reduced
by a factor of log, ¢ w.r.t. the binary decoder. Other implementations may change the
picture. Second, an important figure for implementation is the data flow in the decoder [42].
For SMP we need log, g bits to represent a symbol, for binary BP typically 4 to 5 bits to
represent an LLR. Since the binary Tanner graph has log, ¢ times more nodes the data flow
of the SMP decoder will be lower by a factor of 4 to 5 (for the same average node degrees).
Overall, the algorithmic complexity/data flow of an SMP decoder is highly competitive
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Table 4.8: Complexity scaling of algorithmic operations.

SMP BP with BICM
it O(ng) O(nglog, q)
maximization sum of floats
O(mdcg(q)) O(md.log, q)
CN . 2el
elementary operations box-plus/multiplications
VN O(nd,) O(nd, log, q)
addition of floats/maximization addition of floats

w.r.t. that of a binary decoder with BICM. However, only a hardware implementation will

give final insights.

4.2.5 Poisson Channel with PPM

In this section, we adapt the SMP and SEMP (SRLMP with I" = 1) decoders to Poisson
channels with orthogonal (PPM) modulations where the field size ¢ matches the modulation
order. We develop a DE analysis for the two different decoders which allows to design code

ensembles with optimized iterative decoding thresholds.

We consider again the log-likelihood vector (L-vector)

L(y) =[Lo(y), Li(y), - - -, Laa—=2(y)] (4.235)

with elements (dubbed L-values)

L.(y) =In(P(yla)) VaeF,. (4.236)

SMP

At the beginning, the VN v computes the channel L-vector and sends the symbol which has
the maximum L-value to all its neighbors. From (2.28), (4.235) and (4.236), the channel
L-vector is

L(y) =[Lo(y), L1(y). - - -, Las—2(y)]
La(y) =Kyo — qny —ns + > (yoIn(ns) — In(y,!)) Va € F, (4.237)

u€lfy
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where K = In (1 + Z—Z) The outgoing VN message is computed as

. = argmax L,(y) = argmax y,. (4.238)
aclFq a€lFy

m,
The message from CN c to a neighboring VN v is obtained by determining the symbol that
satisfies the parity-check equation given the incoming messages from all other neighbors.
The outgoing CN message at the ¢-th iteration is

m® = —h;t S byl (4.239)

c—vV v,c
v/ eN (c)\v
where the multiplication and the sum are performed over Fy, hy ¢ is a parity-check matrix
element and hy ! its inverse.

Each VN computes
LY =29, rY, .. LY )

ex ex,00 Lex, 15 ex, 012

=Ly + > Lml,) (4:240)
/eN(v)\c

where L(y) is calculated according to (4.237). Further, we model each CN to VN message

as an observation of the symbol X (associated to v) at the output of an eztrinsic QSC

whose crossover probability is obtained via DE analysis. The crossover probability is used

to obtain L(mg)_)v). A VN passes the symbol that maximizes LY to its neighboring CNs,

i.e.,

— argmax L (4.241)

()
m ex,a*
aclF,

v—cC

Each VN estimates the value of the respective codeword symbol as

) = argmax Lg?p’a (4.242)
aclFy
o _ir @ ) )
Lgp)p _[ app,0» Lapp,17 s 7Lapp,o¢‘1*2]
=Ly)+ 3 Lim,). (4.243)
c'eN(v)

We remark that in (4.238), (4.241) and (4.242), whenever multiple maximizing arguments
exist, we choose one of them uniformly at random.

Density Evolution Analysis

We provide a DE analysis for the SMP decoder over Poisson channels with orthogonal
modulations. In particular, we are interested in the iterative decoding threshold of non-

binary irregular LDPC code ensembles. For the analysis, we use the all-zero codeword
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assumption since both the channel and decoder fulfill the symmetry conditions [101], [102]

Pyx(y|Pa) =Pyix (y|Po) (4.244)
y+a :(yav Ya+1y--- 7yocq*2+a) (4245)
P(mla) =P(m + a0) (4.246)

where the sum is over [F,.

We partition the message alphabet Mgyp into 2 disjoint sets Zy = {0},Z; = {a : a €
F,\{0}} where |Zy| =1, |Z;| = ¢ — 1. Due to symmetry, the messages in the same set have
the same probability. Let p(Ii) be the probability that a VN to CN message belongs to the
set 7y at the /-th iteration and sgk) the probability that a CN to VN message belongs to
the set Z, where k € {0,1}. The ensemble iterative decoding threshold +* is defined as
the minimum ~ for which p%) — 1 as { — oo. DE proceeds as follows.

1. Initialization. Under the all-zero codeword assumption, the elements of Y are

Poisson distributed with expectation

ne+n, u=20

E[Y.] = (4.247)
np otherwise.
We have
00 qg—1 y\t [y—1 g1t
0y _ (ns+np)? qg—1 1 np ny

=exp(—(ns +gn — | — —2 4.248
) e (=l +am) 3 25 ( t >t+l HEbE (1215)
p(I(i) —1_ pg). (4.249)

2. For 0 =1,2,... (.
Check to variable update. We have

o _11 q 'p(zifl) -1
sz, = |1+ (g =1)p 1 (4.250)
syl =1— %) (4.251)

The extrinsic channel is a QSC with error probability s%).

Variable to check update. We use the random vector F() = (FO(E), . ,Fci?,g),

where F¥) denotes the RV associated to the number of incoming CN messages to a
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degree d VN that take value a € Mgyp at the (-th iteration, and f,¢ is its realization.
The entries of L(m'Y.,,) in (4.240) are

c'—=v
Ly (m,,) =In (P(m, Ju)) (4.252)
() (0)
sz, ifmyl,=u
P(m) Ju) =1 (4.253)

1
. 1fmc,_w7éu.

The elements of L) in (4.241) are

LY, =Ky, + DY f" (4.254)
Z 8(4)
D zln(s(zo)) In | —2— 1 (4.255)
q —
s
wr= 3 (yuln(me) ~In(y) = gno —ne+ (@ = In | -Zo ). (4256)
ucl,

Note that w; in (4.256) is independent of a. It can thus be ignored when computing
L. We obtain

[e.9]

pIO ZA"ZPT{ :f(z)|X=P}exp (ns + np)) Zns+nb
d F©

(6)

@
Zt+1Z(H { _y+D(£)foa‘X:PO})X (4.257)
(€
( H Pr{Ya<y+D(£)f0[_(f‘£é)\X=P0})

a€lFy\{0,S:}

14 l
py) =1-pf) (4.258)

where S, is a subset of I, \ {0} of size t and Va € F, \ {0}, we have

Z’Ja

exp(—n Yo €N
Pr{Y, = yu| X = Py} = (=me)r " (4.259)

0 otherwise.

Further, the second sum is over integer vectors f*) for which we have 0 < f{¥



4.2 Non-Binary LDPC Codes 85

d—1VueF, ¥ f=d-1,and

u€ly

0
d—1 0.0 [ 8
pefp0 = 0 =m0 L Yol ()

SEMP

For the SEMP, we introduce a real-valued parameter A, which is chosen to maximize
the iterative decoding threshold. In this work, we keep A constant over all iterations
(but in principle, one could allow A to vary over iterations). The message alphabet is
M, =F,U{E}, where E corresponds to an erasure denoting complete uncertainty about
the respective symbol value.

At the beginning, the message from VN v to a neighboring CN c is

a if Ja € F, with y, > y, + 2Vu € F,\ {a}
ml, = ! K ! (4.261)
E  otherwise.

At the (-th iteration, CN ¢ sends to a neighboring VN v the message

o et T heemGn) i mynd £ B €N ()
Mesy = VEN (@ (4.262)
E otherwise.

The message from VN v to CN c is obtained by first computing L) defined in (4.240).
L(y) is calculated according to (4.237) and, for SEMP, the extrinsic channel is a QEEC
whose error and erasure probabilities can be estimated via DE analysis. The error and
erasure probabilities are used to obtain L(m @ ) from (2.20), (4.26) and (4.27). Second,

c/'—=v
for the outgoing message we pick

a if Ja € F, with LY, > LY, + AVueF,\ {a}
m® = (4.263)

E otherwise.

Each VN computes Lg@p defined in (4.243) by using the error and erasure probabilities of

the extrinsic QEEC. The final decision is

¥ = argmax L) (4.264)

app,a*
aclFy
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Density Evolution Analysis

We partition the message alphabet M/ into 3 disjoint sets such that the messages in
the same set have the same probability. We have Zy = {0},Z; = {a: a € F,\ {0}} and
T, = {E}.

1. Initialization. We have

P =3"Pr{Yy=ylX =Py} [] Pr{V,<y-A/K|X =P} (4.265)
y=0 u€Fq\{0}

= Y S Pr{Ya=yX =P} [[ Pr{¥.<y-A/KIX =P} (4.266)
a€Fg\{0} y=0 u€Fq\{a}

P =1—p) —pi (4.267)

where for y € Ny and a € I,

exp(—(ns +np)) R g =
Pr{Y, =y|X =Py} = , v (4.268)
exp(—np) 3} acF,\ {0}
[w]—1
Pr{Y, <w|X =Py} = > Pr{¥,=j|X =Py}. (4.269)
=0
2. For ( =1,2,... (.«
Check to variable update. We have
(¢-1) (¢-1)
1 - q-pr, —1+p
St =, |4 —p5, )+ (g—1p ( = o = (4.270)
sl =1—p(1 —pi V) (4.271)
s(I? =1- s(I? - S(I?. (4.272)

Variable to check update. We extend the random vector F to F© =
(FO(E), P (i?_g, FE(K)), where FY denotes the RV associated to the number of in-
coming CN messages to a degree d VN that take value a € M, at the (-th iteration,
@ ) in (4.240) are

and f9 is its realization. The entries of L(my, .,

Lu(m,,) =In (P(m),|u)) (4.273)

c/—v c/
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O

s, ifmyl, =u
) s
P(mel,lu) =4 25 if m € Fy\ {u} (4.274)
(0 (0

sy, if mC, ., =E.

The elements of L) in (4.241) are

LY, =Ky, + DY f1" (4.275)
w=2wm%wm%ma@m%>
u€ly
RGO (4.276)
+(d-1- féf)) In (qfll) — qnp — Ns.

where D is defined in (4.255). Note that ws in (4.276) is independent of a. It can
thus be ignored when computing L . We obtain

Py =>" M Pr{F¢ :f“)|X:PO}iPr{YO:y]X:PO}

o " 4.277
DO — 1) — A )
H ProY, <y+ Ku ‘X:PO
ueF4,\{0}
py) = ZA > Pr{FY = fOIX =Py} > Pr{¥, = y|X =Py}
a€F,\{0} y=0
£ (4.278)
DO(FO _ Oy _ A
I1 Pr{Yu<y+ e Kf“ ) \X:Po}
u€lF,\{a}
p(z? =1- (@ p&? (4.279)

where the second sum is over integer vectors f*) for which 0 < f{ < d — 1 for all

u € Mypand Y fy) =d—1 and
ueEMi

0,...7 E k=0

=S 9 vke{o,...,2} (4.281)

a€Ty
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Table 4.9: Threshold v* of R = 1/2 LDPC ensembles under SMP/SEMP for n, = 0.1.
Ensembles optimized for the surrogate QEC are marked with e. As references:
Shannon limit ~s, and threshold ~, of non-binary LDPC ensemble under BP
from [105, Example 1].

Decoder ¢ Ax) p(x) Y*[dB]  ~sn[dB] | 77 [dB]
SMP 0.24862% + 0.455623 + 0.2958z ! 0.96332% + 0.03672° —3.48
SEMP 4 0.7328z2% + 0.01223 + 0.2552z ! 0.51882z5 + 0.481227 —4.14 56 _5.49
. SMP 0.1979z% + 0.776923 + 0.0252z ! 0.344125 + 0.655927 —3.42 o 2
e SEMP 0.7555z% + 0.001823 + 0.24272M 0.630125 + 0.369927 —4.13
SMP 8 0.334422 + 0.33342° + 0.3322z 0.0103z" + 0.98972° —6.2 _835 | —8.07
SEMP 0.59522 + 0.00292° + 0.4021x1! 0.372127 + 0.62792° —6.53 ’ '
SMP 16 0.369122 + 0.2812x3 + 0.34972!! 0.0089z7 + 0.99112° —8.88 1102 | 1073
SEMP 16 0.60421z% + 0.009323 + 0.38652 0.49382" + 0.50622° —-8.99 ' ’
SMP 32  0.47112% +0.12762° 4 0.4013z™  0.012827 + 0.97792% 4 0.00932° —11.56 1359 | —13.37
SEMP 32 0.706822 + 0.00442° + 0.2888x!! 0.301425 + 0.698627 —11.69 © ’
Table 4.10: Threshold v* of R = 1/2 LDPC code ensembles under SMP/SEMP for ny, =
0.002. Ensembles optimized for the surrogate QEC are marked with e. As
references: Shannon limit 7s, and threshold 7}, of non-binary LDPC ensemble
under BP from [105, Example 1].
Decoder ¢ Ax) p(z) Y[AB]  vsn[dB] | 4 [dB]
SMP 0.20552 + 0.6953z3 + 0.0992z™  0.02462° + 0.9648z" + 0.01062° —4.68
SEMP 4 0.687122 + 0.31292! 0.14325 + 0.85727 —6.3 745 | _793
° SMP 0.197922 4 0.77692° + 0.0252x! 0.344125 4 0.65592" —4.68 ’ ’
e SEMP 0.755522 + 0.001823 + 0.2427x1! 0.63012% + 0.369927 —6.3
SMP 8 0.21522% + 0.535223 + 0.24962 ! 0.1481z" 4 0.85192% —7.61 1038 | —10.19
SEMP 0.708322 + 0.0093x* + 0.2824x1! 0.33482° + 0.665227 -9.1 ' '
SMP 16 0.228422 + 0.4866x3 + 0.285x1! 0.9692° + 0.0312 —10.59 133 | —131
SEMP 0.628522 + 0.00952% + 0.362x!! 0.71322" + 0.2868x° —-11.9 ' ’
SMP 39 0.245622 + 0.42062° + 0.3338x1! 0.66732% + 0.33272° —13.57 _16.24 | —15.99
SEMP 0.586822 4 0.03592° + 0.3773x1! 0.49632" 4 0.503728 —14.6 ' ’

Surrogate Erasure Channel

For ny = 0, the Poisson PPM channel can be modeled as a QEC with erasure probability

€ = exp(—

ns) [103,104]. Thus, for low ny,, we may rely on a simplified DE analysis on

a surrogate QEC to find optimized ensembles under SMP and SEMP decoding for the
Poisson PPM channel. The derivation of DE for SMP and SEMP on the QEC is shown in
Section 4.2.3.

With the help of DE, we designed optimized rate R = 1/2 irregular LDPC code ensembles

for ¢ € {4,
VN degree

8,16, 32}, n, € {0.002,0.1} for both SMP and SEMP decoding. The maximum

was restricted to 12 and the number of iterations to 50. The optimized degree

distributions are provided in Tables 4.9 and 4.10. SEMP shows visible gains over SMP
for small values of ¢ (e.g. > 0.6dB for ¢ = 4), while for ¢ = 32 the iterative decoding
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Figure 4.8: FER versus 7 of rate 1/2 optimized codes via DE under SMP (solid lines) and
SEMP (dashed lines) for n, = 0.1. As a reference: performance of ARJA code
from [99] under SMP for ¢ = 8 and ¢ = 32 (dotted lines).

thresholds nearly coincide. A comparison with the Shannon limit reveals an increasing
gap for increasing ¢, ranging from 1.2dB for ¢ = 4 to 1.6dB for ¢ = 32 in Table 4.10. As
a comparison with the literature, we provide iterative decoding thresholds of non-binary
LDPC code ensembles under BP decoding [105, Example 1], which show an almost constant
gap of 0.3dB to the Shannon limit. We also observe from Tables 4.9 and 4.10 that the gap
to the Shannon limit increases as n, increases, e.g., from 1.3dB for n, = 0.002 to 1.8dB
for np, = 0.1 in case of ¢ = 8 and SEMP. The complexity analysis of SMP was provided
in [58], showing that SMP decoding might be a good choice when low-complexity decoding
is targeted. Finally, DE on a surrogate QEC yields ensembles with similar thresholds as DE
on the Poisson PPM channel for ny € {0.002,0.1}, confirming the validity of a surrogate
QEC code design.

For completeness, simulation results with ny = 0.1 and a maximum of 50 decoding
iterations are shown in Fig. 4.8 for ¢ € {4,8,16,32}. All codes have a block length n = 10*
in g-ary symbols. The obtained FERs closely follow the predicted thresholds. To illustrate
the need for a tailored code design, we also simulated an off-the-shelf AR4JA code from [99]
for g € {8,32}. The performance under SEMP is close to the one under SMP and therefore

is removed from the Figure. Under SMP, the codes show a significant loss compared to an
optimized design.






Quantized Decoding Algorithms for
GLDPC Codes

GLDPC codes, introduced in [12], are a class of LDPC codes where the CNs represent
more general codes than the SPC codes in standard LDPC codes. The codes associated
to the CNs can be any linear block code and will be referred to as component codes.
GLDPC codes offer a trade-off between error floor and waterfall performance due to their
good distance and trapping set properties and the powerful block codes used at the CNs
(compared to SPC codes employed by the CNs of LDPC codes). This comes at the cost of
increasing decoding complexity, especially if optimum SISO decoding is performed at each
CN. Several works studied reducing the decoding complexity of GLDPC and product-like
codes [2,31,32,106-108]. In [2], it was shown that iterative hard decision decoding using
extrinsic BDD at the component codes of spatially coupled GLDPC codes, where all VNs
have degree 2, can approach capacity at high rates. Exchanging binary messages between
VNs and CNs is particularly attractive for high-throughput applications since it allows
reducing the internal decoder data flow. The method was extended in [107,109] such that
the VNs exploit the channel reliabilities while the exchanged messages are still binary.
In particular, the BMP decoding algorithms introduced in [107,109] make use of BDD
decoding at the check nodes and follow the approach in [2] to ensure the exchange of
extrinsic messages.

In this chapter, we analyze the performance of GLDPC codes under BMP and TMP
decoding. At the CNs, the binary and ternary messages are obtained by either using BDD
or optimum APP SISO decoding. In the latter case, the component decoder soft-output
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(i.e., the extrinsic likelihood ratios) is mapped to messages from the desired binary/ternary
alphabet. The analysis is limited to GLDPC codes whose CN component codes admit
a simple trellis representation, hence enabling the analysis under APP decoding at the
CNs. The results help to shed light on the performance loss incurred by BDD of the
component codes, in the context of BMP [107,109] and TMP decoding. When applying
BDD at the CNs, we use two approaches following [2] and [1,65] to make the decoding
rule extrinsic — a prerequisite to perform the DE analysis. Besides providing asymptotic
decoding thresholds for GLDPC code ensembles, the DE analysis for BMP and TMP
decoding plays an additional role, as suggested in [13]. In fact, the VN messages are
obtained by combing the channel LLR with a weighted sum of the incoming CN messages
and quantizing the result to obtain a binary or ternary message: the weighting factors used
at the VNs can be estimated via DE.

We focus on GLDPC codes with CNs based on (extended) Hamming codes. For this
class of codes, we show that under BMP decoding, BDD at the CNs yields almost the
same performance as optimum APP CN processing, while under TMP decoding the loss
incurred by the sub-optimum BDD at the CNs is within 0.7 dB, when compared with APP
decoding at the CNs. This observation, together with the low decoding complexity entailed
by BDD, suggests that the use BDD within BMP/TMP decoders can provide an excellent

trade-off between decoding complexity and coding gain.

5.1 Extrinsic Channel

The messages exchanged between check and variable nodes in an iterative decoder can be
modeled as observations of a symmetric discrete memoryless channel, with channel input
given by the codeword symbol associated with the message. When considering an extrinsic
channel, the channel input X takes values in the input alphabet X = {—1,+1}. For a
BMP decoder, the extrinsic channel is a BSC with output alphabet Z = {—1,+1} and
crossover probability 6. The channel LLR of this BSC is

L(z)=In iig - ji - jﬂ —1In <1;9> . (5.1)

D(0)

where D(0) is referred to as the channel reliability. For TMP, the extrinsic channel is a
binary error and erasure channel (BEEC) with output alphabet Z = {—1,0, +1}, where 0

corresponds to an erasure. Let 6 and € be the respective error and erasure probabilities of
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this channel. The channel LLR of the BEEC is

L(z)=In ii }g z z;§ i tiﬂ =1In (1_2_6> -z (5.2)

D(0,¢)

where D(0, €) is referred to as channel reliability.

5.2 Decoding Algorithms

We next describe the decoding algorithms that will be used in the analysis. We will consider
two types of local decoders at the CNs, i.e., optimum APP decoding and BDD. In both
cases, we assume the messages exchanged between check and variable nodes belong either
to a binary set (BMP decoding) or to a ternary set (TMP), while the observations at

the output of the communication channel will be unquantized. Under BDD decoding at

the CNs, we consider an extrinsic message passing approach [1,2,65]. Let m{’,  be the
message sent from CN c to its neighboring VN v at the (-th iteration. Similarly, m{®,_

is the message sent from VN v to CN c¢ at the /-th iteration. For BMP the exchanged

messages between VNs and CNs are binary, i.e., m{),  m{. € Mpyp £ {—1,+1} whereas

for TMP the exchanged messages are ternary, i.e., m® m‘(flc € Mpyp 2 {—1,0,+1}.

c—V?

An erased message indicates complete uncertainty about the respective bit.

5.2.1 APP SISO Algorithm at the Check Nodes

Each VN computes the LLR
2

Lch = ;y

(5.3)

for the corresponding channel observation and passes a quantized value to its neighboring

CNs. In particular, for all ¢ € N (v) we have
m® _ =md (5.4)
where m&® = W(Ly,) and the quantization function W is defined as

+1 >0
U(z) = (5.5)
-1 <0
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for BMP and
+1 x>T
U(r)=30 -T<az<T (5.6)
-1 z<-T

for TMP. In (5.5), if x = 0 we choose randomly between —1 and +1. We choose the
real-valued parameter T in (5.6) to minimize the iterative decoding threshold. It can be
chosen for each iteration individually. In this work, we keep T constant over the iterations
since we observed that, for the codes considered in the numerical results, optimizing T

across iterations does not yield any tangible performance gain.

Each CN computes the extrinsic likelihood ratio vector L¢ by using any APP SISO
algorithm to obtain extrinsic likelihood ratios where the incoming VN messages represent the

received sequence and are modeled as observations of a BSC with crossover probability p(_gf 2

for BMP and a BEEC with error and erasure probabilities p(_zfl) and p((f*l), respectively,
for TMP. The probabilities p(_q and p(()e) are the error and erasure probabilities of the VN
messages at the (-th iteration and they can be estimated via the DE analysis discussed in
Section 5.3 as proposed in [13]. The CN c sends to its neighboring VN v

m{,, = @ (L) (5.7)

[

where j is the codeword bit position assigned to v in the code of ¢ and

+1 >0
P(x) =40 =0 (5.8)
-1 <0

for TMP ! and ®(z) = ¥(z) given in (5.5) for BMP.

Each VN converts the channel output and the incoming CN messages to L-values and

!Note that, due to the discrete nature of the extrinsic channel at the CN input, the output of the APP
decoder may indeed yield a zero value. The quantization function (5.8) may be replaced by a function
of the form (5.6) where the output 0 represents an interval rather than the value x = 0. We empirically
verified , for the codes under investigation, that using an interval does not improve performance.
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passes the quantization of the result to its neighboring CNs. We have

m =T (Lch +DY 3 mﬁ?Lv) (5.9)

c’eN(v)\c

where L, is given in (5.3) and U is defined in (5.5) for BMP and in (5.6) for TMP.

To estimate the corresponding codeword bit, each VN computes

m@:m(}ﬁo 3 mQJ (5.10)

c’eN(v)

where VU is defined in (5.5).
The value of D) in (5.9) and (5.10) can be estimated via DE analysis (Section 5.3). For

BMP 9
1 —
D@:m( e ) (5.11)

-1

where q(_q is the error probability of the CN output messages at the /-th iteration. For

TMP, we have
0) )
1 — —
D@:m(‘hq*) (5.12)

¢
-

where qég) and q(_q are respectively the erasure and error probabilities of the CN output

messages at the ¢-th iteration.

5.2.2 Bounded Distance Decoding at the Check Nodes

Similarly, the VN to CN messages are initialized by (5.4). Let j be the codeword bit
position assigned to v in the component code of c. Let m. be the length n, vector
containing the incoming messages to the CN ¢ from the other neighboring VNs and an
erasure in its j-th entry. This way the decoder passes extrinsic messages, which makes the
DE analysis possible. Note that this method is different than the one in [2]. For BMP,
m. contains exactly one erasure (the j-th entry). Thus, if there exists a codeword ¢é € €
with 2dp(€, mc) < duin,r — 2 then the outgoing message from c to its neighboring VN v
is the j-th entry of &, i.e., m{Y, = ¢; otherwise the CN outputs +1 or —1 uniformly at

random. For TMP, let v be the number of erased messages the CN c receives from the
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other VNs. If there exists a codeword ¢ € ¢ with 2dy (¢, m.) +v < dpinr — 2 2 then the

()

outgoing message from c to its neighboring VN v is m ", |

= ¢; otherwise the CN returns

an erasure, i.e., mY. = 0.

To compare, we follow the method in [2], where the j-th entry of m. is equal to m<. In
this case, m. does not contain any erasure for BMP. Thus, if there exists a codeword ¢ € €

with dg(é,m.) < [(dminr — 1)/2] then the outgoing message from c to its neighboring VN

v is the j-th entry of &, i.e., m{®, = ¢; otherwise the CN outputs +1 or —1 uniformly at
random. For TMP, let v be the number of erasures in m.. If there exists a codeword ¢é € ¥
with 2dg(é, mc) + v < dpin» — 1 then the outgoing message from c to its neighboring VN

v is m®

(O, = ¢; otherwise the CN returns an erasure, i.e., m{, = 0. The VN update rule

cC—V

and the codeword bit estimation are the same as in (5.9) and (5.10).

5.3 Density Evolution Analysis

Under BMP and TMP decoding, the DE analysis plays a twofold role: On one hand, it gives
the asymptotic decoding threshold achievable by a specified GLDPC code ensemble; on the
other hand, it estimates the error/erasure probabilities of the messages that are required to
compute the reliability terms in (5.1) and in (5.2). We provide a DE analysis for both BMP
and TMP under the assumption that the all-ones codeword is transmitted. Let p((f) and
p(ﬁ be the erasure and error probabilities of VN messages at the ¢-th iteration. Similarly,
q((f) and q(ﬁ are the erasure and error probabilities of CN messages. Note that, while
the threshold definitions below require an infinite number of iterations, for the numerical

analysis we limited the number to £,,.

5.3.1 APP SISO Algorithm at the Check Nodes

Consider the DE analysis of BMP and TMP decoding under optimum APP decoding at
the CNs. Analyzing the error probability is complex, and we therefore adopt a hybrid
approach. We analytically evaluate the evolution of the error (and erasure) probabilities at
the VNs output, while the Monte Carlo method is used to estimate the evolution at the

CNs. The analysis is outlined next.

2The Hamming distance du(é,m.) is here defined as the number of positions where m. is not erased,
and it is different from é.
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Density Evolution Analysis for BMP

1. Initialization.

Under the all-ones codeword assumption, the channel LLRs are Gaussian RVs with

mean /i, = 4RE,/Ny and variance 0% = 244,. Hence, recalling (5.7), we have

P =Pr{Ly <0} =Q (“Ch> (5.13)

Och

where Q(x) is the Gaussian @) function.
2. For / =1,2,... lhax

CN to VN update We can obtain q(_q via Monte-Carlo simulation.

VN to CN update

We have

L d—1 i u (DO(d—1—2u) + ey
P =2 Z( y )(1—q(ﬁ)“ (q@)@( ( ) ) (5.14)
d

u=0 Och

where u is the number of incoming CN messages equal to —1 to a degree d VN and
D® is defined in (5.11). Note that (5.14) evaluates the probability that the sum of the
channel LLR with the VN input messages (scaled by their corresponding reliability

D®)) used to compute an extrinsic estimate, lies in the wrong decision region.

Density Evolution Analysis for TMP

1. Initialization.

Recalling (5.7), we have

_T C T C
p® :Pr{—T<Lch<T}:Q<U+“’h> —Q( j“h> (5.15)
ch ch
.
PO =Pr{ly < -T}=Q ( a “Ch> . (5.16)
Och

2. For { =1,2,... lpax
CN to VN update We can obtain q(ﬁ and q((f) via Monte-Carlo simulation.
VN to CN update
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We have

S 9% b Sl (NSRS [V CIRT D

u,v,d—1—u—wv

S . (5.17)
(1— g — Q)11 (D( (d=1-v—2u)+T+ ﬂm)
-1
Och
d—1d—1—u d—1 Orar (O
A
IV S S R [CCIRC DS
O(d—1—v—2u) —
(1—qf) — g ttu [Q(D @-1-v-2u) T+“Ch> (5.18)
Och
_Q<D(Z)(d—1—v—2u)+T+Mch>]
Och

where v and v are the number of —1 and 0, respectively, that a degree d VN receives
at the (-th iteration and D is given in (5.12). Note that (5.17) evaluates the
probability that the sum of the channel LLR with the VN input messages (scaled by
their corresponding reliability D)) used to compute an extrinsic estimate, lies on
the wrong decision region. Similarly, (5.18) computes the probability that the sum

results in a value within the erasure range (—T,+T).

The ensemble iterative decoding threshold (Ey/Ny)* is defined as the minimum Ey, /Ny for

)

WthhpO ,p_1 — 0 as ¢ — oo.

5.3.2 Bounded Distance Decoding at the Check Nodes

Following [1]

In contrast to APP decoding, iterative decoding with BDD at the CNs permits an exact

analysis of the evolution of the error (and erasure) probabilities. The analysis is outlined
next for both BMP and TMP decoding.

Density Evolution Analysis for BMP

1. Imitialization.

pY is given in (5.13).

2. For { =1,2,... lhax

CN to VN update
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We have Mpyp = {—1,+1} and the input of the decoder contains exactly one erasure
(its j-th entry). Let O_;, (O41,) be the probability that there exists a codeword
¢ € €, with 2dy(c, m.) < dpin - —2 that has a —1 (41) in a randomly chosen position
and there are u errors in the other n, — 1 positions. We have

(14014 —041.) (5.19)

N | —

n nr—1
l < < nT_]‘ /—1 nr—1l—u -1 u
=3 ( y )(1—29(_1 et )

with h = u — § + 2j and Ay, is the cardinality of codewords of weight h in € and

Ldmin,‘r —2

3 s
BELA, Gl [l <y <in, -1
O_1, = PO e P Isus (5.20)
dmin T
0 0<u< |dminr=2
Ldmin2J'72J s
n h dmin +—1
=LA, | : <u<n,—1
Ot1u = g::o ]zz:o n Anln [ (5.21)
dmin 7'*2
1 0<u<|[=—]
where
h nr—h—1
L, :M' (5.22)

(")
We briefly explain the derivation of O_; , and O, in Appendix 5.6.1.
VN to CN update

p(_q is given in (5.14).

Density Evolution Analysis for TMP

1. Initialization.

py) and p'“) are obtained from (5.15) and (5.16).
2. For 0 =1,2,... (.
CN to VN update

Let O_14.5(0414,0) be the probability that a randomly chosen bit is decoded incor-

rectly (correctly) when it was initially erased and there are u errors and v erasures in
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the other n, — 1 positions. We have

nr—1ln—1—u
= —1 L D (=D yn—1—u—v
5 ZPTZ Z (uvm_l_u_v>( po ) —py ) (5.23)
1 —1)\u
<pé >> <p<_ ) 01w
= —1 (1) _ pe=1yn, -1
- 1— v - Ny — —u—vx
SIS S S (I LV Cal o
(—1 u
(pé) )) (pgl )> (1 _ O—l,u,v - O+1,u,v>
with h = u + 2j; + jo — 0 and
Ldmin,g_“ 2J 5 v
Z Z Z h+1Ah+1Fh 2u+vzdmin7'_1
O_iupw = 5=0 j1=0 jo=0 "7 ’

(5.25)
0 2u+v < dpin,r — 2
51 ¢ N
Z Z Z n-,— AhFh 2u+wv 2 dmin,T —1
O+1,u,v = Jj1=072=0

(5.26)
1 2u+v < dpin, — 2

where

a1 o :
F, —-JLizhoii—je

nr—u—v—1—71,0—j1,v—j2
— . (5.27)
u,v,nr—1l—u—v

We clarify the derivation of O_,,, and O44,, in Appendix 5.6.2
VN to CN update

“ and p” and are given in (5.17) and (5.18).

5.3.3 Bounded Distance Decoding at the Check Nodes
Following [2]

Density Evolution Analysis for BMP

1. Initialization.
P is given in (5.13).

2. For (=1,2,.

*) gmax
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CN to VN update Let K_;,, (Ki1,) be the probability that there exists a codeword
c € 6, with 2dy(c, m.) < dpin- — 1 that hasa —1 (41) in a randomly chosen position

and there are u errors in the other n, — 1 positions. We have

P59+ (1= p)a® (5.28)
where
O =Pr{M®, = 1M = +1}
I R~ (me—1 i (5.29)
=320 2 ( ., )<p<1 Dy = p )T (L W = Waa)
u=0
Y =Pr{M£i>v = —1|M" = —1}
1 Ne nr—1 1 . . " o (530)
5 pr Z ( u )(P(—1 1)) (1 —p(_1 1)) T+ Ko — Kir)
u=0
and
Z Z 1Ah+1|h t, <u<n,—1
Koru =002 " (5.31)
0 0<u<t,—1
tr
> Z - hAhPh t<u<n,—1
Ko =1y0=17= (5.32)
1 0<u<t,—1
Z i h+1Ah+1Ph t,+1<u<n,—1
Wt = 05120 (5.33)
0 0<u<t,
tr
£ neh A, t+1<u<n, —1
Wopi = 050920 (5.34)
1 0<u<t,
where
h nr—h—1
P, :M (5.35)

)
(! g(’““)
= h‘”( o] (5.36)
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with b =u — 6 +2j + 1 in (5.32), (5.33) and h = u — & + 2j in (5.31), (5.34), (5.35),
(5.36) and A, is the cardinality of codewords of weight h in €. We briefly explain
the derivation of K_; ., K41, W_1, and W4, , in Appendix 5.6.3.

VN to CN update

()

To calculate p'y, we must determine the distribution of Ly, + D@ 3 m®

c'—v*

c’eN(v)\c
Note that the CN messages and the channel LLR are statistically dependent since
m = W(Ly,) is used to compute the outgoing CN messages. Let M) be the RV

associated to CN to VN messages at the (-th iteration. Similarly, M is the RV
associated to the quantized channel LLR. Let z be the number of incoming CN
messages equal to +1 to a degree d VN. We obtain

Z A Z (d . 1> [Pr{LCh < min{0, -D¥(2z —d + 1)}} x

2=0

u— N1 L Pr{0 < Loy, < —DW(2z —d + 1)} x
(1= a) (1]

d d—1] z

=it o
(Z) d—1—z LdQ;QJ d — ]_ D(E) (2Z - d + ].) + Mch (())
(8) + Z e Q oo —pq X
z=0 C

(1 _ a(f))z<a(f))d—1—z _i_p(f?(l . 6(6))2(6(6))d—1—z})
where a(¥, 3) are defined in (5.29) and (5.30) and D¥ is defined in (5.11).

Density Evolution Analysis for TMP

1. Initialization.

O and p'%) are obtained from (5.15) and (5.16).

2. For ( =1,2,... (.«
CN to VN update
Let K_1 4,0(K41,4,0) be the probability that a randomly chosen bit is decoded incorrectly
(correctly) when it was initially in error and there are u errors and v erasures in the

other n, — 1 positions. Similarly, W_y ,, ,(W41,.) is the probability that a randomly

chosen bit is decoded incorrectly (correctly) when it was initially correct and there are
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w errors and v erasures in the other n, — 1 positions. O_1 4 ,(O41.4.) is the probability
that a randomly chosen bit is decoded incorrectly (correctly) when it was initially

erased and there are u errors and v erasures in the other n, — 1 positions. We have

l l {4 l
qQ =89 + (1= p% = pi")a + pf"+ Y] (5.38)
¢ =p88" + (1= = p)a” + pi" " (5.39)
where
ay Pr{MﬁV:—uMch:H}

nr—1ln—1—u .
S S o A e

U, V, Ny — 1 —u—v
<p“1 ”> <p<‘ DWW
Y =Pr{Ml, = —1|M" = —1}

cC—V

—1n;—1-u -1 . . Cuw
_ZPT Z Z < v)(]_ —p£1 1) _p[() 1))n7 1—u % (541)

U, V, Ny — 1 —u—
(p(— )) (p( )) K—l,u,v
O =Pr{M, = —1|M" =0}

cC—V

nr—1ln—1—u
o -1 (1) (-1)\nr—1—u—
=S p, 1—p ne—l-u—vy (5 49
ZPZ Z (uvm_l_u_v>( P —py ) x (5.42)
<p<1 >> () )"0 1
O —Pr{M®Y, = 0|M" = +1}
nr—1ln—1—u
< -1 (-1 (t=1)yn,—1—u—
N, 1— b _ nr=l-u=vy (543
S OTE S Sl A (BB o )

(p(l )> (pg)e l) ( W—luv_W—Huv)
B =Pr{MY, = 0| M = 1}

nr—1ln—1—u
— —1 (=D)vu, (6=1)
= - b u v 5.44
S OTS S Sl A (R it (5.44)
(1 p([l 1) p(f 1))117.—1 u— 1}(1 o K—l,u,v . K—i—l,u,v)
W =Pr{MO, = 0|M = 0}

c—v
Ne nr—1ln—1—u
3 ' nr—1 =)\, (=1)\v
Z 2 2 <u v,n _1_u_v>(P(—1 sy (5.45)
T= u=0 v=0 y Uy Tl

E 1 L=1)\n;—1—u—v
( ( ) - p(() 1)) ! (1 - O—l,u,v - O—‘y—l,um)-
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We have for all 0 < u,v,u+v<n,—1

R " LA, F, 2 > d 2
Kfl,u,v = 6=0 jlz::()]éz::()? Gl utvz min,T (546)

0 2u+v < dpin, — 3

Ldmin,T*'Ufl

3 ls-1 w h
E E %Ahsh 2u +v Z dmin,T -2

Kitupo = =1 jiZ0ja=o (5.47)
1 2u +v < dwinr — 3
| el s g, -

Wi = s=1 jgo jgz::(l e Ar1Sn 200 2 i (5.48)
0 2u+v < dpinr — 1

Ldmin,.gf'uflJ

1) v
nr—h
ne=hAFL 240 > dy s
Wit = §=0 j1§=:0j2§=:0 e CRTR - ’ (5.49)

1 2u+v <dpin, — 1

Ldmin,g_”_QJ

d v
'ZO 'ZO h+1Ah+1Fh 2u +v Z dmin,T —1
J1=U 2=

O 1up = 3=0 nir (5.50)
0 2u+v < dpin,r — 2
Ldmmg_zj S Y mhAE, 2ut > d 1
R U+ v min, 7
Ot1u0 = 5=0 j1=0ja=0 "7 hh - ’ (5.51)
1 2u 4+ v < dpin,r — 2
where
h nr—h—1
(jhjz,h*jl*]é) (n-r*u*v*]-*jl,(s*jly'v*]é)
Fr = — (5.52)
(u,v,nf—l—u—v)
h nr—h—1
S, — (jlij»h_jl—jQ) (nr—u—v—l—ﬁ,5—1—j1,v—j2> (5 53)
nr—1 '
(u,v,n,—flfufv)
where in (5.46), (5.49), (5.50), (5.51) h = w + 2j; + j» — ¢ and in

(5.47), (5.48), h = u + 2j; + jo + 1 — 6. We clarify the derivation of
Kt Kt oy Wt o, Wit ww, O—1 4w, O41,4,0 in Appendix 5.6.4.

VN to CN update

Recalling (5.6), for TMP M = W(Ly,) takes value from {—1,0,+1}. Let 2z and
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w be, respectively, the number of incoming CN messages equal to +1 and —1 to a
degree d VN. We obtain

Zxddzldiz ( o ) (o) ()

= = \Zw,d—1—-z—-w

(1- oz(fi — ol Pr{T < Ly < ~T = DO(z — w)} + (1)

5.54
(D @ =Y =7 Pr{Ley < ~T = DO(z —w) N =T < Ly, < T}+ 5549
(BB (= B - )
Pr{Ley < min{~T, =T — D“(z — w)}}]
Z )\d dz:l dzl:z d—1 [(Oéée))d—l—w—z<&(q)wx
= = \Bw,d—1—z2—w B
(1-— a(ﬂ — &(()e))z
Pr{T < L,N-T-D¥W(z—w) <Ly <T—DY(z—w)}
(5.55)

R R e R L

Pr{max{—T,-T — DY (z —w)} < Ly, < min{T, T — DU (z —w)}}
(B (1= G - )

Pr{ly, <-TN-T-DY(z—w) <Ly <T-DY(z— w)}]

where oz(g) B( 1,7 1, ,B[()e),% are defined in (5.40)-(5.45) and D is defined in
(5.12).

5.4 Stability Analysis

We study the convergence of the error and erasure probabilities to zero assuming that they
are sufficiently small. In particular, we derive the stability condition for BMP and TMP
decoding when BDD decoding is applied at the CNs. Recalling that the stability condition
provides a necessary condition to achieve arbitrarily small error probabilities, its evaluation
can be used to verify the suitability of a given degree distribution [110]. The analysis is
presented next.
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5.4.1 Bounded Distance Decoding at the Check Nodes
Following [1]

Stability Condition for BMP

We determine the evolution of p(_q over one iteration when we are close to the fixed point
py = 0. From (5.19), we have

. dqg) &
}1 — = Zﬂr n, — 1)[0_11 — Op11 — O_19 + O10). (5.56)
P00 dpt

Note that if p(_é)l — pj, we have q(_q — 0 and DY — co. Thus, for small error probabilities,

we have
S (A1), . (0)yd—1-2
=> Aa| D L) (=)
d =43+ (5.57)
pen (d—1 a1 a1
+Q( h) ( d—1 )(q(_q) 2 (1—q(_€%) 2 ] :
Och 9
We obtain
. dp(q Hch
Jim =+ 20 (UCh) . (5.58)
The first order Taylor expansions via (5.56) and (5.58) yield p(ﬁ = Qp(fl_ Y where
1 c
Q:2<)\2+2)\3Q<uh>)2p7_ 7_1 011—O+11—O 10—|—O+10] (559)

The stability condition is satisfied if and only if Q < 1. Clearly, Q =0 if V7 € {1,...,n.}
we have dy;, » > 4, which implies that the stability condition is fulfilled.

Stability Condition for TMP

Deriving the stability condition under TMP decoding is slightly more complicated than
in the BMP case. The reason is that, while for BMP decoding it suffices to study the
linearization of the two DE equations in a single variable, under TMP decoding the DE
analysis entails two recursions per VN/CN step, each involving two variables. We proceed

by defining the vectors p) = [p(ﬁ, p(()z)]T, p = [q(f}, q(()é)]T. We determine the evolution of
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p) over one iteration when we are close to the fixed point p* = 0. From (5.23), we have

. aq
p<fh¥l—>oa? ZPT nr —1)(O_1,10 — O_100) = K1 (5.60)
6
p(}lg;oa ZPT ny —1)(O_101 — O_1,00) 1= k2 (5.61)
6qo )(O_ 0 o_ 0 5.62
p<51¥1—>03 ZPT nr 1,0,0 T Q0,00 — 1,1,0 — 010) ‘= KR3 (5.62)
8q le
<f1§1—>08 ZPT nr O 100+0000—O 101—0001) ‘= Ryg. (5-63)
p
As DY — oo, we have
S £ g (o
Z)\d Z Z 4-1 — 4o )d_l_u_v(% )’
u=0v=d—2u
= (5.64)
2 /~’LCh+T d_]. m —1—2u u
T Q( o ><uud—1—2u (@D (@)1~ ¢ — o)
Ld2lj Heh — T Hch +T
=S 3 fe (M=) -e ("))
(; 01 ch ch (5.65)
- £)\u l —1—2u {4 £)\u
(Md_l_zu)(q(b (@Y = g = )y

Following the same steps as the case of BMP, we obtain

9 “ ch + T ch + T
([1 Moy 1(2 11) </\2 +2)3Q (M h )) K1+ Aa@ <,u b > K3 (5.66)
P P_1

Och Och
Lt ai?ﬁ“ = ()\2 +223Q (’”jh T)) Ko + XoQ (M;J; T) K4 (5.67)
p-D 50 ;ﬁf)l) - [Q (MCZ; T) -@Q (MC};I T)] (2A31 + A2ks3) (5.68)
gt o () o (D s G
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Define the matrix

L £
T B T
peDs0 9TV pet1 50 apéé 1
11m 11m — 1y
p(—1 50 8p“ Y =D 50 Bp(’ R

Let 2 be the spectral radius of J, i.e., the largest magnitude of its eigenvalues. The stability
condition is satisfied if and only if Q < 1.

It can be easily verified that if Vs = 1,...,n. dpinr > 4, J = 0242. As a result, if all
CN types have minimum distance larger or equal than 4, then the stability condition is
satisfied.

5.4.2 Bounded Distance Decoding at the Check Nodes
Following [2]

Stability Condition for BMP

We determine the evolution of p(ﬁ over one iteration when we are close to the fixed point
pr, =0.
From (5.29) and (5.30), we have

da® 1 &
im gy = Z pr(n: — L)(W_11 = Woip —Woq0+ W) (5.71)
P . -0 dp ]
. d 1 T
lim 6 = E pr(ns J(KZ11 — Ky — Koo + Kia). (5.72)
Y . -0 dp

Note that if p(ﬁ — p*, we have a®, 3) — 0. Recalling (5.11) and (5.28), we get D) — oo

Thus, for small error probabilities, we have

RO Y (p@i (dd‘f) (30)% (1 - g0y %5

2

4520 0 (5.73)
3 (1) [ = a0 OO - 5]
z=0
We obtain
' ap(é) © ‘ 8p(f) ©
a%})nio dal®) =1 =p=), ﬂ}@go op@ - (e +22) (5.74)
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where p'%) is given in (5.13). Since

opt?) _ op) da® N op') dp® (5.75)
Op(fl Vo 9al® dp(fl_l) p® dp(fl_l)

we have

{4
ot

l N ——
H=D (-1)

-0 5.76
PV =0 0p ( )

where 1 "
L3 0 1) [ty Wy~ Wt Wer 15
(5.77)

+p(_i(K71,1 —Kann — Koo+ Kio) (o +22)]

The stability condition is satisfied if and only if Q < 1. Clearly from (5.31)-(5.34), Q = 0 if
Vre{l,...,n.} t.>2 which implies that the stability condition is fulfilled.

Stability Condition for TMP

We define the vector pt© = [p(_q, p((f)]T. We determine the evolution of p® over one iteration

when we are close to the fixed point p* = 0. From (5.40)-(5.45), we have

a (5)
(N, )(W_ —W_ 5.78
p<@1—>oa ZP 1,1,0 1,00) (5.78)
65(4)
li - )K= — K_ 5.79
p(glgl_ma ZP 1,1,0 1,0,0) (5.79)
lim 87 i )(O_1.10— O_100) (5.80)
Dl 1@0@ pT T 1,1,0 1,0,0 .
)
li (N, )(W. - W 5.81
p“l{n—)O@ ZP 0,1,0 0,0,0) (5.81)
aﬂo S
<éhgl—>0 8 Z pr(nr —1)(Ko1,0 — Koo,) (5.82)
1m 870 Z pr O() 1,0 — O() 0 0) (583)
pl~V—0 8
' oo (f)
p<£1gl~>00 ZPT nr — 1) (W_i 01 —W_10,0) (5.84)
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lim 85(@ Z /07 . K 1,0,1 — K_ 100) (585)
p(f 1)—>08

lim a’Y ip —1)(0-1,01 —O_10,0) (5.86)
pt— 1)_’03 (e— 1) T Ny

lim 804 ne W W .

ple— 1)_>08 o (6-1) ZPT nr 0,0,1 — 000) ( )

. 86 2

(D0 gD apt Z pr(nr = 1)(Kooa = Kooo) (5.88)

lim 870 Z ,07' T OOO 1 — OO 00) (589)
p~V—0 (‘3

As D® — oo, we have

d—1d—1—z d_l w
=T (XY (de_l_ )T = el

z=0 w=z+1
(1- a9 — o) + p (P >d 1o ww(i)wu—ﬁiﬁi—ﬁé%z
G A - 0y (590
0) ey d—1 (02 A0 yd—1—22 O a0y
LEpY (Z,Z,d_l_%)w_l) (5401251 - 9 — 60
1454
—p@%ZA > ( d_ ! )(v“i)zmé“)d—l-%a—w@ 7). (5.91)
= z,2,d—1—2

Following the same steps as the case of BMP, we obtain

P(lh{’nﬁﬂ ap Z pr(ns [((1 — O =P YW1 = Woi00) +
P (K 110 — K 100+ Koso — Kooo) + P (0110 — O_ 100)) (5.92)
+2p—1/\3(K—1,1,0 — K—I,O,O)}
li Op (‘q = - _ 0 (0) _
T’(l}glﬁo 6pé€_1) B ;'OT(”T 1) [((1 P —po ) (Woi01 —W_100)+
p(()O)(O—l,(Ll —O_1,00) +p(2(K—1,0,1 — K100+ Koo1 — Ko,o,o)) Ao (5.93)

—I—2p(_0%/\3(K—1,0,1 - K—l,O,O)}
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‘ o )
lim @0,1) = p(()o) > pr(ne —1)[(00,10 — 00,0,0)A2 + 2A3(0—1,10 — O—100)]  (5.94)

pl=V—=0 Op> =1

' o ©)
lim Z()go,l) = p(()o) Z IOT(nT - 1) [(00,0,1 - 00,0,0)>\2 + 2>\3(071,0,1 - 071,0,0)] (5-95)

p=1=0 Jp, —

where p©) and p” are given in (5.15) and (5.16).

Define the matrix

Y4 y4
lim Lp(’i i LPQ
pteD—0 9TV pe=n 0 apS Y
J = b PR, (5.96)

9P _9Pg
p(é—lgl—>0 32?(_1{171) pt-1)—0 3p(()271>
Let €2 be the spectral radius of J, i.e., the largest magnitude of its eigenvalues. The stability
condition is satisfied if and only if 2 < 1.
It can be verified that if Vs = 1,...,n. dyinr > 5 then J = 0ax2. As a result, if all
CN types have minimum distance larger or equal than 5, then the stability condition is
satisfied.

5.5 Numerical Results

We provide two examples where two GLDPC code ensembles are considered. For the
examples, both the iterative decoding thresholds and finite-length BER simulation results
are given over the biAWGN channel.

Example 5.1. Consider the rate R = 0.625 regular GLDPC ensemble with VN degree
d, = 2, where all the CNs correspond to the (32,26) extended Hamming code. Using
the derived DE, we obtained the iterative decoding thresholds of this ensemble under
BMP and TMP where we set /., = 200 and applied different decoding methods at the
CNs. We observed that for the APP SISO decoder at the CNs, the decoding threshold
for TMP improves by 1.82dB as compared to BMP. For extrinsic BDD [1,65], the gain
of TMP is 1.18dB. We designed a length n = 8000 code from this ensemble via the PEG
algorithm [94]. For the simulations, we set the maximum number of iterations to £y.x = 50.
The simulation results for BMP (dashed lines) and TMP (solid lines) are depicted in Fig. 5.1
in terms of BER versus Ey,/Ny. The results are provided by employing APP SISO decoding
(blue lines), BDD, where we replace the j-th entry with an erasure (green lines) [1,65]
and BDD following [2] (red lines) at the CNs, where BDD is implemented in the extrinsic

message passing setting. The waterfall performance of the different decoders is in agreement
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100 ¢ H
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Figure 5.1: BER versus Ey, /N, for unquantized SPA, TMP (solid lines) and BMP (dashed
lines) with APP SISO algorithm, with extrinsic BDD following [1,65] and with
extrinsic BDD following [2] at the check nodes for the GLDPC code in Example
5.1. The corresponding iterative decoding thresholds are provided as vertical
lines, where for the case of BMP decoding the thresholds under the APP SISO
algorithm and under BDD coincide (gray, dashed line).

with the thresholds derived via DE. We observe that in this case, when using BDD at
the CNs, it is better to replace the j-th entry with an erasure than with the channel
message (following the method in [2]). The performance gap between the TMP decoder
employing optimum APP decoding at the CNs and the one using BDD is around 0.6 dB at
a BER= 107, in good agreement with the DE results. Remarkably, under BMP decoding
the performances obtained through APP SISO decoding and BDD are indistinguishable.
The result is confirmed, in the asymptotic setting, by the DE analysis: The two algorithms
yield identical numerical values for the iterative decoding threshold, up to the second
decimal digit. The result may point to the fact that, under BMP decoding (and for certain
selection of component codes), optimum APP decoding and BDD at the CNs deliver a
similar performance. If proven to be applicable to GLDPC codes based on a wide class

of component codes, this result may have some important consequences for the design of
BMP decoders for GLDPC and product-like codes.?

Example 5.2. Consider the rate R = 3/8 regular GLDPC ensemble with VN degree
dy = 2, where all the CNs correspond to the (16,11) extended Hamming code. We designed
a length n = 8000 code from this ensemble via the PEG algorithm [94]. For the simulations,

3The peculiar behavior observed under BMP decoding can be subject of further investigations, targeting
longer and more powerful component codes such as those adopted in optical communication systems [42].
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109
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§ = g BDD at the CNs following [1]
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Figure 5.2: BER versus Fy, /N, for unquantized SPA, TMP (solid lines) and BMP (dashed
lines) with APP SISO algorithm, with extrinsic BDD following [1,65] and with
extrinsic BDD following [2] at the check nodes for the GLDPC code in Example
5.2. The corresponding iterative decoding thresholds are provided as vertical
lines, where for the case of BMP decoding the thresholds under the APP SISO
algorithm and under BDD coincide (gray, dashed line).

we set the maximum number of iterations to £, = 50. The simulation results for TMP
are depicted in Fig. 5.2 in terms of BER versus E},/Ny. The iterative decoding thresholds
(Ep/No)* [dB] are also depicted in the figure. It can be observed that the asymptotic DE
analysis correctly predicts the finite-length waterfall performance. Here again, the APP
SISO decoding and BDD at the CNs yield similar performance for BMP. Moreover, some
gain can be achieved if we replace the j-th entry with an erasure [1,65] rather than the
channel message [2] for BDD at the CNs.

5.6 Appendices

5.6.1 Derivation of O_;, and O,;, in (5.20) and (5.21)

We clarify briefly the derivation of O_;,, and O,;,. Note that the number of errors in the
received sequence is u and the number of erasures is 1. If 2u < dyin» — 2, the decoder can
correct the errors and erasures (€ is the all-ones vector). Thus O_;, =0 and O4;, = 1.
O_1,, is the probability that given a codeword ¢ € €, of a given weight, the erased bit in
the input vector corresponds to an entry where ¢ is —1 and the other u (—1s) of the input

vector are placed such that 2dy(c,m¢) < dpinr — 2. Consider the codewords of weight
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h + 1, the number of which is Aj,1. The probability that the randomly selected initially
erased bit is chosen among the codeword bit positions that are —1 is (h + 1)/n,. For a
given weight h + 1 codeword ¢, suppose m. has h — j (—1s) in h — j out of the h entries
where ¢ is —1 (one entry is already fixed). Thus, m. has u —h+j (—1s) in u — (h — j) out
of the n, — h — 1 positions where ¢ is +1. The number of possibilities is (hiJ) (t_‘h’:jl).
The probability that this occurs is given by

h nr—h—1
() (55
where § := dg(e, m.) = u — h + 2j. By summing over 0 < ¢ < |(dwinr — 2)/2] and j, we

obtain O_; , in (5.20).

Consider now O, ,, which is the probability that, given a codeword ¢ € € of a given

l, =

weight, the erased bit in the input vector corresponds to an entry where ¢ is +1 and the
other u (—1s) of the input vector are placed such that 2dy(c, m.) < dpin, — 2. Consider
the codewords of weight h, the number of which is Aj,. The probability that the randomly
selected initially erased bit is chosen among the codeword bit positions that are +1 is
(n, — h)/n.. For a given weight h codeword ¢, suppose m, has h — j (—1s) in h — j out
of the h entries where ¢ is —1. Thus, m. has u — (h — j) (—18) in uw — (h — j) out of the
n, — h — 1 positions where ¢ is +1.The probability is given by

I, = (h—j>n(n:<l5_—j_ ) (5.98)
(")

where § := dg(c, m.) = u — h + 2j. By summing over 0 < ¢ < |(dwin,r — 2)/2] and j, we
obtain Oy, in (5.21).

5.6.2 Derivation of O_;,, and O4,, in (5.25) and (5.26)

We next clarify the derivation of O_;,, and Oij,,. If 2u +v < dpin, — 2, then the
number of erasures in the received sequence is v + 1 and the number of errors is u. Hence,
the decoder can correct the errors and erasures. Thus, O_;,, = 0 and O4;,, = 1 for
2u+v < dpinr —2. O_1,, is the probability that, given a codeword ¢ of a given weight, the
randomly selected bit for the received sequence corresponds to an entry where c is equal to
—1. The other (—1s) and erasures of m. are placed such that 2dy(c, m.) + v < dyinr — 2.
Consider the codewords of weight h + 1. The probability that the erased bit is chosen
among the codeword bit positions that are —1 is (h + 1)/n,. For a given weight h + 1
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codeword ¢, suppose m, has h — j; — jo (—1s) and j, erasures in h — j; — jo and js out of
the h entries where ¢ is —1 (one entry is already fixed). Thus, m. has u —h+ j; + j2 (—1s)
in u— (h—j1 — jo) and v — jo erasures in v — js out of the n, — h — 1 positions where ¢ is

+1. The number of possibilities is

Ji,J2sh— g1 —jo ) \nr —u—v—1—ji,u—h+ji1+jo,v—ja)

The probability is

(j1,j2,hfij1 —j2> (nr—u—vz:?l_,;—jl ,v—j2)
F), = ( — ) (5.99)
TRIR I gy
where 0 := dy(c,m.) = u — h + 2j; + jo. Summing over 0 < ¢ < |[(dminr — 2 —v)/2], 71
and jo completes the proof.

Consider now Oy 4. If 20+ v < dpin,r — 2, then the number of erasures in the received
sequence is v + 1 and the number of errors is u. Hence, the decoder can correct the errors
and erasures. O,q,, is the probability that given a codeword ¢ of a given weight, the
randomly selected bit for the received sequence corresponds to an entry where c is equal to
+1. The other (—1s) and erasures of m. are placed such that 2dy(c, m¢) + v < dyinr — 2.
Consider the codewords of weight h. The probability that the erased bit is chosen among
the codeword bit positions that are +1 is (n, — h)/n,. For a given weight h codeword ¢,
suppose m. has h — j; — jo (—18) and js erasures in h — j; — jo and j5 out of the h entries
where ¢ is —1. Thus, m. has u — h + j; + jo (—1s) in u — (h — j; — j») and v — j5 erasures
in v — jp out of the n, — h — 1 positions where ¢ is +1 (one entry is already fixed). The
number of possibilities is ( h )( nr—h-1 ) and the probability is

J1,J2,h—j1—j2/) \nr—u—v—1—j1,u—h+j1+j2,0—j2

F, = (j1,j2,hiij1—j2> (nT—u—”ﬁ;:?lj‘sl_jh“_j?) (5.100)

nr—1
u,v,nr—1l—u—v

where 0 := dy(e,m.) = u — h + 2j; + jo. Summing over 0 < ¢ < |[(dpinr — 2 —v)/2], 71

and j completes the proof.

5.6.3 Derivation of K_; ,, K.y ,,W_;, and W, in (5.31)-(5.34)

We clarify briefly the derivation of K_; ,, Ky, W_1 4, W41, and Wy, Ifu <t -1,
then the decoder can correct all errors and the estimated codeword is the all-ones vector.

Hence K_;, = 0 and K4;, = 1. K_;, is the probability that there exists a codeword
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c with dy(e, m.) < ¢, that has a —1 in the randomly chosen position, where m, is the
received sequence and m. has a —1 in the randomly chosen position. Thus, K_; ,, is the
probability that given a codeword c of a given weight, the randomly selected bit for the
received sequence corresponds to an entry where ¢ is equal to —1. The other (—1s) of m.
are placed such that dy(e, m.) < t,. Consider the codewords of weight h + 1, the number
of which is Aj41. The probability that the randomly selected initially in error bit is chosen
among the codeword bit positions that are —1 is (h + 1)/n,. For a given weight h + 1
codeword ¢, suppose m. has h — j (—1s) in h — j out of the h entries where ¢ is —1 (one
entry is already fixed). Thus, m. has v — (h — j) (—1s) in u — (h — j) out of the n, —h —1
positions where ¢ is +1. The number of possibilities is ( h )("T_h_l). The probability is

h—5) \ u—h+j

where 0 := dy(c, m.) = u — h+ 2j. By summing over 0 < ¢ <, and j, we obtain K_; , in
(5.31). Consider now K4 ,, which is the probability that there exists a codeword ¢ with
du(e,m.) < t, that has a +1 in the randomly chosen position and m. has a —1 in the
randomly chosen position. Thus, Ky, , is the probability that given a codeword ¢ of a given
weight, the randomly selected bit for the received sequence corresponds to an entry where
c is equal to +1. The other (—1s) of m, are placed such that dy(e,m.) < t,. Consider
the codewords of weight h, the number of which is A,. The probability that the randomly
selected initially in error bit is chosen among the codeword bit positions that are 41 is
(n, — h)/n.. For a given weight h codeword ¢, suppose m, has h — j (—1s) in h — j out
of the h entries where ¢ is —1. Thus, m. has u — (h — j) (—18) in uw — (h — j) out of the

n, —h — 1 positions where ¢ is +1 (one entry is already fixed). The number of possibilities
is ( h )("T_h_l) and probability is

h—j u—h+j
h nr—h—1
P, = M
)
where 0 := dy(e,m.) = u— h 4+ 2j + 1. By summing over 1 < ¢ < ¢, and j, we obtain
K+1’u in (532)

If uw < t,, then the decoder can correct all errors and the estimated codeword is the
all-ones vector. Hence W_,, = 0 and Wy, = 1. W_;, is the probability that there
exists a codeword ¢ with dy(e, m.) < t, that has a —1 in the randomly chosen position

and m. has a +1 in the randomly chosen position . Thus, W_, ,, is the probability that
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given a codeword c of a given weight, the randomly selected bit for the received sequence
corresponds to an entry where ¢ is equal to —1. The other (—1s) of m, are placed such that
du(e,m.) < t,. Consider the codewords of weight A + 1, the number of which is A, ;. The
probability that the randomly selected initially correct bit is chosen among the codeword
bit positions that are —1 is (h + 1)/n.. For a given weight h + 1 codeword ¢, suppose m,.
has h — j (—1s) in h — j out of the h entries where ¢ is —1 (one entry is already fixed).
Thus, m. has u — (h — j) (—18) in u — (h — j) out of the n, — h — 1 positions where ¢ is

+1. The number of possibilities is (h}_LJ) ("J::;1> The probability is

o, _ L) (55
()

where 0 := dy(e,m.) = u— h +2j + 1. By summing over 1 < § < ¢, and j, we obtain
Wfl,u in (533)

Consider now W, which is the probability that there exists a codeword ¢ with
du(e,m.) < t, that has a +1 in the randomly chosen position and m. has a +1 in the
randomly chosen position. Thus, W, , is the probability that given a codeword c of a given
weight, the randomly selected bit for the received sequence corresponds to an entry where
c is equal to +1. The other (—1s) of m, are placed such that dy(e, m.) < t,. Consider
the codewords of weight h, the number of which is Aj,. The probability that the randomly
selected initially correct bit is chosen among the codeword bit positions that are +1 is
(n, — h)/n.. For a given weight h codeword ¢, suppose m, has h — j (—1s) in h — j out
of the h entries where ¢ is —1. Thus, m, has u — (h — j) (—18) in u — (h — j) out of the
n, —h — 1 positions where ¢ is +1 (one entry is already fixed). The number of possibilities

is ( h )("Tfh*l). The probability is

h—j u—h+j

h nr—h—1
() (55)
(")
where 0 := dg(e, m.) = u — h + 2j. By summing over 0 < § < ¢, and j, we obtain W4,
in (5.34).

I, =



118 5 Quantized Decoding Algorithms for GLDPC Codes

5.6.4 Derivation of K_; ,, ,, K1y, W_1 00y Wit i, O—14p, Ot10,0 in
(5.46)-(5.51)

If 2u + v < dpin+ — 3, the number of erasures in the received sequence is v and number of
errors is u+1 < | (dwin —1—v)/2|. Hence, the decoder can correct the errors and erasures.
Thus, K_1 4, = 0 and K4y, = 1 for 2u + v < dpin — 3. K_1,, is the probability that
given a codeword c of a given weight, the randomly selected bit for the received sequence
corresponds to an entry where ¢ equals —1. The other (—1s) and erasures of m,. are placed
such that 2du(c,m.) + v < dpin, — 1. Consider the codewords of weight h + 1. The
probability that the randomly selected initially in error bit is chosen among the codeword
bit positions that are —1 is (h + 1)/n.. For a given weight h 4+ 1 codeword ¢, suppose m.
has h — j; — jo (—1s) in h — j; — jo and jp erasures in js out of the h entries where ¢ is
—1 (one entry is already fixed). Thus, m. has u — (h — j; — jo) (—1s) in u — (h — j; — Jo)
and v — jy erasures in v — jy out of the n, — h — 1 positions where ¢ is +1. The number of
possibilities is ( h )( fir—h-1 ) The probability is

Ji,92,h—j1—J2 ) \nr—u—v—1-j1,u—h+j1+j2,0—j2

Gritosi—in) (o)
_ \Juj2,h—j1—j2) \nr—u—v—1-—j51,0—j1,0—j2
F, =

nr—1
u,v,nr—l—u—v

where 0 := dy(c,m.:) = u — h + 2j; + jo. Summing over 0 < ¢ < |(dpinr — 1 —v)/2], 71
and j, completes the proof.

K410 is the probability that given a codeword c of a given weight, the randomly selected
bit for the received sequence corresponds to an entry where ¢ equals +1. The other
(—1s) and erasures of m. are placed such that 2dg(e, m.) +v < dpin, — 1. Consider the
codewords of weight h. The probability that the randomly selected initially in error bit is
chosen among the codeword bit positions that are +1 is (n, — h)/n,. For a given weight
h codeword ¢, suppose m. has h — j; — jo (—1s) in h — j; — j and jo erasures in jy out
of the h entries where ¢ is —1. Thus, m. has u — (h — j; — jo) (—1s) in u — (h — j1 — j2)
and v — jy erasures in v — jo out of the n, — h — 1 positions where ¢ is +1 (one entry is
already fixed). The number of possibilities is ( h ) ( nr—hed ) The

J1,j2,h—j1—3j2/) \nr—u—v—1—j1,u—h+j1+j2,v—j2
probability is

S), = (J’h]é»h}ijl*jz) (“r*u*v*;b:;l};;ll*jl,U*jz)
(et i)
where 0 := du(c, mc) = v — h+ 251 + jo + 1. Summing over 1 < § < |(dyin, — 1 —v)/2],
j1 and jo completes the proof.
Consider now W_, ,,, and W44 ,,,. If 2u 4+ v < dyinr — 1, the number of erasures in the
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received sequence is v, and the number of errors is v < |(dminr — 1 — v)/2]. Hence, the
decoder can correct the errors and erasures. Thus W_; ,,, = 0 and W4, =1. W_y,, is
the probability that given a codeword ¢ of a given weight, the randomly selected bit for
the received sequence corresponds to an entry where ¢ equals —1. The other (—1s) and
erasures of m, are placed such that 2dy(c, m.) + v < dyin» — 1. Consider the codewords
of weight h + 1. The probability that the randomly selected initially correct bit is chosen
among the codeword bit positions that are —1 is (h + 1)/n,.. For a given weight h + 1
codeword ¢, suppose m. has h — j; — jo (—1s) in h — j; — jo and jy erasures in js out of
the h entries where ¢ is —1 (one entry is already fixed). Thus, m. has u — (h — j; — j2)
(—1s) in u — (h — j1 — j2) and v — ja erasures in v — jy out of the n, —h — 1 positions where
c is +1. The probability is

Gramsiiz) (rrmimo i1 i)
_ \Un,j2,h—jg1—32) \nr—u—v—1-—j1,6—1—351,v—j2
Sy

- nr—1
u,v,nr—l—u—v

where § := dy(c,m.) = u — h+ 2j; + jo + 1. Summing over 1 < § < [(dpinr — 1 —v)/2],

71 and 7 completes the proof.

W10 is the probability that given a codeword ¢ of a given weight, the randomly
selected bit for the received sequence corresponds to an entry where ¢ equals +1. The
other (—1s) and erasures of m, are placed such that 2dy(e, m.) +v < dpi, » — 1. Consider
the codewords of weight h. The probability that the randomly selected initially correct bit
is chosen among the codeword bit positions that are +1 is (n, — h)/n.. For a given weight
h codeword ¢, suppose m. has h — j; — ja (—1s) in h — j; — jo and jp erasures in j, out of
the h entries where ¢ is —1. Thus, m, has u — (h — j; — jo) (—18) in u — (h — j; — jo) and

v — Jp erasures in v — jo out of the n, — h — 1 positions where ¢ is +1. The probability is

Gt o) (oo piimi)
_ \JuJg2,h—j1—j2) \nr—u—v—1—j1,0—j1,v—j2
Fu

o nr—1
u,v,nr—1l—u—v

where 0 := dy(e,m.) = u — h + 2j; + jo. Summing over 0 < ¢ < |[(dpin — 1 —v)/2], 71

and j completes the proof.

The derivations of O_; ,, and O ,, are given in Appendix 5.6.2.






Trapping and Absorbing Set
Enumerators for Binary LDPC Code

Ensembles

Trapping sets [35,36] and (fully) absorbing sets [37,111] play a fundamental role in the
error floor performance (under iterative decoding) of LDPC codes [112-114] especially for
quantized decoders, such as the algorithms in Chapter 4. Enumerating the trapping sets of a
specific LDPC code graph is a formidable problem (see, e.g., [43-45]). The difficulty can be
circumvented by analyzing the average trapping set enumerator of an LDPC code ensemble,
rather than analyzing a specific code. This is reasonable if the weight and trapping set
enumerators of a code drawn uniformly at random from the ensemble are close to the
average enumerators of the ensemble with high probability. The author of [115,116] derived
an asymptotic lower bound on the probability that the weight and stopping set enumerators
of a random code from the binary LDPC code ensemble is close to the ensemble average.
The approach relies on the second moment method using the variances of the weight and
stopping set distributions. We extended in [64] the method in [115], to the weight and
trapping set distributions of non-binary LDPC code ensembles. Following [117], we derived
upper bounds on the typical minimum distance and the relative minimum A-trapping set
sizes for binary and non-binary regular LDPC code ensembles. In [48], a characterization of
the (asymptotic) trapping set properties of regular/irregular unstructured LDPC ensembles
was obtained based on random matrix enumeration methods. In this chapter, we derive the

finite-length and asymptotic (elementary) trapping and (fully) absorbing set enumerators for
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binary unstructured and protograph-based LDPC codes. Numerical results illustrate how

the proposed enumeration technique can be used to estimate the error floor performance
for LDPC codes.

6.1 Preliminaries

Let G = (VUC,&) be a Tanner graph of a binary LDPC code, where V (C) is the set of
VNs (CNs) and & is the set of edges. A VN is called correct if the corresponding value is
zero and it is called corrupt if it is one. Consider a set Z C V of corrupt VNs. We denote
by N(Z) the set of its neighboring CNs. Further, we denote by U(Z) the set of CNs in
N(Z) that are connected to Z an odd number of times (unsatisfied CNs) and S(Z) the set
of CNs in N(Z) that are connected to Z an even number of times (satisfied CNs).

Definition 6.1 (Trapping set). An (a,b) TS 7, is set Z of @ VNs such that U4(Z) contains
b CNs [48].

Definition 6.2 (Elementary trapping set). An elementary trapping set (ETS) 7;Eb isa TS
where each CN ¢ € §(Z) is connected to two VNs in Z and each CN ¢ € U(Z) is connected
to exactly one VN in Z.

Definition 6.3 (Absorbing set). An (a,b) AS A, is a trapping set with the additional
property that each VN v € 7 has strictly fewer neighboring CNs from U (Z) than from
S(Z) [37].

Definition 6.4 (Fully absorbing set). An (a,b) FAS F,, is a trapping set with the
additional property that each VN v € V has strictly fewer neighboring CNs from ¢(Z) than
from C\ U(Z) [37].

Definition 6.5 (Elementary (fully) absorbing set). An EAS AP, (elementary fully absorbing
set (EFAS) F}%,) is an AS (FAS) where each CN ¢ € S(Z) is connected to two VNs in Z
and each CN ¢ € U(Z) is connected to exactly one VN in Z [37].

The normalized logarithmic asymptotic distribution of (elementary) trapping or (fully)

absorbing sets for an LDPC code ensemble for a = 6n and b = yn is defined by

G(6,7) := lim lln(E(Qn,’m)) (6.1)

n—oo n,

where E(6n, yn) is the average number of (6n,yn) (elementary) trapping or (fully) absorbing

sets in the Tanner graph of a random code from the ensemble.
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Definition 6.6 (Relative minimum A-trapping set size). For a fixed ratio A = b/a, the
second zero crossing of the normalized logarithmic asymptotic distribution of trapping sets
(the first one is zero), if it exists, is called the relative minimum A-trapping set size that
we denote by 0%4g [49].

Analogously to the relative minimum A-trapping set size [49], the relative minimum

A-absorbing set size was introduced in [37].

Definition 6.7 (Relative minimum A-absorbing set size). For a fixed ratio A = b/a, the
second zero crossing of the normalized logarithmic asymptotic distribution of absorbing
sets (the first one is zero), if it exists, is called the relative minimum A-absorbing set size

that we denote by 63g.

Analogously to the relative minimum A-trapping set size [49], the relative minimum

A-fully absorbing set size was introduced in [37].

Definition 6.8 (Relative minimum A-fully absorbing set size). For a fixed ratio A = b/a,
the second zero crossing of the normalized logarithmic asymptotic distribution of fully
absorbing sets (the first one is zero), if it exists, is called the relative minimum A-fully

absorbing set size that we denote by Op,q.

In the following, we derive the finite-length and the normalized logarithmic asymp-
totic (elementary) trapping and (fully) absorbing set enumerators for binary LDPC code

ensembles.

6.2 Trapping and Absorbing Set Enumerators for

Unstructured Ensembles

In this section, we derive the finite-length (elementary) trapping and (fully) absorbing set
enumerators for binary unstructured LDPC codes and we present an analytical method for
evaluating the normalized logarithmic asymptotic distributions of (elementary) trapping and
(fully) absorbing sets. First, we briefly review the random matrix enumeration approach,
which was applied in [48] to obtain the asymptotic enumerators for (elementary) TSs and
stopping sets (SSs) for binary irregular LDPC code ensembles and in [37,77] for the weight
distribution and the (elementary) (fully) ASs of regular LDPC code ensembles, respectively.
We first follow this approach and extend the analysis to obtain the (elementary) AS and FAS

enumerators of irregular LDPC code ensembles. Then, we provide alternative derivations
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of the (elementary) trapping and (fully) absorbing set enumerators for binary unstructured
LDPC codes. The alternative derivation relies on the generating function approach, already

adopted to analyze weight and stopping set enumerators of unstructured (generalized)
LDPC ensembles [46,78-80,118].

6.2.1 Review of the Existing Approach

In this section, we review the TS and ETS asymptotic enumerators derived in [48]. We
extended the approach to obtain (elementary) AS and FAS enumerators for irregular LDPC
code ensembles.

The parity-check matrix of each code from € contains A;n columns of weight j and
P;m rows of weight ¢. From Theorem 3.1, the cardinality of the set containing all m x n

binary matrices with these row and column weights is

dénax dmax
1 mn '21 i(i — 1)P; Z J(7 = 1A,
HAP . . _ 1=
| | déﬁx( ) Zmdrﬁx( ) eXp 2f2 X (62)

i=1

(14 o(n~ 1+5))
for 0 > 0, with f = nd, = md..

Trapping Set Distribution

In this section, we review the derivation of the asymptotic distribution of TSs for the

ensemble €M for a = On and b = yn from [48].

Theorem 6.1. The normalized asymptotic distribution of (6n,yn) TSs is

CAY o
¥ H(éP e, )*Z (y)]

dmax 9 dmasx
Z A Hb ( ) + Z

\ (6.3)
—d,Hy ((—jv>
where
e (1+Az) 11+ Ag) + (1 — A3) (1 — Ay)
= Z 1A3P; (14 A3)i (14 Ag) — (1 — A3)i(1 — Ap) o
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(6%) :
0F =N;——— Ve {l,... d™> 6.5
SN Gy T Al —ay Pt (6.5)
25131-(;),42/1; 7 is even
alh = <1+A3>1<1+2?;1&<)1;;3>“1—A2) Vie{l,...,d®} je{0,...,i} (6.6)

(1+A3)1(1+A2)*(1*143)1(17142) ] ls Odd

and Ai, Ay, A3 are the positive roots of

dn]ax

(é*) _n*
2N G @, =y (6.7)

@y _

; . T(6%)7 + A1 Aj(dy — 6%)7 =0 (6.8)
dgex (1 —|—A3)Z _( 3)z ~
; P¢(1 + A3)i(1+ Ay) — (1 — Ag)i(1 — Ay) e (6.9)

Elementary Trapping Set Distribution

In this section, we review the derivation of the asymptotic distribution of ETSs for the
ensemble €AY for a = On and b = yn from [48].

Theorem 6.2. The normalized asymptotic distribution of (6n,~vyn) ETSs is

N T
gPH(fP G gP) L <J>]

dmax 9 dl’l’lax
GE(0 Z AjH, ( ) + Z

(6.10)
_ o*
., <d>
where
dmax .
i i(i —1)A2A,
N ZngA A i A2A (6'11)
i=1 2 +1A3 + |5 ) A3A2
o
07 =N j—— (6 ) —, Vje{l,...,di'* (6.12)
! (0%)7 + A A4(d, — 0%)7
forall i e {1,...,d>
al’ = Py (6.13)

Ay +ids+ (1) A34,
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x EP;A
& = €0 Ay (6.14)
Ay +ids + (3) A3A
I ) i
by = : 4 (6.15)
Ay +ids + (3) A3A
and A, Ay, Az are the positive roots of
dl’n'LX ~ .
(0%) 5
A — 6.16
]Zl N GO+ A Al — ) (6.16)
d\r,nax

(%) B
jz::l A (0%)7 + A AL(d, — 0%)) =0 (6.17)

max
dC

iA3 Y
P, . =—. 6.18
z‘z::l Ay +1As + (;) A3A, € (6.18)

Absorbing Set Distribution

The authors of [37] derived the asymptotic distribution of ASs for regular LDPC code

ensembles. We extended in [52] the analysis to irregular LDPC code ensembles.

Theorem 6.3. The normalized asymptotic distribution of (6n,~yn) ASs is

max ~(j)* ~( N\ % .
4 * ; (4) )
0 /8 J \ J P
AR O.) = 0 [N () o [P B S gy (4
1 AJ 0% 0% - l
Jj= J J l:L%J-‘rl
dmax ( )* ~(i)* i )
% S0 1 [ (6.19)
+ §PH + > a;’ In ( )
Z ( £P éP ) Jj=0 ’ J
g (200 A
d,” d, 7 d,
where
dmax
A2A4[ 14+ A5A4)" 1 —(1-A3Aq)"~ 1] (14+A43) "1+ (1—-Ag)* !
_f Z iP; A3 Ao[(14+A3A4) +(1—A3A4) 1+ (14+A3) —(1—A3)* (620)
_ i . !
LI *\ 7 j ,3*
(0 /8 )J l:LlZJ+1 <l) (A4(§*_B*))
b7 = ; (6.21)

B =5y () () + G B4
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26P; (1) A2 AL A] .
d(i)* ) A2(14+A3A44)1+A2(1-A3A4) +(14+A3)"—(1—A3)? J 15 even
T 26P; (1) A} i odd
Ap(IF A3 A+ A2 (1-As Ag)+ (14 Az) —(1- Az J 180
. = l ~ ~
J B* *x _ 3%)j
B(j)* —A. (l) (A4(5*—B*)> (0 B
b A 5 - .
G5y 2 () () + @ P
U'= b +1

max
dc

A2A3A4 [(1 -+ A3A4)i_1 — (]. - A3A4)i_1]

. —_ ZPl . ' : |
T L PRI A - A AAY (L5 A) (1 Ay

where (6.21) holds for all j € {1,...,d™*} (6.22) holds for all i € {1,...
{0,...,i} and (6.23) holds for all j € {1,...,d"} 1 e {|j/2]+1,...

Ay, Ay, As, A4 are the positive roots of

s Y J . G+ l
- (¢ _B)ZL%+KD(“@”@Q )
Z ]AJ ) =Lz ; - - : —0*
- . « * %\ 7 J
=By s () (rgs) + (o — 0 414
< - J . G+ l
o=y 2 () E)
Z A _ - j — R T - ~ j =0
i=1 * * J *)J
j (6% — *)d ZZEJH (l) (m(éu@*)) + (dy — %) A A]
d%“ P (14 As)' — (1 — Ag)’ _7
T Ap(1 4 AsAg)i 4 Ag(1 — AgAy)i+ (1 + As)i — (1 — Ag)i €

YooY Ml

Sl (0= B

A
dpex G) (A4(6~B:_B*)>l (6% — By
> (1) (%)l + (dy — 0%)7 43 A

Proof. We write the transpose of the parity-check matrix as

ot [ MM
M;

127

(6.22)

(6.23)

(6.24)

7d(r:ﬂax}7j E
,J} and

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

where M is an a X (m — b) binary matrix representing the subgraph of the Tanner graph
containing the VNs in A, (A},) and the CNs that are connected to A, (AY,) an even

number of times (including zero), M, is an a X b binary matrix corresponding to the

subgraph of the Tanner graph containing the VNs in A, (A},) and the CNs that are
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connected to Aqp (Af,) an odd number of times, and M is an (n — a) x m binary matrix
representing the remainder of the Tanner graph [37]. Note that the columns of M; have
even weights and the ones of M, have odd weights. We use 8 = (01, . . ., Ogmax), where nf,
represents the number of VNs of degree j in A, (AaEb), i.e., the number of rows of weight j
in the submatrix [M; | M,]. Note that >, 0; = 6. We use for i € {1,...,d**}, the vector
a® = (.. o). (i) -

entries sum to j, where j € {0, 1,2} for AL, and j € {0,...,i} for Aup. Clearly, it holds
for all i € {1,...,d"*},

where ;" is the number of columns in H T of weight i whose first a

S ol = nep;. (6.30)
3=0
Since there are b CNs that are connected an odd number of times to the VNs in 7, we
have
drnax
> Z ! (6.31)
=1 =
J 1s odd

Similarly, we introduce for j € {1,... d™*}, gU) ( 2 J+1’ . B(J ), where Bl(j) represents
the number of rows in [M; | Ms] of weight j whose first m — b entries sum to [ € {l7/2] +
1,...,7}. It holds for all j € {1,...,dI*
J ,
S 8Y =ne;. (6.32)

=4 ]+1

We define M as the set of binary matrices with the same weight vectors as M, for | =1,2,3
and the set M containing all n x m binary matrices with the structure shown in (6.29)
and where M; € M, for [ =1,2,3.

Consider the matrix Mj. It contains, for each j € {1,..., d™**}, Bl(j ) rows of weight
L e {lj/2] +1,...,7} and, for each i € {1,...,d>*}, agi) columns of weight j where
j €40,...,i} and j is even. The number of ones in the matrix M; is

dmax dmax

=> Z 13 Z Z jay. (6.33)

=1 1= |4 )+1

j lS even
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From Theorem 3.1, the cardinality of M, for §; > 0, is

!
M| =5 5 ({ld (_)(1+0(n*1+61))><
I @ 11 H (7%
7=1i=|L]+1 =
] IS even (6.34)
1 dmax dmax
exp -2 | > Z (VAN DY Z (j — 1)jal”
2f1 j=1 = L J+1 =1 Jj=0
J is even
Consider now the matrix M,. For each j € {1,...,d*}, there are 5l(j ) rows of weight

7 — L and all columns have an odd weight. The number of ones in M, is

dmax J dm'dX
Z Z (j—0p Z Z ]oz (6.35)
== L%J—H = i i]s o%d

Note that fi + fo is the total number of ones in the submatrix [M; | M|, which is equal to

Z Zjoz“ (6.36)

n — f _
’M2| - dmax ( (J)ld) () (1 + 0(” 1+62))X
m o G- T (G
j= ll \_J‘H =1 ] 0
j is odd (637)
_1 dm&x dlnaX
exp | ———=——— > Z G—=1-1DG-0p G) > Z (7—1)j
2(n6_f1) ]1l|_J+1 i=1 j= Odd
jiso

The matrix Ms has n(A; —6;) rows of weight j for each j € {1,...,d"*} and a ) columns
of weight i — j, where j € {0,...,4} and ¢ € {1,...,d?*}. The number of ones in Mj is

max max
dn dn

fs=nY_ A — Z Za(l — nd, — né. (6.38)

i=1 7=0
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From Theorem 3.1, the cardinality of Mj, for o3 > 0, is

d, — nf)!
My = g0 ) (14 o))
I ()= T1 T1((i — 5))
j=1 i=1 j=0 (6.39)
] dmn dmax o
exp [—W (;(] —1)j(A; — 9;’)) (; ;)(Z —Jj=1( _j)aj )] :
The cardinality of M can be expressed as
dmax dmax
néP; v no;
M= TT (0" ) T (0 ™ o) Malatalize - o
o,8 i=1 R’ j=1 L%J+17"‘7 j
where the sum is over the vectors a = (..., a®)) and B = (B, ..., B4 ™)) that

satisfy (6.30)-(6.33) and (6.36).

The average number of size (a,b) ASs in the Tanner graph of a code drawn randomly

from the ensemble €GP is

& A |IM|
EAY(a <" ”) (6.41)
Ze: }:[1 nb; ) | Ha'" |

where the sum is over the vectors 6 satisfying 3", nf; = a and |H2F|, | M| are given in (6.2)

and (6.40), respectively.
Let & = a/n, B=0 /m. The normalized asymptotic distribution of (fn,~yn) ASs is then
GAS (0,7) =max S(0, &, B) (6.42)

under the constraints

max
dy

> 6; =6 (6.43)

Sal =P, Vie{l,...,dm> (6.44)

=0

> al = (6.45)
=1 ] =0

7 is odd
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d:':]]ax Z ) B
jas =0
=1 j=0
O S e
Yoo dat=) >
=1 j=0 7j=1 l:L%J+1
7 is even
J .
S 3 =6, Vjie{l,... dm=
I=|%]+1
and where
_ dmax ~E)Z) &(Z) 1 () ’l/
S(0,a, B) = ¢P; A 6/111(,)
0.00 =2 R AP RV
max ~(J ~
dma - (4)
v 0 /8 J J ~
+ 3 A () FoE | B 57 n
= A 0; 0 '
= I=[§]+1
_avH _ﬁ,e__ﬁ’dv__e
d,” d, d,
Codpex
B:Z Z lﬁ(J)
I=ti=14]+1

By using the Lagrangian multiplier method, we obtain (6.19)-(6.28).
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(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

We derive next the asymptotic EAS enumerator for irregular binary LDPC code ensembles.

Theorem 6.4. The normalized asymptotic distribution of (On,yn) EASs is

max
dv

Jj=1

J l:L%J'H
d::‘nax

~(@)* (D) ()" 2 .
O{O Oél 052 ~(i)* 1

+ > |EPH : , +> @, ln<,>
i—1 ( P, &Py &Py ) =0 ! J

_am (Y=
d, 'd, d,

56 e |
o* By () J e

A;Hy <AJ> +9;.H( %J*“,...,ﬂé* >+ S A I
J J
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where
§*:€%§§PiiAg—Fi@——l)A§AiA2
DAy +ids + () A3434,
~ . J .
@ =2y S ()4
I=|2]+1
Q;ZAJ’~ : ' L5+ - - g Vje{l,--~,dvmax
O —=v) 3 ()4 + (dy — 0 AL A]
I=|1]+1 4
~ (1) :éPZ A2'
Ay + i + (3) A3A34,
O 1A
&) =P
Ay +ids + (3) A3A3A,
i 2 A2
o ep, O
Ay +i4s + (3) A3A34,
J\ 1 (px j
O, ‘@%w g
~ ‘ J . — . ,
0=~y 2 (3)4r + (dy— 07)1 A A
V=[5]+1 ‘

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

where (6.57) holds for all j € {1,...,d"*} [ € {L%J +1,... ,j} and Ay, Ay, As, A, are the

positive roots of

~ J
dmax (0* - 7)j l Ei ) (g) Aii
A\ . —| L + ~*
Z JA; 7 ‘ : - - ' =0
ey S () e 0 A4
I=|1]+1 4
- ) J
gmax (0* - 7)3 l Ei ) (g) Aii
v =13 +
Z A; ] =0

< P. 2A3
oAy +ids + (3)A3434,
gmax G)AL@* — )i

YOy Al A —G* — .

B I I () P R
4

(6.58)

(6.59)

(6.60)

(6.61)
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Proof. We use the same notation of the AS enumerator. Since for EASs each unsatisfied

CNs is connected to exactly one VN in AaE,b and each satisfied CNs is connected zero or

two VN in A}, we have for all ¢ € {1,...,d"*},
af + ol + o) =nep; (6.62)
dmax

Z ol =b. (6.63)

The matrix M, contains, for each j € {1,...,dP*} 6l(j) rows of weight [ € {|j/2|+1,...,j}
and, for each i € {1,...,d"*}, &g) columns of weight 0 and ag” columns of weight 2. The

number of ones in the matrix M is

dmax dmax
= Z —22 (6.64)
7=1 1= LJ+1

From Theorem 3.1, the cardinality of M1, for d; > 0, is

M| =g (L o(n ™))
I 1 @
==l = (6.65)
N dmax
exp | ——5 Z Z —1)18Y (Za )
VA== 141
Consider now the matrix M,. For each j € {1,...,d™**} there are 5l(j ) rows of weight
7 — L and all columns have weight 1. The number of ones in M, is
dmax dmax
DD SEYE RS PR (6.66)

=141 +1

Note that fi + fo is the total number of ones in the submatrix [M; | My], which is equal to

max
d¢

> ol + 208 = nd (6.67)

where 0 = >, 70;.



134 6 Enumerators for Binary LDPC Code Ensembles

The cardinalities of My, for d5 > 0, is then

Myl = o (14 o)), (6.68)
Jnmnj (GG — Dy

The matrix M3 has n(A; — 6;) rows of weight j for each j € {1,...,d*} and ay) columns
of weight ¢ — j, where j € {0,1,2} and ¢ € {1,...,d"*}. The number of ones in Mj is

dpa drx ) i
fa=n Y (N —6;) =YYl — j) = nd, —nb. (6.69)
j=1 i=1 j=0
From Theorem 3.1, the cardinality of M3, for d3 > 0, is
d, — nd)!
Ml = g (14 o) x
[T (j)ms=09) 1] H((i—J)!)"‘j
j=1 i=1 j=0 (670)
1 dp dre .

The cardinality of M can be expressed as

A N 0,
M= ST (0500 ) (0 ™ o) milaeise @)

7)
a,B3 i=1 CK17042 LJ+17'--7ﬁj

where the sum is over the vectors a = (o, ... a!¥™)) and 8 = (B, ..., B4 ™)) that
satisfy (6.32), (6.62)-(6.64) and (6.67).

The average number of size (a,b) EASs in the Tanner graph of a code drawn randomly

from the ensemble €T is

dIIlaX
M|
Epis(a,b) ( ) | (6.72)
shs 29:]'1 nb; ’%n |

where the sum is over the vectors 0 satisfying 3°; nf; = a and [H2"|, | M| are given in (6.2)
and (6.71), respectively.

Let & = a/n, 3 = B/n. The normalized asymptotic distribution of (An,yn) EASs is
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then

@™

GEAS(9 ’Y) maxSw,d, )
B

under the constraints

max
dv

Z 9]' :(9
j=1

déi) n &gz‘) i &g) =P;, Vie{l,...,d@

dmax

Zal =7

d(r:nax ) ) N
a\" 4 2a) =0
i=1
dmax dmax
22@2 —Z Z wz
i=li=[1]+1
: 5(5) .
lj =0;, Vje{l,....d™
l=§]+1
and where
dgax (Z) ~ (i) ~(4) 2 . dypax
~ 6% 8% ; 1
$(0,6,8) =Y |cPiH LG ) a@)ln(.) N
iz::l §P £P; EP; ]z% ! J le

:16)) ~(
5ij+1 6(‘7)

j .
bl J ~(J')1 J
0]' P 9] + Z 5[ n(l)

_4H 97—77ljdv7—9 '
d, d, d,

+0,H

By using the Lagrangian multiplier method, we obtain (6.51)-(6.61).
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(6.73)

(6.74)
(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

The asymptotic distribution of FASs for regular LDPC code ensembles was derived in [37].

We extend now the analysis to irregular code ensembles.
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Theorem 6.5. The normalized asymptotic distribution of (6n,vyn) FASs is

~(5)*

30)* . )

dmax ﬁ (]) K7 ‘“’(J)

A, \ 13 1+1 B; 13 +1 K
Gers(0,7) =Y |0:H e | (A -0 H Ajie*.""’Ajj—e*.
Jj=1 J J J J

A, Hy <i ) +l LZJ:H (5 O In (z) + &9 In <l>> -

dmax ~(Z)* ~(7/)* ’L .
Oéi ~ (i)* 1
P;H 1

>

_dH<B9—6nd—0 )

d, d, d d,
where
dm'dX
A2A4[A5+A3A4)’ 1 (A5—AszAs)i~ 1]+(A5+A3)i Lp(As—Agz)i—t
= Z iPids A2 [(As+A3 A1) +(As— A3 Ag) | +(As+A3) —(A5—A3)? (6.82)
j . . l
J B*
> () (me=)
N I=13]+1
0F =A; - : ; z PR — ' - )l (6.83)
> 0 ) + (355 ) A4 Y () (5=
E O () (5 AR _E () (e
26P; (1) A2 AJAL ALY .
(i) _ ) A2(AsTAsA)i+As(As—AsAs)+(As+As)—(A5—Ag) J 1S €VeL
a\h" = fada) H (6.84)
26P; (1) Al AL s odd
Ag(As+A3A4)'+A2(As—A3A4) +(As5+A3)t—(A5—A3)? J 180
. l
N (—8
~l(j)* =A, - . p - El)é(fhi(@ ;B*)) — ‘ - )l, (6.85)
> ) (=) + (555 Al ¥ () o
V=11)41 (l) (A4(9 B )) ( o*—pj ) poiT)4 (l) (AS(dv i )
; =k /5 O* _ m* ] ]
i R dy—0*—Fk J
/i(j)* *A (l) <A5(av—‘§*—"~f*)> ( é*—ﬁ* ) A1A3 (6 86)
l Y .7 . Bx U a Ok _ % ] y ‘7 ] R* v .
> () (mi=s) +(55E) a4 Y () (b
5 e d”‘z . ApAsAy[(As + AsAy)' ™! — (A5 — AsAy)'Y (6.87)
= "Ag(As + A3Ay)t 4 As(As — A3Ag)' + (A5 + A3)? — (A5 — As)?
dénax A2A5 H(A5 + A3A4)i—l _|_ (A5 _ A3A4)’i—1] (6 88)

Sk P,L . . | |
vt ; AL (As + AsAL) + Ag(As — A3 AL)i+ (A5 + Ag)i — (A5 — Az

where (6.83) holds for all j € {1,...,d?*}, (6.84) holds for all + € {1,...,d2*},j €
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{0,...,i}, (6.85) and (6.86) hold for all j € {1,....d">},1 € {|4]+1,...,5} and

Ay, As, Az, Ay, A5 are the positive roots of

dmax ,]Ajl Ji (][) (A4(§€:5*))l
Z =[5]+1 :é*
: J NI o z
. z=é+1 (D <A4(9ﬁ*—5*)) + <dv9*9—5* )] A Ay l:éi-ﬁ (j) (Ao(av—é*—r%*)>
dyax l_LZj:H ) G) (A4(£:B*))l
ZAj J » 3 l_2— e =\ J N . - 129
"~ z=éi+1 (g) <A4(§€—B*)) + (dvé_*e—ﬁ_*ﬁ ) Ard l:éﬂ (jl) (W)
d§X P. (A5 4+ Ag)" — (A5 — Ag)’ 7
S T Ay(As + AgAy)t + Ag(As — AgAy)t o+ (A5 + As)t — (A5 — A3)' €
dgf z]: j l/ Ajl(g)(ﬁ)l _r

S . j B* dy—0* —R* I j J j R*

=li=|dj+1 2 (lj’)<A4(§*—[§*)) +(dé*9—/§* )AlA% > (ff)(m)
U=141+1 U=[41+1

max . . - l G 0% —R* J .

dy J Ajl({) (As(avfé**fi*)> (dvg*eig* ) AlAé .

», : : y—0*—& J i

=li=|d41 2 (l’)(A4(§*7B*)) +( 75 )AIA:s > (z/)(m)

v=1§)+1 v=1§1+1

The proof is omitted since it is similar to the proof of Theorem 6.3.

Elementary Fully Absorbing Set Distribution

G =K .

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

The asymptotic distribution of EFASs for regular LDPC code ensembles was derived in [37].

We extend the derivation to irregular code ensembles.
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Theorem 6.6. The normalized asymptotic distribution of (n,yn) EFASs is

max ~(j)* ~(73)* ~()*
d /8 i (]) HO,) Py *
AP < * [Z]+1 5 1] R(_J)
Grins(0,7) = >_ |0;H ( b ) + (0 —05)H (AJ-Z—;;""’A;—GJ
j=1 J J

9* ] ~ (S \K* ] S\ x ]
+A; Hy, (A]> + > ( Z(J) In (‘;) + /%I(J) In (?))
J I=|2]+1 (6.94)

dge OO O 2
O{O Oél OK2 ~(Z)* ]
+ EPH , , + > a;’ In ( )

d, 'd’d,’ .
where
dc™ A AL 1Y A2 A2 A2
g —¢ Y p, A5 H.(Zl DA A i, (6.95)
I A AL A AL + () AJATAL A,
J )
(D
* I=|1]+1 4
05 =Ai— PR l (6.96)
> () (SR AL Y () (oS
=341 (l)Ai ( 0*—v 1 31_L;j+1<><A5(dv_0 —n))
()" Ay Al
aé) =P P L a i712 51‘ 2 A2 4i_2 (6.97)
A AY + 1Az A5 —|—<2)A3A4A5 Ay
o ~ i1
A AL +iAs AT + (3) A3AZAL2 Ay
- NA2A2AL2A
oy —p WA (6.99)
A AL +iA AT + (5) A3AZAL2 Ay
0%
B =8 — ; (6.100)
S (Y Ak 5 () (e
l’=L%j+1 (l)Aﬁ1 ( 0*—~ ) 1 3l’:L%j+1 (l) (As(dv—G s ))
J R* ! dy—0*—&* J j
m" =N — () (AS(d”fg*_R;)) ( é*_j J A - (6.101)
Jy_L dv—0*—R* J i\ (&
l/:é‘i’l (l/) AZ + ( G —~ ) A1A3 l/zéjJrl (l/) (As(deH*fR*))
dgoex AL (5 — 2 i) A2 A2 Ai2
IR N B e TR .

= A AL +iAs AT + (3) A3AZAL2 Ay
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where (6.96) holds for all j € {1,...,d} (6.98) and (6.99) hold for all j €
{1,...,d™=} ] € {L%J +1,... ,j} and Ay, Ay, As, Ay, As are the positive roots of

j .
5.0 |
> N — RV I A (6.103)
=1 J\ L v_O0*—R* )" A AJ J __R*
! lzéﬂ (l) a; ( = ! 3l:é+l (l) (As(dv—e*—ﬁ:*)>
J .
0L
> A — ’%J - ;=0 (6.104)
j=1 S AP dvjf*ffﬁ* A Al S J _ Rj* _
= (3] (l) Al ( 0*— 1 31=L%J+1 (l) (A5(d\,79 —& ))
R Az AL v
P—— =5 . = 6.105
; A AL +iAs AT + (5) A3AZAL2 A, € (6.105)
dpax IA; (7))L 3
> — jj(l)f‘i — - _ =" —~  (6.106)
=li=i41 X (ff)ﬁ%%) AAy Y0 (f/)(m)
V=§]+1 * V=14]+1
max - . " Ly Sk o~k j .
dy J (g) (A5(avj§*—k*)) (dvgf_;n )314114]3 -

=R, (6.107)

Z Z ZAJ 5 o P . j . J . -, I
3=l =441 2 (f/)f*( i ) Andy 32 QJ)(W)

v -
V=144 : V=144

The proof is similar to the one of Theorem 6.4.

6.2.2 The Generating Function Approach

The approach in Section 6.2.1 based on random matrix enumeration can be applied only to
unstructured binary LDPC codes. Therefore, we present an alternative derivation of the
average enumerators of (elementary) trapping and (fully) absorbing sets for binary irregular
LDPC code ensembles using the generating function methodology, previously adopted to
study the distance spectrum and the stopping set distributions of (generalized) binary
LDPC code ensembles [9,46,78-80]. The generating function approach is general and we
can enumerate several graphical structures by defining the appropriate generating functions.
For instance, we derive the (elementary) trapping and (fully) absorbing set enumerators of
GLDPC codes or the trapping and (elementary) absorbing set enumerators of non-binary
LDPC codes using generating functions in the next chapters.

In the following, we derive the finite-length (elementary) trapping and (fully) absorbing set
enumerators for binary unstructured LDPC code ensembles using the generating function



140 6 Enumerators for Binary LDPC Code Ensembles

methodology presented in Section 3.6. We develop an analytical method to evaluate
the normalized logarithmic asymptotic distributions of (elementary) trapping and (fully)
absorbing sets. Further, we derive the asymptotic approximations for the small-sized

trapping sets cases.

Trapping and Elementary Trapping Set Distributions

We derived the finite-length and asymptotic distribution of TSs for irregular LDPC code

ensembles in [53].

Lemma 6.1. The average number of size (a,b) TSs in the Tanner graph of a code drawn

randomly from the ensemble € P is

coeff (g(x, y)", x“’yb)

Evy (a,b) =Y ® coeft (f(t,s)", t%s") (6.108)
where we introduced the generating functions
d;nax )
flt,s) =T @ +ts)M (6.109)
j=1
dénax

g(z,y) =1 (6.110)

[<1+x>i+<1—x>i <1+x>i—<1—x>"rpi
+y .
ey 2 2
Proof. Consider the Tanner graph of a code drawn randomly from the ensemble €Y. We
randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities
and assign the value 1 to each VN in the set. We denote by «(a,w) the number of ways
to choose a VNs such that exactly w edges emanate from them. Its generating function
is 32, a(a, w)t?s"”. Consider a single VN of degree j. This generating function is 1 + tst
because we can either skip this VN or include it in the set Z. If we skip the VN, then we
will get 0 nodes and 0 edges and this gives us the term 1 corresponding to t°s°. If we choose
the VN, then we get 1 VN and j edges and this gives us t's’. By considering all possible
VN degrees, and since we have A;n VNs of degree j and for each VN we can decide to

include it in Z or not, we obtain f(¢,s)". Thus, we have
ala,w) = coeff (f(t,s)",ts").

Let B(b,w) be the number of ways to choose w edges such that exactly b CNs each have

an odd number of sockets and the other CNs each have an even number of check sockets.
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Its generating function is 3, ,, 3(b, w)ybx®. Consider a CN of degree i. The generating

function of a degree i CN with an even number of connections to the VN in 7 is

ge(z,y) =" 3 ()l ;[(1+x)i+(1—x)i].

l is even

If the CN is connected an odd number of times to the VN in Z, then its generating function
is

gs(z,y) ==y" Y () ; (1+a)—(1-2)].

[ is odd

Considering all CN degrees and that there are {P;n of degree i, we obtain

B(b,w) = coeff <g(a:, y)", xwyb) :

Let Z; be a RV indicating the number of edges emanating from the set Z. Further, let Z,
be a RV that is equal to 1 if there are exactly b CNs each connected an odd number of
times to Z and the other CNs each have an even number (including zero) of connections to

Z, and to 0 otherwise. Thus, we have

EAP (a, b) :(Z) Pr{Z, = 1} (6.111)

and

Pr{Z, =1} :ZPI{Zl =w}Pr{Z, = 1|72, = w}

coeff (f(t,s)", t*s™) coefl (g(x, y)"™, xwyb) (6.112)
-x - |
(a) (")
[ |

The exact average number of size (a,b) TSs derived in Lemma 6.1 for a finite block
length n is extremely complex to compute for large n. As n — oo, one can use the Hayman

formula in Lemma 3.1 to derive the normalized logarithmic asymptotic distribution of T'Ss.

Theorem 6.7. The normalized asymptotic distribution of (6n,vyn) TSs is

GA2(0,7) = —dy In(1 + 25) — 01In(t) — yIn(y) + In (f(t, s)) + In (g(z, ) (6.113)
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where t, s, x,y are the unique positive solutions of

dln f(t,s)
IS (6.114)
Oln f(t,s)  Olng(z,y)  _,
S TRILY) _ (6.115)
dlng(z,y)
foy) (6.116)

where f(t,s) and g(x,y) are defined in (6.109) and (6.110) respectively and

TS

W =d, .
1+ xs

(6.117)

The proof can be found in Appendix 6.4.1.

To determine 014 we add another equation to the system of equations of Theorem 6.7,
namely Goa (6, A9) = 0 with 6 > 0.

Note that to compute the finite-length and the asymptotic distribution of ETSs, in
(6.108) and (6.113) we must replace the generating function of (6.110) with

dox : &P
g(z,y) = 1] ll + (;) z? + ixy] . (6.118)
i=1
We briefly explain how to derive g(x,y) in (6.118). For an ETS, a satisfied CN of degree i

is connected zero or 2 times to VNs in Z. The corresponding generating function is

ge(z,y) == ° ll + (;):ﬁ] .

Each CN in U(Z) is connected to exactly one VN in Z. The corresponding generating
function is gz(x,y) := iyzx. Considering all CNs degrees and that there are £P;n of degree i,
we obtain g(z,y) in (6.118).

The following Lemma will be useful to analyze G%’SP(H, Af) for small # and fixed A.

Lemma 6.2. For a fixed A = /6, the derivative in 6 of G55 (6, Af) is

AGAE (0, AG)

0 = —1In(t) — Aln(y) (6.119)

where for each 6, the values of ¢t and y are given by the solution of the system of equations
(6.114)-(6.116).
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Proof. Note that the solutions of the system of equations in (6.114)-(6.116) are implicit
functions of §. From (6.113) and (6.117), we obtain

AP of(t,s) of(t,s) ~ %
M:_ln(t)_Aln(y)jLﬁ ot _Q +@ os__ _ W
de do | f(t,s) ¢ do | f(t,s) s
N (6.120)
% 895273/) _ E + % agéyvy) B ﬁ
do |g(x,y) = do |g(z,y) vy |

The terms in the square brackets in (6.120) are equal to zero due to (6.114)-(6.116). This
establishes the result of Lemma 6.2. |

Consider now the case of small § and v = Af. We obtain a closed form expression of

GA2 (0, AB), which we introduce in the following corollary.

Corollary 6.1. For a fixed A = ~/6 and small 6, we have

dmin —92_ A dmin d\‘;‘“inA min
G 10.80) =0 | % —

5 (ln(O)—l)—i-ln((v AR

_d?inz‘ =3 <d“dc<§§z)— 2) )] T o(0)

(6.121)

where d™” is the minimum VN degree and P”(x) is the second derivative of P(z). The

proof is provided in Appendix 6.4.2.

Note that we obtain exactly the same expression for ETSs.

Note that a positive 0% exists whenever the derivative of G%’SP(G, Af) is negative as
¢ — 0. Thus, by substituting (6.284) and (6.285) in (6.120) we find that a positive 6%
exists whenever d™® > 2 + A or d™" = 2 + A and

Agpuin (d) 4 P7(1)
2d,d, (dmin — 2)diin -2

<1. (6.122)

If A =0 and d™" = 2, we obtain the inequality A\yp'(1) < 1 in [79] for the existence of the
typical minimum distance of binary LDPC codes, where \(x), p(z) are the edge-oriented
degree distribution polynomials and p'(z) is the derivative of p(z).

If the relative minimum A-trapping set size is small enough, then we can use Corollary 6.1
to approximate it. Through numerical simulations, we observed that the relative minimum
A-trapping set size is small for small VN degrees or high CN degrees as observed in [48].
We need to determine 6 such that Gog (6, Af) = 0 with 6 > 0. By neglecting the term o(f),



144 6 Enumerators for Binary LDPC Code Ensembles

we obtain

dmin _A

. dedy(dmin — A) @22 AL e
QTS ~ eXp(1> ( P//(l) ) (Ad{rnin (dvmin>dxrlnin> . (6123)

The approximation of the relative minimum A-trapping set size given in (6.123) is accurate

when 05g is sufficiently small (for the case of small VN degrees or high CN degrees as

observed in [48]) and does not need solving the system of equations given in Theorem 6.7.

For the regular ensemble 4% the expressions in Lemma 6.1 and Theorem 6.7 can be

simplified as follows.

Lemma 6.3. The average number of size (a,b) TSs in the Tanner graph of a code drawn

randomly from the ensemble €% is

coe x,y)", P
ES (4, b) :(”’) fr gl ;dy) ) (6.124)
a (ad:)
where
de ) 2)de — _wdcf
g(x,y)zl(lm) —;(1 ) +y(1Jr ) 5 1-2) ] : (6.125)

Proof. The Lemma can be proved from Lemma 6.1. Note that for a regular code, all VNs
have degree d,. Therefore, w in (6.108) is equal to ad,. Moreover, the number of ways to
choose a VNs such that exactly ad, edges emanate from them is equal to (Z) Further, the
generating function g(z,y) in (6.125) can be obtained from the one in (6.110) by taking
P(z) = x%. |

Theorem 6.8. The normalized asymptotic distribution of (0n,~yn) TSs for the ensemble
€ s

G (0, ~) = — (dy — 1)Hy(0) — 7 In(y) — 0, In(z) + In (g(z, y)) (6.126)

where

(6.127)
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and z is the unique positive solution of

Olng(x,y)
T\ Y) 12
T 6d, (6.128)

where g(z,y) is defined in (6.125). The proof can be found in Appendix 6.4.3.

Note that to evaluate the normalized logarithmic asymptotic distribution of TSs for
unstructured LDPC code ensembles, one needs to solve 4 equations (with the same number
of unknowns) as shown in Theorem 6.7. For the regular case the number of equations
reduces to one equation.

To compute the finite-length distribution of ETSs for regular ensembles, we simply need

to replace in (6.124) the generating function g(x,y) given in (6.125) with

glz,y) = [1 + <dQ> r? dcxyr. (6.129)

To obtain g(z,y) in (6.129), we simply need to take P(z) = 2% in (6.118).
Due to the simplicity of the generating function g(z,y) in this case, we can obtain a
closed form expression of the normalized asymptotic distribution of (6n,yn) ETSs for the

ensemble €94
G (0,7) = — (dv = 1)Hy(0) — yIn(y) — 6dy In(x) +In (g(x,)) (6.130)

where g(x,y) is defined in (6.129) and

_ Q(de - 7)
v _J de(de — 1)(26 —~ — 0dy) (6.131)

y 1+ (d2°>a:2
:g -7 dcx ‘

(6.132)

Y

Proof. The proof is similar to the one of T'Ss. We need only replace in (6.126) the generating
function g(z,y) given in (6.125) with the one in (6.129), where z, y are the unique positive
solutions of (6.287) and (6.288). Substituting (6.129) in (6.287) and (6.288), and with
some manipulations, we obtain x,y in (6.131) and (6.132). |

Example 6.1. We consider regular (d,, d.) binary LDPC code ensembles. Fig. 6.1 illustrates
a comparison between the exact values of the relative minimum A-trapping set sizes of some
regular (dy,dc) LDPC codes for A = 0.1 (solid lines) and their corresponding approximations
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0.2 \ I

0.15

Figure 6.1: Exact values of the relative minimum A-trapping set size (solid lines) and the
corresponding approximation obtained from (6.123) (dashed lines) for some
regular (dy,d.) LDPC codes for A = 0.1.

obtained from (6.123) (dashed lines). We see that the approximation is good for small
values of d, and large values of d. since for this case, the relative minimum A-trapping
set sizes are small. We also observe that, for the same CN degree, increasing the VN
degree improves the relative minimum A-trapping set size and for fixed VN degree, the TS

properties improves with decreasing CN degree.

Absorbing Set Distribution

The following Lemma presents the finite-length AS enumerator for unstructured binary
LDPC codes and we develop an analytical method for evaluating the normalized logarithmic

asymptotic distribution of ASs.

Lemma 6.4. The average number of size (a,b) ASs in the Tanner graph of a code drawn

uniformly at random from the ensemble €'F is

AP (0.1 3 T (900 2200 i)

nav e+w
&w e+w e
A

el
fltosi,s2) =] |1+t > <]‘,71>s]1_“3321 (6.134)

Jj=1 j1=0

coeff (f(t,s1,59)",t%s]55) (6.133)
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and

dmax

g(1,290,y) = H

i=1

(T+a1) + (1 —21) N y(l +2) — (1= mp)' | ' (6.135)

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
We randomly choose a set Z of a VNs and assign the value 1 to each VN in the set. The
CNs that are connected to the VNs in Z an even number (including zero) of times are
satisfied and the ones connected an odd number of times are unsatisfied. We have two
type of edges. Edges of the first type emanate from satisfied CNs and the edges of the
second type emanate from unsatisfied CNs. We denote by «a(a, e, w) the number of ways to
choose a VNs such that exactly e type 1 edges and w type 2 edges emanate from them and
each of the VNs in Z is connected to strictly fewer type 2 edges than type 1 edges. The
corresponding generating function is >, ., a(a, e, w)t*s{sy. Consider a VN v of degree j.
Let 7 — j; and j; be, respectively, the number of type 1 and 2 edges connected to v. Again,
we can either include this VN in Z or not. If we skip it, then we obtain 0 nodes and 0 type
1 and type 2 edges. If we choose it, then we will have 1 node, 7 — j; type 1 edges and 7,
type 2 edges where j; € {0,1,..., (7 —1)/2]} (since each VN in Z is connected to strictly
fewer type 2 edges than type 1 edges). Considering all possible VN degrees and that there

are A,;n of degree j, we obtain f(t, s1, s2)" and we have
ala, e, w) = coeff (f(t, sq,s2)",t%s]sy) .

Let B(b,e,w) be the number of ways to choose e type 1 edges and w type 2 edges
such that there are exactly b unsatisfied CNs. The corresponding generating function
is 0.0 B(D, e, w)y’xz$zy. Consider a CN of degree i. If it is connected an even number

(including zero) of times to the VNs in Z, then its generating function is

1 . .

ge(x1,y) == 1° > ()% 5 [(1+$1)z+(1—$1)z]
l is even

and if it is connected an odd number of times to the VNs in Z, its generating function is

ge(w2,9) = y" > () é—%{(1+x2)i—(1—x2)i}.

[ is odd
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Considering all CN degrees and that there are £P;n of degree i, we obtain
6(b7 €, U)) = coeff (g(xh T2, y)n’ x‘f:cg’yb) .

We randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities.
Let Z; and Z5 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from Z, where each VN in 7 is connected to strictly fewer type 2 edges than
type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EAP (a,b) = (Z) Pr{Z; = 1} (6.136)

and
Pr{Zs =1} =) Pr{Zi=e,Zy =w}Pr{Zs = 1|Z; = €,Z5 = w}

(6.137)

_y coeff (f(t, 51, 59)", t%ss%) coeft (g(xlz T, y)", xf%wyb)
e =) () ()
]

We derive the normalized logarithmic asymptotic distribution of ASs for binary codes in
the following Theorem.

Theorem 6.9. The normalized asymptotic distribution of (#n,yn) ASs for the €F

ensemble is

Gas (0,7) = — dy In(1 + 2151 + 7285) — O1n(t) — yIn(y)

(6.138)
+ In (g(mly T2, y)) + In (f(t7 51, 82))
where t, s1, S9, 1, T2,y are the unique positive solutions of
Oln f(t, s1,82)
t =0 6.139
ot (6.139)
Oln f(t ol
51 nf(as,slasQ) =1 Ilg(ax;,lé,y) :é* (6140)
1 1
Oln f(t 0l
5o nf(@;31782) =2 Hgg;,x%y) :/LD* (6141)
2 2
1
y@ ng(ry, T2,Yy) —y (6.142)

dy
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where f(t,s1,s9) and g(z1, xe,y) are defined in (6.134) and (6.135) respectively and

& =d, 11 (6.143)
14 181 + X282

% T T2S52

w* =d (6.144)

=d, )
14+ 2181 + w289

The proof follows the same steps as the one of Theorem 6.7.

To determine 834 we add another equation to the system of equations of Theorem 6.9,
namely Gas (0, Af) = 0 with 0 < 0 < 1.
Similar to the TS case, the expressions in Lemma 6.4 and Theorem 6.9 can be simplified

for regular ensembles.

Lemma 6.5. The average number of size (a,b) ASs in the Tanner graph of a code drawn

uniformly at random from the ensemble €% is

X

(ea) () (6.145)

<m> coeff (g1 (1), a5) coeff (ga(w)", 23%)

B (a,0) =20 ()

e

(Z) coeff (f(s)“7 s“dv_e)

where

o= 3 (%) (6,140

J71=0 J1
g1 (1) :; (14 20)% + (1= 21)%] (6.147)
ga(w2) :; [(1 + x9)% — (1 — 952)d°] . (6.148)

Proof. The Lemma can be proved similarly to Lemma 6.4. Note that for a regular code, all
VNs have degree d,. Therefore, e + w in (6.133) is equal to ad,. The generating function of
a VN in Z is given by f(s), since there are @ VNs in Z and there are (Z) ways to chose the
a VNs, the number of ways to choose a VNs such that exactly e type 1 edges and ad, — e
type 2 edges emanate from them and each of the VNs in 7 is connected to strictly fewer

type 2 edges than type 1 edges is

(Z) coeff (f(s)?,s%7°).
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Further, g;(x;) in (6.147) is the generating function of a satisfied CN and go(z2) in (6.148)
is the generating function of an unsatisfied one. Since we have m — b satisfied CNs and b
unsatisfied ones, the number of ways to chose e type 1 edges and ad, — e type 2 edges such

that there are exactly b unsatisfied CNs is

(TZ) coeff (g1 (a:l)m’b,af) coeff (gg(xg)b,xgd“e) .

We show now that to compute the normalized logarithmic asymptotic distribution of

ASs for regular codes, one needs to solve 3 equations instead of 6 for the irregular case.

Theorem 6.10. The normalized asymptotic distribution of (6n,yn) ASs for the €%

ensemble is

G (0,7) = — 0d, In(z1 + 295) — (dy — 1) Hy(0) + 01n (f(s))
7) (6.149)

(€ — ) (g (e0)) + v In (galas)) + EH ( 5

and s, x1, 9 are the unique positive solutions of

dln f(s) B dIn go(x2) B -
Os ds —’nyT == <9dv (& ) (6150)
dlngl(xl) o
_ R N V. .151
R (6.151)

where f(s), gi1(z1) and ga(x2) are defined in (6.146), (6.147) and (6.148) respectively and

€

& = 6d (6.152)

————.
T+ Z2S

The proof follows the same steps as the one of Theorem 6.8.

Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for binary LDPC codes.
Lemma 6.6. The average number of size (a,b) EASs in the Tanner graph of a code drawn
uniformly at random from the LDPC ensemble €Y is

coeff (g(xy, z2)", 2528
E%fS(a’v b) = Z (

e () (537)

) coeff (f(t, S1, 52)",tasffsg) (6.153)
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where f(t,s1, s9) is defined in (6.134) and

dme : P
g(z1,220) = [] [1 + (;) r] + ixgl . (6.154)

i=1

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
We randomly choose a set Z of a VNs and assign the value 1 to each VN in the set. The
edges connected to a VN v are assigned the binary value chosen for v. We have 2 types of
edges connected to the VNs in Z. Edges of the first type emanate from satisfied CNs and
the edges of the second type emanate from unsatisfied CNs. Let (b, e) be the number of
ways to choose e type 1 edges such that there are exactly b unsatisfied CNs and each of the
satisfied CNs is connected to 0 or 2 VNs in Z and each of the unsatisfied CNs is connected
to exactly one VNs in Z. In that case, since we have b unsatisfied CNs and each of them is
connected to exactly one VNs in Z, we have b type 2 edges. The corresponding generating
function is 37, . B(b, €)z§x?l. The generating function of a satisfied CN of degree i, which is
connected to 0 or 2 VNs is Z is gc(z1) == 1+ (;) x? and if it is unsatisfied and connected to
only one VN in Z, its generating function is gz(x2) := ixs. Considering all CN degrees and

that there are £P;n of degree ¢, we obtain

B(b, e) = coeff (g(xl, x@)",xfxé) )

We denote by a(a,e,b) the number of ways to choose a VNs such that exactly e type
1 edges and b type 2 edges emanate from them and each of the VNs in 7 is connected
to strictly fewer type 2 edges than type 1 edges. The corresponding generating function
is >, cpalae, b)t?s¢sh. Consider a VN v of degree j. Let j — j; and j; be, respectively,
the number of type 1 and 2 edges connected to v. Again, we can either include this VN
in Z or not. If we skip it, then we obtain 0 nodes and 0 type 1 and type 2 edges. If
we choose it, then we will have 1 node, 7 — j; type 1 edges and j; type 2 edges where
J1 € {0,1,...,[(7 — 1)/2]} (since each VN in Z is connected to strictly fewer type 2
edges than type 1 edges). Considering all possible VN degrees, the generating function is

f(t,s1,82)" and we have
ala,e,b) = coeff (f(t, s1, 52)”,15“8?53) )

We randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities.
Let Z; and Z5 be two RVs indicating, respectively, the number of type 1 and type 2 edges

emanating from Z, where each VN in 7 is connected to strictly fewer type 2 edges than
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type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EAF (a,b) :(Z) Pr{Z; = 1} (6.155)

and
PI‘{Zg = 1} :ZPI'{Zl =e, ZQ = b} PI'{Zg = 1‘Z1 = €, Z2 = b}

coeff (f(t, 51, 50)", 1555} ) coeff (g(w1, 22)", a5)) (6.156)

0 )

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present

an efficient way to compute it.

Theorem 6.11. The normalized asymptotic distribution of (fn,yn) EASs for the ensemble

1S

Ggfs(ea 7) - av ln(av) + (av - ’V) 1n<av - 7) - an(t) - (av - V) 111(1 + $151>

(6.157)
+1In (g(21, 22)) + In (f(2, 51, 52)) — vIn(2282) +vIn(y)
where t, s1, S9, 21, X2 are the unique positive solutions of
Oln f(ta S1, 32)
t =0 6.158
iy (6.158)
Oln f(t, s1, 89) Olng(zry,xa)
= =eé* 6.159
o1 881 = 0x1 c ( )
Oln f(t 0l
g 2fbs5e) _ Olnglonza) _ (6.160)
(982 8.1'2

and where f(t, s, s9) and g(x1,x2) are defined in (6.134) and (6.154) respectively and

I T151

e —y)—. 161
e s (6.161)

We now derive the EAS finite-length and asymptotic enumerators for the regular ensem-

bles.

Lemma 6.7. The average number of size (a,b) EASs in the Tanner graph of a code drawn
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uniformly at random from the ensemble €% is

m\ [(n dcb coeff T m—b7 adv=b
EdEVj\dSc(a’b) :<b> <a> (g( ) ) coeff (f(s)a7sb) (6.162)

where

dy—1
123

f(s) = ZJ <d> st (6.163)

ji=0 \J1

g(x) =1+ <d2c> 7. (6.164)

Proof. For a regular code, all VNs have degree d,. Therefore, e in (6.153) is equal to ad, — b.
Further, g(z) in (6.164) is the generating function of a satisfied CN. Since each unsatisfied
CN is connected to exactly one type 2 edge, the number of ways to chose ad, —b type 1 and b
type 2 edges such that there are exactly b unsatisfied CNs is (?)dcb coeff (g(q:)m_b, x“dv_b) :
The generating function f(s) in (6.163) is the same as for the AS case. |

We show now that for the computation of the normalized logarithmic asymptotic distri-
bution of EASs for regular codes, one needs to solve one equation compared to 5 for the

irregular case.

Theorem 6.12. The normalized asymptotic distribution of (6n,vyn) EASs for the €%

ensemble is

GER5(0,7) == (dy = DH(0) = dWbHy (1) +71n(de) = 7In(s)

(6.165)
(€~ ) In(g(a)) + 0l (£(s)) — (0dy — ) In(x) + EHy (”)

3
where
2(9dv - ,7)
p— -].

g J do(de — 1)(26 — 0d, — ) (6:166)

and s is the unique positive solution of

dln f(s)

0 = 6.167
s, g (6.167)

where f(s) is defined in (6.163).
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Fully Absorbing Set Distribution

Lemma 6.8. The average number of size (a,b) FASs in the Tanner graph of a code drawn

uniformly at random from the LDPC ensemble €F is

AP = coeff (g(xl’ T2, 23,Y)", mix?zﬂxéyb)
Eras(a,b) e%};l (enffv) (etw) (navzeiw) X 6169

coeff (f(tv S1, S2, 83)n’ taS(ng}Sé)

where
dmex [| 452 nw 17 i\ A
fltosy,se,s3) =11 | D <j1>s§f+t > <j1>s{‘ﬂs;1 (6.169)
Jj1=0

7j=1 | 71=0

max
dc

)i &p;

_(1 + xl)i + (1 — .Z‘l)i (ZE3 + l’g)i — (1‘3 — T9
2 Ty

g(x1, z9,23,9) = ] 5 (6.170)
=1 L

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
Let Z be a set of VNs. We assign to each of these VNs the value 1. We have 3 types of
edges. Edges of the first type are connected to the VNs in Z and satisfied CNs, the edges
of the second type are the ones connected to the VNs in Z and unsatisfied CNs and the
edges of the third type are connected to the VNs in V \ Z and satisfied CNs. We denote by
a(a, e, w, ) the number of ways to choose a VNs such that exactly e type 1 edges, w type
2 edges emanate from them and [ type 3 edges emanate from the other VNs and each VN
in Z is connected to strictly fewer type 2 edges than type 1 edges and each VN in V' \ Z of
degree j is connected to strictly less than j/2 type 3 edges. The corresponding generating
function is -, . .., a(a, e, w, Dtes¢sysl. Consider a VN v of degree j. Let j — j; and j; be,
respectively, the number of type 1 and 2 edges connected to v. Again, we can either include
this VN in Z or not. If we skip it we obtain 0 nodes and 0 type 1 and type 2 edges and
J1 type 3 edges where j; € {0,1,..., (7 — 1)/2]}. If we choose it, we will have 1 node,
Jj — 71 type 1 edges and j; type 2 edges where j; € {0,1,...,|(7 —1)/2|}. Considering all

possible VN degrees, the generating function is f(¢, s1, $2, s3)". Thus, we have
ala, e, w,l) = coeff (f(t, S1, 89, 33)”,15“3?512”%) )

Let (b, e, w,l) be the number of ways to choose e type 1 edges, w type 2 edges and [
type 3 edges such that there are exactly b unsatisfied CNs. The corresponding generating
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function is Y. ., B(b, €, w, Dybzsa¥al. Consider a CN of degree i. If it is connected an

even number (including zero) of times to the VNs in Z, then its generating function is

(14 20) + (1= 21)]

DN | —

ge(z1,y) =9" > ()x{ =
=0 A
7 is even

and if it is connected an odd number of times to the VNs in Z, its generating function is

j is odd
Considering all CN degrees and that there are £P;n of degree i, we obtain

B(b,e,w,l) = coeff (g(xl, :Eg,x;;,y)”,mixé”xéyb) )
We randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities.
Let Z,, Zs and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in 7 is connected to strictly fewer type 2 edges than type 1
edges and each VN in V \ Z of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z, be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. Thus, we have

EAF (a,b) = (Z) Pr{Z, = 1} (6.171)

and

PI‘{Z4 = 1} = Z PI‘{Zl =€, Zg = U),Zg = l} PI‘{Z4 = 1|Zl = 6722 = U),Zg = l}

e,w,l

coeff (f(ta 81, 52, S3>n7 tasisgjsé)

= (*) % (6.172)
coeff (g(w1, w2, 3, y)", 2523 7hy")
EACSICHS
n

Theorem 6.13. The normalized asymptotic distribution of (#n,yn) FASs for the €*F



156 6 Enumerators for Binary LDPC Code Ensembles

ensemble is

GgAPS(Q, v) = —dy In(1 + 2181 + D25y + x353) — O1In(t) — v1In(y) (6.173)
+1n (g(x17x27x37y))+ln (f(t7 81782’83)) |
where t, s1, So, S3, 1, T2, T3,y are the unique positive solutions of
| t

O f( ,;;752783) 9 (6.174)
Sl@ln f(t,s1,52,83) :Ilalng<$la$2:$3>y) _ & (6.175)

881 85131
5, I (b5, 80,80) _ Omglan, 25, ,y) _ o (6.176)

882 8172

Oln f(t 0l 7

55 n f(t, s1, S92, S3) _— ng(ry, 2, 3,Y) I (6.177)

0s3 03
Olng(xy, v2,73,y) — (6.178)

) By

where f(t, s1, $2,83) and g(x1, xe, x3,y) are defined in (6.169) and (6.170) respectively and

& =d, 15 (6.179)
1+ X181 + X289 + X3S3

W =d, 252 (6.180)
1+ 181 + L2982 + XT3S3

" =d, 3% . (6.181)
14+ x5 + ToS9 + X383

To determine 05, g we add another equation to the system of equations of Theorem 6.13,
namely
Gpra(0,A0) =0 (6.182)
with 0 < 6 < 1.

The next Lemma presents the FAS enumerator for the regular ¢,

Lemma 6.9. The average number of size (a,b) FASs in the Tanner graph of a code drawn

uniformly at random from the ensemble €% is

(eac) () (o) T easy)
ot (0 5ol (67 )

e a

N 5 () () coott (gl(zl)m_bv xi) coeft (92(332)b, iBgdre)
Epss (a,b) —Z <b> ( >
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where

=
fls)= > (dv>sﬁ (6.184)

j1=0 jl
g1(z1) :; (14 z1)% + (1= 21)*] (6.185)
g2(x2) :; [(1 4 9)% — (1 — IL‘Q)dC} ) (6.186)

Proof. For a regular code, all VNs have degree d,. Therefore, e + w in (6.168) is equal
to ad,. Moreover, all CNs have degree d.. Thus, w + [ in (6.168) is equal to bd.. The
generating function of a VN is given by f(s1). The number of ways to choose a VNs such
that exactly e type 1 edges and ad, — e type 2 edges emanate from them and bd. — ad, + e

type 3 edges emanate from the remaining VNs is

Further, g;(z1) and g2(22) are the generating functions of a satisfied and unsatisfied CN,
respectively. The number of ways to chose e type 1 edges, ad, — e type 2 and bd. — ad, + e
type 3 edges such that there are exactly b unsatisfied CNs is

(C:L) coeff (gl(:cl)m’b, xf) coeff (gg(:vQ)b, :cgd“e) )
[ |

We show now that for the computation of the normalized logarithmic asymptotic dis-
tribution of FASs for regular codes, one needs to solve 4 equations instead of 8 for the

irregular case.

Theorem 6.14. The normalized asymptotic distribution of (6n,yn) FASs for the €%

ensemble is

G (0,7) = (€ =) In(gi(21)) +vIn (ga(w2)) + 1n (f(s1))

>k

4 (1= 0)In(f(s2)) — (dy — 1)Hy(8) — O, H, (;d) — & In(zy)
. N ' (6.187)
— (0dy — €*) In(xesy) — (ydc — 0d, + €*) In(s2)

v ~vd. — 0d, + é*
+ &H,y <€> — (1 —=0)d,Hy ( (1= 0)d )
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where s1, s3, 1, T2 are the unique positive solutions of

dln f(s1) . dln go(z2)

65y ds, = Qo (6d, — &) (6.188)
(1= )5, 02 oy pg, 1) (6.189)
dSQ
dingy(z1)

and where f(s1), g1(x1) and go(x9) are defined in (6.184)-(6.186) respectively and

. :—1‘231(’7dc — Qd\,) - $152(9dv +dy — /ydc) + \/5 (6.191)
2(xes1 — w189)

C = (x951(ydc — 0dy) + z152(0d, +d, — fydc))2
+ 4(x981 — x159)(dy — ydc) 15204, .

(6.192)

Elementary Fully Absorbing Set Distribution

Lemma 6.10. The average number of size (a,b) EFASs in the Tanner graph of a code

drawn uniformly at random from LDPC ensemble €2F is

coeff (g(‘rl) T2, 1.3)71’ xf:(:gl‘é
E/ExlifAS(a’a b) - Z

ndy\ (e+b\ (ndv—e—b
el e+b)\ b !

) coeff (f(t, 1, S2,83)", t“sfsgsé) (6.193)

where
apx (1454 2] &
ft,s1,s0,88) = [T | D2 <‘.7>s§} +t > <7>s{‘ﬁs§1 (6.194)
j=1 | j1=0 \J1 ji=0 \J1
o ; £P;
g(wy, x9,23) = [ |1+ <2> r3 + ixgxé_ll : (6.195)
=1 L

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
Let Z be a set of VNs. We assign to each of these VNs the value 1. We have 3 types of
edges. Edges of the first type are connected to the VNs in Z and satisfied CNs, the edges
of the second type are the ones connected to the VNs in Z and unsatisfied CNs and the
edges of the third type are connected to the VNs in V \ Z and satisfied CNs. We denote by
a(a, e, b, 1) the number of ways to choose a VNs such that exactly e type 1 edges, b type 2

edges emanate from them and [ type 3 edges emanate from the other VNs and each VN in
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7 is connected to strictly fewer type 2 edges than type 1 edges and each VN in V' \ Z of
degree j is connected to strictly less than j/2 type 3 edges. The corresponding generating
function is -, ., a(a, e, b, )tes¢shsh. Consider a VN v of degree j. Let j — j; and j; be,
respectively, the number of type 1 and 2 edges connected to v. Again, we can either include
this VN in Z or not. If we skip it we obtain 0 nodes and 0 type 1 and type 2 edges and
J1 type 3 edges where j; € {0,1,...,[(7 —1)/2]}. If we choose it, we will have 1 node,
J — j1 type 1 edges and j; type 2 edges where j; € {0,1,...,[(j —1)/2]}. Considering all

possible VN degrees, the generating function is f(¢, s, s, $3)". Thus, we have
ala,e, b, 1) = coeff (f(t, S1, S2,83)", t“sfs%sé) .

Let (b, e,l) be the number of ways to choose e type 1 edges, b type 2 edges and [ type
3 edges such that there are exactly b unsatisfied CNs and each of the satisfied CNs is
connected to 0 or 2 VNs in Z and each of the unsatisfied CNs is connected to exactly one
VNs in Z. The corresponding generating function is 33, ., 6(b, e, [)a$aba}. Consider a CN of
degree 7. If it is connected to 0 or 2 VNs in Z, then its generating function is 1 + (;) x? and
if it is connected to exactly one VN in Z, its generating function is izo2} . Considering all

CN degrees and that there are £P;n of degree i, we obtain
ﬁ<b7 €, l) = coeff (g(l’l, T2, x3)n7 Q?Tl’gl’é) :

We randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities.
Let 7, Z5 and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in Z is connected to strictly fewer type 2 edges than type 1
edges and each VN in V \ Z of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z, be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. Thus, we have

Egis(a,b) = (Z) Pr{Z, =1} (6.196)

and

PI'{Z4 = 1} :ZPI'{Zl =€, ZQ B w,Z3 B l} PI’{Z4 = 1|Zl = G,Zg = b, Z3 B l}

e,l

coeff (f(t,51, 52, 53)", 155 sbsh ) coeff (g(w1, w2, 73)", waba}) (6.197)

% 0 I GrR
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Theorem 6.15. The normalized asymptotic distribution of (9n,yn) EFASs for the P

ensemble is

Giias(6,7) =(dy —7) In(dy —7) — dyIn(dy) — (dy — ) In(1 + z151 + 355)
+yIn(y) — 01n(t) — yIn(xess) + In (g(z1, 22, 23)) (6.198)
+ In (f(t, s1,$2,53))

where t, s1, S9, 3, 1, T9, 3 are the unique positive solutions of

t@lnf(t, 81, S2, S3)

- » (6.199)
;2 f(t,az,SQ,s?,) :xlﬁlng(g;m%) _ (6.200)
82@1nf(téz:,32a33) :xQ(?lng(g;;z»fs) . (6.201)
,oms (téz;, 52, 53) =$3alng(g;3x2’ 3) _ (6.202)

where f(t,s1, s, 53) and g(x1,x2, x3) are defined in (6.194) and (6.195) respectively and

I T151

& =(dy —
( 7)1‘{‘17181 + 383
- T3S3

lN* :(dv - 7)

(6.203)

. 6.204
1 + X151 + 353 ( )

We present in the next Lemma, the EFAS enumerator for the regular €% ensemble.

Lemma 6.11. The average number of size (a,b) EFASs in the Tanner graph of a code

drawn uniformly at random from the ensemble €% is
d .’ coeff (g(z)m?, xodv=b
Exfivs(a,) :<ZL> (Z) nd, (ch | (n—a)d ) %
(adv> ( b ) (b(dc_l)) <6205)
coeff (f(s1)", 1) coeff (f(s2)"~*,s3%")

where

f(s) = 22: <d.v>sj1 (6.206)
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g(x) =1+ <d2> z?, (6.207)

Proof. For a regular code, all VNs have degree d,. Therefore, e + b in (6.193) is equal to
ad,. Moreover, all CNs have degree d.. Thus, b+ [ in (6.193) is equal to bd.. Since each
unsatisfied CN is connected to exactly one type 2 edge, the number of ways to chose ad, —b
type 1, b type 2 edges and b(d. — 1) type 3 edges such that there are exactly b unsatisfied
CNs is (?)dcb coeff (g(x)m_b, x“dv_b>. The generating function f(s) is the same as for the
FAS case. |

We show that for the computation of the normalized logarithmic asymptotic distribution
of EFASs for regular codes, one needs to solve 2 equations instead of 7 for the irregular

case.
Theorem 6.16. The normalized asymptotic distribution of (6n,yn) EFASs for the %%

ensemble is

Gins(8,7) =(€ =) In (g(2)) + 01 (f(s1)) + (1 = ) In (f(s2)) =y In(s1)

— (dy — 1)Hy(0) — 6d, Hy ( 03) ~(1-0)d,H, (M) (6.208)

— (6dy — ) In(x) — v(dc — 1) In(s2) + v In(d.)

where

o 2<9dv - 7)
"= J &4~ )26~ bd, — ) (0:209

and s1, So are the unique positive solutions of

dln f(s1)
—_— = 21
0s, a5, 0l (6.210)

= 9)520““df;(32) —(de — 1) (6.211)

where f(s) is defined in (6.206).

Example 6.2. Consider the regular (3,6) ensemble. We evaluate the normalized loga-
rithmic asymptotic distributions of T'Ss and the corresponding approximations derived in
Corollary 6.1. Fig. 6.2 compares the exact values of the normalized logarithmic asymptotic
distributions of TSs, obtained from Theorem 6.7, and the approximations obtained from
Corollary 6.1 for this ensemble. Observe that the approximations are accurate for small

values of #. Table 6.1 compares the exact values of the relative minimum A-trapping set
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— A =0.005
— A =0.05
—A=0.1
—A=0.3
A=0.5

The asymptotic distribution

¢ 1072

Figure 6.2: Normalized logarithmic asymptotic distributions of trapping sets of the regular
(3, 6) ensemble for several values of A. The dashed lines denote the corresponding
approximations obtained from Corollary 6.1.

sizes and the approximations obtained from (6.123) for the regular (3,6) ensemble for
different values of A. Observe that the values obtained from (6.123), which we derived by
analyzing the asymptotic distributions of TSs for small # are good approximations of the
relative minimum A-trapping set sizes.

For this ensemble, we compare the exact computation of In(Epts)/n and In(E3S)/n
obtained from (6.108) and the asymptotic result according to Theorem 6.7. The normalized
logarithmic distribution of (elementary) trapping sets for the asymptotic case (computed
according to Theorem 6.7) and for n € {50, 100, 200, 400} (calculated from (6.108)) for a
fixed ratio A = 0.5 are depicted in Fig. 6.3. We observe that the asymptotic results give
a good approximation for normalized logarithmic distributions even for short codes. As
expected, for increasing n, the exact normalized logarithmic distributions approach the

normalized logarithmic asymptotic distributions.

The expected distribution of (2b,b) trapping and (fully) absorbing sets of the ensemble
Gopo derived in (6.124), (6.145) and (6.183) are depicted in Fig. 6.4.

Next, we use our theoretical results to estimate the error floor of the regular ensemble
G- We picked 100 random codes from this ensemble, and simulated their performance
under Gallager B [9] decoding over a BSC obtained by hard-quantizing the output of a
biAWGN channel. The performance of the codes is provided in Fig. 6.5 in terms of BER
versus Fy,/No[dB]. In Fig. 6.5 an analytic estimate of the average error probability at large
signal-to-noise ratios is given. The estimate is based on Eq. 1 in [43], where we considered
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Table 6.1: The exact values of the relative minimum A-trapping set sizes 074 and their cor-
responding approximations obtained from (6.123) for the regular (3,6) ensemble

A Ors 05 from (6.123)
0.001  0.02225844 0.02131029
0.005 0.02079887 0.01996448
0.050 0.01160803 0.01132319
0.100  0.00650212 0.00640276
0.150  0.00363893 0.00360421
0.200  0.00198389 0.00197234
0.250 0.00103484 0.00103132
0.300 5.07516e-04 5.06560-04
0.350  2.29400e-04 2.29179e-04
0.400 9.32314e-05 9.31898e-05

the dominant (2,2) FAS. As multiplicity of (2,2) FASs, we employed the average ensemble
enumerator from (6.183). We observe that the codes provide an error floor performance
that is in accordance with the estimated average error probability derived with the proposed

analysis. Similar results have been observed for other blocklengths and quantized decoders.

Example 6.3. Consider the rate 1/2 LDPC ensemble with A(z) = 0.5z + 0.5z, P(x) =
27. We evaluate the asymptotic distributions of trapping and (fully) absorbing sets
according to Theorem 6.7, Theorem 6.9 and Theorem 6.13. The normalized logarithmic
asymptotic distributions of T'Ss, ASs and FASs of this ensemble for fixed ratio A €
{0.005,0.05,0.1,0.3,0.5} are depicted in Fig. 6.6. We see that the gap between the
normalized logarithmic asymptotic distributions of TSs, ASs and FASs vanishes for small
6. Further, we evaluate the asymptotic distributions of the elementary sets. Fig. 6.7
depicts the normalized logarithmic asymptotic distributions of ETSs, EASs and EFASs.
We observe that normalized logarithmic asymptotic distributions of TSs and ETSs (ASs

and EASs) are approximately equal and the gap grows slightly when 6 increases.

6.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

In this section, we derive the average finite-length (elementary) trapping and (fully)
absorbing set enumerators for binary protograph-based LDPC codes and we present an

analytical method to evaluate the normalized logarithmic asymptotic distributions of these
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Figure 6.3: Normalized logarithmic asymptotic distributions of trapping and elementary
trapping sets of the regular (3,6) LDPC ensemble for A = 0.5 (solid line). The
triangles, dots, squares and pentagons are the exact normalized logarithmic
trapping and elementary trapping set distributions for n = 50, 100, 200, 400,
respectively.

sets.

6.3.1 Trapping and Elementary Trapping Set Distributions
Define the VN weight vector € = [e, €2, . . ., €,,], Where €; is the number of VNs of type v;
in 7,. Clearly we have 0 <¢; <@ for all j € {1,...,np} and

np
> e =a. (6.212)
j=1

Similarly, define the edge weight vector w(e) = (wy),ecsr Where w, is the number of edges
of type g in 7,5. The VN and edge weight vectors are related: for a given €, we have
w, = ¢ if g € ;.

Lemma 6.12. The average number of size (a,b) TSs in the Tanner graph of a code drawn

randomly from the ensemble €7 is

mp
cooff (AH Au(i, )@, ww<6>yb)
Efg(a,b) = =

e e

(6.213)
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Figure 6.4: Expected distributions of (2b,b) trapping and (fully) absorbing sets of the

3,6
ensemble Gyg-

Ers(20,0), Eas(20,b), Eras(20,b)

b

where

Ai(wi,y):% H(1+a:g)+ H(l—xg) —|—% H(l—l—a:g)— H(l—mg) y (6.214)

gesd geél geEs geéd

and where & = (2y),esp, Ti = (Tg)gesp, y and 14,9 € éac'j are dummy variables.

Proof. Consider the Tanner graph of a code drawn randomly from 4F. We randomly
choose a set Z of a VNs and assign the value 1 to each VN in the set. For a given €, each
v; € VP has ¢; replicas in T, ;. Since there are @ copies of each VN type in the lifted graph,

the number of VN sets with weight vector € is
np Q
N, (€) = H (e > (6.215)
j=1 \%J

Since wy, = ¢; if g € é"v'j, the number of edge sets with weight vector w(e) is

Ne(w(e)) = ][ (Q> 11 11 <Q> - 11 (Q)%- (6.216)

w . ; N €,
geé&P 9 Jj=1 geéav'f; J j=1 \"J

Let N.(b,w(€)) be the number of configurations with edge weight vector w(e) that give
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Figure 6.5: BER versus Ey/Np[dB] for random codes drawn from the code ensemble €,

under Gallager B decoding and the predicted average performance (error floor).

exactly b unsatisfied CNs. Its generating function is

> No(bow(e))y'a .

baw(e)

Recall that a CN is satisfied if it is connected an even number of times (including zero) to
Z, and it is unsatisfied otherwise. Consider a CN of type c;. The number of configurations

for which the CN is satisfied is tracked by the generating function

. 1
gelwoy) =00 X wf=g | T 0 +a)+ [T (-] (6.217)
cef{0,1}%i gest geél
wi(c) is even
The number of configurations for which the CN is unsatisfied is tracked by the generating

function

. 1
ge(®s,y) ==y Z Ti =Y H (1+zg) — H (1 =) (6.218)
ce{0,1}% g€l g€k,
wy (e) is odd
In the expressions above, the exponent of the dummy variable y is used to track the
status of the CN (i.e., the exponent is zero if the CN is satisfied, one otherwise). The sum

gc(@i,y) + ge(xi, y) yields A;(x;,y). Considering all CN types, and that there are () CNs
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The asymptotic distribution
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0

Figure 6.6: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and fully absorbing sets (dotted lines) of the
ensemble in Example 6.3.

of each type, we obtain

mp
N.(b,w(e)) = coeft (H Ai(mi,y)Q,mw(e)yb> . (6.219)
i=1
Using
Ny (€)Ne (b, w(e))
P _
S (0D = 2 N wte) (6220
completes the proof. [ |

Lemma 6.12 provides the average number of size (a,b) TSs for a finite block length n.
In the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of
TSs for the ensemble € for a = On and b = yn. The normalized logarithmic asymptotic
distribution of TSs is a useful tool to analyze and design LDPC codes with good TS
properties and can be computed efficiently. In particular, the analysis of the normalized
logarithmic asymptotic distribution of T'Ss for a given U-NBPB LDPC code ensemble allows
to determine if the expected number of T'Ss with size On, with 6 small, goes exponentially

fast to zero, providing insights on the TS properties of the ensemble.

Theorem 6.17. The normalized asymptotic distribution of (6n,yn) TSs for the ensemble
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— A =0.005
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The asymptotic distribution
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0

Figure 6.7: Normalized logarithmic asymptotic distributions of elementary trapping sets
(solid lines), elementary absorbing sets (dashed lines) and elementary fully
absorbing sets (dotted lines) of the ensemble in Example 6.3.

€P is
1 Z®
Ghs(0,7) = —ZIHA (i, y) —vIny — Z )4+ Y Inz,| . (6.221)
ne ; P
gE(“
The values , for g € &F, the value y and € for j € {1,...,np} are the unique positive

solutions of

T4 oz, =npw, (6.222)
OIn TI Ay(s,y)
=1
— 6.223
y 5 npy ( )
npex

(dy, — 1) In <P€J~> =Y lnz,+p (6.224)

’ 1— TLPE}( P

9eey,

where (6.222) is valid for all i € {1,...,mp},g € &, ju is chosen to satisfy 3°; & = 6 and
Ai(z;,y) is defined in (6.214), and 0} = & if g € é’vF;. The proof of the Theorem can be
found in Appendix 6.4.4.

Note that to determine the relative minimum A-trapping set size 614, we may add
another equation to the system of Theorem 6.17, namely G%¢(6, Af) =0 with 0 < 0 < 1.
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Note that for computing the normalized asymptotic distribution of ETSs, we simply need

to replace A;(x;,y) given in (6.214) with

Ai(xiy) =1+ > T +Y > Ty (6.225)

91,92€6E 191792 9eet

Theorem 6.17 shows that the evaluation of GHg(6,7) and GErs(0,7) requires solving

e + np + 2 equations in e + np + 2 variables: z, (e variables), & (np variables), y (one

J
variable) and p (one variable). The following Lemma follows the approach of [119], and
it can reduce the dimension of the system of equations by exploiting symmetries in the

protograph.

Lemma 6.13. Let u, v be two edges in &7. If v and v are connected to the same VN-CN

pair in the protograph, then x, = x,.

Proof. Consider two edges u and v that connect c; to v;. Note that in this case w;, = w; = €.
It is clear that the function A4;(x;,y) in (6.214) is symmetric in the variables z,4, g € & .
We have

OnAfwy)| o Adm) 6226
oz, I 0w, - ’
zy=0 CE’Z:H
Oln nllf A,(mz, y) Oln "ﬁ Az(mw y)
=1 =1
= ) 6.227
ay xufg 8y Ty =0 ( )

Thus, for the system of equations in Theorem 6.17, if there is a solution with xz, = k,z, = 3
then another solution exists with x,, = 5, x, = k (all the other variables being unchanged).

Since the solutions z,, g € & are unique, we have r = §. |

Remark 6.1. To avoid high error floors caused by trapping sets with specific A = b/a, the
relative minimum A-trapping set size of the code ensemble should satisfy 07g > 0. In order
to design code ensembles with good waterfall and error floor performance under a certain
decoding algorithm, one can choose a threshold value 6, > 0 of the relative minimum
A-trapping set size and add the following step in the differential evolution [120]: evaluate
the relative minimum A-trapping set size of the code ensemble and hold the base matrix

Only if G%S > eth.



170 6 Enumerators for Binary LDPC Code Ensembles

6.3.2 Absorbing and Elementary Absorbing Set Distributions

In this section, we derive the average finite-length (elementary) absorbing set enumerators
for binary protograph-based LDPC codes and we present an analytical method for evaluating

the normalized logarithmic asymptotic distributions of these sets.

Lemma 6.14. The average number of size (a,b) ASs in the Tanner graph of a code drawn

randomly from the ensemble €7 is

coeft (T Ai(ay' 22, )2, (@)"(a)y
i=1

P
EAS(avb):;v II ( Q )(Bg+w9) %
’ gesp 9T\ G (6.228)
np
coeff (H B;(t, s}, 9 17(s1)(s?) )
j=1
with
Bj(t, s, 87) =1 +1 S (s)" " (s2) (6.229)
reER;
_ 1
A @ y) =2 | [T A+a2))+ [T (1 -2))
2 geg ge(“

(6.230)
+;y [T+ - [ a-a2)

gest gest

and where 1de is the length d,; all-ones vector, R; is the set of binary vectors of length d,,
and Hamming weight < |(d,, —1)/2], and 8 = (s})),csr, 8] = (s<“>)g€gp x = () gesr,
x) = (x(‘”)gepp y, t and sy, 2%, g € &, 0= 1,2 are dummy variables [54]

Proof. As before, define the edge weight vectors e = (eg)esp and w = (wy),ecer Where e, is
the number of edges of type g in A,;, emanating from satisfied CNs and w, represents the
number of edges of type g in A,; emanating from unsatisfied CNs. We randomly choose a
set Z of a VNs and assign the value one to each VN in the set. We denote by N.(b, e, w)
the number of configurations with edge weight vectors e, w that give exactly b unsatisfied

CNs. Its generating function is

Z N (b, e, w)y’ (x)¢(x>)®.

b,e,w
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Consider a CN of type c;. The number of configurations for which the CN is satisfied is

tracked by the generating function

1 1 1 1
ge(@!,y)=y" 3o (@) =5 | I O+a))+ IT (1 —)) (6.231)
ce{071}d5i gG(”' gE(@
wy (e) is even

The number of configurations for which the CN is unsatisfied is tracked by the generating

function

2 2 1 2 2
ge(@y) =y > (@) =gy | [l (+a)) = T 0 —=5)]. (6.232)
ce{0,1}%i geé’cpz. ge&P
wy (e) is odd
The sum g.(x}’,y) + ge(x},y) yields A;(x)’, x,y). Considering all CN types and that
there are () CNs of each type c;, we obtain

mp
N.(b,e,w) = coeff (H Ai(x, xf,y)? (m<l>)e(ww)wyb> (6.233)
i=1
where A;(x)’, x,y) is defined in (6.230). We denote by Ny(a, e, w) the number of configu-
rations with @ VNs and edge weight vectors e, w such that each of these VNs is connected
to strictly fewer unsatisfied CNs than satisfied CNs. The corresponding generating function
is

> No(a, e, w)t*(s")(s”)"

Consider a VN of type v;. Let ¥ = (Tg))gegv}; be a length d,; binary vector with r? =1 if
the type g edge emanates from an unsatisfied CN and r) = 0 otherwise. Note that if the VN
of type v; belongs to Z, the Hamming weight of 7 should satisfy wy(r?) = deéavi_ re <
L(dy, —1)/2]. We can either include this VN in Z or not. If we skip it we obtain the
zero-degree term in B;(t, s J Vs -2)) corresponding to zero VNs and zero edges. If we include
it in the set, we will have one node, d,; — wi (") edges emanating from satisfied CNs and

wi (r?) edges emanating from unsatisfied CNs with wg(r?) < [(d,; — 1)/2]. Considering

sV g?
) ] ’SJ

account all possible VN types and that there are () VNs of each type, we get

all possible binary vectors r”, we obtain the second term in B;(t ). Taking into

Ny (a, e, w) = coeff (H Bj(t, s}, s9)9,t*(s")° (s“))w) (6.234)

j=1
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where B;(t, s, s) is defined in (6.229). The number of edge sets with weight vectors e

No(e,w) = [] ( @ ><69+w9>. (6.235)

gese \Eg + wy €y

and w is

Noting that
Ny (a, e, w)N(b, e, w)

N(e,w)

Elig(a,0) =Y (6.236)

e,w

completes the proof. |

Next, we analyze the normalized logarithmic asymptotic distribution of ASs for the
protograph-based LDPC code ensemble.

The next Theorem presents a simple way to compute the normalized logarithmic asymp-
totic distribution of ASs for the ensemble 4.

Theorem 6.18. The normalized asymptotic distribution of (fn,~yn) ASs for the ensemble
€P is

GAS 8 f}/ le’lA _|_ 7211,1‘8 , (Jl)7 ;z>>
(6.237)
—vlny — ant—— ZID(I—FJI(U <1>+x<z> (2))
np
geé&P

The values ¢, s, sy, x), z3, for g € & P and the value y are the unique positive solutions of

81nHB(, sy, s)

. . .y (6.238)
L0 By(t, s),8)) Ol Ay, x),y) -

S<g> 83(1 S;-8i) _ (g) ax@ = npé, (6.239)
L0 B;(t, s,87) 0l Az, x,y) -

ST sy L =y am = npi (6:240)

O1n "ﬁz A, @, )
i= — 6.241
Y By =np7y ( )

where (6.239) and (6.240) are for all i € {1,...,mp},j € {1,...,np},g € & N&., and
Ai(x), x? y) are defined in (6.229) and (6.230), respectively and
1 zysy

er=— 6.242
g np 1 -+ xS)SSJ + mg)sg) ( )
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@ g@
:11 <1)xg<1>sg Oren (6'243)
np 1 + xy'sy + Tgsy

~ %
U)g

The proof of the Theorem can be found in Appendix 6.4.5.

To determine 034, we add another equation to the system of equations of Theorem 6.18,
namely GRq(0, Af) =0 with 0 < 0 < 1.

The result can be easily extended to enumerate EASs. In fact, for computing the finite-
length and the asymptotic distribution of EASs, we simply need to replace in (6.228) and
(6.237) the generating function A;(x}’, 2}, y) given in (6.230) with

Azl xly) =1+ Y ajrgty Yy ). (6.244)

9.9'€6E 979 geél
We briefly explain the derivation of A;(x’, x}”,y) in (6.244). For EASs, each satisfied CN
is connected to zero or two VNs from Z and each unsatisfied CN is connected to exactly

one VN from Z. Consider a CN of type c;. If it is connected to zero or two VNs from Z,

the number of configurations can be tracked by the generating function

@)=y Y @e=1+ Y abal.  (6.245)
c€{0,1}%% :wyy (¢)€{0,2} 9.9'€6E 979

If the CN is connected to exactly one VN from Z then its generating function is

2

ge(@?,y) =y oo @)=y 2 (6.246)

ce{0,1}%i wwy (c)=1 geél

We can see from Theorem 6.18 that the evaluation of G%¢(6,7) and G&,5(60, ) requires
solving 4e + 2 equations in 4e + 2 variables: s}, s, 2,z (4e variables), y (one variable)
and t (one variable). The following Lemma, also based on the approach of [119], is similar

to Lemma 6.13 and can reduce the dimension of the system of equations.

Lemma 6.15. Let u, v be two edges in &7. If v and v are connected to the same VN-CN

pair in the protograph, then for all o € {1,2}, s = s© and % = 2.

Proof. Consider two edges v and v which connect c¢; to v;. We define z =

[52)7 58)7 Sfj)v Sg)v ZI}z), 1’8)7 l’;?, I?L z1 = [Xb 1/J17 X2, 2/}27 R1, 517 R2, 52] and
2y 1= [1, X1, V2, X2, B1, K1, B2, Ka]. It is clear that Bj(t, s}, s}) in (6.229) is symmetric
in the variables s, s, g € é"vF]’_ and the functions A;(x}’, )", y) in (6.230) and (6.244) are

symmetric in the variables xy’, 2, g € @@5. Thus, for the system of equations in Theorem
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6.9, if there is a solution with z = z; then another solution exists with z = 2 (all the
other variables being unchanged). Since the solutions sy, sy, xy, x), g €E P are unique,
we have zZ1 = Z9, i.e., 77/)1 = Xl,ﬂ)g = X2,kR1 = 51, Ro = 62. [ |

6.3.3 Fully and Elementary Fully Absorbing Set Distributions

We derived in [61] the average finite-length fully absorbing and elementary fully absorbing
set enumerators for binary protograph-based LDPC codes and we present an analytical

method for evaluating the normalized logarithmic asymptotic distributions of these sets.

Lemma 6.16. The average number of (a, b) FASs in the graph G of a code drawn randomly

from the code ensemble €F is

o= X, eIl
&P

ew,l eqt+w e l
gTWg g g

(6.247)

with
np
Ny(a, e, w,l) = coeff (H B; (t, sy, sy, s;i”)Q A7 (8M)¢ (8™) (s“))l) (6.248)
j=1

mp
N¢(b, e,w,l) = coeff (H A (20,22, 2P, y)? (2 () ()" yb) (6.249)
i=1

Attt ) =5 [T (1) + 1T (1-25)
9, 9 (6.250)
+ ;y ggp (:c(;) + :c?) — ggp (xf;) - a:(;)
By (t.5].5].5) = (; (s;i”)r(j) +t (; (s;.“)l"_”(j) (s;?>)”(j) (6.251)
r@)eRr,; rUeER;

where 1; is the length d,; all-ones vector, R; is the set of binary vectors of length d,, and

g g

x = (19)gesr, T = (;E;;))gegci, y, t and s, 2, g € £, 0=1,2,3 are dummy variables.

Hamming weight lower than or equal to [(dy, —1)/2], and 8 = (s{)),ecsr, 8} = (5)gesr
J

Proof. Consider the graph G of a code drawn uniformly at random from the ensemble. We
randomly choose a set Z of a VNs and assign the value 1 to each VN in the set. The edges
connected to a VN v are assigned the binary value chosen for v. We introduce the edge

weight vectors e = (eg),esp, W = (Wy)gesp and I = (Iy),esp. Here, €4 is the number of
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type-g edges adjacent to VNs in F,; that are connected to satisfied CNs, w, is the number
of type-g edges adjacent to VNs in F,; that are connected to unsatisfied CNs, and [, is the
number of type-g edges adjacent to VNs in V' \ F,, that are connected to unsatisfied CNis.

Let N.(b, e, w,l) be the number of configurations with edge set weight vectors (e, w,l)

that give exactly b unsatisfied CNs. Its generating function is

F (y7m(1> CL‘<2) w(z) . Z N b e, w l) (w(1)>e(w(2))w(m(3)>l

b,e,w,l

where the dummy variable y is used to track the number of unsatisfied CNs. Recall that a
CN is satisfied if it is connected an even number of times (including zero) to Z, and it is
unsatisfied otherwise. Consider now a CN of type c;. If it is satisfied, then its generating

function is

1 e 1 1 |
ez = Y @r=s [+t [[0-a)
06{071}dci :wy () is even 96(9@5 gE(OmCF;

If the CN is unsatisfied then its generating function is

gelala) =yt Y (@)@ = 5| I g+ ag) — T (g —a)

ce{0,1}%i:wy (c) odd gees geEL

where 14 is the length d all-ones vector and wg(c) is the Hamming weight of ¢. The
overall generatmg function for a type-c; CN is hence g. (y, }") + gz (y, 2", ") as in (6.250).
By noting that F; (y, 2", z®, ) can be obtained by raising (6.250) to the power of @
(lifting factor) and by multiplying the result for ¢ = 1,...,mp, we obtain (6.249). Let
Ny(a,e,w,l) be the number of configurations with a VNs and edge set weight vectors
(e, w,l) such that each VN is connected to strictly fewer unsatisfied CNs than satisfied

CNs. Its generating function is

F (t S(l) S(Z) S(%) . Z N a e,w l)ta( <1>) (S(”)w(s“))l_

a,e,w,l

Consider a VN of type v;. We are interested in computing the corresponding generating

function Bj(t, s}, s}, s}’). Let r¥ = (7’”’) be a length d,, binary vector with r = 1 if

the type g edge emanates from an unsatlsﬁed CN and r” = (0 otherwise. Note that for
each VN of type v;, the vector % should satisfy wy(rU ) < |(dy, —1)/2]. We can either

include this VN type in Z or not. If we skip it, we obtain the ﬁrst term in Bj(t, s, s}, %)
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corresponding to zero VNs and wy(r?) < |(d,, —1)/2] edges emanating from unsatisfied
CNs and VNs outside Z. If we include it in Z, we will have 1 node, d,, — wi (1)) edges
emanating from satisfied CNs and wy(7”) edges emanating from unsatisfied CNs with
wi(r?) < |(dy, — 1)/2]. Considering all binary vectors r, we obtain the second term in
Bj(t, s}, 8, 8). F,(t, 8", 8% 8Y) is obtained by raising (6.251) to the power @ and by
multiplying the result for j = 1,..., np, yielding (6.248).

The number of edge sets with weight vectors e, w and 1 is
Ne(e,w,l) = [] ( N ) <€g+w9> (Q_eg _w9>.
gesp \Eg T Wy €q lg
The proof is completed by substituting these expressions in

Ny(a,e,w, )N (b, e, w,l)

EEAS(a7b> = Z N (6 w l)

e,w,l

(6.252)

Lemma 6.16 yields the average number of (a,b) FASs for finite n. In the asymptotic
case, the following Theorem provides the normalized logarithmic asymptotic distribution of
FASs for the ensemble € for a = fn and b = yn.

Theorem 6.19. The normalized logarithmic asymptotic distribution of (6n,~yn) FASs for
the ensemble € is

1 &
(1) (2) (3) (1) (2) (3)
Ghag(0 g In A;(x), ', x),y) +—§ In B;(t, s}, 87, 8})
nP 1=1 np 7=1

. (6.253)
—0In(t) —yIn(y) — — > In(1+aps) +20s? + 255y

where the values ¢, s0, s, s, x), 23, x) for g € & P and the value y are the unique positive

solutions of

ahl H B. ( , (Jl)7 ;Z),S(;))
t T =npb (6.254)
OB, s28) L omAl el aly)
g asi) s =7y Or — 'PCy (6.255)
81 Bi(t, <1 s g¥ ln A (x 22, 2
e n Bj( 85185, 5 ) —2® nA(z), x, 7', y) — npw* (6.256)

9 2) g 2)
0s! e 0! o
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. 1 (2) 3) 1) (2) (3)
O0ln B,(t,sY,s7,sY) :x(sﬁlnAi(mi yxy e y)

® J225 075 o J*
sy a0 p 50 = npl;; (6.257)
g g
dln l_f Ai(.’L‘;l), 33;2), m(ig)a y)
i=1
= 6.258
Y By ney ( )
where (6.255)-(6.257) are for all i € {1,...,mp},j € {1,...,np},g € & N &, and
Bj(t, s, s, sy) and A;(x", x;”, x;",y) are defined in (6.251) and (6.250), respectively and
1 I(')S“)
é; s 1+ zwsw +9 <2g> @ 4 ®g® (6’259)
np 1+ xPs) + 252 + 105
1 20 g®
w; e 14+ xmsw +9 (29) @ 4 x®g® (6'260)
np 1+ 2xPs) + 252 4 195
_ 1 2P g®
l; :71 n g ’ (Z @ 4 g@ge (6'261)
np L +xysy) +xgs) + xgsy

The proof is similar to the one of Theorem 6.4.5.

To determine 05,4 we add another equation to the system of equations of Theorem 6.19,
namely G¥,¢(0, Af) =0 with 0 < 0 < 1.
Observe that the computation of the asymptotic distribution of EFASs follows similar

steps. In particular, it suffices to replace A;(x}’, ", )", y) given in (6.250) with

AR R}

. (1) (2) (3) _ (1) 5 (1) (2 (3)
A ), x y) =1+ > aYal+y > 2 [ . (6.262)
9,9'€6F :g'#g geél g€l g'#g

Remark 6.2. To evaluate the normalized asymptotic distribution of (elementary) FASs,
one needs to solve a system of 6e + 2 equations with 6e 4+ 2 variables. The solution is
complex for protographs with several edges. Fortunately, protographs often have parallel
edges between pairs of nodes, yielding symmetries in the equations. This observation was
used in [119] to reduce the dimension of the system of equations needed to evaluate the
weight spectral shape of protograph-based ensembles. The principle is applied to the FAS
enumeration through the following Corollary (the proof is omitted, since it follows closely
the derivation of Lemma 6.15).

Lemma 6.17. Denote by u,v two parallel edges in the protograph. Then s = s!) and
2 =2l for £ € {1,2,3}.

Example 6.4. We next give an example applying the technique described in Section 6.3.1,
Section 6.3.2 and Section 6.3.3 to the analysis of the protograph-based ensemble with the base
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Figure 6.8: Expected distributions of (2,b) trapping and elementary trapping sets of the
ensemble in Example 6.4 for ¢) = 100.

matrix B = [3 4]. This base matrix was introduced in [121] to design short, low error floor
LDPC codes for satellite telecommand links. The expected distributions of (2,b) trapping
and elementary trapping sets for () = 100 are shown in Fig. 6.8. We evaluate the expressions
of the normalized logarithmic asymptotic distribution of trapping and (fully) absorbing sets
from Theorem 6.17, Theorem 6.18 and Theorem 6.19 for A € {0.005,0.05,0.1,0.2,0.3,0.4}.
The results are shown in Fig. 6.9. Fig. 6.10 depicts the normalized logarithmic asymptotic
distributions of ETSs, EASs and EFASs. Observe that the relative minimum A-trapping
and (fully) absorbing set size decreases as A increases. For instance, for A = 0.005, we
have 05, = 0.040129 and for A = 0.2, 05,5 = 0.008448. Since the protograph has e =7
edges, we need to solve a system of 6e + 2 = 44 equations in 44 unknowns to compute the
normalized asymptotic distribution of (elementary) fully absorbing sets. Thanks to Lemma

6.17, the number of equations/unknowns reduces to 14.

6.4 Appendices

6.4.1 Proof of Theorem 6.7

From Lemma 3.1, we have

coeff (f(t, s)", t”(’s"w)i exp {n[In(f(t,s)) — 0In(t) — wln(s)|} (6.263)
coeft (g(x,y)", 2""y™ )= exp {n[In(g(z,y)) — yIn(y) — @ In(x)]} (6.264)
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— A =0.005
— A =0.05
A=0.1
—A =02
—A=0.3
A=04

The asymptotic distribution

| | | |
0 2-1072 4-1072 6-1072 8-1072 0.1
0

Figure 6.9: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and fully absorbing sets (dotted lines) for the code
ensemble in Example 6.4.

where W = w/n and t, s, z,y are the unique positive solutions of (6.114)-(6.116) with w*

replaced by w.

Lemma 3.2 gives

(nd:,> =exp {nava (
nw

and from (6.263), (6.264) and (6.265), we have

) } (6.265)

ETs (6,7)= Y exp(nS(a)) (6.266)

&=

with

w

S(w) = —d, H, (d ) + In(f(t,s)) — 0In(t) — wln(zs) + In(g(z,y)) — vIn(y). (6.267)

v

Thus, we have G35 (0,~) = max S(i0). By setting the derivative of S(@) in @ to zero, we

obtain

i = S(w) = d, :
" = argmax () T+ 25

By substituting (6.268) in (6.267), we obtain (6.113)-(6.117) as desired.

(6.268)
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— A =0.005
— A =0.05
A=0.1
—A =02
—A =03
A=04

0 2.1072 4-1072 6-1072 8-1072 0.1
6

Figure 6.10: Normalized logarithmic asymptotic distributions of elementary trapping sets

6.4.2 Proof of Corollary 6.1

(solid lines), elementary absorbing sets (dashed lines) and elementary fully
absorbing sets (dotted lines) for the code ensemble in Example 6.4.

The proof is based on obtaining expressions for ¢, s, z,y in terms of w*, and for @w* in terms
of #. Consider (6.114)-(6.116) when § — 0 and v = A#. These equations can be rewritten

as

S
; Mige
dmax . .
—oa It
jz:l Ay 1+ tsi -
dg" ];::2 (’Z) kot + g:% (;) ka'y
5 Z Pz k is ever:; ' k is odid . :QD*
=1 14 !EQ (;) k4 _k;z::1 (;) xky
k is even k is odd
i Nk
dénax kgl (k)'r y
f Z Pz k is odd —Ab.

T 5 et 2 (et

k is even k is odd

(6.269)

(6.270)

(6.271)

(6.272)
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From (6.269) and (6.270), we see that d™"g < w* < d™**¢. Thus, we have

lim @* = 0 (6.273)
0—0
and the notations o(f) and o(w*) are equivalent, i.e., for any function f, f = 0(f) <= f =
o(w*). Therefore, we will use o(f) and o(w*) interchangeably. The left hand side of (6.272)
is also o(1), i.e., for some odd k we have ¥y = o(1) and for all other k we have z*y = o().

Thus, we have

max
dC

AO(1+0(1)) =€ Piizy = dyay. (6.274)
i=1

Because of (6.273), the left hand side of (6.271) must be o(1), i.e., ¥ = o(1) for some k,
2 = o(w*) for the other k, 2%y = o(1) for some k and x*y = o(w ) for the other k. The
left hand side of (6.271) is dominated by the terms corresponding to k = 1,2. We have

d max

w*(1+ o(1) {ZP[@—lx —|—my}

(6.275)
=¢P"(1)2? + dyay.
From (6.274) and (6.275), we obtain
v = W(l +o(1)). (6.276)
Substituting (6.274) into (6.117), we obtain
5= wJ y dv;/fl_) 59 (1+0(1)). (6.277)
Thus, (6.270) can be written as
(14 0(1)) = Agpnd™ingsd™ (6.278)
and we have
t— = dmm% T <(w ;,if))d dv ) (1+ o(1)). (6.279)
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Similarly, from (6.269), we have

min

9(1 + O(l)) = Ad‘r,nintsdv

and
w0t = d™(1 4 o(1)).

Substituting (6.281) into (6.276), (6.277) and (6.279), we obtain

dmin — A
v =\|0=gprpy 1+ o)

_qmin Pr(1)
s =dj \leacav(d?m “A) (1+0(1))

2—gmin v

s (d™i» — A)d.d
gy (dpin)d

t

From (6.274) and (6.282), we have

B 0P (1)
Yy = AJ acav(d“}ﬁn N (14 o(1)).

P"(l) V) (1 +0(1))'

(6.280)

(6.281)

(6.282)

(6.283)

(6.284)

(6.285)

By substituting (6.282)-(6.285) into (6.113) and by using the Taylor series of In(1 + z) at

x = 0, we obtain (6.121).

6.4.3 Proof of Theorem 6.8

From Lemma 3.1, we have

coeff (g(a, y)",a"*y"") = exp {n [In(g(x,y)) — vIn(y) — 6d, In(x)]}

where x,y are the unique positive solutions of

ox v
Olng(z,y)
VI

xf?lng(x,y) 0d

(6.286)

(6.287)

(6.288)
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We obtain from (6.288)

Lemma 3.2 gives

(:9) =exp {nHy (0)}
(:ede) = exp {nd, Hy (6)}

From (6.286) and (6.289)-(6.291), we obtain (6.126)-(6.128).

6.4.4 Proof of Theorem 6.17

From Lemma 3.1, and recalling that Q = n/np we have

mp n o 1 me
coeff (H Ai(x;,y)me, a:”’”(e)ym) = exp {n [”P > In Ai(z,y)
i=1

i=1

183

(6.289)

(6.290)

(6.291)

—vlny — Z wglnacg}}

where € = €/n, w(€) = w(e)/n and y and z, for g € &7 are the unique positive solutions

of (6.222) and (6.223) if we replace w}; by w,. We obtain
j=1 \&

Thus, we have
E"T“s (On,yn)= Z exp(nS(€))

where

1 1
S(€) = —> InAj(m,y) — Y wylnz,—yIny — —
P = gesP np

np dy—1 np
H <Q> =exp {n Zl(d\,j — 1)nlpﬂb(np€j)} .

— 1)Hb(np€])

Hence, we have Gf4(0,7) = max S(€) subject to the constraint Y; €; = 6 obtained from

(6.212) (see e.g., [78,119,122]). Using Lagrangian multipliers, we obtain the entries of

€* = argmax S(€) in (6.224).
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6.4.5 Proof of Theorem 6.18

From Lemma 3.1, we have

mp B
coeff (H Ai(x), x} ,y)”P ()" (w;-z))"wa”):exp{ [ ZlnA Poy)—ylny

i=1 e i

=Y (6gmay + 1, 1na:<;>)]} (6.292)

ges&sP

coeff (HB , 85, ;))np (S(J»l))”é(s;z))"‘f’t@")iexp{ { ZlnB ,8;,87) —0Int

7=1

— Y (& nsy + 1, 1ns<;)” (6.293)

ge&P

where € = e/n, W = w/n, t and y and zy,xy, sy, sy Vg € &P are the unique positive

solutions of (6.238)-(6.241) if we replace €; and @, by é; and w,. We obtain

Q n(éy + wy)\ . 1 P
ggP (n(ég+wg)>< né, )—exp{nggp {nPHb( p(€g + Wy))

(6.294)
e
H g
v (25 )|
From (6.292), (6.293) and (6.294), we have
Els(On,yn)=>_ exp(nS(€, w)) (6.295)
where
0 ! ilnB sy, 87) + ii%lnA (", 2, y) —yvIny — OInt
nP ‘7 . 7 j Y J nP P 1
1 - -
-y {eg In(zy'sy) + g In(zysy)) + n—Hb(np(eg +1,)) (6.296)
P

ge&P

e

Hep+ g ()]

This implies Gg(6,v) = max S(€,w). By computing the partial derivatives of S(€,w),
we obtain the vector pair (€*,w*) = argmax S(€,w) in (6.242) and (6.243).




Trapping and Absorbing Set
Enumerators for Non-Binary LDPC
Code Ensembles

In this chapter, we study TSs and ASs of non-binary unstructured and protograph-based
LDPC codes. Our interest in these codes stems from their applications: Besides their
excellent performance for short-packet wireless links [38,98,123-125], non-binary LDPC
codes have been suggested for NAND flash memories [126-128] and code-based public
key cryptosystems [129] which require low-complexity decoders. Hence, hard decision
decoders for non-binary LDPC codes have been studied, either in the form of symbol
flipping algorithms [130], majority-logic decoding [30], and hard (e.g., symbol) message
passing decoding [27,56,91]. The authors of [40] presented an algorithm to reduce the
number of ASs in the Tanner graph of a non-binary code by changing the edge weights.
The results showed the effect of ASs in the error floor performance of non-binary LDPC
codes. We provide numerical evidence that they are a major contributor to the error
probability under certain hard-decision passing decoding algorithms [27,91] that represent
the non-binary equivalent of the Gallager B algorithm.

We published the distribution of TSs and (elementary) ASs for non-binary unstructured
and protograph-based LDPC code ensembles in [62,63].
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7.1 Preliminaries

Suppose we assign non-zero symbols to the VNs composing a set Z, and the zero symbol
to the VNs outside Z. Let N'(Z) be the set of the neighboring CNs of Z. Furthermore,
let U(Z) be the set of unsatisfied CNs in N (Z) and S(Z) the set of satisfied CNs in NV (Z).
Following [38-40, 48], we define TSs and (elementary) ASs.

Definition 7.1 (Non-binary trapping set). An (a,b) TS 7T, is a set Z of a VNs such that
U(Z) contains b CNs [38].

Definition 7.2 (Non-binary absorbing set). An (a,b) AS A, is a trapping set with the
additional property that each VN v € T has strictly fewer neighbors from ¢(Z) than from
S(Z) [39,40].

Definition 7.3 (Non-binary elementary absorbing set). An EAS AP, is an AS where each
CN c € S§(Z) is connected to two VNs in Z and each CN ¢ € U(Z) is connected to exactly
one VN in 7 [39,40].

7.2 Trapping and Absorbing Set Enumerators for

Unstructured Ensembles

7.2.1 Trapping Set Distribution

We next derive the finite-length TS enumerator for non-binary LDPC codes and develop an
analytical method to evaluate the normalized logarithmic asymptotic distribution of T'Ss.

Further, we derive the asymptotic approximation for the small-sized trapping set case.

Lemma 7.1. The average number of size (a,b) TSs in the Tanner graph of a code drawn

uniformly at random from the ensemble ng/}hp is

coeff (g(x, y)", :L’wyb>

E%’P a,b) = . coeff (f(t,s)",t*s” 7.1
5 (a,b) Zw: (Y- 1) (f(t,s) ) (7.1)
where
dmax ‘
fts)=J[ 1+ (¢g— 1)ts?)Ai (7.2)
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max
d c

g(z,y) = 1_] (1+(g—1)z) qu (¢— 1)1 — 2
(1 + (q - 1)x)1 — (1 _ :L’)l £P;
q .

(7.3)

+y(q—1)

Note that for binary LDPC codes, we obtain (6.108)-(6.110). The proof is analogous to
the proof of Lemma 6.1.

We next present a simple way to compute the normalized logarithmic asymptotic distri-
bution of TSs for the ensemble 4.

Theorem 7.1. The normalized asymptotic distribution of (n,yn) TSs for the g-ary

irregular ensemble is
Grs (0,7) = —dyIn(1 + (g — D)as) — 0In(t) — yIn(y) + n (f(t,)) + n (g(z,y)  (7.4)

where t, s, x,y are the unique positive solutions of

dlnf(t,s)

o ! =
ol f(t,s)  dlg(z,y)

Ong(z,y) _
y—g = (7.7)

where f(t,s) and g(z,y) are defined in (7.2) and (7.3), respectively, and

(¢g—Das

= d, LDz
v 14+ (¢g—1)xs

(7.8)

The proof of Theorem 7.1 is omitted since it is similar to the one of Theorem 6.7.
The following Lemma will be useful to analyse Gaz (0, Af) for small 6 and fixed A.
Lemma 7.2. For a fixed A = /6, the derivative in 6 of Go3 (0, A8) is

dGas (0, A0)

= = —In(t) — Aln(y) (7.9)

where for each 6, the values of ¢t and y are given by the solution of the system of equations
(7.5)-(7.7).
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Proof. Note that the solutions of the system of equations in (7.5)-(7.7) are implicit functions
of . From (7.4) and (7.8), we obtain

AP af(t,s) of(t,s) ~ %
M:_ln(t)_Aln(y)_‘_g o Y +@ os_ _ W
de do | f(t,s) t do | f(t,s) s
3 99(z,y) (7.10)
do | 250 ar| | dy | THY A9
do |g(z,y) x| dO |g(x,y) w |
The terms in the square brackets in (7.10) are equal to zero due to (7.5)-(7.7). |

Consider now the case of small § and v = Af. We obtain a closed form expression of

G2 (6, A9), which we introduce in the following corollary.

Corollary 7.1. For a fixed A = /60 and small 0, we have

dgﬂn - 2 - A (difnin>d‘r’ninAd{’nin

5 (In(f) =1 —1In(g — 1)) + In ( A&

doir — A (dode(dRi — A)
5 (S

Gaa (6, A0) =0 [ )
(7.11)

where d™ is the minimum VN degree and P”(z) is the second derivative of P(z). The

proof is provided in Appendix 7.4.1.

If A =0and d™ =2 | we obtain equation (14) in [98], which is an approximation of the
growth rate of a non-binary code ensemble for the case of small-weight codewords. This is
expected since an (a,0) TS is a codeword (all CNs are satisfied).

Note that a positive 67¢ (as defined in Definition 6.6) exists whenever the derivative of
Gaa (0, AG) is negative as § — 0. Thus, by substituting (7.117) and (7.118) in (7.10) we
find that a positive 0% exists whenever d™ > 2 + A or d™" = 2 + A and

Aggin (dy™) ™" P" (1)
2d,d, (dmin — 2)di—2

< 1. (7.12)

If the relative minimum A-trapping set size is small enough, then we can use Corollary 7.1
to approximate it. Through numerical simulations, we observed that the relative minimum
A-trapping set size is small for the case of small VN degrees or high CN degrees as observed
in [48]. We need to determine 6 such that Gaa (6, Af) = 0 with 6 > 0. By neglecting the
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term o(6), we obtain

gmin _ A

. dedy (dmin — A) @2 A e
Ors ~ (¢ — 1) exp(1) ( (P”(l) )> (Adm(dmm)dw) . (713)

For ¢ = 2, we obtain (6.123). The approximation of the relative minimum A-trapping
set size given in (7.13) is accurate when 67g is sufficiently small (for the case of small VN
degrees or high CN degrees as observed in [48]) and does not need solving the system of
equations given in Theorem 7.1.

For the regular ensemble ‘Kq‘f;l’dC, the expressions in Lemma 7.1 and Theorem 7.1 can be

simplified as follows.

Lemma 7.3. The average number of size (a,b) TSs in the Tanner graph of a code drawn

randomly from the ensemble €% is

do.d ' Coeﬁ (g(’xﬁy)n?xadvyb)
Ed®(a,b) = 7.14
§(a,0) <a> (Zjﬁ(q_ 1)a(dv=1) (7.14)
where . i N1 J
g@ﬁn_[<+wq— o
. Nl _ (1 ey (7.15)
rolg o n;-—<—x>].

Theorem 7.2. The normalized asymptotic distribution of (fn,~yn) TSs for the ensemble

Gode is

GT(0,7) = — (dy — 1) Hy(0) — yIn(y) — 0d, In(z) + In (g(z,y))

(7.16)
—6(dy —1)In(g — 1)
where
¥ (1+(¢g—Dx)*+ (¢ — DA —2)*

_ 7.17
VS DE—) (- Do — (- o (7-17)

and x is the unique positive solution of

dg(x,y)

T = 0d,g(z,y) (7.18)

where g(z,y) is defined in (7.15). The proof is omitted since it is similar to the one of
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Theorem 6.8.

7.2.2 Absorbing Set Distribution

The following Lemma presents the finite-length AS enumerator for non-binary LDPC
codes. Moreover, we develop an analytical method to evaluate the normalized logarithmic
asymptotic distribution of ASs.

Lemma 7.4. The average number of size (a,b) ASs in the Tanner graph of a code drawn

uniformly at random from the ensemble 4" is

coeff (g(w1, 72, 9)", 25a¥y")

ErS (a,b) =y . coeff (f(t,s1,52)",t"s7sy) (7.19)
) £ (ndv)(e—i-w)(q_l)eer » 91 ) 1°2
’ e+w e
where
- A]
df]}]ax
flt,s1,82) = [T (14 (¢ — 1)t Z ( ) 198y (7.20)
j=1 i Jj1=0
dmax . .
1+(g—1Dx) ' +(qg—1)(1 —ax1)
oy = ] [ (0= De) g =1 =)
=1 (7.21)
1 —1 t— (1 —x9)°

The proof is analogous to the proof of Lemma 6.4.

We derive the normalized logarithmic asymptotic distribution of ASs for non-binary

codes in the following Theorem.

Theorem 7.3. The normalized asymptotic distribution of (6n,yn) ASs for the ensemble
%;},;P is
Gﬁg(@,'y) = —dyIn(1 + (¢ — 1)(a151 + 2252)) — 01n(t) — v1In(y)

(7.22)
+ In (g<x17 T, y)) + In (f(tu 81, 52))
where t, s1, S9, 21, T2,y are the unique positive solutions of
Eﬂnf(t S1, 82)
=0 2
BT (7.23)
slaln f(t,s1,82) :xlaln9<$1, T2, Y) _ (7.24)

851 a='L11
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Oln f(t, S1, 82) . 81119(11017 T2, y)

S9 832 =T2 81’2 = w (725)
1
ya ng(gly, 2, Y) _ (7.26)

where f(t,s1,s2) and g(z1, e, y) are defined in (7.20) and (7.21) respectively and

o (q—1)r1s
* —d, 7.27
1 + (q — ].)(.%‘181 + ZEQSQ) ( )
_ 1
o =d (g = Dass (7.28)

1+ (g — 1)(x181 + x282)

The proof is omitted since it is similar to the one of Theorem 6.7.

Similar to the TS case, the expressions in Lemma 7.4 and Theorem 7.3 can be simplified

for regular ensembles.

Lemma 7.5. The average number of size (a,b) ASs in the Tanner graph of a code drawn

uniformly at random from the ensemble qu‘f;;dc is

ESe™(a,b) =
S5 (sae) () (g = Dot ) (7.29)

<Z> coeff (f(s)“, s“dv_e)

<m) coof (ga(1)" 25 coeff (ga(2)", 25 °)
b

where

Ldvfl

=3 (d) s (7.30)

j1=0 J

g1(z1) :j] [+ (g = D) + (g = 1)(1 = a0)] (7.31)

ga(2) :q;l (1 (g = D)™ — (1 - 22)*]. (7.32)

We show now that to compute the normalized logarithmic asymptotic distribution of ASs

for g-ary regular codes, one needs to solve 3 equations instead of 6 for the irregular case.

Theorem 7.4. The normalized asymptotic distribution of (6n,yn) ASs for the %%
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ensemble is

G (0,7) = — 0d, In(21 + 225) + (£ —7) In (g1 (1)) + 71 (g2(22))

01 (£()) = (d — DHb(0) = 6(dy — 1) (g — 1) + £y @ "

where s, x1, x5 are the unique positive solutions of

din f(s)  dinga(za)

= _—_— v _— e* . 4

Os i Vo s (0d, — €*) (7.34)
dlngl(xl) -

— R SV 7.35

(6~ ) (739

where f(s),g1(x1) and go(z3) are defined in (7.30), (7.31) and (7.32) respectively and

€

e =0d,—.
T+ Z2S

(7.36)

The proof is similar to the one of Theorem 6.8.

7.2.3 Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for non-binary LDPC codes.

Lemma 7.6. The average number of size (a,b) EASs in the Tanner graph of a code drawn

uniformly at random from the ensemble %" is

coeff (g(x1, 29)", 2528
Eé}fs (&, b) = Z (

< ()@

where f(t,s1, s2) is defined in (7.20) and

) coeff (f(t,sl, 32)”,25“5?38) (7.37)

dmax . ¢p;
oler) = 1 [1 n (2) (4 — )8 + (g — 1>x2] | (7.39)

The proof is similar to the proof of Lemma 6.6.

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present

an efficient way to compute it.
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Theorem 7.5. The normalized asymptotic distribution of (6n,vyn) EASs for the ensemble

1S

Gras(0,7) =(dy — ) In(d, — ) — dy In(dy) — (dy — 7) In(1 + (g — 1)y51)
+1In(g(z1,22)) +In (f(¢, 51, 52)) — v In((g — 1)z252) (7.39)
+vIn(y) — 01n(t)

where t, s1, S9, 1, X2 are the unique positive solutions of

talnf(t, 51, 82)

_ 4
5 0 (7.40)
Oln f(t, s1, S2) Olng(zy,xe)
= =¢* 41
51 D5, 1 o, € (7.41)
Oln f(t, s1, s2) Oln g(xq, x2)
= = 42
Sa D5y T2 Oy Y (7 )

and where f(t,s1,$2) and g(xy,z2) are defined in (7.20) and (7.38), respectively, and

L (dv =g = Da1sy
& =" G- Do (7.43)

We next consider the EAS finite-length and asymptotic enumerator for the regular

ensembles.

Lemma 7.7. The average number of size (a,b) EASs in the Tanner graph of a code drawn

uniformly at random from the ensemble €% is

Ede(a,b) = (m> (”) A coeff (glay ", 4 coeff (f(s)°, s") (7.44)

b a (Zj:) (asv) <q _ 1)a(dv—1)—b
where
2] g
fls)= > ( ) st (7.45)
j1=0 1
and

o(z) =1+ (¢ — 1) (‘;) 2. (7.46)

The Lemma can be proved from Lemma 7.6.
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We show now that to compute the normalized logarithmic asymptotic distribution of
EASs for regular codes, one must solve one equation rather than five as for the irregular

case.

Theorem 7.6. The normalized asymptotic distribution of (6n,yn) EASs for the &%

ensemble is

G8(0,7) = — (dy — 1) Hy(0) — dyOH, ( N

+ (=) In(g(x)) + 0 (f(s)) — (6dy — 7) In(x) + {Ho <7> (7.47)

§
— (0(dy = 1) =) In(g — 1)

> + v1In(d.) — v 1In(s)

where
Q(de - '7)
T = 7.48
dedc—l)(zg—edv—w(q—l) (749
and s is the unique positive solution of
Qsdln /() = (7.49)

ds
where f(s) is defined in (7.45).

Example 7.1. Consider the rate 1/2 LDPC ensemble with A(z) = 0.52* +0.52°, P(x) =
2%, We evaluate the asymptotic distributions of TSs, ASs and EASs according to Theorems
7.1, 7.3 and 7.5. The normalized logarithmic asymptotic distributions of T'Ss, ASs and EASs
of this ensemble for fixed ratio A = 0.1 and g € {2,4, 8,16, 32,64} are depicted in Fig. 7.1.
We see that the gap between the normalized logarithmic asymptotic distributions of T'Ss and
ASs vanishes for small §. Moreover, the gap between the AS and EAS enumerators increases
with increasing ¢ and 6. We also observe that the trapping and absorbing set properties of
the ensemble improve with increasing the field order ¢q. For instance 05¢ = 0.086818 for
q =4 and 0%q = 0.166643 for ¢ = 32.
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—g=2
—q=1
q:
—q =16
q=32
—qg=064

The asymptotic distribution

—0.15 R | |

0.2

(=)
o I
|y v
3
[\v]
e
—
o
—
ot

Figure 7.1: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and elementary absorbing sets (dotted lines) of
the ensemble in Example 7.1.

7.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

7.3.1 Trapping Set Distribution

In this section, we derive the average finite-length TS enumerator for non-binary LDPC
codes from the U-NBPB and C-NBPB code ensembles and we present an analytical method
to evaluate the normalized logarithmic asymptotic distribution of TSs.

Unconstrained Protograph-Based LDPC Codes

Define the VN weight vector € = [e1, €2, . .., €,,], Where ¢; is the number of VNs of type v;
in Top. Clearly we have 0 <¢; < @ for all j € {1,...,np} and

np
S e =a. (7.50)
j=1

Similarly, define the edge weight vector w(e) = (wy),csr Where w, is the number of edges
of type g in 7,5. The VN and edge weight vectors are related: for a given €, we have

Wy = €; ifgeé"v'j.

Lemma 7.8. The average number of size (a,b) TSs in the Tanner graph of a code drawn



196 7 Enumerators for Non-Binary LDPC

randomly from the ensemble 6" is

ENd(a,b) = = 7.51
TS ( ) g P (Q)dvj-*1< 1)6](dvj_1) ( )
=19
where
1
Ai(why) = H (1 + (q - 1)xg) + (q - 1) H (1 - xg)

q geét ge&EP

‘ ’ (7.52)

qg—1
+—y | [T A+ (g—Dzy) — J] (1 —zy)
q geey g€y
and where @ = (24),e6r, T = (¥4)gesr, y and 24,9 € & are dummy variables. The proof
is analogous to the one of Lemma 6.12.

Lemma 7.8 provides the average number of size (a,b) T'Ss for a finite block length n. In
the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of T'Ss
for the ensemble € for a = 6n and b = yn.

The normalized logarithmic asymptotic distribution of TSs is a useful tool to analyze
and design LDPC codes with good TS properties and can be computed efficiently. In
particular, the analysis of the normalized logarithmic asymptotic distribution of T'Ss for a
given U-NBPB LDPC code ensemble allows to determine if the expected number of TSs
with size On, with 6 small, goes exponentially fast to zero, providing insights on the TS

properties of the ensemble.

Theorem 7.7. The normalized asymptotic distribution of (On,~yn) TSs for the ensemble

Gt is

u I &
GRi(0,7) = — yIny + — > In Ai(zi, )

Pi=1
- |- Hy(np€) + (dy, — )& In(g — 1)+ & Y Inz,
j=1| ged¥,
The values z, for g € &F, the value y and & for j € {1,...,np} are the unique positive
solutions of
81 Az 2y ~
o, 2 AEY) (7.54)

7 0z,
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Oln [ A(zi, y)
=1

Y 9 =npy (7.55)
np€*-
(d, —1)In ( E—— ) = Inz, + p (7.56)
(g —1)(1 — npéx) gg% 9

where (7.54) is valid for all i € {1,...,mp},g € éac'j, p is chosen to satisfy 3°; €& = 6 and
Ai(zi, y) is defined in (7.52), and w; = & if g € éav';. The proof of Theorem 7.7 is similar
to the one of Theorem 6.17.

Theorem 7.7 shows that the evaluation of G?g(@, 7) requires solving e + np + 2 equations

in e + np + 2 variables: z, (e variables), &

variable). The following Lemma follows the approach of [119] to reduce the dimension of

(np variables), y (one variable) and p (one

the system of equations by exploiting symmetries in the protograph.

Lemma 7.9. Let u, v be two edges in &7. If u and v are connected to the same VN-CN

pair in the protograph, then x, = x,.

Proof. Consider two edges u and v that connect c; to v;. Note that in this case w;, = w}; = €.

It is clear that A;(x;,y) in (7.52) is symmetric in the variables z4, g € &r. We have

O Ay(zi,y)| - _ OnAi(@iy) (7.57)
axu Ty=kK 8:[@ Ty=p0 ‘
Ty=03 IZ:K
Oln Tﬁ Ai(x,y) Oln TIQ[P Ai(zi,y)
1=1 =1
= ) 7.58
8y wufg 8y zu=ph ( )

Thus, for the system of equations in Theorem 7.7, if there is a solution with z, = k,z, = 8
then another solution exists with x, = 3, x, =  (all the other variables being unchanged).

Since the solutions z,,g € &F are unique, we have k = 3. [ |

Next, we extend the results to C-NBPB code ensembles.

Constrained Protograph-Based LDPC Codes

Define the VN frequency weight vector € = [€1, . . ., €,,| With € = [€;0, . . ., €j4—2], Where €

is the number of times the symbol of occurs in the VNs of type v; in T, 7 € {1,...,np},l €
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{0,...,q—2}. Obviously, we have

np q—2

>.D ce=a (7.59)
j=16=0
Define also the edge frequency weight vector w(€) = (wy)esp With wy = [wy, . .., Wy q—2]

where w, ¢ is the number of times the symbol af occurs in the edges of type g in 7T, ;. For
a given €, we have for all £ € {0,...,¢ — 2}, w,y =€, if g € éaVF;. We define next the
composition vector weight enumerator function (CVWEF) of a g-ary linear code which we

will use to derive the TS and AS enumerators of C-NBPB code ensembles.

Definition 7.4 (Composition vector weight enumerator function). Let P be an (n, k) linear

code over F, = {0,a°, a',... a4} where « is a primitive element of F,. The CVWEF is
Wp(z) = x?© (7.60)

ceP
where © = [x1,Zo,..., &), T, = [Ti0,Ti1,. .., Tiga), and x4, i € {1,2,...,n}, { €

{0,1,...,q9 — 2} are dummy variables. Moreover, ¢(c) = [p1(c1), Pa(c2), ..., Dn(cn)],
¢z<cz) = [(ﬁ@o(ci), ¢i71(0i), Cey (ﬁi’q,Q(Ci)] Where fOI' all g = O, 1, NN 2, = 1, 2, ..., we
have ¢;¢(c;) = 1 if ¢; = af, ¢;0(c;) = 0 otherwise.

The following Theorem is an adapted version of the MacWilliams identity [131] and will
be useful to derive the T'S and AS enumerators of C-NBPB code ensembles.

Theorem 7.8. Let P be an (n, k) linear code over F,, where ¢ = p®, p is a prime number
and s is a positive integer, with CVWEF Wp(x). The CVWEF of its dual code P+ is

=1

1 4 2
W’pl (m) = EWp(m/) H (1 =+ Z zi,ﬂ) (761)
=0
]7 L; = [x;,07 xfi,l? ce 7x;,q72] and

q—2 ,
1+ 3 x(@™)zip
£=0 (7.62)

, E—
$i,€ - q—2
L+ 2 zip

0'=0

for ¢ =0,1,...,¢q—2,9i=1,2,...,n, and x(u) is a non-trivial character of F,. The proof
of Theorem 7.8 can be found in Appendix 7.4.2.
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In the next Lemma, we derive the finite-length TS enumerator for C-NBPB code ensem-
bles.

Lemma 7.10. The average number of size (a,b) TSs in the Tanner graph of a code drawn
randomly from the ensemble €7:¢(f) is

coeff (Tﬁp Ai(xi, y)@, w“’(e)yb>
P,c i=
Ets(a,b) =) e : dv—1

Q i
G=1 M@= €5,0+€4,0:),150+,€,g—2
£=0

(7.63)

where
Ai(.’L'i, y) :W’/)Z(CCZ> + Yy H (1 + Z Ty, g) Wpl a:z) (764)
9gEET,
and where P; is the codebook of ¢;, = (xy)gesr, Ty = [Tg0, ..., Tgq-2], Ti = (%g)gesr, Y

and x44,9 € é”cf, ¢e€{0,...,q— 2} are dummy variables and

pra:i):; H(1+nge)+z H(Hzx(fg ‘*‘)w) . (7.65)

gesr =0 ges?

Proof. First, note that for the edge labels f = (f;) e, the codewords ¢ € P; satisfy
c’ f; =0, where f; = (f,) gest - The dual code P;- of P; is characterized by its generator
matrix G; = f; and CVWEF that is equal to 1+ }; '), By applying Theorem 7.8
to P;, we obtain (7.65). Consider now the Tanner graph of a code drawn randomly from
the ensemble ngf;f. We randomly choose a set Z of @ VNs and assign a non-zero symbol
from F, to each VN in the set. The edges connected to a VN v are assigned the non-zero
symbol chosen for v. For a given €, each v; € V has ¢;, replicas in 7,; with VN symbol
value of. Since there are ) copies of each VN type in the lifted graph, the number of VN

sets with frequency weight vector € is

N,(e) = ﬁ ( -2 “ y 2). (7.66)

j=1 \Q — ezo €5,y €505 €j1s- -+ s



200 7 Enumerators for Non-Binary LDPC

Similarly, the number of edge sets with frequency weight vector w(e) is

Ne(w(e)) = [] (Q 02 ¢ )

geEP - E;) Wy, Wg,0, Wy, 15 -y Wy q—2

np Q dy;
= H ( q—2 ) .
i=1 \Q — ZZO €50y €505 €15 - - 5 €j,g—2

Let N.(b, w(e)) be the number of configurations with edge set frequency weight vector w(e)

(7.67)

that give exactly b unsatisfied CNs. We introduce the corresponding generating function

>~ Ne(b,w(e))y'a™e.
b,w(e)

Consider a CN of type c;. The number of configurations for which the CN is satisfied is
tracked by the generating function

ge(®i,y) =y ' Wp,(x;)

while the number of configurations for which the CN is unsatisfied is tracked by the

generating function

ge(xiy) =y' ] (1 + qi %e) —y' Wp, (z:).

geg’fi £=0

The sum g.(x;,y) + ge(x;,y) yields A;(x;,y). Considering all CN types and that there are
@ CNs of each type c;, we obtain

mp
N.(b,w(e)) = coeff <H Ai(wi,y)Q,ww(e)yb> : (7.68)
i=1
Using
Ny(€)Ne (b, w(e))
Ev(a,b) = ’ 7.69
TS ((1, ) Ze: Ne(’l,U(G)) ( )
completes the proof. |

Note that the exact average number of size (a,b) TSs derived in Lemma 7.10 for a
finite block length n is extremely complex to compute for large n. Next, we analyze the

normalized logarithmic asymptotic distribution of T'Ss.
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Theorem 7.9. The normalized asymptotic distribution of (On,~yn) TSs for the ensemble
Con (£) is

c & dV' —1 =2 ~x ~x ~%
G’%S (9, ”}/) = — Z [ ! H (1 — np Z Ej,é’ nP€j70, o 7nP€j’q2>

=1 P =0

q—2 1 me (7.70)

80 2 age| + 3 mAziy) - yIny.
/=0 P =1

9gesy,

The values z,, for g € &F, the value y and &oforje{l,... ,np},0€{0,1,...,q— 2} are

the unique positive solutions of

Oln Az(mzv y)

Ly ax%e :npw;,e (771)
oln I Ai(.y)
i= — 7.72
Y By npry ( )
(dy, — 1)In i =3 g+ p (7.73)
L—np X &y ) 954

where (7.71) is valid Vi € {1,2,...,mp},g € éacf,f €{0,...,q9 — 2}, p is chosen to satisfy
i Y2 &, =0, Ai(x4,y) is defined in (7.64), and w}, = &, if g € 5",'3. The proof of the
Theorem can be found in Appendix 7.4.3.

7.3.2 Absorbing and Elementary Absorbing Set Distribution

In this section, we extend the analysis developed for T'Ss to evaluate the average finite-length
AS and EAS enumerators for non-binary LDPC codes from the U-NBPB and C-NBPB
code ensembles, and we present an analytical method to evaluate the normalized logarithmic
asymptotic distributions of ASs and EASs.
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Unconstrained Protograph-Based LDPC Codes

Lemma 7.11. The average number of size (a,b) ASs in the Tanner graph of a code drawn

randomly from the ensemble € is

coeft (1T Aifa, @, ), (@) (@) )
1=1

E/F;g(a, b) :Z 0 ( Q )<€g+wg> (q B 1)eg+wg X
’ gegP ot/ N (7.74)
np
coeff (H By(t, 57, 57)°, t%sm)e(s%w)
j=1
with
By(t.s).sf) =1+ (g — Dt Y (s (s (7.75)
rU)ERj
where
1 2 1 1 1
Ay, e y) == | [] 1+ (¢—Dz)) +(¢—1) [T O —=)
i : (7.76)

+ 0y T+ - De) - TL0-4)

q gesl geéd

and where L, is the length d,, all-ones vector, R; is the set of binary vectors of length d,,
and Hamming weight < [(d,, — 1)/2], and 8 = (s{'),csp, 87 = (5))gesr , T = (T)))geer,
i
(0)

@ = (2)gesr, y, t and s, 2, g € &, 0 = 1,2 are dummy variables [54]. The proof is

similar to the one of Lemma 6.14. It is hence omitted.

Next, we analyze the normalized logarithmic asymptotic distribution of ASs for the
U-NBPB LDPC ensemble. The next Theorem presents a simple way to compute the

normalized logarithmic asymptotic distribution of ASs for the ensemble ‘Kqﬁ’,’f.

Theorem 7.10. The normalized asymptotic distribution of (6n,yn) ASs for the ensemble

Gyt is

U 1 mP 1 2 1 nP 1 2
GZ’S 0,7) =— ZlnAi(wg-), x y) + — Zln B;(t, s}, s)
e =1 e =1

(7.77)

— — . i _ 1) oM (2) o2
ylny —0Int - ggpln (1+(C] 1) (J:gsg + sg>>.
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The values ¢, s, s, x), xy), for g € & P and the value y are the unique positive solutions of

Oln [1 B;(t, 5%, s2)
j=1

19599
. . —_ (7.78)
OInBj(t, s}, sY) L0In Ai(x), =, y) -
8;7) Jasw — :x(g) Oz = Py (7.79)
g g
,0 Bj(t, sy, s7)  0lnAy(x), x,y) x
Sy ]83@) — =1y Oxr® = 1Pty (7.80)
g g
Oln 1_12 Ay 2, y)
s . (7.81)

where (7.79) and (7.80) are for all i« € {1,...,mp},j € {1,...,np}t,g € é"vF; né&r,
B;(t, s, 87) and A;(x’, x{,y) are defined in (7.75) and (7.76), respectively, and

A I |
L1 =Dy .
€g =~ _ M 6 @ 6@ ( : )
np 1+ (q—1)(zysy + x2s2)
R N 753

g :nipl +(q— 1)(1’(91)5_2) + x(gz>8f;)).

The proof of Theorem 7.10 is omitted since it is similar to the one of Theorem 6.17.

The result can be easily extended to enumerate the EASs. In fact, to compute the
finite-length and the asymptotic distribution of EASs, we simply need to replace in (7.74)
and (7.77) the generating function A;(zx;’, ;”,y) given in (7.76) with

Aixxy) =1+ (q¢=1) > ajag+(g—1y Y =y (7.84)

9,9'€6E 979 S

We briefly explain the derivation of A;(x}’, }”,y) in (7.84). For EASs, each satisfied CN
is connected to zero or two VNs from Z and each unsatisfied CN is connected to exactly
one VN from Z. Consider a CN of type c;. If it is satisfied and connected to zero or
two VNs from Z, the number of configurations can be tracked by the generating function
ge(x,y) = 1y° S ()P where the sum is over all ¢ € F§ such that wi(c) € {0,2} and

Ygesr ¢g = 0, and p(c) = (py)gesr With py; = 1if ¢; # 0 and p, = 0 otherwise, yielding

ge(ay) =1+ (@ —1) > ayzy.
9,9'€6L 979
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If the CN is unsatisfied and connected to exactly one VN from Z then its generating
function is

gelwly)i=y' X @) =(g-1y X .

de; o
ccF, wg(e)=1 9ebe;

We can see from Theorem 7.10 that to evaluate Ghe(6,~) and GLvs(6,~) one must solve
4e + 2 equations in 4e + 2 variables: s\, s%, x0), x (4e variables), y (one variable) and ¢
(one variable). The following Lemma, also based on the approach of [119], is similar to

Lemma 7.9 and can reduce the dimension of the system of equations.

Lemma 7.12. Let u,v be two edges in &F. If u and v are connected to the same VN-CN

pair in the protograph, then for all o € {1,2} we have s = s and 2% = z¥.

Proof. Consider two edges v and v which connect c¢; to v;. We define z :=

[52)7 S$)7 S?? S?? .CC&), x(vl)7 x$)7 ‘rgj)] zZ1 = [Xl; ¢17 X2; ¢27 K1, 517 K2, 62] and
= [U1, x1, Yo, X2, B1, K1, Do, Ko]. It is clear that B; ( , (J”,s;”) in (7.75) is symmet-
ric in the variables s\, 5%, g € éavF; and the functions A;(x}’, ", y) in (7.76) and (7.84) are

symmetric in the variables z), 2, g € éacf. Thus, for the system of equations in Theorem
7.10, if there is a solution with z = 2z; then another solution exists with z = z, (all the
other variables being unchanged). Since the solutions sy, sy xy, x), g €E P are unique,
we have 21 = 2y, i.e., 1 = X1,%2 = X2, k1 = B, K2 = [Pa. |

Constrained Protograph-Based LDPC Codes

Lemma 7.13. The average number of size (a,b) ASs in the Tanner graph of a code drawn
randomly from the ensemble €7:¢(f) is

coeff (nllf Ai(m? (12)7 y) (w(l))e<w<z)>wyb>

Eid(a,b) = > = Q -2 X
o ( = ) (eg oWy é)
geP Q=3 (6q,0+1g,0),€9,0+Wg,0,1€9,q-2+Wg,q—27 (=0 * O (7.85)
=0
np
coeff H Bj(t7 3(].1)’3;?))Q,ta(s(l))e(8(2))w
j=1

where

B(t, s}, s5) _1+tz ST (0 (s (7.86)

=0 rHeR; ge/’P
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and

Ai(x), 2, y) =W, (=) +y | [] (1+Zx ) Wp, (z;") (7.87)

9eEL

and where 7 = (%) gebl R; is the set of binary vectors of length d,; and Hamming weight
< [(dy, = 1)/2], Wp,(x;) is given in (7.65), 8 = (8Y),cer, 85 = [Sg0,--- 5, @

9,4— 2, Sj =
(o) (0) (o)

(o) (o) — (0) (o) — _ (0)
(sg >g€(§VPJ_, " = (:cg )ges® xy = [Tg0,s - T ya), & = (:1: )gefP y, t and sgg, gg,g €
EF,0=1,2,0=0,...,q— 2 are dummy variables.

Proof. Define the edge frequency weight vectors e = (eg),csp, €5 = [€g0,- -, €g,4-2] and
W = (W) esp, Wy = [Wep, ..., Wy q—2] Where ey, represents the number of times the symbol
ot occurs in the edges of type g in A,; emanating from satisfied CNs in A, ; and w, , is
the number of times the symbol of occurs in the edges of type g in A,;, emanating from
unsatisfied CNs. We randomly choose a set Z of a VNs and assign a non-zero symbol from
F, to each VN in the set. The edges connected to a VN v are assigned the non-zero symbol
chosen for v. We denote by N.(b, e, w) the number of configurations with edge weight

vectors e, w that give exactly b unsatisfied CNs. Its generating function is

> Ne(b, e, w)y'(2)*(x)*

b.e,w

Consider a CN of type c;. The number of configurations for which the CN is satisfied is
tracked by the generating function

ge(@,y) =y’ Wp,(2}")
while the number of configurations for which the CN is unsatisfied is tracked by
gelay) ==y ] (1 + Zx(” ) —y W, (x).
gegi

Recalling that the sum g.(@)",y) + gz(@}", y) yields A;(x{’, 2, y), and considering all CN
types and that there are () CNs of each type c;, we obtain

mp
N.(b, €, 1) — cooff (HAZ»@:;” 2 1) <:c<“>6<a:<2>>wyb) (7.58)

=1

where A;(x}’, x",y) is defined in (7.87).
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Let Ny(a, e, w) be the number of configurations with a VNs and edge weight vectors e, w
such that each of these VNs is connected to strictly fewer unsatisfied CNs than satisfied

CNs. Its generating function is

Z Ny(a, e, w)t*(sV)¢(s?)v.

a.ew
Consider a VN of type v;. Let r¥ = (T;))gegfj be a length d,; binary vector with 75 = 1
if the type g edge emanates from an unsatisfied CN and r)’ = 0 otherwise. Note that
if the VN of type v; belongs to Z, the Hamming weight of ¥ should satisty wy(r?) =
degvlj_ re < [(dy, — 1)/2]. We can either include this VN in Z or not. If we skip it we
obtain the zero-degree term in B;(t, s}, s’
we include it in the set, we will have one node, d,, — wg(r”) edges emanating from satisfied
CNs and wg(r?) edges emanating from unsatisfied CNs with wg(r?) < [(dy, — 1)/2].

Considering all possible non-zero symbols we can assign to the VN and all possible binary

) corresponding to zero VNs and zero edges. If

m @
32

VN types and that there are () VNs of each type, we obtain

vectors TV, we obtain the second term in Bj(t, s, s?’). Taking into account all possible

np
Ny (a, e, w) = coeff (H Bj(t, s}, sf’)Q, t“(s‘”)e(s<2>)w) (7.89)

J=1

where Bj(t, s}, s7') is defined in (7.86). The number of edge sets with frequency weight

vectors e and w is

Q
Ne(e,w) =[] ( g—2 >><
gee® \Q — X (ege + W), €90 + Wy, - -+ g2 + Wy g2
=0 (7.90)
ql:f <€g’g + U)g,g>
Noting that
Ny(a, e, w)N.(b, e, w)
EP,c b) = ) & s & 791
AS (a? ) e’zw Ne(e, ’LU) ( )
completes the proof. |

We remark that in this case the exact average number of size (a,b) ASs for a finite block

length n is extremely complex to compute for large n.

Theorem 7.11. The normalized asymptotic distribution of (fn,~yn) ASs for the ensemble
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GCan (f) is

1
GRS ZlnA ff),y)—ant—l—thqB ,85,87)
ne j
(7.92)
_’ylny—— Z In (1+Z( 2>ZS;>£ gesg)e>)
gefp
The values t, s, 57, T, 75, for g € &P 0 €{0,...,¢— 2} and the value y are the

unique positive solutions of

Oln H Bj(t, s, s})
t 8t :npé’ (793)
. 0ln Bj(t, s, sY) L Oln Ay(a), 2, y) .
(g>Z 83“) 5% = ;735 axm = NPCyy (7.94)
, 0ln B; (, s, 87 , OlnA;(x), xf y) .
(g>f 88(2) AN = ;33 axu) = NpWgyy (7.95)
ol T{ Ay, z?,y)
i=1
- 7.96
Yy By np7y ( )

where (7.94) and (7. 95) are for all ¢ € {1,...,mp},j € {1,...,np},g € é”vF; NéL L e
{0,...,q—2}, By(t, s}, s}) and A;(x’, x",y) are defined in (7.86) and (7.87), respectively,
and

1 L@

1 x,8

~ £2gL
Gy = o2 (7.97)
1) (2)
1+£;0( ge/sgfl‘i‘xggusg(/)
1 ZL‘(Z) 8(2)
x _ g7é g7£
Wy = — : (7.98)

2
np K O @
1"—2; 0( gzlsgel—i_xgzlsge/)

The proof can be found in Appendix 7.4.4.

Note that for computing the normalized asymptotic distribution of EASs, we simply need
0

to replace in (7.85) and (7.92) the generating function A;(x)’, x;”,y) given in (7.87) with

Azl y) =1+ > > RS Z:E . (7.99)

9:9'€65:979' L0 fgal+ f 1 at' =0 gest =0
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Table 7.1: The error profiles for the hard decision decoder for the QSC crossover probability
e = 0.004.
13 22 (23 24 25 (32 63 G4 G5
TS 43 736 8 8 2 21 8 1 3
AS 0 736 0 0 0 0 4 0 0

1071
1073
o
=
n
~ 107°
g
=
=
1077
—FER
1072 |- —SER |

| | | | |
0 2.100%4-10726-10"28-10-2 0.1  0.12
€

Figure 7.2: FER and SER versus the QSC crossover probability €. The dashed lines
represent the contribution of the dominant (2,2) TS to the FER and SER.

Example 7.2. We consider an LDPC code from the U-NBPB code ensemble defined by the
protograph base matrix B = [3 3] for ¢ = 8 and @ = 80. We present some experimental
results to validate the effect of the TSs and ASs (as defined in Definitions 7.1 and 7.2)
on the performance of non-binary protograph-based LDPC codes under the hard message
passing decoding algorithm of [27] with list size one, which is similar to the SMP decoder in
Chapter 4. We transmit the all-zero codeword over a QSC with error probability €, where
the channel alphabet cardinality is matched to the field order. For each channel realization
leading to a decoding failure, we check if the subgraph containing the corrupted VNs and
their neighboring CNs is a T'S or AS. In this case, we determine its size. We collected 1000
frame errors at channel crossover probability e = 0.004. Table 7.1 shows the obtained error
profiles, i.e., the number of occurrences of specific TSs and ASs. Simulation results of the
considered code are shown in Fig. 7.2 in terms of FER and SER versus the QSC crossover
probability e. The dashed lines represent the contribution of the dominant (2,2) TS to the
FER and SER. Note that for small ¢, the FER and SER are dominated by the (2,2) TS.

Example 7.3. Consider the protograph with the base matrix B = [2 2]. We evaluate
the TS distribution of the U-NBPB and C-NBPB ensembles from (7.51) and (7.63). The
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140
130 I N U-NBPB
120 | | (laa®a)
110 |- | |e—(1111)
100 |- | -(a?a?1a)
90 -
80 - -
70 -
60 -
50 -
40 - a

30 -
20 + y
10 |- y
0 T

Figure 7.3: Average number of size (2,b) TSs for the ensemble in Example 7.3 for ¢ = 4
and () = 4.

E’II‘DS (25 b)

Table 7.2: The relative minimum A-trapping and absorbing set sizes for the ensemble in
Example 7.4 for A = 0.1.
q 015 (B1) UOis (B1) 0ig (B2) 0ig (Bo)
4 0.014875 0.015016 0.068831 0.069397
8 0.023894 0.024167 0.098416 0.099534
16 0.031946 0.032384 0.121417 0.123159
32 0.037808 0.038421 0.137429 0.139788
64 0.040997 0.041772 0.147011 0.149935
128 0.041660 0.042566 0.151134 0.154555

average number of size (2,0) TSs of the U-NBPB and C-NBPB ensembles for ¢ = 4, Q =4
and different edge labels is depicted in Fig. 7.3. Observe that with a good edge weight
assignment, the C-NBPB ensemble can have fewer small sized TSs. Thus, we can obtain a
C-NBPB ensemble with better TS properties by carefully choosing the edge weights. For
instance, if the size (2,2) TS dominates the error floor performance of the code under a
specific decoding algorithm, then the edge label (1, a, a?, a) would be a better choice than
the other edge labels since it has fewer (2,2) TSs. Otherwise, the edge label (1,1,1,1)
would be the best choice.

Example 7.4. Consider the U-NBPB code ensembles obtained from the base matrices
B; = [3 3] and By = [4 4]. For both ensembles, we evaluate the expressions of the
normalized logarithmic asymptotic distribution of T'Ss, ASs and EASs from Theorems 7.7
and 7.10 for a fixed ratio A = 0.1. The results are shown in Fig. 7.4 and 7.5. Observe that
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The asymptotic distributions

Figure 7.4: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and EASs (dotted lines) of the LDPC ensemble with base matrix
By in Example 7.4 for A = 0.1.

Table 7.3: The relative minimum A-trapping and absorbing set sizes for the ensemble in
Example 7.4 for ¢ = 4.
A 0 (By) Ok (B1) 01 (Ba) 0 (By)
0.005 0.043007 0.043008 0.112292 0.112294
0.05 0.025367 0.025428 0.087155 0.087349
0.15  0.008667 0.008857 0.055246  0.056222
0.2 0.004904 0.005105 0.044668 0.0460343
0.3 0.001342 0.001487 0.029372  0.031380
0.4 0.000261 0.000325 0.019166 0.021595

the ensemble obtained from B, has better TS and AS properties than the one with Bj.
For instance, we can see in Table. 7.2 that for ¢ = 4 and A = 0.1, we have 074 = 0.068831
while for the first ensemble, we have 07¢ = 0.014875. A comparison of the relative minimum
A-trapping and absorbing set sizes of these ensembles for ¢ = 4 and different values of A is
shown in Table. 7.3. We see that for a fixed rate, increasing the VN degrees improves the
TS properties of the ensemble and increases the relative minimum trapping and absorbing
sizes (for the same A and ¢). This matches the observation made in [48].

We generate length N = 6400 codes from the ensembles characterized by B; and B,
for ¢ = 8. Fig. 7.6 shows the performance of these codes under the algorithm introduced
in [27] with list size one. We observe that the code obtained from B, has a better error

floor performance. This is due to the better TS properties of the By base matrix that we
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Figure 7.5: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and EASs (dotted lines) of the LDPC ensemble with base matrix
B, in Example 7.4 for A =0.1.

observed in the analysis.

7.4 Appendices

7.4.1 Proof of Corollary 7.1

The proof is based on obtaining expressions for ¢, s, x,y in terms of w*, and for w* in terms

of 0. Consider (7.5)-(7.7) when 6§ — 0 and v = Af. These equations can be rewritten as

diaxA, (q—1ts’
= Y14 (g Dt
dmax

v y _ ]

=4 (g - )tsT

dmax S upka® + 3 cpkaty
k—

5 Z P: k=2 1 :w*
=114 3wk + Y epaky
k=2 k=1
dgex > oty
£ P; _ k=1 =A0

=1 14+ 3wk + Y by
k=2 k=1

(7.100)

(7.101)

(7.102)

(7.103)
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Figure 7.6: SER versus the QSC crossover probability e for 8-ary codes drawn from the
ensembles in Example 7.4 with N = 6400.

where
N\ (—1)%(qg—1 —1)*
k q
g (=D = (=D*
= -1 . 7.105
o=(y ) a0 (7.105)
From (7.100) and (7.101), we see that d™"§ < @* < d™#¢. Thus, we have
lim @* = 0 (7.106)
60—0

and the notations o(f) and o(w*) are equivalent, i.e., for any function f, f = o(f) <= f =
o(w*). Therefore, we will use o(f) and o(w*) interchangeably. The left hand side of (7.103)
is also o(1), i.e., for some odd k we have x¥y = o(1) and for all other k we have 2%y = o().

Thus, we have

max
dg

AO(1+o0(1)) =¢ Z Pii(q — 1)y = dy(q — 1)ay. (7.107)

Because of (7.106), the left hand side of (7.102) must be o(1), i.e., ¥ = o(1) for some k,
a2 = o(w*) for the other k, 2%y = o(1) for some k and x*y = o(w*) for the other k. The
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left hand side of (7.102) is dominated by the terms corresponding to k = 1,2. We have

dnlax

w (14 o0(1)) =£(g — 1) ZP{Z—lJ? —i—my]
=EP"(1)(q — 1)a” + dv(q — 1)ay
From (7.107) and (7.108), we obtain

w* — Af
xr = m(l +0(1)).

Substituting (7.107) into (7.8), we obtain

_ o P(1)
s=w $ dd.a D@ —20) (1+0(1)).

Thus, (7.101) can be written as

dmln

@*(1 ‘l— 0(1)) - Ad‘rlnindglin( 1)t$

and we have

dmin

((w* — Af)d.d

dmln 2

(¢—1)~

t=
Admmdmln< )dmm 1

Similarly, from (7.100), we have
0(1 + 0(1)) =Aggin(g — 1)t
and
@* =dT™0(1 + o(1)).

Substituting (7.114) into (7.109), (7.110) and (7.112), we obtain

dmin — A
x :J Ve —por ()

P//(l) - V) <1+O(1))'

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)
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___imin pP(1)
s =d" Jea Y PRSIy (1+o0(1)) (7.116)

min_o o_ dmln d‘r]nin

(q/:d;')n(d?m)edﬁ“j <(drvmnP7'(?))dCdv> (1 o(n). (7.117)

t =

From (7.107) and (7.115), we have

B opP (1)
y _w i Do) (7.118)

By substituting (7.115)-(7.118) into (7.4) and by using the Taylor series of In(1 + z) at
xz =0, we obtain (7.11).

7.4.2 Proof of Theorem 7.8

Let P be an (n, k) linear code over F, and £ be a non-trivial character of IF,. We have [131]

x(u+0) = x(u)x(o) Vu,o€F,. (7.119)
Define the function )
n q—
Z x(c'v H dw vi)
UGIF" 1=1¢=0
We have
n q—2 n
S ge) =% ¥ o [T = 3 T4 3 (')
ceP CGP'UEJFZIL i=1¢=0 veIF"z 1/¢=0 ceP
n q—2 n q—2
=Y O Sv0+ X T4 v
vePL i=14=0 ceP vgPL i=14=0 ceP
n q—2
=[PWpr(z)+ > ]I H d)”(m) > x(c'v).
vgPLi=1/4=0 ceP

For v ¢ P, Je € P,u € F, with vTe # 0 and y(uvTe) # 1. Thus, from (7.119) we obtain

> xl(e'v) =3 x(v'(c+ue)) =x(uww'e) Y x(v'e).

ceP ceP ceP
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Since y(uvTe) # 1 and x(uvle) #0, 3 x(c’v) =0and asaresult 3 g(c) =

ceP ceP
Using (7.119), we have
n q—2
ZXC ’U HHI¢1£U1
'UGJF” i=14=0
—ZHXC’L Uz de)l[vz)
'uG]F"z 1
HZXC’L ,Ul Hw(bzfvz
i=1v;€F,
with
q—2
don 14+ >z ifc; =0
ZXCZ v; ngzlz_ 5i(2)
vi€F, 1+ 3 x(c¢-a)x;y  otherwise.
(=0
We obtain
zel(ci)
n g2 g2 [ 1+ EX( i
g(C) = 1 + Z xi,Z H q—2
i=1 =0 =0 1+ 3 zie
(=0
and therefore
1
Wp. () Il >_g(e)
| ’ ceP

b 0 (ci)

[ ] n g2 1+ZX( Nz
. H(Hm) ST .

cePi=1=0 1+ Z Tiyp
=0
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’P‘erj_ (IB)

(7.120)

(7.121)

(7.122)

(7.123)
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where x' = [z}, @), ..., @, |, T, = (274, 7], ..., 2], 5],

q—2 ,
14+ 3 x(@ )z
=0

8
S0~
~

Il
~

Il
=

—_
Q

|
o
~.

Il
\‘H
no

S
—~

=~

—

[\

=~
~—

q—2
I+ > mie
0'=0

7.4.3 Proof of Theorem 7.9

From Lemma 3.1, we obtain

mp ” - mp
coeff (H Ai(x,y)m, iﬂnw(e)ym> =exp {n [1 > In Ai(zi,y)

i=1 ne ;3

q—2
—yIny — > > wyln l'g’g] }

ge&P =0

where € = €/n, w(€) = w(e€)/n, y and x,, for g € &F,0 € {0,...,q — 2} are the unique
positive solutions of (7.71) and (7.72) if we replace w; , by 1, We have

e 0 dy—1
j=1 Q — ezo NeEje, NE;0, - - -, TEj g—2

np dv- _ 1 q—2
=expiny ———H |1—np) &y npéjo,...,MpEjqe 2
j=1 TP =0
and also
ETS(0n, )= 3" exp(nS(€))
with

R 1 ™ q—2 B
S(€) =—> InA(xiy)— Y > Wyelnazg,—yny

e = geEP 1=0
" od, — 1 2
VJ' ~ ~ ~
— Z Hl1l- np Z €50, NMPEj Oy - - -, NMPEjg—2 | -
j=1 P (=0

Thus, we have G'5(6,~) = max S(€) where the maximization is subject to the constraint

3.4 €0 = 0 obtained from (7.59). Using Lagrangian multipliers, we obtain €* = argmax S(€
4.6 €4,

in (7.73).
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7.4.4 Proof of Theorem 7.11

From Lemma 3.1, we have

mP n -~ -~
coct (H Ay, y) e, <w;1>>"e<wf’>”’“"y””> -

=1

1 & _ = _
exp {n { > InAi(x!, 2l y) —ylny — > Y (ég’g Inzy)) + Wy, In 75;)4)] }
npizl ) y

ge&P =0

coeff (HB (s 8%)r 7(8(]}))né(sgg))n1bt0n)i

7j=1

-2
exp{n[ ZlnB ,8;,87) —0Int — ZZ(egglns o+ WgeIns, )]}

ge&P =0

where € = e/n, w = w/n, t and y and ), 7., 5., 5., Vi € {1,...,mp},Vj €
{1,...,np},g € éap N&X, L e {0,...,q—2} are the unique positive solutions of (7.93)—(7.96)

if we replace Sy and w ¢ by €40 and 1w, ,. We obtain

H ( ) Q )q ( (69€+wg€)>_
q— ~ -
gesP Q- ego n(ég,f + w9,5)7 n(ég,O + U~Jg,0), e 7n(ég,qf2 + 71)9761772) =0 N€g.0

1 o o i ~
exp {n > [H (1 —np > (Egp+ W), np(Eg0 + Wgo), - .. s p(Egqon + wg’q_Q))>

ges® [P =0

+ qf(ég,e + W) He (%)] } .

/=0 egue + wg,f

Thus, we have

ENS(0n, yn)= Zexp (nS(é,w))

where
~ 1 & 1 & 0 L@
S w)=—> Az« y) —yIny —0lnt + —> InB;(t, s}, s7)
P = P =1
q—2
- Z L —np Z(égl + wgl)a nP(ég,O + wg,O)a S >nP(é97q—2 + wy,q—Q)
gesP (=0

€g,0 T Wgr

— ~ 1 1 ~ 2 2 ~ ~ e
S ( In(a50,) + g In(22,5%) + (g + ) Ho ())] |
=0
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We obtain GY5(0,7) = max S(é,w) and the vector pair (€*,w*) = argmax S(é, ) in
(7.98).



Trapping and Absorbing Set
Enumerators for Binary GLDPC
Code Ensembles

In this chapter, we propose new definitions of a TS, AS and FAS for GLDPC codes. The
definitions stem from the definitions for LDPC codes and are based on a reference PBF
decoder. We consider the PBF algorithm since it has low-complexity and is suitable for
high-throughput applications. In particular, hard decision decoders for GLDPC-like codes,
e.g., product codes and staircase codes, with bounded distance decoding at the CNs are
currently considered as a baseline approach for very high speed fiber-optic communications;
see [2,42].

We start from a broad definition of T'Ss that includes sets that may be resolved by the
PBF algorithm. The definition is then sharpened, yielding a simple definition of ASs and
FASs. The latter sets cannot be corrected by the PBF algorithm. If all CNs are SPC
codes, we recover the definitions of T'Ss and (fully) ASs of binary LDPC codes [35-37].
We use generating functions to derive the distribution of (elementary) TSs, ASs, and
FASs for irregular GLDPC code ensembles. We present a numerical technique to evaluate
the normalized logarithmic asymptotic distributions of these sets, which requires solving
a system of equations, and we derive asymptotic approximations for small-sized TSs.
Simulation results confirm the stability of FASs under the PBF algorithm and show the
impact of TSs and (fully) ASs on the performance of a GLDPC code. The proposed

enumeration technique is used to estimate the error floor performance for GLDPC codes.
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8.1 Preliminaries

We assign the value 1 to each VN in a set Z and 0 to the VNs outside Z. We denote by
N (Z) the set of the neighboring CNs of Z. Further, we denote by U(Z) the set of unsatisfied
CNs in N(Z) and S(Z) the set of satisfied CNs in N (Z). A CN in N (Z) is satisfied if it
recognizes a valid local codeword when the edges connected to Z are assigned the value 1

and the other edges the value 0. In the following, we propose definitions of T'Ss and (fully)
ASs for GLDPC codes that generalize the ones of LDPC codes [37,48,114].

Definition 8.1 (GLDPC trapping set). An (a,b) TS 7T, is a set Z of a VNs such that
U(Z) contains b CNs.

It was observed in [36] that the error floor performance is dominated by small TSs
where CNs are connected to only one or two VNs. These sets were referred to as ETS.

Analogously, we propose a definition of ETSs for GLDPC codes.

Definition 8.2 (GLDPC elementary trapping set). An (a,b) ETS 77 is an (a, b) TS where
Vr e {1,2,...,n.} each CN of type 7 in S(Z) is connected to duin» VNs in Z and each CN
in U(Z) is connected to exactly one VN in Z.

An example of a (3,1) ETS of a simple GLDPC code is given in Fig. 8.1. We have
A =10,6/7,1/7], P = [2/3,1/3], the CNs cy, c3 of type 1, are (4,3) SPC codes and c
is a (7,4) Hamming code. We assign the value 1 to the set Z = {v3, vs,v7}. Note that
c” =10,0,1,0] is not a valid codeword of the SPC code. However, ¢ = [0,0,1,0,1,0, 1]
and ¢® = [0,1,0, 1] are valid codewords of the Hamming and SPC codes, respectively.
Thus, U(Z) = {c1} and S(Z) = {ca, c3}. Moreover, c3, which is of type 1, is connected to
dmin1 = 2 VNs in 7 and cy, of type 2, is connected to dyin2 = 3 VNs in Z. The unsatisfied
CN c¢; is connected to one VN in Z. Note that |Z| = 3 and |U(Z)| = 1.

Note that some TSs and ETSs do not necessarily cause a decoding failure: For example,
suppose that each CN in U4(Z) is connected to a number of erroneous variable nodes that
is within the component code error correction capability, and that each VN in the (E)TS
is connected to more unsatisfied CNs than satisfied ones. The error pattern would be
resolvable in this case. The connection between (E)TS and decoding failures is difficult
to analyze in general, and it may require using numerical methods to obtain accurate
performance predictions; see [36,48,132]. The merit of the definitions above is to extend in
a natural way the ones that are commonly accepted for LDPC codes and to yield to the
following stricter definitions of AS and FAS. The latter, in particular, provides a rigorous
description of combinatorial structures that lead the PBF (Algorithm 3) to fail. Let n{Y be

the number of flip messages that the VN v receives from its neighboring CNs.



8.1 Preliminaries 221

1110100
H=1](1101010
1011001
T
H:[llll](— C1 C2 c3 —>H:[1111]
-\ 0 0] Q N
N S ™ S) i S) v
Vi V2 V3 Vg Vs Ve V7
0 0 1 0 1 0 1

Figure 8.1: Example of an ETS for a GLDPC code.

Definition 8.3 (GLDPC absorbing set). An (a,b) AS A, is an (a, b) T'S with the additional
property that for each VN v € Z, we have n{!) < d, /2.

Definition 8.4 (GLDPC fully absorbing set). An (a,b) FAS F,; is an (a,b) TS with the
additional property that for each VN v in the Tanner graph nf,f) < d,/2.

Remark 8.1. Consider a set Z of corrupt VNs, where each VN v in the Tanner graph
receives nlf) < d, /2 flip messages. Since for the PBF algorithm, each VN flips its estimate
only if n{f >d,/2, no VN will flip its estimate. Thus, according to Definition 8.4, the VNs
in a FAS cannot be corrected by the PBF algorithm.

Definition 8.5 (GLDPC elementary (fully) absorbing set). An EAS AP, (EFAS F,,) is
an AS (FAS) where V7 € {1,2...,n.} each CN of type 7 in S(Z) is connected to dpin -
VNs in Z and each CN in U(Z) is connected to exactly one VN in Z.

The normalized logarithmic asymptotic distribution of (elementary) TSs or (fully) ASs
for a GLDPC code ensemble for a = On and b = yn is defined by

G(6,7) = lim ~ In (E(6n, yn)) (8.1)

where E(fn,yn) is the average number of (0n,vyn) (elementary) T'Ss or (fully) ASs in the

Tanner graph of a random code from the ensemble.

Definition 8.6 (Relative minimum A-trapping/ absorbing/ fully absorbing set size).
For fixed ratio A = b/a = /6, the second zero crossing of Gag (6, A0)/ GAT (0, A0)/
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GEE(0, AB) (the first one is zero), if it exists, is called the relative minimum A-TS/ AS/
FAS size that we denote by 05/ Oxs/ Gfas-

8.2 Trapping and Absorbing Set Enumerators for

Unstructured Ensembles

For GLDPC codes, we cannot identify a TS only from the underlying topological structure.
For instance, unlike binary LDPC codes, we cannot determine if a CN is satisfied or not
by only checking the number of edges connected to it like binary LDPC codes. Thus, the
methods in [37,48] relying on random matrix enumeration techniques cannot be trivially
extended to GLDPC codes.

In this section, we derive the (elementary) TS and (fully) AS enumerators for unstructured
GLDPC code ensembles and we present an analytical method for evaluating the normalized
logarithmic asymptotic distributions of (elementary) T'Ss and (fully) ASs.

8.2.1 Trapping and Elementary Trapping Set Distributions

We derive next the TS and ETS enumerators for unstructured GLDPC code ensembles.

Lemma 8.1. The average number of (a,b) TSs in the Tanner graph of a code drawn

uniformly at random from the ensemble €AF is

coeff (f(t,s)",t"s") (8.2)

coeff (g(z,y)", x"yP
EN(a,b) =Y ( )

=)

where
f(t,s) :ilnjl 1+ts7]” (8.3)
ote.9) =TT WO @) + o1+ 2 = W] (8.4)
and
W (z) =3 ol = i W gh (8.5)
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is the WEF of %, wi(c) is the Hamming weight of ¢ and W,ET) is the number of codewords
of Hamming weight A in €.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
€AP. We randomly choose a set Z of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We denote by a(a,w) the number
of ways to choose a VNs such that exactly w edges emanate from them. Its generating
function is Y, , a(a, w)t*s"”. Consider a single VN of degree j. This generating function is
1 + ts’ because we can either skip this VN or include it in the set Z. If we skip the VN,
then we will get 0 nodes and 0 edges and this gives us the term 1 corresponding to t°s%. If
we choose the VN, then we get 1 VN and j edges and this gives us t's/. By considering
all possible VN degrees, and since we have A;n VNs of degree j and for each VN we can

decide to include it in Z or not, the generating function is f(¢, s)”. Thus, we have
ala,w) = coeff (f(t,s)",t*s").

Let B(b, w) be the number of ways to choose w edges such that exactly b CNs are unsatisfied.
Its generating function is 3, ,, 5(b, w)ybx®. A CN is satisfied if it recognizes a valid local
codeword when the edges connected to Z are assigned the value 1 and the other edges the
value 0, and it is unsatisfied otherwise. Consider a CN of type 7. If it is satisfied, then its

generating function is

gelz,y) =9 > 2@ = W (x)

CcEC

and if it is unsatisfied, then its generating function is
gs(w,y) =y |1+ 2)" = W(x)].
Considering all types of CNs and that there are £P.n CNs of type 7, we obtain
B(b,w) = coeff <g(a:, y)", xwyb) .

Note that for an LDPC code where all CNs are SPC codes, g(z,y) in (8.4) simplifies to
(6.110). Let Z; be a RV indicating the number of edges emanating from the set Z. Further,
let Z5 be a RV that is equal to 1 if there are exactly b unsatisfied CNs. Thus, we have

EAP (a,b) = (Z) Pr{Z, = 1} (8.6)
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and
Pr{Z, =1} =) Pr{Z, = w}Pr{Z, = 1|2, = w}

coeff (f(t, 5)", t25%) coeff (g(x,y)", 2y") (8.7)

R @

Lemma 8.1 characterizes the exact average number of (a,b) TSs for block length n. In
the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of T'Ss
for the ensemble €AF for a = On and b = yn. This distribution is a useful tool to analyze
and design GLDPC codes with good TS properties and can be computed efficiently. In
particular, the analysis allows to determine if the expected number of TSs with size 6n,
with 6 small, goes exponentially fast to zero, hence providing insights on the T'S properties

of the ensemble. We next present a simple way to compute the distribution.

Theorem 8.1. The normalized asymptotic distribution of (6n,~yn) TSs is
G13(0,7) = —dvIn(1 + zs) = OIn(t) — yIn(y) + In (f(t,5) + I (g(z,y))  (8:8)

where t, s, x,y are the unique positive solutions of

Jln f(t,s)

g = 59

dln f(t, s) Olg(x,y)

dlng(x,y)

i e 1
dy 7 (51

where f(t,s) and g(x,y) are defined in (8.3) and (8.4), respectively, and

TS

w0 =d, .
1+ s

(8.12)

The proof of Theorem 8.1 is omitted since it is similar to the one of Theorem 6.7.
Note that to compute the normalized distribution of ETSs, we need to replace g(x,y)
given in (8.4) with

g(e.y) = [T [L+ WD, a4 ynga] ™

min, T

(8.13)

=1

We briefly explain the derivation of g(z,y) in (8.13). For an ETS, a satisfied CN of type 7,
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which recognizes a valid local codeword, is connected zero or duy, » times to VNs in Z. The
corresponding generating function is

ge(z,y) == ¢° [1 L pdmine]

dmin,r

Each CN in U(Z) is connected to exactly one VN in Z. The corresponding generating
function is gz(z,y) := yn,x. Considering all types of CNs, we obtain g(z,y) in (8.13).

We introduce next a Lemma that will be useful in analyzing the behavior of G%’SP(Q, Af)
for small # and fixed A.

Lemma 8.2. For a fixed A = /6, the derivative in 6 of G (6, Af) is

AGRE (0, AG)

0 = —1In(t) — Aln(y) (8.14)

where for each 6, the values of ¢t and y are given by the solution of the system of equations
(8.9)-(8.11).

Proof. Note that the solutions of the system of equations in (8.9)-(8.11) are implicit
functions of #. From (8.12) and (8.8), we obtain

AP af(t,s) of(t,s) ~ %
Mz—ln(i)—AIn(y)—i—g a0 +§ os__ _ W
de de | f(t,s) t do | f(t,s) s
) (8.15)
+ dj 8953‘;:[/) _ E + % 89(8y’y) B &
o |g(x,y) = | dO|g(xy) oy |
The terms in the brackets are equal to zeros due to (8.9)-(8.11). |

Consider now small # and v = Af. We obtain a closed form expression of GRZ (6, A9),

which we introduce in the following corollary proved in Appendix 8.4.1.

Corollary 8.1. Let d™" be the minimum VN degree and r the smallest minimum distance
over all CNs. For fixed A =~/ and 6 — 0, we have

r—l)(dvr _A)_T(IH(G)—l)— do T—A

dmin _ A dmin _ A -1 dmin o A B
— v ln v (7_) _ (T )( ) ) ln(dv) (816)
r ry P.Wr r

i) A gonin
—|—1n<( - )AA & )]—l—o(@).

GAF (0, AG) =0 [( In(d,)
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Note that a positive 0% exists whenever the derivative of GA& (6, Af) is negative as
6 — 0. Thus, by substituting (8.174) and (8.175) in (8.15) we find that a positive 6%

exists whenever d® > - 4+ A or df™ = = + A and

Ad‘rlﬂin (df]nin)d\rfnm T _d{’nin

If the relative minimum A-TS size is small enough, then we can use Corollary 8.1 to
approximate it. Numerical simulations show that the relative minimum A-TS size is small
for the case of small VN degrees or high CN degrees, as observed in [48], especially if the
CNs are SPC nodes or super CNs with small minimum distance. We now only need to
determine 0 such that G2 (0, Af) = 0 with 0 < # < 1. By neglecting the term o(f), we

have

. drin—a
dmm A (r—1)(d™n_A)—r
Oig ~ exp(1) (() x
r P
_(r=D@E@Pinoa) _dpinoa (T71>(d{,nrian)7r (8.18)

A?d, T de 7
Ad\l;nin (d;nln)d‘l’nln

Note that if all CNs are associated with SPC codes, the expression reduces to (6.123). The
approximation (8.18) is accurate when 67 is sufficiently small and does not require solving
the system of equations in Theorem 8.1.

For the regular ensemble, Lemma 8.1 and Theorem 8.1 simplify as follows.

Lemma 8.3. The average number of (a,b) TSs in the Tanner graph of a code drawn
randomly from the regular ensemble with variable node degree d, and where all the CNs
are associated with the linear code % of length d. and WEF W (z) is

n\ coeff (g(z,y)™, z2%y®
ET¢™ (a,0) :<a> o (nzj)) /) (8.19)
where
gle.y) = W) +y ((1+2)% - W(@)]". (8.20)

Proof. The Lemma can be proved from Lemma 8.1. Note that w in (8.2) is equal to ad,.
Moreover, the number of ways to choose a VNs such that exactly ad, edges emanate from

them is equal to (Z) Further, the generating function g(x,y) in (8.20) can be obtained
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from the one in (8.4) by taking n. =7=1,P, = 1. |

Theorem 8.2. The normalized asymptotic distribution of (6n,~yn) TSs for the regular

ensemble is
G (0,7) = — (dy — 1) Hy(0) — vIn(y) — 0d, In(z) + In (g(z,y)) (8.21)

where

_ 7 W ()
§—7 (14 z)d —W(x)

y (8.22)

and z is the unique positive solution of

RCLYIC )Y

o (8.23)

where g(z,y) is defined in (8.20). The proof is omitted since it is similar to the one of
Theorem 6.8.

To compute the distribution of ETSs for regular ensembles, we need to replace in (8.19)

the generating function g(z,y) given in (8.20) with
o ¢
9(w,y) = [1+ Wy, 2% + dexy] (8.24)

where d;, is the minimum distance of €.

Due to the simplicity of g(x,y) in this case, we can obtain a closed form expression of

the normalized asymptotic distribution of (On,yn) ETSs for the regular ensemble:

GEis(0,7) = — (dy — 1) Hy(0) — vIn(y) — 6d, In(z) + In (g(z,y)) (8.25)
where
od, — Y dniin
v 8.26
(dein (édmin - ’Y(dmjn — 1) — 9dv)> ( )
v 1+ Wy . g dmin
B P 2

Proof. The proof is similar to the one of T'Ss. We need only replace in (8.21) the generating

function g(z,y) given in (8.20) with the one in (8.24), where z,y are the unique positive



228 8 Enumerators for Binary GLDPC Code Ensembles

solutions of

xalng(ﬂc,y) 0d

o =bd, (8.28)
Olng(z,y)
o =. (8.29)

Substituting (8.24) in (8.28), (8.29) and with some manipulations, we obtain z,y in (8.26)
and (8.27). ]

8.2.2 Absorbing Set Distribution

Similar to T'Ss, an AS cannot be identified only from its underlying topological structure
since we cannot determine if a CN is satisfied or not by only checking the number of edges
connected to it. Moreover, even if the constraints imposed by a CN are not satisfied, the
node will not necessarily send flip messages in the bit flipping algorithm, as would happen
for binary LDPC codes. The generating functions used for the AS enumerator capture
the behavior of the bit flipping decoder with BDD at the CNs. The approach can also be
used for other hard decision decoding algorithms by deriving a generating function that

enumerates the outgoing flip messages.

In this section, we derive the AS enumerator for GLDPC codes and we develop an

analytical method for evaluating the normalized logarithmic asymptotic distribution of
ASs.

Lemma 8.4. The average number of (a,b) ASs in the Tanner graph of a code drawn

randomly from the irregular GLDPC ensemble €AF is

e

e,w

x coeff (f(t, s1,s92)", t%s]s5) (8.30)

etw) \ e
where
ape e b
flost,s) =] [1+¢ D (7)3{‘%@1 (8.31)
=1 =0 \J1
g(z1,22,y) = ﬁ A (21, 39, y) (8.32)

=1
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and

A+ z)™ + (1 —z)™] 4+ y3 [T+ 22)" — (1 —29)™] €, is SPC
ny ty min(d,nr—k)
Ar(r1,29,y) = QW) (x1)+y [Z > > (hﬁj> ("g:jh> X else
k=16=1 7=0
(b — WD 4 (L4 2™ = WO ()]
(8.33)
where h = k — § + 2j.

Proof. Consider the Tanner graph of a code drawn randomly from the ensemble €AF. We
randomly choose a set Z of a VNs and assign the value 1 to each VN in the set with a
uniform distribution over all possibilities. We have 2 types of edges connected to the VNs
in Z. Edges of the first type do not carry flip messages and the edges of the second type are
the ones carrying flip messages. Compared to the TS analysis, we distinguish between the
edges connected to Z which carry flip messages and the edges not carrying flip messages.
This lets us include the additional VN constraints imposed by the AS, namely that for each
of the VNs in Z, we have n < d,/2. Let a(a,e,w) be the number of ways to choose a
VNs such that exactly e type 1 edges and w type 2 edges emanate from them and for each
of these VNs n{) < d,/2. The corresponding generating function is 3, ., a(a, e, w)t*s¢s¥.
Consider a VN v of degree j. Let 7 — j; and j; be, respectively, the number of type 1 and
2 edges connected to v. Again, we can either include this VN in Z or not. If we skip it,
then we obtain 0 nodes and 0 type 1 and type 2 edges. If we choose it, then we will have 1
node, j — j; type 1 edges and j; type 2 edges where j; € {0,1,...,[(j —1)/2]} (since for
the VNs in Z we have nlf) < d,/2). Considering all possible VN degrees, the generating

function is f(¢, s1, s2)™. Thus, we have
ala, e, w) = coeff (f(t, sq,82)", t%s{sy) .

Let B(b,e,w) be the number of ways to choose e type 1 edges and w type 2 edges
such that there are exactly b unsatisfied CNs. The corresponding generating function
i8S 3 pew B(b, e, w)ybaay. We clarify briefly the derivation of A, (x1,2s,y) for super CNs.
A CN of type 7 is satisfied if it recognizes a valid local codeword when the edges connected
to Z are assigned the value 1 and the other edges the value 0. In that case, the super CN
doesn’t send flip messages to its neighboring VNs in Z, i.e., the number of type 1 edges
connected to that CN is equal to the weight of the codeword and the number of type 2
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edges is 0. The generating function of a satisfied CN of type 7 is then

nr

ge(w1,y) = > Wi ah = W (), (8.34)
k=0

For an unsatisfied super CN of type 7, the received vector z is not a valid codeword. Given
z € Fy7 \ €, of weight k, the decoded vector € is a codeword if 3¢ € €, with du(z, ) < t..
Consider codewords of weight h, the number of which is W}ET). For a given ¢ € %, with
wy(e) = h, assume z has h — j ones in h — j out of the h entries where ¢ is 1. Thus, z has
k — (h — j) ones in k — (h — j) out of the n, — h positions where ¢ is zero. The number
of possibilities is (hh ><k”Th + ) Note that the number of type 1 edges is the number of
positions where both ¢ and z are 1 which is A — 7, the number of type 2 edges is the number
of positions where ¢ is zero and z is 1 which is k —h + j and du(z,¢) =k — h+2j =: 0.
We need 1 < < ¢, so that the decoded vector is ¢ (6 > 1 since z is not a valid codeword).
By summing over 6 = 1,...,¢,, j =0,...,min(d,n, — k) and over all possible weights that

z can have we obtain the generating function

ny tr min(dnr—k) h n. —h .
yy >y <h - ) ( 5 ):c? RAEAUAR (8.35)

k=16=1  j=0 J J
Consider now the case of z € F3™ \ %, of weight k such that Ac € €, with du(z,¢) < t,,
the decoded vector is z and the super CN will not send any flip messages to its neighboring
VNs in Z, i.e., the number of type 1 edges connected that CN is equal to the weight of the

codeword and the number of type 2 edges is 0. We obtain the generating function

> [<n> i " %_k) < " ) (n - h) W(T)} o (8.36)
=\ k h—j)\o—j5) " |™" '

From (8.34), (8.35) and (8.36) we obtain (8.33) for a super CN. Consider now an SPC
node. An SPC node is satisfied if it is connected an even number of times (including zero)

to Z. In this case, it doesn’t send any flip messages. The generating function of a satisfied
SPC node is

1
aeang) = X (")t = ) 0.
O<z<n7—
7 is even

The SPC node is unsatisfied if it is connected an even number of times to Z. In this case,

it sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
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SPC node is

ge(z2,y) =y" > ( )5 %[(1+$2)"T—(1—932)"T]~

O<z<n.r
i is odd

Note that for an LDPC code, where all CNs are SPC codes, g(x1, z2,y) in (8.32) simplifies
o (6.135). We have

B(b, e,w) = coeff (g(xl,xQ, y)", :fog’yb) }

Let Zy, Z5 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from Z, where each VN in Z is connected to fewer type 2 edges than to type 1
edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and
each of the other CNs is satisfied, and to 0 otherwise. Thus, we have

EAP (a,b) = (Z’) Pr{Z; = 1} (8.37)

and
Pr{Z; =1} =) Pr{Zi =e,Z = w} x Pr{Z; = 1|Z, = €, Zo = w}

(8.38)

Z coeff (f(t, 51, 59)", t%s5sy)  coeff (Q(xla T2, 9)", x(fxqév?/b>

@ NG

Next, we analyze the normalized logarithmic asymptotic distribution of ASs and present

an efficient way to compute it.

The exact average number of (a,b) ASs derived in Lemma 8.4 is difficult to compute
for large block length n. As n — oo, one can use the Hayman Formula in Lemma 3.1 to
derive the normalized logarithmic asymptotic distribution of ASs for the ensemble €A

for a = On and b = yn as shown in Theorem 8.3.

Theorem 8.3. The normalized asymptotic distribution of (6n,yn) ASs is

G5 (0,7) =In(f(t,s1,52)) — 0In(t) — yIn(y) + In(g(z1, 22, y))

_ (8.39)
- dv hl(l + 2181 + 1'282)
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where t, s1, S9, X1, T2,y are the unique positive solutions of

t&lnf(t,51,32)

_ 4

b p (8.40)

Slaln fg;lsla 82) :xlalnggxli L2, y) — é* (841)

R fgss,;l, ) :malng(g;; .9) _ o (8.42)
1

;2 ng(gly, Y _, (8.43)

where f(t, s1,51) and g(z1,22,y) are defined in (8.31) and (8.32), respectively and

é* :7 x181

v 8.44
1+ 2181 + T2S9 ( )
- T2S59

w* =d, . 8.45
1+ 2181 + T2S2 ( )

Similar to the TS case, the expressions in Lemma 8.4 and Theorem 8.3 can be simplified
for regular ensembles. We consider the case where all the CNs are super CNs and are
associated with the linear code € of length d, error correcting capability ¢t and WEF W (z).
The case of SPC CNs is presented in Lemma 6.5 and Theorem 6.10.

Lemma 8.5. The average number of (a,b) ASs in the Tanner graph of a code drawn

uniformly at random from the regular ensemble is

ESe®(a,b) =Y ) coeff (f(s)", 5*%~) (8.46)

(n) coeff (g(w1, 22, y)", w55y’
a

(re) (%)

where

o= % (%) (5.47)
(8.48)

where h = k — 20 + 2j.

The Lemma can be proved using Lemma 8.4.

We show now that to compute the normalized logarithmic asymptotic distribution of
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ASs for regular codes, one must solve 3 equations instead of 6 for the irregular case.

Theorem 8.4. The normalized asymptotic distribution of (0n,yn) ASs for the regular

ensemble is

G (0.7) = — 0d, In(xy + wa5) — 7 In(y)

(8.49)
+In (g(21, 22,y)) +6In (f(s)) — (dy — 1) Hy(6)
where
y=c2 T Wi (8.50)
€7 6 0 I ) () @k W 4 (1 ) — W ()
k=16=1 j=0 h=3)\ 6=j ! 2 ! h ! !
and s, 21, xo are the unique positive solutions of
dln f(s) Olng(xy, x9,y) -
0 = = (6d, — ¢&* 51
s, ) o, ( é) (8.51)
0ln g(xy, 2o, .
1 9(81 2Y) =e"g(x1,72,y) (8.52)
T
where f(s) and g(z1, z2,y) are defined in (8.47) and (8.48), respectively, and
& = 0d,— 1 (8.53)
r1 + 198

The proof follows the same steps of the proof of Theorem 6.8.

8.2.3 Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for GLDPC code ensembles.

Lemma 8.6. The average number of (a,b) EASs in the Tanner graph of a code drawn

uniformly at random from the LDPC ensemble €F is

coeff (g(z1, 29)", 2528 o
EQA%@% b) = Z ( ndy\ [e+b ) Coeff (f(ta S1, 32) 7t 8183) (854)
= @eE)
where f(t,s1, s9) is defined in (8.31) and
glar, x9) = [T Ar(21, 29)*" (8.55)

T=1
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and

1+ ("{)x% + N, Ty if €, is an SPC code

AT(ZEhZEQ) = (856)

dimi _
L+ Wd(r‘;)in " +nywy otherwise.

Proof. Consider the Tanner graph of a code drawn randomly from the ensemble €AF. We
randomly choose a set Z of a VNs and assign the value 1 to each VN in the set with a
uniform distribution over all possibilities. As for ASs, we have 2 types of edges connected
to the VNs in Z. Edges of the first type don’t carry flip messages and the edges of the
second type are the ones carrying flip messages. For EASs an unsatisfied super CN of type
7 is connected to only one VN in Z, considering the received vector z with wy(z) = 1,
since t, > 1, the output of the BDD is the all-zeros vector. Thus, the super CN sends a flip
message to the VN in Z. The edge connecting the VN from Z and the super CN is then of
type 2. The same holds for SPC CNs. Since we have b unsatisfied CNs and each of them is
connected to exactly one VNs in Z, we have b type 2 edges. Let a(a,e,b) be the number of
ways to choose a VNs such that exactly e type 1 edges and b type 2 edges emanate from
them and for each of these VNs n{f) < d,/2. Similar to the AS case, we obtain

a(a,e,b) = coeff (f(t, S1, 52)",t“3§sg> :

Let (b, e) be the number of ways to choose e type 1 edges such that there are exactly

b unsatisfied CNs connected each to exactly one VN from Z and where all satisfied CNs

of type 7 are connected to dp, . VNs from Z. The corresponding generating function

is Y. Ble,b)asal. We clarify briefly the derivation of A.(x,2,). Each satisfied CN is

connected to dyin, VN from Z. The generating function of a satisfied CN of type 7 is then
ge(x1) = 1+ WD gfminr,

min, T

For a degree d. unsatisfied super CN of type 7, the received vector z is not a valid codeword
and has weight 1. Since ¢, > 1, the super CN corrects the error and sends a flip message
to the VN from Z. The same holds for SPC CNs. We obtain the generating function
gz(x2) := n,xy for an unsatisfied type 7 CN. Note that for an LDPC code, where all CNs
are SPC codes, g(x1,z2) in (8.55) simplifies to (6.154). We have

B(e,b) = coeff (g(ml,@)”,aﬁxg) )
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We randomly choose a set Z of a VNs with a uniform distribution over all (Z) possibilities.
Let Z; and Z5 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from Z, where each VN in 7 is connected to strictly fewer type 2 edges than
type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EAR (a,b) = (Z) Pr{Z; = 1} (8.57)

and
PI'{Zg = 1} :ZPI'{Zl =€, Z2 = b} Pr{Z3 = 1‘Z1 = €, Zz = b}

coeff (f(t, s1, sﬁ",t“sﬁs%) coeff (g(xl, )", xfxg) (8.58)

0 )

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present
an efficient way to compute it.

Theorem 8.5. The normalized asymptotic distribution of (fn,~vyn) EASs for the ensemble

1S

Gata(6,7) = — dyIn(dy) 4 (dy — ) In(dy — ) — O1n(t) — (dy — ) In(1 + zy51)

(8.59)
+1In(g(x1,22)) + In (f(t, 51, 52)) — vIn(xas2) + vIn(7y)
where t, s1, S9, 21, X2 are the unique positive solutions of
Oln f(t, s1, S2)
t =0 8.60
Y (8.60)
Oln f(t, s1, 82) Olng(xy,ms)
f— f— * . 1
s1 D5, el 9, é (8.61)
Oln f(t, s1, S2) Oln g(xq, x2)
Sa D5y T2 Oy Y ( )

and where f(t,s1,s2) and g(xy,z2) are defined in (8.31) and (8.55), respectively, and

3 x181

e* = (dy —y)——. 8.63
o s (3.63)

We now derive the EAS finite-length and asymptotic distributions for the regular en-

sembles. Suppose all the CNs are super CNs and are associated with the linear code & of
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length d., minimum distance dy,;, and WEF W (x). The case of SPC CNs is presented in
Lemma 6.7 and Theorem 6.12.

Lemma 8.7. The average number of (a,b) EASs in the Tanner graph of a code drawn

uniformly at random from the regular ensemble is

m\ /n)\ dc’ coeff (g(x)m=b, zod=?
ERLE (a,0) :( )( ) (9() ) (s ) 00

b)\a (o) (%)

where

Ldv—l

f(s) = EQ:J <d> s (8.65)

ji=0 \J1

g(x) =1 + Wy, admn. (8.66)

min

The Lemma can be easily derived from Lemma 8.6.

We show now that to compute the normalized logarithmic asymptotic distribution of

EASs for regular codes, one must solve one equation compared to 5 for the irregular case.

Theorem 8.6. The normalized asymptotic distribution of (fn,yn) EASs for the regular
GLDPC ensemble is

GERE(0.7) == (A~ DH(0) = dbHy (53 ) +71n(de) = 7In(s)

N (8.67)
+ (=) n(g(x)) +0In(f(s)) — (0dy —7) In(x) + {Hy <£>
where
o de - driin
v <dein (gdmin - de - V(dmin - 1))) (868)
and s is the unique positive solution of
g IS8 (8.69)

ds

where f(s) is defined in (8.65). The proof of the Theorem is similar to the one of Theorem
6.8.



8.2 Enumerators for Unstructured GLDPC Ensembles 237

8.2.4 Fully Absorbing Set Distribution

In this section, we derive the FAS enumerator for GLDPC codes and we present an analytical

method for evaluating the normalized logarithmic asymptotic distribution of FASs.

Lemma 8.8. The average number of (a,b) FASs in the Tanner graph of a code drawn

randomly from the ensemble €’AF is

l,b
coeff (g(wl, Ta, 3, Y)", ]y T3y )

Epia(a,b) = > 3 3 X
ndy et+w) (ndy—e—w
by () (he) (o) (8.70)
coeff(f(t, s1,89,53)", t*s55% s5)
where
d‘r,nax L%J j LJQIJ Aj
f(ta 81782a83) - H Z ( > +t Z ( ) J=n ]1 (871)
iz | im0 \n j1=0
g(@1, 22, 23,y) = [[ Ar(21, 22, 23,9)*"" (8.72)
T=1
and
(1+:v1)"”2r(1*w1)”7 + y($3+x2)”75($3*“2)"7 &, is SPC

ny tr min(d,nr—k)
A (w1, 29, 23, y) = W (zy) +y lz > > ( h ) ("T’.h) X otherwise (8.73)

16=1 =0 h=3/\ =5
(2t 7y — )W+ (14 20 = WO ()]

where h =k — § + 25.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
€AP. We randomly choose a set Z of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We have 3 types of edges. Edges of
the first type are connected to the VNs in Z and don’t carry flip messages, the edges of
the second type are the ones connected to the VNs in Z and carrying flip messages and
the edges of the third type are connected to the VNs in V \ Z and carry flip messages.
Compared to ASs, we differentiate between the edges connected to the VNs in V \ Z that
carry flip messages and the ones not carrying flip messages. This is needed to include the
additional constraint on the VNs in V \ Z imposed by the FAS. Let «a(a,e, w,l) be the

number of ways to choose a VNs such that exactly e type 1 edges, w type 2 edges emanate
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from them and [ type 3 edges emanate from the other VNs and for each VNs n{) < d, /2.
The corresponding generating function is 3, ., a(a, e, w, 1)t*sisy sh. Consider a VN v of
degree 7. Let j — 71 and j; be, respectively, the number of type 1 and 2 edges connected to
v. Again, we can either include this VN in Z or not. If we skip it, then we obtain 0 nodes
and 0 type 1 and type 2 edges and j; type 3 edges where j; € {0,1,...,[(j —1)/2]} (since
for the VNs in V' \ Z we have n{) < d,/2). If we choose it, then we will have 1 node, j — j;
type 1 edges and j; type 2 edges where j; € {0,1,...,|(j —1)/2]} (since for the VNs in
T we have n < d,/2). Considering all possible VN degrees, the generating function is

f(t,s1,82,53)". Thus, we have

ala, e, w,l) = coeff (f(t, S1, Sa, 53)”,15“3?5;“3%) :

Let (b, e, w,l) be the number of ways to choose e type 1 edges, w type 2 edges and [
type 3 edges such that there are exactly b unsatisfied CNs. The corresponding generating
function is Yy 01 B(b, €, w, DyPa§ay xl. We clarify briefly the derivation of A, (z1, 29, x3,y)
for super CNs. A CN of type 7 is satisfied if it recognizes a valid local codeword when the
edges connected to Z are assigned the value 1 and the other edges the value 0. In that case,
the CN doesn’t send flip messages to its neighboring VNs in Z, i.e., the number of type 1
edges connected that CN is equal to the weight of the codeword and the number of type 2
and 3 edges is 0. The generating function of a satisfied CN of type 7 is then

ge(z1,y) == Wk = W (2y). (8.74)
k=0

For an unsatisfied super CN of type 7, the received vector z is not a valid codeword. Given
z € Fy \ €, of weight k, the decoded vector ¢ is a codeword if I € €, with dy(z,¢) < t,.
Consider codewords of weight h, the number of which is W,ET). For a given ¢ € €, with
wg(c) = h, assume z has h — j ones in h — j out of the h entries where ¢ is 1. Thus, z has
k — (h—j) ones in k — (h — j) out of the n, — h positions where ¢ is zero. The number
of possibilities is (h}jj) (k"jh_ fj) Note that the number of type 1 edges is the number of
positions where both ¢ and z are 1 which is h — j, the number of type 2 edges is the number
of positions where ¢ is zero and z is 1 which is £ — h + 7 and the number of type 3 edges is
the number of positions where ¢ is 1 and z is 0 which is j and dy(z,¢) = k—h+2j =: 5. We
require 1 < § < ¢, so that the decoded vector is ¢ (6 > 1 since z is not a valid codeword).

By summing over 6 =1,...,t,, j =0,...,min(d, n, — k) and over all possible weights that
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z can have we obtain the generating function

nr ty min(ne—k) /g n —h . o

TN () (e (5.75)
k=16=1  j=0 J J

Consider now the case of z € Fy~ \ %, of weight k such that fic € €, with dg(z,c) < t,.

The decoded vector in that case is z and the super CN will not send any flip messages

to its neighboring VNs in Z, i.e., the number of type 1 edges connected that CN is equal

to the weight of the codeword. Moreover, the number of type 2 and 3 edges is 0 and we

obtain the generating function

<7Z> i b % b (h i j) (Tts__ jh> Wéf)] 1. (8.76)

Consider now an SPC node. An SPC node is satisfied if it is connected an even number of

nr

v,

k=1

times (including zero) to Z. In this case, it doesn’t send any flip messages. The generating
function of a satisfied SPC node is

1

ang) = X (")t = J0 ka0 .
O<z<n-r

The SPC node is unsatisfied if it is connected an even number of times to Z. In this case,

it sends flip messages to all its neighboring VNs. The generating function of an unsatisfied

SPC node is

ge(a, 23, 9) :=y" > ( )xéw?ff L=

0<z<n7—
i is odd

(23 + 22)"" — (23 — 22)"7].

N =<

Note that for an LDPC code, where all CNs are SPC codes, g(z1,zs,x3,y) in (8.72)
simplifies to (6.170). We have

5([)’ 67w7l) = coeff (g(xl,l'g,xg,y) xem;uméyb)
Let Zy, Z5 and Z3 be three RVs indicating, respectively, the number of type 1, type 2, and
type 3 edges, where each VN in Z is connected to strictly less type 2 edges than to type 1
edges and each VN in V \ Z of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z, be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
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the other CNs is satisfied, and to 0 otherwise. We have

EAP(a,b) = (Z) Pr{Z, = 1} (8.77)

and

Pr{Z, =1} = Z Pr{Zi=eZy=w,Zs =1} Pr{Zy =121 = e, Zy = w, Z3 = I}
e w,l
coeff (f(t,s1, 52, 53)", 1755 s3's})

=2 ) x (8.78)

e w,l a

1,b
coeff (g(l‘hxz, 3, y)na TITy T3y )

ARG

Similar to T'Ss and ASs, we study next the normalized asymptotic distribution of (6n,yn)

FASs and present an efficient way to compute it.

Theorem 8.7. The normalized asymptotic distribution of (6n,vyn) FASs is

GRis(0,7) = — dyIn(1 + 2181 + 2955 + 2383) — O1n(t) + In (g(z1, 22, 73, Y))

(8.79)
- ’yh’l(y) + In (f(t7 S1, 52, 53))
where t, s1, S9, 3, 1, T, X3,y are the unique positive solutions of

talnf(taastl,SQ,Sg) —y (880)
Oln f(t, 51, 89, 53) Olng(wy, w2, 73,y) .

= =é* 8.81

o1 881 “ al’l ¢ ( )
6lnf(t, 81782783) alng(wlax%m?ny) ~

= = 0" 8.82

52 882 2 8[E2 v ( )
Oln f(t, 51, 82, 53) Olng(zy, w2, 73,y) 5

= =" 8.83

53 883 3 8.:53 ( )

O0In g(w1, 72, 73,y)
= 8.84
y o v (8.84)

where f(t,s1,s1,3) and g(x1,x9, x3) are defined in (8.71) and (8.72), respectively, and

~ 3 151

e =

(8.85)

v
1+ 181 + L9282 + T3S3
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@* =d, 252 (8.86)
1 + 2181 + X989 + 383
r L353

v .
1+ X181 + X989 + X383

=

(8.87)

The proof of the Theorem is similar to the one of Theorem 6.7.

Similar to the TS and AS cases, the expressions in Lemma 8.8 and Theorem 8.7 can be
simplified for regular ensembles. We consider the case where all the CNs are super CNs
and are associated with the linear code % of length d., error correcting capability ¢ and
WEF W(x). The case of SPC CNs is presented in Lemma 6.9 and Theorem 6.14.

Lemma 8.9. The average number of (a,b) FASs in the Tanner graph of a code drawn

uniformly at random from the regular ensemble is

ady—e

ft (9(1'1,362,%3,9) T1Ty xgyb)
Epi(a,0) =Y e R 7w e
FAS el (e (&) (") (8.88)
(Z) coeff (f(sl) 9= 6) coeff (f(SQ)"_“, SZQ)

where

dy—1
=3

f(s) = ZJ <d>sf (8.89)

71=0 J1
and

de ¢ min(d,dc—k) h d h
g(z1, 2, 23,9) = |W(x1) + 9y > (h )((; j )th

k=16=1  j=0

(8.90)
(2h 92k ] — 2k) + (14 @)% = W(a))]

where h = k — 20 + 2j. The Lemma can be proved using Lemma 8.8.

We show now that to compute the normalized logarithmic asymptotic distribution of

FASs for regular codes, one must solve 5 equations instead of 8 for the irregular case.

Theorem 8.8. The normalized asymptotic distribution of (6n,~vyn) FASs for the regular

ensemble is

Go%(0,7) = — 0d, In(z1 + 951) — v1n(y) — (dy — 1) Hy(0) + In (g(z1, 22, 23, 1))

(8.91)
F 0 (f(s1)) + (1= 0)In (f(s2)) — (1 — 0)d, In(1 + 2350)
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where

gl W (x1)
d. ¢t min(d,dc—k)
ST TS () (G @I - e + (14 ) = W)

=16=1 j=

y=

and si, o, X1, T9, x3 are the unique positive solutions of

din f(s;)  Olng(wy, 29, 73,9)

051 s, =Ty o5 = (6d, — &) (8.92)
dn f(s2) Olng(zy, x9,w3,y) 5
1—-6 = =" 8.93
( )52 sy I3 O3 ( )
81H9($1;$2;1’379) ~
_ 94
T 8;(;1 (& (8 9 )

where f(s1) and g(x1,x9, x3,y) are defined in (8.89) and (8.90), respectively, and

T

& =0d,——— (8.95)
T1 + X951
~ T3S52
r=(1-60)d,———. .
(1= 0)dv = (8.96)

The proof follows the same steps of the proof of Theorem 6.8.

8.2.5 Elementary Fully Absorbing Set Distribution

In this section, we derive the finite-length and asymptotic EFAS enumerators for GLDPC
codes.

Lemma 8.10. The average number of (a,b) EFASs in the Tanner graph of a code drawn
randomly from the ensemble €AF is

coeff (g(xl Tg, 23)", w5t
AP ) ) ) 3
Egias(a,0) =)

nav e+b nav—e—b
el e+b e l

) coeff(f(t,s1,59,53)", t*s5s5s5) (8.97)

where
d‘rlnax L%J j A]
f(t7 51,82,53) = H Z ( ) +1 Z ( ) J=n ]1 (898)
j=1 | ji=0 \J1 ji=0 \J1
g(x1, 22, 23) = [[ Ar (21, 22, 23)*7" (8.99)

=1
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and

14 (™)2? + nyagz™ ' %, is SPC
()7 ’ (8.100)

A, 72 73) = () .dmi
T+ Wy ' ™" +n;wy otherwise.

Note that, using BDD, for a received sequence z with wy(z) = 1 and ¢, > 1, we have
¢ = 0. That means, super check nodes never send flip messages to VNs outside Z. Thus,
if all CNs are super check nodes, the condition that for each VN outside Z, n{ < d, /2 is
always fulfilled. In that case, EASs and EFASs are equivalent.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
€AP. We randomly choose a set Z of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We have 3 types of edges. Edges of
the first type are connected to the VNs in Z and don’t carry flip messages, the edges of
the second type are the ones connected to the VNs in Z and carrying flip messages and
the edges of the third type are connected to the VNs in V \ Z and carry flip messages.
Compared to ASs, we differentiate between the edges connected to the VNs in V \ Z that
carry flip messages and the ones not carrying flip messages. This is needed to include the
additional constraint on the VNs in V' \ Z imposed by the FAS. As for EASs, there are b
type 2 edges. Let a(a,e,b,l) be the number of ways to choose a VNs such that exactly e
type 1 edges, b type 2 edges emanate from them and [ type 3 edges emanate from the other
VNs and for each VNs nlf) < d, /2. Similar to the FAS case, we obtain

a(a, e, b,l) = coeft (f(t, S1, S2,53)", t“sﬁsésé) :

Let B(e, b, 1) be the number of ways to choose e type 1 edges, b type 2 edges and [ type 3 edges
such that there are exactly b unsatisfied CNs connected to exactly one VN from Z and where
all satisfied CNs of type 7 are connected to dyin,r VNs from Z. The corresponding generating
function is 3., 8(e, b, 1)y ziabal. We clarify briefly the derivation of A, (z1, 22, 23). Each
satisfied CN is connected to dwin» VN from Z, its generating function is then
T dmin,r
ge(x1) =1+ W(}mzwxl .
For an unsatisfied super CN of type 7, the received vector z with wy(z) = 1. Since ¢, > 1,
using BDD, ¢ = 0. Thus, for EFASs, each super CN sends exactly one flip message to
its neighboring VN from Z. Its generating function is gz(x2) := n,xs. Consider now an

unsatisfied SPC node connected to exactly one VN from Z. It sends flip messages to all its
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neighboring VNs. Its generating function is ge(29, 23) := n,2o25” . We have
6(67 b7 l) = coeft (g<x17 T2, x3)n7 l’ixgﬂ?é) :

Let Z,, Z5 and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in 7 is connected to strictly less type 2 edges than to type 1
edges and each VN in V \ Z of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z4 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. We have

Enas(a,b) = <Z> Pr{Z; =1} (8.101)

and
Pr{Zy=1} =S Pr{Zi=e,Zy = b, Zs = I} Pr{Zs = 1|2y = ¢, Zy = b, Zs = I}
e,l

b z) (8.102)

coeff (f(t, S1, S2,83)", t“sfsgsé) coeff (g(xl,xQ, x3,y)", x§riTy

z 8 )

We study next the normalized asymptotic distribution of (0n,yn) EFASs and present an
efficient way to compute it.

Theorem 8.9. The normalized asymptotic distribution of (6n,yn) EFASs is

GIIE\IZ“IZS(Q’ 7) :<av - ’7) ln(av - ’7) - av 1n(av) - (av - ’7) ln(l + x181 + 1‘333)
+yIn(y) — 01n(t) — y1In(xesse) + In (g(z1, 22, x3)) (8.103)
+ In (f(ta S1, 52, 33))

where t, s1, S, S3, 1, T9, 3 are the unique positive solutions of

t@lnf(t, S1, S2, S3)

0 8.104
" ( )
O0ln f(t, s1, S2, S3) dlng(xy, 9, 23)

_ _ 8.105
S1 831 T (91’1 € ( )
5 2 (b sn sy se) _ Olnglay,an,) _ (8.106)

(952 81’2

5 O f s, s2,) _ Omglzn, 2a,3) _ g, (8.107)

0S3 Ox3
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Figure 8.2: Expected and average distributions of (2,b) T'Ss of the ensemble in Example
8.1 for n = 155.

Table 8.1: The error profiles for the PBF decoder.

SNR [AB] | (2.3) | 24) | 3.2) | 3.3) | (3.4) | (3.5) | (3.6) | (4,4) | (4.6) | (4.7) | (4.8) | (5.7) | (6.7)
8.6 17 797 9 57 2 32 68 0 2 7 7 1 1
9 16 820 12 73 4 18 48 1 0 7 1 0 0
94 17 872 5 63 0 15 27 1 0 0 0 0 0

where f(t,s1, s, 53) and g(x1, x9, x3) are defined in (8.98) and (8.99), respectively, and

- = 1851

* =(d, — 8.108
¢ ( 7)14-37181 +I383 ( )
I =(dy — )27 (8.109)

]_ —|— 181 —|— .17383'

Consider now a regular GLDPC code ensemble, where all the CNs are associated with
the same linear code . If % is an SPC, we obtain Lemma 6.7 and Theorem 6.12. If
the CNs are super CNs, then an EFAS is equivalent to an EAS, and we obtain 8.7 and
Theorem 8.6.

Example 8.1. Consider regular GLDPC code ensembles with VN degree 3, length n €
{155,930} and the (31, 26) Hamming code as component code. We generate from the length
155 ensemble 1000 random codes without using any girth optimization techniques. We
provide in Fig. 8.2 the average multiplicity of the (2,b) T'Ss within these codes and compare
them with the expected enumerator given in (8.88) to check the presented theoretical

results. Remarkably, the average multiplicities of T'Ss are close to the ensemble averages.
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Figure 8.3: FER and BER versus E,/Ny[dB] for the PBF decoder. The dashed lines
represent the contribution of the dominant (2,4) FAS to the FER and BER.

In the following, we present experimental results to check the effect of the TSs and
(fully) ASs on the performance of GLDPC codes. We consider a code picked randomly
from the length 155 ensemble. We transmit the all-zero codeword over a biAWGN channel.
We perform a hard decision on the received sequence, thereby the biAWGN channel is
converted to a BSC, and apply the PBF algorithm. We set the maximum number of
iterations /., = 20. Since the all-zero codeword is transmitted, we say that a VN is
corrupt after decoding if its corresponding final estimate is one. For each channel realization
leading to a decoding failure, we check if the subgraph containing the corrupted VNs and
their neighboring CNs is a TS or (fully) AS. In this case, we determine its size. We
collected 1000 error frames at SNRs FE}, /Ny € {8.6,9,9.4}. Table 8.1 shows the obtained
error profiles, which are converging errors, i.e., the VN estimates remain the same in the
last few iterations. All the errors provided in Table 8.1 are FASs and thus TSs and ASs.
This confirms the stability of FAS under the parallel bit flipping decoder. In this example,
all decoding failures are caused by FASs.

We can see from Table 8.1 that the (2,4) FAS is the dominant FAS. Simulation results
of the considered GLDPC code are shown in Fig. 8.3 in terms of FER and BER versus
E,/Ny. The dashed lines represent the contribution of the dominant (2,4) FAS to the FER
and BER. Note that at high SNR, the FER and BER are dominated by the (2,4) FAS.

Next, we use the derived theoretical results to estimate the error floor performance of
the length 930 ensemble. We picked 50 random codes from this ensemble and simulated

their performance under the parallel bit flipping algorithm over a BSC obtained by hard-
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Figure 8.4: FER versus E},/Ny[dB] for length n = 930 codes drawn from the GLDPC code
ensemble in Example 8.1 under parallel bit flipping decoding with BDD at the
CNs and the predicted average performance (error floor).
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quantizing the output of a binary-input additive white Gaussian noise channel. The
performance of the codes is provided in Fig. 8.4 in terms of FER versus Ey,/Ny[dB]. In
Fig. 8.4 an analytic estimate of the average error probability at large signal-to-noise ratios
is given. The estimate is based on Eq. 1 in [43], where we considered the dominant (2,4)
FAS. As multiplicity of (2,4) FASs, we employed the ensemble enumerator from (8.88).
The codes have an error floor performance that is close to the estimated average error
probability derived from the proposed analysis. Similar results were observed for other
block lengths.

The normalized logarithmic asymptotic distribution of T'Ss and (fully) ASs of this
ensemble are depicted in Fig. 8.5 for A € {0.005,0.05,0.1,0.2,0.3,0.4}. We observe that
the gap between the normalized logarithmic asymptotic distributions of TSs and ASs

vanishes for small 6.

Example 8.2. Consider the rate 2/5 ensemble with A3 = 1, P; = 0.8,Py = 0.2, %] is
the (7,6) SPC code and %, is the (7,4) Hamming code. The normalized logarithmic
asymptotic distributions of (elementary) TSs and (fully) ASs, of this ensemble for A €
{0.005,0.05,0.1,0.3,0.5} are depicted in Fig. 8.6 and Fig. 8.7, respectively. Fig. 8.8 compares
the exact value of the normalized logarithmic asymptotic distribution of TSs, obtained
from Theorem 8.1, and the approximation obtained from Corollary 8.1 for this ensemble.
Observe that the approximations are accurate for small values of 6. A comparison of
the exact value of the relative minimum A-TS size and its corresponding approximation

obtained from (8.18) for this ensemble and for different values of A is shown in Table 8.2.



248 8 Enumerators for Binary GLDPC Code Ensembles

0.2
— A =0.005
— A =0.05
0.15 A=0.1
—A =02
—A=0.3
0-1 A=04

0.05

The asymptotic distribution

~ | | |
O'050 5.102 0.1 0.15 0.2

0

Figure 8.5: The normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines), and fully ASs (dotted lines) of the ensemble in Example 8.1.

The relative minimum A-AS sizes are also provided. It can be observed that the values
obtained from (8.18), which we derived by analyzing the asymptotic distribution of T'Ss for
the small 6 case, are very good approximations of the relative minimum A-TS sizes. We
can see that the values of 074 are very close to the ones of 034 especially for small 6. In
fact, as we can see in Fig. 8.6 and Fig. 8.7, the gap between the normalized logarithmic

asymptotic distributions of TSs and ASs vanishes for small values of 6.

We observed that this code ensemble has better TS and AS properties than the regular
(3,7) LDPC ensemble. For instance, for A = 0.005 we have 65 = 0.0241249 while for
the regular ensemble, we have 014 = 0.0118767. Both code ensembles have the same VN
degree distribution. For the regular (3,7) LDPC code ensemble, all CNs are SPC codes
and for this ensemble some of the SPC CNs are replaced by the (7,4) Hamming code.
This matches the approach in [133] to construct GLDPC codes by converting some of the
SPC CNs involving a TS into super CN corresponding to a stronger linear block code. By
converting some of the SPC CNs to super checks, the PBF decoder could correct the errors
in the TS and thus eliminate it as shown in [133]. In fact, this method improves the TS
properties of the code especially if the linear block code has good distance properties and

thus a high error correcting capability under BDD.
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Figure 8.6: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and fully ASs (dotted lines) of the ensemble in Example 8.2.

8.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

We derived in [66] the finite-length and asymptotic enumerators of (elementary) TSs and
(fully) ASs for protograph-based GLDPC code ensembles.

8.3.1 Trapping and Elementary Trapping Set Distributions

In this section, we derive the finite-length and asymptotic TS enumerators for protograph-
based GLDPC codes. Define the VN weight vector € = [ey, €2, ..., €,,], Where €; is the
number of VNs of type v, in 7. Clearly, we have 0 <¢; < Q Vj € {1,2,...,np} and

np

Y e =a. (8.110)

J=1

Define the edge weight vector w(e) = (wy)ges where w, is the the number of edges of
type ¢g in T,3. For a given €, we have w, = ¢; if g € é"v';. Define next the vector weight
enumerating function (VWEF) of a binary linear code which we will use to derive the T'S

and (fully) AS enumerators.
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Figure 8.7: Normalized logarithmic asymptotic distributions of elementary TSs (solid lines),
elementary ASs (dashed lines), and elementary fully ASs (dotted lines) of the
ensemble in Example 8.2.

Definition 8.7. Let € be an (n, k) linear code. The VWEF of ¢ is defined by

We(x) =Y a° (8.111)
ce?
where = [x1,29,...,2,,], 5,1 € {1,2,...,n} are dummy variables.

Lemma 8.11. The average number of (a,b) TSs in the Tanner graph of a code drawn

randomly from the ensemble €7 is

coeff (HP Ai(z4,9)9, w“’(e)yb>
=1

Efg(a,b) =Y — — (8.112)
o HE"
Jj=1 "7
where
Ai(i,y) =W () +y | J[ 1 +2y) — We () (8.113)
geét

and €; is the linear block code corresponding to ¢; and & = (7y)ges, Ti = (T4)gesr, y and

Tg,g € 6’5 are dummy variables.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
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Figure 8.8: Normalized logarithmic asymptotic distribution of TSs of the ensemble in
Example 8.2. The dashed lines denote the corresponding approximation obtained
from Corollary 8.1.

€. We randomly choose a set Z of a VNs and assign the value 1 to each VN in the set with
a uniform distribution over all possibilities. The edges connected to a VN v are assigned
the value chosen for v. Given €, each v; € V has ¢; replicas in 7,3. Since there are () copies

of each VN type in the lifted graph, the number of VN sets with weight vector € is
np Q
No(e) =[] ( ) (8.114)
j=1 \&
Similarly, the number of edge sets with weight vector w/(e€) is
Q) T (Q\™
wwie) =T () =11 (¢) " (5115
gee \Wy j=1 \&

Let Z be a set of VNs. We assign to each of these VNs the value one and the other VNs
the value zero. Denote by N.(b, w(€)) the number of configurations with edge set weight

vector w(e€) that give exactly b unsatisfied CNs. Its generating function is

S No(b, w(e))y'z e,
b,w(e)

A CN is satisfied if it recognizes a valid local codeword when the edges connected to 7

are assigned the value 1 and the other edges the value 0 and it is unsatisfied otherwise.
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Table 8.2: The exact values of the relative minimum A-TS sizes, their corresponding
approximations obtained from (8.18) and the relative minimum A-AS sizes for
the ensemble in Example 8.2.

A s g from (8.18) Ors
0.005 0.02412490 0.02257472 0.02412533
0.05 0.01327771 0.01285350 0.01330189
0.1 0.00740617 0.00730286 0.00746339
0.15  0.00414895 0.00413289 0.00422695
0.2 0.00227137 0.00227527 0.00235458
0.25 0.00119249 0.00119784 0.00126824
0.3 5.89737e-04 5.92944e-04 6.50374e-04
0.35 2.69265e-04 2.70679¢e-04 3.12226e-04
0.4 1.10733e-04 1.11223e-04 1.37493e-04

Consider a CN of type c;. If it is satisfied, its generating function is

ge(mi,y) = y° > @f =Wy, (). (8.116)
cES;
If the CN is unsatisfied then its generating function is
ge(xiy)=y" > =y | [[ L+z) - Wglzi)|. (8.117)
cGIFgci \C; 965’5

The sum g.(x;,y) + ge(x;,y) yields A;(x;,y). Considering all CN types and that there are
@ CNs of each type c;, we obtain

mp
N.(b,w(e)) = coeff (H Ai(wi,y)Q,ww(e)yb> : (8.118)

i=1

Substituting these expressions in
N.(b,w(e))

Efg(a,b) =" Ny(€)—=—"—~ 8.119
TS(a’ ) ; (6) Ne(w(e)) ( )
completes the proof. |

Remark 8.2. Evaluating Wy, (x;) in (8.113) is complex for some (n;, k;) linear codes €; if
k; is large. In that case, the following adapted version of the MacWilliams identity [131]
might be useful, where we consider VWEF instead of WEF.
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Theorem 8.10. Let € be an (n, k) binary linear code with VWEF W (x). The VWEF
of its dual code € is

1 n
Wei(x) :?ng(m’) 1T+ ) (8.120)
i=1
where &' = [}, 2, ..., x| and
’ 1-— €T; i
% =TT o i=1,2,...,n. (8.121)

The proof of Theorem 8.10 can be found in Appendix 8.4.2.

We next present a simple way to compute the normalized logarithmic asymptotic distri-
bution of TSs for the ensemble €.

Theorem 8.11. The normalized asymptotic distribution of (6n,vyn) TSs is

np
Ghs(6,7) —ZlnA (zi,y)—O0lnt—yIny—)_ )+ D &lnzy| . (8.122)
np = j=1 gesl
The values x, for g € &, the value y and € for j € {1,...,np} are the unique positive

solutions of

Jln AZ(CBZ, y)

s =npw) Vi€ {l,....mp}, g€l (8.123)
0ln nllf Ai(x,y)
Yy 12183/ =np7y (8.124)
(dy, —1)In (ﬂiﬁ;) =3 I, +p (8.125)
J S

where (8.123) holds for all i € {1,...,mp},g € & and p is chosen to satisfy 3> € = 6,
Ai(z;,y) is defined in (8.113) and w} = & if g € 5‘5. The proof is similar to the proof of
Theorem 6.17.

Note that to compute the normalized asymptotic distribution of ETSs, we need to replace
Ai(z;,y) given in (8.113) with

Ai(xiy) =1+ Z i +y Z Zg (8.126)

CE%ﬁWH(C):dmin,ci geg)c’:,:'
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where wy(¢) is the Hamming weight of e.

8.3.2 Absorbing and Elementary Absorbing Set Distributions

The paper [47] gives an elegant approach to compute the TS enumerator of protograph-
based LDPC codes. The approach connects a flag VN to each CN, and each flag VN is
assigned a bit to satisfy its CN equation. This way a new protograph is obtained. A (a,b)
TS in the original protograph can be interpreted as a codeword of VN weight a and flag VN
weight b in the new protograph. This method can be used to determine the T'S enumerator
of protograph-based GLDPC codes. However, for GLDPC codes, we cannot identify an
AS solely from its underlying topological structure since, e.g., if the constraints imposed
by a CN are not satisfied, then the node will not necessarily send flip messages in the bit
flipping algorithm. Therefore, generating functions are needed to obtain the AS enumerator
since they capture the behavior of the bit flipping decoder with BDD at the CNs.

In this section, we derive the AS and EAS enumerators for GLDPC codes and we develop
an analytical method for evaluating the normalized logarithmic asymptotic distributions of
ASs and EASs.

Lemma 8.12. The average number of (a,b) ASs in the Tanner graph of a code drawn

randomly from the ensemble €7 is

coeft (1 Au(at’ 22,2, (@) (@) )
i=1

EZS(% b) :Z - ( 0 )(eg+w9) X
o gee Vool \ e (8.127)
np
coeff (H By(t, sy, 3;%>)Q7ta(3<1>)e(3<2))w>
j=1
where
1 (1) (1)
3 IITa+z))+ T (-2
gegcp geé”cp .
’ %, is SPC
1 2 1 9 o
A2 y) = +ug | IL A +2g) = 1 (1 —ag) (8.128)
S 9eék
We, (z) +y > (2))Fe(x))F e otherwise
2eFS\E;




8.3 Enumerators for Protograph-Based GLDPC Ensembles 255
Bj(t,s),s) =1+t > (s (sf)" (8.129)

and 1; is the length d,, all-ones vector, R; is the set of binary vectors of length d,, and

Hamming weight < |(d,, — 1)/2], and s = (sf;)geg, s}”) = (Sg))gegvﬁ, " = (:c;’))geg,
J
x) = (x(g“)gegcp;, y, t and s,z g € é"c'j,ﬁ = 1,2 are dummy variables, ¢ in (8.128) is the

decoded vector with BDD and z is the received sequence at the CN. The multiplication
in z - ¢ is an element-wise multiplication and the addition in z + 2z - € is an element-wise
modulo 2 addition. Note that the i-th entry of z - ¢ is 1 if z; = ¢; = 1 and zero otherwise

and the i-th entry of z + 2z - ¢ is 1 if z; = 1 and ¢; = 0 and zero otherwise.

Proof. We randomly choose a set Z of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. The edges connected to a VN v
are assigned the value chosen for v. We define the edge weight vectors e = (e;)g4es and
w = (wy)ges Where e, represents the number of edges of type ¢ in A, not carrying flip

messages and w, is the number of edges of type g in A, carrying flip messages.

Denote by N.(b, e, w) the number of configurations with edge set weight vectors e, w

that give exactly b unsatisfied CNs. Its generating function is

Z N (b, e, w)y’ (x)®(x)®.

b,e,w

A CN is satisfied if it recognizes a valid local codeword when the edges connected to Z
are assigned the value 1 and the other edges the value 0. We clarify briefly the derivation
of A;(x’, x,y) for super CNs. Consider a super CN of type c;. If it is satisfied, then it
doesn’t send flip messages to its neighboring VNs in Z, i.e., all the edges emanating from Z
and connected to that CN don’t carry flip messages. Thus, the generating function of a

satisfied super CN is
gela?, ) = 4° Y (@)° = W, ().
ce%;
For an unsatisfied CN, the received vector z is not a valid codeword. Given z € ]F;jci \ €,
we denote by ¢ the decoded vector with BDD. The i-th entry of z-¢éis 1if z; = ¢ =1 and
zero otherwise and the i-th entry of z + z- ¢ is 1 if z; = 1 and ¢; = 0 and zero otherwise.
If z; = ¢ =1 (i-th entry of z - € is 1), then the corresponding edge does not carry a flip

message and if z; = 1 and ¢ = 0 (the i-th entry of z + z - ¢ is 1), then the corresponding
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edge carries a flip message. The generating function of an unsatisfied super CN is

ga(;c;u’ ;BEL?)’ y) =y Z (w;'l))z-f:(w?))erz.é.
zE]F;Ci \%;

The SPC node is unsatisfied if it is connected an odd number of times to Z. In this case, it

sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
SPC node is

2 1 2 2
ge(@?"y) =gy | 1T (L4 2g) = TT (1= 2)

geét geét

Considering all CN types and that there are () CNs of each type c;, we obtain
mp
N¢(b, e, w) = coeff (H Az, 2, y)°, (:cm)e(w”))wyb) (8.130)
i=1

where A;(x}’, 2, y) is defined in (8.128).

Denote by N,(a, e, w) the number of configurations with a VNs and edge set weight
vectors e, w such that for each of these VNs n{f) < |(d, — 1)/2]. Its generating function is

Z Ny(a, e, w)t*(s")¢(s?)v.

a,e,w

Consider a VN of type v;. Let ¥ = (7’;)>96ng; be a length d,; binary vector with ri) = 1 if
the type g edge carries a flip message and ;) = 0 otherwise. Note that if the VN of type v;
belongs to Z, the Hamming weight of 9 should satisfy wy(r?) = degvz re < [(dy, —1)/2].
We can either include this VN type in Z or not. If we skip it we obtain the term 1 in

Bj(t, s, 8}’) corresponding to zero VNs and zero edges. If we include it in the set, we will

have 1 node, d,, — wu (") edges emanating not carrying flip messages and wy (") edges

carrying flip messages with wu (") < [(d,, — 1)/2]. Considering all possible binary vectors
rY, we obtain the second term in Bj(t, s}, s}

and that there are ) VNs of each type, we obtain

). Taking into account all possible VN types

np
N, (a, e, w) = coeff (H By(t, sy, s?)Q,t“(s“))e(s‘”)w) (8.131)

where B;(t, s, s?) is defined in (8.129).

J J
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The number of edge sets with weight vectors e and w is

N.(e,w) = [] ( @ )(‘gﬁwg). (8.132)

geé \6g T Wy €y

Substituting these expressions in

Ny(a, e, w)N(b, e, w)

Efs(a,b) = 8.133
AS(a7 ) ezﬂ:u Ne(e,w) ( )
completes the proof. [ |
Theorem 8.12. The normalized asymptotic distribution of (n,yn) ASs is
1
Glis(0 ZlnA Uoxly) — vlny+lenB 87,8
P (8.134)
—0Int — — Z In ( + zg'sy’ + x(g”s(;))
geg
The values t, s, sy, ¥, xy), for g € & and y are the unique positive solutions of
Jln H Bj(t, s, s})
t =npf 8.135
5 np (8.135)
. 0In Bj(t, sy, s) L0In Aj(x), ) y) .
8;) 83(1 j J L — (g) ax = npeg (8136)
»0In B;(t, s, s7") (z)alnA@-(wé” z;”,y) o
5% 5o =z o) = npi; (8.137)
o 1T A, 2 y)
i=1

= 8.138
Y By =np7y ( )

where (8.136) and (8. 137) are for all i € {1,...,mp},j € {1,...,np},g € cg’v'j N éac'j,
B;(t, s, s?) and A;(xy’, ", y) are defined in (8.129) and (8.128), respectively, and

’]73

1 20 gw

6; e 1 o) g(l) y @) g (8'139)
np 1l +x)s) +asy
1 xSy

*
g 6 @c@ "
npl—l—xgsg + 2958

i (8.140)

The proof is similar to the one of Theorem 6.17. Note that to compute the normalized
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asymptotic distribution of EASs, we must replace A;(x)’, )", y) given in (8.128) with

I+ X xpzy) +y 3 x) if %; is a SPC code
91792&5‘7z geEL
Ai(zf 2y y) = 91792 (8.141)
1+ > (") +y X 2 otherwise.
CE%:WH(C):dmin,cl ‘(]E([1

8.3.3 Fully and Elementary Fully Absorbing Set Distributions

In this section, we derive the FAS and EFAS enumerators for GLDPC codes and we develop

an analytical method for evaluating the normalized logarithmic asymptotic distributions of
FASs and EFASs.

Lemma 8.13. The average number of (a,b) FASs in the Tanner graph of a code drawn

randomly from the ensemble €7 is

coeff (Tf Az, 2l 2 y)? (93‘”)'3(%(”)”(33("”)lyb>
=1

P _
EFAS(a7 b) _e%:l H ( Q )(eg_,’_wg) (Q—eg—wg) X
o ges ot X <o o (8.142)
np
coeff (H Bt s;-%s;?ns?)Q,t“(sm)'f(s@vw(s@»’)
j=1
where
1
5 [ L +ag)+ 1] (1 —=y)
ge&Er ge&Er .
’ : €, is SPC
Az, 2l 2?,y) = + yl H (x;> —i—x(;)) _ H (x<93> _ x‘;)) (8.143)
2 geé? geék
We (@) 4+y S (2))*¢(x?)*=¢(2")¢T=¢ otherwise.
zechi\(@”-
Bylt.ss) = 3 ()7t X (800 s ) m
r;ER; T;ER;

and 1; is the length d,; all-ones vector, R; is the set of binary vectors of length d,, and
Hamming weight < [(d, — 1)/2], and s = (s))4cs, 8] = (s(“)ge(mp; x" = (19)ges,
x; = (2} )gegP y, t and 3“) a0, g € &0 =1,2,3 are dummy variables, ¢ in (8.143) is the
decoded vector with BDD and z is the received sequence at the CN. The product z - ¢

is an element-wise multiplication and the sum z + z - ¢ and ¢ + z - € is an element-wise
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modulo 2 addition. Note that the i-th entry of ¢+ z-¢is 1if z; =0 and ¢ = 1.

Proof. Randomly choose a set Z of a VNs and assign the value 1 to each VN in the set with
a uniform distribution over all possibilities. The edges connected to a VN v are assigned the
value chosen for v. Define the edge weight vectors e = (e4),e6, W = (Wy)gee and = (I;)ges
where e, represents the number of edges of type ¢ in F,; not carrying flip messages and
wy is the number of edges of type g in F,; carrying flip messages and [, is the number of
edges of type g outside F,; carrying flip messages. We denote by N¢(b, e, w,l) the number
of configurations with edge set weight vectors e, w,l that give exactly b unsatisfied CNs.

Its generating function is

> Ne(b,e,w, Dy’ (z)e(x?)” ().
b,e,w,l
A CN is satisfied if it recognizes a valid local codeword when the edges connected to Z are
assigned the value 1 and the other edges the value 0. We clarify briefly the derivation of
Ai(x 2y, x y) for a super CNs. Consider a super CN of type c;. If it is satisfied, then
it doesn’t send flip messages to its neighboring VNs in Z, i.e., all the edges connected to

that CN don’t carry flip messages. Thus the generating function of a satisfied super CN is

ge(x,y) =1y > (x)) P (x)). (8.145)

cEE;

For an unsatisfied CN, the received vector z is not a valid codeword. Given z € ]ng \ €,
we denote by ¢ the decoded vector with BDD. The ¢-th entry of z-¢éis 1if z; = ¢ = 1 and
zero otherwise and the i-th entry of z +z - ¢ is 1if z; = 1 and ¢; = 0 and zero otherwise
and the i-th entry of ¢+ z - ¢ is 1 if z; = 0 and ¢; = 1 and zero otherwise. If z; = ¢, =1
(i-th entry of z - ¢ is 1), then the corresponding edge connected to Z does not carry a flip
message and if z; = 1 and & = 0 (the i-th entry of é 4+ z - € is 1), then the corresponding
edge not connected to Z carries a flip message and if z; = 0 and & = 1 (the i-th entry of
¢+ z - ¢is 1), then the corresponding edge not connected to Z carries a flip message. The

generating function of an unsatisfied super CN is

elalalal ) =y Y () ) )
zeIF:Ci \%;

The SPC node is unsatisfied if it is connected an odd number of times to Z. In this case, it

sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
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SPC node is

1 ‘ f
@)= sy | T g +29) = TT (g —29)

9eEs, 9geés,

(2)

ge(;

and the generating function of a satisfied SPC node is

el ) =5 | IL+ag)+ T 0 —ap)

geéd geéd

Considering all CN types and that there are () CNs of each type c;, we obtain

mp
N.(b,e,w,l) = coeff (H Ai(2), 2?2, y)?, (zc“))e(a:”’)w(w@)lyb) (8.146)

i=1
where A;(x}’, x, x" y) is defined in (8.143).

Consider a VN of type v;. Let r¥ = (Tg)>g€gv3 be a length d,, binary vector with 7, =1
if the type g edge carries a flip message and r;’ = 0 otherwise. Note that for each VN of
type v;, the Hamming weight of 7% should satisfy wu(r?) < [(d,, — 1)/2]. We can either
include this VN type in Z or not. If we skip it we obtain the first term in Bj(t, s, s}, s}")
corresponding to zero VNs and wy(r”) < [(d,, — 1)/2] edges carrying flip messages and
VNs outside Z. If we include it in Z, we will have 1 node, d,, —wgu(7") edges not carrying flip

messages and wy () edges carrying flip messages with wg(r?) < |(dy, —1)/2]. Considering
(1) (2) ®3)
Jr°3 0%

account all possible VN types and that there are () VNs of each type, we obtain

all possible binary vectors ", we obtain the second term in Bj(t, s}, s, s'”). Taking into

np
N,(a,e,w,l) = coeff (H By(t, s}, sy, s;”)Q,t“(sm)e(s(”)w(s“))l) (8.147)

j=1

(1) (2 (3)
where B;(t, s}, s}, 8§

e, wand [ is

) is defined in (8.144). The number of edge sets with weight vectors

No(ew,l) =[] ( @ ) (eg i wg) (Q N wg). (8.148)

geé \Eg T Wy €g

Summing over all possible weight vectors e, w and I completes the proof. |
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Theorem 8.13. The normalized asymptotic distribution of (6n,yn) FASs is

1 mp ) , , 1 np 1 i )
GEAS(G’ ’Y) :nip Zln Ai(.’B;), .’.U;), w(z:)a y) + n7p Zh’l Bj(t, S;), S(j), 823))
i=1 j=1

(8.149)

1
—flnt—ylny—— > In (1 + s, + x5y + xs)sg))
P geS

where &, s, 59,8y, ¥y, xy), 2 for g € & and y are the unique positive solutions of

Oln ﬁ Bj(t, sy, 87, 8
j=1

Jr°3 0%
t T =npl (8.150)
d0ln B;(t, s, s, s}) Oln A;(x’, 2,z y)
W JANDTITI Ty i\ g g 5Ny . ok
% s —Zg Oy = npe, (8.151)
Oln By(t, s}, s}, s} Oln A;(x), 2, 2}, y)
@) JNDTITI TS @) (St IRt I Rt ) . ~ %
% s —%g g = npw, (8.152)
Oln B;(t, s}, s}, s} Oln A;(x, 27,z y) .
®) VA IR IR VN )| i\ Ly Ly s Ly . -
% 550 =L 5 = npl; (8.153)
g g
Oln ]:fl Aij(x), 2 x y)
5, =npYy (8.154)

where (8.151)-(8.153) are for all i € {1,...,mp},j € {1,...,np},g € & NE&S, ,
Bj(t, s}, s}, s)) and Aj(x;”,x;”,x{",y) are defined in (8.144) and (8.143), respectively,

32 i
and
. 1 20 M
e; :71 1 g ’ <Z ® ®)g®) (8'155)
np —|—:L’gsg—|—:cgsg+xgsg
1 7 g®

= 99 (8.156)

*
g M) 6 @ 6@ ® @)
npl—l—xgsg +aPsy +aPsy

1 (3) o(3)
I = %o % (8.157)

T%
g M o) © o) ®e®
np1+xgsg +aPsy +aPsy

w

The proof is omitted since it is similar to the one of Theorem 6.17.

To compute the normalized asymptotic distribution of EFASs, we must replace
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H, H, H,

V1 ) R Vg
Figure 8.9: Protograph of the GLDPC code ensemble of the ensemble in Example 8.3.
Aj(x), 2 2, y) in (8.143) with

1+ > 202 +y Y ox® I xf;} €, is SPC

gy
/ P. ’ P ! P..
1) @ B _ 9.9’ €979 9€ée; 9'€be;:9'#g
Ai(z 2Pz y) = " (8.158)
1+ > (@) +y ¥ ag else.
CecﬁiIWH(C):dmin,ci gegci

where 1; is the length d., all-ones vector.

Note that, using BDD, for a received sequence z with wy(z) = 1 and ¢; > 1, we have
¢ = 0. That means, super check nodes never send flip messages to VNs outside Z. Thus,
if all CNs are super check nodes, the condition that for each VN outside Z, n{! < d, /2 is
always fulfilled. In that case, EASs and EFASs are equivalent.

Example 8.3. Consider the rate 1/6 GLDPC code ensemble which has the protograph
shown in Fig. 8.9 where ng = 6, P; is a (6, 3) shortened Hamming code with the parity-check

matrix

110
le 011[3
101

and P, and Pj are (6,5) SPC codes. The normalized logarithmic asymptotic distribution
of (elementary) TSs and (fully) ASs of this ensemble are depicted in Fig. 8.10 and Fig. 8.11
for A € {0.005,0.05,0.1,0.3}. We observe that the gap between the normalized logarithmic
asymptotic distributions of TSs and ASs is small and vanishes for small . Observe that
this code ensemble has better TS and AS properties than the regular (3,6) LDPC ensemble.
For instance, for A = 0.005, we have 03q = 0.172580 while for the regular ensemble, we
have 0% = 0.0207989. As mentioned previously, replacing some of the SPC CNs by a more

powerful code improves the TS properties of the code especially if the linear block code has
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0.25
4 | —— A =0.005
— A =0.05
0-2 A=0.1
—A=0.3
0.15

0.1

5-1072

The asymptotic distribution

_ K. —2 I | |
5-10 0 5.10"2 0.1 0.15 0.2

0

Figure 8.10: Normalized logarithmic asymptotic distributions of T'Ss (solid lines), ASs
(dashed lines), and fully ASs (dotted lines) of the ensemble in Example 8.3.

good distance properties and thus a high error correcting capability under BDD.

8.4 Appendices

8.4.1 Proof of Corollary 8.1

We obtain expressions for ¢, s, x,y in terms of @w* and for @w* in terms of . We should
analyze the equations (8.9)-(8.11) for the case where § — 0 and v = Af. These equations

can be rewritten as

max
dy

ts)
S AN——— =0 (8.159)
o Tl
d‘t,nax jtsj
j=1 s
> W hah 4+ h) ((7) = W7) hatty
£y P — — =" (8.161)

=1 1+
h=d

=—0min,r

W gh 4 hg; (%) = Wi aty

ne 3 () i) ety
£y P, —= - =Af (8.162)
S E e () -

h:dmin,‘r
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— A =0.005

— A =0.05
A=0.1

—A=0.3

The asymptotic distribution

| |
0 5.10"2 0.1 0.15 0.2

Figure 8.11: Normalized logarithmic asymptotic distributions of elementary TSs (solid
lines), elementary ASs (dashed lines), and elementary fully ASs (dotted lines)
of the ensemble in Example 8.3.

where W}ET) is the number of codewords of Hamming weight A in €. From (8.159) and
(8.160), since for d™* < j < d™** we have

ts ts ts

max A

dminp < GA < :
v g ST e =% T g

by summing over j = d™" ... d™** we obtain d™"0 < w* < M.

Thus, we have

lim @* = 0 (8.163)
6—0

and the notations o(f) and o(w*) are equivalent, i.e., for any function f, f = o(f) <= f =

o(w*). Therefore, we will use o(f) and o(w*) interchangeably.

The left hand side of (8.162) should also be o(1), that means for some h, we have
x"y = o(1) and for all other h, "y = o(#). Thus, we have

AO(1+0(1)) =& Prnay. (8.164)
T=1
Because of (8.163), the left hand side of (8.161) must be o(1), i.e., 2" = o(1) for some h,

a2 = o(w*) for the other h, 2"y = o(1) for some h and 2"y = o(w*) for the other h. The
left hand side of (8.161) is dominated by the terms corresponding to h = 1,7 where r is
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the smallest minimum distance over all CN types. We have

o (1+o0(1) =& > P.W Mz + ¢ > Prn,ay.
T=1

T5dmin,7':r

From (8.164) and (8.165), we have

1/r
r = : u;:—iﬁ o) (1+o0(1)).
r W
T:dmin,‘r:'r

Substituting (8.164) into (8.12), we obtain

. & PTWT(T) 1/r

w T:dmin,r =7

s== — (1+0(1)).

Thus, (8.160) can be written as
’UNJ*(l 4 0(1)) — Ad‘?ind\r,nintsdf,nin

and thus

‘ d‘r,ni“/T
B (dy)o™ o — NG
Ad‘rlnindf,nin (QI)*)dx'z"i"*l & Y PTWTT)

Tidmin,T:'r'

t

Similarly, from (8.159), we have

min

9(1 —|— 0(1)) - Advmintsdv
Thus,
* = d™™0(1 + o(1)).
Substituting (8.171) into (8.166), (8.167) and (8.168), we obtain

1/r

(dy™ — A)f

(14 0(1)).

265

(8.165)

(8.166)

(8.167)

(8.168)

(8.169)

(8.170)

(8.171)

(8.172)
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dmin & v P v
s = ”‘3;;;:: X 0 (1 +o(1)) (8.173)
A dgﬂ“/r
o (dy)ET dmin — A P (ro 1
v P 7] IS ST N
T:dmin,‘r:"'
Aess (72 B v
y == T-d“;;;: < 0" (1 + o(1)). (8.175)

By substituting (8.172)-(8.175) into (8.8) and by using the Taylor series of In(1+ z) around
x = 0, we obtain (8.16). Note that we obtain exactly the same result for ETSs.

8.4.2 Proof of Theorem 8.10

The following Lemma is useful to derive the Theorem.

Definition 8.8. Let f be a function defined over Fy. The Hadamard transform f of fis
defined as

fw) =Y (-1)*"f(v) (8.176)

velFy
where u - v is the scalar product of u and v.

The following Lemma is a property of the Hadamard transform.

Lemma 8.14. Let f be a function defined over 7. We have

1

> fw)=— > flu). (8.177)
uee+ |<g| uc?
Proof. )
fla) =22 > (=1)*"f(v)
ue? ue? veFy
= %F:nf(v) 26;6(—1)“'” (8.178)

=2 flo) 2 =D+ X flo) 2o (=)

vegt uceE vg e+ uce
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> Forv € €4, u-v =0 VYu € €. Thus, we have

2 ) X (=) =g X f(v). (8.179)

vedL ucet vEFL

> For v ¢ €+ :

Define the following sets: Zy(v) = {u € € : w-v =0} and Z;(v) = {u € € : uv-v = 1}.
Note that Zy(v) UZ;(v) = € and Zy(v) N Z1(v) = @. Let u* € € with u*-v =1
(such a vector exists since v ¢ €+). Define the set Z* = {u* + u : u € Zy(v)}. I* is

a coset of Zy(v) and as a result

[ Zo(v)| = |Z7]. (8.180)

Let w* € 7*, i.e., w* = u* + u, where u € Zy(v). We have
wv=u"-v+tu-v=1
and
I C Iy (v). (8.181)

Let wy; € Zy(v) so w; can be rewritten as w; = u* + (u* + w;). Note that

u* + (u* + wp) € Zy(v), i.e., w; € Z*. Hence, we have
T, (v) C T*. (8.182)

From (8.181) and (8.182), we obtain Z;(v) = Z* and as a result |Z,(v)| = |Z*|. Thus
from (8.180), |Z1(v)| = |Zo(v)].

We can now calculate the second term in (8.178):

> fo) ()= f(v)( POV <—1>“'v)
vgeL ue? vget ueZo(v) u€eZ (v) (8.183)
=Y f@)(|To(w)| = |Ti(v)]) = 0.
vge+

From (8.178), (8.179) and (8.183) we obtain the result in (8.177).
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Consider the function

and note that

ue€

The Hadamard transform of f is

fw =S 0w = Y LY [

vEFY v1€{0,1} v2€{0,1} vne{ovl}iﬂ
=TI > (—n=oal =TI+ (—1) %)
i=1v;€{0,1} i=1

n 1—1’2 Ui

We can now use Lemma in (8.14) to determine the VWEF of the dual code:

Wei(x)= Y flu SII ( ) (1+:)
ean ‘Cg’ uc¥ i=1 1+
1 Yo
(1+ ;) ( ) = o L+ ) We (2)
Fallo s w () =g lle s
where @’ = [{Ell,l',?, cee 7$n] with m = }:—iz

(8.184)

(8.185)

(8.186)

(8.187)



Conclusions and Outlook

This thesis investigated low-complexity decoding algorithms for binary, non-binary, and
generalized LDPC codes.

For binary LDPC codes and quantized message passing, optimized code ensembles were
obtained that perform close to theoretical Shannon limits at high code rates. Our decoders
provide a trade-off between decoding complexity and coding gain.

For non-binary LDPC codes, we considered different channel models: the QSC, QEC, the
AWGN and Poisson channels with PPM modulation where the modulation order matches
the field size. We introduced several decoding algorithms where the exchanged messages
are: symbols from F,, lists of symbols from F,, or symbols from [, together with their
reliability scores. A DE analysis shows how our decoding algorithms improve decoding
thresholds, closing the gap to the performance achieved by the SPA.

For GLDPC codes, we studied quantized decoding algorithms where the exchanged
messages are binary or ternary, and the VN decoder can exploit soft information from
the channel. At the CNs, the binary and ternary messages are obtained either by using
BDD or by using optimum APP SISO decoding. In the latter case, the component decoder
soft-output (i.e., the extrinsic likelihood ratios) is mapped to messages from the desired
binary /ternary alphabet.

For future work, it would be interesting to derive a theoretical limit of quantized decoders
(other than the Shannon limit) that takes the quantization of the exchanged messages into
account. Further, it is well known that the thresholds of spatially coupled codes under SPA
saturate at the maximum a-priori threshold. We observed that spatial coupling increases
the iterative decoding thresholds (for instance, under TMP, QMP, and SMP) to specific



270 9 Conclusions and Outlook

values. The threshold saturation effect was observed numerically. A promising direction is
determining what these values represent and proving the saturation theoretically.

We have also studied the error floor performance of binary, non-binary, and generalized
LDPC codes. We reviewed the matrix enumeration method used in previous works to obtain
the TS, AS, and FAS enumerators for binary regular LDPC code ensembles. We extended
the method to irregular binary ensembles, and we explained that the technique is limited
to unstructured binary ensembles, i.e., it cannot be applied to non-binary codes, structured
ensembles, and GLDPC code ensembles. Therefore, we proposed generating functions
to obtain the TS, AS, and FAS enumerators. We derived the TS and (elementary) AS
enumerators for unstructured and (constrained and unconstrained) protograph-based non-
binary LDPC code ensembles. Further, we proposed new definitions of the (elementary) TSs
and (fully) ASs for GLDPC codes. Experimental results show that the proposed definitions
yield graph structures that are harmful for bit flipping decoders. Future works can use the

derived analysis to design LDPC and GLDPC codes free of harmful configurations.



Acronyms

AWGN additive white Gaussian noise

ARA4JA accumulate-repeat-4-jagged-accumulate

BP belief propagation

MAP maximum a posteriori

SISO soft-input soft-output

SPA sum product algorithm

PMF probability mass function

CDF cumulative distribution function

PDF probability density function
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LDPC low-density parity-check

FER f{rame error rate

SER symbol error rate

BICM bit-interleaved coded modulation

SNR signal-to-noise ratio

DE density evolution

LLR log-likelihood ratio

BER bit error rate

SER symbol error rate

biAWGN binary-input additive white Gaussian noise

PEG progressive edge-growth

LLR log-likelihood ratio

RV random variable

SC-LDPC spatially coupled low-density parity-check code

10 Acronyms



BSC binary symmetric channel

BEEC binary error and erasure channel

CN check node

VN variable node

TMP ternary message passing

QMP quaternary message passing

BMP binary message passing

QSC g-ary symmetric channel

QEEC ¢-ary error and erasure channel

SMP symbol message passing

AS absorbing set

EAS elementary absorbing set

TS trapping set

FAS fully absorbing set
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EFAS elementary fully absorbing set

ETS elementary trapping set

DMC discrete memoryless channel

QMS Quantized Min-Sum

GLDPC generalized low-density parity-check

SPC single parity-check

APP a posteriori probability

SRLMP scaled reliability list message passing

U-NBPB unconstrained non-binary protograph-based

C-NBPB constrained non-binary protograph-based

CVWEF composition vector weight enumerator function

WEF weight enumerator function

VWEF vector weight enumerating function

SS stopping set

10 Acronyms



275

BDD bounded distance decoding

PBF parallel bit flipping

BCH Bose-Chaudhuri-Hocquengham

BSC binary symmetric channel

v L-vector

DMC discrete memoryless channel

PPM pulse position modulation

MQMS matched quantized min-sum

QMS quantized min-sum

RSMP reliability-based symbol message passing

QEC ¢-ary erasure channel

SEMP symbol and erasure message passing
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