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Zusammenfassung

Diese Dissertation befasst sich mit binären, nicht-binären und verallgemeinerten Low-
Density-Parity-Check (LDPC)-Codes. Die beiden Hauptthemen sind der Entwurf und die
Analyse von quantisierten Nachrichtenübermittlungs Dekodern und die Untersuchung von
sogenannten Error Floors. Für das letztere Thema analysieren wir die Anzahl der Trapping
Sets (TSs), Absorbing Sets (ASs) und Fully Absorbing Sets (FASs), die Dekodierungsfehler
verursachen können.

Es werden quantisierte Dekodieralgorithmen für binäre, nicht-binäre und verallgemeinerte
LDPC-Codes vorgeschlagen und mit Hilfe der Verteilungsdichteevolution (density evolution)
analysiert. Die Algorithmen modellieren die eingehende Nachrichten der variablen Knoten
als Beobachtungen eines extrinsischen Kanals. Die Übergangswahrscheinlichkeiten des
extrinsischen Kanals sind im Allgemeinen unbekannt, aber genaue Schätzungen werden
durch Verteilungsdichteevolution erhalten. Die Verteilungsdichteevolution wird ferner zur
Ableitung der asymptotischen iterativen Dekodierungsschwelle verwendet. Code-Ensembles
werden entworfen, um diese Schwelle zu optimieren, und numerische Simulationen bestätigen
die durch die asymptotische Analyse vorhergesagte Leistung. Eine Stabilitätsanalyse
unterstreicht die Rolle, die variable Knoten des Grades 3 spielen.

Die endlichen und asymptotischen Enumeratoren von (elementary) TSs und (fully) ASs für
unstrukturierte und Protograph-basierte binäre LDPC-Code-Ensembles werden abgeleitet.
Die Enumeratoren werden zur Schätzung der Fehlergrenzen verwendet. In ähnlicher Weise
werden die endlichen und asymptotischen Enumeratoren von TSs und (elementary) ASs
für unstrukturierte und (eingeschränkte und nicht eingeschränkte) protograph-basierte
nicht-binäre LDPC-Code-Ensembles abgeleitet. Die normalisierten logarithmischen asymp-
totischen Verteilungen werden durch Lösen eines Gleichungssystems erhalten. Die Defini-
tionen von (elementary) TSs und (fully) ASs werden auf verallgemeinerte LDPC-Codes
erweitert. Numerische Simulationen zeigen, dass die vorgeschlagenen Definitionen Graphen-
strukturen ergeben, die für Bit-Flipping-Dekoder schädlich sind. Die (elementary) TS-
und (fully) AS-Enumeratoren für unstrukturierte und protogrammbasierte verallgemeinerte
LDPC-Code-Ensembles werden mit Hilfe von Generierungsfunktionen abgeleitet.
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Abstract

This dissertation deals with binary, non-binary, and generalized low-density parity-check
(LDPC) codes. The two main topics are the design and analysis of quantized message-
passing decoders and the study of so-called error floors. For the latter topic, we analyze
the number of trapping sets (TSs), absorbing sets (ASs), and fully absorbing sets (FASs)
that may cause decoding errors.

Quantized decoding algorithms for binary, non-binary, and generalized LDPC codes
are proposed and analyzed using density evolution. The algorithms model the variable
node inbound messages as outputs of an extrinsic channel. The transition probabilities
of the extrinsic channel are unknown in general but accurate estimates are obtained by
density evolution. Density evolution is further used to derive the asymptotic iterative
decoding threshold. Code ensembles are designed to optimize this threshold and numerical
simulations confirm the performance predicted by the asymptotic analysis. A stability
analysis highlights the role played by degree-3 variable nodes.

The finite-length and asymptotic enumerators of (elementary) TSs and (fully) ASs for
unstructured and protograph-based binary LDPC code ensembles are derived. The enu-
merators are used to estimate the error floors. Similarly, the finite-length and asymptotic
enumerators of TSs and (elementary) ASs for unstructured and (constrained and uncon-
strained) protograph-based non-binary LDPC code ensembles are derived. The normalized
logarithmic asymptotic distributions are obtained by solving a system of equations. The
definitions of (elementary) TSs and (fully) ASs are extended to generalized LDPC codes.
Numerical simulations show that the proposed definitions yield graph structures that are
harmful for bit flipping decoders. The (elementary) TS and (fully) AS enumerators for
unstructured and protograph-based generalized LDPC code ensembles are derived using
generating functions.





1
Introduction

An end-to-end communication system model has three key components: transmitter,
channel, and receiver. The transmitter maps information to a signal, the channel corrupts
the signal by noise, and the receiver estimates the information from its channel output.
In his groundbreaking paper [3], Shannon proved that error-correcting codes can enable
reliable communication at rates below a channel capacity. Since then, error-correcting codes
have received a great deal of attention and many classes of codes have been discovered. For
example, Elias showed in 1955 that linear error-correcting codes can achieve the capacity
of a discrete memoryless channel (DMC). Channel codes designed in the 1950s and 1960s
include Hamming codes [4], Reed-Muller codes [5], Bose-Chaudhuri-Hocquengham (BCH)
codes [6], and Reed-Solomon (RS) codes [7].

A class of capacity-approaching codes called turbo codes appeared in 1993 [8]. Shortly
afterward, low-density parity-check (LDPC) codes introduced by Gallager [9] were rediscov-
ered. LDPC codes are a class of linear block codes characterized by a sparse parity-check
matrix. The decoding algorithms of LDPC codes operate by iteratively exchanging mes-
sages between the nodes of the code graph. LDPC codes with an associated iterative
decoding algorithm were shown to be capacity-approaching by MacKay [10]. Non-binary
LDPC codes have an outstanding error correction capability, outperforming their binary
counterparts substantially at short block lengths [11]. A more general class of LDPC codes
called generalized low-density parity-check (GLDPC) codes was introduced by Tanner
in [12]. GLDPC codes offer a trade-off between error floor and waterfall performance due to
their good distance properties and the improved block codes used at the check nodes (CNs)
(compared to single parity-check (SPC) codes employed by the CNs of LDPC codes). This
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comes at the cost of increasing decoding complexity.

After their rediscovery, LDPC codes found widespread use in many modern communica-
tion standards due to their outstanding performance. Much research has been devoted to
developing encoding and decoding algorithms for these codes. The growing requirement for
high data rates makes designing low-complexity and high-throughput decoding algorithms
crucial. The study of low-complexity message passing algorithms for LDPC codes originates
from the seminal work by Gallager [9]. In [9], Gallager introduced two decoding algorithms,
known as Gallager A and Gallager B, where the variable and check nodes exchange binary
messages. Coarse message quantization reduces the amount of information exchanged in
the decoder, but decoding complexity can also be reduced by using simplified update rules
at the CNs. Several works studied reducing the decoding complexity of LDPC and GLDPC
codes [13–32].

The performance of an LDPC code in terms of frame error rate (FER)/bit error rate (BER)
versus the signal-to-noise ratio (SNR) is characterized by two regions: the waterfall region
characterized by a fast decline of the error probability with the SNR and the error floor
region characterized by a flattening of the error probability. Density evolution (DE) analysis
evaluates the iterative decoding thresholds of LDPC code ensembles, i.e., the worst channel
parameter for which reliable transmission is possible for infinite block length. Thus, the DE
can be used to design code ensembles with good waterfall performance. Almost all codes
in the ensemble will have nearly the same waterfall performance [33]. In the error floor
region, the performance under iterative decoding of LDPC codes is frequently dominated
by the presence of specific graphical configurations in the code Tanner graphs [34–36].
Such structures, called trapping sets or near-codewords, were studied in [35, 36] for binary
LDPC codes. A subclass of trapping sets, called (fully) absorbing sets, was introduced
in [37]. The definitions of trapping sets (TSs) and absorbing sets (ASs) were extended to
non-binary codes in [38–40]. As pointed out in [37], not all trapping sets cause decoding
failures. Nevertheless, characterizing (e.g., enumerating) trapping and (fully) absorbing
sets for LDPC code ensembles is useful to gain a deeper understanding of error floors. This
is especially interesting for applications requiring very low error floors [41,42], where Monte
Carlo simulation is impractical. While notable exceptions exist ( e.g. [43–45]), the impact
of trapping and (fully) absorbing sets on code performance has generally been studied using
code ensembles, following the approach of Gallager [37,46–49].
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1.1 Outline

The two main topics of this dissertation are reduced-complexity decoding algorithms of
binary, non-binary, and generalized LDPC codes and the finite-length and asymptotic
enumerators of trapping and (fully) absorbing sets of binary, non-binary, and generalized
LDPC code ensembles. The thesis is structured as follows.

▷ Chapter 2 provides basic notation and definitions necessary for the following chapters.
We also introduce the channel models that we used.

▷ Chapter 3 reviews linear error-correcting codes and their properties. The second
section is dedicated to the LDPC codes. We begin by defining binary, non-binary, and
generalized LDPC codes and code ensembles (unstructured and protograph-based).
We briefly explain the enumeration methods for analyzing LDPC codes, which will be
used to enumerate the trapping and (fully) absorbing sets in Chapters 6-8. Further,
we review iterative decoding algorithms for LDPC codes.

▷ Chapter 4 is devoted to the design and analysis of reduced complexity message
passing decoding algorithms for binary and non-binary LDPC codes. For binary
LDPC codes, we introduce the matched quantized min-sum (MQMS) decoder, where
the exchanged check and variable node messages are represented by b bits. We
consider two cases for the binary-input additive white Gaussian noise (biAWGN)
channel output: unquantized symbols and quantized symbols. For the latter case,
the biAWGN channel output is quantized using a b0-bit uniform quantizer. For the
non-binary case, we consider transmission over q-ary symmetric channels (QSCs),
q-ary erasure channels (QECs), as well as additive white Gaussian noise (AWGN) and
Poisson channels with pulse position modulation (PPM). We introduce and analyze
the following decoders: symbol message passing (SMP), symbol and erasure message
passing (SEMP), scaled reliability list message passing (SRLMP), and 1 and 2- bit
reliability-based symbol message passing (RSMP).

▷ Chapter 5 studies the performance of GLDPC codes under binary message passing
(BMP) and ternary message passing (TMP) decoding. At the CNs, the binary and
ternary messages are obtained either by using bounded distance decoding (BDD) or
a posteriori probability (APP) soft-input soft-output (SISO) decoding.

▷ Chapter 6 deals with the (elementary) trapping and (fully) absorbing set enumerators
for binary LDPC code ensembles. First, we review the random matrix enumeration
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approach, which was previously applied to obtain the asymptotic enumerators for
(elementary) TSs for binary irregular LDPC code ensembles and the (elementary)
(fully) ASs of regular LDPC code ensembles. We extend the analysis to obtain the
(elementary) AS and fully absorbing set (FAS) enumerators of irregular LDPC code
ensembles. Next, we provide alternative derivations of the (elementary) trapping and
(fully) absorbing sets enumerators for binary unstructured LDPC codes based on
generating functions. We also derive the finite-length and asymptotic (elementary)
trapping and (fully) absorbing set enumerators for binary protograph-based LDPC
code ensembles. Numerical results illustrate how the proposed enumeration technique
can be used to estimate the error floor of LDPC codes.

▷ Chapter 7 addresses trapping and (elementary) absorbing set enumerators for
non-binary LDPC code ensembles. We consider unstructured and constrained, and
unconstrained protograph-based code ensembles. We provide numerical evidence that
these sets contribute to the error probability under certain hard-decision message
passing decoding algorithms.

▷ Chapter 8 focuses on (elementary) trapping and (fully) absorbing set enumerators for
irregular and protograph-based GLDPC code ensembles. We propose new definitions
of (elementary) trapping and (fully) absorbing sets for GLDPC codes. We derive
the finite-length and asymptotic distributions of (elementary) TSs, ASs, and FASs
for GLDPC code ensembles. The derivation is based on generating functions. The
impact of these sets on the performance of a GLDPC code is confirmed through
simulations. The enumerators are used to estimate the error floor of GLDPC codes.

▷ Chapter 9 concludes the thesis and discusses future research directions.

1.2 Contributions of the Thesis

Most results in this thesis appeared in the following conference proceedings and journal
publications:

▷ E. Ben Yacoub, F. Steiner, B. Matuz, G. Liva, “Protograph-Based LDPC Code
Design for Ternary Message Passing Decoding,” Proc. ITG. Int. Conf. Syst.,
Commun. and Coding (SCC), Rostock, Germany, pp. 17-22, Feb. 2019. [50]

▷ E. Ben Yacoub, F. Lazaro, A. Graell i Amat, G. Liva, “Symbol Message Passing
Decoding of Nonbinary Spatially-Coupled Low-Density Parity-Check Codes,” Proc.



1.2 Contributions of the Thesis 5

Int. Annual Conf. (AEIT), Florence, Italy, pp. 1-6, Sep. 2019. [51]

▷ E. Ben Yacoub, G. Liva, “Asymptotic Absorbing Set Enumerators for Irregular
LDPC Code Ensembles,” Proc. Int. Zurich Seminar (IZS), Zurich, Switzerland,
pp. 36-40, Feb. 2020. [52]

▷ E. Ben Yacoub, G. Liva, G. Kramer, “Efficient Evaluation of Asymptotic Trapping
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2
Preliminaries

2.1 Notation and Definitions

This chapter introduces notation and definitions. The indicator function I(A) takes on
the value 1 if the proposition A is true and 0 otherwise. For z = (z1, z2, . . . , zd) and
β = (β1, β2, . . . , βd), we use the shorthand

zβ =
d∏

t=1
zβt

t .

We denote random variables (RVs) with capital letters and the corresponding realizations
with lowercase letters. The probability mass function (PMF) of the RV X is referred to as
PX , while a probability density function (PDF) is written as pX .

For positive values α1, . . . , αd that sum to one, we define the natural entropy function as

H(α1, . . . , αd) = −
d∑

i=1
αi ln(αi). (2.1)

For d = 2, we use the shorthand

Hb(α) = −α ln(α)− (1− α) ln(1− α). (2.2)

Definition 2.1. Let x(n) and y(n) be two real-valued sequences, where y(n) ̸= 0 ∀n, x(n)
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is exponentially equivalent to y(n) as n→∞ if and only if

lim
n→∞

1
n

ln
(
x(n)
y(n)

)
= 0.

We will use the notation x(n)=̇y(n) to specify that x(n) is exponentially equivalent to y(n).

2.2 Probability Theory

2.2.1 Random Variables

Let Ω be the set of all possible outcomes of a probabilistic experiment called a sample
space. A RV X is a mapping from Ω into another set X . The distribution of a discrete RV
X is characterized by the PMF PX , which gives the probability that X is equal to some
number, i.e., for all x ∈ X

PX(x) = Pr{X = x}. (2.3)

We have
PX(x) ≥ 0 ∀x ∈ X and

∑
x∈X

PX(x) = 1. (2.4)

The support of X is defined as

supp(PX) = {x ∈ X : PX(x) > 0}. (2.5)

If X = R, the continuous RV is specified by its cumulative distribution function (CDF),

FX(x) = Pr{X ≤ x} ∀x ∈ R. (2.6)

If the CDF is continuous and differentiable, the PDF of X is defined as

pX(x) = dFX(x)
dx . (2.7)

The PDF fulfills

pX(x) ≥ 0 and
+∞∫

−∞

pX(x) dx = 1. (2.8)

We will define the moments and some information-theoretic quantities of discrete RVs in
the following. The extensions to continuous RVs are straightforward; one needs to replace
PMFs with PDFs and summation by integration.
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2.2.2 Moments of Random Variables

Consider a discrete RV X and the function f : X → R. The expectation of f(X) is

E[f(X)] =
∑

x∈supp(PX)
f(x)PX(x). (2.9)

Let Y be a discrete RV. The conditional expectation of X given Y is defined for y ∈
supp(PY ) as follows:

E[X|Y = y] =
∑

x∈supp(PX|Y (.|y))
xPX|Y (x|y). (2.10)

The variance of a X is

V[X] = E
[
(X − E[X])2

]
= E[X2]− E[X]2. (2.11)

2.2.3 Information Measures

The self-information i(x) = − log2(PX(x)) measures the amount of information associated
with the realization x of X. The entropy of X is defined as

H(X) = E[i(X)] = −
∑

x∈supp(PX)
PX(x) log2 (PX(x)) . (2.12)

Let PX and PY be two PMFs with supp(PX) ⊆ supp(PY ). The information divergence
measures a difference of these distributions and is defined as

D(PX ||PY ) =
∑

x∈supp(PX)
PX(x) log2

(
PX(x)
PY (x)

)
. (2.13)

The mutual information of two discrete RVs X and Y is defined as

I(X;Y ) = D(PXY ||PXPY ). (2.14)

The capacity of a DMC with input X and output Y is the maximum rate for which reliable
communication can be achieved and is given by

C = max
PX

I(X;Y ). (2.15)
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2.3 Channel Models

2.3.1 Q-ary Erasure Channel

A q-ary erasure channel (QEC) has input alphabet X = Fq and output alphabet Y =
{E} ∪ Fq, where E is an erasure denoting complete uncertainty about the transmitted
symbol. The transition probabilities of this channel are

PY |X(y|x) =


1− ϵ y = x

ϵ y = E

0 otherwise.

(2.16)

The channel capacity (in bits per channel use) of the QEC is achieved by a uniform input
distribution and is computed as

CQEC = (1− ϵ) log2(q). (2.17)

2.3.2 Q-ary Symmetric Channel

Consider a q-ary symmetric channel (QSC) with error probability ϵ and input and output
alphabet X = Y = Fq. The QSC is illustrated in Fig. 2.1. The transition probabilities of
this QSC are

P (y|x) =


1− ϵ if y = x

ϵ
q−1 otherwise.

(2.18)

As the channel is strongly symmetric, the capacity in bits per channel use, is given by

CQSC = log2(q) + ϵ log2

(
ϵ

q − 1

)
+ (1− ϵ) log2(1− ϵ). (2.19)

2.3.3 Q-ary Error and Erasure Channel

Consider a q-ary error and erasure channel (QEEC) with error probability ϵ, erasure
probability θ, input alphabet X = Fq and output alphabet Y = {E} ∪ Fq, where E
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X

0

1

...

αq−2

Y

0

1

...

αq−2

1− ϵ
ϵ

q−1

ϵq−1

ϵ

q−1

1− ϵ
ϵ

q−1

ϵ

q−
1

ϵ

q−1

1− ϵ

Figure 2.1: The QSC with error probability ϵ.

represents an erasure. The transition probabilities of the QEEC are given by

P (y|x) =


1− ϵ− θ if y = x

θ if y = E
ϵ

q−1 otherwise.

(2.20)

The capacity in bits per channel use is

CQEEC = ϵ log2

(
ϵ

q − 1

)
+ (1− ϵ− θ) log2 (1− ϵ− θ)− (1− θ) log2

(
1− θ
q

)
. (2.21)

2.3.4 Poisson Pulse Position Modulation Channel

Consider the finite field Fq = {0, 1, α, . . . , αq−2, where q is a power of two and α is a primitive
element of Fq. A pulse position modulation (PPM) symbol x =

(
x0, x1, . . . , xαq−2

)
spans

q time slots of which one slot has a pulse and the remaining q − 1 slots are blank. With
slight abuse of notation we may write the slot index u as an element of a finite field. We
denote by Pu a PPM symbol for which the u-th time slot contains a pulse. We denote the
channel input alphabet by X = {P0,P1, . . . ,Pαq−2}. For orthogonal modulations, for all
a, a′ ∈ Fq we have

⟨Pa,Pa′⟩ =


1 a = a′

0 otherwise
(2.22)

where ⟨·, ·⟩ is the inner product.
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We consider transmission over an optical channel with direct detection at the receiver.
Let y =

(
y0, y1, . . . , yαq−2

)
be the received sequence, where yu is the number of received

photons in the u-th slot. Let ns be the average number of received signal photons per
pulsed slot and let nb be the average number of received background noise photons per slot.
Considering the u-th slot, the channel transition probabilities follow a Poisson distribution,
i.e., for all y ∈ N0 we have

PYu|X(y|Pu′) =


exp(−(nb+ns))(nb+ns)y

y! u′ = u

exp(−nb)ny
b

y! else.
(2.23)

For a ∈ Fq, we have the likelihood

PY |X(y|Pa) =
∏

u∈Fq

PYu|X(yu|Pa) =
(

1 + ns

nb

)ya

exp(−(ns + qnb))
∏

u∈Fq

nyu

b
yu! . (2.24)

Let γ = ns/q be the average number of received signal photons per slot. For the Poisson
channel with q-ary PPM, the channel capacity in bits per channel use is given by

CPPM Poisson = log2(q)− E

log2

∑
u∈Fq

Γ(Yu)
Γ(Y0)

 ∣∣∣∣X = P0

 (2.25)

where for u ∈ Fq

Γ(Yu) =
(
ns

nb
+ 1

)Yu

exp(−ns). (2.26)

2.3.5 Additive White Noise Channel with Pulse Position
Modulation

Consider transmission over an additive white Gaussian noise (AWGN) channel with q-ary
PPM, where q is a power of two. The channel output is

y = x + n (2.27)

where n = (n0, n1, . . . , nαq−2) is the length-q noise vector sampled from q independent
and identically distributed Gaussian RVs with zero-mean and variance σ2. The likelihood
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X +

N ∼ N (0, σ2)

Y

Figure 2.2: The biAWGN channel.

pY |X(y|x) can be written as

p(y|x) =
(

1√
2πσ2

)q

exp
(
−||y − x||2

2σ2

)
∝ exp

(
− 1
σ2 ⟨y,x⟩

)
. (2.28)

Let Eb denote the energy per information bit, Es the energy per modulation symbol, and
N0 is the one-sided noise power spectral density. Then, we have

Eb

N0
= 1
R log2(q)

Es

N0
= 1
R log2(q)

1
2σ2 . (2.29)

The capacity of the AWGN with PPM is given by

CPPM AWGN = log2(q)− E

log2

∑
u∈Fq

exp
(
Yu − Y0

σ2

) ∣∣∣∣X = P0

 . (2.30)

2.3.6 Binary Input Additive White Noise Channel

The binary-input additive white Gaussian noise (biAWGN) channel is depicted in Fig. 2.2
and takes as input a RV X ∈ {−1,+1} and outputs Y = X +N , where N is a zero-mean
Gaussian RV with variance σ2. Thus, the channel transition density is given by

pY |X(y|x) = 1√
2πσ2

exp
(
−(y − x)2

2σ2

)
. (2.31)

The SNR is defined as
SNR = Es

N0
(2.32)

where N0 = 2σ2 and Es is the average signal energy, which is, in this case, equal to 1.
Another important measure is the normalized SNR

Eb

N0
= Es

N0R
= 1

2σ2R
(2.33)
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where Eb is the energy per information bit.
The capacity of the biAWGN is achieved by a uniform input distribution and is given by

CbiAWGN = 1−
+∞∫

−∞

pY |X(y|+ 1) log2

(
1 + exp

(
−2y
σ2

))
dy. (2.34)
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LDPC Codes

3.1 Linear Codes

Definition 3.1 (Linear codes). A q-ary (n, k) linear block code C of length n and dimension
k is a k-dimensional linear subspace of Fn

q .

An (n, k) linear code C can be characterized by a generator matrix G ∈ Fk×n
q , whose rows

span C . The generator matrix G encodes the information sequence u into the codeword
c ∈ C as c = u ·G. The code C can be equivalently defined by its parity-check matrix
H ∈ F(n−k)×n

q , whose null space is C , i.e.,

C =
{
c ∈ Fn

q |c ·HT = 0
}
. (3.1)

Definition 3.2 (Hamming weight). The Hamming weight of a vector x ∈ Fn
q is defined as

the number of its non-zero entries. Formally,

wH(x) =
n∑

i=1
I(xi ̸= 0). (3.2)

The weight distribution of a code C is typically described using its weight enumerator
function (WEF)

W (x) =
n∑

i=0
Wix

i (3.3)

where x is a dummy variable and coeff(W (x), xi) gives the cardinality of codewords with
weight i.
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The Hamming distance between two vectors x,y ∈ Fn
q is the number of entries in which

they differ. We have

dH(x,y) =
n∑

i=1
I(xi ̸= yi) = wH(x− y). (3.4)

The minimum distance of a code is the minimum number of entries in which any two
codewords differ. For a linear code C , the minimum distance is equal to the minimal
Hamming weight among all non-zero codewords, i.e.,

dmin = min
c1,c2∈C
c1 ̸=c2

dH(c1, c2) = min
c∈C \0

wH(c). (3.5)

Another code parameter of interest is the decoding radius, i.e., its guaranteed error correction
capability under bounded distance decoding (BDD)

t =
⌊

dmin − 1
2

⌋
. (3.6)

Bounded Distance Decoding

Consider a linear code C with minimum distance dmin. BDD can correct all error patterns
of Hamming weight t = ⌊(dmin − 1)/2⌋ or less. For a received sequence z, the decoded
vector ĉ is given by

ĉ =


c ∈ C if ∃c ∈ C with dH(c, z) ≤ t

z otherwise

where dH(c, z) is the Hamming distance between c and z.

Bounded Distance Decoding with Erasures

Consider a linear code C with minimum distance dmin. For a received sequence z with v

erasures, the decoded vector ĉ is given by

ĉ =


c ∈ C if ∃c ∈ C with 2dH(c, z) + v ≤ dmin − 1

E otherwise

where dH(c, z) is the Hamming distance between c and z and E = (E, . . . ,E) .
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3.2 Binary LDPC Codes

3.2.1 Binary Unstructured LDPC Codes

Binary LDPC codes are linear block codes characterized by an m× n sparse binary parity-
check matrix H . The parity-check matrix can be represented by a Tanner graph, which is
a bipartite graph G = (V ∪ C,E ) consisting of n variable nodes (VNs) corresponding to
codeword bits and m CNs corresponding to parity checks. The set E of edges contains
the elements eij, where eij is an edge between VN vj ∈ V and CN ci ∈ C. Note that eij

belongs to the set E if and only if the parity-check matrix element hij equals 1.
The sets N (vj) and N (ci) denote the neighbors of VN vj and CN ci, respectively. The

degree of a VN vj is the cardinality of the set N (vj). Similarly, the degree of a CN ci is
the cardinality of the set N (ci).

The node-oriented degree distribution polynomials of an LDPC code graph are given by

Λ(x) =
∑

i

Λix
i, P (x) =

∑
i

Pix
i (3.7)

where Λi corresponds to the fraction of VNs with degree i and Pi corresponds to the fraction
of CNs with degree i. The VN edge-oriented degree distribution polynomial of an LDPC
code graph is given by

λ(x) =
∑

i

λix
i−1 (3.8)

where λi corresponds to the fraction of edges incident to VNs with degree i. Similarly, the
CN edge-oriented degree distribution polynomial is given by

ρ (x) =
∑

i

ρix
i−1 (3.9)

where ρi corresponds to the fraction of edges incident to CNs with degree i. One can
convert a node perspective degree distribution into an edge perspective degree distribution
as follows:

λi = iΛi∑
j jΛj

, ρi = iPi∑
j jPj

. (3.10)

Let dmax
v (dmax

c ) be the maximum VN (CN) degree. We denote by

d̄v =
dmax

v∑
i=1

iΛi d̄c =
dmax

c∑
i=1

iPi (3.11)
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the average VN and CN degrees, respectively. Note that nd̄v = md̄c represents the total
number of edges. We define

ξ = m

n
= d̄v

d̄c
. (3.12)

The rate of the LDPC code can be lower bounded as

R ≥ 1− m

n
(3.13)

where equality holds if H is full rank.
An unstructured binary irregular LDPC code ensemble C λ,ρ

n (C Λ,P
n ) is the set of all binary

LDPC codes with block length n and degree distributions λ (x) and ρ (x) (Λ (x) and P (x)).
An LDPC code is called (dv, dc) regular if all the VNs have the same degree dv and all

the CNs have the same degree dc, i.e.,

Λ(x) = xdv , P(x) = xdc . (3.14)

We denote by C dv,dc
n the binary regular LDPC code ensemble, which is the set of all binary

LDPC codes with block length n, VN degree dv and CN degree dc.

3.2.2 Binary Protograph-Based LDPC Codes

A protograph P = (VP, CP,E P) is a small Tanner graph consisting of nP VNs, mP CNs and
e edges forming the sets VP, CP and E P, respectively. It can be defined by an mP× nP base
matrix B = [bi,j ], where bi,j is the number of edges connecting vP

j to cP
i . Each VN/CN/edge

in a protograph defines a VN/CN/edge type. We denote by E P
vj

(E P
ci

) the set of edges in
the protograph connected to vP

j (cP
i ). The degree dvj of vP

j (dci of cP
i ) is then equal to |E P

vj
|

(|E P
ci
|). The bipartite graph G of an LDPC code can be derived by lifting the protograph.

In particular, the protograph is copied Q times (where Q is referred to as the lifting factor),
and the edges of the protograph copies are permuted under the following constraint: if
an edge connects a type-vP

j VN to a type-cP
i CN in P, after permutation the edge should

connect one of the Q type-vj VN copies with one of the Q type-ci CN copies in G. In the
following, we will denote by V and C the sets of CNs and VNs in G, respectively. The lifted
graph G defines the m × n parity-check matrix H, where m = mPQ and n = nPQ. To
distinguish the VNs and CNs in the protograph from those in the lifted graph, we use the
subscript P. A protograph-based LDPC code ensemble C P

n is the set of length-n LDPC
codes whose bipartite graph G is obtained by lifting P.
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3.3 Protograph-Based Spatially Coupled LDPC Codes

Spatially coupled low-density parity-check code (SC-LDPC) codes are known to show a
threshold saturation effect [74] that allows approaching the bit-wise maximum a poste-
riori (MAP) decoding threshold of the underlying block code with (unquantized) belief
propagation (BP) decoding.

We consider protograph-based SC-LDPC codes with base matrix in the form

B =



B0

B1 B0
... B1 B0

Bµ
... B1

Bµ
... . . .

Bµ
. . .
. . .



(3.15)

where µ denotes the syndrome former memory of the SC-LDPC code. The protograph in
(3.15) is then lifted by a factor of Q to obtain the final parity-check matrix H .

For practical operation, the SC-LDPC code is commonly terminated after a number of
S spatial positions. Due to this termination, a rate loss occurs that vanishes for large S.
The resulting code rate is

R = 1− µ+ S

S

mSC
P

nSC
P

= 1−
(

1 + µ

S

)
mSC

P
nSC

P
(3.16)

where the base matrices B0, . . . ,Bµ have dimensions mSC
P × nSC

P . The overall size of the
matrix B is mP × nP where mP = (µ+ S)mSC

P and nP = SnSC
P .

3.4 Non-Binary LDPC Codes

3.4.1 Non-Binary Unstructured LDPC Codes

Non-binary LDPC codes are linear block codes characterized by an m× n sparse parity-
check matrix H with coefficients in Fq. The parity-check matrix can be represented by
a Tanner graph G = (V ∪ C,E ) consisting of n VNs corresponding to codeword symbols
and m CNs corresponding to parity checks. The set E of edges contains the elements eij,
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H =


α 1 0 α2 1 0 0
1 0 α 1 0 α2 0
0 α2 α 1 0 0 α
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α 2
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1

α

1

α 2

α
2

α
1 α

Figure 3.1: Tanner Graph and its corresponding parity-check matrix of a 4-ary LDPC code.

where eij is an edge between VN vj ∈ V and CN ci ∈ C. Note that eij belongs to the set E
if and only if the parity-check matrix element hij ̸= 0. The edge label associated to the
edge connecting vj and ci is denoted by hij , with hij ∈ Fq \ {0}. Fig. 3.1 shows the Tanner
graph of a simple 4-ary LDPC code.

The definitions and notation of (maximum) node degrees, degree distributions, neighbor-
ing nodes and ξ are the same as the binary LDPC codes in Section 3.2.

An unstructured irregular q-ary LDPC code ensemble C λ,ρ
q,n (C Λ,P

q,n ) is the set of all q-ary
LDPC codes with block length n and degree distributions λ (x) and ρ (x) (Λ (x) and P (x))
and edge labels uniformly chosen in Fq \ {0}. Further, we denote by C dv,dc

q,n the regular
LDPC code ensemble, which is the set of all q-ary LDPC codes with block length n, VN
degree dv, CN degree dc and edge labels uniformly chosen in Fq \ {0}.

3.4.2 Non-Binary Protograph-Based LDPC Codes

Similar to the binary case, non-binary protograph-based LDPC are obtained from a
protograph. The code Tanner graph is obtained by lifting the protograph. The lifted graph
has Q VNs of type vP

j ∈ VP, Q CNs of type cP
i ∈ CP and Q edges of type g ∈ E P. Upon

labelling its edges with elements from the order-q finite field Fq, the Tanner graph defines
the m× n parity-check matrix H of a non-binary LDPC code over Fq, where m = mPQ

and n = nPQ. In [38], two classes of non-binary protograph LDPC code ensembles were
introduced. The main difference between the two classes deals with the way the edge labels
are assigned, as summarized next.

Unconstrained Non-Binary Protograph-Based LDPC Code Ensembles

An unconstrained non-binary protograph-based (U-NBPB) code ensemble C P,u
q,n is defined

by the set of length-n LDPC codes over Fq whose Tanner graph is obtained by first lifting
P, followed by labeling each edge in the obtained Tanner graph with an arbitrary element
from Fq \ {0} = {α0, α1, . . . , αq−2}, where α is a primitive element of Fq. An example of
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(a) The original unlabeled protograph and an example of a U-NBPB code construction.
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(b) The original scaled protograph and an example of a C-NBPB code construction.

Figure 3.2: Different non-binary protograph based code constructions with Q = 3.

an U-NBPB code is shown in Fig. 3.2(a), where Q = 3, the CNs c1, c2, c3 are of type cP
1 ,

c4, c5, c6 are of type cP
2 , the VNs v1, v2, v3 are of type vP

1 , v4, v5, v6 are of type vP
2 , v7, v8, v9

are of type vP
3 and h1, . . . , h15 are the edge labels.

Constrained Non-Binary Protograph-Based LDPC Code Ensembles

A constrained non-binary protograph-based (C-NBPB) code ensemble is defined by the set
of length-n LDPC codes over Fq whose Tanner graph is obtained by first assigning a label
to each edge in the protograph P, followed by lifting the protograph. By definition, in the
Tanner graph of a code from a C-NBPB code ensemble, all edges of the same type share the
same label. More specifically, consider f = (fg)g∈E where fg ∈ Fq \ {0} is the label of edge
g in P. The set of length-n LDPC codes over Fq obtained from lifting P while preserving
the edge labels specified by f is the C-NBPB code ensemble C P,c

q,n (f). An example of an
U-NBPB code is shown in Fig. 3.2(a), where Q = 3 and f1, . . . , f5 are the edge labels.

Note that when the field size is q = 2, both U-NBPB and C-NBPB constructions reduce
to the binary case presented in Section 3.2.2.
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3.5 GLDPC Codes

GLDPC codes introduced in [12], are a class of LDPC codes where the CNs represent more
general codes than the SPC codes in LDPC codes. The Tanner graph of a GLDPC code
is a bipartite graph G = (V ∪ C,E ) consisting of n VNs and m CNs. The set E of edges
contains the elements eij, where eij is an edge between VN vj ∈ V and CN ci ∈ C. The
sets N (vj) and N (ci) denote the neighbors of VN vj and CN ci, respectively. The degree
of a VN (CN) vj (ci) is the cardinality of the set N (vj) (N (ci)). A CN of type τ is an
(nτ , kτ , dmin,τ ) linear block code Cτ . A CN is called a super check node if it is associated
with a linear block code different than the SPC code. Further, we assume that dmin,τ ≥ 3
for super CNs and we denote by

tτ =
⌊dmin,τ − 1

2

⌋

the component code decoding radius, i.e., its guaranteed error correction capability under
BDD.

The node-oriented VN degree distribution is denoted by Λ = (Λj)j=1,...,dmax
v

, where Λj

corresponds to the fraction of VNs with degree j and dmax
v corresponds to the maximum

VN degree. Similarly, the CN-type degree distribution is denoted by P = (Pτ )τ=1,...,nc ,
where Pτ corresponds to the fraction of CNs of type τ and nc is the number of CN types.
The edge oriented VN degree distribution polynomial is defined as

λ(x) =
∑

i

λix
i−1 (3.17)

where λi is the fraction of edges connected to VNs of degree i. The CN-type degree
distribution polynomial is given by

ρ(x) =
nc∑

τ=1
ρτx

nτ −1 (3.18)

where ρτ is the fraction of edges connected to CNs of type τ .

We denote by

d̄v =
dmax

v∑
j=1

jΛj, d̄c =
nc∑

τ=1
nτ Pτ (3.19)
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the average VN and CN degree, respectively. Here again, we define

ξ = m

n
= d̄v

d̄c
. (3.20)

The number of parity-check equations for a GLDPC code is

m0 = m
nc∑

τ=1
Pτ (nτ − kτ ) = m∫ 1

0 ρ(x) dx

nc∑
τ=1

ρτ

(
1− kτ

nτ

)
. (3.21)

We denote by Π the m × n adjacency matrix of a GLDPC Tanner graph. In order to
obtain the m0 × n parity-check matrix H of a GLDPC code, for each row of Π the ones
are replaced by the columns of the parity-check matrix of the corresponding component
code and the zeros by zero column vectors [75]. The rate of the GLDPC code can be lower
bounded as

R ≥ 1− m0

n
(3.22)

where equality holds if H is full rank.
A GLDPC code is called regular if all the VNs have the same degree dv and all the CNs

are of the same type, i.e., all CNs are associated with the same linear block code C of
length dc.

An unstructured irregular GLDPC code ensemble C Λ,P
n is the set of all GLDPC codes

with block length n, defined by a Tanner graph with node-oriented degree distributions Λ

and P (with a specified set of CN types).

3.6 Enumeration Methods for Analyzing LDPC Codes

In this section, we briefly describe the methods used in this thesis to enumerate (elemen-
tary) trapping and (fully) absorbing sets. The first approach is based on random matrix
enumeration and the second one follows the generating functions methodology.

3.6.1 Random Matrix Enumeration

Trapping and (fully) absorbing sets for binary LDPC codes (Chapter 6) impose a certain
structure and row/column weights for the parity-check matrix. Thus, the asymptotic
trapping and (fully) absorbing sets can be obtained by enumerating matrices with prescribed
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row and column weight profiles. The following Theorem on the number of binary matrices
with specific weight distribution properties will be useful to derive the enumerators.

Theorem 3.1. Let HR,L
m,n be the set of all m× n binary matrices with row weight vector

R = (R1, . . . , Rm) and column weight vector L = (L1, . . . , Ln), where Ri, 1 ≤ i ≤ m, is the
weight of the i-th row and Lj , 1 ≤ j ≤ n, is the weight of the j-th column. The cardinality
of HR,L

m,n for constant ratio ξ = m/n and max{maxi Ri,maxj Lj} ≤ (ln(n))1/4−ϵ, ϵ > 0, as
n→∞ is given by [76], [77]

|HR,L
m,n | =

f !
n∏

j=1
Lj!

m∏
i=1

Ri!
exp

− 1
2f 2

(
m∑

i=1
Ri(Ri − 1)

) n∑
j=1

Lj(Lj − 1)


× (1 + o(n−1+δ))

(3.23)

and for δ > 0, with f =
n∑

j=1
Lj =

m∑
i=1

Ri.

3.6.2 Generating Function Approach

The random matrix enumeration technique (Theorem 3.1) can only be applied to unstruc-
tured binary LDPC codes. Therefore, we present a more general method to obtain these
enumerators for binary/non-binary and generalized LDPC code ensembles. The method is
based on generating functions, previously adopted to study the distance spectrum and the
stopping set distributions of (generalized) binary LDPC code ensembles [9, 46, 78–80]. The
generating function approach is general and we can enumerate several graphical structures
by defining the appropriate generating functions. In particular, for the enumeration of
trapping and (elementary) absorbing sets, we need to impose VN and CN conditions.
Considering (a, b) TSs/ASs/elementary absorbing sets (EASs), the a VNs in the set must
satisfy the VN condition according to the corresponding definitions in Chapters 6, 7 and
8. Moreover, given the set of edges, we need to obtain exactly b unsatisfied CNs. Finally,
we need to consider all possible edge permutations according to edge types. The average
number of VN/CN/edge sets satisfying a specific condition is the coefficient of suitably-
defined generating function. After deriving the finite-length enumerators, we obtain the
normalized logarithmic asymptotic distributions by using the following Lemmas.

Lemma 3.1. (Hayman formula for multivariate polynomials [79, Corollary 16]) Let
x = (x1, x2, . . . , xd) and let p(x) be a multivariate polynomial with p(0) ̸= 0. Let
β = (β1, β2, . . . , βd) where 0 ≤ βt ≤ 1 and βtn is an integer for all t ∈ {1, 2, . . . , d}.
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Then we have as n→∞

coeff
(
(p(x))n,xnβ

)
=̇ exp

{
n

[
ln p(x)−

d∑
t=1

βt ln xt

]}

where coeff
(
p(x)n,xnβ

)
represents the coefficient of xnβ in the polynomial p(x)n, x =

(x1, x2, . . . , xd) and x1, x2, . . . , xd are the unique positive solutions to

xt
∂p(x)
∂xt

= βtp(x), ∀t ∈ {1, 2, . . . , d} .

Lemma 3.2. Suppose 0 ≤ βt ≤ κ and βtn is an integer ∀t ∈ {1, 2, . . . , d} with ∑d
t=1 βt = 1.

We have [81, Chapter 11]
(

n

β1n, β2n, . . . , βdn

)
.= exp {nH (β1, β2, . . . , βd)} .

3.7 Iterative Message Passing Decoding

3.7.1 Sum Product Algorithm for Binary LDPC Codes

The sum product algorithm (SPA), also called BP decoder, was introduced by Gallager [9].
It is a soft decision decoding algorithm that can approach symbol-wise MAP decoding
performance and provide an estimate of the logarithmic APP ratio

Lapp
j = ln

(
Pr{Xj = +1|y}
Pr{Xj = −1|y}

)
, j = 1, 2, . . . , n (3.24)

where Pr{Xj = +1|y} is the probability that the j-th codeword bit is +1, given the received
sequence y. To estimate Lapp

j , the VN decoders (repetition SISO decoders) and the CN
decoders (SPC SISO decoders) exchange messages iteratively.

Let
Lj = ln

(
pY |X(yj|+ 1)
pY |X(yj| − 1)

)
(3.25)

be the channel log-likelihood ratio (LLR) associated with the VN vj . For biAWGN channel,
we have

Lj = 2
σ2yj. (3.26)

We denote by L(ℓ)
vj→ci

the message sent by the VN vj to the CN ci at the ℓ-th iteration.
Similarly, L(ℓ)

ci→vj
is the message sent by ci to vj.
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Algorithm 1: Sum-Product of Binary LDPC Codes over a biAWGN
1 for j = 1, 2, . . . , n do
2 for ci ∈ N (vj) do
3 L(0)

vj→ci
= Lj

4 end
5 end
6 for ℓ = 1, . . . , ℓmax do
7 for i = 1, 2, . . . ,m do
8 for vj ∈ N (ci) do

9 L(ℓ)
ci→vj

= 2 tanh−1

 ∏
vj′ ∈N (ci)\vj

tanh
L(ℓ−1)

vj′ →ci

2


10 end
11 end
12 for j = 1, 2, . . . , n do
13 for ci ∈ N (vj) do
14 L(ℓ)

vj→ci
= Lj + ∑

ci′ ∈N (vj)\ci

L(ℓ)
ci′ →vj

15 end
16 end
17 for j = 1, 2, . . . , n do
18 L

(ℓ)
j,app = Lj + ∑

ci′ ∈N (vj)
L(ℓ)

ci′ →vj

19 L
(ℓ)
j,app

x̂j=+1

⋛
x̂j=−1

0

20 end
21 end

Algorithm 1 describes the iterative message passing decoding over a biAWGN channel.
The decoder stops if the maximum number of iterations is reached or x̂ = (x̂1, . . . , x̂n) is a
valid codeword.

Note that, for the min-sum decoder, one replaces the expression in the CN message
update by

L(ℓ)
ci→vj

=

 ∏
vj′ ∈N (ci)\vj

sign
(
L(ℓ−1)

vj′ →ci

) min
vj′ ∈N (ci)\vj

|L(ℓ−1)
vj′ →ci

|. (3.27)
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3.7.2 Sum Product Algorithm for Non-Binary LDPC Codes

The non-binary version of the SPA (Algorithm 1) can decode non-binary LDPC codes over
Fq = {0, 1, α, α2, . . . , αq−2}, where α is a primitive element of Fq. We consider a probability
domain SPA. The exchanged check and variable node messages are q-ary probability
vectors. Let m(ℓ)

vj→ci
= (m(ℓ)

vj→ci
(0), . . . ,m(ℓ)

vj→ci
(αq−2)) be the message sent from the VN vj

to its neighboring VN ci at the ℓ-th iteration. The entry m(ℓ)
vj→ci

(a) for a ∈ Fq represents
the probability that the codeword symbol associated with the message takes the value a.
Similarly, m(ℓ)

ci→vj
= (m(ℓ)

ci→vj
(0), . . . ,m(ℓ)

ci→vj
(αq−2)) is the message sent from ci to vj at the

ℓ-th iteration. Further, let M (ℓ)
vj→ci

(M (ℓ)
ci→vj

) be the RV of the codeword symbol associated
with the message sent from vj to ci (ci to vj), i.e., m(ℓ)

vj→ci
(m(ℓ)

ci→vj
) is the PMFs of M (ℓ)

vj→ci

(M (ℓ)
ci→vj

). Initially, each VN sends to its neighboring CNs a q-ary vector with the symbol
probabilities given the corresponding channel observation. Formally, for all ci ∈ N (vj), we
have

m(0)
vj→ci

= mch
vj
. (3.28)

Each CN represents a non-binary SPC code. Thus, for a ∈ Fq we have

m(ℓ)
ci→vj

(a) = Pr


∑

vj′ ∈N (ci)\vj

hj′iM
(ℓ)
vj′ →ci

= −hjia

 . (3.29)

The PMF of hj′iM
(ℓ)
vj′ →ci

is obtained by permuting the entries (except the first one) of
m(ℓ)

vj′ →ci
. We write (m(ℓ)

vj′ →ci
)π = m(ℓ)

vj′ →ci
Πvj′ ,ci

, where Πvj′ ,ci
is a q× q permutation matrix

associated to hj′i. Under the independence assumption, we have

m(ℓ)
ci→vj

= ⊛
vj′ ∈N (ci)\vj

(m(ℓ)
vj′ →ci

)π (3.30)

where ⊛ is the convolution in Fq. For non-binary codes over binary extension fields,
the discrete convolution becomes a componentwise multiplication using the Hadamard
transform, yielding

m(ℓ)
ci→vj

= H


∏

vj′ ∈N (ci)\vj

H
{
(m(ℓ)

vj′ →ci
)π
} . (3.31)
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Each VN computes

m(ℓ)
vj→ci

= mch
vj
⊙
(

⊙
ci′ ∈N (vj)\ci

(m(ℓ)
ci′ →vj

)π−1
)

(3.32)

where (m(ℓ)
ci′ →vj

)π−1 = (m(ℓ)
ci′ →vj

)Π−1
vj′ ,ci

is a reverse permutation of (m(ℓ)
ci′ →vj

) and Π−1
vj′ ,ci

is a
q × q reverse permutation matrix associated to hji′ . All multiplications are componentwise.
Note that it is necessary to normalize the elements of m(ℓ)

vj→ci
to sum to 1. The estimation

of the codeword symbol associated to vj is the symbol that maximizes

m(ℓ)
vj ,app = mch

vj
⊙
(
⊙

ci∈N (vj)
(m(ℓ)

ci→vj
)π−1

)
. (3.33)

The SPA in the probability domain is summarized in Algorithm 2.

3.7.3 Parallel Bit Flipping Algorithm for Binary GLDPC Codes

The parallel bit flipping (PBF) decoding [82] is similar to the algorithm proposed in [83,84]
for expander codes. It is closely related to the one introduced in [2] for decoding a class
of spatially-coupled GLDPC codes and to the one used in [85] to decode GLDPC codes
based on Reed-Solomon and BCH component codes, and it tightly follows the formulation
of bit flipping decoding of GLDPC codes outlined in [12,82].

For the PBF decoder, we transmit the all-zero codeword over a binary symmetric
channel (BSC). We denote by ĉ(ℓ)

vj
the estimate of the codeword bit associated with the VN

vj at the ℓ-th iteration and n(f)
vj

the number of flip messages that the VN vj receives from its
neighboring CNs. Initially, the estimate of a VN is its channel observation, i.e., ĉ(0)

vj
= mch

vj
.

At the ℓ-th iteration, each VN sends its estimate ĉ(ℓ)
vj

to its neighboring CNs. Each super
CN performs BDD on the received messages from the VNs and sends then flip messages
to the VNs whose values differ from the decoded vector. Special care is needed for SPC
component codes: Here, we follow the policy of flipping the component code decoder input
at the output whenever the SPC constraint is not satisfied, i.e., an unsatisfied single parity
check node sends flip messages to all its neighboring VNs. For a VN vj of degree dvj , if it
receives strictly more than dvj/2 flip messages, it flips its estimate, i.e., ĉ(ℓ+1)

vj
= 1− ĉ(ℓ)

vj
. A

VN is called correct if the corresponding estimate is zero, and it is called corrupt if it is one.
The VNs and CNs exchange messages iteratively until a maximum number of iterations
is reached or a valid codeword is found. Algorithm 3 shows the steps performed in each
decoding iteration, where ℓmax is the maximum number of iterations.
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Algorithm 2: Sum-Product Algorithm for Non-Binary LDPC Codes
1 for j = 1, 2, . . . , n do
2 for ci ∈ N (vj) do
3 m(0)

vj→ci
= mch

vj
.

4 end
5 end
6 for ℓ = 1, . . . , ℓmax do
7 for i = 1, 2, . . . ,m do
8 for vj ∈ N (ci) do
9 m(ℓ)

ci→vj
= ⊛

vj′ ∈N (ci)\vj

(m(ℓ)
vj′ →ci

)π

10 end
11 end
12 for j = 1, 2, . . . , n do
13 for ci ∈ N (vj) do

14 m(ℓ)
vj→ci

= mch
vj
⊙
(

⊙
ci′ ∈N (vi)\ci

(m(ℓ)
ci′ →vj

)π−1

)
15 Normalize m(ℓ)

vj→ci

16 end
17 end
18 for j = 1, 2, . . . , n do

19 m(ℓ)
vj ,app = mch

v ⊙
(
⊙

ci∈N (vj)
(m(ℓ)

ci→vj
)π−1

)
20 ĉvj

= argmax
a∈Fq

m(ℓ)
vj ,app(a)

21 end
22 end
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Algorithm 3: Parallel Bit Flipping Algorithm.
1 for j = 1, 2, . . . , n do
2 ĉ(0)

vj
= mch

vj

3 end
4 for ℓ = 1, . . . , ℓmax do
5 for j = 1, 2, . . . , n do
6 for ci ∈ N (vj) do
7 m(ℓ)

vj→ci
= ĉ(ℓ−1)

vj

8 end
9 end

10 for i = 1, 2, . . . ,m do
11 if ci is an unsatisfied SPC then
12 for vj ∈ N (ci) do
13 n(f)

vj
= n(f)

vj
+ 1

14 end
15 end
16 if ci is a super CN then
17 Perform BBD (with output z)
18 for vj ∈ N (ci) do
19 if zvj

̸= ĉ(ℓ)
vj

then
20 n(f)

vj
= n(f)

vj
+ 1

21 end
22 end
23 end
24 end
25 for j = 1, 2, . . . , n do
26 if n(f)

vj
> dvj/2 then

27 ĉ(ℓ)
vj

= 1− ĉ(ℓ−1)
vj

28 end
29 end
30 end



4
Quantized Decoding Algorithms for
LDPC Codes

The deployment of high throughput communication links [42,86] is motivating a revived
interest in low-complexity, high-speed channel code decoders. Recently, attention has been
devoted to the design and analysis of iterative decoders where the messages exchanged
within the decoder are coarsely quantized. The study of low-complexity message passing
algorithms for LDPC codes originates from the work by Gallager [9] who introduced
two decoding algorithms, known as Gallager A and Gallager B, where the variable and
check nodes exchange binary messages. By introducing erasures, the performance of these
algorithms is improved [33]. Finite-alphabet iterative decoders were also studied, for
instance, in [13,15,50,67,87]. While coarse message quantization reduces the amount of
information exchanged within the decoder, the decoding complexity can also be reduced by
employing simplified update rules at the CNs. Examples are the min-sum decoder [16, 88]
and some of its variations (see, e.g., [17, 18, 89]), that limit the losses due to the min-
approximation at the CNs by introducing simple corrections.

Non-binary LDPC codes show an outstanding error correction capability, outperforming
their binary counterparts [11]. Nevertheless, the complexity of the BP decoder for these
codes is very high, and several works considered reduced-complexity decoding algorithms
for non-binary LDPC codes over the biAWGN channel [19–22,90] and the QSC [23–27,91].
Majority logic based algorithms were considered in [28–30,92]. In [20], an extension of the
min-sum algorithm to non-binary fields was presented.

In this chapter, we analyze and design reduced complexity decoding algorithms for binary
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and non-binary LDPC codes over different channel models.

4.1 Binary LDPC Codes

In this section, we analyze and design quantized min-sum decoders for binary LDPC codes
over the biAWGN channel. At the CNs, we use the standard min-approximation rule. In
contrast to the quantized min-sum (QMS) algorithm [14], the VN decoder converts all
incoming messages to LLRs by modeling the extrinsic channel as a DMC, extending the
approach introduced for binary message passing decoding in [13] to the case where messages
are represented by b bits. The transition probabilities of the extrinsic DMCs are derived
via DE analysis, which we develop for unstructured irregular LDPC ensembles. Because
the VN inbound messages are matched to the reliability of the underlying extrinsic DMC,
we refer to the proposed algorithm as MQMS decoding [55].

4.1.1 Extrinsic Channels

Consider a binary-input M -ary output DMC with input alphabet X = {−1,+1} and
output alphabet Z = {−(M − 1)/2,−(M − 3)/2, . . . , 0, . . . , (M − 1)/2}, where M = 2b− 1
and b is a positive integer. For a generic channel output z, LLRs can be obtained as

L(z) = ln
[
PZ|X(z|+ 1)
PZ|X(z| − 1)

]
. (4.1)

If the channel satisfies the symmetry constraint

PZ|X(−z|+ 1) = PZ|X(z| − 1)

for all z ∈ Z, we have
L(z) = sign(z)D|z| (4.2)

where ∀a ∈ Z, a > 0

Da := ln
[
PZ|X(a|+ 1)
PZ|X(−a|+ 1)

]
(4.3)

and where by convention the sign(x) function takes on the value 0 for x = 0. We refer to
D|z| as the reliability of z. The decomposition (4.2) will be instrumental to developing a
message-passing decoding algorithm for LDPC codes. In particular, we focus on a decoding
algorithm that exchanges quantized messages. In this case, a message sent from a CN to a
VN can be modeled as the observation of the RV X after transmission over a binary-input
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M -ary output discrete memoryless extrinsic channel [93, Fig. 3], where M is the number
of message quantization levels. While the transition probabilities of the extrinsic channel
are in general unknown, accurate estimates can be obtained via DE analysis, as suggested
in [13]. This observation will be used to derive the MQMS decoding algorithm.

4.1.2 Quantization

Throughout the paper, we consider uniform quantization. We denote by f : R→M the
quantization function of the exchanged messages, where the quantized message alphabet is
M = {−S∆,−(S − 1)∆, . . . , S∆}. The function f is a b-bit uniform quantizer with step
size ∆ and 2b − 1 quantization levels. Formally, we have

f(x) := sign(x)∆ ·min
{⌊
|x|
∆ + 1

2

⌋
, S

}
(4.4)

where S = 2b−1 − 1.
For the channel output, we consider two cases: unquantized channel outputs and quantized

channel outputs. For the latter case, the biAWGN channel output is quantized using a
b0-bit uniform quantizer with step size ∆0, where b0 and ∆0 may, in general, differ from
the corresponding parameters for the message quantization. The quantized channel output
alphabet isM0 = {−S0∆0,−(S0− 1)∆0, . . . , S0∆0} with S0 = 2b0−1− 1, and the quantized
version of y is denoted as mch.

4.1.3 Matched Quantized Min-Sum Decoding

We denote by m(ℓ)
c→v the message sent from CN c to its neighboring VN v. Similarly, m(ℓ)

v→c

is the message sent from VN v to CN c at the ℓ-th iteration.

Unquantized Channel Output

Each VN computes the LLR of the corresponding channel output

Lch(y) = 2
σ2y (4.5)

and the VN passes a b-bit quantized value to its neighboring CNs. Thus, ∀c ∈ N (v) we
have

m(0)
v→c = f(Lch(y)) (4.6)

where f is defined in (4.4) and we choose ∆ to minimize the iterative decoding threshold.
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The min update rule is performed at the CNs. We have

m(ℓ)
c→v = min

v′∈N (c)\v

∣∣∣m(ℓ−1)
v′→c

∣∣∣ ∏
v′∈N (c)\v

sign
(
m

(ℓ−1)
v′→c

)
. (4.7)

At the ℓ-th iteration, each VN converts its channel message and the incoming CN messages
to LLRs. The sum of these LLRs is then quantized into a b-bit message. Formally, we have

m(ℓ)
v→c = f

Lch(y) +
∑

c′∈N (v)\c

Lex
(
m

(ℓ)
c′→v

) (4.8)

where

Lex
(
m

(ℓ)
c′→v

)
:= sign

(
m

(ℓ)
c′→v

)
D(ℓ)∣∣∣m(ℓ)

c′→v

∣∣∣. (4.9)

The final hard decision at each VN is

x̂(ℓ)
v = sign

Lch(y) +
∑

c′∈N (v)
Lex

(
m

(ℓ)
c′→v

) . (4.10)

Note that the reliability of m(ℓ)
c′→v depends on the iteration number and is in general

unknown. In fact, the transition probabilities of the underlying extrinsic DMCs are not
known. As proposed in [13], their values can be estimated via Monte Carlo simulations, or
via DE analysis. The latter approach provides accurate results for moderate to large block
lengths, as shown in [13,50]. We hence follow this direction and use the DE presented in
Section 4.1.4 to estimate the message reliability at each iteration. For the special case of
b = 2, we will obtain the TMP decoder that we introduced in [50].

Quantized Channel Output

If the channel output is quantized as described in Section 4.1.2, we replace Lch(y) in (4.8)
and (4.10) by

Lch(mch) = sign(mch)D|mch|.

We choose ∆ and ∆0 to minimize the decoding threshold. As mentioned in Sec. 4.1.1, the
decoder’s communication channel can be modeled as a binary-input |M0|-ary output DMC
that satisfies the symmetry condition. The value of D|mch| can then be computed from (4.3)
by using the transition probabilities of the quantized communication channel.
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4.1.4 Density Evolution Analysis

We provide a DE analysis of the MQMS algorithm for unstructured LDPC code ensembles.
Due to symmetry, we may assume that the all-zeros codeword is transmitted. Let M (ℓ)

v→c be
the RV associated to VN to CN messages at the ℓ-th iteration. Similarly, M (ℓ)

c→v represents
the RV associated to CN to VN messages. We denote by p(ℓ)

i the probability that M (ℓ)
v→c

takes the value ∆i, with i ∈ {−S,−(S − 1), . . . , S}. Similarly, we denote by q
(ℓ)
i the

probability that M (ℓ)
c→v takes the value ∆i. In the following, ℓmax denotes the maximum

number of iterations. In the limit of n → ∞, the evolution of the message distributions
can be tracked as follows.

1. Initialization. Conditioned on X = +1, the channel LLRs are Gaussian RVs with
mean µch = 4REb/N0 and variance σ2

ch = 2µch. Therefore, we have

p
(0)
i =



Q
(

(S− 1
2 )∆+µch
σch

)
if i = −S

Q
(

(S− 1
2 )∆−µch
σch

)
if i = S

Q
(

(i− 1
2 )∆−µch
σch

)
−Q

(
(i+ 1

2 )∆−µch
σch

)
otherwise

(4.11)

while if the channel output is quantized we have

p
(0)
i =

∑
mch:f(Lch(mch))=∆i

PMch|X(mch|+ 1). (4.12)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. For all j ∈ {1, . . . , 2b−1}, we define Φ(ℓ)
j and Ψ(ℓ)

j as

Φ(ℓ)
j := Pr

{
M (ℓ)

v→c ≥ ∆j
}

(4.13)

Ψ(ℓ)
j := Pr

{
M (ℓ)

v→c ≤ −∆j
}
. (4.14)

The probabilities q(ℓ)
i can be computed as

q
(ℓ)
i =



1
2

[
ρ
(
Φ(ℓ−1)

i + Ψ(ℓ−1)
i

)
+ ρ

(
Φ(ℓ−1)

i −Ψ(ℓ−1)
i

)
−ρ

(
Φ(ℓ−1)

i+1 + Ψ(ℓ−1)
i+1

)
− ρ

(
Φ(ℓ−1)

i+1 −Ψ(ℓ−1)
i+1

)] if i > 0

1− ρ
(
1− p(ℓ−1)

0

)
if i = 0

1
2

[
ρ
(
Φ(ℓ−1)

−i + Ψ(ℓ−1)
−i

)
− ρ

(
Φ(ℓ−1)

−i −Ψ(ℓ−1)
−i

)
−ρ

(
Φ(ℓ−1)

−i+1 + Ψ(ℓ−1)
−i+1

)
+ ρ

(
Φ(ℓ−1)

−i+1 −Ψ(ℓ−1)
−i+1

)] if i < 0.

(4.15)
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Variable to check update. For i ∈ {−S,−(S − 1), . . . , S}, the probabilities p(ℓ)
i

for the unquantized channel output are given by

p
(ℓ)
i =



∑
d
λd
∑
lin

Pr
{
L

(ℓ)
in = lin

}
Q
(

(S− 1
2 )∆+lin+µch

σch

)
if i = −S∑

d
λd
∑
lin

Pr
{
L

(ℓ)
in = lin

}
Q
(

(S− 1
2 )∆−lin−µch

σch

)
if i = S

∑
d
λd
∑
lin

Pr
{
L

(ℓ)
in = lin

} [
Q

(
(i− 1

2 )∆−lin−µch

σch

)

−Q
(

(i+ 1
2 )∆−lin−µch

σch

)] else
(4.16)

while for the quantized output, we have

p
(ℓ)
i =

∑
d

λd

∑
mch

PMch|X(mch|+ 1)
∑

lin:f(Lch(mch)+lin)=∆i

Pr
{
L

(ℓ)
in = lin

}
(4.17)

where L(ℓ)
in is a RV associated to the sum of the LLRs of the d − 1 incoming CN

messages at the ℓ-th iteration. We have

Pr
{
L

(ℓ)
in = lin

}
=
∑
v

(
d− 1

v−S, . . . , vS

)
S∏

i=−S

(
q

(ℓ)
i

)vi (4.18)

where the sum is over all integer vectors v for which

S∑
i=−S

vi =d− 1 (4.19)

S∑
i=1

(vi − v−i)D(ℓ)
∆i =lin (4.20)

where

D(ℓ)
∆i := ln

q(ℓ)
i

q
(ℓ)
−i

 . (4.21)

Note that the vector entry vi represents the number of incoming CN messages with
value ∆i.

The ensemble iterative decoding threshold (Eb/N0)⋆ is defined as the minimum Eb/N0
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Table 4.1: Decoding thresholds (Eb/N0)⋆[dB] of MQMS for quantized and unquantized
channel output and for QMS.

(dv, dc) b
MQMS

b0
MQMS QMS(unquant. channel) (quant. channel)

2 1.85
2 2.39 2.66
3 1.9 2.66
4 1.86 2.58

3 1.32 3 1.45 1.8
(3,6) 4 1.34 1.8

4 1.21 3 1.35 1.72
4 1.24 1.65

5 1.18 5 1.19 1.62

2 2.11
2 2.71 2.78
3 2.22 2.4
4 2.11 2.43

3 1.73 3 1.85 2.17
(4,8) 4 1.76 2.12

4 1.65 3 1.77 2.14
4 1.68 2.08

5 1.63 5 1.64 2.06

for which lim
ℓ→∞

P (ℓ)
e = 0 as n→∞, where

P (ℓ)
e =

0∑
i=−S

p
(ℓ)
i . (4.22)

A first set of results deals with the asymptotic performance of MQMS decoding. Table 4.1
compares the iterative decoding thresholds of MQMS for both quantized and unquantized
channel outputs and QMS [14] for (dv, dc) regular LDPC ensembles and different values
of b and b0. MQMS decoding largely outperforms QMS, with gains of up to 0.7 dB.
Remarkably, for b = b0 = 5 the MQMS thresholds are within 0.1 dB of the unquantized
belief propagation thresholds (which are at (Eb/N0)⋆ ≈ 1.1 dB for the regular (3, 6) ensemble,
and at (Eb/N0)⋆ ≈ 1.58 dB for the regular (4, 8) ensemble).

Based on the DE analysis, we designed a set of optimized irregular ensembles with various
rates. For the design, we chose a MQMS decoder with b = 4 and unquantized channel
output. We set the maximum VN degree to dmax

v = 20. The optimized degree distributions,
obtained via differential evolution are provided in Table 4.2.

We next consider the performance for rate 4/5 and 7/8 codes, designed for a MQMS
decoder and unquantized channel outputs, where we set b = 4, dmax

v = 15, ℓmax = 30. The
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Table 4.2: Thresholds of optimized degree distributions for the MQMS decoder for unquan-
tized channel with b = 4 and quantized channel with b = b0 = 4.

R λ(x) ρ(x) (Eb/N0)⋆ [dB] (Eb/N0)⋆ [dB] (Eb/N0)Sh [dB]
b0 = 4

2/3 0.0317x+ 0.489x2 + 0.0374x9 + 0.4419x19 0.328x13 + 0.672x14 1.47 1.5 1.06
3/4 0.0313x+ 0.463x2 + 0.0058x9 + 0.4999x19 0.5336x19 + 0.4664x20 1.96 2 1.62
4/5 0.4961x2 + 0.0051x9 + 0.4988x19 0.7907x25 + 0.2093x26 2.34 2.37 2.04
5/6 0.0205x+ 0.4646x2 + 0.0534x9 + 0.4616x19 0.9926x30 + 0.0074x31 2.63 2.66 2.36
7/8 0.4789x2 + 0.0021x4 + 0.032x9 + 0.487x19 0.3752x41 + 0.6248x42 3.08 3.11 2.85
9/10 0.4442x2 + 0.0403x3 + 0.0025x9 + 0.513x19 0.6604x53 + 0.3396x54 3.42 3.44 3.2

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.610−6
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Figure 4.1: FER versus Eb/N0 [dB] for unquantized SPA MQMS for unquantized and
quantized channel output, QMS and RCU bound for R = 4/5.

codes have a block length n = 20000 bits and their graphs were designed via the progressive
edge-growth (PEG) algorithm [94]. The simulation results are shown in Fig. 4.1 and
Fig. 4.2 in terms of FER versus Eb/N0. As a reference, we provide the simulation results
of the optimized codes for MQMS under unquantized BP decoding, MQMS for both 4 bit
quantized and unquantized channel output and QMS with b = b0 = 4, as well as the random
coding union bound (RCU) of [95]. Observe that the MQMS algorithm outperforms the
QMS decoder although they both use the same CN update rule. Admittedly, the VN update
rule of MQMS is more complex than the one of the plain QMS decoder: An open question
is whether the VN update rule in (4.8) can be efficiently implemented in approximate form
(e.g., via look-up tables) without compromising the performance of the MQMS algorithm.

Remark 4.1. The cardinality of the message alphabet is 2b − 1, i.e., we are not taking full
advantage of the b bits. To have a message alphabet of cardinality 2b, one can replace the
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Figure 4.2: FER versus Eb/N0 [dB] for unquantized SPA MQMS for unquantized and
quantized channel output, QMS and RCU bound for R = 7/8.

quantization function in (4.4) with

f(x) := sign(x)∆ ·min
{⌊
|x|
∆

⌋
+ 1

2 , 2
b−1 − 1

2

}
. (4.23)

Using f(x) in (4.23) instead of (4.4), we obtain a remarkable gain for b = 2. For b ≥ 3, the
thresholds using the two quantization functions nearly coincide. In fact, for b = 2, we obtain
the quaternary message passing (QMP) that we presented and analyzed in [67], [57]. We
investigate next the gains of QMP over TMP (MQMS with b = 2) in terms of the iterative
decoding threshold. For both algorithms we obtain individually optimized ensembles for
rates R ∈ {1/2, 2/3, 3/4, 4/5, 7/8, 9/10}, where we restrict the maximum VN degree to
20. Fig. 4.3 depicts the obtained iterative decoding thresholds of the optimized degree
distributions under TMP and QMP. QMP decoding improves TMP decoding especially for
low rates. For R = 1/2, the decoding threshold improves by 0.2 dB as compared to TMP.

We also provide in Fig. 4.4 the iterative decoding thresholds for protograph-based
SC-LDPC codes. We follow the approach of [96] for code ensembles and window decoding.
For this, we apply the protograph-based DE analysis in [50] and [67] for TMP and QMP.
We consider the protograph matrix B[1:W,1:W ] that has been derived from (3.15) for a
decoding window size of W with µ + 1 ≤ W ≤ L. The notation B[1:W,1:W ] refers to the
block matrix of size W ×W that is formed from the first W block rows and W block
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Figure 4.3: Decoding thresholds of optimized LDPC code ensembles under TMP and QMP.

columns of B. For instance, for µ = 2 and W = 4 we have

B[1:4,1:4] =



B0 0 0 0

B1 B0 0 0

B2 B1 B0 0

0 B2 B1 B0

 . (4.24)

Convergence of the window decoder is declared when the probability of decoding error
for the VNs in the first block column is (approximately) zero. We consider (asymp-
totically) regular, protograph-based SC-LDPC codes with VN degrees dv = 6 and
dc ∈ {12, 18, 24, 30, 36, 48, 60}. The submatrices Bi in (3.15) are given by

Bi = (1 1 . . . 1)︸ ︷︷ ︸
dc

, i = 0, . . . , µ, (4.25)

where µ = dv − 1.

4.2 Non-Binary LDPC Codes

In this section, we introduce and analyze decoding algorithms for q-ary LDPC codes. We
start with the SMP decoder over the QSC introduced in [91]. We analyze the performance
of SMP for protograph-based SC-LDPC in [51]. We adopt the SMP to the QEC and to
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Figure 4.4: Decoding thresholds of spatially coupled LDPC code ensembles under TMP
and QMP.

the AWGN and Poisson channels with orthogonal modulations [58, 60]. Further, we extend
the SMP to the SRLMP and RSMP decoders [56, 59]. We denote by m(ℓ)

c→v the message
sent from CN c to its neighboring VN v. Similarly, m(ℓ)

v→c is the message sent from VN v
to CN c at the ℓ-th iteration.

4.2.1 Log-Likelihood Vector

For a given channel output y of a DMC with input alphabet X = Fq, we introduce the
log-likelihood vector, also referred to as L-vector,

L(y) = [L0(y), L1(y), . . . , Lαq−2(y)] (4.26)

whose elements are

Lu(y) = lnP (y|u) ∀u ∈ Fq. (4.27)

The L-vector will be instrumental to the design of message passing decoding algorithms for
non-binary LDPC codes.
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4.2.2 Q-ary Symmetric Channel

SMP

In this section, we describe the proposed SMP algorithm [91] in detail, assuming transmission
over the QSC. An exchanged message between a check and a variable node is a symbol
from Fq. We have m(ℓ)

c→v,m
(ℓ)
v→c ∈MSMP = Fq.

Each VN sends its channel observation y to its neighboring CNs

m(0)
v→c = y. (4.28)

Consider a CN c and a VN v connected to it. The CN c computes the symbol that satisfies
the parity check equation given the incoming VN messages. Formally,

m(ℓ)
c→v = −h−1

v,c

∑
v′∈N (c)\v

hv′,cm
(ℓ−1)
v→c (4.29)

where the multiplication and the sum in (4.29) are performed over Fq, hv,c is the edge label
associated to the edge connecting v and c and h−1

v,c is the inverse of hv,c in Fq.
At the ℓ-th iteration, each VN computes

L(ℓ)
ex =

[
L

(ℓ)
ex,0, L

(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2

]
=L (y) +

∑
c′∈N (v)\c

L
(
m

(ℓ)
c′→v

)
.

(4.30)

The outgoing VN message is the Fq symbol with the maximum entry in L(ℓ)
ex , i.e.,

m(ℓ)
v→c = argmax

u∈Fq

L(ℓ)
ex,u. (4.31)

Whenever multiple maximizing arguments exist, the arg max function outputs one of them
uniformly at random. The VN operation can be interpreted as if the CNs and the channel
would vote for the value of the code symbol associated to the VN. The VN assigns different
weights to the CN and channel votes and selects the symbol with the highest score.

In (4.30), the L-vector L(y) corresponding to the QSC channel observation is obtained
from (2.18) and (4.27). Moreover, we model each CN to VN message as an observation
of the symbol X (associated to v) at the output of an extrinsic channel with input and
output alphabets X = Z = Fq. The transition probabilities of the extrinsic channel are
unknown in general. It was shown in [13, 50] that, for moderate to large block lengths,
these probabilities can be accurately estimated via the DE analysis. They are then used to
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compute the L-vectors of the CN messages in (4.26) and (4.27).
To estimate its codeword symbol, each VN computes

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
m

(ℓ)
c′→v

)
.

(4.32)

The final decision is
x̂(ℓ) = argmax

u∈Fq

L(ℓ)
app,u. (4.33)

We present now a DE for SMP for non-binary LDPC codes over a QSC with error probability
ϵ. We partition the message alphabet MSMP into 2 disjoint sets I0 = {0} and I1 = {a :
a ∈ Fq \ {0}} where |I0| = 1, |I1| = q − 1. Due to symmetry, the messages in the same set
have the same probability. Let p(ℓ)

Ik
be the probability that a VN to CN message belongs to

the set Ik at the ℓ-th iteration and s
(ℓ)
Ik

the probability that a CN to VN message belongs
to the set Ik, where k ∈ {0, 1}. The ensemble iterative decoding threshold ϵ⋆ is defined as
the maximum ϵ for which p(ℓ)

I0 → 1 as ℓ→∞. In the limit of n→∞, the DE analysis can
be summarized in the following steps.

1. Initialization.

p
(0)
I0 =1− ϵ (4.34)
p

(0)
I1 =ϵ. (4.35)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have

s
(ℓ)
I0 =1

q

1 + (q − 1)ρ
qp(ℓ−1)

I0 − 1
q − 1

 (4.36)

s
(ℓ)
I1 =1− s(ℓ)

I0 . (4.37)

Variable to check update. The extrinsic channel has input alphabet X = Fq,
output alphabet Z = Fq and transition probabilities

P (z|u) =


s

(ℓ)
I0 if z = u

s
(ℓ)
I1

q−1 if z = e, e ∈ Fq \ {u}.
(4.38)
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Consider now the VN to CN messages. Define the random vector F (ℓ) =(
F

(ℓ)
0 , . . . , F

(ℓ)
αq−2

)
where F (ℓ)

u , for u ∈ Fq denotes the RV associated to the num-
ber of incoming CN messages to a degree d VN that are equal to u at the ℓ-th
iteration. Let f (ℓ) be the realization of F (ℓ). The entries of L

(
m

(ℓ)
c′→v

)
in (4.30) are

given by
Lu

(
m

(ℓ)
c′→v

)
= ln

(
P (m(ℓ)

c′→v|u)
)

(4.39)

where m(ℓ)
c′→v ∈ Fq, u ∈ Fq and P (z|u) can be computed from (4.36), (4.37) and (4.38)

∀z ∈ Fq. Hence, the elements L(ℓ)
ex,u of the aggregated extrinsic L-vector in (4.30) are

related to f (ℓ)
u and the channel observation y by

L(ℓ)
ex,u =D(ℓ)f (ℓ)

u + Dchδuy +K ∀u ∈ Fq (4.40)

where δij is the Kronecker delta function and

Dch = ln (1− ϵ)− ln
(

ϵ

q − 1

)
(4.41)

D(ℓ) = ln(s(ℓ)
I0 )− ln

 s
(ℓ)
I1

q − 1

 (4.42)

K = ln
(

ϵ

q − 1

)
+ (d− 1) ln

 s
(ℓ)
I1

q − 1

 . (4.43)

Note that K in (4.43) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

} I
(
0 ∈ L(ℓ)

ex

)
|L(ℓ)

ex |
(4.44)

p
(ℓ)
I1 =1− p(ℓ)

I0
(4.45)

where the inner sum is over all length q integer vectors f (ℓ) whose entries are non-
negative and sum to d− 1 and

L(ℓ)
ex =

{
u ∈ Fq

∣∣∣L(ℓ)
ex,u = max

a∈Fq

L(ℓ)
ex,a

}
(4.46)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
αq−2

)
(s(ℓ)

I0 )f
(ℓ)
0

 s
(ℓ)
I1

q − 1

d−1−f
(ℓ)
0

. (4.47)
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SRLMP

In this section, we introduce an extension of the SMP algorithm for transmission over a
QSC. An exchanged message between a check and a variable node can be an erasure or a
list of symbols from Fq of size at most Γ, i.e., the message alphabet is MΓ = {E} ∪ OΓ,
where OΓ contains all possible sets of symbols in Fq of size less than or equal to Γ and {E}
corresponds to an erasure. The cardinality of the message alphabet is

|MΓ| =
Γ∑

i=0

(
q

i

)
.

For Γ = 1, we call the decoder SEMP.

Initially, each VN sends its channel observation to its neighboring CNs, i.e.,

m(0)
v→c = y (4.48)

where y is the channel observation associated to VN v.

Consider a CN c and a VN v connected to it. If all of the incoming messages to c from
the other neighboring VNs are not empty, c computes the set of all symbols that satisfy
the parity check equation given the received VN messages. Formally, it computes

U (ℓ)
v,c = −h−1

v,c

∑
v′∈N (c)\v

hv′,cm
(ℓ−1)
v′→c . (4.49)

The multiplication in (4.49) is performed element-wise over Fq and the sum is over sets of
symbols. The sum over two sets A and B is defined as the Minkowski sum, i.e.,

A+ B = {a+ b : a ∈ A, b ∈ B}. (4.50)

If the size of U (ℓ)
v,c is larger than Γ or c receives at least one erasure from its neighboring

VNs, then c sends an erasure to v, otherwise it sends the set U (ℓ)
v,c. Formally, we write

m(ℓ)
c→v =


U (ℓ)

v,c if m(ℓ−1)
v′→c ̸= E ∀v′ ∈ N (c) \ v and |U (ℓ)

v,c| ≤ Γ

E otherwise.
(4.51)
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Algorithm 4: VN Update Rule.
1 Initialize the set T = ∅
2 Find one symbol a ∈ Fq with L(ℓ)

ex,a = max
u∈Fq\T

L(ℓ)
ex,u

3 Update the set T = T ∪ {a}
4 if L(ℓ)

ex,e > L(ℓ)
ex,u + ∆(ℓ) ∀e ∈ T and ∀u ∈ Fq \ T then

5 m(ℓ)
v→c = T

6 else
7 if |T | < Γ then
8 return to 2
9 else

10 m(ℓ)
v→c = E

11 end
12 end

At the ℓ-th iteration, each VN computes

L(ℓ)
ex =

[
L

(ℓ)
ex,0, L

(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2

]
=L (y) +

∑
c′∈N (v)\c

L
(
m

(ℓ)
c′→v

)
.

(4.52)

The outgoing VN message is then obtained by applying Algorithm 4. For Γ = 1, Algorithm
4 simplifies to

m(ℓ)
v→c =


{a} if ∃a ∈ Fq : L(ℓ)

ex,a > L(ℓ)
ex,u + ∆(ℓ) ∀u ∈ Fq \ {a}

E otherwise
(4.53)

and for Γ = 2

m(ℓ)
v→c =



{a} if ∃a ∈ Fq : L(ℓ)
ex,a > L(ℓ)

ex,u + ∆(ℓ) ∀u ∈ Fq \ {a}

{a, e} if ∃a, e ∈ Fq : |L(ℓ)
ex,a − L(ℓ)

ex,e| ≤ ∆(ℓ) and L(ℓ)
ex,a, L

(ℓ)
ex,e >

L(ℓ)
ex,u + ∆(ℓ) ∀u ∈ Fq \ {a, e}

E otherwise.

(4.54)

In (4.52), the L-vector L(y) corresponding to the channel observation is obtained from
(4.27) using the transition probabilities of the QSC communication channel given in (2.18).
Further, we model each CN to VN message as an observation of the symbol X (associated
to v) at the output of an extrinsic channel with input alphabet X = Fq and output alphabet
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Z =MΓ. The transition probabilities of the extrinsic channel can be estimated via DE
and are used to compute the L-vectors of the CN messages as shown in (4.26) and (4.27).
The parameters ∆(ℓ) are chosen to maximize the iterative decoding threshold and are thus
subject of optimization. They can be chosen for each iteration individually or kept constant
over the iterations. In the latter case, one can compute the iterative decoding thresholds
obtained for several values of ∆ and choose the best one.

To estimate its codeword symbol, each variable node computes

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
m

(ℓ)
c′→v

)
.

(4.55)

We have

x̂(ℓ) = argmax
u∈Fq

L(ℓ)
app,u. (4.56)

In (4.56), if multiple maximizing arguments exist we choose one of them uniformly at
random.

Note that for Γ = 1, the SRLMP is similar to the SMP but SRLMP includes an additional
erasure.

We present next a DE analysis for non-binary irregular LDPC codes under SRLMP with
Γ = 1, 2.

Density Evolution Analysis for SRLMP with Γ = 1
For Γ = 1, the cardinality of the message alphabet is |M1| = q + 1. In the DE, the

probabilities of VN to CN and CN to VN messages are tracked as iterations progress
and we consider the limit as n→∞. Due to symmetry and under the all-zero codeword
assumption, we can partition the message alphabet M1 into 3 disjoint sets I0, I1, I2 such
that the messages in the same set have the same probability. We have

I0 ={{0}} (4.57)
I1 ={{a} : a ∈ Fq \ {0}} (4.58)
I2 ={E}. (4.59)

Note that |I0| = |I2| = 1, |I1| = q−1. Let p(ℓ)
Ik

be the probability that a VN to CN message
belongs to the set Ik at the ℓ-th iteration, i.e., a VN to CN message takes the value a ∈ Ik

with probability p(ℓ)
Ik
/|Ik|. Similarly s(ℓ)

Ik
is the probability that a CN to VN message belongs
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to the set Ik, where k ∈ {0, 1, 2}. The ensemble iterative decoding threshold ϵ⋆ is defined
as the maximum ϵ for which p

(ℓ)
I0 → 1 as ℓ→∞. In the limit of n→∞, the DE analysis

can be summarized in the following steps.

1. Initialization. Initially, we have

p
(0)
I0 =1− ϵ (4.60)
p

(0)
I1 =ϵ (4.61)
p

(0)
I2 =0. (4.62)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have

s
(ℓ)
I0 =1

q

ρ (1− p(ℓ−1)
I2

)
+ (q − 1)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.63)

s
(ℓ)
I1 =q − 1

q

ρ (1− p(ℓ−1)
I2

)
− ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.64)

s
(ℓ)
I2 =1− ρ

(
1− p(ℓ−1)

I2

)
. (4.65)

The extrinsic channel has input alphabet X = Fq, output alphabet Z = M1 and
transition probabilities

P (z|u) =



s
(ℓ)
I0 if z = {u}

s
(ℓ)
I1

q−1 if z = {e} e ∈ Fq \ {u}

s
(ℓ)
I2 if z = E.

(4.66)

Note that for Γ = 1, the L-vectors of the CN messages in (4.52) can be computed
from (4.27) and (4.63)-(4.66).

Variable to check update. Consider now the VN to CN messages. We define the
random vector F (ℓ) =

(
F

(ℓ)
{0}, . . . , F

(ℓ)
{αq−2}, F

(ℓ)
E

)
, where F (ℓ)

a denotes the RV associated
to the number of incoming CN messages to a degree d VN that take value a ∈M1 at
the ℓ-th iteration, and f (ℓ)

a is its realization. The entries of L
(
m

(ℓ)
c′→v

)
in (4.52) are

Lu

(
m

(ℓ)
c′→v

)
= ln

(
P (m(ℓ)

c′→v|u)
)

(4.67)
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where m
(ℓ)
c′→v ∈ M1, u ∈ Fq and P (z|u) is given in (4.66) ∀z ∈ M1. Hence, the

elements L(ℓ)
ex,u of the extrinsic L-vector in (4.52) are

L(ℓ)
ex,u =D(ℓ)

1 f
(ℓ)
{u} + Dchδuy +K1 (4.68)

K1 = ln
(

ϵ

q − 1

)
+ f

(ℓ)
E ln(s(ℓ)

I2 ) + (d− 1− f (ℓ)
E ) ln

 s
(ℓ)
I1

q − 1

 (4.69)

Dch = ln(1− ϵ)− ln
(

ϵ

q − 1

)
(4.70)

D(ℓ)
1 = ln(s(ℓ)

I0 )− ln
 s

(ℓ)
I1

q − 1

 (4.71)

and δij is the Kronecker delta function. Note that K1 in (4.69) is independent of u.
Thus, it can be ignored when computing the extrinsic L-vector. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∏
u∈Fq\{0}

I(L(ℓ)
ex,0 > L(ℓ)

ex,u + ∆(ℓ))
(4.72)

p
(ℓ)
I2 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

1−
∑

a∈Fq

∏
u∈Fq\{a}

I(L(ℓ)
ex,a > L(ℓ)

ex,u + ∆(ℓ))
 (4.73)

p
(ℓ)
I1 =1− p(ℓ)

I0 − p
(ℓ)
I2 (4.74)

where I(A) is an indicator function and the inner sum is over all length q + 1
non-negative integer vectors f (ℓ) whose entries sum to d− 1 and

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
{0}, . . . , f

(ℓ)
E

) 2∏
k=0

 s(ℓ)
Ik

|Ik|

f
(ℓ)
Ik

(4.75)

f
(ℓ)
Ik

=
∑

a∈Ik

f (ℓ)
a ∀k ∈ {0, 1, 2}. (4.76)

Density Evolution Analysis for SRLMP with Γ = 2
This section gives a DE analysis for SRLMP with maximum list size Γ = 2. For Γ = 2,

the cardinality of the message alphabet is |M2| = 1 + q+
(

q
2

)
. Due to symmetry and under

the all-zero codeword assumption, we can partition the message alphabetM2 into 5 disjoint
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sets I0, I1, I2, I3, I4 such that the messages in the same set have the same probability. We
have I0, I1, I2 as defined in (4.57)-(4.59) and

I3 = {{0, a} : a ∈ Fq \ {0}} (4.77)
I4 = {{a, e} : a, e ∈ Fq \ {0} and a ̸= e} . (4.78)

Note that |I0| = |I2| = 1, |I1| = |I3| = q − 1 and |I4| =
(

q−1
2

)
. Let p(ℓ)

Ik
be the probability

that a VN to CN message belongs to the set Ik at the ℓ-th iteration. Similarly s(ℓ)
Ik

is the
probability that a CN to VN message belongs to the set Ik, where k ∈ {0, 1, 2, 3, 4}.

1. Initialization. Initially, we have

p
(0)
I0 =1− ϵ (4.79)
p

(0)
I1 =ϵ (4.80)
p

(0)
I2 =p(0)

I3 = p
(0)
I4 = 0. (4.81)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. For the CN to VN messages, s(ℓ)
I0 , s(ℓ)

I1 are given in
(4.63), (4.64), respectively and

s
(ℓ)
I3 =q − 1

q

2ρ
p(ℓ−1)

I0 + p
(ℓ−1)
I1 +

p
(ℓ−1)
I3

q − 1 +
p

(ℓ−1)
I4

q − 1

− 2ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)

+(q − 2)ρ
p(ℓ−1)

I0 −
p

(ℓ−1)
I1

q − 1 +
p

(ℓ−1)
I3

q − 1 −
2p(ℓ−1)

I4

(q − 1)(q − 2)


−(q − 2)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


(4.82)

s
(ℓ)
I4 =(q − 1)(q − 2)

q

ρ
p(ℓ−1)

I0 + p
(ℓ−1)
I1 +

p
(ℓ−1)
I3

q − 1 +
p

(ℓ−1)
I4

q − 1


−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)
− ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1 +
p

(ℓ−1)
I3

q − 1 −
2p(ℓ−1)

I4

(q − 1)(q − 2)


+ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


(4.83)

s
(ℓ)
I2 =1− s(ℓ)

I0 − s
(ℓ)
I1 − s

(ℓ)
I3 − s

(ℓ)
I4 . (4.84)
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In this case, the extrinsic channel has input alphabet X = Fq, output alphabet
Z =M2 and transition probabilities

P (z|u) =



s
(ℓ)
I0 if z = {u}

s
(ℓ)
I1

|I1| if z = {e} e ∈ Fq \ {u}

s
(ℓ)
I2 if z = E

s
(ℓ)
I3

|I3| if z = {u, e} e ∈ Fq \ {u}
s

(ℓ)
I4

|I4| if z = {a, e} a, e ∈ Fq \ {u}.

(4.85)

Note that for Γ = 2, the L-vectors of the CN messages in (4.52) can be computed
from (4.27), (4.63), (4.64) and (4.82)-(4.85).

Variable to check update. Consider now the VN to CN messages. We extend the
random vector F (ℓ) to F (ℓ) =

(
F

(ℓ)
{0}, . . . , F

(ℓ)
{αq−2}, F

(ℓ)
{0,1}, . . . , F

(ℓ)
{αq−3,αq−2}, F

(ℓ)
E

)
where

F (ℓ)
a denotes the RV associated to the number of incoming CN messages to a degree d

VN that take value a ∈M2 at the ℓ-th iteration. The entries of L
(
m

(ℓ)
c′→v

)
in (4.52)

are given by
Lu

(
m

(ℓ)
c′→v

)
= ln

(
P (m(ℓ)

c′→v|u)
)

(4.86)

where m(ℓ)
c′→v ∈M2, u ∈ Fq and P (z|u) is given in (4.85) ∀z ∈M2. Hence, the entries

L(ℓ)
ex,u of the aggregated extrinsic L-vector in (4.52) are related to f (ℓ)

u and the channel
observation y by

L(ℓ)
ex,u = D(ℓ)

1 f
(ℓ)
{u} + D(ℓ)

2
∑

a∈Fq\{u}
f

(ℓ)
{u,a} + Dchδuy +K2 (4.87)

where Dch and D(ℓ)
1 are given in (4.70) and (4.71) and we have

D(ℓ)
2 = ln

 s(ℓ)
I3

|I3|

− ln
 s(ℓ)

I4

|I4|

 (4.88)

K2 = ln
(

ϵ

q − 1

)
+
∑

a∈Fq

f
(ℓ)
{a} ln

 s(ℓ)
I1

|I1|


+

∑
a,e∈Fq

f
(ℓ)
{a,e} ln

 s(ℓ)
I4

|I4|

+ f
(ℓ)
E ln(s(ℓ)

I2 ).
(4.89)

Note that K2 in (4.89) can be ignored in the VN update rule since it is independent
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of u. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∏
u∈Fq\{0}

I(L(ℓ)
ex,0 > L(ℓ)

ex,u + ∆(ℓ))
(4.90)

p
(ℓ)
I1 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
∏

u∈Fq\{a}
I(L(ℓ)

ex,a > L(ℓ)
ex,u + ∆(ℓ))

(4.91)

p
(ℓ)
I3 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∑
a∈Fq\{0}

I
(
|L(ℓ)

ex,0 − L(ℓ)
ex,a| ≤ ∆(ℓ)

)
×

∏
u∈Fq\{0,a}

I
(
L(ℓ)

ex,a > L(ℓ)
ex,u + ∆(ℓ)

)
I
(
L

(ℓ)
ex,0 > L(ℓ)

ex,u + ∆(ℓ)
) (4.92)

p
(ℓ)
I4 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∑
a,e∈Fq\{0},a̸=e

I
(
|L(ℓ)

ex,a − L(ℓ)
ex,e| ≤ ∆(ℓ)

)
×

∏
u∈Fq\{a,e}

I
(
L(ℓ)

ex,a > L(ℓ)
ex,u + ∆(ℓ)

)
I
(
L(ℓ)

ex,e > L(ℓ)
ex,u + ∆(ℓ)

) (4.93)

p
(ℓ)
I2 =1− p(ℓ)

I0 − p
(ℓ)
I1 − p

(ℓ)
I3 − p

(ℓ)
I4 (4.94)

where the inner sum is over all length |M2| non-negative integer vectors f (ℓ) whose
entries sum to d− 1

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
{0}, . . . , f

(ℓ)
E

) 4∏
k=0

 s(ℓ)
Ik

|Ik|

f
(ℓ)
Ik

(4.95)

f
(ℓ)
Ik

=
∑

a∈Ik

f (ℓ)
a ∀k ∈ {0, . . . , 4}. (4.96)

We investigate the asymptotic performance of SRLMP with maximum list size 1 and
2 obtained by DE. Table 4.3 shows the iterative decoding thresholds of SRLMP for
(3, 5) regular ensemble and various values of q. For the sake of comparison, we provide
the belief propagation thresholds ϵ⋆

BP, the Shannon limit ϵSh and the thresholds of
the SMP decoder. By comparing the thresholds for Γ = 1 with the SMP ones,
we see that significant gains are obtained if erasures are allowed in the decoding
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Table 4.3: Decoding thresholds ϵ⋆ of the (3, 5) regular LDPC code ensemble

q
[27] [27] SMP SRLMP SRLMP

ϵ⋆
BP ϵShΓ = 1 Γ = 2 [91] Γ = 1 Γ = 2

2 0.061 - 0.061 0.0975 − 0.113 0.146
4 0.092 0.153 0.122 0.1283 0.1632 0.196 0.248
8 0.093 0.186 0.133 0.1430 0.1918 0.254 0.319
16 0.094 0.2 0.138 0, 1627 0.2057 0.296 0.370
32 - - 0.140 0.1906 0.2163 0.328 0.4086
64 - - 0.141 0.2153 0.2209 0.352 0.4369

algorithm. Increasing Γ improves the threshold but this comes at the cost of an
increasing complexity. We believe that increasing Γ further will significantly increase
the decoding complexity and will not achieve significant gains compared to the case
of Γ = 2.

Note that the SRLMP outperforms the decoding algorithm in [27] for the same
maximum list size. Since the CN update rule of both decoders is the same, the
gain is probably due to the VN update rule which is more complex for the case of
the SRLMP decoder. In fact, the VNs in [27] compute the sum of binary vectors,
whereas, here the incoming messages are converted to L-vectors before summation.
To check the finite-length performance under SRLMP, we consider the performance
of a regular (3, 5) code where we set the maximum number of iterations to ℓmax = 50.
The code has a block length n = 60000 and its Tanner graph is obtained via the PEG
algorithm [94]. Finite-length simulation results for Γ = 1 and Γ = 2 are shown in
Fig. 4.5 in terms of symbol error rate (SER) versus the QSC error probability ϵ. We
keep ∆(ℓ) constant over the iterations and use ∆(ℓ) = 1 for Γ = 1 and ∆(ℓ) = 1.25 for
Γ = 2. As a reference, we provide the simulation results under the SMP decoder [91]
and under the decoding algorithm in [27] for Γ = 1.

RSMP

We introduce now a message passing algorithm for q-ary LDPC codes over the QSC, which
we dub RSMP. To decrease the data flow, instead of passing a list of symbols as in SRLMP,
the exchanged messages are symbols from Fq together with their reliability scores from
{H, L} for 1-bit RSMP and {vH, H, L, vL} for 2-bit RSMP. We improve the performance of
SMP by including reliability scores in the decoding.

1-bit RSMP
An exchanged message between a check and a variable node is a symbol from Fq together
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Figure 4.5: SER versus channel error probability ϵ for 4-ary regular (3, 5) LDPC code with
n = 60000.

with its reliability score from {H, L}, where H and L correspond to symbols with high and
low reliability, respectively. We denote by (m(ℓ)

c→v, r
(ℓ)
c→v) the message sent from CN c to its

neighboring VN v. Similarly, (m(ℓ)
v→c, r

(ℓ)
v→c) is the message sent from VN v to CN c at the

ℓ-th iteration. We have m(ℓ)
c→v,m

(ℓ)
v→c ∈ Fq and r(ℓ)

c→v, r
(ℓ)
v→c ∈ {H, L}.

Initially, each VN sends its channel observation y to its neighboring CNs

m(0)
v→c =y. (4.97)

The reliability score of m(0)
v→c is

r(0)
v→c =


H if Dch > ∆

L otherwise
(4.98)

where

Dch = ln(1− ϵ)− ln
(

ϵ

q − 1

)
. (4.99)

The real-valued parameter ∆ is chosen to maximize the iterative decoding threshold and
can be chosen for each iteration individually. In this work, we keep ∆ constant over the
iterations, i.e., we compute the iterative decoding thresholds for several values of ∆ and
choose the best one.

Consider a CN c and a VN v connected to it. The CN c computes the symbol that
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satisfies the parity check equation given the incoming VN messages. We assign to the
outgoing symbol from c the reliability score L if any incoming symbols from the other
neighboring VNs has low reliability and the reliability score H otherwise. Formally, the
outgoing message is (m(ℓ)

c→v, r
(ℓ)
c→v) with

m(ℓ)
c→v =− h−1

v,c

∑
v′∈N (c)\v

hv′,cm
(ℓ−1)
v′→c (4.100)

and the reliability score of m(ℓ)
c→v is

r(ℓ)
c→v =


H if r(ℓ−1)

v′→c = H ∀v′ ∈ N (c) \ v

L otherwise.
(4.101)

The multiplication and the sum in (4.100) are performed over Fq and h−1
v,c is the inverse of

hv,c in Fq.

At the ℓ-th iteration, each VN computes

L(ℓ)
ex =

[
L

(ℓ)
ex,0, L

(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2

]
=L (y) +

∑
c′∈N (v)\c

L
(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
.

(4.102)

Then, the VN determines the Fq symbol with the maximum entry in L(ℓ)
ex . The outgoing

symbol has high reliability if its corresponding entry in L(ℓ)
ex is greater by ∆ than each of

the other entries. Formally, the VN sends (m(ℓ)
v→c, r

(ℓ)
v→c) with

m(ℓ)
v→c = argmax

u∈Fq

L(ℓ)
ex,u (4.103)

and the reliability score of m(ℓ)
v→c is

r(ℓ)
v→c =


H if ∃a ∈ Fq : L(ℓ)

ex,a > L(ℓ)
ex,u + ∆ ∀u ∈ Fq \ {a}

L otherwise.
(4.104)

In (4.103), if multiple maximizing arguments exist the arg max function outputs one of
them uniformly at random.
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To estimate its codeword symbol each VN computes

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
.

(4.105)

The final decision is

x̂(ℓ) = argmax
u∈Fq

L(ℓ)
app,u. (4.106)

Note that we can easily include erasures in the decoding algorithm. We observed that both
decoding algorithms (with and without erasures) have similar performance.

Remark 4.2. The complexity of a message passing decoding algorithm can be studied
from 2 perspectives: the cost of the arithmetic operations and the decoder data flow. The
internal decoder data flow, defined as the number of bits that are processed in each iteration,
scales linearly in the number of bits that represent the exchanged CN and VN messages [42].
This work targets this second complexity, i.e., the reduction of the internal data flow. The
exchanged messages in BP decoder are (q − 1)-ary real valued vectors, whereas for RSMP
the exchanged messages are symbols from Fq together with a reliability score from {H, L}.
This approach substantially reduces the number of bits needed to represent the exchanged
CN and VN messages and therefore the decoder data flow.

Density Evolution for 1-bit RSMP
This section provides a DE analysis for RSMP with 1-bit reliability for non-binary

irregular LDPC code ensembles. In the DE, the probabilities of VN to CN and CN to
VN messages are tracked as iterations progress. Due to symmetry and under the all-zero
codeword assumption, we can partition Fq × {H, L} into the following 4 disjoint sets

I0 ={(0, H)} (4.107)
I1 ={(a, H) : a ∈ Fq \ {0}} (4.108)
I2 ={(0, L)} (4.109)
I3 ={(a, L) : a ∈ Fq \ {0}} (4.110)

where (u, H) denotes a high-reliability symbol u and (u, L) denotes a low-reliability symbol
u ∈ Fq. Note that |I0| = |I2| = 1, |I1| = |I3| = q− 1. Let p(ℓ)

Ik
be the probability that a VN

to CN message belongs to the set Ik at the ℓ-th iteration. That means a VN to CN symbol
takes the value a ∈ Fq and has the reliability score r ∈ {H, L} with probability p(ℓ)

Ik
/|Ik| if
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(a, r) ∈ Ik. Similarly s
(ℓ)
Ik

is the probability that a CN to VN message belongs to the set
Ik, where k ∈ {0, 1, 2, 3}. The iterative decoding threshold ϵ⋆ is defined as the maximum
channel error probability such that p(ℓ)

I0 → 1 as ℓ→∞.

1. Initialization. Initially, we have

p
(0)
I0 =I(Dch > ∆)(1− ϵ) (4.111)
p

(0)
I1 =I(Dch > ∆)ϵ (4.112)
p

(0)
I2 =I(Dch ≤ ∆)(1− ϵ) (4.113)
p

(0)
I3 =I(Dch ≤ ∆)ϵ (4.114)

where I(A) is an indicator function that takes the value 1 if the proposition A is true
and 0 otherwise.

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. For the CN to VN messages, we have

s
(ℓ)
I0 =1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1

)
+ (q − 1)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.115)

s
(ℓ)
I1 =q − 1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1

)
− ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.116)

s
(ℓ)
I2 =1

q

1− ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)
− (q − 1)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


+(q − 1)ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1

 (4.117)

s
(ℓ)
I3 =q − 1

q

1− ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)
+ ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


−ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1

 .
(4.118)

Variable to check update. The extrinsic channel has input alphabet X = Fq,
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output alphabet Z = Fq × {H, L} and transition probabilities

P (z|u) =



s
(ℓ)
I0 if z = (u, H)

s
(ℓ)
I1

q−1 if z = (e, H) e ∈ Fq \ {u}

s
(ℓ)
I2 if z = (u, L)

s
(ℓ)
I3

q−1 if z = (e, L) e ∈ Fq \ {u}.

(4.119)

Consider now the VN to CN messages. Define the random vector F (ℓ) =(
F

(ℓ)
(0,H), . . . , F

(ℓ)
(αq−2,H), F

(ℓ)
(0,L), . . . , F

(ℓ)
(αq−2,L)

)
where F (ℓ)

(u,r), for u ∈ Fq and r ∈ {H, L}, de-
notes the RV associated to the number of incoming CN messages to a degree d VN
that are equal to (u, r) at the ℓ-th iteration. Let f (ℓ) be the realization of F (ℓ). The
entries of L

(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
in (4.102) are given by

Lu

(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
= ln

(
P ((m(ℓ)

c′→v, r
(ℓ)
c′→v)|u)

)
(4.120)

where m(ℓ)
c′→v ∈ Fq, r

(ℓ)
c′→v ∈ {H, L}, u ∈ Fq and P (z|u) can be computed from (4.115),

(4.116), (4.117), (4.118) and (4.119) ∀z ∈ Fq × {H, L}. Hence, the elements L(ℓ)
ex,u

of the aggregated extrinsic L-vector in (4.102) are related to f (ℓ)
u and the channel

observation y by

L(ℓ)
ex,u = D(ℓ)

H f
(ℓ)
(u,H) + D(ℓ)

L f
(ℓ)
(u,L) + Dchδuy +K ∀u ∈ Fq (4.121)

where δij is the Kronecker delta function, Dch is given in (4.70) and we have

D(ℓ)
H = ln(s(ℓ)

I0 )− ln
 s

(ℓ)
I1

q − 1

 (4.122)

D(ℓ)
L = ln(s(ℓ)

I2 )− ln
 s

(ℓ)
I3

q − 1

 (4.123)

K1 = ln
(

ϵ

q − 1

)
+
∑

a∈Fq

f
(ℓ)
(a,H) ln

 s
(ℓ)
I1

q − 1

+
∑

a∈Fq

f
(ℓ)
(a,L) ln

 s
(ℓ)
I3

q − 1

 . (4.124)

Note that K1 in (4.124) can be ignored in the VN update rule since it is independent
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of the symbol u. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∏
u∈Fq\{0}

I(L(ℓ)
ex,0 > L(ℓ)

ex,u + ∆)
(4.125)

p
(ℓ)
I1 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}×

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

} ∏
u∈Fq\{a}

I(L(ℓ)
ex,a > L(ℓ)

ex,u + ∆)
(4.126)

p
(ℓ)
I2 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(S0 ̸= ∅)
∏

u∈Fq\{0}
I(L(ℓ)

ex,0 > L(ℓ)
ex,u) + I(0 ∈ U)

|U|

 (4.127)

p
(ℓ)
I3 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(Sa ̸= ∅)
∏

u∈Fq\{a}
I(L(ℓ)

ex,a > L(ℓ)
ex,u) + I(a ∈ U)

|U|

 (4.128)

where the inner sum is over all length 2q integer vectors f (ℓ) whose entries are
non-negative and sum to d− 1. For all u ∈ Fq, we have

Su ={e ∈ Fq : L(ℓ)
ex,u −∆ ≤ L(ℓ)

ex,e < L(ℓ)
ex,u} (4.129)

U ={e ∈ Fq : L(ℓ)
ex,e = max

u∈Fq

L(ℓ)
ex,u} (4.130)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
(0,H), . . . , f

(ℓ)
(αq−2,L)

) 3∏
k=0

 s(ℓ)
Ik

|Ik|

f
(ℓ)
Ik

(4.131)

f
(ℓ)
Ik

=
∑

(a,r)∈Ik

f
(ℓ)
(a,r) ∀k ∈ {0, . . . , 3}. (4.132)

Tables 4.4 and 4.5 compare the iterative decoding thresholds ϵ⋆ of 1-bit RSMP, SMP,
SRLMP (for maximum list size Γ = 1 and Γ = 2) and BP decoding ϵ⋆

BP for (4, 8) and (3, 4)
regular ensembles and several q values. The tables also give the Shannon limit ϵSh and
the thresholds of the list message passing algorithm in [27] for maximum list size Γ = 1
and Γ = 2. Observe that 1-bit RSMP outperforms SMP decoding. This gain is due to
including reliability scores in the decoding process. For 1-bit RSMP, the alphabet size of
the messages is 2q which is much smaller than the alphabet size of SRLMP and the list
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Table 4.4: Decoding thresholds ϵ⋆ of the (4, 8) regular LDPC code ensembles

q
SMP SRLMP SRLMP 1-bit RSMP ϵ⋆

BP ϵSh[91] Γ = 1 Γ = 2
2 0.0516 0.0656 - 0.0687 0.076 0.110
4 0.0814 0.0923 0.1075 0.1041 0.134 0.189
8 0.1064 0.1151 0.1332 0.1321 0.175 0.247
16 0.137 0.1389 0.1533 0.1481 0.204 0.2897
32 0.1636 0.1636 0.1673 0.1697 0.226 0.3217
64 0.1758 0.1758 0.1758 0.1866 0.241 0.3462

Table 4.5: Decoding thresholds ϵ⋆ of the (3, 4) regular LDPC code ensemble

q
SMP [27] [27] SRLMP SRLMP 1-bit RSMP ϵ⋆

BP ϵSh[91] Γ = 1 Γ = 2 Γ = 1 Γ = 2
2 0.1069 0.106 - 0.1439 − 0.1448 0.167 0.2145
4 0.1724 0.123 0.222 0.1842 0.2390 0.2213 0.280 0.3546
8 0.1867 0.124 0.269 0.2096 0.2790 0.2791 0.355 0.4480
16 0.1930 0.120 0.287 0.2481 0.2977 0.3138 0.407 0.5120
32 0.1960 - - 0.2893 0.3110 0.3382 0.444 0.5570
64 0.1974 - - 0.3128 0.3175 0.354 0.475 0.5894

message passing [27] for maximum list size 2, which is equal to 1 + q(q + 1)/2. Remarkably,
for some values of q and degree distributions, 1-bit RSMP outperforms both SRLMP and
the algorithm in [27] for maximum list size 2 and with reduced complexity and data flow.

To check the finite-length performance under 1-bit RSMP, we consider the performance
of a regular (4, 8) code where we set the maximum number of iterations ℓmax = 50.
The code has a block length n = 12000 and its Tanner graph is obtained via the PEG
algorithm [94] and edge labels uniformly chosen in Fq \{0}. Finite-length simulation results
for q ∈ {2, 4, 8, 16} are shown in Fig. 4.6 in terms of FER versus the QSC error probability
ϵ. We use ∆ = 1.6 for q = 2 and 8, ∆ = 1.5 for q = 4 and ∆ = 1.8 for q = 16. The
parameters D(ℓ)

H ,D(ℓ)
L are not provided but are obtained as a byproduct of DE analysis. As

a reference, we provide the simulation results under SMP decoding [91].
2-bit RSMP
We extend the 1-bit RSMP by using 2 bits for the reliability, i.e., an exchanged message

between a check and a variable node is a symbol from Fq together with its reliability score
from {vH, H, L, vL}, where vH, H, L, vL correspond to symbols with very high, high, low and
very low reliability, respectively. We sort the reliabilities as vL < L < H < vH. We introduce
three real-valued parameters ∆1,∆2 and ∆3. These parameters are chosen to maximize the
iterative decoding threshold and can be chosen for each iteration individually. In this work,
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Figure 4.6: FER versus channel error probability ϵ for regular (4, 8) LDPC codes with
n = 12000 for SMP (dashed lines) and 1-bit RSMP (solid lines).

we keep them constant over the iterations.

Initially, each VN sends its channel observation y to its neighboring CNs

m(0)
v→c =y. (4.133)

The reliability score of m(0)
v→c is

r(0)
v→c =



vH if Dch > ∆3

H if ∆2 < Dch ≤ ∆3

L if ∆1 < Dch ≤ ∆2

vL otherwise

(4.134)

where

Dch = ln(1− ϵ)− ln
(

ϵ

q − 1

)
. (4.135)

Consider a CN c and a VN v connected to it. The CN c computes the symbol that
satisfies the parity check equation given the incoming VN messages. We assign to the
outgoing symbol from c the lowest reliability score of the incoming symbols from the other
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neighboring VNs. Formally, the outgoing message is (m(ℓ)
c→v, r

(ℓ)
c→v) with

m(ℓ)
c→v =− h−1

v,c

∑
v′∈N (c)\v

hv′,cm
(ℓ−1)
v′→c (4.136)

and the reliability score of m(ℓ)
c→v is

r(ℓ)
c→v = min

v′∈N (c)\v
r

(ℓ−1)
v′→c . (4.137)

The multiplication and the sum in (4.136) are performed over Fq and h−1
v,c is the inverse of

hv,c in Fq.

At the ℓ-th iteration, each VN computes

L(ℓ)
ex =

[
L

(ℓ)
ex,0, L

(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2

]
=L (y) +

∑
c′∈N (v)\c

L
(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
.

(4.138)

Then, the VN determines the Fq symbol with the maximum entry in L(ℓ)
ex . The outgoing

symbol has high reliability if its corresponding entry in L(ℓ)
ex is greater by ∆ than each of

the other entries. Formally, the VN sends (m(ℓ)
v→c, r

(ℓ)
v→c) with

m(ℓ)
v→c = argmax

u∈Fq

L(ℓ)
ex,u (4.139)

and the reliability score of m(ℓ)
v→c is

r(ℓ)
v→c =



vH if ∃a ∈ Fq : L(ℓ)
ex,a > L(ℓ)

ex,u + ∆3 ∀u ∈ Fq \ {a}

H if ∄a ∈ Fq : L(ℓ)
ex,a > L(ℓ)

ex,u + ∆3 ∀u ∈ Fq \ {a}&
∃a ∈ Fq : L(ℓ)

ex,a > L(ℓ)
ex,u + ∆2 ∀u ∈ Fq \ {a}

L if ∄a ∈ Fq : L(ℓ)
ex,a > L(ℓ)

ex,u + ∆2 ∀u ∈ Fq \ {a}&
∃a ∈ Fq : L(ℓ)

ex,a > L(ℓ)
ex,u + ∆1 ∀u ∈ Fq \ {a}

vL otherwise.

(4.140)

In (4.139), if multiple maximizing arguments exist the arg max function outputs one of
them uniformly at random.
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To estimate its codeword symbol each VN computes

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
.

(4.141)

The final decision is

x̂(ℓ) = argmax
u∈Fq

L(ℓ)
app,u. (4.142)

Density Evolution for 2-bit RSMP
We provide a DE analysis for RSMP with 2-bit reliability for non-binary irregular LDPC

code ensembles. We partition Fq × {H, L} into the following 8 disjoint sets

I0 ={(0, vH)} (4.143)
I1 ={(a, vH) : a ∈ Fq \ {0}} (4.144)
I2 ={(0, H)} (4.145)
I3 ={(a, H) : a ∈ Fq \ {0}} (4.146)
I4 ={(0, L)} (4.147)
I5 ={(a, L) : a ∈ Fq \ {0}} (4.148)
I6 ={(0, vL)} (4.149)
I7 ={(a, vL) : a ∈ Fq \ {0}} (4.150)

where (u, vH), (u, H), (u, L), (u, vL) denote a very high, high, low, very low reliable symbol
u ∈ Fq , respectively. Note that |I0| = |I2| = |I4| = |I6| = 1, |I1| = |I3| = |I5| = |I7| =
q − 1.

Let p(ℓ)
Ik

be the probability that a VN to CN message belongs to the set Ik at the ℓ-th
iteration. Similarly s(ℓ)

Ik
is the probability that a CN to VN message belongs to the set Ik,

where k ∈ {0, 1, . . . , 7}.

1. Initialization. Initially, we have

p
(0)
I0 =I(Dch > ∆3)(1− ϵ) (4.151)
p

(0)
I1 =I(Dch > ∆3)ϵ (4.152)
p

(0)
I2 =I(∆2 < Dch ≤ ∆3)(1− ϵ) (4.153)
p

(0)
I3 =I(∆2 < Dch ≤ ∆3)ϵ (4.154)
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p
(0)
I4 =I(∆1 < Dch ≤ ∆2)(1− ϵ) (4.155)
p

(0)
I5 =I(∆1 < Dch ≤ ∆2)ϵ (4.156)
p

(0)
I6 =I(Dch ≤ ∆1)(1− ϵ) (4.157)
p

(0)
I7 =I(Dch ≤ ∆1)ϵ. (4.158)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. For the CN to VN messages, we have

s
(ℓ)
I0 =1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1

)
+ (q − 1)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.159)

s
(ℓ)
I1 =q − 1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1

)
− ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1

 (4.160)

s
(ℓ)
I2 =1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3

)
− (q − 1)ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)
+ (q − 1)ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1

 (4.161)

s
(ℓ)
I3 =q − 1

q

ρ (p(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3

)
+ ρ

p(ℓ−1)
I0 −

p
(ℓ−1)
I1

q − 1


−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1

)
− ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1

 (4.162)

s
(ℓ)
I4 =1

q

[
ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3 + p

(ℓ−1)
I4 + p

(ℓ−1)
I5

)

−(q − 1)ρ
p(ℓ−1)

I0 + p
(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1


−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3

)
+(q − 1)ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3 + p

(ℓ−1)
I5

q − 1


(4.163)
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s
(ℓ)
I5 =q − 1

q

[
ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3 + p

(ℓ−1)
I4 + p

(ℓ−1)
I5

)

+ρ
p(ℓ−1)

I0 + p
(ℓ−1)
I2 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3

q − 1


−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3

)
−ρ

p(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 −

p
(ℓ−1)
I1 + p

(ℓ−1)
I3 + p

(ℓ−1)
I5

q − 1


(4.164)

s
(ℓ)
I6 =1

q

[
1− (q − 1)ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 −

p
(ℓ−1)
I1

+p
(ℓ−1)
I3

+p
(ℓ−1)
I5

q−1

)
+

(q − 1)ρ
(
p

(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 + p

(ℓ−1)
I6 −

p
(ℓ−1)
I1

+p
(ℓ−1)
I3

+p
(ℓ−1)
I5

+p
(ℓ−1)
I7

q−1

)
−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3 + p

(ℓ−1)
I4 + p

(ℓ−1)
I5

)]
(4.165)

s
(ℓ)
I7 =q − 1

q

[
1 + ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 −

p
(ℓ−1)
I1

+p
(ℓ−1)
I3

+p
(ℓ−1)
I5

q−1

)
−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I1 + p

(ℓ−1)
I2 + p

(ℓ−1)
I3 + p

(ℓ−1)
I4 + p

(ℓ−1)
I5

)
−ρ

(
p

(ℓ−1)
I0 + p

(ℓ−1)
I2 + p

(ℓ−1)
I4 + p

(ℓ−1)
I6 −

p
(ℓ−1)
I1

+p
(ℓ−1)
I3

+p
(ℓ−1)
I5

+p
(ℓ−1)
I7

q−1

)]
.

(4.166)

Variable to check update. The extrinsic channel has input alphabet X = Fq,
output alphabet Z = Fq × {H, L} and transition probabilities

P (z|u) =



s
(ℓ)
I0 if z = (u, vH)

s
(ℓ)
I1

q−1 if z = (e, vH) e ∈ Fq \ {u}

s
(ℓ)
I2 if z = (u, H)

s
(ℓ)
I3

q−1 if z = (e, H) e ∈ Fq \ {u}

s
(ℓ)
I4 if z = (u, L)

s
(ℓ)
I5

q−1 if z = (e, L) e ∈ Fq \ {u}

s
(ℓ)
I6 if z = (u, vL)

s
(ℓ)
I7

q−1 if z = (e, vL) e ∈ Fq \ {u}.

(4.167)

Consider now the VN to CN messages. Define the random vector F (ℓ) =(
F

(ℓ)
(0,vH), . . . , F

(ℓ)
(αq−2,vH), F

(ℓ)
(0,H), . . . , F

(ℓ)
(αq−2,H), F

(ℓ)
(0,L), . . . , F

(ℓ)
(αq−2,L), F

(ℓ)
(0,vL), . . . , F

(ℓ)
(αq−2,vL)

)
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where F (ℓ)
(u,r), for u ∈ Fq and r ∈ {vH, H, L, vL}, denotes the RV associated to the

number of incoming CN messages to a degree d VN that are equal to (u, r) at the
ℓ-th iteration. Let f (ℓ) be the realization of F (ℓ). The entries of L

(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
in (4.138) are given by

Lu

(
(m(ℓ)

c′→v, r
(ℓ)
c′→v)

)
= ln

(
P ((m(ℓ)

c′→v, r
(ℓ)
c′→v)|u)

)
(4.168)

where m(ℓ)
c′→v ∈ Fq, r

(ℓ)
c′→v ∈ {vH, H, L, vL}, u ∈ Fq and P (z|u) can be computed from

(4.159)-(4.166) and (4.167) ∀z ∈ Fq × {vH, H, L, vL}. Hence, the elements L(ℓ)
ex,u of the

aggregated extrinsic L-vector in (4.138) are related to f (ℓ)
u and the channel observation

y by
L(ℓ)

ex,u =D(ℓ)
vH f

(ℓ)
(u,vH) + D(ℓ)

H f
(ℓ)
(u,H) + D(ℓ)

L f
(ℓ)
(u,L) + D(ℓ)

vL f
(ℓ)
(u,vL)

+ Dchδuy +K2 ∀u ∈ Fq

(4.169)

where Dch is given in (4.70) and we have

D(ℓ)
vH = ln(s(ℓ)

I0 )− ln
 s

(ℓ)
I1

q − 1

 (4.170)

D(ℓ)
H = ln(s(ℓ)

I2 )− ln
 s

(ℓ)
I3

q − 1

 (4.171)

D(ℓ)
L = ln(s(ℓ)

I4 )− ln
 s

(ℓ)
I5

q − 1

 (4.172)

D(ℓ)
vL = ln(s(ℓ)

I6 )− ln
 s

(ℓ)
I7

q − 1

 (4.173)

K2 = ln
(

ϵ

q − 1

)
+
∑

a∈Fq

f
(ℓ)
(a,vH) ln

 s
(ℓ)
I1

q − 1

+
∑

a∈Fq

f
(ℓ)
(a,H) ln

 s
(ℓ)
I3

q − 1


+
∑

a∈Fq

f
(ℓ)
(a,L) ln

 s
(ℓ)
I5

q − 1

+
∑

a∈Fq

f
(ℓ)
(a,vL) ln

 s
(ℓ)
I7

q − 1

 .
(4.174)

Note that K2 in (4.174) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

∏
u∈Fq\{0}

I(L(ℓ)
ex,0 > L(ℓ)

ex,u + ∆3)
(4.175)
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p
(ℓ)
I1 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}×

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

} ∏
u∈Fq\{a}

I(L(ℓ)
ex,a > L(ℓ)

ex,u + ∆3)
(4.176)

p
(ℓ)
I2 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(A0 ̸= ∅)
∏

u∈Fq\{0}
I(L(ℓ)

ex,0 > L(ℓ)
ex,u + ∆2)

(4.177)

p
(ℓ)
I3 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(Aa ̸= ∅)
∏

u∈Fq\{a}
I(L(ℓ)

ex,a > L(ℓ)
ex,u + ∆2)

(4.178)

p
(ℓ)
I4 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(B0 ̸= ∅)
∏

u∈Fq\{0}
I(L(ℓ)

ex,0 > L(ℓ)
ex,u + ∆1)

(4.179)

p
(ℓ)
I5 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(Ba ̸= ∅)
∏

u∈Fq\{a}
I(L(ℓ)

ex,a > L(ℓ)
ex,u + ∆1)

(4.180)

p
(ℓ)
I6 =

∑
d

λd

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(D0 ̸= ∅)
∏

u∈Fq\{0}
I(L(ℓ)

ex,0 > L(ℓ)
ex,u) + I(0 ∈ U)

|U|

 (4.181)

p
(ℓ)
I7 =

∑
d

λd

∑
a∈Fq\{0}

∑
y∈Fq

Pr {Y = y|X = 0}
∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
×

I(Da ̸= ∅)
∏

u∈Fq\{a}
I(L(ℓ)

ex,a > L(ℓ)
ex,u) + I(a ∈ U)

|U|

 (4.182)

where the inner sum is over all length 4q integer vectors f (ℓ) whose entries are
non-negative and sum to d− 1. For all u ∈ Fq, we have

Au ={e ∈ Fq : L(ℓ)
ex,u −∆3 ≤ L(ℓ)

ex,e < L(ℓ)
ex,u −∆2} (4.183)

Bu ={e ∈ Fq : L(ℓ)
ex,u −∆2 ≤ L(ℓ)

ex,e < L(ℓ)
ex,u −∆1} (4.184)

Du ={e ∈ Fq : L(ℓ)
ex,u −∆1 ≤ L(ℓ)

ex,e < L(ℓ)
ex,u} (4.185)

U ={e ∈ Fq : L(ℓ)
ex,e = max

u∈Fq

L(ℓ)
ex,u} (4.186)
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Table 4.6: Decoding thresholds ϵ⋆ of the (3, 6) regular LDPC code ensembles

q
SMP [27] [27] SRLMP SRLMP 1-bit RSMP 2-bit RSMP ϵ⋆

BP ϵSh[91] Γ = 1 Γ = 2 Γ = 1 Γ = 2
2 0.0395 0.039 - 0.0707 - 0.0741 0.0801 0.084 0.110
4 0.0890 0.072 0.111 0.0946 0.1203 0.1102 0.1159 0.149 0.189
8 0.1039 0.073 0.137 0.1086 0.1411 0.1390 0.1429 0.196 0.247
16 0.1075 0.075 0.148 0.122 0.1517 0.1676 0.1677 0.231 0.2897
32 0.1092 - - 0.1387 0.1560 0.1814 0.1814 0.26 0.3217
64 0.1101 - - 0.1576 0.1585 0.1915 0.1915 0.279 0.3462

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
(0,vH), . . . , f

(ℓ)
(αq−2,vL)

) 7∏
k=0

 s(ℓ)
Ik

|Ik|

f
(ℓ)
Ik

(4.187)

f
(ℓ)
Ik

=
∑

(a,r)∈Ik

f
(ℓ)
(a,r) ∀k ∈ {0, . . . , 7}. (4.188)

Tables 4.6 compares the iterative decoding thresholds ϵ⋆ of 1- and 2-bit RSMP, SMP,
SRLMP (for maximum list size Γ = 1 and Γ = 2) and BP decoding ϵ⋆

BP for (3, 6) regular
ensemble and several q values. The tables also give the Shannon limit ϵSh and the thresholds
of the list message passing algorithm in [27] for maximum list size Γ = 1 and Γ = 2.
Observe that 2-bit RSMP outperforms the 1-bit RSMP. This gain is due to using one bit
more for the reliability scores. We see that for some values of q, the 1- and 2-bit RSMP
algorithms outperform both SRLMP and the algorithm in [27] for maximum list size 2 and
with reduced complexity and data flow.

4.2.3 Q-ary Erasure Channel

We extend the SMP and SEMP (SRLMP with Γ = 1) to a QEC with erasure probability ϵ.
In this case, the entries of the channel L-vector are

La(y) =


ln(1− ϵ) a = y

ln(ϵ) y = E

−∞ otherwise.

(4.189)
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SMP

Initially, each VN sends the symbol that maximizes L(y), i.e.,

m(0)
v→c = argmax

a∈Fq

La(y). (4.190)

If y ∈ Fq, we have m(0)
v→c = y and if y is erased, then m(0)

v→c is an Fq symbol chosen uniformly
at random.

The CN update is the same as (4.29).
At the ℓ-th iteration, each VN computes (4.30). The outgoing VN message is the Fq

symbol with the maximum entry in L(ℓ)
ex . We obtain

m(ℓ)
v→c =


y if y ∈ Fq

argmax
u∈Fq

|c′ ∈ N (v) \ c : m(ℓ)
c′→v = u| if y = E.

(4.191)

Whenever multiple maximizing arguments exist, the arg max function outputs one of them
uniformly at random.

The transition probabilities of the extrinsic channel are estimated via the DE analysis.
They are then used to compute the L-vectors of the CN messages in (4.26) and (4.27). To
estimate its codeword symbol each VN computes

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
m

(ℓ)
c′→v

)
.

(4.192)

For the QEC, the final decision is

x̂(ℓ) =


y if y ∈ Fq

argmax
u∈Fq

|c′ ∈ N (v) : m(ℓ)
c′→v = u| y = E.

(4.193)

Density Evolution SMP over QEC
We present now a DE for SMP for non-binary LDPC codes over a QEC with erasure

probability ϵ. We partition the message alphabet MSMP = Fq into 2 disjoint sets I0 = {0}
and I1 = {a : a ∈ Fq \ {0}}. Let p(ℓ)

Ik
be the probability that a VN to CN message belongs

to the set Ik at the ℓ-th iteration and s(ℓ)
Ik

the probability that a CN to VN message belongs
to the set Ik, where k ∈ {0, 1}. The ensemble iterative decoding threshold ϵ⋆ is defined as
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the maximum channel erasure probability ϵ for which p
(ℓ)
I0 → 1 as ℓ→∞. In the limit of

n→∞, the DE analysis can be summarized in the following steps.

1. Initialization.

p
(0)
I0 =1− q − 1

q
ϵ (4.194)

p
(0)
I1 =q − 1

q
ϵ. (4.195)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have (4.36) and (4.37).

Variable to check update. The extrinsic channel has input alphabet X = Fq,
output alphabet Z = Fq and transition probabilities in (4.38).

Consider now the VN to CN messages. We use the random vector F (ℓ) =(
F

(ℓ)
0 , . . . , F

(ℓ)
αq−2

)
where F (ℓ)

u , for u ∈ Fq denotes the RV associated to the num-
ber of incoming CN messages to a degree d VN that are equal to u at the ℓ-th
iteration. Let f (ℓ) be the realization of F (ℓ). We have

p
(ℓ)
I0 =1− ϵ+ ϵ

∑
d

λd

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = 0

} I
(
0 ∈ F (ℓ)

)
|F (ℓ)|

(4.196)

p
(ℓ)
I1 =1− p(ℓ)

I0
(4.197)

where the inner sum is over all length q integer vectors f (ℓ) whose entries are non-
negative and sum to d− 1 and

F (ℓ) =
{
u ∈ Fq

∣∣∣f (ℓ)
u = max

a∈Fq

f (ℓ)
a

}
(4.198)

Pr
{
F (ℓ) = f (ℓ)|X = 0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
αq−2

)
(s(ℓ)

I0 )f
(ℓ)
0

 s
(ℓ)
I1

q − 1

d−1−f
(ℓ)
0

. (4.199)

SEMP

At the beginning, the message from VN v to a neighboring CN c is

m(0)
v→c =


y if y ∈ Fq

E if y = E.
(4.200)
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At the ℓ-th iteration, CN c sends to a neighboring VN v the message

m(ℓ)
c→v =


−h−1

v,c
∑

v′∈N (c)\v
hv′,cm

(ℓ−1)
v′→c if m(ℓ−1)

v′→c ̸= E ∀v′ ∈ N (c) \ v

E otherwise.
(4.201)

For the QEC, the outgoing VN message is

m(ℓ)
v→c =


E y = E & ∀c′ ∈ N (v) \ c : m(ℓ)

c′→v = E

y otherwise.
(4.202)

The final decision is

m̂(ℓ)
v =


E y = E & ∀c′ ∈ N (v) : m(ℓ)

c′→v = E

y otherwise.
(4.203)

Density Evolution SEMP over QEC
We present now a DE for SEMP over the QEC. Due to symmetry and under the all-zero

codeword assumption, we can partition the message alphabet M1 into 3 disjoint sets
I0, I1, I2 such that the messages in the same set have the same probability. We have
(4.57)-(4.59). Let p(ℓ)

Ik
be the probability that a VN to CN message belongs to the set Ik

at the ℓ-th iteration, i.e., a VN to CN message takes the value a ∈ Ik with probability
p

(ℓ)
Ik
/|Ik|. Similarly s

(ℓ)
Ik

is the probability that a CN to VN message belongs to the set
Ik, where k ∈ {0, 1, 2}. The ensemble iterative decoding threshold ϵ⋆ is defined as the
maximum ϵ for which p

(ℓ)
I0 → 1 as ℓ→∞. In the limit of n→∞, the DE analysis can be

summarized in the following steps.

1. Initialization. Initially, we have

p
(0)
I0 =1− ϵ (4.204)
p

(0)
I1 =0 (4.205)
p

(0)
I2 =ϵ. (4.206)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have (4.63)-(4.65).
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Variable to check update. Consider now the VN to CN messages. We obtain

p
(ℓ)
I0 =1− ϵ+ ϵ

(
1− λ

(
s

(ℓ)
I2

))
(4.207)

p
(ℓ)
I2 =ϵλ

(
s

(ℓ)
I2

)
(4.208)

p
(ℓ)
I1 =0. (4.209)

4.2.4 AWGN Channel with PPM

We extend the SMP to AWGN channels with orthogonal modulations where the field order
q and the modulation order are equal. This makes non-binary LDPC codes a natural
choice since each q-ary modulation symbol is in one-to-one correspondence with a q-ary
code symbol. We aim to show that non-binary LDPC codes with low-complexity decoding
algorithms are favorable for certain coded-modulation scenarios.

Let the channel message be represented by a length-q L-vector

L(y) =
(
L0(y), L1(y), . . . , Lαq−2(y)

)
(4.210)

with La(y) = ln (p(y|a)). Decoding proceeds as follows. Initially, Each VN computes the
channel L-vector defined in (4.210) and sends the symbol with the highest L-value. Since

La(y) = ya

σ2 −
q

2 ln(2πσ2)− ∥y∥
2 + 1

2σ2 ∀a ∈ Fq (4.211)

finding the maximum of the length-q vector L(y) is equivalent to finding the maximum of
y. Hence, we have

m(0)
v→c = argmax

a∈Fq

La(y) = argmax
a∈Fq

ya. (4.212)

The complexity of the initialization step scales as O(nq). The performed operation is
finding a maximum.

The CN update is the same as (4.29). From [97] the CN operation can be implemented
with 2dc−1 q-ary additions and 2dc q-ary multiplications. If q-ary additions/multiplications
are implemented using elementary operations the complexity may depend on q. For instance,
the sum of two q-ary symbols can be performed by log2 q binary XOR operations. Thus,
the complexity scales as O(mdcg(q)), where g(·) is an implementation dependent cost.
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At the ℓ-th iteration, each VN computes

L(ℓ)
ex =

[
L

(ℓ)
ex,0, L

(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2

]
=L (y) +

∑
c′∈N (v)\c

L
(
m

(ℓ)
c′→v

)
.

(4.213)

The outgoing VN message is the Fq symbol with the maximum entry in L(ℓ)
ex , i.e.,

m(ℓ)
v→c = argmax

u∈Fq

L(ℓ)
ex,u. (4.214)

The final decision is

x̂(ℓ) = argmax
u∈Fq

L(ℓ)
app,u (4.215)

where

L(ℓ)
app =

[
L

(ℓ)
app,0, L

(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2

]
=L (y) +

∑
c′∈N (v)

L
(
m

(ℓ)
c′→v

)
.

(4.216)

The following Lemma will be useful for the complexity analysis of the decoder.

Lemma 4.1. Suppose the w(i), i = 1, 2, . . . , d, are observations of a QSC with 1− ϵ > ϵ
q−1 .

When summing d L-vectors L
(
w(i)

)
, the elements of the sum with indices I = ⋃d

i=1 w
(i),

where |I| ≤ min(d, q), all have values greater than d ln ϵ
q−1 and thus contain the maximum

value of the sum.

Proof. Observe that each L
(
w(i)

)
has a single maximum with index a = w(i) and that all

other entries are ln(ϵ/(q − 1)). ■

The complexity of the VN operation scales as O(ndv): as shown in [97] all dv extrin-
sic messages can be computed efficiently from the sum L

(ℓ)
tot of all incoming messages∑

c′∈N (v) L
(
m

(ℓ)
c′→v

)
and L (y). Let the entry with index a be the maximum of L (y)

computed in (4.212).1 By Lemma 4.1 the largest values of L(ℓ)
tot will be in I ∪ a, where

|I ∪ a| ≤ min(dv + 1, q) ≤ dv + 1. This step requires O(dv) additions of floating-point
numbers. The identification of the (two) largest values of L(ℓ)

tot requires dv steps. Then,
the extrinsic messages and their maximum can be obtained from L

(ℓ)
tot with dv additional

operations (subtractions, comparisons) and we have an overall complexity scaling of O(ndv).
1For an unquantized AWGN channel L (y) has a unique maximum with probability one.
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Density Evolution Analysis
We discuss DE analysis for SMP for non-binary irregular LDPC code ensembles over

the AWGN channel with PPM modulation. Due to symmetry, we can assume the all-
zero codeword was transmitted. We consider again the two disjoint sets I0 = {0} and
I1 = {a : a ∈ Fq \ {0}}. Due to symmetry, the messages in the same set have the same
probability. Let p(ℓ)

Ik
be the probability that a VN to CN message belongs to the set Ik at

the ℓ-th iteration and s
(ℓ)
Ik

the probability that a CN to VN message belongs to the set Ik,
where k ∈ {0, 1}. The ensemble iterative decoding threshold (Eb/N0)⋆ is defined as the
minimum Eb/N0 for which p

(ℓ)
I0 → 1 as ℓ → ∞. In the limit of n → ∞, the DE analysis

can be summarized in the following steps.

1. Initialization. Define the random vector

Za = Ya1q−1 − Y[a] (4.217)

for a ∈ Fq, with Y[a] being the random vector Y of channel observations without the
entry Ya and 1q−1 the length-(q − 1) all-one vector. Conditioned on the transmission
of the all-zero codeword, Y is a Gaussian random vector with mean µY = (1, 0, . . . , 0)
and covariance matrix ΣY = σ2Iq, where Iq is the size q identity matrix. Thus, Za

is a Gaussian random vector with mean

µZa =


1q−1 a = 0

(−1, 0, . . . , 0) a ∈ Fq \ {0}
(4.218)

and covariance matrix ΣZa with entries

(ΣZa)i,j =


2σ2 i = j

σ2 otherwise.
(4.219)

The parameters of Za ∀a ∈ Fq \ {0} do not depend on a and thus take the same value.
Therefore, Pr {Za > 0} is the same ∀a ∈ Fq \ {0}. We have

p
(0)
I0 = Pr {Z0 > 0} (4.220)
p

(0)
I1 =1− p(0)

I0 . (4.221)

2. For ℓ = 1, 2, . . . , ℓmax
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Check to variable update. For the CN messages, we again have s(0)
I0 and s

(0)
I1 in

(4.36) and (4.37). The extrinsic channel is a QSC with error probability 1− s(0)
I0 .

Variable to check update. We again use the random vector F (ℓ) =
(
F

(ℓ)
0 , . . . , F

(ℓ)
αq−2

)
where F (ℓ)

u , for u ∈ Fq denotes the RV associated to the number of incoming CN
messages to a degree d VN that are equal to u at the ℓ-th iteration. Let f (ℓ) be the
realization of F (ℓ). The entries of L

(
m

(ℓ)
c′→v

)
in (4.213) are given by

L(ℓ)
ex,u =D(ℓ)f (ℓ)

u + ya

σ2 +K ∀u ∈ Fq (4.222)

where δij is the Kronecker delta function and

D(ℓ) = ln(s(ℓ)
I0 )− ln

 s
(ℓ)
I1

q − 1

 (4.223)

K =− q

2 ln(2πσ2)− ∥y∥
2 + 1

2σ2 + (d− 1) ln
 s

(ℓ)
I1

q − 1

 . (4.224)

Note that K in (4.224) can be ignored in the VN update rule since it is independent
of the symbol u. We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
Pr
{

argmax
u∈Fq

L(ℓ)
ex,a = a

∣∣∣f (ℓ)
}

=
∑

d

λd

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
Pr
{
Z0 > σ2D(ℓ)(f (ℓ)

[0] − f
(ℓ)
0 1q−1)

} (4.225)

where f
(ℓ)
[0] is the vector f (ℓ) without its entry f (ℓ)

0 , Z0 is defined in (4.217) and the
sum is over integer vectors f (ℓ) for which one has 0 ≤ f (ℓ)

u ≤ d − 1∀u ∈ Fq and∑
u∈Fq

f (ℓ)
u = d− 1 and

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
αq−2

)
(s(ℓ)

I0 )f
(ℓ)
0

 s
(ℓ)
I1

q − 1

d−1−f
(ℓ)
0

. (4.226)

Stability Condition

We next derive the stability condition for SMP decoder over AWGN channels with PPM.
The stability analysis examines the convergence of the probability p(ℓ)

I1 to zero under the
assumption that it is close to the fixed point p⋆

I1 = 0. Note that s(ℓ)
I1 → 0 as p(ℓ)

I1 → 0. Thus,
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D(ℓ) →∞ and

p
(ℓ)
I1 =

∑
d

λd

∑
a∈Fq

 ∑
f (ℓ)∈F1,a

Pr
{
F (ℓ) = f (ℓ)|X = P0

}

+
∑

f (ℓ)∈F2,a

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
Pr
{

argmax
e∈S

Ye = a

} (4.227)

where F1,a is the set of all integer vectors f (ℓ) for which one has ∑
u∈Fq

f (ℓ)
u = d − 1 and

0 ≤ f (ℓ)
u < f (ℓ)

a ∀u ∈ Fq \ {a}. F2,a is the set of all integer vectors f (ℓ) for which one has∑
u∈Fq

f (ℓ)
u = d− 1 and 0 ≤ f (ℓ)

u < f (ℓ)
a ∀u ∈ Fq \ Sa where

Sa = {b ∈ Fq|f (ℓ)
b = f (ℓ)

a } (4.228)

and |Sa| > 1. Recall that for any a ∈ Fq \ {0}, we have

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
αq−2

)
(1− s(ℓ)

I0 )f
(ℓ)
0

 s
(ℓ)
I0

q − 1

d−1−f
(ℓ)
0

. (4.229)

We obtain

lim
s

(ℓ)
I1

→0

dp(ℓ)
I1

ds(ℓ)
I1

= λ2 + 2λ3Q

(
1√
2σ2

)
. (4.230)

Furthermore, we have

s
(ℓ)
I1 =q − 1

q

1− ρ
1−

qp
(ℓ−1)
I1

q − 1

 (4.231)

and

lim
p

(ℓ−1)
I1

→0

ds(ℓ)
I1

p
(ℓ−1)
I1

=ρ′(1). (4.232)

The first order Taylor expansions via (4.230), (4.232) yield

p
(ℓ)
I1 = ρ′(1)

[
λ2 + 2λ3Q

(
1√
2σ2

)]
p

(ℓ−1)
I1 . (4.233)
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Table 4.7: Thresholds (Eb/N0)⋆ of R = 1/2 LDPC code ensembles under SMP. Shannon
limit (Eb/N0)Sh as a reference. Ensembles with constraints on low-degree nodes
are marked with •.

q λ(x) ρ(x) (Eb/N0)⋆ [dB] (Eb/N0)Sh [dB]

4 0.0187x+ 0.5597x2 + 0.003x3 + 0.4186x11 0.3358x7 + 0.6642x8 3.22 1.060.3699x2 + 0.2799x3 + 0.3502x11 0.0084x7 + 0.9916x8 • 3.40

8 0.0465x+ 0.5735x2 + 0.38x11 0.859x7 + 0.141x8 2.19 0.080.4407x2 + 0.2652x3 + 0.2941x11 0.5576x7 + 0.4424x8 • 2.39

16 0.0595x+ 0.5868x2 + 0.3537x11 0.1351x6 + 0.8649x7 1.63 −0.470.5199x2 + 0.1436x3 + 0.3365x11 0.5407x7 + 0.4593x8 • 1.82

32 0.0582x+ 0.6141x2 + 0.3277x11 0.311x6 + 0.689x7 1.32 −0.800.55x2 + 0.1424x3 + 0.3076x11 0.8045x7 + 0.1955x8 • 1.48

The stability condition is fulfilled if and only if

ρ′(1)
[
λ2 + 2λ3Q

(
1√
2σ2

)]
< 1. (4.234)

Remark 4.3. The fraction of edges connected to degree 2 and 3 VNs impacts the stability
condition for SMP decoding. Thus, certain degree distributions optimized for unquantized
BP (see, e.g., [98]) might be unsuitable for SMP due to their large number of degree 2 and
3 VNs.

Iterative Decoding Thresholds
The DE analysis suggests an optimization algorithm to find rate R = 1/2 irregular

LDPC ensembles with ’good’ thresholds for q ∈ {8, 16, 32}. We restrict the maximum
VN degree to 12 and perform two optimizations: one without further constraints and
one with constraints on the degree two and three VNs. Threshold results are depicted in
Table 4.7 and show a gap of at least 2.1 dB with respect to the Shannon limit for various
q. Thresholds of q-ary LDPC codes under full BP decoding in [98] show gaps of only
0.2 dB, i.e., the simple SMP decoder yields a loss of around 1.9 dB. Interestingly, for binary
LDPC codes with orthogonal modulations and bit-interleaved coded modulation (BICM)
(no iterative detection) the gap to coded modulation capacity is comparable or even larger.
For instance, for q = 16 the gap is 1.8 dB [98, Fig. 1].

Monte Carlo Simulations
We designed three codes with q ∈ {8, 16, 32}, n = 104 (in Fq symbols), and R = 1/2

based on the constraint degree distribution pairs from Table 4.7. Figure 4.7 shows the FER
versus Eb/N0 of q-ary PPM allowing a maximum of 50 decoding iterations. Observe that
the waterfall performance is predicted well by the DE analysis. In addition, we provide
the performance of three R = 1/2 binary accumulate-repeat-4-jagged-accumulate (AR4JA)
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Figure 4.7: FER versus Eb/N0 of rate 1/2 codes under SMP and BP with BICM. Respective
thresholds are indicated by vertical lines.

LDPC codes assuming a BICM setting and q-ary PPM for q ∈ {8, 16, 32}. The AR4JA
protograph was taken from [99] and expanded to obtain block lengths (in bits) of n log2 q.
For q ≥ 16 the performance of the non-binary codes under SMP decoding is competitive
and for q = 32 they outperform the AR4JA codes with BICM by almost 0.2 dB.

Complexity

Despite the gap to capacity in Table 4.7, SMP decoding might be a good choice when
low-complexity decoding is targeted. First, a comparison of the algorithmic complexity
of the SMP decoder and a binary LDPC decoder with BICM is given in Table 4.8. For
the binary decoder, the initialization step requires computing symbol-wise probabilities,
followed by a marginalization to obtain bit-wise LLRs. The CN operations in the binary
decoder follow the approximate min* rule [100]. The VN operations consist of summing
up LLRs. Table 4.8 indicates that the algorithmic complexity of SMP is competitive with
binary BP, but a fair comparison is difficult due to the different types of operations. E.g.,
the approximate min* rule and the SMP CN operations can be implemented by look-up
tables. Then, an elementary operation is a look-up with g(q) = 1 and complexity is reduced
by a factor of log2 q w.r.t. the binary decoder. Other implementations may change the
picture. Second, an important figure for implementation is the data flow in the decoder [42].
For SMP we need log2 q bits to represent a symbol, for binary BP typically 4 to 5 bits to
represent an LLR. Since the binary Tanner graph has log2 q times more nodes the data flow
of the SMP decoder will be lower by a factor of 4 to 5 (for the same average node degrees).
Overall, the algorithmic complexity/data flow of an SMP decoder is highly competitive
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Table 4.8: Complexity scaling of algorithmic operations.
SMP BP with BICM

Init O(nq) O(nq log2 q)
maximization sum of floats

CN O(mdcg(q)) O(mdc log2 q)
elementary operations box-plus/multiplications

VN O(ndv) O(ndv log2 q)
addition of floats/maximization addition of floats

w.r.t. that of a binary decoder with BICM. However, only a hardware implementation will
give final insights.

4.2.5 Poisson Channel with PPM

In this section, we adapt the SMP and SEMP (SRLMP with Γ = 1) decoders to Poisson
channels with orthogonal (PPM) modulations where the field size q matches the modulation
order. We develop a DE analysis for the two different decoders which allows to design code
ensembles with optimized iterative decoding thresholds.

We consider again the log-likelihood vector (L-vector)

L(y) = [L0(y), L1(y), . . . , Lαq−2(y)] (4.235)

with elements (dubbed L-values)

La(y) = ln (P (y|a)) ∀a ∈ Fq. (4.236)

SMP

At the beginning, the VN v computes the channel L-vector and sends the symbol which has
the maximum L-value to all its neighbors. From (2.28), (4.235) and (4.236), the channel
L-vector is

L(y) =[L0(y), L1(y), . . . , Lαq−2(y)]
La(y) =Kya − qnb − ns +

∑
u∈Fq

(yu ln(nb)− ln(yu!)) ∀a ∈ Fq
(4.237)
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where K = ln
(
1 + ns

nb

)
. The outgoing VN message is computed as

m(0)
v→c = argmax

a∈Fq

La(y) = argmax
a∈Fq

ya. (4.238)

The message from CN c to a neighboring VN v is obtained by determining the symbol that
satisfies the parity-check equation given the incoming messages from all other neighbors.
The outgoing CN message at the ℓ-th iteration is

m(ℓ)
c→v = −h−1

v,c

∑
v′∈N (c)\v

hv′,cm
(ℓ−1)
v′→c (4.239)

where the multiplication and the sum are performed over Fq, hv,c is a parity-check matrix
element and h−1

v,c its inverse.
Each VN computes

L(ℓ)
ex =[L(ℓ)

ex,0, L
(ℓ)
ex,1, . . . , L

(ℓ)
ex,αq−2 ]

=L (y) +
∑

c′∈N (v)\c

L(m(ℓ)
c′→v)

(4.240)

where L(y) is calculated according to (4.237). Further, we model each CN to VN message
as an observation of the symbol X (associated to v) at the output of an extrinsic QSC
whose crossover probability is obtained via DE analysis. The crossover probability is used
to obtain L(m(ℓ)

c′→v). A VN passes the symbol that maximizes L(ℓ)
ex to its neighboring CNs,

i.e.,
m(ℓ)

v→c = argmax
a∈Fq

L(ℓ)
ex,a. (4.241)

Each VN estimates the value of the respective codeword symbol as

m̂(ℓ)
v = argmax

a∈Fq

L(ℓ)
app,a (4.242)

L(ℓ)
app =[L(ℓ)

app,0, L
(ℓ)
app,1, . . . , L

(ℓ)
app,αq−2 ]

=L (y) +
∑

c′∈N (v)
L(m(ℓ)

c′→v).
(4.243)

We remark that in (4.238), (4.241) and (4.242), whenever multiple maximizing arguments
exist, we choose one of them uniformly at random.

Density Evolution Analysis
We provide a DE analysis for the SMP decoder over Poisson channels with orthogonal

modulations. In particular, we are interested in the iterative decoding threshold of non-
binary irregular LDPC code ensembles. For the analysis, we use the all-zero codeword
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assumption since both the channel and decoder fulfill the symmetry conditions [101], [102]

PY |X(y|Pa) =PY |X(y+a|P0) (4.244)
y+a =(ya, ya+1, . . . , yαq−2+a) (4.245)

P (m|a) =P (m+ a|0) (4.246)

where the sum is over Fq.
We partition the message alphabet MSMP into 2 disjoint sets I0 = {0}, I1 = {a : a ∈

Fq \ {0}} where |I0| = 1, |I1| = q− 1. Due to symmetry, the messages in the same set have
the same probability. Let p(ℓ)

Ik
be the probability that a VN to CN message belongs to the

set Ik at the ℓ-th iteration and s
(ℓ)
Ik

the probability that a CN to VN message belongs to
the set Ik, where k ∈ {0, 1}. The ensemble iterative decoding threshold γ⋆ is defined as
the minimum γ for which p

(ℓ)
I0 → 1 as ℓ→∞. DE proceeds as follows.

1. Initialization. Under the all-zero codeword assumption, the elements of Y are
Poisson distributed with expectation

E[Yu] =


ns + nb u = 0

nb otherwise.
(4.247)

We have

p
(0)
I0 = exp (−(ns + qnb))

∞∑
y=0

(ns+nb)y

y!

q−1∑
t=0

(
q − 1
t

)
1

t+ 1

(
ny

b
y!

)t
y−1∑

i=0

ni
b
i!

q−1−t

(4.248)

p
(0)
I1 =1− p(0)

I0 . (4.249)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have

s
(ℓ)
I0 =1

q

1 + (q − 1)ρ
q · p(ℓ−1)

I0 − 1
q − 1

 (4.250)

s
(ℓ)
I1 =1− s(ℓ)

I0 . (4.251)

The extrinsic channel is a QSC with error probability s(ℓ)
I1 .

Variable to check update. We use the random vector F (ℓ) = (F (ℓ)
0 , . . . , F

(ℓ)
αq−2),

where F (ℓ)
a denotes the RV associated to the number of incoming CN messages to a
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degree d VN that take value a ∈MSMP at the ℓ-th iteration, and faℓ is its realization.
The entries of L(m(ℓ)

c′→v) in (4.240) are

Lu

(
m

(ℓ)
c′→v

)
= ln

(
P (m(ℓ)

c′→v|u)
)

(4.252)

P (m(ℓ)
c′→v|u) =


s

(ℓ)
I0 if m(ℓ)

c′→v = u

s
(ℓ)
I1

q−1 if m(ℓ)
c′→v ̸= u.

(4.253)

The elements of L(ℓ)
ex in (4.241) are

L(ℓ)
ex,a =Kya + D(ℓ)f (ℓ)

a + w1 (4.254)

D(ℓ) = ln(s(ℓ)
I0 )− ln

 s
(ℓ)
I1

q − 1

 (4.255)

w1 =
∑

u∈Fq

(yu ln(nb)− ln(yu!))− qnb − ns + (d− 1) ln
 s

(ℓ)
I1

q − 1

 . (4.256)

Note that w1 in (4.256) is independent of a. It can thus be ignored when computing
L(ℓ)

ex . We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
exp(−(ns + nb))

∞∑
y=0

(ns + nb)y

y!
q−1∑
t=0

1
t+ 1

∑
St

∏
a∈St

Pr

Ya = y + D(ℓ)f
(ℓ)
0 − f (ℓ)

a

K
|X = P0


×

 ∏
a∈Fq\{0,St}

Pr

Ya < y + D(ℓ)f
(ℓ)
0 − f (ℓ)

a

K
|X = P0




(4.257)

p
(ℓ)
I1 =1− p(ℓ)

I0 (4.258)

where St is a subset of Fq \ {0} of size t and ∀a ∈ Fq \ {0}, we have

Pr {Ya = ya|X = P0} =


exp(−nb)nya

b
ya! ya ∈ N0

0 otherwise.
(4.259)

Further, the second sum is over integer vectors f (ℓ) for which we have 0 ≤ f (ℓ)
u ≤



4.2 Non-Binary LDPC Codes 85

d− 1∀u ∈ Fq,
∑

u∈Fq

f (ℓ)
u = d− 1, and

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
αq−2

)
(s(ℓ)

I0 )f
(ℓ)
0

 s
(ℓ)
I1

q − 1

d−1−f
(ℓ)
0

. (4.260)

SEMP

For the SEMP, we introduce a real-valued parameter ∆, which is chosen to maximize
the iterative decoding threshold. In this work, we keep ∆ constant over all iterations
(but in principle, one could allow ∆ to vary over iterations). The message alphabet is
M1 = Fq ∪ {E}, where E corresponds to an erasure denoting complete uncertainty about
the respective symbol value.

At the beginning, the message from VN v to a neighboring CN c is

m(0)
v→c =


a if ∃a ∈ Fq with ya > yu + ∆

K
∀u ∈ Fq \ {a}

E otherwise.
(4.261)

At the ℓ-th iteration, CN c sends to a neighboring VN v the message

m(ℓ)
c→v =


−h−1

v,c
∑

v′∈N (c)\v
hv′,cm

(ℓ−1)
v′→c if m(ℓ−1)

v′→c ̸= E ∀v′ ∈ N (c)

E otherwise.
(4.262)

The message from VN v to CN c is obtained by first computing L(ℓ)
ex defined in (4.240).

L(y) is calculated according to (4.237) and, for SEMP, the extrinsic channel is a QEEC
whose error and erasure probabilities can be estimated via DE analysis. The error and
erasure probabilities are used to obtain L(m(ℓ)

c′→v) from (2.20), (4.26) and (4.27). Second,
for the outgoing message we pick

m(ℓ)
v→c =


a if ∃a ∈ Fq with L(ℓ)

ex,a > L(ℓ)
ex,u + ∆ ∀u ∈ Fq \ {a}

E otherwise.
(4.263)

Each VN computes L(ℓ)
app defined in (4.243) by using the error and erasure probabilities of

the extrinsic QEEC. The final decision is

m̂(ℓ)
v = argmax

a∈Fq

L(ℓ)
app,a. (4.264)
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Density Evolution Analysis
We partition the message alphabet M1 into 3 disjoint sets such that the messages in

the same set have the same probability. We have I0 = {0}, I1 = {a : a ∈ Fq \ {0}} and
I2 = {E}.

1. Initialization. We have

p
(0)
I0 =

∞∑
y=0

Pr {Y0 = y|X = P0}
∏

u∈Fq\{0}
Pr {Yu < y −∆/K|X = P0} (4.265)

p
(0)
I1 =

∑
a∈Fq\{0}

∞∑
y=0

Pr {Ya = y|X = P0}
∏

u∈Fq\{a}
Pr {Yu < y −∆/K|X = P0} (4.266)

p
(0)
I2 =1− p(0)

I0 − p
(0)
I1 (4.267)

where for y ∈ N0 and a ∈ Fq

Pr {Ya = y|X = P0} =


exp(−(ns + nb)) (ns+nb)y

y! a = 0

exp(−nb)ny
b

y! a ∈ Fq \ {0}
(4.268)

Pr {Ya < w|X = P0} =
⌈w⌉−1∑

j=0
Pr {Ya = j|X = P0} . (4.269)

2. For ℓ = 1, 2, . . . , ℓmax

Check to variable update. We have

s
(ℓ)
I0 =1

q

ρ(1− p(ℓ−1)
I2 ) + (q − 1)ρ

q · p(ℓ−1)
I0 − 1 + p

(ℓ−1)
I2

q − 1

 (4.270)

s
(ℓ)
I2 =1− ρ(1− p(ℓ−1)

I2 ) (4.271)
s

(ℓ)
I1 =1− s(ℓ)

I0 − s
(ℓ)
I2 . (4.272)

Variable to check update. We extend the random vector F (ℓ) to F (ℓ) =
(F (ℓ)

0 , . . . , F
(ℓ)
αq−2 , F

(ℓ)
E ), where F (ℓ)

a denotes the RV associated to the number of in-
coming CN messages to a degree d VN that take value a ∈M1 at the ℓ-th iteration,
and f (ℓ)

a is its realization. The entries of L(m(ℓ)
c′→v) in (4.240) are

Lu(m(ℓ)
c′→v) = ln

(
P (m(ℓ)

c′→v|u)
)

(4.273)
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P (m(ℓ)
c′→v|u) =



s
(ℓ)
I0 if m(ℓ)

c′→v = u

s
(ℓ)
I1

q−1 if m(ℓ)
c′→v ∈ Fq \ {u}

s
(ℓ)
I2 if m(ℓ)

c′→v = E.

(4.274)

The elements of L(ℓ)
ex in (4.241) are

L(ℓ)
ex,a =Kya + D(ℓ)f (ℓ)

a + w2 (4.275)

w2 =
∑

u∈Fq

(yu ln(nb)− ln(yu!)) + f
(ℓ)
E ln(s(ℓ)

I2 )

+ (d− 1− f (ℓ)
E ) ln

 s
(ℓ)
I1

q − 1

− qnb − ns.

(4.276)

where D(ℓ) is defined in (4.255). Note that w2 in (4.276) is independent of a. It can
thus be ignored when computing L(ℓ)

ex . We obtain

p
(ℓ)
I0 =

∑
d

λd

∑
f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = P0

} ∞∑
y=0

Pr {Y0 = y|X = P0}

∏
u∈Fq\{0}

Pr

Yu < y + D(ℓ)(f (ℓ)
0 − f (ℓ)

u )−∆
K

∣∣∣X = P0


(4.277)

p
(ℓ)
I1 =

∑
d

λd

∑
a∈Fq\{0}

f (ℓ)

Pr
{
F (ℓ) = f (ℓ)|X = P0

} ∞∑
y=0

Pr {Ya = y|X = P0}

∏
u∈Fq\{a}

Pr
{
Yu < y + D(ℓ)(f (ℓ)

a − f (ℓ)
u )−∆

K

∣∣∣X = P0

} (4.278)

p
(ℓ)
I2 =1− p(ℓ)

I0 − p
(ℓ)
I1 (4.279)

where the second sum is over integer vectors f (ℓ) for which 0 ≤ f (ℓ)
u ≤ d− 1 for all

u ∈M1 and ∑
u∈M1

f (ℓ)
u = d− 1 and

Pr
{
F (ℓ) = f (ℓ)|X = P0

}
=
(

d− 1
f

(ℓ)
0 , . . . , f

(ℓ)
E

) 2∏
k=0

 s(ℓ)
Ik

|Ik|

f
(ℓ)
Ik

(4.280)

f
(ℓ)
Ik

=
∑

a∈Ik

f (ℓ)
a ∀k ∈ {0, . . . , 2}. (4.281)
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Table 4.9: Threshold γ⋆ of R = 1/2 LDPC ensembles under SMP/SEMP for nb = 0.1.
Ensembles optimized for the surrogate QEC are marked with •. As references:
Shannon limit γSh and threshold γ⋆

lit of non-binary LDPC ensemble under BP
from [105, Example 1].

Decoder q λ(x) ρ(x) γ⋆[dB] γSh[dB] γ⋆
lit[dB]

SMP

4

0.2486x2 + 0.4556x3 + 0.2958x11 0.9633x8 + 0.0367x9 −3.48

−5.6 −5.42SEMP 0.7328x2 + 0.012x3 + 0.2552x11 0.5188x6 + 0.4812x7 −4.14
• SMP 0.1979x2 + 0.7769x3 + 0.0252x11 0.3441x6 + 0.6559x7 −3.42
• SEMP 0.7555x2 + 0.0018x3 + 0.2427x11 0.6301x6 + 0.3699x7 −4.13

SMP 8 0.3344x2 + 0.3334x3 + 0.3322x11 0.0103x7 + 0.9897x8 −6.2 −8.35 −8.07SEMP 0.595x2 + 0.0029x3 + 0.4021x11 0.3721x7 + 0.6279x8 −6.53
SMP 16 0.3691x2 + 0.2812x3 + 0.3497x11 0.0089x7 + 0.9911x8 −8.88 −11.02 −10.73SEMP 16 0.60421x2 + 0.0093x3 + 0.3865x11 0.4938x7 + 0.5062x8 −8.99
SMP 32 0.4711x2 + 0.1276x3 + 0.4013x11 0.0128x7 + 0.9779x8 + 0.0093x9 −11.56 −13.59 −13.37SEMP 32 0.7068x2 + 0.0044x3 + 0.2888x11 0.3014x6 + 0.6986x7 −11.69

Table 4.10: Threshold γ⋆ of R = 1/2 LDPC code ensembles under SMP/SEMP for nb =
0.002. Ensembles optimized for the surrogate QEC are marked with •. As
references: Shannon limit γSh and threshold γ⋆

lit of non-binary LDPC ensemble
under BP from [105, Example 1].

Decoder q λ(x) ρ(x) γ⋆[dB] γSh[dB] γ⋆
lit[dB]

SMP

4

0.2055x2 + 0.6953x3 + 0.0992x11 0.0246x6 + 0.9648x7 + 0.0106x8 −4.68

−7.45 −7.23SEMP 0.6871x2 + 0.3129x11 0.143x6 + 0.857x7 −6.3
• SMP 0.1979x2 + 0.7769x3 + 0.0252x11 0.3441x6 + 0.6559x7 −4.68
• SEMP 0.7555x2 + 0.0018x3 + 0.2427x11 0.6301x6 + 0.3699x7 −6.3

SMP 8 0.2152x2 + 0.5352x3 + 0.2496x11 0.1481x7 + 0.8519x8 −7.61 −10.38 −10.19SEMP 0.7083x2 + 0.0093x4 + 0.2824x11 0.3348x6 + 0.6652x7 −9.1
SMP 16 0.2284x2 + 0.4866x3 + 0.285x11 0.969x8 + 0.031x9 −10.59 −13.3 −13.1SEMP 0.6285x2 + 0.0095x3 + 0.362x11 0.7132x7 + 0.2868x8 −11.9
SMP 32 0.2456x2 + 0.4206x3 + 0.3338x11 0.6673x8 + 0.3327x9 −13.57 −16.24 −15.99SEMP 0.5868x2 + 0.0359x3 + 0.3773x11 0.4963x7 + 0.5037x8 −14.6

Surrogate Erasure Channel

For nb = 0, the Poisson PPM channel can be modeled as a QEC with erasure probability
ϵ = exp(−ns) [103, 104]. Thus, for low nb, we may rely on a simplified DE analysis on
a surrogate QEC to find optimized ensembles under SMP and SEMP decoding for the
Poisson PPM channel. The derivation of DE for SMP and SEMP on the QEC is shown in
Section 4.2.3.

With the help of DE, we designed optimized rate R = 1/2 irregular LDPC code ensembles
for q ∈ {4, 8, 16, 32}, nb ∈ {0.002, 0.1} for both SMP and SEMP decoding. The maximum
VN degree was restricted to 12 and the number of iterations to 50. The optimized degree
distributions are provided in Tables 4.9 and 4.10. SEMP shows visible gains over SMP
for small values of q (e.g. > 0.6 dB for q = 4), while for q = 32 the iterative decoding
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Figure 4.8: FER versus γ of rate 1/2 optimized codes via DE under SMP (solid lines) and
SEMP (dashed lines) for nb = 0.1. As a reference: performance of ARJA code
from [99] under SMP for q = 8 and q = 32 (dotted lines).

thresholds nearly coincide. A comparison with the Shannon limit reveals an increasing
gap for increasing q, ranging from 1.2 dB for q = 4 to 1.6 dB for q = 32 in Table 4.10. As
a comparison with the literature, we provide iterative decoding thresholds of non-binary
LDPC code ensembles under BP decoding [105, Example 1], which show an almost constant
gap of 0.3 dB to the Shannon limit. We also observe from Tables 4.9 and 4.10 that the gap
to the Shannon limit increases as nb increases, e.g., from 1.3 dB for nb = 0.002 to 1.8 dB
for nb = 0.1 in case of q = 8 and SEMP. The complexity analysis of SMP was provided
in [58], showing that SMP decoding might be a good choice when low-complexity decoding
is targeted. Finally, DE on a surrogate QEC yields ensembles with similar thresholds as DE
on the Poisson PPM channel for nb ∈ {0.002, 0.1}, confirming the validity of a surrogate
QEC code design.

For completeness, simulation results with nb = 0.1 and a maximum of 50 decoding
iterations are shown in Fig. 4.8 for q ∈ {4, 8, 16, 32}. All codes have a block length n = 104

in q-ary symbols. The obtained FERs closely follow the predicted thresholds. To illustrate
the need for a tailored code design, we also simulated an off-the-shelf AR4JA code from [99]
for q ∈ {8, 32}. The performance under SEMP is close to the one under SMP and therefore
is removed from the Figure. Under SMP, the codes show a significant loss compared to an
optimized design.





5
Quantized Decoding Algorithms for
GLDPC Codes

GLDPC codes, introduced in [12], are a class of LDPC codes where the CNs represent
more general codes than the SPC codes in standard LDPC codes. The codes associated
to the CNs can be any linear block code and will be referred to as component codes.
GLDPC codes offer a trade-off between error floor and waterfall performance due to their
good distance and trapping set properties and the powerful block codes used at the CNs
(compared to SPC codes employed by the CNs of LDPC codes). This comes at the cost of
increasing decoding complexity, especially if optimum SISO decoding is performed at each
CN. Several works studied reducing the decoding complexity of GLDPC and product-like
codes [2, 31,32,106–108]. In [2], it was shown that iterative hard decision decoding using
extrinsic BDD at the component codes of spatially coupled GLDPC codes, where all VNs
have degree 2, can approach capacity at high rates. Exchanging binary messages between
VNs and CNs is particularly attractive for high-throughput applications since it allows
reducing the internal decoder data flow. The method was extended in [107,109] such that
the VNs exploit the channel reliabilities while the exchanged messages are still binary.
In particular, the BMP decoding algorithms introduced in [107, 109] make use of BDD
decoding at the check nodes and follow the approach in [2] to ensure the exchange of
extrinsic messages.

In this chapter, we analyze the performance of GLDPC codes under BMP and TMP
decoding. At the CNs, the binary and ternary messages are obtained by either using BDD
or optimum APP SISO decoding. In the latter case, the component decoder soft-output
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(i.e., the extrinsic likelihood ratios) is mapped to messages from the desired binary/ternary
alphabet. The analysis is limited to GLDPC codes whose CN component codes admit
a simple trellis representation, hence enabling the analysis under APP decoding at the
CNs. The results help to shed light on the performance loss incurred by BDD of the
component codes, in the context of BMP [107,109] and TMP decoding. When applying
BDD at the CNs, we use two approaches following [2] and [1, 65] to make the decoding
rule extrinsic – a prerequisite to perform the DE analysis. Besides providing asymptotic
decoding thresholds for GLDPC code ensembles, the DE analysis for BMP and TMP
decoding plays an additional role, as suggested in [13]. In fact, the VN messages are
obtained by combing the channel LLR with a weighted sum of the incoming CN messages
and quantizing the result to obtain a binary or ternary message: the weighting factors used
at the VNs can be estimated via DE.

We focus on GLDPC codes with CNs based on (extended) Hamming codes. For this
class of codes, we show that under BMP decoding, BDD at the CNs yields almost the
same performance as optimum APP CN processing, while under TMP decoding the loss
incurred by the sub-optimum BDD at the CNs is within 0.7 dB, when compared with APP
decoding at the CNs. This observation, together with the low decoding complexity entailed
by BDD, suggests that the use BDD within BMP/TMP decoders can provide an excellent
trade-off between decoding complexity and coding gain.

5.1 Extrinsic Channel

The messages exchanged between check and variable nodes in an iterative decoder can be
modeled as observations of a symmetric discrete memoryless channel, with channel input
given by the codeword symbol associated with the message. When considering an extrinsic
channel, the channel input X takes values in the input alphabet X = {−1,+1}. For a
BMP decoder, the extrinsic channel is a BSC with output alphabet Z = {−1,+1} and
crossover probability θ. The channel LLR of this BSC is

L(z) = ln
[

Pr {Z = z|X = +1}
Pr {Z = z|X = −1}

]
= ln

(
1− θ
θ

)
︸ ︷︷ ︸

D(θ)

·z (5.1)

where D(θ) is referred to as the channel reliability. For TMP, the extrinsic channel is a
binary error and erasure channel (BEEC) with output alphabet Z = {−1, 0,+1}, where 0
corresponds to an erasure. Let θ and ϵ be the respective error and erasure probabilities of
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this channel. The channel LLR of the BEEC is

L(z) = ln
[

Pr {Z = z|X = +1}
Pr {Z = z|X = −1}

]
= ln

(
1− θ − ϵ

θ

)
︸ ︷︷ ︸

D(θ,ϵ)

·z (5.2)

where D(θ, ϵ) is referred to as channel reliability.

5.2 Decoding Algorithms

We next describe the decoding algorithms that will be used in the analysis. We will consider
two types of local decoders at the CNs, i.e., optimum APP decoding and BDD. In both
cases, we assume the messages exchanged between check and variable nodes belong either
to a binary set (BMP decoding) or to a ternary set (TMP), while the observations at
the output of the communication channel will be unquantized. Under BDD decoding at
the CNs, we consider an extrinsic message passing approach [1, 2, 65]. Let m(ℓ)

c→v be the
message sent from CN c to its neighboring VN v at the ℓ-th iteration. Similarly, m(ℓ)

v→c

is the message sent from VN v to CN c at the ℓ-th iteration. For BMP the exchanged
messages between VNs and CNs are binary, i.e., m(ℓ)

c→v,m
(ℓ)
v→c ∈MBMP ≜ {−1,+1} whereas

for TMP the exchanged messages are ternary, i.e., m(ℓ)
c→v,m

(ℓ)
v→c ∈ MTMP ≜ {−1, 0,+1}.

An erased message indicates complete uncertainty about the respective bit.

5.2.1 APP SISO Algorithm at the Check Nodes

Each VN computes the LLR
Lch = 2

σ2y (5.3)

for the corresponding channel observation and passes a quantized value to its neighboring
CNs. In particular, for all c ∈ N (v) we have

m(0)
v→c = mch

v (5.4)

where mch
v = Ψ(Lch) and the quantization function Ψ is defined as

Ψ(x) =


+1 x > 0

−1 x < 0
(5.5)
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for BMP and

Ψ(x) =


+1 x ≥ T

0 −T < x < T

−1 x ≤ −T

(5.6)

for TMP. In (5.5), if x = 0 we choose randomly between −1 and +1. We choose the
real-valued parameter T in (5.6) to minimize the iterative decoding threshold. It can be
chosen for each iteration individually. In this work, we keep T constant over the iterations
since we observed that, for the codes considered in the numerical results, optimizing T
across iterations does not yield any tangible performance gain.

Each CN computes the extrinsic likelihood ratio vector Le
c by using any APP SISO

algorithm to obtain extrinsic likelihood ratios where the incoming VN messages represent the
received sequence and are modeled as observations of a BSC with crossover probability p(ℓ−1)

−1

for BMP and a BEEC with error and erasure probabilities p(ℓ−1)
−1 and p

(ℓ−1)
0 , respectively,

for TMP. The probabilities p(ℓ)
−1 and p

(ℓ)
0 are the error and erasure probabilities of the VN

messages at the ℓ-th iteration and they can be estimated via the DE analysis discussed in
Section 5.3 as proposed in [13]. The CN c sends to its neighboring VN v

m(ℓ)
c→v = Φ

(
Le

c,j

)
(5.7)

where j is the codeword bit position assigned to v in the code of c and

Φ(x) =


+1 x > 0

0 x = 0

−1 x < 0

(5.8)

for TMP 1 and Φ(x) = Ψ(x) given in (5.5) for BMP.

Each VN converts the channel output and the incoming CN messages to L-values and

1Note that, due to the discrete nature of the extrinsic channel at the CN input, the output of the APP
decoder may indeed yield a zero value. The quantization function (5.8) may be replaced by a function
of the form (5.6) where the output 0 represents an interval rather than the value x = 0. We empirically
verified , for the codes under investigation, that using an interval does not improve performance.
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passes the quantization of the result to its neighboring CNs. We have

m(ℓ)
v→c = Ψ

Lch + D(ℓ) ∑
c′∈N (v)\c

m
(ℓ)
c′→v

 (5.9)

where Lch is given in (5.3) and Ψ is defined in (5.5) for BMP and in (5.6) for TMP.

To estimate the corresponding codeword bit, each VN computes

m̂(ℓ)
v = Ψ

Lch + D(ℓ) ∑
c′∈N (v)

m
(ℓ)
c′→v

 (5.10)

where Ψ is defined in (5.5).

The value of D(ℓ) in (5.9) and (5.10) can be estimated via DE analysis (Section 5.3). For
BMP

D(ℓ) = ln
1− q(ℓ)

−1

q
(ℓ)
−1

 (5.11)

where q(ℓ)
−1 is the error probability of the CN output messages at the ℓ-th iteration. For

TMP, we have

D(ℓ) = ln
1− q(ℓ)

0 − q
(ℓ)
−1

q
(ℓ)
−1

 (5.12)

where q(ℓ)
0 and q

(ℓ)
−1 are respectively the erasure and error probabilities of the CN output

messages at the ℓ-th iteration.

5.2.2 Bounded Distance Decoding at the Check Nodes

Similarly, the VN to CN messages are initialized by (5.4). Let j be the codeword bit
position assigned to v in the component code of c. Let mc be the length nτ vector
containing the incoming messages to the CN c from the other neighboring VNs and an
erasure in its j-th entry. This way the decoder passes extrinsic messages, which makes the
DE analysis possible. Note that this method is different than the one in [2]. For BMP,
mc contains exactly one erasure (the j-th entry). Thus, if there exists a codeword ĉ ∈ C

with 2dH(ĉ,mc) ≤ dmin,τ − 2 then the outgoing message from c to its neighboring VN v
is the j-th entry of ĉ, i.e., m(ℓ)

c→v = ĉj otherwise the CN outputs +1 or −1 uniformly at
random. For TMP, let v be the number of erased messages the CN c receives from the
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other VNs. If there exists a codeword ĉ ∈ C with 2dH(ĉ,mc) + v ≤ dmin,τ − 2 2 then the
outgoing message from c to its neighboring VN v is m(ℓ)

c→v = ĉj otherwise the CN returns
an erasure, i.e., m(ℓ)

c→v = 0.
To compare, we follow the method in [2], where the j-th entry of mc is equal to mch

v . In
this case, mc does not contain any erasure for BMP. Thus, if there exists a codeword ĉ ∈ C

with dH(ĉ,mc) ≤ ⌊(dmin,τ − 1)/2⌋ then the outgoing message from c to its neighboring VN
v is the j-th entry of ĉ, i.e., m(ℓ)

c→v = ĉj otherwise the CN outputs +1 or −1 uniformly at
random. For TMP, let v be the number of erasures in mc. If there exists a codeword ĉ ∈ C

with 2dH(ĉ,mc) + v ≤ dmin,τ − 1 then the outgoing message from c to its neighboring VN
v is m(ℓ)

c→v = ĉj otherwise the CN returns an erasure, i.e., m(ℓ)
c→v = 0. The VN update rule

and the codeword bit estimation are the same as in (5.9) and (5.10).

5.3 Density Evolution Analysis

Under BMP and TMP decoding, the DE analysis plays a twofold role: On one hand, it gives
the asymptotic decoding threshold achievable by a specified GLDPC code ensemble; on the
other hand, it estimates the error/erasure probabilities of the messages that are required to
compute the reliability terms in (5.1) and in (5.2). We provide a DE analysis for both BMP
and TMP under the assumption that the all-ones codeword is transmitted. Let p(ℓ)

0 and
p

(ℓ)
−1 be the erasure and error probabilities of VN messages at the ℓ-th iteration. Similarly,
q

(ℓ)
0 and q

(ℓ)
−1 are the erasure and error probabilities of CN messages. Note that, while

the threshold definitions below require an infinite number of iterations, for the numerical
analysis we limited the number to ℓmax.

5.3.1 APP SISO Algorithm at the Check Nodes

Consider the DE analysis of BMP and TMP decoding under optimum APP decoding at
the CNs. Analyzing the error probability is complex, and we therefore adopt a hybrid
approach. We analytically evaluate the evolution of the error (and erasure) probabilities at
the VNs output, while the Monte Carlo method is used to estimate the evolution at the
CNs. The analysis is outlined next.

2The Hamming distance dH(ĉ,mc) is here defined as the number of positions where mc is not erased,
and it is different from ĉ.
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Density Evolution Analysis for BMP

1. Initialization.

Under the all-ones codeword assumption, the channel LLRs are Gaussian RVs with
mean µch = 4REb/N0 and variance σ2

ch = 2µch. Hence, recalling (5.7), we have

p
(0)
−1 = Pr {Lch < 0} = Q

(
µch

σch

)
(5.13)

where Q(x) is the Gaussian Q function.

2. For ℓ = 1, 2, . . . , ℓmax

CN to VN update We can obtain q
(ℓ)
−1 via Monte-Carlo simulation.

VN to CN update

We have

p
(ℓ)
−1 =

∑
d

λd

d−1∑
u=0

(
d− 1
u

)
(1− q(ℓ)

−1)d−1−u(q(ℓ)
−1)uQ

(
D(ℓ)(d− 1− 2u) + µch

σch

)
(5.14)

where u is the number of incoming CN messages equal to −1 to a degree d VN and
D(ℓ) is defined in (5.11). Note that (5.14) evaluates the probability that the sum of the
channel LLR with the VN input messages (scaled by their corresponding reliability
D(ℓ)) used to compute an extrinsic estimate, lies in the wrong decision region.

Density Evolution Analysis for TMP

1. Initialization.

Recalling (5.7), we have

p
(0)
0 = Pr {−T < Lch < T} = Q

(
−T + µch

σch

)
−Q

(
T + µch

σch

)
(5.15)

p
(0)
−1 = Pr {Lch ≤ −T} = Q

(
T + µch

σch

)
. (5.16)

2. For ℓ = 1, 2, . . . , ℓmax

CN to VN update We can obtain q
(ℓ)
−1 and q

(ℓ)
0 via Monte-Carlo simulation.

VN to CN update
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We have

p
(ℓ)
−1 =

∑
d

λd

d−1∑
u=0

d−1−u∑
v=0

(
d− 1

u, v, d− 1− u− v

)
(q(ℓ)

−1)u(q(ℓ)
0 )v×

(1− q(ℓ)
0 − q

(ℓ)
−1)d−1−u−vQ

(
D(ℓ)(d− 1− v − 2u) + T + µch

σch

) (5.17)

p
(ℓ)
0 =

∑
d

λd

d−1∑
u=0

d−1−u∑
v=0

(
d− 1

u, v, d− 1− u− v

)
(q(ℓ)

−1)u(q(ℓ)
0 )v×

(1− q(ℓ)
0 − q

(ℓ)
−1)d−1−u−v

[
Q

(
D(ℓ)(d− 1− v − 2u)− T + µch

σch

)

−Q
(

D(ℓ)(d− 1− v − 2u) + T + µch

σch

)] (5.18)

where u and v are the number of −1 and 0, respectively, that a degree d VN receives
at the ℓ-th iteration and D(ℓ) is given in (5.12). Note that (5.17) evaluates the
probability that the sum of the channel LLR with the VN input messages (scaled by
their corresponding reliability D(ℓ)) used to compute an extrinsic estimate, lies on
the wrong decision region. Similarly, (5.18) computes the probability that the sum
results in a value within the erasure range (−T,+T).

The ensemble iterative decoding threshold (Eb/N0)⋆ is defined as the minimum Eb/N0 for
which p

(ℓ)
0 , p

(ℓ)
−1 → 0 as ℓ→∞.

5.3.2 Bounded Distance Decoding at the Check Nodes
Following [1]

In contrast to APP decoding, iterative decoding with BDD at the CNs permits an exact
analysis of the evolution of the error (and erasure) probabilities. The analysis is outlined
next for both BMP and TMP decoding.

Density Evolution Analysis for BMP

1. Initialization.

p
(0)
−1 is given in (5.13).

2. For ℓ = 1, 2, . . . , ℓmax

CN to VN update
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We haveMBMP = {−1,+1} and the input of the decoder contains exactly one erasure
(its j-th entry). Let O−1,u (O+1,u) be the probability that there exists a codeword
c ∈ Cτ with 2dH(c,mc) ≤ dmin,τ−2 that has a −1 (+1) in a randomly chosen position
and there are u errors in the other nτ − 1 positions. We have

q
(ℓ)
−1 =

nc∑
τ=1

ρτ

nτ −1∑
u=0

(
nτ − 1
u

)
(1− p(ℓ−1)

−1 )nτ −1−u(p(ℓ−1)
−1 )u 1

2 (1 + O−1,u − O+1,u) (5.19)

with h = u− δ + 2j and Ah is the cardinality of codewords of weight h in C and

O−1,u =


⌊

dmin,τ −2
2 ⌋∑

δ=0

δ∑
j=0

h+1
nτ

Ah+1Ih ⌈dmin,τ −1
2 ⌉ ≤ u ≤ nτ − 1

0 0 ≤ u ≤ ⌊dmin,τ −2
2 ⌋

(5.20)

O+1,u =


⌊

dmin,τ −2
2 ⌋∑

δ=0

δ∑
j=0

nτ −h
nτ

AhIh ⌈dmin,τ −1
2 ⌉ ≤ u ≤ nτ − 1

1 0 ≤ u ≤ ⌊dmin,τ −2
2 ⌋

(5.21)

where

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

) . (5.22)

We briefly explain the derivation of O−1,u and O+1,u in Appendix 5.6.1.

VN to CN update

p
(ℓ)
−1 is given in (5.14).

Density Evolution Analysis for TMP

1. Initialization.

p
(0)
0 and p

(0)
−1 are obtained from (5.15) and (5.16).

2. For ℓ = 1, 2, . . . , ℓmax

CN to VN update

Let O−1,u,v(O+1,u,v) be the probability that a randomly chosen bit is decoded incor-
rectly (correctly) when it was initially erased and there are u errors and v erasures in
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the other nτ − 1 positions. We have

q
(ℓ)
−1 =

nc∑
τ=1

ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
0 )v(p(ℓ−1)

−1 )uO−1,u,v

(5.23)

q
(ℓ)
0 =

nc∑
τ=1

ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
0 )v(p(ℓ−1)

−1 )u(1− O−1,u,v − O+1,u,v)
(5.24)

with h = u+ 2j1 + j2 − δ and

O−1,u,v =


⌊

dmin,τ −v−2
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

h+1
nτ

Ah+1Fh 2u+ v ≥ dmin,τ − 1

0 2u+ v ≤ dmin,τ − 2
(5.25)

O+1,u,v =


⌊

dmin,τ −v−2
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

nτ −h
nτ

AhFh 2u+ v ≥ dmin,τ − 1

1 2u+ v ≤ dmin,τ − 2
(5.26)

where

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

) . (5.27)

We clarify the derivation of O−1,u,v and O+1,u,v in Appendix 5.6.2.

VN to CN update

p
(ℓ)
−1 and p

(ℓ)
0 and are given in (5.17) and (5.18).

5.3.3 Bounded Distance Decoding at the Check Nodes
Following [2]

Density Evolution Analysis for BMP

1. Initialization.

p
(0)
−1 is given in (5.13).

2. For ℓ = 1, 2, . . . , ℓmax
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CN to VN update Let K−1,u (K+1,u) be the probability that there exists a codeword
c ∈ Cτ with 2dH(c,mc) ≤ dmin,τ−1 that has a −1 (+1) in a randomly chosen position
and there are u errors in the other nτ − 1 positions. We have

q
(ℓ)
−1 = p

(0)
−1β

(ℓ) + (1− p(0)
−1)α(ℓ) (5.28)

where

α(ℓ) = Pr{M (ℓ)
c→v = −1|M ch

v = +1}

=1
2

nc∑
τ=1

ρτ

nτ −1∑
u=0

(
nτ − 1
u

)
(p(ℓ−1)

−1 )u(1− p(ℓ−1)
−1 )nτ −1−u(1 + W−1,u −W+1,u)

(5.29)

β(ℓ) = Pr{M (ℓ)
c→v = −1|M ch

v = −1}

=1
2

nc∑
τ=1

ρτ

nτ −1∑
u=0

(
nτ − 1
u

)
(p(ℓ−1)

−1 )u(1− p(ℓ−1)
−1 )nτ −1−u(1 + K−1,u − K+1,u)

(5.30)

and

K−1,u =


tτ∑

δ=0

δ∑
j=0

h+1
nτ

Ah+1Ih tτ ≤ u ≤ nτ − 1

0 0 ≤ u ≤ tτ − 1
(5.31)

K+1,u =


tτ∑

δ=1

δ−1∑
j=0

nτ −h
nτ

AhPh tτ ≤ u ≤ nτ − 1

1 0 ≤ u ≤ tτ − 1
(5.32)

W−1,u =


tτ∑

δ=1

δ−1∑
j=0

h+1
nτ

Ah+1Ph tτ + 1 ≤ u ≤ nτ − 1

0 0 ≤ u ≤ tτ

(5.33)

W+1,u =


tτ∑

δ=0

δ∑
j=0

nτ −h
nτ

AhIh tτ + 1 ≤ u ≤ nτ − 1

1 0 ≤ u ≤ tτ

(5.34)

where

Ph =

(
h

h−j

)(
nτ −h−1
δ−j−1

)
(

nτ −1
u

) (5.35)

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

) (5.36)
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with h = u− δ + 2j + 1 in (5.32), (5.33) and h = u− δ + 2j in (5.31), (5.34), (5.35),
(5.36) and Ah is the cardinality of codewords of weight h in C . We briefly explain
the derivation of K−1,u,K+1,u,W−1,u and W+1,u in Appendix 5.6.3.

VN to CN update

To calculate p(ℓ)
−1, we must determine the distribution of Lch + D(ℓ) ∑

c′∈N (v)\c
m

(ℓ)
c′→v.

Note that the CN messages and the channel LLR are statistically dependent since
mch

v = Ψ(Lch) is used to compute the outgoing CN messages. Let M (ℓ)
c→v be the RV

associated to CN to VN messages at the ℓ-th iteration. Similarly, M ch
v is the RV

associated to the quantized channel LLR. Let z be the number of incoming CN
messages equal to +1 to a degree d VN. We obtain

p
(ℓ)
−1 =

∑
d

λd

d−1∑
z=0

(
d− 1
z

) [
Pr{Lch < min{0,−D(ℓ)(2z − d+ 1)}}×

(1− β(ℓ))z(β(ℓ))d−1−z + Pr{0 < Lch < −D(ℓ)(2z − d+ 1)}×
(1− α(ℓ))z(α(ℓ))d−1−z

]
=
∑

d

λd

 d−1∑
z=⌈ d−1

2 ⌉

(
d− 1
z

)
Q

(
D(ℓ)(2z − d+ 1) + µch

σch

)
(1− β(ℓ))z×

(β(ℓ))d−1−z +
⌊ d−2

2 ⌋∑
z=0

(
d− 1
z

)[(
Q

(
D(ℓ)(2z − d+ 1) + µch

σch

)
− p(0)

−1

)
×

(1− α(ℓ))z(α(ℓ))d−1−z + p
(0)
−1(1− β(ℓ))z(β(ℓ))d−1−z

])

(5.37)

where α(ℓ), β(ℓ) are defined in (5.29) and (5.30) and D(ℓ) is defined in (5.11).

Density Evolution Analysis for TMP

1. Initialization.

p
(0)
0 and p

(0)
−1 are obtained from (5.15) and (5.16).

2. For ℓ = 1, 2, . . . , ℓmax

CN to VN update

Let K−1,u,v(K+1,u,v) be the probability that a randomly chosen bit is decoded incorrectly
(correctly) when it was initially in error and there are u errors and v erasures in the
other nτ − 1 positions. Similarly, W−1,u,v(W+1,u,v) is the probability that a randomly
chosen bit is decoded incorrectly (correctly) when it was initially correct and there are



5.3 Density Evolution Analysis 103

u errors and v erasures in the other nτ −1 positions. O−1,u,v(O+1,u,v) is the probability
that a randomly chosen bit is decoded incorrectly (correctly) when it was initially
erased and there are u errors and v erasures in the other nτ − 1 positions. We have

q
(ℓ)
−1 =p(0)

−1β
(ℓ)
−1 + (1− p(0)

−1 − p
(0)
0 )α(ℓ)

−1 + p
(0)
0 γ

(ℓ)
−1 (5.38)

q
(ℓ)
0 =p(0)

−1β
(ℓ)
0 + (1− p(0)

−1 − p
(0)
0 )α(ℓ)

0 + p
(0)
0 γ

(ℓ)
0 (5.39)

where

α
(ℓ)
−1 = Pr{M (ℓ)

c→v = −1|M ch
v = +1}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
−1 )u(p(ℓ−1)

0 )vW−1,u,v

(5.40)

β
(ℓ)
−1 = Pr{M (ℓ)

c→v = −1|M ch
v = −1}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
−1 )u(p(ℓ−1)

0 )vK−1,u,v

(5.41)

γ
(ℓ)
−1 = Pr{M (ℓ)

c→v = −1|M ch
v = 0}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
−1 )u(p(ℓ−1)

0 )vO−1,u,v

(5.42)

α
(ℓ)
0 = Pr{M (ℓ)

c→v = 0|M ch
v = +1}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(1− p(ℓ−1)

−1 − p(ℓ−1)
0 )nτ −1−u−v×

(p(ℓ−1)
−1 )u(p(ℓ−1)

0 )v(1−W−1,u,v −W+1,u,v)

(5.43)

β
(ℓ)
0 = Pr{M (ℓ)

c→v = 0|M ch
v = −1}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(p(ℓ−1)

−1 )u(p(ℓ−1)
0 )v×

(1− p(ℓ−1)
−1 − p(ℓ−1)

0 )nτ −1−u−v(1− K−1,u,v − K+1,u,v)

(5.44)

γ
(ℓ)
0 = Pr{M (ℓ)

c→v = 0|M ch
v = 0}

=
nc∑

τ=1
ρτ

nτ −1∑
u=0

nτ −1−u∑
v=0

(
nτ − 1

u, v, nτ − 1− u− v

)
(p(ℓ−1)

−1 )u(p(ℓ−1)
0 )v×

(1− p(ℓ−1)
−1 − p(ℓ−1)

0 )nτ −1−u−v(1− O−1,u,v − O+1,u,v).

(5.45)
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We have for all 0 ≤ u, v, u+ v ≤ nτ − 1

K−1,u,v =


⌊

dmin,τ −v−1
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

h+1
nτ

Ah+1Fh 2u+ v ≥ dmin,τ − 2

0 2u+ v ≤ dmin,τ − 3
(5.46)

K+1,u,v =


⌊

dmin,τ −v−1
2 ⌋∑

δ=1

δ−1∑
j1=0

v∑
j2=0

nτ −h
nτ

AhSh 2u+ v ≥ dmin,τ − 2

1 2u+ v ≤ dmin,τ − 3
(5.47)

W−1,u,v =


⌊

dmin,τ −v−1
2 ⌋∑

δ=1

δ−1∑
j1=0

v∑
j2=0

h+1
nτ

Ah+1Sh 2u+ v ≥ dmin,τ

0 2u+ v ≤ dmin,τ − 1
(5.48)

W+1,u,v =


⌊

dmin,τ −v−1
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

nτ −h
nτ

AhFh 2u+ v ≥ dmin,τ

1 2u+ v ≤ dmin,τ − 1
(5.49)

O−1,u,v =


⌊

dmin,τ −v−2
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

h+1
nτ

Ah+1Fh 2u+ v ≥ dmin,τ − 1

0 2u+ v ≤ dmin,τ − 2
(5.50)

O+1,u,v =


⌊

dmin,τ −v−2
2 ⌋∑

δ=0

δ∑
j1=0

v∑
j2=0

nτ −h
nτ

AhFh 2u+ v ≥ dmin,τ − 1

1 2u+ v ≤ dmin,τ − 2
(5.51)

where

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

) (5.52)

Sh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−1−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

) (5.53)

where in (5.46), (5.49), (5.50), (5.51) h = u + 2j1 + j2 − δ and in
(5.47), (5.48), h = u + 2j1 + j2 + 1 − δ. We clarify the derivation of
K−1,u,v,K+1,u,v,W−1,u,v,W+1,u,v,O−1,u,v,O+1,u,v in Appendix 5.6.4.

VN to CN update

Recalling (5.6), for TMP M ch
v = Ψ(Lch) takes value from {−1, 0,+1}. Let z and
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w be, respectively, the number of incoming CN messages equal to +1 and −1 to a
degree d VN. We obtain

p
(ℓ)
−1 =

∑
d

λd

d−1∑
z=0

d−1−z∑
w=0

(
d− 1

z, w, d− 1− z − w

) [
(α(ℓ)

0 )d−1−w−z(α(ℓ)
−1)w×

(1− α(ℓ)
−1 − α

(ℓ)
0 )z Pr{T ≤ Lch ≤ −T− D(ℓ)(z − w)}+ (γ(ℓ)

0 )d−1−w−z×
(γ(ℓ)

−1)w(1− γ(ℓ)
−1 − γ

(ℓ)
0 )z Pr{Lch ≤ −T− D(ℓ)(z − w) ∩ −T < Lch < T}+

(β(ℓ)
−1)w(β(ℓ)

0 )d−1−w−z(1− β(ℓ)
−1 − β

(ℓ)
0 )z

Pr{Lch ≤ min{−T,−T− D(ℓ)(z − w)}}
]

(5.54)

p
(ℓ)
0 =

∑
d

λd

d−1∑
z=0

d−1−z∑
w=0

(
d− 1

z, w, d− 1− z − w

) [
(α(ℓ)

0 )d−1−w−z(α(ℓ)
−1)w×

(1− α(ℓ)
−1 − α

(ℓ)
0 )z

Pr{T ≤ Lch ∩ −T− D(ℓ)(z − w) < Lch < T− D(ℓ)(z − w)}
+ (γ(ℓ)

−1)w(γ(ℓ)
0 )d−1−w−z(1− γ(ℓ)

−1 − γ
(ℓ)
0 )z×

Pr{max{−T,−T− D(ℓ)(z − w)} < Lch < min{T,T− D(ℓ)(z − w)}}
+ (β(ℓ)

0 )d−1−w−z(β(ℓ)
−1)w(1− β(ℓ)

−1 − β
(ℓ)
0 )z×

Pr{Lch ≤ −T ∩ −T− D(ℓ)(z − w) < Lch < T− D(ℓ)(z − w)}
]

(5.55)

where α(ℓ)
−1, β

(ℓ)
−1, γ

(ℓ)
−1, α

(ℓ)
0 , β

(ℓ)
0 , γ

(ℓ)
0 are defined in (5.40)-(5.45) and D(ℓ) is defined in

(5.12).

5.4 Stability Analysis

We study the convergence of the error and erasure probabilities to zero assuming that they
are sufficiently small. In particular, we derive the stability condition for BMP and TMP
decoding when BDD decoding is applied at the CNs. Recalling that the stability condition
provides a necessary condition to achieve arbitrarily small error probabilities, its evaluation
can be used to verify the suitability of a given degree distribution [110]. The analysis is
presented next.
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5.4.1 Bounded Distance Decoding at the Check Nodes
Following [1]

Stability Condition for BMP

We determine the evolution of p(ℓ)
−1 over one iteration when we are close to the fixed point

p⋆
1 = 0. From (5.19), we have

lim
p

(ℓ−1)
−1 →0

dq(ℓ)
−1

dp(ℓ−1)
−1

=1
2

nc∑
τ=1

ρτ (nτ − 1)[O−1,1 − O+1,1 − O−1,0 + O+1,0]. (5.56)

Note that if p(ℓ)
−1 → p⋆

1, we have q(ℓ)
−1 → 0 and D(ℓ) →∞. Thus, for small error probabilities,

we have

p
(ℓ)
−1 =

∑
d

λd

 d−1∑
z=⌊ d−1

2 ⌋+1

(
d− 1
z

)
(q(ℓ)

−1)z(1− q(ℓ)
−1)d−1−z

+Q
(
µch

σch

)(
d− 1

d−1
2

)
(q(ℓ)

−1)
d−1

2 (1− q(ℓ)
−1)

d−1
2

]
.

(5.57)

We obtain

lim
q

(ℓ)
−1→0

dp(ℓ)
−1

dq(ℓ)
−1

= λ2 + 2λ3Q
(
µch

σch

)
. (5.58)

The first order Taylor expansions via (5.56) and (5.58) yield p
(ℓ)
−1 = Ωp(ℓ−1)

−1 where

Ω =1
2

(
λ2 + 2λ3Q

(
µch

σch

)) nc∑
τ=1

ρτ (nτ − 1)[O−1,1 − O+1,1 − O−1,0 + O+1,0]. (5.59)

The stability condition is satisfied if and only if Ω < 1. Clearly, Ω = 0 if ∀τ ∈ {1, . . . , nc}
we have dmin,τ ≥ 4, which implies that the stability condition is fulfilled.

Stability Condition for TMP

Deriving the stability condition under TMP decoding is slightly more complicated than
in the BMP case. The reason is that, while for BMP decoding it suffices to study the
linearization of the two DE equations in a single variable, under TMP decoding the DE
analysis entails two recursions per VN/CN step, each involving two variables. We proceed
by defining the vectors p(ℓ) = [p(ℓ)

−1, p
(ℓ)
0 ]T , p(ℓ) = [q(ℓ)

−1, q
(ℓ)
0 ]T . We determine the evolution of
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p(ℓ) over one iteration when we are close to the fixed point p⋆ = 0. From (5.23), we have

lim
p(ℓ−1)→0

∂q
(ℓ)
−1

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,1,0 − O−1,0,0) := κ1 (5.60)

lim
p(ℓ−1)→0

∂q
(ℓ)
−1

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,0,1 − O−1,0,0) := κ2 (5.61)

lim
p(ℓ−1)→0

∂q
(ℓ)
0

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,0,0 + O0,0,0 − O−1,1,0 − O0,1,0) := κ3 (5.62)

lim
p(ℓ−1)→0

∂q
(ℓ)
0

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,0,0 + O0,0,0 − O−1,0,1 − O0,0,1) := κ4. (5.63)

As D(ℓ) →∞, we have

p
(ℓ)
−1 =

∑
d

λd

d−1∑
u=0

d−1−u∑
v=d−2u

(q(ℓ)
−1)u(1− q(ℓ)

−1 − q
(ℓ)
0 )d−1−u−v(q(ℓ)

0 )v

+
⌊ d−1

2 ⌋∑
u=0

Q
(
µch + T

σch

)(
d− 1

u, u, d− 1− 2u

)
(q(ℓ)

−1)u(q(ℓ)
0 )d−1−2u(1− q(ℓ)

−1 − q
(ℓ)
0 )u


(5.64)

p
(ℓ)
0 =

∑
d

λd

⌊ d−1
2 ⌋∑

u=0

[
Q
(
µch − T
σch

)
−Q

(
µch + T

σch

)]
×(

d− 1
u, u, d− 1− 2u

)
(q(ℓ)

−1)u(q(ℓ)
0 )d−1−2u(1− q(ℓ)

−1 − q
(ℓ)
0 )u.

(5.65)

Following the same steps as the case of BMP, we obtain

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

=
(
λ2 + 2λ3Q

(
µch + T

σch

))
κ1 + λ2Q

(
µch + T

σch

)
κ3 (5.66)

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
0

=
(
λ2 + 2λ3Q

(
µch + T

σch

))
κ2 + λ2Q

(
µch + T

σch

)
κ4 (5.67)

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
−1

=
[
Q
(
µch − T
σch

)
−Q

(
µch + T

σch

)]
(2λ3κ1 + λ2κ3) (5.68)

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
0

=
[
Q
(
µch − T
σch

)
−Q

(
µch + T

σch

)]
(2λ3κ2 + λ2κ4) . (5.69)
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Define the matrix

J :=


lim

p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
0

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
−1

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
0

 . (5.70)

Let Ω be the spectral radius of J , i.e., the largest magnitude of its eigenvalues. The stability
condition is satisfied if and only if Ω < 1.

It can be easily verified that if ∀s = 1, . . . , nc dmin,τ ≥ 4, J = 02×2. As a result, if all
CN types have minimum distance larger or equal than 4, then the stability condition is
satisfied.

5.4.2 Bounded Distance Decoding at the Check Nodes
Following [2]

Stability Condition for BMP

We determine the evolution of p(ℓ)
−1 over one iteration when we are close to the fixed point

p⋆
−1 = 0.
From (5.29) and (5.30), we have

lim
p

(ℓ−1)
−1 →0

dα(ℓ)

dp(ℓ−1)
−1

=1
2

nc∑
τ=1

ρτ (nτ − 1)(W−1,1 −W+1,1 −W−1,0 + W+1,0) (5.71)

lim
p

(ℓ−1)
−1 →0

dβ(ℓ)

dp(ℓ−1)
−1

=1
2

nc∑
τ=1

ρτ (nτ − 1)(K−1,1 − K+1,1 − K−1,0 + K+1,0). (5.72)

Note that if p(ℓ)
−1 → p⋆

−1, we have α(ℓ), β(ℓ) → 0. Recalling (5.11) and (5.28), we get D(ℓ) →∞.
Thus, for small error probabilities, we have

p
(ℓ)
−1 =

∑
d

λd

(
p

(0)
−1

(
d− 1

d−1
2

)
(β(ℓ))

d−1
2 (1− β(ℓ))

d−1
2

+
⌊ d−2

2 ⌋∑
z=0

(
d− 1
z

) [
(1− p(0)

−1)(α(ℓ))d−1−z(1− α(ℓ))z + p
(0)
−1(β(ℓ))d−1−z(1− β(ℓ))z

] . (5.73)

We obtain

lim
α(ℓ)→0

∂p
(ℓ)
−1

∂α(ℓ) =λ2(1− p(0)
−1), lim

β(ℓ)→0

∂p
(ℓ)
−1

∂β(ℓ) = p
(0)
−1(λ2 + 2λ3) (5.74)
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where p(0)
−1 is given in (5.13). Since

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

= ∂p
(ℓ)
−1

∂α(ℓ)
dα(ℓ)

dp(ℓ−1)
−1

+ ∂p
(ℓ)
−1

∂β(ℓ)
dβ(ℓ)

dp(ℓ−1)
−1

(5.75)

we have

lim
p

(ℓ−1)
−1 →0

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

= Ω (5.76)

where
Ω =1

2

nc∑
τ=1

ρτ (nτ − 1)
[
(W−1,1 −W+1,1 −W−1,0 + W+1,0)λ2(1− p(0)

−1)

+p(0)
−1(K−1,1 − K+1,1 − K−1,0 + K+1,0)(λ2 + 2λ3)

]
.

(5.77)

The stability condition is satisfied if and only if Ω < 1. Clearly from (5.31)-(5.34), Ω = 0 if
∀τ ∈ {1, . . . , nc} tτ ≥ 2 which implies that the stability condition is fulfilled.

Stability Condition for TMP

We define the vector p(ℓ) = [p(ℓ)
−1, p

(ℓ)
0 ]T . We determine the evolution of p(ℓ) over one iteration

when we are close to the fixed point p⋆ = 0. From (5.40)-(5.45), we have

lim
p(ℓ−1)→0

∂α
(ℓ)
−1

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(W−1,1,0 −W−1,0,0) (5.78)

lim
p(ℓ−1)→0

∂β
(ℓ)
−1

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(K−1,1,0 − K−1,0,0) (5.79)

lim
p(ℓ−1)→0

∂γ
(ℓ)
−1

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,1,0 − O−1,0,0) (5.80)

lim
p(ℓ−1)→0

∂α
(ℓ)
0

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(W0,1,0 −W0,0,0) (5.81)

lim
p(ℓ−1)→0

∂β
(ℓ)
0

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(K0,1,0 − K0,0,0) (5.82)

lim
p(ℓ−1)→0

∂γ
(ℓ)
0

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)(O0,1,0 − O0,0,0) (5.83)

lim
p(ℓ−1)→0

∂α
(ℓ)
−1

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(W−1,0,1 −W−1,0,0) (5.84)
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lim
p(ℓ−1)→0

∂β
(ℓ)
−1

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(K−1,0,1 − K−1,0,0) (5.85)

lim
p(ℓ−1)→0

∂γ
(ℓ)
−1

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(O−1,0,1 − O−1,0,0) (5.86)

lim
p(ℓ−1)→0

∂α
(ℓ)
0

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(W0,0,1 −W0,0,0) (5.87)

lim
p(ℓ−1)→0

∂β
(ℓ)
0

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(K0,0,1 − K0,0,0) (5.88)

lim
p(ℓ−1)→0

∂γ
(ℓ)
0

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)(O0,0,1 − O0,0,0). (5.89)

As D(ℓ) →∞, we have

p
(ℓ)
−1 =

∑
d

λd

(
d−1∑
z=0

d−1−z∑
w=z+1

(
d− 1

z, w, d− 1− z − w

) [
(1− p(0)

0 − p
(0)
−1)(α

(ℓ)
0 )d−1−z−w×

(1− α(ℓ)
−1 − α

(ℓ)
0 )z + p

(0)
−1(β

(ℓ)
0 )d−1−z−w(β(ℓ)

−1)w(1− β(ℓ)
−1 − β

(ℓ)
0 )z

+p(0)
0 (γ(ℓ)

0 )d−1−z−w(γ(ℓ)
−1)w(1− γ(ℓ)

−1 − γ
(ℓ)
0 )z

]
+p(0)

−1

⌊ d−1
2 ⌋∑

z=0

(
d− 1

z, z, d− 1− 2z

)
(β(ℓ)

−1)z(β(ℓ)
0 )d−1−2z(1− β(ℓ)

−1 − β
(ℓ)
0 )z


(5.90)

p
(ℓ)
0 =p(0)

−1
∑

d

λd

⌊ d−1
2 ⌋∑

z=0

(
d− 1

z, z, d− 1− 2z

)
(γ(ℓ)

−1)z(γ(ℓ)
0 )d−1−2z(1− γ(ℓ)

−1 − γ
(ℓ)
0 )z. (5.91)

Following the same steps as the case of BMP, we obtain

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

=
nc∑

τ=1
ρτ (nτ − 1)

[(
(1− p(0)

−1 − p
(0)
0 )(W−1,1,0 −W−1,0,0) +

p
(0)
−1(K−1,1,0 − K−1,0,0 + K0,1,0 − K0,0,0) + p

(0)
0 (O−1,1,0 − O−1,0,0)

)
λ2

+2p(0)
−1λ3(K−1,1,0 − K−1,0,0)

]
(5.92)

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
0

=
nc∑

τ=1
ρτ (nτ − 1)

[(
(1− p(0)

−1 − p
(0)
0 )(W−1,0,1 −W−1,0,0)+

p
(0)
0 (O−1,0,1 − O−1,0,0) + p

(0)
−1(K−1,0,1 − K−1,0,0 + K0,0,1 − K0,0,0)

)
λ2

+2p(0)
−1λ3(K−1,0,1 − K−1,0,0)

] (5.93)



5.5 Numerical Results 111

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
−1

= p
(0)
0

nc∑
τ=1

ρτ (nτ − 1) [(O0,1,0 − O0,0,0)λ2 + 2λ3(O−1,1,0 − O−1,0,0)] (5.94)

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
0

= p
(0)
0

nc∑
τ=1

ρτ (nτ − 1) [(O0,0,1 − O0,0,0)λ2 + 2λ3(O−1,0,1 − O−1,0,0)] (5.95)

where p(0)
−1 and p

(0)
0 are given in (5.15) and (5.16).

Define the matrix

J :=


lim

p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
−1

lim
p(ℓ−1)→0

∂p
(ℓ)
−1

∂p
(ℓ−1)
0

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
−1

lim
p(ℓ−1)→0

∂p
(ℓ)
0

∂p
(ℓ−1)
0

 . (5.96)

Let Ω be the spectral radius of J , i.e., the largest magnitude of its eigenvalues. The stability
condition is satisfied if and only if Ω < 1.

It can be verified that if ∀s = 1, . . . , nc dmin,τ ≥ 5 then J = 02×2. As a result, if all
CN types have minimum distance larger or equal than 5, then the stability condition is
satisfied.

5.5 Numerical Results

We provide two examples where two GLDPC code ensembles are considered. For the
examples, both the iterative decoding thresholds and finite-length BER simulation results
are given over the biAWGN channel.

Example 5.1. Consider the rate R = 0.625 regular GLDPC ensemble with VN degree
dv = 2, where all the CNs correspond to the (32, 26) extended Hamming code. Using
the derived DE, we obtained the iterative decoding thresholds of this ensemble under
BMP and TMP where we set ℓmax = 200 and applied different decoding methods at the
CNs. We observed that for the APP SISO decoder at the CNs, the decoding threshold
for TMP improves by 1.82 dB as compared to BMP. For extrinsic BDD [1, 65], the gain
of TMP is 1.18 dB. We designed a length n = 8000 code from this ensemble via the PEG
algorithm [94]. For the simulations, we set the maximum number of iterations to ℓmax = 50.
The simulation results for BMP (dashed lines) and TMP (solid lines) are depicted in Fig. 5.1
in terms of BER versus Eb/N0. The results are provided by employing APP SISO decoding
(blue lines), BDD, where we replace the j-th entry with an erasure (green lines) [1, 65]
and BDD following [2] (red lines) at the CNs, where BDD is implemented in the extrinsic
message passing setting. The waterfall performance of the different decoders is in agreement
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Figure 5.1: BER versus Eb/N0 for unquantized SPA, TMP (solid lines) and BMP (dashed
lines) with APP SISO algorithm, with extrinsic BDD following [1, 65] and with
extrinsic BDD following [2] at the check nodes for the GLDPC code in Example
5.1. The corresponding iterative decoding thresholds are provided as vertical
lines, where for the case of BMP decoding the thresholds under the APP SISO
algorithm and under BDD coincide (gray, dashed line).

with the thresholds derived via DE. We observe that in this case, when using BDD at
the CNs, it is better to replace the j-th entry with an erasure than with the channel
message (following the method in [2]). The performance gap between the TMP decoder
employing optimum APP decoding at the CNs and the one using BDD is around 0.6 dB at
a BER= 10−4, in good agreement with the DE results. Remarkably, under BMP decoding
the performances obtained through APP SISO decoding and BDD are indistinguishable.
The result is confirmed, in the asymptotic setting, by the DE analysis: The two algorithms
yield identical numerical values for the iterative decoding threshold, up to the second
decimal digit. The result may point to the fact that, under BMP decoding (and for certain
selection of component codes), optimum APP decoding and BDD at the CNs deliver a
similar performance. If proven to be applicable to GLDPC codes based on a wide class
of component codes, this result may have some important consequences for the design of
BMP decoders for GLDPC and product-like codes.3

Example 5.2. Consider the rate R = 3/8 regular GLDPC ensemble with VN degree
dv = 2, where all the CNs correspond to the (16, 11) extended Hamming code. We designed
a length n = 8000 code from this ensemble via the PEG algorithm [94]. For the simulations,

3The peculiar behavior observed under BMP decoding can be subject of further investigations, targeting
longer and more powerful component codes such as those adopted in optical communication systems [42].
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Figure 5.2: BER versus Eb/N0 for unquantized SPA, TMP (solid lines) and BMP (dashed
lines) with APP SISO algorithm, with extrinsic BDD following [1, 65] and with
extrinsic BDD following [2] at the check nodes for the GLDPC code in Example
5.2. The corresponding iterative decoding thresholds are provided as vertical
lines, where for the case of BMP decoding the thresholds under the APP SISO
algorithm and under BDD coincide (gray, dashed line).

we set the maximum number of iterations to ℓmax = 50. The simulation results for TMP
are depicted in Fig. 5.2 in terms of BER versus Eb/N0. The iterative decoding thresholds
(Eb/N0)⋆ [dB] are also depicted in the figure. It can be observed that the asymptotic DE
analysis correctly predicts the finite-length waterfall performance. Here again, the APP
SISO decoding and BDD at the CNs yield similar performance for BMP. Moreover, some
gain can be achieved if we replace the j-th entry with an erasure [1, 65] rather than the
channel message [2] for BDD at the CNs.

5.6 Appendices

5.6.1 Derivation of O−1,u and O+1,u in (5.20) and (5.21)

We clarify briefly the derivation of O−1,u and O+1,u. Note that the number of errors in the
received sequence is u and the number of erasures is 1. If 2u ≤ dmin,τ − 2, the decoder can
correct the errors and erasures (ĉ is the all-ones vector). Thus O−1,u = 0 and O+1,u = 1.
O−1,u is the probability that given a codeword c ∈ Cτ of a given weight, the erased bit in
the input vector corresponds to an entry where c is −1 and the other u (−1s) of the input
vector are placed such that 2dH(c,mc) ≤ dmin,τ − 2. Consider the codewords of weight
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h+ 1, the number of which is Ah+1. The probability that the randomly selected initially
erased bit is chosen among the codeword bit positions that are −1 is (h + 1)/nτ . For a
given weight h+ 1 codeword c, suppose mc has h− j (−1s) in h− j out of the h entries
where c is −1 (one entry is already fixed). Thus, mc has u− h+ j (−1s) in u− (h− j) out
of the nτ − h − 1 positions where c is +1. The number of possibilities is

(
h

h−j

)(
nτ −h−1
u−h+j

)
.

The probability that this occurs is given by

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

) (5.97)

where δ := dH(c,mc) = u− h+ 2j. By summing over 0 ≤ δ ≤ ⌊(dmin,τ − 2)/2⌋ and j, we
obtain O−1,u in (5.20).

Consider now O+1,u, which is the probability that, given a codeword c ∈ Cτ of a given
weight, the erased bit in the input vector corresponds to an entry where c is +1 and the
other u (−1s) of the input vector are placed such that 2dH(c,mc) ≤ dmin,τ − 2. Consider
the codewords of weight h, the number of which is Ah. The probability that the randomly
selected initially erased bit is chosen among the codeword bit positions that are +1 is
(nτ − h)/nτ . For a given weight h codeword c, suppose mc has h− j (−1s) in h− j out
of the h entries where c is −1. Thus, mc has u− (h− j) (−1s) in u− (h− j) out of the
nτ − h− 1 positions where c is +1.The probability is given by

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

) (5.98)

where δ := dH(c,mc) = u− h+ 2j. By summing over 0 ≤ δ ≤ ⌊(dmin,τ − 2)/2⌋ and j, we
obtain O+1,u in (5.21).

5.6.2 Derivation of O−1,u,v and O+1,u,v in (5.25) and (5.26)

We next clarify the derivation of O−1,u,v and O+1,u,v. If 2u + v ≤ dmin,τ − 2, then the
number of erasures in the received sequence is v + 1 and the number of errors is u. Hence,
the decoder can correct the errors and erasures. Thus, O−1,u,v = 0 and O+1,u,v = 1 for
2u+v ≤ dmin,τ −2. O−1,u,v is the probability that, given a codeword c of a given weight, the
randomly selected bit for the received sequence corresponds to an entry where c is equal to
−1. The other (−1s) and erasures of mc are placed such that 2dH(c,mc) + v ≤ dmin,τ − 2.
Consider the codewords of weight h + 1. The probability that the erased bit is chosen
among the codeword bit positions that are −1 is (h + 1)/nτ . For a given weight h + 1
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codeword c, suppose mc has h− j1 − j2 (−1s) and j2 erasures in h− j1 − j2 and j2 out of
the h entries where c is −1 (one entry is already fixed). Thus, mc has u− h+ j1 + j2 (−1s)
in u− (h− j1 − j2) and v − j2 erasures in v − j2 out of the nτ − h− 1 positions where c is
+1. The number of possibilities is(

h

j1, j2, h− j1 − j2

)(
nτ − h− 1

nτ − u− v − 1− j1, u− h+ j1 + j2, v − j2

)
.

The probability is

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

) (5.99)

where δ := dH(c,mc) = u− h+ 2j1 + j2. Summing over 0 ≤ δ ≤ ⌊(dmin,τ − 2− v)/2⌋, j1

and j2 completes the proof.
Consider now O+1,u,v. If 2u+ v ≤ dmin,τ − 2, then the number of erasures in the received

sequence is v + 1 and the number of errors is u. Hence, the decoder can correct the errors
and erasures. O+1,u,v is the probability that given a codeword c of a given weight, the
randomly selected bit for the received sequence corresponds to an entry where c is equal to
+1. The other (−1s) and erasures of mc are placed such that 2dH(c,mc) + v ≤ dmin,τ − 2.
Consider the codewords of weight h. The probability that the erased bit is chosen among
the codeword bit positions that are +1 is (nτ − h)/nτ . For a given weight h codeword c,
suppose mc has h− j1 − j2 (−1s) and j2 erasures in h− j1 − j2 and j2 out of the h entries
where c is −1. Thus, mc has u− h+ j1 + j2 (−1s) in u− (h− j1 − j2) and v − j2 erasures
in v − j2 out of the nτ − h− 1 positions where c is +1 (one entry is already fixed). The
number of possibilities is

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,u−h+j1+j2,v−j2

)
and the probability is

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

) (5.100)

where δ := dH(c,mc) = u− h+ 2j1 + j2. Summing over 0 ≤ δ ≤ ⌊(dmin,τ − 2− v)/2⌋, j1

and j2 completes the proof.

5.6.3 Derivation of K−1,u,K+1,u,W−1,u and W+1,u in (5.31)-(5.34)

We clarify briefly the derivation of K−1,u,K+1,u,W−1,u,W+1,u and W+1,u. If u ≤ tτ − 1,
then the decoder can correct all errors and the estimated codeword is the all-ones vector.
Hence K−1,u = 0 and K+1,u = 1. K−1,u is the probability that there exists a codeword
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c with dH(c,mc) ≤ tτ that has a −1 in the randomly chosen position, where mc is the
received sequence and mc has a −1 in the randomly chosen position. Thus, K−1,u is the
probability that given a codeword c of a given weight, the randomly selected bit for the
received sequence corresponds to an entry where c is equal to −1. The other (−1s) of mc

are placed such that dH(c,mc) ≤ tτ . Consider the codewords of weight h+ 1, the number
of which is Ah+1. The probability that the randomly selected initially in error bit is chosen
among the codeword bit positions that are −1 is (h + 1)/nτ . For a given weight h + 1
codeword c, suppose mc has h− j (−1s) in h− j out of the h entries where c is −1 (one
entry is already fixed). Thus, mc has u− (h− j) (−1s) in u− (h− j) out of the nτ − h− 1
positions where c is +1. The number of possibilities is

(
h

h−j

)(
nτ −h−1
u−h+j

)
. The probability is

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

)
where δ := dH(c,mc) = u− h+ 2j. By summing over 0 ≤ δ ≤ tτ and j, we obtain K−1,u in
(5.31). Consider now K+1,u, which is the probability that there exists a codeword c with
dH(c,mc) ≤ tτ that has a +1 in the randomly chosen position and mc has a −1 in the
randomly chosen position. Thus, K+1,u is the probability that given a codeword c of a given
weight, the randomly selected bit for the received sequence corresponds to an entry where
c is equal to +1. The other (−1s) of mc are placed such that dH(c,mc) ≤ tτ . Consider
the codewords of weight h, the number of which is Ah. The probability that the randomly
selected initially in error bit is chosen among the codeword bit positions that are +1 is
(nτ − h)/nτ . For a given weight h codeword c, suppose mc has h− j (−1s) in h− j out
of the h entries where c is −1. Thus, mc has u− (h− j) (−1s) in u− (h− j) out of the
nτ − h− 1 positions where c is +1 (one entry is already fixed). The number of possibilities
is
(

h
h−j

)(
nτ −h−1
u−h+j

)
and probability is

Ph =

(
h

h−j

)(
nτ −h−1
δ−j−1

)
(

nτ −1
u

)
where δ := dH(c,mc) = u − h + 2j + 1. By summing over 1 ≤ δ ≤ tτ and j, we obtain
K+1,u in (5.32).

If u ≤ tτ , then the decoder can correct all errors and the estimated codeword is the
all-ones vector. Hence W−1,u = 0 and W+1,u = 1. W−1,u is the probability that there
exists a codeword c with dH(c,mc) ≤ tτ that has a −1 in the randomly chosen position
and mc has a +1 in the randomly chosen position . Thus, W−1,u is the probability that
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given a codeword c of a given weight, the randomly selected bit for the received sequence
corresponds to an entry where c is equal to −1. The other (−1s) of mc are placed such that
dH(c,mc) ≤ tτ . Consider the codewords of weight h+ 1, the number of which is Ah+1. The
probability that the randomly selected initially correct bit is chosen among the codeword
bit positions that are −1 is (h+ 1)/nτ . For a given weight h+ 1 codeword c, suppose mc

has h − j (−1s) in h − j out of the h entries where c is −1 (one entry is already fixed).
Thus, mc has u− (h− j) (−1s) in u− (h− j) out of the nτ − h− 1 positions where c is
+1. The number of possibilities is

(
h

h−j

)(
nτ −h−1
u−h+j

)
. The probability is

Ph =

(
h

h−j

)(
nτ −h−1
δ−j−1

)
(

nτ −1
u

)
where δ := dH(c,mc) = u − h + 2j + 1. By summing over 1 ≤ δ ≤ tτ and j, we obtain
W−1,u in (5.33).

Consider now W+1,u which is the probability that there exists a codeword c with
dH(c,mc) ≤ tτ that has a +1 in the randomly chosen position and mc has a +1 in the
randomly chosen position. Thus, W+1,u is the probability that given a codeword c of a given
weight, the randomly selected bit for the received sequence corresponds to an entry where
c is equal to +1. The other (−1s) of mc are placed such that dH(c,mc) ≤ tτ . Consider
the codewords of weight h, the number of which is Ah. The probability that the randomly
selected initially correct bit is chosen among the codeword bit positions that are +1 is
(nτ − h)/nτ . For a given weight h codeword c, suppose mc has h− j (−1s) in h− j out
of the h entries where c is −1. Thus, mc has u− (h− j) (−1s) in u− (h− j) out of the
nτ − h− 1 positions where c is +1 (one entry is already fixed). The number of possibilities
is
(

h
h−j

)(
nτ −h−1
u−h+j

)
. The probability is

Ih =

(
h

h−j

)(
nτ −h−1

δ−j

)
(

nτ −1
u

)
where δ := dH(c,mc) = u− h+ 2j. By summing over 0 ≤ δ ≤ tτ and j, we obtain W+1,u

in (5.34).
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5.6.4 Derivation of K−1,u,v,K+1,u,v,W−1,u,v,W+1,u,v,O−1,u,v,O+1,u,v in
(5.46)-(5.51)

If 2u+ v ≤ dmin,τ − 3, the number of erasures in the received sequence is v and number of
errors is u+1 ≤ ⌊(dmin,τ −1−v)/2⌋. Hence, the decoder can correct the errors and erasures.
Thus, K−1,u,v = 0 and K+1,u,v = 1 for 2u + v ≤ dmin,τ − 3. K−1,u,v is the probability that
given a codeword c of a given weight, the randomly selected bit for the received sequence
corresponds to an entry where c equals −1. The other (−1s) and erasures of mc are placed
such that 2dH(c,mc) + v ≤ dmin,τ − 1. Consider the codewords of weight h + 1. The
probability that the randomly selected initially in error bit is chosen among the codeword
bit positions that are −1 is (h+ 1)/nτ . For a given weight h+ 1 codeword c, suppose mc

has h − j1 − j2 (−1s) in h − j1 − j2 and j2 erasures in j2 out of the h entries where c is
−1 (one entry is already fixed). Thus, mc has u− (h− j1 − j2) (−1s) in u− (h− j1 − j2)
and v − j2 erasures in v − j2 out of the nτ − h− 1 positions where c is +1. The number of
possibilities is

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,u−h+j1+j2,v−j2

)
. The probability is

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

)
where δ := dH(c,mc) = u− h+ 2j1 + j2. Summing over 0 ≤ δ ≤ ⌊(dmin,τ − 1− v)/2⌋, j1

and j2 completes the proof.
K+1,u,v is the probability that given a codeword c of a given weight, the randomly selected

bit for the received sequence corresponds to an entry where c equals +1. The other
(−1s) and erasures of mc are placed such that 2dH(c,mc) + v ≤ dmin,τ − 1. Consider the
codewords of weight h. The probability that the randomly selected initially in error bit is
chosen among the codeword bit positions that are +1 is (nτ − h)/nτ . For a given weight
h codeword c, suppose mc has h− j1 − j2 (−1s) in h− j1 − j2 and j2 erasures in j2 out
of the h entries where c is −1. Thus, mc has u− (h− j1 − j2) (−1s) in u− (h− j1 − j2)
and v − j2 erasures in v − j2 out of the nτ − h− 1 positions where c is +1 (one entry is
already fixed). The number of possibilities is

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,u−h+j1+j2,v−j2

)
. The

probability is

Sh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−1−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

)
where δ := dH(c,mc) = u− h+ 2j1 + j2 + 1. Summing over 1 ≤ δ ≤ ⌊(dmin,τ − 1− v)/2⌋,
j1 and j2 completes the proof.

Consider now W−1,u,v and W+1,u,v. If 2u+ v ≤ dmin,τ − 1, the number of erasures in the
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received sequence is v, and the number of errors is u ≤ ⌊(dmin,τ − 1 − v)/2⌋. Hence, the
decoder can correct the errors and erasures. Thus W−1,u,v = 0 and W+1,u,v = 1. W−1,u,v is
the probability that given a codeword c of a given weight, the randomly selected bit for
the received sequence corresponds to an entry where c equals −1. The other (−1s) and
erasures of mc are placed such that 2dH(c,mc) + v ≤ dmin,τ − 1. Consider the codewords
of weight h+ 1. The probability that the randomly selected initially correct bit is chosen
among the codeword bit positions that are −1 is (h + 1)/nτ . For a given weight h + 1
codeword c, suppose mc has h− j1 − j2 (−1s) in h− j1 − j2 and j2 erasures in j2 out of
the h entries where c is −1 (one entry is already fixed). Thus, mc has u− (h− j1 − j2)
(−1s) in u− (h− j1− j2) and v− j2 erasures in v− j2 out of the nτ −h− 1 positions where
c is +1. The probability is

Sh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−1−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

)
where δ := dH(c,mc) = u− h+ 2j1 + j2 + 1. Summing over 1 ≤ δ ≤ ⌊(dmin,τ − 1− v)/2⌋,
j1 and j2 completes the proof.

W+1,u,v is the probability that given a codeword c of a given weight, the randomly
selected bit for the received sequence corresponds to an entry where c equals +1. The
other (−1s) and erasures of mc are placed such that 2dH(c,mc) + v ≤ dmin,τ − 1. Consider
the codewords of weight h. The probability that the randomly selected initially correct bit
is chosen among the codeword bit positions that are +1 is (nτ − h)/nτ . For a given weight
h codeword c, suppose mc has h− j1 − j2 (−1s) in h− j1 − j2 and j2 erasures in j2 out of
the h entries where c is −1. Thus, mc has u− (h− j1 − j2) (−1s) in u− (h− j1 − j2) and
v − j2 erasures in v − j2 out of the nτ − h− 1 positions where c is +1. The probability is

Fh =

(
h

j1,j2,h−j1−j2

)(
nτ −h−1

nτ −u−v−1−j1,δ−j1,v−j2

)
(

nτ −1
u,v,nτ −1−u−v

)
where δ := dH(c,mc) = u− h+ 2j1 + j2. Summing over 0 ≤ δ ≤ ⌊(dmin,τ − 1− v)/2⌋, j1

and j2 completes the proof.
The derivations of O−1,u,v and O+1,u,v are given in Appendix 5.6.2.





6
Trapping and Absorbing Set
Enumerators for Binary LDPC Code
Ensembles

Trapping sets [35, 36] and (fully) absorbing sets [37, 111] play a fundamental role in the
error floor performance (under iterative decoding) of LDPC codes [112–114] especially for
quantized decoders, such as the algorithms in Chapter 4. Enumerating the trapping sets of a
specific LDPC code graph is a formidable problem (see, e.g., [43–45]). The difficulty can be
circumvented by analyzing the average trapping set enumerator of an LDPC code ensemble,
rather than analyzing a specific code. This is reasonable if the weight and trapping set
enumerators of a code drawn uniformly at random from the ensemble are close to the
average enumerators of the ensemble with high probability. The author of [115,116] derived
an asymptotic lower bound on the probability that the weight and stopping set enumerators
of a random code from the binary LDPC code ensemble is close to the ensemble average.
The approach relies on the second moment method using the variances of the weight and
stopping set distributions. We extended in [64] the method in [115], to the weight and
trapping set distributions of non-binary LDPC code ensembles. Following [117], we derived
upper bounds on the typical minimum distance and the relative minimum ∆-trapping set
sizes for binary and non-binary regular LDPC code ensembles. In [48], a characterization of
the (asymptotic) trapping set properties of regular/irregular unstructured LDPC ensembles
was obtained based on random matrix enumeration methods. In this chapter, we derive the
finite-length and asymptotic (elementary) trapping and (fully) absorbing set enumerators for
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binary unstructured and protograph-based LDPC codes. Numerical results illustrate how
the proposed enumeration technique can be used to estimate the error floor performance
for LDPC codes.

6.1 Preliminaries

Let G = (V ∪ C,E ) be a Tanner graph of a binary LDPC code, where V (C) is the set of
VNs (CNs) and E is the set of edges. A VN is called correct if the corresponding value is
zero and it is called corrupt if it is one. Consider a set I ⊆ V of corrupt VNs. We denote
by N (I) the set of its neighboring CNs. Further, we denote by U(I) the set of CNs in
N (I) that are connected to I an odd number of times (unsatisfied CNs) and S(I) the set
of CNs in N (I) that are connected to I an even number of times (satisfied CNs).

Definition 6.1 (Trapping set). An (a, b) TS Ta,b is set I of a VNs such that U(I) contains
b CNs [48].

Definition 6.2 (Elementary trapping set). An elementary trapping set (ETS) T E
a,b is a TS

where each CN c ∈ S(I) is connected to two VNs in I and each CN c ∈ U(I) is connected
to exactly one VN in I.

Definition 6.3 (Absorbing set). An (a, b) AS Aa,b is a trapping set with the additional
property that each VN v ∈ I has strictly fewer neighboring CNs from U(I) than from
S(I) [37].

Definition 6.4 (Fully absorbing set). An (a, b) FAS Fa,b is a trapping set with the
additional property that each VN v ∈ V has strictly fewer neighboring CNs from U(I) than
from C \ U(I) [37].

Definition 6.5 (Elementary (fully) absorbing set). An EASAE
a,b (elementary fully absorbing

set (EFAS) FE
a,b) is an AS (FAS) where each CN c ∈ S(I) is connected to two VNs in I

and each CN c ∈ U(I) is connected to exactly one VN in I [37].

The normalized logarithmic asymptotic distribution of (elementary) trapping or (fully)
absorbing sets for an LDPC code ensemble for a = θn and b = γn is defined by

G(θ, γ) := lim
n→∞

1
n

ln (E(θn, γn)) (6.1)

where E(θn, γn) is the average number of (θn, γn) (elementary) trapping or (fully) absorbing
sets in the Tanner graph of a random code from the ensemble.
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Definition 6.6 (Relative minimum ∆-trapping set size). For a fixed ratio ∆ = b/a, the
second zero crossing of the normalized logarithmic asymptotic distribution of trapping sets
(the first one is zero), if it exists, is called the relative minimum ∆-trapping set size that
we denote by θ⋆

TS [49].

Analogously to the relative minimum ∆-trapping set size [49], the relative minimum
∆-absorbing set size was introduced in [37].

Definition 6.7 (Relative minimum ∆-absorbing set size). For a fixed ratio ∆ = b/a, the
second zero crossing of the normalized logarithmic asymptotic distribution of absorbing
sets (the first one is zero), if it exists, is called the relative minimum ∆-absorbing set size
that we denote by θ⋆

AS.

Analogously to the relative minimum ∆-trapping set size [49], the relative minimum
∆-fully absorbing set size was introduced in [37].

Definition 6.8 (Relative minimum ∆-fully absorbing set size). For a fixed ratio ∆ = b/a,
the second zero crossing of the normalized logarithmic asymptotic distribution of fully
absorbing sets (the first one is zero), if it exists, is called the relative minimum ∆-fully
absorbing set size that we denote by θ⋆

FAS.

In the following, we derive the finite-length and the normalized logarithmic asymp-
totic (elementary) trapping and (fully) absorbing set enumerators for binary LDPC code
ensembles.

6.2 Trapping and Absorbing Set Enumerators for
Unstructured Ensembles

In this section, we derive the finite-length (elementary) trapping and (fully) absorbing set
enumerators for binary unstructured LDPC codes and we present an analytical method for
evaluating the normalized logarithmic asymptotic distributions of (elementary) trapping and
(fully) absorbing sets. First, we briefly review the random matrix enumeration approach,
which was applied in [48] to obtain the asymptotic enumerators for (elementary) TSs and
stopping sets (SSs) for binary irregular LDPC code ensembles and in [37,77] for the weight
distribution and the (elementary) (fully) ASs of regular LDPC code ensembles, respectively.
We first follow this approach and extend the analysis to obtain the (elementary) AS and FAS
enumerators of irregular LDPC code ensembles. Then, we provide alternative derivations
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of the (elementary) trapping and (fully) absorbing set enumerators for binary unstructured
LDPC codes. The alternative derivation relies on the generating function approach, already
adopted to analyze weight and stopping set enumerators of unstructured (generalized)
LDPC ensembles [46, 78–80,118].

6.2.1 Review of the Existing Approach

In this section, we review the TS and ETS asymptotic enumerators derived in [48]. We
extended the approach to obtain (elementary) AS and FAS enumerators for irregular LDPC
code ensembles.

The parity-check matrix of each code from C Λ,P
n contains Λjn columns of weight j and

Pim rows of weight i. From Theorem 3.1, the cardinality of the set containing all m× n
binary matrices with these row and column weights is

|HΛ,P
n | =

f !
dmax

c∏
i=1

(i!)Pim
dmax

v∏
j=1

(j!)Λjn

exp

−
mn

dmax
c∑
i=1

i(i− 1)Pi

dmax
v∑

j=1
j(j − 1)Λj

2f 2

×
(
1 + o(n−1+δ)

)
(6.2)

for δ > 0, with f = nd̄v = md̄c.

Trapping Set Distribution

In this section, we review the derivation of the asymptotic distribution of TSs for the
ensemble C Λ,P

n for a = θn and b = γn from [48].

Theorem 6.1. The normalized asymptotic distribution of (θn, γn) TSs is

GΛ,P
TS (θ, γ) =

dmax
v∑

j=1
ΛjHb

(
θ⋆

j

Λj

)
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

, . . . ,
α̃

(i)⋆

i

ξPi

+
i∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vHb

(
θ̃⋆

d̄v

) (6.3)

where

θ̃⋆ =ξ
dmax

c∑
i=1

iA3Pi
(1 + A3)i−1(1 + A2) + (1− A3)i−1(1− A2)

(1 + A3)i(1 + A2)− (1− A3)i(1− A2)
(6.4)
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θ⋆
j =Λj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

, ∀j ∈ {1, . . . , dmax
v } (6.5)

α̃
(i)⋆

j =


2ξPi(i

j)A2Aj
3

(1+A3)i(1+A2)−(1−A3)i(1−A2) j is even
2ξPi(i

j)Aj
3

(1+A3)i(1+A2)−(1−A3)i(1−A2) j is odd
∀i ∈ {1, . . . , dmax

c }, j ∈ {0, . . . , i} (6.6)

and A1, A2, A3 are the positive roots of

dmax
v∑

j=1
jΛj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

=θ̃⋆ (6.7)

dmax
v∑

j=1
Λj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

=θ (6.8)

dmax
c∑
i=1

Pi
(1 + A3)i − (1− A3)i

(1 + A3)i(1 + A2)− (1− A3)i(1− A2)
=γ
ξ
. (6.9)

Elementary Trapping Set Distribution

In this section, we review the derivation of the asymptotic distribution of ETSs for the
ensemble C Λ,P

n for a = θn and b = γn from [48].

Theorem 6.2. The normalized asymptotic distribution of (θn, γn) ETSs is

GΛ,P
ETS(θ, γ) =

dmax
v∑

j=1
ΛjHb

(
θ⋆

j

Λj

)
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

,
α̃

(i)⋆

1
ξPi

,
α̃

(i)⋆

2
ξPi

+
2∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vHb

(
θ̃⋆

d̄v

) (6.10)

where

θ̃⋆ =
dmax

c∑
i=1

ξPi
i(i− 1)A2

3A2

A2 + iA3 +
(

i
2

)
A2

3A2
+ γ (6.11)

θ⋆
j =Λj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

, ∀j ∈ {1, . . . , dmax
v } (6.12)

for all i ∈ {1, . . . , dmax
c }

α̃
(i)⋆

0 = ξPiA2

A2 + iA3 +
(

i
2

)
A2

3A2
(6.13)
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α̃
(i)⋆

1 = iξPiA3

A2 + iA3 +
(

i
2

)
A2

3A2
(6.14)

α̃
(i)⋆

2 =

(
i
2

)
ξPiA

2
3A2

A2 + iA3 +
(

i
2

)
A2

3A2
(6.15)

and A1, A2, A3 are the positive roots of

dmax
v∑

j=1
jΛj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

=θ̃⋆ (6.16)

dmax
v∑

j=1
Λj

(θ̃⋆)j

(θ̃⋆)j + A1A
j
3(d̄v − θ̃⋆)j

=θ (6.17)

dmax
c∑
i=1

Pi
iA3

A2 + iA3 +
(

i
2

)
A2

3A2
=γ
ξ
. (6.18)

Absorbing Set Distribution

The authors of [37] derived the asymptotic distribution of ASs for regular LDPC code
ensembles. We extended in [52] the analysis to irregular LDPC code ensembles.

Theorem 6.3. The normalized asymptotic distribution of (θn, γn) ASs is

GΛ,P
AS (θ, γ) =

dmax
v∑

j=1

ΛjHb

(
θ⋆

j

Λj

)
+ θ⋆

jH

 β̃
(j)⋆

⌊ j
2 ⌋+1

θ⋆
j

, . . . ,
β̃

(j)⋆

j

θ⋆
j

+
j∑

l=⌊ j
2 ⌋+1

β̃
(j)⋆

l ln
(
j

l

)
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

, . . . ,
α̃

(i)⋆

i

ξPi

+
i∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vH

(
β̃⋆

d̄v
,
θ̃⋆ − β̃⋆

d̄v
,
d̄v − θ̃⋆

d̄v

)
(6.19)

where

θ̃⋆ =ξ
dmax

c∑
i=1

iPiA3
A2A4[(1+A3A4)i−1−(1−A3A4)i−1]+(1+A3)i−1+(1−A3)i−1

A2[(1+A3A4)i+(1−A3A4)i]+(1+A3)i−(1−A3)i (6.20)

θ⋆
j =Λj

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+ (d̄v − θ̃⋆)jA1A

j
3

(6.21)
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α̃
(i)⋆

j =


2ξPi(i

j)A2Aj
3Aj

4
A2(1+A3A4)i+A2(1−A3A4)i+(1+A3)i−(1−A3)i j is even

2ξPi(i
j)Aj

3
A2(1+A3A4)i+A2(1−A3A4)i+(1+A3)i−(1−A3)i j is odd

(6.22)

β̃
(j)⋆

l =Λj

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
(θ̃⋆ − β̃⋆)j

(θ̃⋆ − β̃⋆)j
j∑

l′=⌊ j
2 ⌋+1

(
j
l′

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+ (d̄v − θ̃⋆)jA1A
j
3

(6.23)

β̃⋆ =ξ
dmax

c∑
i=1

iPi
A2A3A4 [(1 + A3A4)i−1 − (1− A3A4)i−1]

A2(1 + A3A4)i + A2(1− A3A4)i + (1 + A3)i − (1− A3)i
(6.24)

where (6.21) holds for all j ∈ {1, . . . , dmax
v }, (6.22) holds for all i ∈ {1, . . . , dmax

c }, j ∈
{0, . . . , i} and (6.23) holds for all j ∈ {1, . . . , dmax

v }, l ∈ {⌊j/2⌋+ 1, . . . , j} and
A1, A2, A3, A4 are the positive roots of

dmax
v∑

j=1
jΛj

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+ (d̄v − θ̃⋆)jA1A

j
3

=θ̃⋆ (6.25)

dmax
v∑

j=1
Λj

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

(θ̃⋆ − β̃⋆)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+ (d̄v − θ̃⋆)jA1A

j
3

=θ (6.26)

dmax
c∑
i=1

Pi
(1 + A3)i − (1− A3)i

A2(1 + A3A4)i + A2(1− A3A4)i + (1 + A3)i − (1− A3)i
=γ
ξ

(6.27)

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

Λjl

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
(θ̃⋆ − β̃⋆)j

(θ̃⋆ − β̃⋆)j
j∑

l′=⌊ j
2 ⌋+1

(
j
l′

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+ (d̄v − θ̃⋆)jA1A
j
3

=β̃⋆. (6.28)

Proof. We write the transpose of the parity-check matrix as

HT =
M1 M2

M3

 (6.29)

where M1 is an a× (m− b) binary matrix representing the subgraph of the Tanner graph
containing the VNs in Aa,b (AE

a,b) and the CNs that are connected to Aa,b (AE
a,b) an even

number of times (including zero), M2 is an a × b binary matrix corresponding to the
subgraph of the Tanner graph containing the VNs in Aa,b (AE

a,b) and the CNs that are
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connected to Aa,b (AE
a,b) an odd number of times, and M3 is an (n− a)×m binary matrix

representing the remainder of the Tanner graph [37]. Note that the columns of M1 have
even weights and the ones of M2 have odd weights. We use θ = (θ1, . . . , θdmax

v
), where nθj

represents the number of VNs of degree j in Aa,b (AE
a,b), i.e., the number of rows of weight j

in the submatrix [M1 |M2]. Note that ∑j θj = θ. We use for i ∈ {1, . . . , dmax
c }, the vector

α(i) = (α(i)
0 , . . . , α

(i)
i ), where α(i)

j is the number of columns in HT of weight i whose first a
entries sum to j, where j ∈ {0, 1, 2} for AE

a,b and j ∈ {0, . . . , i} for Aa,b. Clearly, it holds
for all i ∈ {1, . . . , dmax

c },
i∑

j=0
α

(i)
j = nξPi. (6.30)

Since there are b CNs that are connected an odd number of times to the VNs in Ta,b, we
have

dmax
c∑
i=1

i∑
j=0

j is odd

α
(i)
j = b. (6.31)

Similarly, we introduce for j ∈ {1, . . . , dmax
v }, β(j) = (β(j)

⌊ j
2 ⌋+1, . . . , β

(j)
j ), where β(j)

l represents
the number of rows in [M1 |M2] of weight j whose first m− b entries sum to l ∈ {⌊j/2⌋+
1, . . . , j}. It holds for all j ∈ {1, . . . , dmax

v }

j∑
l=⌊ j

2 ⌋+1

β
(j)
l = nθj. (6.32)

We defineMl as the set of binary matrices with the same weight vectors as Ml for l = 1, 2, 3
and the set M containing all n ×m binary matrices with the structure shown in (6.29)
and where Ml ∈Ml for l = 1, 2, 3.

Consider the matrix M1. It contains, for each j ∈ {1, . . . , dmax
v }, β(j)

l rows of weight
l ∈ {⌊j/2⌋ + 1, . . . , j} and, for each i ∈ {1, . . . , dmax

c }, α(i)
j columns of weight j where

j ∈ {0, . . . , i} and j is even. The number of ones in the matrix M1 is

f1 =
dmax

v∑
j=1

j∑
l=⌊ j

2 ⌋+1

lβ
(j)
l =

dmax
c∑
i=1

i∑
j=0

j is even

jα
(i)
j . (6.33)
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From Theorem 3.1, the cardinality of M1, for δ1 > 0, is

|M1| =
f1!

dmax
v∏

j=1

j∏
l=⌊ j

2 ⌋+1
(l!)β

(j)
l

dmax
c∏
i=1

i∏
j=0

j is even

(j!)α
(i)
j

(1 + o(n−1+δ1))×

exp

− 1
2f 2

1

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

(l − 1)lβ(j)
l


dmax

c∑
i=1

i∑
j=0

j is even

(j − 1)jα(i)
j


 .

(6.34)

Consider now the matrix M2. For each j ∈ {1, . . . , dmax
v }, there are β(j)

l rows of weight
j − l and all columns have an odd weight. The number of ones in M2 is

f2 =
dmax

v∑
j=1

j∑
l=⌊ j

2 ⌋+1

(j − l)β(j)
l =

dmax
c∑
i=1

i∑
j=0

j is odd

jα
(i)
j . (6.35)

Note that f1 + f2 is the total number of ones in the submatrix [M1 |M2], which is equal to

dmax
c∑
i=1

i∑
j=0

jα
(i)
j = nθ̃ (6.36)

where θ̃ = ∑
j jθj. The cardinality of M2, for δ2 > 0, is then

|M2| =
(nθ̃ − f1)!

dmax
v∏

j=1

j∏
l=⌊ j

2 ⌋+1
((j − l)!)β

(j)
l

dmax
c∏
i=1

i∏
j=0

j is odd

((j!)α
(i)
j

(1 + o(n−1+δ2))×

exp

 −1
2(nθ̃ − f1)2

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

(j − l − 1)(j − l)β(j)
l


dmax

c∑
i=1

i∑
j=0

j is odd

(j − 1)jα(i)
j


 .

(6.37)

The matrix M3 has n(Λj − θj) rows of weight j for each j ∈ {1, . . . , dmax
v } and α(i)

j columns
of weight i− j, where j ∈ {0, . . . , i} and i ∈ {1, . . . , dmax

c }. The number of ones in M3 is

f3 = n
dmax

v∑
j=1

j(Λj − θj) =
dmax

c∑
i=1

i∑
j=0

α
(i)
j (i− j) = nd̄v − nθ̃. (6.38)
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From Theorem 3.1, the cardinality of M3, for δ3 > 0, is

|M3| =
(nd̄v − nθ̃)!

dmax
v∏

j=1
(j!)n(Λj−θj)

dmax
c∏
i=1

i∏
j=0

((i− j)!)α
(i)
j

(1 + o(n−1+δ3))×

exp
− 1

2n(d̄v − θ̃)2

dmax
v∑

j=1
(j − 1)j(Λj − θj)

dmax
c∑
i=1

i∑
j=0

(i− j − 1)(i− j)α(i)
j

 .
(6.39)

The cardinality of M can be expressed as

|M| =
∑
α,β

dmax
c∏
i=1

(
nξPi

α
(i)
0 , . . . , α

(i)
i

) dmax
v∏

j=1

(
nθj

β
(j)
⌊ j

2 ⌋+1, . . . , β
(j)
j

)
|M1||M2||M3| (6.40)

where the sum is over the vectors α = (α(1), . . . ,α(dmax
c )) and β = (β(1), . . . ,β(dmax

v )) that
satisfy (6.30)-(6.33) and (6.36).

The average number of size (a, b) ASs in the Tanner graph of a code drawn randomly
from the ensemble C Λ,P

n is

EΛ,P
AS (a, b) =

∑
θ

dmax
v∏

j=1

(
nΛj

nθj

)
|M|
|HΛ,P

n |
(6.41)

where the sum is over the vectors θ satisfying ∑j nθj = a and |HΛ,P
n |, |M| are given in (6.2)

and (6.40), respectively.

Let α̃ = α/n, β̃ = β/n. The normalized asymptotic distribution of (θn, γn) ASs is then

GΛ,P
AS (θ, γ) = max

θ,α̃,β̃
S(θ, α̃, β̃) (6.42)

under the constraints

dmax
v∑

j=1
θj =θ (6.43)

i∑
j=0

α̃
(i)
j =ξPi, ∀i ∈ {1, . . . , dmax

c } (6.44)

dmax
c∑
i=1

i∑
j=0

j is odd

α̃
(i)
j =γ (6.45)



6.2 Enumerators for Unstructured Ensembles 131

dmax
c∑
i=1

i∑
j=0

jα̃
(i)
j =θ̃ (6.46)

dmax
c∑
i=1

i∑
j=0

j is even

jα̃
(i)
j =

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

lβ̃
(j)
l (6.47)

j∑
l=⌊ j

2 ⌋+1

β̃
(j)
l =θj, ∀j ∈ {1, . . . , dmax

v } (6.48)

and where

S(θ, α̃, β̃) =
dmax

c∑
i=1

ξPiH

 α̃(i)
0
ξPi

, . . . ,
α̃

(i)
i

ξPi

+
i∑

j=0
α̃

(i)
j ln

(
i

j

)
+

dmax
v∑

j=1

ΛjHb

(
θj

Λj

)
+ θjH

 β̃
(j)
⌊ j

2 ⌋+1

θj

, . . . ,
β̃

(j)
j

θj

+
j∑

l=⌊ j
2 ⌋+1

β̃
(j)
l ln

(
j

l

)
− d̄vH

(
β̃

d̄v
,
θ̃ − β̃

d̄v
,
d̄v − θ̃

d̄v

)
(6.49)

β̃ =
dmax

v∑
j=1

j∑
l=⌊ j

2 ⌋+1

lβ̃
(j)
l . (6.50)

By using the Lagrangian multiplier method, we obtain (6.19)-(6.28). ■

Elementary Absorbing Set Distribution

We derive next the asymptotic EAS enumerator for irregular binary LDPC code ensembles.

Theorem 6.4. The normalized asymptotic distribution of (θn, γn) EASs is

GΛ,P
EAS(θ, γ) =

dmax
v∑

j=1

ΛjHb

(
θ⋆

j

Λj

)
+ θ⋆

jH

 β̃
(j)⋆

⌊ j
2 ⌋+1

θ⋆
j

, . . . ,
β̃

(j)⋆

j

θ⋆
j

+
j∑

l=⌊ j
2 ⌋+1

β̃
(j)⋆

l ln
(
j

l

)
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

,
α̃

(i)⋆

1
ξPi

,
α̃

(i)⋆

2
ξPi

+
2∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vH

(
θ̃⋆ − γ

d̄v
,
γ

d̄v
,
d̄v − θ̃⋆

d̄v

)
(6.51)
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where

θ̃⋆ =ξ
dmax

c∑
i=1

Pi
iA3 + i(i− 1)A2

3A
2
4A2

A2 + iA3 +
(

i
2

)
A2

3A
2
4A2

(6.52)

θ⋆
j =Λj

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

+ (d̄v − θ̃⋆)jA1A
j
3

, ∀j ∈ {1, . . . , dmax
v } (6.53)

α̃
(i)⋆

0 =ξPi
A2

A2 + iA3 +
(

i
2

)
A2

3A
2
4A2

(6.54)

α̃
(i)⋆

1 =ξPi
iA3

A2 + iA3 +
(

i
2

)
A2

3A
2
4A2

(6.55)

α̃
(i)⋆

2 =ξPi

(
i
2

)
A2

3A
2
4A2

A2 + iA3 +
(

i
2

)
A2

3A
2
4A2

(6.56)

β̃
(j)⋆

l =Λj

(
j
l

)
1

Al
4
(θ̃⋆ − γ)j

(θ̃⋆ − γ)j
j∑

l′=⌊ j
2 ⌋+1

(
j
l′

)
1

Al′
4

+ (d̄v − θ̃⋆)jA1A
j
3

(6.57)

where (6.57) holds for all j ∈ {1, . . . , dmax
v }, l ∈

{
⌊ j

2⌋+ 1, . . . , j
}

and A1, A2, A3, A4 are the
positive roots of

dmax
v∑

j=1
jΛj

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

+ (d̄v − θ̃⋆)jA1A
j
3

=θ̃⋆ (6.58)

dmax
v∑

j=1
Λj

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

(θ̃⋆ − γ)j
j∑

l=⌊ j
2 ⌋+1

(
j
l

)
1

Al
4

+ (d̄v − θ̃⋆)jA1A
j
3

=θ (6.59)

dmax
c∑
i=1

Pi
iA3

A2 + iA3 +
(

i
2

)
A2

3A
2
4A2

=γ
ξ

(6.60)

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

Λjl

(
j
l

)
1

Al
4
(θ̃⋆ − γ)j

(θ̃⋆ − γ)j
j∑

l′=⌊ j
2 ⌋+1

(
j
l′

)
1

Al′
4

+ (d̄v − θ̃⋆)jA1A
j
3

=θ̃⋆ − γ. (6.61)
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Proof. We use the same notation of the AS enumerator. Since for EASs each unsatisfied
CNs is connected to exactly one VN in AE

a,b and each satisfied CNs is connected zero or
two VN in AE

a,b, we have for all i ∈ {1, . . . , dmax
c },

α
(i)
0 + α

(i)
1 + α

(i)
2 =nξPi (6.62)

dmax
c∑
i=1

α
(i)
1 =b. (6.63)

The matrix M1 contains, for each j ∈ {1, . . . , dmax
v }, β(j)

l rows of weight l ∈ {⌊j/2⌋+1, . . . , j}
and, for each i ∈ {1, . . . , dmax

c }, α(i)
0 columns of weight 0 and α(i)

2 columns of weight 2. The
number of ones in the matrix M1 is

f1 =
dmax

v∑
j=1

j∑
l=⌊ j

2 ⌋+1

lβ
(j)
l = 2

dmax
c∑
i=1

α
(i)
2 . (6.64)

From Theorem 3.1, the cardinality of M1, for δ1 > 0, is

|M1| =
f1!

dmax
v∏

j=1

j∏
l=⌊ j

2 ⌋+1
(l!)β

(j)
l

dmax
c∏
i=1

(2)α
(i)
2

(1 + o(n−1+δ1))×

exp

− 1
f 2

1

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

(l − 1)lβ(j)
l


dmax

c∑
i=1

α
(i)
2


 .

(6.65)

Consider now the matrix M2. For each j ∈ {1, . . . , dmax
v }, there are β(j)

l rows of weight
j − l and all columns have weight 1. The number of ones in M2 is

f2 =
dmax

v∑
j=1

j∑
l=⌊ j

2 ⌋+1

(j − l)β(j)
l =

dmax
c∑
i=1

α
(i)
1 = b. (6.66)

Note that f1 + f2 is the total number of ones in the submatrix [M1 |M2], which is equal to

dmax
c∑
i=1

α
(i)
1 + 2α(i)

2 = nθ̃ (6.67)

where θ̃ = ∑
j jθj.
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The cardinalities of M2, for δ2 > 0, is then

|M2| =
b!

dmax
v∏

j=1

j∏
l=⌊ j

2 ⌋+1
((j − l)!)β

(j)
l

(1 + o(n−1+δ2)). (6.68)

The matrix M3 has n(Λj − θj) rows of weight j for each j ∈ {1, . . . , dmax
v } and α(i)

j columns
of weight i− j, where j ∈ {0, 1, 2} and i ∈ {1, . . . , dmax

c }. The number of ones in M3 is

f3 = n
dmax

v∑
j=1

j(Λj − θj) =
dmax

c∑
i=1

i∑
j=0

α
(i)
j (i− j) = nd̄v − nθ̃. (6.69)

From Theorem 3.1, the cardinality of M3, for δ3 > 0, is

|M3| =
(nd̄v − nθ̃)!

dmax
v∏

j=1
(j!)n(Λj−θj)

dmax
c∏
i=1

2∏
j=0

((i− j)!)α
(i)
j

(1 + o(n−1+δ3))×

exp
 −1

2n(d̄v − θ̃)2

dmax
v∑

j=1
(j − 1)j(Λj − θj)

dmax
c∑
i=1

2∑
j=0

(i− j − 1)(i− j)α(i)
j

 .
(6.70)

The cardinality of M can be expressed as

|M| =
∑
α,β

dmax
c∏
i=1

(
nξPi

α
(i)
0 , α

(i)
1 , α

(i)
2

) dmax
v∏

j=1

(
nθj

β
(j)
⌊ j

2 ⌋+1, . . . , β
(j)
j

)
|M1||M2||M3| (6.71)

where the sum is over the vectors α = (α(1), . . . ,α(dmax
c )) and β = (β(1), . . . ,β(dmax

v )) that
satisfy (6.32), (6.62)-(6.64) and (6.67).

The average number of size (a, b) EASs in the Tanner graph of a code drawn randomly
from the ensemble C Λ,P

n is

EΛ,P
EAS(a, b) =

∑
θ

dmax
v∏

j=1

(
nΛj

nθj

)
|M|
|HΛ,P

n |
(6.72)

where the sum is over the vectors θ satisfying ∑j nθj = a and |HΛ,P
n |, |M| are given in (6.2)

and (6.71), respectively.

Let α̃ = α/n, β̃ = β/n. The normalized asymptotic distribution of (θn, γn) EASs is
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then

GΛ,P
EAS(θ, γ) = max

θ,α̃,β̃
S(θ, α̃, β̃) (6.73)

under the constraints

dmax
v∑

j=1
θj =θ (6.74)

α̃
(i)
0 + α̃

(i)
1 + α̃

(i)
2 =ξPi, ∀i ∈ {1, . . . , dmax

c } (6.75)
dmax

c∑
i=1

α̃
(i)
1 =γ (6.76)

dmax
c∑
i=1

α̃
(i)
1 + 2α̃(i)

2 =θ̃ (6.77)

2
dmax

c∑
i=1

α̃
(i)
2 =

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

lβ̃
(j)
l (6.78)

j∑
l=⌊ j

2 ⌋+1

β̃
(j)
l =θj, ∀j ∈ {1, . . . , dmax

v } (6.79)

and where

S(θ, α̃, β̃) =
dmax

c∑
i=1

ξPiH

 α̃(i)
0
ξPi

,
α̃

(i)
1
ξPi

,
α̃

(i)
2
ξPi

+
2∑

j=0
α̃

(i)
j ln

(
i

j

)+
dmax

v∑
j=1

[
ΛjHb

(
θj

Λj

)

+θjH

 β̃
(j)
⌊ j

2 ⌋+1

θj

, . . . ,
β̃

(j)
j

θj

+
j∑

l=⌊ j
2 ⌋+1

β̃
(j)
l ln

(
j

l

)
− d̄vH

(
θ̃ − γ

d̄v
,
γ

d̄v
,
d̄v − θ̃

d̄v

)
.

(6.80)

By using the Lagrangian multiplier method, we obtain (6.51)-(6.61). ■

Fully Absorbing Set Distribution

The asymptotic distribution of FASs for regular LDPC code ensembles was derived in [37].
We extend now the analysis to irregular code ensembles.
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Theorem 6.5. The normalized asymptotic distribution of (θn, γn) FASs is

GΛ,P
FAS(θ, γ) =

dmax
v∑

j=1

θ⋆
jH

 β̃
(j)⋆

⌊ j
2 ⌋+1

θ⋆
j

, . . . ,
β̃

(j)⋆

j

θ⋆
j

+ (Λj − θ⋆
j )H

 κ̃
(j)⋆

⌊ j
2 ⌋+1

Λj − θ⋆
j

, . . . ,
κ̃

(j)⋆

j

Λj − θ⋆
j


+ΛjHb

(
θ⋆

j

Λj

)
+

j∑
l=⌊ j

2 ⌋+1

(
β̃

(j)⋆

l ln
(
j

l

)
+ κ̃

(j)⋆

l ln
(
j

l

))
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

, . . . ,
α̃

(i)⋆

i

ξPi

+
i∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vH

(
β̃⋆

d̄v
,
θ̃⋆ − β̃⋆

d̄v
,
κ̃⋆

d̄v
,
d̄v − θ̃⋆ − κ̃⋆

d̄v

)

(6.81)

where

θ̃⋆ =ξ
dmax

c∑
i=1

iPiA3
A2A4[(A5+A3A4)i−1−(A5−A3A4)i−1]+(A5+A3)i−1+(A5−A3)i−1

A2[(A5+A3A4)i+(A5−A3A4)i]+(A5+A3)i−(A5−A3)i (6.82)

θ⋆
j =Λj

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l
(6.83)

α̃
(i)⋆

j =


2ξPi(i

j)A2Aj
3Aj

4Ai−j
5

A2(A5+A3A4)i+A2(A5−A3A4)i+(A5+A3)i−(A5−A3)i j is even
2ξPi(i

j)Aj
3Ai−j

5
A2(A5+A3A4)i+A2(A5−A3A4)i+(A5+A3)i−(A5−A3)i j is odd

(6.84)

β̃
(j)⋆

l =Λj

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

j∑
l′=⌊ j

2 ⌋+1

(
j
l′

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l′=⌊ j

2 ⌋+1

(
j
l′

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′
(6.85)

κ
(j)⋆

l =Λj

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l ( d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l′=⌊ j

2 ⌋+1

(
j
l′

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l′=⌊ j

2 ⌋+1

(
j
l′

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′
(6.86)

β̃⋆ =ξ
dmax

c∑
i=1

iPi
A2A3A4 [(A5 + A3A4)i−1 − (A5 − A3A4)i−1]

A2(A5 + A3A4)i + A2(A5 − A3A4)i + (A5 + A3)i − (A5 − A3)i
(6.87)

κ̃⋆ =ξ
dmax

c∑
i=1

iPi
A2A5 [](A5 + A3A4)i−1 + (A5 − A3A4)i−1]

A2(A5 + A3A4)i + A2(A5 − A3A4)i + (A5 + A3)i − (A5 − A3)i
(6.88)

where (6.83) holds for all j ∈ {1, . . . , dmax
v }, (6.84) holds for all i ∈ {1, . . . , dmax

c }, j ∈
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{0, . . . , i}, (6.85) and (6.86) hold for all j ∈ {1, . . . , dmax
v }, l ∈

{
⌊ j

2⌋+ 1, . . . , j
}

and
A1, A2, A3, A4, A5 are the positive roots of

dmax
v∑

j=1

jΛj

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l
=θ̃⋆ (6.89)

dmax
v∑

j=1
Λj

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
β̃⋆

A4(θ̃⋆−β̃⋆)

)l
+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j
A1A

j
3

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l
=θ (6.90)

dmax
c∑
i=1

Pi
(A5 + A3)i − (A5 − A3)i

A2(A5 + A3A4)i + A2(A5 − A3A4)i + (A5 + A3)i − (A5 − A3)i
=γ
ξ

(6.91)

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

Λj l(j
l)
(

β̃⋆

A4(θ̃⋆−β̃⋆)

)l

j∑
l′=⌊ j

2 ⌋+1

(j
l′)
(

β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j

A1Aj
3

j∑
l′=⌊ j

2 ⌋+1

(j
l′)
(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′ =β̃⋆ (6.92)

dmax
v∑

j=1

j∑
l=⌊ j

2 ⌋+1

Λj l(j
l)
(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l(
d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j

A1Aj
3

j∑
l′=⌊ j

2 ⌋+1

(j
l′)
(

β̃⋆

A4(θ̃⋆−β̃⋆)

)l′

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−β̃⋆

)j

A1Aj
3

j∑
l′=⌊ j

2 ⌋+1

(j
l′)
(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′ =κ̃⋆. (6.93)

The proof is omitted since it is similar to the proof of Theorem 6.3.

Elementary Fully Absorbing Set Distribution

The asymptotic distribution of EFASs for regular LDPC code ensembles was derived in [37].
We extend the derivation to irregular code ensembles.
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Theorem 6.6. The normalized asymptotic distribution of (θn, γn) EFASs is

GΛ,P
EFAS(θ, γ) =

dmax
v∑

j=1

θ⋆
jH

 β̃
(j)⋆

⌊ j
2 ⌋+1

θ⋆
j

, . . . ,
β̃

(j)⋆

j

θ⋆
j

+ (Λj − θ⋆
j )H

 κ̃
(j)⋆

⌊ j
2 ⌋+1

Λj−θ⋆
j
, . . . ,

κ̃
(j)⋆

j

Λj−θ⋆
j



+ΛjHb

(
θ⋆

j

Λj

)
+

j∑
l=⌊ j

2 ⌋+1

(
β̃

(j)⋆

l ln
(
j

l

)
+ κ̃

(j)⋆

l ln
(
j

l

))
+

dmax
c∑
i=1

ξPiH

 α̃(i)⋆

0
ξPi

,
α̃

(i)⋆

1
ξPi

,
α̃

(i)⋆

2
ξPi

+
2∑

j=0
α̃

(i)⋆

j ln
(
i

j

)
− d̄vH

(
θ̃⋆ − γ

d̄v
,
γ

d̄v
,
κ̃⋆

d̄v
,
d̄v − θ̃⋆ − κ̃⋆

d̄v

)

(6.94)

where

θ̃⋆ =ξ
dmax

c∑
i=1

Pi
iA3A

i−1
5 + i(i− 1)A2

3A
i−2
5 A2

4A2

A2Ai
5 + iA3A

i−1
5 +

(
i
2

)
A2

3A
2
4A

i−2
5 A2

(6.95)

θ⋆
j =Λj

j∑
l=⌊ j

2 ⌋+1

(
j
l

)
1

Al
4

j∑
l=⌊ j

2 ⌋+1

(
j
l

)
1

Al
4

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ

)j
A1A

j
3

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l
(6.96)

α̃
(i)⋆

0 =ξPi
A2A

i
5

A2Ai
5 + iA3A

i−1
5 +

(
i
2

)
A2

3A
2
4A

i−2
5 A2

(6.97)

α̃
(i)⋆

1 =ξPi
iA3A
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5

A2Ai
5 + iA3A
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(
i
2
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3A
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(6.98)
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i
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(6.99)
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(
j
l

)
1

Al
4

j∑
l′=⌊ j

2 ⌋+1

(
j
l′
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1

Al′
4
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A1A

j
3
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(
j
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) (
κ̃⋆
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)l′
(6.100)
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(
j
l

) (
κ̃⋆
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)l ( d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ
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A1A

j
3
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(
j
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1

Al′
4
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(
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3
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j
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) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′
(6.101)
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A2Pi

iAi
5 + (i− 2)

(
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)
A2

3A
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i−2
5

A2Ai
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(
i
2

)
A2

3A
2
4A

i−2
5 A2

(6.102)
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where (6.96) holds for all j ∈ {1, . . . , dmax
v }, (6.98) and (6.99) hold for all j ∈

{1, . . . , dmax
v }, l ∈

{
⌊ j

2⌋+ 1, . . . , j
}

and A1, A2, A3, A4, A5 are the positive roots of

dmax
v∑

j=1
jΛj

j∑
l=⌊ j

2 ⌋+1

(
j
l
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1

Al
4
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Al
4
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(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ

)j
A1A

j
3

j∑
l=⌊ j

2 ⌋+1

(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l
=θ̃⋆ (6.103)
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Λj
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Al
4
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2 ⌋+1

(
j
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)
1

Al
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+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ

)j
A1A

j
3

j∑
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(
j
l

) (
κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)
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=θ (6.104)
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i−1
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A2Ai
5 + iA3A

i−1
5 +

(
i
2

)
A2

3A
2
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i−2
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(6.105)
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2 ⌋+1
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Al
4

j∑
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(j
l′) 1

Al′
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(
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(j
l′)
(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′ =θ̃⋆ − γ (6.106)
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j∑
l=⌊ j
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(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l(
d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ

)j

A1Aj
3

j∑
l′=⌊ j

2 ⌋+1

(j
l′) 1

Al′
4

+
(

d̄v−θ̃⋆−κ̃⋆

θ̃⋆−γ

)j

A1Aj
3

j∑
l′=⌊ j

2 ⌋+1

(j
l′)
(

κ̃⋆

A5(d̄v−θ̃⋆−κ̃⋆)

)l′ =κ̃⋆. (6.107)

The proof is similar to the one of Theorem 6.4.

6.2.2 The Generating Function Approach

The approach in Section 6.2.1 based on random matrix enumeration can be applied only to
unstructured binary LDPC codes. Therefore, we present an alternative derivation of the
average enumerators of (elementary) trapping and (fully) absorbing sets for binary irregular
LDPC code ensembles using the generating function methodology, previously adopted to
study the distance spectrum and the stopping set distributions of (generalized) binary
LDPC code ensembles [9, 46,78–80]. The generating function approach is general and we
can enumerate several graphical structures by defining the appropriate generating functions.
For instance, we derive the (elementary) trapping and (fully) absorbing set enumerators of
GLDPC codes or the trapping and (elementary) absorbing set enumerators of non-binary
LDPC codes using generating functions in the next chapters.

In the following, we derive the finite-length (elementary) trapping and (fully) absorbing set
enumerators for binary unstructured LDPC code ensembles using the generating function
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methodology presented in Section 3.6. We develop an analytical method to evaluate
the normalized logarithmic asymptotic distributions of (elementary) trapping and (fully)
absorbing sets. Further, we derive the asymptotic approximations for the small-sized
trapping sets cases.

Trapping and Elementary Trapping Set Distributions

We derived the finite-length and asymptotic distribution of TSs for irregular LDPC code
ensembles in [53].

Lemma 6.1. The average number of size (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C Λ,P

n is

EΛ,P
TS (a, b) =

∑
w

coeff
(
g(x, y)n, xwyb

)
(

nd̄v
w

) coeff (f(t, s)n, tasw) (6.108)

where we introduced the generating functions

f(t, s) =
dmax

v∏
j=1

(1 + tsj)Λj (6.109)

g(x, y) =
dmax

c∏
i=1

[
(1 + x)i + (1− x)i

2 + y
(1 + x)i − (1− x)i

2

]ξPi

. (6.110)

Proof. Consider the Tanner graph of a code drawn randomly from the ensemble C Λ,P
n . We

randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities

and assign the value 1 to each VN in the set. We denote by α(a, w) the number of ways
to choose a VNs such that exactly w edges emanate from them. Its generating function
is ∑a,w α(a, w)tasw. Consider a single VN of degree j. This generating function is 1 + tsj

because we can either skip this VN or include it in the set I. If we skip the VN, then we
will get 0 nodes and 0 edges and this gives us the term 1 corresponding to t0s0. If we choose
the VN, then we get 1 VN and j edges and this gives us t1sj. By considering all possible
VN degrees, and since we have Λjn VNs of degree j and for each VN we can decide to
include it in I or not, we obtain f(t, s)n. Thus, we have

α(a, w) = coeff (f(t, s)n, tasw) .

Let β(b, w) be the number of ways to choose w edges such that exactly b CNs each have
an odd number of sockets and the other CNs each have an even number of check sockets.
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Its generating function is ∑b,w β(b, w)ybxw. Consider a CN of degree i. The generating
function of a degree i CN with an even number of connections to the VN in I is

gc(x, y) := y0 ∑
l is even

(
i

l

)
xl = 1

2
[
(1 + x)i + (1− x)i

]
.

If the CN is connected an odd number of times to the VN in I, then its generating function
is

gc̄(x, y) := y1 ∑
l is odd

(
i

l

)
xl = 1

2y
[
(1 + x)i − (1− x)i

]
.

Considering all CN degrees and that there are ξPin of degree i, we obtain

β(b, w) = coeff
(
g(x, y)n, xwyb

)
.

Let Z1 be a RV indicating the number of edges emanating from the set I. Further, let Z2

be a RV that is equal to 1 if there are exactly b CNs each connected an odd number of
times to I and the other CNs each have an even number (including zero) of connections to
I, and to 0 otherwise. Thus, we have

EΛ,P
TS (a, b) =

(
n

a

)
Pr{Z2 = 1} (6.111)

and

Pr{Z2 = 1} =
∑
w

Pr{Z1 = w}Pr{Z2 = 1|Z1 = w}

=
∑
w

coeff (f(t, s)n, tasw)(
n
a

) coeff
(
g(x, y)n, xwyb

)
(

nd̄v
w

) .
(6.112)

■

The exact average number of size (a, b) TSs derived in Lemma 6.1 for a finite block
length n is extremely complex to compute for large n. As n→∞, one can use the Hayman
formula in Lemma 3.1 to derive the normalized logarithmic asymptotic distribution of TSs.

Theorem 6.7. The normalized asymptotic distribution of (θn, γn) TSs is

GΛ,P
TS (θ, γ) = −d̄v ln(1 + xs)− θ ln(t)− γ ln(y) + ln (f(t, s)) + ln (g(x, y)) (6.113)
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where t, s, x, y are the unique positive solutions of

t
∂ ln f(t, s)

∂t
=θ (6.114)

s
∂ ln f(t, s)

∂s
=x∂ ln g(x, y)

∂x
= w̃⋆ (6.115)

y
∂ ln g(x, y)

∂y
=γ (6.116)

where f(t, s) and g(x, y) are defined in (6.109) and (6.110) respectively and

w̃⋆ = d̄v
xs

1 + xs
. (6.117)

The proof can be found in Appendix 6.4.1.

To determine θ⋆
TS we add another equation to the system of equations of Theorem 6.7,

namely GΛ,P
TS (θ,∆θ) = 0 with θ > 0.

Note that to compute the finite-length and the asymptotic distribution of ETSs, in
(6.108) and (6.113) we must replace the generating function of (6.110) with

g(x, y) =
dmax

c∏
i=1

[
1 +

(
i

2

)
x2 + ixy

]ξPi

. (6.118)

We briefly explain how to derive g(x, y) in (6.118). For an ETS, a satisfied CN of degree i
is connected zero or 2 times to VNs in I. The corresponding generating function is

gc(x, y) := y0
[
1 +

(
i

2

)
x2
]
.

Each CN in U(I) is connected to exactly one VN in I. The corresponding generating
function is gc̄(x, y) := iyx. Considering all CNs degrees and that there are ξPin of degree i,
we obtain g(x, y) in (6.118).

The following Lemma will be useful to analyze GΛ,P
TS (θ,∆θ) for small θ and fixed ∆.

Lemma 6.2. For a fixed ∆ = γ/θ, the derivative in θ of GΛ,P
TS (θ,∆θ) is

dGΛ,P
TS (θ,∆θ)

dθ = − ln(t)−∆ ln(y) (6.119)

where for each θ, the values of t and y are given by the solution of the system of equations
(6.114)-(6.116).
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Proof. Note that the solutions of the system of equations in (6.114)-(6.116) are implicit
functions of θ. From (6.113) and (6.117), we obtain

dGΛ,P
TS (θ,∆θ)

dθ =− ln(t)−∆ ln(y) + dt
dθ

 ∂f(t,s)
∂t

f(t, s) −
θ

t

+ ds
dθ

 ∂f(t,s)
∂s

f(t, s) −
w̃⋆

s


+ dx

dθ

 ∂g(x,y)
∂x

g(x, y) −
w̃⋆

x

+ dy
dθ

 ∂g(x,y)
∂y

g(x, y) −
∆θ
y

 .
(6.120)

The terms in the square brackets in (6.120) are equal to zero due to (6.114)-(6.116). This
establishes the result of Lemma 6.2. ■

Consider now the case of small θ and γ = ∆θ. We obtain a closed form expression of
GΛ,P

TS (θ,∆θ), which we introduce in the following corollary.

Corollary 6.1. For a fixed ∆ = γ/θ and small θ, we have

GΛ,P
TS (θ,∆θ) =θ

[
dmin

v − 2−∆
2 (ln(θ)− 1) + ln

(
(dmin

v )dmin
v Λdmin

v

∆∆

)

−dmin
v −∆

2 ln
(

d̄vd̄c(dmin
v −∆)

P′′(1)

)]
+ o(θ)

(6.121)

where dmin
v is the minimum VN degree and P′′(x) is the second derivative of P(x). The

proof is provided in Appendix 6.4.2.

Note that we obtain exactly the same expression for ETSs.
Note that a positive θ⋆

TS exists whenever the derivative of GΛ,P
TS (θ,∆θ) is negative as

θ → 0. Thus, by substituting (6.284) and (6.285) in (6.120) we find that a positive θ⋆
TS

exists whenever dmin
v > 2 + ∆ or dmin

v = 2 + ∆ and

Λdmin
v

(dmin
v )dmin

v P′′(1)
2d̄vd̄c(dmin

v − 2)dmin
v −2

< 1. (6.122)

If ∆ = 0 and dmin
v = 2, we obtain the inequality λ2ρ

′(1) < 1 in [79] for the existence of the
typical minimum distance of binary LDPC codes, where λ(x), ρ(x) are the edge-oriented
degree distribution polynomials and ρ′(x) is the derivative of ρ(x).

If the relative minimum ∆-trapping set size is small enough, then we can use Corollary 6.1
to approximate it. Through numerical simulations, we observed that the relative minimum
∆-trapping set size is small for small VN degrees or high CN degrees as observed in [48].
We need to determine θ such that GΛ,P

TS (θ,∆θ) = 0 with θ > 0. By neglecting the term o(θ),
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we obtain

θ⋆
TS ≈ exp(1)

(
d̄cd̄v(dmin

v −∆)
P′′(1)

) dmin
v −∆

dmin
v −∆−2

(
∆∆

Λdmin
v

(dmin
v )dmin

v

) 2
dmin
v −∆−2

. (6.123)

The approximation of the relative minimum ∆-trapping set size given in (6.123) is accurate
when θ⋆

TS is sufficiently small (for the case of small VN degrees or high CN degrees as
observed in [48]) and does not need solving the system of equations given in Theorem 6.7.

For the regular ensemble C dv,dc
n , the expressions in Lemma 6.1 and Theorem 6.7 can be

simplified as follows.

Lemma 6.3. The average number of size (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C dv,dc

n is

Edv,dc
TS (a, b) =

(
n

a

)coeff
(
g(x, y)n, xadvyb

)
(

ndv
adv

) (6.124)

where

g(x, y) =
[

(1 + x)dc + (1− x)dc

2 + y
(1 + x)dc − (1− x)dc

2

]ξ

. (6.125)

Proof. The Lemma can be proved from Lemma 6.1. Note that for a regular code, all VNs
have degree dv. Therefore, w in (6.108) is equal to adv. Moreover, the number of ways to
choose a VNs such that exactly adv edges emanate from them is equal to

(
n
a

)
. Further, the

generating function g(x, y) in (6.125) can be obtained from the one in (6.110) by taking
P(x) = xdc . ■

Theorem 6.8. The normalized asymptotic distribution of (θn, γn) TSs for the ensemble
C dv,dc

n is

Gdv,dc
TS (θ, γ) =− (dv − 1)Hb(θ)− γ ln(y)− θdv ln(x) + ln (g(x, y)) (6.126)

where

y = γ

ξ − γ
(1 + x)dc + (1− x)dc

(1 + x)dc − (1− x)dc
(6.127)
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and x is the unique positive solution of

x
∂ ln g(x, y)

∂x
= θdv (6.128)

where g(x, y) is defined in (6.125). The proof can be found in Appendix 6.4.3.

Note that to evaluate the normalized logarithmic asymptotic distribution of TSs for
unstructured LDPC code ensembles, one needs to solve 4 equations (with the same number
of unknowns) as shown in Theorem 6.7. For the regular case the number of equations
reduces to one equation.

To compute the finite-length distribution of ETSs for regular ensembles, we simply need
to replace in (6.124) the generating function g(x, y) given in (6.125) with

g(x, y) =
[
1 +

(
dc

2

)
x2 + dcxy

]ξ

. (6.129)

To obtain g(x, y) in (6.129), we simply need to take P(x) = xdc in (6.118).
Due to the simplicity of the generating function g(x, y) in this case, we can obtain a

closed form expression of the normalized asymptotic distribution of (θn, γn) ETSs for the
ensemble C dv,dc

n :

Gdv,dc
ETS (θ, γ) =− (dv − 1)Hb(θ)− γ ln(y)− θdv ln(x) + ln (g(x, y)) (6.130)

where g(x, y) is defined in (6.129) and

x =

√√√√ 2(θdv − γ)
dc(dc − 1)(2ξ − γ − θdv)

(6.131)

y = γ

ξ − γ
1 +

(
dc
2

)
x2

dcx
. (6.132)

Proof. The proof is similar to the one of TSs. We need only replace in (6.126) the generating
function g(x, y) given in (6.125) with the one in (6.129), where x, y are the unique positive
solutions of (6.287) and (6.288). Substituting (6.129) in (6.287) and (6.288), and with
some manipulations, we obtain x, y in (6.131) and (6.132). ■

Example 6.1. We consider regular (dv, dc) binary LDPC code ensembles. Fig. 6.1 illustrates
a comparison between the exact values of the relative minimum ∆-trapping set sizes of some
regular (dv, dc) LDPC codes for ∆ = 0.1 (solid lines) and their corresponding approximations
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dv = 3
dv = 4
dv = 5
dv = 6

Figure 6.1: Exact values of the relative minimum ∆-trapping set size (solid lines) and the
corresponding approximation obtained from (6.123) (dashed lines) for some
regular (dv, dc) LDPC codes for ∆ = 0.1.

obtained from (6.123) (dashed lines). We see that the approximation is good for small
values of dv and large values of dc since for this case, the relative minimum ∆-trapping
set sizes are small. We also observe that, for the same CN degree, increasing the VN
degree improves the relative minimum ∆-trapping set size and for fixed VN degree, the TS
properties improves with decreasing CN degree.

Absorbing Set Distribution

The following Lemma presents the finite-length AS enumerator for unstructured binary
LDPC codes and we develop an analytical method for evaluating the normalized logarithmic
asymptotic distribution of ASs.

Lemma 6.4. The average number of size (a, b) ASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C Λ,P

n is

EΛ,P
AS (a, b) =

∑
e,w

coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)

(
nd̄v
e+w

)(
e+w

e

) coeff (f(t, s1, s2)n, tase
1s

w
2 ) (6.133)

f(t, s1, s2) =
dmax

v∏
j=1

1 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(6.134)



6.2 Enumerators for Unstructured Ensembles 147

and

g(x1, x2, y) =
dmax

c∏
i=1

[
(1 + x1)i + (1− x1)i

2 + y
(1 + x2)i − (1− x2)i

2

]ξPi

. (6.135)

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
We randomly choose a set I of a VNs and assign the value 1 to each VN in the set. The
CNs that are connected to the VNs in I an even number (including zero) of times are
satisfied and the ones connected an odd number of times are unsatisfied. We have two
type of edges. Edges of the first type emanate from satisfied CNs and the edges of the
second type emanate from unsatisfied CNs. We denote by α(a, e, w) the number of ways to
choose a VNs such that exactly e type 1 edges and w type 2 edges emanate from them and
each of the VNs in I is connected to strictly fewer type 2 edges than type 1 edges. The
corresponding generating function is ∑a,e,w α(a, e, w)tase

1s
w
2 . Consider a VN v of degree j.

Let j − j1 and j1 be, respectively, the number of type 1 and 2 edges connected to v. Again,
we can either include this VN in I or not. If we skip it, then we obtain 0 nodes and 0 type
1 and type 2 edges. If we choose it, then we will have 1 node, j − j1 type 1 edges and j1

type 2 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋} (since each VN in I is connected to strictly
fewer type 2 edges than type 1 edges). Considering all possible VN degrees and that there
are Λjn of degree j, we obtain f(t, s1, s2)n and we have

α(a, e, w) = coeff (f(t, s1, s2)n, tase
1s

w
2 ) .

Let β(b, e, w) be the number of ways to choose e type 1 edges and w type 2 edges
such that there are exactly b unsatisfied CNs. The corresponding generating function
is ∑b,e,w β(b, e, w)ybxe

1x
w
2 . Consider a CN of degree i. If it is connected an even number

(including zero) of times to the VNs in I, then its generating function is

gc(x1, y) := y0 ∑
l is even

(
i

l

)
xl

1 = 1
2
[
(1 + x1)i + (1− x1)i

]

and if it is connected an odd number of times to the VNs in I, its generating function is

gc̄(x2, y) := y1 ∑
l is odd

(
i

l

)
xl

2 = y

2
[
(1 + x2)i − (1− x2)i

]
.
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Considering all CN degrees and that there are ξPin of degree i, we obtain

β(b, e, w) = coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)
.

We randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities.

Let Z1 and Z2 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from I, where each VN in I is connected to strictly fewer type 2 edges than
type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EΛ,P
AS (a, b) =

(
n

a

)
Pr{Z3 = 1} (6.136)

and

Pr{Z3 = 1} =
∑
e,w

Pr{Z1 = e, Z2 = w}Pr{Z3 = 1|Z1 = e, Z2 = w}

=
∑
e,w

coeff (f(t, s1, s2)n, tase
1s

w
2 )(

n
a

) coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)

(
nd̄v
e+w

)(
e+w

e

) .
(6.137)

■

We derive the normalized logarithmic asymptotic distribution of ASs for binary codes in
the following Theorem.

Theorem 6.9. The normalized asymptotic distribution of (θn, γn) ASs for the C Λ,P
n

ensemble is

GΛ,P
AS (θ, γ) =− d̄v ln(1 + x1s1 + x2s2)− θ ln(t)− γ ln(y)

+ ln (g(x1, x2, y)) + ln (f(t, s1, s2))
(6.138)

where t, s1, s2, x1, x2, y are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (6.139)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2, y)
∂x1

= ẽ⋆ (6.140)

s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2, y)
∂x2

= w̃⋆ (6.141)

y
∂ ln g(x1, x2, y)

∂y
=γ (6.142)
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where f(t, s1, s2) and g(x1, x2, y) are defined in (6.134) and (6.135) respectively and

ẽ⋆ =d̄v
x1s1

1 + x1s1 + x2s2
(6.143)

w̃⋆ =d̄v
x2s2

1 + x1s1 + x2s2
. (6.144)

The proof follows the same steps as the one of Theorem 6.7.

To determine θ⋆
AS we add another equation to the system of equations of Theorem 6.9,

namely GΛ,P
AS (θ,∆θ) = 0 with 0 < θ ≤ 1.

Similar to the TS case, the expressions in Lemma 6.4 and Theorem 6.9 can be simplified
for regular ensembles.

Lemma 6.5. The average number of size (a, b) ASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C dv,dc

n is

Edv,dc
AS (a, b) =

∑
e

(
m

b

)coeff
(
g1(x1)m−b, xe

1

)
coeff

(
g2(x2)b, xadv−e

2

)
(

ndv
adv

)(
adv
e

) ×

(
n

a

)
coeff

(
f(s)a, sadv−e

) (6.145)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (6.146)

g1(x1) =1
2
[
(1 + x1)dc + (1− x1)dc

]
(6.147)

g2(x2) =1
2
[
(1 + x2)dc − (1− x2)dc

]
. (6.148)

Proof. The Lemma can be proved similarly to Lemma 6.4. Note that for a regular code, all
VNs have degree dv. Therefore, e+w in (6.133) is equal to adv. The generating function of
a VN in I is given by f(s), since there are a VNs in I and there are

(
n
a

)
ways to chose the

a VNs, the number of ways to choose a VNs such that exactly e type 1 edges and adv − e
type 2 edges emanate from them and each of the VNs in I is connected to strictly fewer
type 2 edges than type 1 edges is(

n

a

)
coeff

(
f(s)a, sadv−e

)
.
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Further, g1(x1) in (6.147) is the generating function of a satisfied CN and g2(x2) in (6.148)
is the generating function of an unsatisfied one. Since we have m− b satisfied CNs and b

unsatisfied ones, the number of ways to chose e type 1 edges and adv − e type 2 edges such
that there are exactly b unsatisfied CNs is(

m

b

)
coeff

(
g1(x1)m−b, xe

1

)
coeff

(
g2(x2)b, xadv−e

2

)
.

■

We show now that to compute the normalized logarithmic asymptotic distribution of
ASs for regular codes, one needs to solve 3 equations instead of 6 for the irregular case.

Theorem 6.10. The normalized asymptotic distribution of (θn, γn) ASs for the C dv,dc
n

ensemble is

Gdv,dc
AS (θ, γ) =− θdv ln(x1 + x2s)− (dv − 1)Hb(θ) + θ ln (f(s))

+ (ξ − γ) ln (g1(x1)) + γ ln (g2(x2)) + ξHb

(
γ

ξ

) (6.149)

and s, x1, x2 are the unique positive solutions of

θs
dln f(s)

ds =γx2
dln g2(x2)

dx2
= (θdv − ẽ⋆) (6.150)

(ξ − γ)x1
dln g1(x1)

dx1
=ẽ⋆ (6.151)

where f(s), g1(x1) and g2(x2) are defined in (6.146), (6.147) and (6.148) respectively and

ẽ⋆ = θdv
x1

x1 + x2s
. (6.152)

The proof follows the same steps as the one of Theorem 6.8.

Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for binary LDPC codes.

Lemma 6.6. The average number of size (a, b) EASs in the Tanner graph of a code drawn
uniformly at random from the LDPC ensemble C Λ,P

n is

EΛ,P
EAS(a, b) =

∑
e

coeff
(
g(x1, x2)n, xe

1x
b
2

)
(

nd̄v
e+b

)(
e+b

b

) coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
(6.153)
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where f(t, s1, s2) is defined in (6.134) and

g(x1, x2) =
dmax

c∏
i=1

[
1 +

(
i

2

)
x2

1 + ix2

]ξPi

. (6.154)

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
We randomly choose a set I of a VNs and assign the value 1 to each VN in the set. The
edges connected to a VN v are assigned the binary value chosen for v. We have 2 types of
edges connected to the VNs in I. Edges of the first type emanate from satisfied CNs and
the edges of the second type emanate from unsatisfied CNs. Let β(b, e) be the number of
ways to choose e type 1 edges such that there are exactly b unsatisfied CNs and each of the
satisfied CNs is connected to 0 or 2 VNs in I and each of the unsatisfied CNs is connected
to exactly one VNs in I. In that case, since we have b unsatisfied CNs and each of them is
connected to exactly one VNs in I, we have b type 2 edges. The corresponding generating
function is ∑b,e β(b, e)xe

1x
b
2. The generating function of a satisfied CN of degree i, which is

connected to 0 or 2 VNs is I is gc(x1) := 1 +
(

i
2

)
x2

1 and if it is unsatisfied and connected to
only one VN in I, its generating function is gc̄(x2) := ix2. Considering all CN degrees and
that there are ξPin of degree i, we obtain

β(b, e) = coeff
(
g(x1, x2)n, xe

1x
b
2

)
.

We denote by α(a, e, b) the number of ways to choose a VNs such that exactly e type
1 edges and b type 2 edges emanate from them and each of the VNs in I is connected
to strictly fewer type 2 edges than type 1 edges. The corresponding generating function
is ∑a,e,b α(a, e, b)tase

1s
b
2. Consider a VN v of degree j. Let j − j1 and j1 be, respectively,

the number of type 1 and 2 edges connected to v. Again, we can either include this VN
in I or not. If we skip it, then we obtain 0 nodes and 0 type 1 and type 2 edges. If
we choose it, then we will have 1 node, j − j1 type 1 edges and j1 type 2 edges where
j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋} (since each VN in I is connected to strictly fewer type 2
edges than type 1 edges). Considering all possible VN degrees, the generating function is
f(t, s1, s2)n and we have

α(a, e, b) = coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
.

We randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities.

Let Z1 and Z2 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from I, where each VN in I is connected to strictly fewer type 2 edges than
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type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EΛ,P
EAS(a, b) =

(
n

a

)
Pr{Z3 = 1} (6.155)

and

Pr{Z3 = 1} =
∑

e

Pr{Z1 = e, Z2 = b}Pr{Z3 = 1|Z1 = e, Z2 = b}

=
∑

e

coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
(

n
a

) coeff
(
g(x1, x2)n, xe

1x
b
2

)
(

nd̄v
e+b

)(
e+b

b

) .
(6.156)

■

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present
an efficient way to compute it.

Theorem 6.11. The normalized asymptotic distribution of (θn, γn) EASs for the ensemble
is

GΛ,P
EAS(θ, γ) =− d̄v ln(d̄v) + (d̄v − γ) ln(d̄v − γ)− θ ln(t)− (d̄v − γ) ln(1 + x1s1)

+ ln (g(x1, x2)) + ln (f(t, s1, s2))− γ ln(x2s2) + γ ln(γ)
(6.157)

where t, s1, s2, x1, x2 are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (6.158)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2)
∂x1

= ẽ⋆ (6.159)

s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2)
∂x2

= γ (6.160)

and where f(t, s1, s2) and g(x1, x2) are defined in (6.134) and (6.154) respectively and

ẽ⋆ = (d̄v − γ) x1s1

1 + x1s1
. (6.161)

We now derive the EAS finite-length and asymptotic enumerators for the regular ensem-
bles.

Lemma 6.7. The average number of size (a, b) EASs in the Tanner graph of a code drawn
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uniformly at random from the ensemble C dv,dc
n is

Edv,dc
EAS (a, b) =

(
m

b

)(
n

a

)dc
b coeff

(
g(x)m−b, xadv−b

)
(

ndv
adv

)(
adv
b

) coeff
(
f(s)a, sb

)
(6.162)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (6.163)

g(x) =1 +
(

dc

2

)
x2

1. (6.164)

Proof. For a regular code, all VNs have degree dv. Therefore, e in (6.153) is equal to adv−b.
Further, g(x) in (6.164) is the generating function of a satisfied CN. Since each unsatisfied
CN is connected to exactly one type 2 edge, the number of ways to chose adv−b type 1 and b
type 2 edges such that there are exactly b unsatisfied CNs is

(
m
b

)
dc

b coeff
(
g(x)m−b, xadv−b

)
.

The generating function f(s) in (6.163) is the same as for the AS case. ■

We show now that for the computation of the normalized logarithmic asymptotic distri-
bution of EASs for regular codes, one needs to solve one equation compared to 5 for the
irregular case.

Theorem 6.12. The normalized asymptotic distribution of (θn, γn) EASs for the C dv,dc
n

ensemble is

Gdv,dc
EAS (θ, γ) =− (dv − 1)Hb(θ)− dvθHb

(
γ

θdv

)
+ γ ln(dc)− γ ln(s)

+ (ξ − γ) ln (g(x)) + θ ln (f(s))− (θdv − γ) ln(x) + ξHb

(
γ

ξ

) (6.165)

where

x =

√√√√ 2(θdv − γ)
dc(dc − 1)(2ξ − θdv − γ) (6.166)

and s is the unique positive solution of

θs
dln f(s)

ds = γ (6.167)

where f(s) is defined in (6.163).
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Fully Absorbing Set Distribution

Lemma 6.8. The average number of size (a, b) FASs in the Tanner graph of a code drawn
uniformly at random from the LDPC ensemble C Λ,P

n is

EΛ,P
FAS(a, b) =

∑
e,w,l

coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)

(
nd̄v
e+w

)(
e+w

e

)(
nd̄v−e−w

l

) ×

coeff
(
f(t, s1, s2, s3)n, tase

1s
w
2 s

l
3

) (6.168)

where

f(t, s1, s2, s3) =
dmax

v∏
j=1

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj1

3 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(6.169)

g(x1, x2, x3, y) =
dmax

c∏
i=1

[
(1 + x1)i + (1− x1)i

2 + y
(x3 + x2)i − (x3 − x2)i

2

]ξPi

. (6.170)

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
Let I be a set of VNs. We assign to each of these VNs the value 1. We have 3 types of
edges. Edges of the first type are connected to the VNs in I and satisfied CNs, the edges
of the second type are the ones connected to the VNs in I and unsatisfied CNs and the
edges of the third type are connected to the VNs in V \ I and satisfied CNs. We denote by
α(a, e, w, l) the number of ways to choose a VNs such that exactly e type 1 edges, w type
2 edges emanate from them and l type 3 edges emanate from the other VNs and each VN
in I is connected to strictly fewer type 2 edges than type 1 edges and each VN in V \ I of
degree j is connected to strictly less than j/2 type 3 edges. The corresponding generating
function is ∑a,e,w,l α(a, e, w, l)tase

1s
w
2 s

l
3. Consider a VN v of degree j. Let j − j1 and j1 be,

respectively, the number of type 1 and 2 edges connected to v. Again, we can either include
this VN in I or not. If we skip it we obtain 0 nodes and 0 type 1 and type 2 edges and
j1 type 3 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋}. If we choose it, we will have 1 node,
j − j1 type 1 edges and j1 type 2 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋}. Considering all
possible VN degrees, the generating function is f(t, s1, s2, s3)n. Thus, we have

α(a, e, w, l) = coeff
(
f(t, s1, s2, s3)n, tase

1s
w
2 s

l
3

)
.

Let β(b, e, w, l) be the number of ways to choose e type 1 edges, w type 2 edges and l

type 3 edges such that there are exactly b unsatisfied CNs. The corresponding generating
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function is ∑b,e,w,l β(b, e, w, l)ybxe
1x

w
2 x

l
3. Consider a CN of degree i. If it is connected an

even number (including zero) of times to the VNs in I, then its generating function is

gc(x1, y) := y0
i∑

j=0
j is even

(
i

j

)
xj

1 = 1
2
[
(1 + x1)i + (1− x1)i

]

and if it is connected an odd number of times to the VNs in I, its generating function is

gc̄(x2, x3, y) := y1
i∑

j=0
j is odd

(
i

j

)
xj

2x
i−j
3 = y

2
[
(x3 + x2)i − (x3 − x2)i

]
.

Considering all CN degrees and that there are ξPin of degree i, we obtain

β(b, e, w, l) = coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)
.

We randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities.

Let Z1, Z2 and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in I is connected to strictly fewer type 2 edges than type 1
edges and each VN in V \ I of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z4 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. Thus, we have

EΛ,P
FAS(a, b) =

(
n

a

)
Pr{Z4 = 1} (6.171)

and

Pr{Z4 = 1} =
∑
e,w,l

Pr{Z1 = e, Z2 = w,Z3 = l}Pr{Z4 = 1|Z1 = e, Z2 = w,Z3 = l}

=
∑
e,w,l

coeff
(
f(t, s1, s2, s3)n, tase

1s
w
2 s

l
3

)
(

n
a

) ×

coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)

(
nd̄v
e+w

)(
e+w

e

)(
nd̄v−e−w

l

) .

(6.172)

■

Theorem 6.13. The normalized asymptotic distribution of (θn, γn) FASs for the C Λ,P
n
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ensemble is

GΛ,P
FAS(θ, γ) =− d̄v ln(1 + x1s1 + x2s2 + x3s3)− θ ln(t)− γ ln(y)

+ ln (g(x1, x2, x3, y)) + ln (f(t, s1, s2, s3))
(6.173)

where t, s1, s2, s3, x1, x2, x3, y are the unique positive solutions of

t
∂ ln f(t, s1, s2, s3)

∂t
=θ (6.174)

s1
∂ ln f(t, s1, s2, s3)

∂s1
=x1

∂ ln g(x1, x2, x3, y)
∂x1

= ẽ⋆ (6.175)

s2
∂ ln f(t, s1, s2, s3)

∂s2
=x2

∂ ln g(x1, x2, x3, y)
∂x2

= w̃⋆ (6.176)

s3
∂ ln f(t, s1, s2, s3)

∂s3
=x3

∂ ln g(x1, x2, x3, y)
∂x3

= l̃⋆ (6.177)

y
∂ ln g(x1, x2, x3, y)

∂y
=γ (6.178)

where f(t, s1, s2, s3) and g(x1, x2, x3, y) are defined in (6.169) and (6.170) respectively and

ẽ⋆ =d̄v
x1s1

1 + x1s1 + x2s2 + x3s3
(6.179)

w̃⋆ =d̄v
x2s2

1 + x1s1 + x2s2 + x3s3
(6.180)

l̃⋆ =d̄v
x3s3

1 + x1s1 + x2s2 + x3s3
. (6.181)

To determine θ⋆
FAS we add another equation to the system of equations of Theorem 6.13,

namely
GΛ,P

FAS(θ,∆θ) = 0 (6.182)

with 0 < θ ≤ 1.
The next Lemma presents the FAS enumerator for the regular C dv,dc

n .

Lemma 6.9. The average number of size (a, b) FASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C dv,dc

n is

Edv,dc
FAS (a, b) =

∑
e

(
m

b

)(
n

a

)coeff
(
g1(x1)m−b, xe

1

)
coeff

(
g2(x2)b, xadv−e

2

)
(

ndv
adv

)(
adv
e

)(
(n−a)dv

bdc−adv+e

) ×

coeff
(
f(s1)a, sadv−e

1

)
coeff

(
f(s2)n−a, sbdc−adv+e

2

) (6.183)



6.2 Enumerators for Unstructured Ensembles 157

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (6.184)

g1(x1) =1
2
[
(1 + x1)dc + (1− x1)dc

]
(6.185)

g2(x2) =1
2
[
(1 + x2)dc − (1− x2)dc

]
. (6.186)

Proof. For a regular code, all VNs have degree dv. Therefore, e + w in (6.168) is equal
to adv. Moreover, all CNs have degree dc. Thus, w + l in (6.168) is equal to bdc. The
generating function of a VN is given by f(s1). The number of ways to choose a VNs such
that exactly e type 1 edges and adv − e type 2 edges emanate from them and bdc − adv + e

type 3 edges emanate from the remaining VNs is(
n

a

)
coeff

(
f(s1)a, sadv−e

1

)
coeff

(
f(s2)n−a, sbdc−adv+e

2

)
.

Further, g1(x1) and g2(x2) are the generating functions of a satisfied and unsatisfied CN,
respectively. The number of ways to chose e type 1 edges, adv − e type 2 and bdc − adv + e

type 3 edges such that there are exactly b unsatisfied CNs is(
m

b

)
coeff

(
g1(x1)m−b, xe

1

)
coeff

(
g2(x2)b, xadv−e

2

)
.

■

We show now that for the computation of the normalized logarithmic asymptotic dis-
tribution of FASs for regular codes, one needs to solve 4 equations instead of 8 for the
irregular case.

Theorem 6.14. The normalized asymptotic distribution of (θn, γn) FASs for the C dv,dc
n

ensemble is

Gdv,dc
FAS (θ, γ) = (ξ − γ) ln (g1(x1)) + γ ln (g2(x2)) + θ ln (f(s1))

+ (1− θ) ln (f(s2))− (dv − 1)Hb(θ)− θdvHb

(
ẽ⋆

θdv

)
− ẽ⋆ ln(x1)

− (θdv − ẽ⋆) ln(x2s1)− (γdc − θdv + ẽ⋆) ln(s2)

+ ξHb

(
γ

ξ

)
− (1− θ)dvHb

(
γdc − θdv + ẽ⋆

(1− θ)dv

)
(6.187)
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where s1, s3, x1, x2 are the unique positive solutions of

θs1
dln f(s1)

ds1
=γx2

dln g2(x2)
dx2

= (θdv − ẽ⋆) (6.188)

(1− θ)s2
dln f(s2)

ds2
=(γdc − θdv + ẽ⋆) (6.189)

(ξ − γ)x1
dln g1(x1)

dx1
=ẽ⋆ (6.190)

and where f(s1), g1(x1) and g2(x2) are defined in (6.184)-(6.186) respectively and

ẽ⋆ =−x2s1(γdc − θdv)− x1s2(θdv + dv − γdc) +
√
C

2(x2s1 − x1s2)
(6.191)

C = (x2s1(γdc − θdv) + x1s2(θdv + dv − γdc))2

+ 4(x2s1 − x1s2)(dv − γdc)x1s2θdv.
(6.192)

Elementary Fully Absorbing Set Distribution

Lemma 6.10. The average number of size (a, b) EFASs in the Tanner graph of a code
drawn uniformly at random from LDPC ensemble C Λ,P

n is

EΛ,P
EFAS(a, b) =

∑
e,l

coeff
(
g(x1, x2, x3)n, xe

1x
b
2x

l
3

)
(

nd̄v
e+b

)(
e+b

b

)(
nd̄v−e−b

l

) coeff
(
f(t, s1, s2, s3)n, tase

1s
b
2s

l
3

)
(6.193)

where

f(t, s1, s2, s3) =
dmax

v∏
j=1

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj1

3 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(6.194)

g(x1, x2, x3) =
dmax

c∏
i=1

[
1 +

(
i

2

)
x2

1 + ix2x
i−1
3

]ξPi

. (6.195)

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble.
Let I be a set of VNs. We assign to each of these VNs the value 1. We have 3 types of
edges. Edges of the first type are connected to the VNs in I and satisfied CNs, the edges
of the second type are the ones connected to the VNs in I and unsatisfied CNs and the
edges of the third type are connected to the VNs in V \ I and satisfied CNs. We denote by
α(a, e, b, l) the number of ways to choose a VNs such that exactly e type 1 edges, b type 2
edges emanate from them and l type 3 edges emanate from the other VNs and each VN in
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I is connected to strictly fewer type 2 edges than type 1 edges and each VN in V \ I of
degree j is connected to strictly less than j/2 type 3 edges. The corresponding generating
function is ∑a,e,b,l α(a, e, b, l)tase

1s
b
2s

l
3. Consider a VN v of degree j. Let j − j1 and j1 be,

respectively, the number of type 1 and 2 edges connected to v. Again, we can either include
this VN in I or not. If we skip it we obtain 0 nodes and 0 type 1 and type 2 edges and
j1 type 3 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋}. If we choose it, we will have 1 node,
j − j1 type 1 edges and j1 type 2 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋}. Considering all
possible VN degrees, the generating function is f(t, s1, s2, s3)n. Thus, we have

α(a, e, b, l) = coeff
(
f(t, s1, s2, s3)n, tase

1s
b
2s

l
3

)
.

Let β(b, e, l) be the number of ways to choose e type 1 edges, b type 2 edges and l type
3 edges such that there are exactly b unsatisfied CNs and each of the satisfied CNs is
connected to 0 or 2 VNs in I and each of the unsatisfied CNs is connected to exactly one
VNs in I. The corresponding generating function is ∑b,e,l β(b, e, l)xe

1x
b
2x

l
3. Consider a CN of

degree i. If it is connected to 0 or 2 VNs in I, then its generating function is 1 +
(

i
2

)
x2

1 and
if it is connected to exactly one VN in I, its generating function is ix2x

i−1
3 . Considering all

CN degrees and that there are ξPin of degree i, we obtain

β(b, e, l) = coeff
(
g(x1, x2, x3)n, xe

1x
b
2x

l
3

)
.

We randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities.

Let Z1, Z2 and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in I is connected to strictly fewer type 2 edges than type 1
edges and each VN in V \ I of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z4 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. Thus, we have

EΛ,P
EFAS(a, b) =

(
n

a

)
Pr{Z4 = 1} (6.196)

and

Pr{Z4 = 1} =
∑
e,l

Pr{Z1 = e, Z2 = w,Z3 = l}Pr{Z4 = 1|Z1 = e, Z2 = b, Z3 = l}

=
∑
e,l

coeff
(
f(t, s1, s2, s3)n, tase

1s
b
2s

l
3

)
(

n
a

) coeff
(
g(x1, x2, x3)n, xe

1x
b
2x

l
3

)
(

nd̄v
e+b

)(
e+b

e

)(
nd̄v−e−b

l

) .

(6.197)
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■

Theorem 6.15. The normalized asymptotic distribution of (θn, γn) EFASs for the C Λ,P
n

ensemble is

GΛ,P
EFAS(θ, γ) =(d̄v − γ) ln(d̄v − γ)− d̄v ln(d̄v)− (d̄v − γ) ln(1 + x1s1 + x3s3)

+ γ ln(γ)− θ ln(t)− γ ln(x2s2) + ln (g(x1, x2, x3))
+ ln (f(t, s1, s2, s3))

(6.198)

where t, s1, s2, s3, x1, x2, x3 are the unique positive solutions of

t
∂ ln f(t, s1, s2, s3)

∂t
=θ (6.199)

s1
∂ ln f(t, s1, s2, s3)

∂s1
=x1

∂ ln g(x1, x2, x3)
∂x1

= ẽ⋆ (6.200)

s2
∂ ln f(t, s1, s2, s3)

∂s2
=x2

∂ ln g(x1, x2, x3)
∂x2

= γ (6.201)

s3
∂ ln f(t, s1, s2, s3)

∂s3
=x3

∂ ln g(x1, x2, x3)
∂x3

= l̃⋆ (6.202)

where f(t, s1, s2, s3) and g(x1, x2, x3) are defined in (6.194) and (6.195) respectively and

ẽ⋆ =(d̄v − γ) x1s1

1 + x1s1 + x3s3
(6.203)

l̃⋆ =(d̄v − γ) x3s3

1 + x1s1 + x3s3
. (6.204)

We present in the next Lemma, the EFAS enumerator for the regular C dv,dc
n ensemble.

Lemma 6.11. The average number of size (a, b) EFASs in the Tanner graph of a code
drawn uniformly at random from the ensemble C dv,dc

n is

Edv,dc
EFAS(a, b) =

(
m

b

)(
n

a

)dc
b coeff

(
g(x)m−b, xadv−b

)
(

ndv
adv

)(
adv
b

)(
(n−a)dv
b(dc−1)

) ×

coeff
(
f(s1)a, sb

1

)
coeff

(
f(s2)n−a, s

b(dc−1)
2

) (6.205)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (6.206)
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g(x) =1 +
(

dc

2

)
x2. (6.207)

Proof. For a regular code, all VNs have degree dv. Therefore, e+ b in (6.193) is equal to
adv. Moreover, all CNs have degree dc. Thus, b+ l in (6.193) is equal to bdc. Since each
unsatisfied CN is connected to exactly one type 2 edge, the number of ways to chose adv− b
type 1, b type 2 edges and b(dc − 1) type 3 edges such that there are exactly b unsatisfied
CNs is

(
m
b

)
dc

b coeff
(
g(x)m−b, xadv−b

)
. The generating function f(s) is the same as for the

FAS case. ■

We show that for the computation of the normalized logarithmic asymptotic distribution
of EFASs for regular codes, one needs to solve 2 equations instead of 7 for the irregular
case.

Theorem 6.16. The normalized asymptotic distribution of (θn, γn) EFASs for the C dv,dc
n

ensemble is

Gdv,dc
EFAS(θ, γ) =(ξ − γ) ln (g(x)) + θ ln (f(s1)) + (1− θ) ln (f(s2))− γ ln(s1)

− (dv − 1)Hb(θ)− θdvHb

(
γ

θdv

)
− (1− θ)dvHb

(
γ(dc − 1)
(1− θ)dv

)
− (θdv − γ) ln(x)− γ(dc − 1) ln(s2) + γ ln(dc)

(6.208)

where

x =

√√√√ 2(θdv − γ)
dc(dc − 1)(2ξ − θdv − γ) (6.209)

and s1, s2 are the unique positive solutions of

θs1
dln f(s1)

ds1
=γ (6.210)

(1− θ)s2
dln f(s2)

ds2
=γ(dc − 1) (6.211)

where f(s) is defined in (6.206).

Example 6.2. Consider the regular (3, 6) ensemble. We evaluate the normalized loga-
rithmic asymptotic distributions of TSs and the corresponding approximations derived in
Corollary 6.1. Fig. 6.2 compares the exact values of the normalized logarithmic asymptotic
distributions of TSs, obtained from Theorem 6.7, and the approximations obtained from
Corollary 6.1 for this ensemble. Observe that the approximations are accurate for small
values of θ. Table 6.1 compares the exact values of the relative minimum ∆-trapping set
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Figure 6.2: Normalized logarithmic asymptotic distributions of trapping sets of the regular
(3, 6) ensemble for several values of ∆. The dashed lines denote the corresponding
approximations obtained from Corollary 6.1.

sizes and the approximations obtained from (6.123) for the regular (3, 6) ensemble for
different values of ∆. Observe that the values obtained from (6.123), which we derived by
analyzing the asymptotic distributions of TSs for small θ are good approximations of the
relative minimum ∆-trapping set sizes.

For this ensemble, we compare the exact computation of ln(EΛ,P
ETS)/n and ln(EΛ,P

TS )/n
obtained from (6.108) and the asymptotic result according to Theorem 6.7. The normalized
logarithmic distribution of (elementary) trapping sets for the asymptotic case (computed
according to Theorem 6.7) and for n ∈ {50, 100, 200, 400} (calculated from (6.108)) for a
fixed ratio ∆ = 0.5 are depicted in Fig. 6.3. We observe that the asymptotic results give
a good approximation for normalized logarithmic distributions even for short codes. As
expected, for increasing n, the exact normalized logarithmic distributions approach the
normalized logarithmic asymptotic distributions.

The expected distribution of (2b, b) trapping and (fully) absorbing sets of the ensemble
C 3,6

900 derived in (6.124), (6.145) and (6.183) are depicted in Fig. 6.4.
Next, we use our theoretical results to estimate the error floor of the regular ensemble

C 3,6
6000. We picked 100 random codes from this ensemble, and simulated their performance

under Gallager B [9] decoding over a BSC obtained by hard-quantizing the output of a
biAWGN channel. The performance of the codes is provided in Fig. 6.5 in terms of BER
versus Eb/N0[dB]. In Fig. 6.5 an analytic estimate of the average error probability at large
signal-to-noise ratios is given. The estimate is based on Eq. 1 in [43], where we considered
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Table 6.1: The exact values of the relative minimum ∆-trapping set sizes θ⋆
TS and their cor-

responding approximations obtained from (6.123) for the regular (3, 6) ensemble

∆ θ⋆
TS θ⋆

TS from (6.123)
0.001 0.02225844 0.02131029
0.005 0.02079887 0.01996448
0.050 0.01160803 0.01132319
0.100 0.00650212 0.00640276
0.150 0.00363893 0.00360421
0.200 0.00198389 0.00197234
0.250 0.00103484 0.00103132
0.300 5.07516e-04 5.06560-04
0.350 2.29400e-04 2.29179e-04
0.400 9.32314e-05 9.31898e-05

the dominant (2, 2) FAS. As multiplicity of (2, 2) FASs, we employed the average ensemble
enumerator from (6.183). We observe that the codes provide an error floor performance
that is in accordance with the estimated average error probability derived with the proposed
analysis. Similar results have been observed for other blocklengths and quantized decoders.

Example 6.3. Consider the rate 1/2 LDPC ensemble with Λ(x) = 0.5x3 + 0.5x4, P(x) =
x7. We evaluate the asymptotic distributions of trapping and (fully) absorbing sets
according to Theorem 6.7, Theorem 6.9 and Theorem 6.13. The normalized logarithmic
asymptotic distributions of TSs, ASs and FASs of this ensemble for fixed ratio ∆ ∈
{0.005, 0.05, 0.1, 0.3, 0.5} are depicted in Fig. 6.6. We see that the gap between the
normalized logarithmic asymptotic distributions of TSs, ASs and FASs vanishes for small
θ. Further, we evaluate the asymptotic distributions of the elementary sets. Fig. 6.7
depicts the normalized logarithmic asymptotic distributions of ETSs, EASs and EFASs.
We observe that normalized logarithmic asymptotic distributions of TSs and ETSs (ASs
and EASs) are approximately equal and the gap grows slightly when θ increases.

6.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

In this section, we derive the average finite-length (elementary) trapping and (fully)
absorbing set enumerators for binary protograph-based LDPC codes and we present an
analytical method to evaluate the normalized logarithmic asymptotic distributions of these
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Figure 6.3: Normalized logarithmic asymptotic distributions of trapping and elementary
trapping sets of the regular (3, 6) LDPC ensemble for ∆ = 0.5 (solid line). The
triangles, dots, squares and pentagons are the exact normalized logarithmic
trapping and elementary trapping set distributions for n = 50, 100, 200, 400,
respectively.

sets.

6.3.1 Trapping and Elementary Trapping Set Distributions

Define the VN weight vector ϵ = [ϵ1, ϵ2, . . . , ϵnP ], where ϵj is the number of VNs of type vj

in Ta,b. Clearly we have 0 ≤ ϵj ≤ Q for all j ∈ {1, . . . , nP} and

nP∑
j=1

ϵj = a. (6.212)

Similarly, define the edge weight vector w(ϵ) = (wg)g∈E P where wg is the number of edges
of type g in Ta,b. The VN and edge weight vectors are related: for a given ϵ, we have
wg = ϵj if g ∈ E P

vj
.

Lemma 6.12. The average number of size (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C P

n is

EP
TS(a, b) =

∑
ϵ

coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
nP∏

j=1

(
Q
ϵj

)dvj −1 (6.213)
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Figure 6.4: Expected distributions of (2b, b) trapping and (fully) absorbing sets of the
ensemble C 3,6

900.

where

Ai(xi, y) = 1
2

 ∏
g∈E P

ci

(1 + xg) +
∏

g∈E P
ci

(1− xg)

+ 1
2

 ∏
g∈E P

ci

(1 + xg)−
∏

g∈E P
ci

(1− xg)

 y (6.214)

and where x = (xg)g∈E P , xi = (xg)g∈E P
ci

, y and xg, g ∈ E P
ci

are dummy variables.

Proof. Consider the Tanner graph of a code drawn randomly from C P
n . We randomly

choose a set I of a VNs and assign the value 1 to each VN in the set. For a given ϵ, each
vj ∈ VP has ϵj replicas in Ta,b. Since there are Q copies of each VN type in the lifted graph,
the number of VN sets with weight vector ϵ is

Nv(ϵ) =
nP∏

j=1

(
Q

ϵj

)
. (6.215)

Since wg = ϵj if g ∈ E P
vj

, the number of edge sets with weight vector w(ϵ) is

Ne(w(ϵ)) =
∏

g∈E P

(
Q

wg

)
=

nP∏
j=1

∏
g∈E P

vj

(
Q

ϵj

)
=

nP∏
j=1

(
Q

ϵj

)dvj

. (6.216)

Let Nc(b,w(ϵ)) be the number of configurations with edge weight vector w(ϵ) that give
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Figure 6.5: BER versus Eb/N0[dB] for random codes drawn from the code ensemble C 3,6
6000

under Gallager B decoding and the predicted average performance (error floor).

exactly b unsatisfied CNs. Its generating function is

∑
b,w(ϵ)

Nc(b,w(ϵ))ybxw(ϵ).

Recall that a CN is satisfied if it is connected an even number of times (including zero) to
I, and it is unsatisfied otherwise. Consider a CN of type ci. The number of configurations
for which the CN is satisfied is tracked by the generating function

gc(xi, y) := y0 ∑
c∈{0,1}dci

wH(c) is even

xc
i = 1

2

 ∏
g∈E P

ci

(1 + xg) +
∏

g∈E P
ci

(1− xg)

 . (6.217)

The number of configurations for which the CN is unsatisfied is tracked by the generating
function

gc̄(xi, y) := y1 ∑
c∈{0,1}dci

wH(c) is odd

xc
i = 1

2y

 ∏
g∈E P

ci

(1 + xg)−
∏

g∈E P
ci

(1− xg)

 . (6.218)

In the expressions above, the exponent of the dummy variable y is used to track the
status of the CN (i.e., the exponent is zero if the CN is satisfied, one otherwise). The sum
gc(xi, y) + gc̄(xi, y) yields Ai(xi, y). Considering all CN types, and that there are Q CNs
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Figure 6.6: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and fully absorbing sets (dotted lines) of the
ensemble in Example 6.3.

of each type, we obtain

Nc(b,w(ϵ)) = coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
. (6.219)

Using
EP

TS(a, b) =
∑
ϵ

Nv(ϵ)Nc(b,w(ϵ))
Ne(w(ϵ)) (6.220)

completes the proof. ■

Lemma 6.12 provides the average number of size (a, b) TSs for a finite block length n.
In the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of
TSs for the ensemble C P

n for a = θn and b = γn. The normalized logarithmic asymptotic
distribution of TSs is a useful tool to analyze and design LDPC codes with good TS
properties and can be computed efficiently. In particular, the analysis of the normalized
logarithmic asymptotic distribution of TSs for a given U-NBPB LDPC code ensemble allows
to determine if the expected number of TSs with size θn, with θ small, goes exponentially
fast to zero, providing insights on the TS properties of the ensemble.

Theorem 6.17. The normalized asymptotic distribution of (θn, γn) TSs for the ensemble
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Figure 6.7: Normalized logarithmic asymptotic distributions of elementary trapping sets
(solid lines), elementary absorbing sets (dashed lines) and elementary fully
absorbing sets (dotted lines) of the ensemble in Example 6.3.

C P
n is

GP
TS(θ, γ) = 1

nP

mP∑
i=1

lnAi(xi, y)− γ ln y −
nP∑

j=1

dvj − 1
nP

Hb(nPϵ̃
⋆
j) + ϵ̃⋆

j

∑
g∈E P

vj

ln xg

 . (6.221)

The values xg for g ∈ E P, the value y and ϵ̃⋆
j for j ∈ {1, . . . , nP} are the unique positive

solutions of

xg
∂ lnAi(xi, y)

∂xg

=nPw̃
⋆
g (6.222)

y
∂ ln

mP∏
i=1

Ai(xi, y)

∂y
=nPγ (6.223)

(dvj − 1) ln
(

nPϵ̃
⋆
j

1− nPϵ̃⋆
j

)
=
∑

g∈E P
vj

ln xg + µ (6.224)

where (6.222) is valid for all i ∈ {1, . . . ,mP}, g ∈ E P
ci

, µ is chosen to satisfy ∑j ϵ̃
⋆
j = θ and

Ai(xi, y) is defined in (6.214), and w̃⋆
g = ϵ̃⋆

j if g ∈ E P
vj

. The proof of the Theorem can be
found in Appendix 6.4.4.

Note that to determine the relative minimum ∆-trapping set size θ⋆
TS, we may add

another equation to the system of Theorem 6.17, namely GP
TS(θ,∆θ) = 0 with 0 < θ ≤ 1.
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Note that for computing the normalized asymptotic distribution of ETSs, we simply need
to replace Ai(xi, y) given in (6.214) with

Ai(xi, y) = 1 +
∑

g1,g2∈E P
ci

:g1 ̸=g2

xg1xg2 + y
∑

g∈E P
ci

xg. (6.225)

Theorem 6.17 shows that the evaluation of GP
TS(θ, γ) and GP

ETS(θ, γ) requires solving
e + nP + 2 equations in e + nP + 2 variables: xg (e variables), ϵ̃⋆

j (nP variables), y (one
variable) and µ (one variable). The following Lemma follows the approach of [119], and
it can reduce the dimension of the system of equations by exploiting symmetries in the
protograph.

Lemma 6.13. Let u, v be two edges in E P. If u and v are connected to the same VN-CN
pair in the protograph, then xu = xv.

Proof. Consider two edges u and v that connect ci to vj . Note that in this case w̃⋆
u = w̃⋆

v = ϵ̃⋆
j .

It is clear that the function Ai(xi, y) in (6.214) is symmetric in the variables xg, g ∈ E P
ci

.
We have

∂lnAi(xi, y)
∂xu

∣∣∣∣∣∣xu=κ
xv=β

=∂lnAi(xi, y)
∂xv

∣∣∣∣∣∣xu=β
xv=κ

(6.226)

∂ln
mP∏
i=1

Ai(xi, y)

∂y

∣∣∣∣∣∣xu=κ
xv=β

=
∂ln

mP∏
i=1

Ai(xi, y)

∂y

∣∣∣∣∣∣xu=β
xv=κ

. (6.227)

Thus, for the system of equations in Theorem 6.17, if there is a solution with xu = κ, xv = β

then another solution exists with xu = β, xv = κ (all the other variables being unchanged).
Since the solutions xg, g ∈ E P are unique, we have κ = β. ■

Remark 6.1. To avoid high error floors caused by trapping sets with specific ∆ = b/a, the
relative minimum ∆-trapping set size of the code ensemble should satisfy θ⋆

TS > 0. In order
to design code ensembles with good waterfall and error floor performance under a certain
decoding algorithm, one can choose a threshold value θth > 0 of the relative minimum
∆-trapping set size and add the following step in the differential evolution [120]: evaluate
the relative minimum ∆-trapping set size of the code ensemble and hold the base matrix
only if θ⋆

TS > θth.
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6.3.2 Absorbing and Elementary Absorbing Set Distributions

In this section, we derive the average finite-length (elementary) absorbing set enumerators
for binary protograph-based LDPC codes and we present an analytical method for evaluating
the normalized logarithmic asymptotic distributions of these sets.

Lemma 6.14. The average number of size (a, b) ASs in the Tanner graph of a code drawn
randomly from the ensemble C P

n is

EP
AS(a, b) =

∑
e,w

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
∏

g∈E P

(
Q

eg+wg

)(
eg+wg

eg

) ×

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w


(6.228)

with

Bj(t, s(1)
j , s

(2)
j ) =1 + t

∑
r(j)∈Rj

(s(1)
j )1dvj

−r(j)

(s(2)
j )r(j) (6.229)

Ai(x(1)
i ,x

(2)
i , y) =1

2

 ∏
g∈E P

ci

(1 + x(1)
g ) +

∏
g∈E P

ci

(1− x(1)
g )


+ 1

2y

 ∏
g∈E P

ci

(1 + x(2)
g )−

∏
g∈E P

ci

(1− x(2)
g )


(6.230)

and where 1dvj
is the length dvj all-ones vector, Rj is the set of binary vectors of length dvj

and Hamming weight ≤ ⌊(dvj − 1)/2⌋, and s(o) = (s(o)
g )g∈E P , s(o)

j = (s(o)
g )g∈E P

vj
, x(o) = (x(o)

g )g∈E P ,
x(o)

i = (x(o)
g )g∈E P

ci
, y, t and s(o)

g , x
(o)
g , g ∈ E P

ci
, o = 1, 2 are dummy variables [54].

Proof. As before, define the edge weight vectors e = (eg)g∈E P and w = (wg)g∈E P where eg is
the number of edges of type g in Aa,b emanating from satisfied CNs and wg represents the
number of edges of type g in Aa,b emanating from unsatisfied CNs. We randomly choose a
set I of a VNs and assign the value one to each VN in the set. We denote by Nc(b, e,w)
the number of configurations with edge weight vectors e,w that give exactly b unsatisfied
CNs. Its generating function is

∑
b,e,w

Nc(b, e,w)yb(x(1))e(x(2))w.
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Consider a CN of type ci. The number of configurations for which the CN is satisfied is
tracked by the generating function

gc(x(1)
i , y) := y0 ∑

c∈{0,1}dci
wH(c) is even

(x(1)
i )c = 1

2

 ∏
g∈E P

ci

(1 + x(1)
g ) +

∏
g∈E P

ci

(1− x(1)
g )

 . (6.231)

The number of configurations for which the CN is unsatisfied is tracked by the generating
function

gc̄(x(2)
i , y) := y1 ∑

c∈{0,1}dci
wH(c) is odd

(x(2)
i )c = 1

2y

 ∏
g∈E P

ci

(1 + x(2)
g )−

∏
g∈E P

ci

(1− x(2)
g )

 . (6.232)

The sum gc(x(1)
i , y) + gc̄(x(2)

i , y) yields Ai(x(1)
i ,x

(2)
i , y). Considering all CN types and that

there are Q CNs of each type ci, we obtain

Nc(b, e,w) = coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
(6.233)

where Ai(x(1)
i ,x

(2)
i , y) is defined in (6.230). We denote by Nv(a, e,w) the number of configu-

rations with a VNs and edge weight vectors e,w such that each of these VNs is connected
to strictly fewer unsatisfied CNs than satisfied CNs. The corresponding generating function
is ∑

a,e,w

Nv(a, e,w)ta(s(1))e(s(2))w.

Consider a VN of type vj. Let r(j) = (r(j)
g )g∈E P

vj
be a length dvj binary vector with r(j)

g = 1 if
the type g edge emanates from an unsatisfied CN and r(j)

g = 0 otherwise. Note that if the VN
of type vj belongs to I, the Hamming weight of r(j) should satisfy wH(r(j)) = ∑

g∈E P
vj
r(j)

g ≤
⌊(dvj − 1)/2⌋. We can either include this VN in I or not. If we skip it we obtain the
zero-degree term in Bj(t, s(1)

j , s
(2)
j ) corresponding to zero VNs and zero edges. If we include

it in the set, we will have one node, dvj − wH(r(j)) edges emanating from satisfied CNs and
wH(r(j)) edges emanating from unsatisfied CNs with wH(r(j)) ≤ ⌊(dvj − 1)/2⌋. Considering
all possible binary vectors r(j), we obtain the second term in Bj(t, s(1)

j , s
(2)
j ). Taking into

account all possible VN types and that there are Q VNs of each type, we get

Nv(a, e,w) = coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w

 (6.234)
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where Bj(t, s(1)
j , s

(2)
j ) is defined in (6.229). The number of edge sets with weight vectors e

and w is
Ne(e,w) =

∏
g∈E P

(
Q

eg + wg

)(
eg + wg

eg

)
. (6.235)

Noting that
EP

AS(a, b) =
∑
e,w

Nv(a, e,w)Nc(b, e,w)
Ne(e,w) (6.236)

completes the proof. ■

Next, we analyze the normalized logarithmic asymptotic distribution of ASs for the
protograph-based LDPC code ensemble.

The next Theorem presents a simple way to compute the normalized logarithmic asymp-
totic distribution of ASs for the ensemble C P

n .

Theorem 6.18. The normalized asymptotic distribution of (θn, γn) ASs for the ensemble
C P

n is

GP
AS(θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y) + 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )

− γ ln y − θ ln t− 1
nP

∑
g∈E P

ln
(
1 + x(1)

g s
(1)
g + x(2)

g s
(2)
g

)
.

(6.237)

The values t, s(1)
g , s(2)

g , x(1)
g , x(2)

g , for g ∈ E P and the value y are the unique positive solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )

∂t
=nPθ (6.238)

s(1)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(1)
g

=x(1)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(1)
g

= nPẽ
⋆
g (6.239)

s(2)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(2)
g

=x(2)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(2)
g

= nPw̃
⋆
g (6.240)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

∂y
=nPγ (6.241)

where (6.239) and (6.240) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
, and

Ai(x(1)
i ,x

(2)
i , y) are defined in (6.229) and (6.230), respectively and

ẽ⋆
g = 1

nP

x(1)
g s

(1)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g

(6.242)
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w̃⋆
g = 1

nP

x(2)
g s

(2)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g

. (6.243)

The proof of the Theorem can be found in Appendix 6.4.5.

To determine θ⋆
AS, we add another equation to the system of equations of Theorem 6.18,

namely GP
AS(θ,∆θ) = 0 with 0 < θ ≤ 1.

The result can be easily extended to enumerate EASs. In fact, for computing the finite-
length and the asymptotic distribution of EASs, we simply need to replace in (6.228) and
(6.237) the generating function Ai(x(1)

i ,x
(2)
i , y) given in (6.230) with

Ai(x(1)
i ,x

(2)
i , y) = 1 +

∑
g,g′∈E P

ci
:g ̸=g′

x(1)
g x

(1)
g′ + y

∑
g∈E P

ci

x(2)
g . (6.244)

We briefly explain the derivation of Ai(x(1)
i ,x

(2)
i , y) in (6.244). For EASs, each satisfied CN

is connected to zero or two VNs from I and each unsatisfied CN is connected to exactly
one VN from I. Consider a CN of type ci. If it is connected to zero or two VNs from I,
the number of configurations can be tracked by the generating function

gc(x(1)
i , y) := y0 ∑

c∈{0,1}dci :wH(c)∈{0,2}

(x(1)
i )c = 1 +

∑
g,g′∈E P

ci
:g ̸=g′

x(1)
g x

(1)
g′ . (6.245)

If the CN is connected to exactly one VN from I then its generating function is

gc̄(x(2)
i , y) := y1 ∑

c∈{0,1}dci :wH(c)=1

(x(2)
i )c = y

∑
g∈E P

ci

x(2)
g . (6.246)

We can see from Theorem 6.18 that the evaluation of GP
AS(θ, γ) and GP

EAS(θ, γ) requires
solving 4e+ 2 equations in 4e+ 2 variables: s(1)

g , s
(2)
g , x

(1)
g , x

(2)
g (4e variables), y (one variable)

and t (one variable). The following Lemma, also based on the approach of [119], is similar
to Lemma 6.13 and can reduce the dimension of the system of equations.

Lemma 6.15. Let u, v be two edges in E P. If u and v are connected to the same VN-CN
pair in the protograph, then for all o ∈ {1, 2}, s(o)

u = s(o)
v and x(o)

u = x(o)
v .

Proof. Consider two edges u and v which connect ci to vj. We define z :=
[s(1)

u , s
(1)
v , s

(2)
u , s

(2)
v , x

(1)
u , x

(1)
v , x

(2)
u , x

(2)
v ], z1 := [χ1, ψ1, χ2, ψ2, κ1, β1, κ2, β2] and

z2 := [ψ1, χ1, ψ2, χ2, β1, κ1, β2, κ2]. It is clear that Bj(t, s(1)
j , s

(2)
j ) in (6.229) is symmetric

in the variables s(1)
g , s

(2)
g , g ∈ E P

vj
and the functions Ai(x(1)

i ,x
(2)
i , y) in (6.230) and (6.244) are

symmetric in the variables x(1)
g , x

(2)
g , g ∈ E P

ci
. Thus, for the system of equations in Theorem
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6.9, if there is a solution with z = z1 then another solution exists with z = z2 (all the
other variables being unchanged). Since the solutions s(1)

g , s(2)
g , x(1)

g , x(2)
g , g ∈ E P are unique,

we have z1 = z2, i.e., ψ1 = χ1, ψ2 = χ2, κ1 = β1, κ2 = β2. ■

6.3.3 Fully and Elementary Fully Absorbing Set Distributions

We derived in [61] the average finite-length fully absorbing and elementary fully absorbing
set enumerators for binary protograph-based LDPC codes and we present an analytical
method for evaluating the normalized logarithmic asymptotic distributions of these sets.

Lemma 6.16. The average number of (a, b) FASs in the graph G of a code drawn randomly
from the code ensemble C P

n is

EP
FAS(a, b) =

∑
e,w,l

Nv(a, e,w, l)Nc(b, e,w, l)∏
g∈E P

(
Q

eg+wg

)(
eg+wg

eg

)(
Q−eg−wg

lg

) (6.247)

with

Nv(a, e,w, l) = coeff
 nP∏

j=1
Bj

(
t, s(1)

j , s
(2)
j , s

(3)
j

)Q
, ta (s(1))e (s(2))w (s(3))l

 (6.248)

Nc(b, e,w, l) = coeff
(

mP∏
i=1

Ai (x(1)
i ,x

(2)
i ,x

(3)
i , y)Q , (x(1))e (x(2))w (x(3))l yb

)
(6.249)

Ai (x(1)
i ,x

(2)
i ,x

(3)
i , y) =1

2

 ∏
g∈E P

ci

(
1 + x(1)

g

)
+

∏
g∈E P

ci

(
1− x(1)

g

)
+ 1

2y

 ∏
g∈E P

ci

(
x(3)

g + x(2)
g

)
−

∏
g∈E P

ci

(
x(3)

g − x(2)
g

)
(6.250)

Bj

(
t, s(1)

j , s
(2)
j , s

(3)
j

)
=

∑
r(j)∈Rj

(
s(3)

j

)r(j)

+ t
∑

r(j)∈Rj

(
s(1)

j

)1j−r(j) (
s(2)

j

)r(j)

(6.251)

where 1j is the length dvj all-ones vector, Rj is the set of binary vectors of length dvj and
Hamming weight lower than or equal to ⌊(dvj − 1)/2⌋, and s(o) = (s(o)

g )g∈E P , s(o)
j = (s(o)

g )g∈E P
vj

,
x(o) = (x(o)

g )g∈E P , x(o)
i = (x(o)

g )g∈E P
ci

, y, t and s(o)
g , x

(o)
g , g ∈ E P

ci
, o = 1, 2, 3 are dummy variables.

Proof. Consider the graph G of a code drawn uniformly at random from the ensemble. We
randomly choose a set I of a VNs and assign the value 1 to each VN in the set. The edges
connected to a VN v are assigned the binary value chosen for v. We introduce the edge
weight vectors e = (eg)g∈E P , w = (wg)g∈E P and l = (lg)g∈E P . Here, eg is the number of



6.3 Enumerators for Protograph-Based Ensembles 175

type-g edges adjacent to VNs in Fa,b that are connected to satisfied CNs, wg is the number
of type-g edges adjacent to VNs in Fa,b that are connected to unsatisfied CNs, and lg is the
number of type-g edges adjacent to VNs in V \ Fa,b that are connected to unsatisfied CNs.

Let Nc(b, e,w, l) be the number of configurations with edge set weight vectors (e,w, l)
that give exactly b unsatisfied CNs. Its generating function is

Fc (y,x(1),x(2),x(3)) :=
∑

b,e,w,l

Nc(b, e,w, l)yb(x(1))e(x(2))w(x(3))l

where the dummy variable y is used to track the number of unsatisfied CNs. Recall that a
CN is satisfied if it is connected an even number of times (including zero) to I, and it is
unsatisfied otherwise. Consider now a CN of type ci. If it is satisfied, then its generating
function is

gc (y,x(1)
i ) := y0 ∑

c∈{0,1}dci :wH(c) is even

(x(1)
i )c = 1

2
∏

g∈E P
ci

(1 + x(1)
g ) + 1

2
∏

g∈E P
ci

(1− x(1)
g )

If the CN is unsatisfied then its generating function is

gc̄ (y,x(2)
i ,x

(3)
i ) := y1 ∑

c∈{0,1}dci :wH(c) odd

(x(2)
i )c(x(3)

i )1dci
−c = y

2

 ∏
g∈E P

ci

(x(3)
g + x(2)

g )−
∏

g∈E P
ci

(x(3)
g − x(2)

g )


where 1dci

is the length dci all-ones vector and wH(c) is the Hamming weight of c. The
overall generating function for a type-ci CN is hence gc (y,x(1)

i )+gc̄ (y,x(2)
i ,x

(3)
i ) as in (6.250).

By noting that Fc (y,x(1),x(2),x(3)) can be obtained by raising (6.250) to the power of Q
(lifting factor) and by multiplying the result for i = 1, . . . ,mP, we obtain (6.249). Let
Nv(a, e,w, l) be the number of configurations with a VNs and edge set weight vectors
(e,w, l) such that each VN is connected to strictly fewer unsatisfied CNs than satisfied
CNs. Its generating function is

Fv (t, s(1), s(2), s(3)) :=
∑

a,e,w,l

Nv(a, e,w, l)ta(s(1))e(s(2))w(s(3))l.

Consider a VN of type vj. We are interested in computing the corresponding generating
function Bj(t, s(1)

j , s
(2)
j , s

(3)
j ). Let r(j) =

(
r(j)

g

)
g∈E P

vj

be a length dvj binary vector with r(j)
g = 1 if

the type g edge emanates from an unsatisfied CN and r(j)
g = 0 otherwise. Note that for

each VN of type vj, the vector r(j) should satisfy wH(r(j)) ≤ ⌊(dvj − 1)/2⌋. We can either
include this VN type in I or not. If we skip it, we obtain the first term in Bj(t, s(1)

j , s
(2)
j , s

(3)
j )
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corresponding to zero VNs and wH(r(j)) ≤ ⌊(dvj − 1)/2⌋ edges emanating from unsatisfied
CNs and VNs outside I. If we include it in I, we will have 1 node, dvj − wH(r(j)) edges
emanating from satisfied CNs and wH(r(j)) edges emanating from unsatisfied CNs with
wH(r(j)) ≤ ⌊(dvj − 1)/2⌋. Considering all binary vectors r(j), we obtain the second term in
Bj(t, s(1)

j , s
(2)
j , s

(3)
j ). Fv (t, s(1), s(2), s(3)) is obtained by raising (6.251) to the power Q and by

multiplying the result for j = 1, . . . , nP, yielding (6.248).
The number of edge sets with weight vectors e, w and l is

Ne(e,w, l) =
∏

g∈E P

(
Q

eg + wg

)(
eg + wg

eg

)(
Q− eg − wg

lg

)
.

The proof is completed by substituting these expressions in

EP
FAS(a, b) =

∑
e,w,l

Nv(a, e,w, l)Nc(b, e,w, l)
Ne(e,w, l)

. (6.252)

■

Lemma 6.16 yields the average number of (a, b) FASs for finite n. In the asymptotic
case, the following Theorem provides the normalized logarithmic asymptotic distribution of
FASs for the ensemble C P

n for a = θn and b = γn.

Theorem 6.19. The normalized logarithmic asymptotic distribution of (θn, γn) FASs for
the ensemble C P

n is

GP
FAS(θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y) + 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

− θ ln(t)− γ ln(y)− 1
nP

∑
g∈E P

ln
(
1 + x(1)

g s
(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

) (6.253)

where the values t, s(1)
g , s

(2)
g , s

(3)
g , x

(1)
g , x

(2)
g , x

(3)
g for g ∈ E P and the value y are the unique positive

solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j , s

(3)
j )

∂t
=nPθ (6.254)

s(1)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(1)
g

=x(1)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(1)
g

= nPẽ
⋆
g (6.255)

s(2)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(2)
g

=x(2)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(2)
g

= nPw̃
⋆
g (6.256)
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s(3)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(3)
g

=x(3)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(3)
g

= nPl̃
⋆
g (6.257)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂y
=nPγ (6.258)

where (6.255)-(6.257) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
, and

Bj(t, s(1)
j , s

(2)
j , s

(3)
j ) and Ai(x(1)

i ,x
(2)
i ,x

(3)
i , y) are defined in (6.251) and (6.250), respectively and

ẽ⋆
g = 1

nP

x(1)
g s

(1)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

(6.259)

w̃⋆
g = 1

nP

x(2)
g s

(2)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

(6.260)

l̃⋆g = 1
nP

x(3)
g s

(3)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

. (6.261)

The proof is similar to the one of Theorem 6.4.5.

To determine θ⋆
FAS we add another equation to the system of equations of Theorem 6.19,

namely GP
FAS(θ,∆θ) = 0 with 0 < θ ≤ 1.

Observe that the computation of the asymptotic distribution of EFASs follows similar
steps. In particular, it suffices to replace Ai(x(1)

i ,x
(2)
i ,x

(3)
i , y) given in (6.250) with

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y) = 1 +

∑
g,g′∈E P

ci
:g′ ̸=g

x(1)
g x

(1)
g′ + y

∑
g∈E P

ci

x(2)
g

∏
g′∈E P

ci
:g′ ̸=g

x(3)
g′ . (6.262)

Remark 6.2. To evaluate the normalized asymptotic distribution of (elementary) FASs,
one needs to solve a system of 6e + 2 equations with 6e + 2 variables. The solution is
complex for protographs with several edges. Fortunately, protographs often have parallel
edges between pairs of nodes, yielding symmetries in the equations. This observation was
used in [119] to reduce the dimension of the system of equations needed to evaluate the
weight spectral shape of protograph-based ensembles. The principle is applied to the FAS
enumeration through the following Corollary (the proof is omitted, since it follows closely
the derivation of Lemma 6.15).

Lemma 6.17. Denote by u, v two parallel edges in the protograph. Then s(ℓ)
u = s(ℓ)

v and
x(ℓ)

u = x(ℓ)
v for ℓ ∈ {1, 2, 3}.

Example 6.4. We next give an example applying the technique described in Section 6.3.1,
Section 6.3.2 and Section 6.3.3 to the analysis of the protograph-based ensemble with the base
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Figure 6.8: Expected distributions of (2, b) trapping and elementary trapping sets of the
ensemble in Example 6.4 for Q = 100.

matrix B = [ 3 4 ]. This base matrix was introduced in [121] to design short, low error floor
LDPC codes for satellite telecommand links. The expected distributions of (2, b) trapping
and elementary trapping sets for Q = 100 are shown in Fig. 6.8. We evaluate the expressions
of the normalized logarithmic asymptotic distribution of trapping and (fully) absorbing sets
from Theorem 6.17, Theorem 6.18 and Theorem 6.19 for ∆ ∈ {0.005, 0.05, 0.1, 0.2, 0.3, 0.4}.
The results are shown in Fig. 6.9. Fig. 6.10 depicts the normalized logarithmic asymptotic
distributions of ETSs, EASs and EFASs. Observe that the relative minimum ∆-trapping
and (fully) absorbing set size decreases as ∆ increases. For instance, for ∆ = 0.005, we
have θ⋆

FAS = 0.040129 and for ∆ = 0.2, θ⋆
FAS = 0.008448. Since the protograph has e = 7

edges, we need to solve a system of 6e+ 2 = 44 equations in 44 unknowns to compute the
normalized asymptotic distribution of (elementary) fully absorbing sets. Thanks to Lemma
6.17, the number of equations/unknowns reduces to 14.

6.4 Appendices

6.4.1 Proof of Theorem 6.7

From Lemma 3.1, we have

coeff
(
f(t, s)n, tnθsnw̃

)
=̇ exp {n [ln(f(t, s))− θ ln(t)− w̃ ln(s)]} (6.263)

coeff
(
g(x, y)n, xnw̃ynγ

)
=̇ exp {n [ln(g(x, y))− γ ln(y)− w̃ ln(x)]} (6.264)
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Figure 6.9: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and fully absorbing sets (dotted lines) for the code
ensemble in Example 6.4.

where w̃ = w/n and t, s, x, y are the unique positive solutions of (6.114)-(6.116) with w̃⋆

replaced by w̃.

Lemma 3.2 gives (
nd̄v

nw̃

)
=̇ exp

{
nd̄vHb

(
w̃

d̄v

)}
(6.265)

and from (6.263), (6.264) and (6.265), we have

EΛ,P
TS (θ, γ)=̇

∑
w̃

exp(nS(w̃)) (6.266)

with

S(w̃) = −d̄vHb

(
w̃

d̄v

)
+ ln(f(t, s))− θ ln(t)− w̃ ln(xs) + ln(g(x, y))− γ ln(y). (6.267)

Thus, we have GΛ,P
TS (θ, γ) = max S(w̃). By setting the derivative of S(w̃) in w̃ to zero, we

obtain
w̃⋆ = argmax

w̃
S(w̃) = d̄v

xs

1 + xs
. (6.268)

By substituting (6.268) in (6.267), we obtain (6.113)-(6.117) as desired.
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Figure 6.10: Normalized logarithmic asymptotic distributions of elementary trapping sets
(solid lines), elementary absorbing sets (dashed lines) and elementary fully
absorbing sets (dotted lines) for the code ensemble in Example 6.4.

6.4.2 Proof of Corollary 6.1

The proof is based on obtaining expressions for t, s, x, y in terms of w̃⋆, and for w̃⋆ in terms
of θ. Consider (6.114)-(6.116) when θ → 0 and γ = ∆θ. These equations can be rewritten
as

dmax
v∑

j=1
Λj

tsj

1 + tsj
=θ (6.269)

dmax
v∑

j=1
Λj

jtsj

1 + tsj
=w̃⋆ (6.270)

ξ
dmax

c∑
i=1

Pi

i∑
k=2

k is even

(
i
k

)
kxk +

i∑
k=1

k is odd

(
i
k

)
kxky

1 +
i∑

k=2
k is even

(
i
k

)
xk +

i∑
k=1

k is odd

(
i
k

)
xky

=w̃⋆ (6.271)

ξ
dmax

c∑
i=1

Pi

i∑
k=1

k is odd

(
i
k

)
xky

1 +
i∑

k=2
k is even

(
i
k

)
xk +

i∑
k=1

k is odd

(
i
k

)
xky

=∆θ. (6.272)
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From (6.269) and (6.270), we see that dmin
v θ ≤ w̃⋆ ≤ dmax

v θ. Thus, we have

lim
θ→0

w̃⋆ = 0 (6.273)

and the notations o(θ) and o(w̃⋆) are equivalent, i.e., for any function f , f = o(θ)⇐⇒ f =
o(w̃⋆). Therefore, we will use o(θ) and o(w̃⋆) interchangeably. The left hand side of (6.272)
is also o(1), i.e., for some odd k we have xky = o(1) and for all other k we have xky = o(θ).
Thus, we have

∆θ(1 + o(1)) = ξ
dmax

c∑
i=1

Piixy = d̄vxy. (6.274)

Because of (6.273), the left hand side of (6.271) must be o(1), i.e., xk = o(1) for some k,
xk = o(w̃⋆) for the other k, xky = o(1) for some k and xky = o(w̃⋆) for the other k. The
left hand side of (6.271) is dominated by the terms corresponding to k = 1, 2. We have

w̃⋆(1 + o(1)) =ξ
dmax

c∑
i=1

Pi

[
i(i− 1)x2 + ixy

]
=ξP′′(1)x2 + d̄vxy.

(6.275)

From (6.274) and (6.275), we obtain

x =
√
w̃⋆ −∆θ
ξP′′(1) (1 + o(1)). (6.276)

Substituting (6.274) into (6.117), we obtain

s = w̃⋆

√√√√ P′′(1)
d̄cd̄v(w̃⋆ −∆θ)

(1 + o(1)). (6.277)

Thus, (6.270) can be written as

w̃⋆(1 + o(1)) = Λdmin
v

dmin
v tsdmin

v (6.278)

and we have

t = 1
Λdmin

v
dmin

v (w̃⋆)dmin
v −1

(
(w̃⋆ −∆θ)d̄cd̄v

P′′(1)

) dmin
v
2

(1 + o(1)). (6.279)
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Similarly, from (6.269), we have

θ(1 + o(1)) = Λdmin
v
tsdmin

v (6.280)

and
w̃⋆ = dmin

v θ(1 + o(1)). (6.281)

Substituting (6.281) into (6.276), (6.277) and (6.279), we obtain

x =

√√√√θdmin
v −∆
ξP′′(1) (1 + o(1)) (6.282)

s =dmin
v

√√√√θ P′′(1)
d̄cd̄v(dmin

v −∆)
(1 + o(1)) (6.283)

t = θ
2−dmin

v
2

Λdmin
v

(dmin
v )dmin

v

(
(dmin

v −∆)d̄cd̄v

P′′(1)

) dmin
v
2

(1 + o(1)). (6.284)

From (6.274) and (6.282), we have

y = ∆

√√√√ θP′′(1)
d̄cd̄v(dmin

v −∆)
(1 + o(1)). (6.285)

By substituting (6.282)-(6.285) into (6.113) and by using the Taylor series of ln(1 + x) at
x = 0, we obtain (6.121).

6.4.3 Proof of Theorem 6.8

From Lemma 3.1, we have

coeff
(
g(x, y)n, xnθdvynγ

)
=̇ exp {n [ln(g(x, y))− γ ln(y)− θdv ln(x)]} (6.286)

where x, y are the unique positive solutions of

x
∂ ln g(x, y)

∂x
=θdv (6.287)

y
∂ ln g(x, y)

∂y
=γ. (6.288)
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We obtain from (6.288)

y = γ

ξ − γ
(1 + x)dc + (1− x)dc

(1 + x)dc − (1− x)dc
. (6.289)

Lemma 3.2 gives (
n

nθ

)
=̇ exp {nHb (θ)} (6.290)(

ndv

nθdv

)
=̇ exp {ndvHb (θ)} . (6.291)

From (6.286) and (6.289)-(6.291), we obtain (6.126)-(6.128).

6.4.4 Proof of Theorem 6.17

From Lemma 3.1, and recalling that Q = n/nP we have

coeff
(

mP∏
i=1

Ai(xi, y)
n

nP ,xnw̃(θ̃)yγn

)
=̇ exp

n
 1
nP

mP∑
i=1

lnAi(xi, y)− γ ln y −
∑

g∈E P

w̃g ln xg


where ϵ̃ = ϵ/n, w̃(ϵ̃) = w(ϵ)/n and y and xg for g ∈ E P are the unique positive solutions
of (6.222) and (6.223) if we replace w̃⋆

g by w̃g. We obtain

nP∏
j=1

(
Q

ϵj

)dvj −1

=̇ exp

n
nP∑

j=1
(dvj − 1) 1

nP
Hb(nPϵ̃j)

 .
Thus, we have

EP
TS(θn, γn)=̇

∑
ϵ̃

exp(nS(ϵ̃))

where

S(ϵ̃) = 1
nP

mP∑
i=1

lnAi(xi, y)−
∑

g∈E P

w̃g ln xg − γ ln y − 1
nP

nP∑
j=1

(dvj − 1)Hb(nPϵ̃j).

Hence, we have GP
TS(θ, γ) = max S(ϵ̃) subject to the constraint ∑j ϵ̃j = θ obtained from

(6.212) (see e.g., [78, 119, 122]). Using Lagrangian multipliers, we obtain the entries of
ϵ̃⋆ = argmax S(ϵ̃) in (6.224).
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6.4.5 Proof of Theorem 6.18

From Lemma 3.1, we have

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

n
nP , (x(1)

i )nẽ(x(2)
i )nw̃yγn

)
=̇ exp

{
n

[
1
nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− γ ln y

−
∑

g∈E P

(
ẽg ln x(1)

g + w̃g ln x(2)
g

) (6.292)

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )

n
nP , (s(1)

j )nẽ(s(2)
j )nw̃tθn

=̇ exp

n
 1
nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )− θ ln t

−
∑

g∈E P

(
ẽg ln s(1)

g + w̃g ln s(2)
g

) (6.293)

where ẽ = e/n, w̃ = w/n, t and y and x(1)
g , x

(2)
g , s

(1)
g , s

(2)
g ∀g ∈ E P are the unique positive

solutions of (6.238)-(6.241) if we replace ẽ⋆
g and w̃⋆

g by ẽg and w̃g. We obtain

∏
g∈E P

(
Q

n(ẽg + w̃g)

)(
n(ẽg + w̃g)

nẽg

)
=̇ exp

n ∑
g∈E P

[ 1
nP
Hb(nP(ẽg + w̃g))

+(ẽg + w̃g)Hb

(
ẽg

ẽg + w̃g

)]}
.

(6.294)

From (6.292), (6.293) and (6.294), we have

EP
AS(θn, γn)=̇

∑
ẽ,w̃

exp(nS(ẽ, w̃)) (6.295)

where

S(ẽ, w̃) = 1
nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j ) + 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− γ ln y − θ ln t

−
∑

g∈E P

[
ẽg ln(x(1)

g s
(1)
g ) + w̃g ln(x(2)

g s
(2)
g ) + 1

nP
Hb(nP(ẽg + w̃g))

+(ẽg + w̃g)Hb

(
ẽg

ẽg + w̃g

)]
.

(6.296)

This implies GP
AS(θ, γ) = max S(ẽ, w̃). By computing the partial derivatives of S(ẽ, w̃),

we obtain the vector pair (ẽ⋆, w̃⋆) = argmax S(ẽ, w̃) in (6.242) and (6.243).



7
Trapping and Absorbing Set
Enumerators for Non-Binary LDPC
Code Ensembles

In this chapter, we study TSs and ASs of non-binary unstructured and protograph-based
LDPC codes. Our interest in these codes stems from their applications: Besides their
excellent performance for short-packet wireless links [38,98,123–125], non-binary LDPC
codes have been suggested for NAND flash memories [126–128] and code-based public
key cryptosystems [129] which require low-complexity decoders. Hence, hard decision
decoders for non-binary LDPC codes have been studied, either in the form of symbol
flipping algorithms [130], majority-logic decoding [30], and hard (e.g., symbol) message
passing decoding [27, 56, 91]. The authors of [40] presented an algorithm to reduce the
number of ASs in the Tanner graph of a non-binary code by changing the edge weights.
The results showed the effect of ASs in the error floor performance of non-binary LDPC
codes. We provide numerical evidence that they are a major contributor to the error
probability under certain hard-decision passing decoding algorithms [27, 91] that represent
the non-binary equivalent of the Gallager B algorithm.

We published the distribution of TSs and (elementary) ASs for non-binary unstructured
and protograph-based LDPC code ensembles in [62,63].
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7.1 Preliminaries

Suppose we assign non-zero symbols to the VNs composing a set I, and the zero symbol
to the VNs outside I. Let N (I) be the set of the neighboring CNs of I. Furthermore,
let U(I) be the set of unsatisfied CNs in N (I) and S(I) the set of satisfied CNs in N (I).
Following [38–40,48], we define TSs and (elementary) ASs.

Definition 7.1 (Non-binary trapping set). An (a, b) TS Ta,b is a set I of a VNs such that
U(I) contains b CNs [38].

Definition 7.2 (Non-binary absorbing set). An (a, b) AS Aa,b is a trapping set with the
additional property that each VN v ∈ I has strictly fewer neighbors from U(I) than from
S(I) [39,40].

Definition 7.3 (Non-binary elementary absorbing set). An EAS AE
a,b is an AS where each

CN c ∈ S(I) is connected to two VNs in I and each CN c ∈ U(I) is connected to exactly
one VN in I [39, 40].

7.2 Trapping and Absorbing Set Enumerators for
Unstructured Ensembles

7.2.1 Trapping Set Distribution

We next derive the finite-length TS enumerator for non-binary LDPC codes and develop an
analytical method to evaluate the normalized logarithmic asymptotic distribution of TSs.
Further, we derive the asymptotic approximation for the small-sized trapping set case.

Lemma 7.1. The average number of size (a, b) TSs in the Tanner graph of a code drawn
uniformly at random from the ensemble C Λ,P

q,n is

EΛ,P
TS (a, b) =

∑
w

coeff
(
g(x, y)n, xwyb

)
(

nd̄v
w

)
(q − 1)w

coeff (f(t, s)n, tasw) (7.1)

where

f(t, s) =
dmax

v∏
j=1

(1 + (q − 1)tsj)Λj (7.2)
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g(x, y) =
dmax

c∏
i=1

[
(1 + (q − 1)x)i + (q − 1)(1− x)i

q

+y(q − 1)(1 + (q − 1)x)i − (1− x)i

q

]ξPi

.

(7.3)

Note that for binary LDPC codes, we obtain (6.108)-(6.110). The proof is analogous to
the proof of Lemma 6.1.

We next present a simple way to compute the normalized logarithmic asymptotic distri-
bution of TSs for the ensemble C Λ,P

q,n .

Theorem 7.1. The normalized asymptotic distribution of (θn, γn) TSs for the q-ary
irregular ensemble is

GΛ,P
TS (θ, γ) = −d̄v ln(1 + (q − 1)xs)− θ ln(t)− γ ln(y) + ln (f(t, s)) + ln (g(x, y)) (7.4)

where t, s, x, y are the unique positive solutions of

t
∂ ln f(t, s)

∂t
=θ (7.5)

s
∂ ln f(t, s)

∂s
=x∂ ln g(x, y)

∂x
= w̃⋆ (7.6)

y
∂ ln g(x, y)

∂y
=γ (7.7)

where f(t, s) and g(x, y) are defined in (7.2) and (7.3), respectively, and

w̃⋆ = d̄v
(q − 1)xs

1 + (q − 1)xs. (7.8)

The proof of Theorem 7.1 is omitted since it is similar to the one of Theorem 6.7.

The following Lemma will be useful to analyse GΛ,P
TS (θ,∆θ) for small θ and fixed ∆.

Lemma 7.2. For a fixed ∆ = γ/θ, the derivative in θ of GΛ,P
TS (θ,∆θ) is

dGΛ,P
TS (θ,∆θ)

dθ = − ln(t)−∆ ln(y) (7.9)

where for each θ, the values of t and y are given by the solution of the system of equations
(7.5)-(7.7).
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Proof. Note that the solutions of the system of equations in (7.5)-(7.7) are implicit functions
of θ. From (7.4) and (7.8), we obtain

dGΛ,P
TS (θ,∆θ)

dθ =− ln(t)−∆ ln(y) + dt
dθ

 ∂f(t,s)
∂t

f(t, s) −
θ

t

+ ds
dθ

 ∂f(t,s)
∂s

f(t, s) −
w̃⋆

s


+ dx

dθ

 ∂g(x,y)
∂x

g(x, y) −
w̃⋆

x

+ dy
dθ

 ∂g(x,y)
∂y

g(x, y) −
∆θ
y

 .
(7.10)

The terms in the square brackets in (7.10) are equal to zero due to (7.5)-(7.7). ■

Consider now the case of small θ and γ = ∆θ. We obtain a closed form expression of
GΛ,P

TS (θ,∆θ), which we introduce in the following corollary.

Corollary 7.1. For a fixed ∆ = γ/θ and small θ, we have

GΛ,P
TS (θ,∆θ) =θ

[
dmin

v − 2−∆
2 (ln(θ)− 1− ln(q − 1)) + ln

(
(dmin

v )dmin
v Λdmin

v

∆∆

)

−dmin
v −∆

2 ln
(

d̄vd̄c(dmin
v −∆)

P′′(1)

)]
+ o(θ)

(7.11)

where dmin
v is the minimum VN degree and P′′(x) is the second derivative of P(x). The

proof is provided in Appendix 7.4.1.

If ∆ = 0 and dmin
v = 2 , we obtain equation (14) in [98], which is an approximation of the

growth rate of a non-binary code ensemble for the case of small-weight codewords. This is
expected since an (a, 0) TS is a codeword (all CNs are satisfied).

Note that a positive θ⋆
TS (as defined in Definition 6.6) exists whenever the derivative of

GΛ,P
TS (θ,∆θ) is negative as θ → 0. Thus, by substituting (7.117) and (7.118) in (7.10) we

find that a positive θ⋆
TS exists whenever dmin

v > 2 + ∆ or dmin
v = 2 + ∆ and

Λdmin
v

(dmin
v )dmin

v P′′(1)
2d̄vd̄c(dmin

v − 2)dmin
v −2

< 1. (7.12)

If the relative minimum ∆-trapping set size is small enough, then we can use Corollary 7.1
to approximate it. Through numerical simulations, we observed that the relative minimum
∆-trapping set size is small for the case of small VN degrees or high CN degrees as observed
in [48]. We need to determine θ such that GΛ,P

TS (θ,∆θ) = 0 with θ > 0. By neglecting the
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term o(θ), we obtain

θ⋆
TS ≈ (q − 1) exp(1)

(
d̄cd̄v(dmin

v −∆)
P′′(1)

) dmin
v −∆

dmin
v −∆−2

(
∆∆

Λdmin
v

(dmin
v )dmin

v

) 2
dmin
v −∆−2

. (7.13)

For q = 2, we obtain (6.123). The approximation of the relative minimum ∆-trapping
set size given in (7.13) is accurate when θ⋆

TS is sufficiently small (for the case of small VN
degrees or high CN degrees as observed in [48]) and does not need solving the system of
equations given in Theorem 7.1.

For the regular ensemble C dv,dc
q,n , the expressions in Lemma 7.1 and Theorem 7.1 can be

simplified as follows.

Lemma 7.3. The average number of size (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C dv,dc

q,n is

Edv,dc
TS (a, b) =

(
n

a

)coeff
(
g(x, y)n, xadvyb

)
(

ndv
adv

)
(q − 1)a(dv−1)

(7.14)

where
g(x, y) =

[
(1 + (q − 1)x)dc + (q − 1)(1− x)dc

q

+y(q − 1)(1 + (q − 1)x)dc − (1− x)dc

q

]ξ

.

(7.15)

Theorem 7.2. The normalized asymptotic distribution of (θn, γn) TSs for the ensemble
C dv,dc

q,n is

Gdv,dc
TS (θ, γ) =− (dv − 1)Hb(θ)− γ ln(y)− θdv ln(x) + ln (g(x, y))

− θ(dv − 1) ln(q − 1)
(7.16)

where

y = γ

(q − 1)(ξ − γ)
(1 + (q − 1)x)dc + (q − 1)(1− x)dc

(1 + (q − 1)x)dc − (1− x)dc
(7.17)

and x is the unique positive solution of

x
∂g(x, y)
∂x

= θdvg(x, y) (7.18)

where g(x, y) is defined in (7.15). The proof is omitted since it is similar to the one of
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Theorem 6.8.

7.2.2 Absorbing Set Distribution

The following Lemma presents the finite-length AS enumerator for non-binary LDPC
codes. Moreover, we develop an analytical method to evaluate the normalized logarithmic
asymptotic distribution of ASs.

Lemma 7.4. The average number of size (a, b) ASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C Λ,P

q,n is

EΛ,P
AS (a, b) =

∑
e,w

coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)

(
nd̄v
e+w

)(
e+w

e

)
(q − 1)e+w

coeff (f(t, s1, s2)n, tase
1s

w
2 ) (7.19)

where

f(t, s1, s2) =
dmax

v∏
j=1

1 + (q − 1)t
⌊ j−1

2 ⌋∑
j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(7.20)

g(x1, x2, y) =
dmax

c∏
i=1

[
(1 + (q − 1)x1)i + (q − 1)(1− x1)i

q

+y(q − 1)(1 + (q − 1)x2)i − (1− x2)i

q

]ξPi

.

(7.21)

The proof is analogous to the proof of Lemma 6.4.

We derive the normalized logarithmic asymptotic distribution of ASs for non-binary
codes in the following Theorem.

Theorem 7.3. The normalized asymptotic distribution of (θn, γn) ASs for the ensemble
C Λ,P

q,n is
GΛ,P

AS (θ, γ) =− d̄v ln(1 + (q − 1)(x1s1 + x2s2))− θ ln(t)− γ ln(y)
+ ln (g(x1, x2, y)) + ln (f(t, s1, s2))

(7.22)

where t, s1, s2, x1, x2, y are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (7.23)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2, y)
∂x1

= ẽ⋆ (7.24)
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s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2, y)
∂x2

= w̃⋆ (7.25)

y
∂ ln g(x1, x2, y)

∂y
=γ (7.26)

where f(t, s1, s2) and g(x1, x2, y) are defined in (7.20) and (7.21) respectively and

ẽ⋆ =d̄v
(q − 1)x1s1

1 + (q − 1)(x1s1 + x2s2)
(7.27)

w̃⋆ =d̄v
(q − 1)x2s2

1 + (q − 1)(x1s1 + x2s2)
. (7.28)

The proof is omitted since it is similar to the one of Theorem 6.7.

Similar to the TS case, the expressions in Lemma 7.4 and Theorem 7.3 can be simplified
for regular ensembles.

Lemma 7.5. The average number of size (a, b) ASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C dv,dc

q,n is

Edv,dc
AS (a, b) =

∑
e

(
m

b

)coeff
(
g1(x1)m−b, xe

1

)
coeff

(
g2(x2)b, xadv−e

2

)
(

ndv
adv

)(
adv
e

)
(q − 1)a(dv−1)

×

(
n

a

)
coeff

(
f(s)a, sadv−e

) (7.29)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (7.30)

g1(x1) =1
q

[
(1 + (q − 1)x1)dc + (q − 1)(1− x1)dc

]
(7.31)

g2(x2) =q − 1
q

[
(1 + (q − 1)x2)dc − (1− x2)dc

]
. (7.32)

We show now that to compute the normalized logarithmic asymptotic distribution of ASs
for q-ary regular codes, one needs to solve 3 equations instead of 6 for the irregular case.

Theorem 7.4. The normalized asymptotic distribution of (θn, γn) ASs for the C dv,dc
q,n
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ensemble is

Gdv,dc
AS (θ, γ) =− θdv ln(x1 + x2s) + (ξ − γ) ln (g1(x1)) + γ ln (g2(x2))

+ θ ln (f(s))− (dv − 1)Hb(θ)− θ(dv − 1) ln(q − 1) + ξHb

(
γ

ξ

) (7.33)

where s, x1, x2 are the unique positive solutions of

θs
dln f(s)

ds =γx2
dln g2(x2)

dx2
= (θdv − ẽ⋆) (7.34)

(ξ − γ)x1
dln g1(x1)

dx1
=ẽ⋆ (7.35)

where f(s), g1(x1) and g2(x2) are defined in (7.30), (7.31) and (7.32) respectively and

ẽ⋆ = θdv
x1

x1 + x2s
. (7.36)

The proof is similar to the one of Theorem 6.8.

7.2.3 Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for non-binary LDPC codes.

Lemma 7.6. The average number of size (a, b) EASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C Λ,P

q,n is

EΛ,P
EAS(a, b) =

∑
e

coeff
(
g(x1, x2)n, xe

1x
b
2

)
(

nd̄v
e+b

)(
e+b

b

)
(q − 1)b+e

coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
(7.37)

where f(t, s1, s2) is defined in (7.20) and

g(x1, x2) =
dmax

c∏
i=1

[
1 +

(
i

2

)
(q − 1)x2

1 + i(q − 1)x2

]ξPi

. (7.38)

The proof is similar to the proof of Lemma 6.6.

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present
an efficient way to compute it.
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Theorem 7.5. The normalized asymptotic distribution of (θn, γn) EASs for the ensemble
is

GΛ,P
EAS(θ, γ) =(d̄v − γ) ln(d̄v − γ)− d̄v ln(d̄v)− (d̄v − γ) ln(1 + (q − 1)x1s1)

+ ln (g(x1, x2)) + ln (f(t, s1, s2))− γ ln((q − 1)x2s2)
+ γ ln(γ)− θ ln(t)

(7.39)

where t, s1, s2, x1, x2 are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (7.40)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2)
∂x1

= ẽ⋆ (7.41)

s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2)
∂x2

= γ (7.42)

and where f(t, s1, s2) and g(x1, x2) are defined in (7.20) and (7.38), respectively, and

ẽ⋆ = (d̄v − γ)(q − 1)x1s1

1 + (q − 1)x1s1
. (7.43)

We next consider the EAS finite-length and asymptotic enumerator for the regular
ensembles.

Lemma 7.7. The average number of size (a, b) EASs in the Tanner graph of a code drawn
uniformly at random from the ensemble C dv,dc

q,n is

Edv,dc
EAS (a, b) =

(
m

b

)(
n

a

)dc
b coeff

(
g(x)m−b, xadv−b

)
(

ndv
adv

)(
adv
b

)
(q − 1)a(dv−1)−b

coeff
(
f(s)a, sb

)
(7.44)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (7.45)

and

g(x) =1 + (q − 1)
(

dc

2

)
x2. (7.46)

The Lemma can be proved from Lemma 7.6.
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We show now that to compute the normalized logarithmic asymptotic distribution of
EASs for regular codes, one must solve one equation rather than five as for the irregular
case.

Theorem 7.6. The normalized asymptotic distribution of (θn, γn) EASs for the C dv,dc
q,n

ensemble is

Gdv,dc
EAS (θ, γ) =− (dv − 1)Hb(θ)− dvθHb

(
γ

θdv

)
+ γ ln(dc)− γ ln(s)

+ (ξ − γ) ln (g(x)) + θ ln (f(s))− (θdv − γ) ln(x) + ξHb

(
γ

ξ

)
− (θ(dv − 1)− γ) ln(q − 1)

(7.47)

where

x =

√√√√ 2(θdv − γ)
dc(dc − 1)(2ξ − θdv − γ)(q − 1) (7.48)

and s is the unique positive solution of

θs
dln f(s)

ds = γ (7.49)

where f(s) is defined in (7.45).

Example 7.1. Consider the rate 1/2 LDPC ensemble with Λ(x) = 0.5x4 + 0.5x5, P(x) =
x9. We evaluate the asymptotic distributions of TSs, ASs and EASs according to Theorems
7.1, 7.3 and 7.5. The normalized logarithmic asymptotic distributions of TSs, ASs and EASs
of this ensemble for fixed ratio ∆ = 0.1 and q ∈ {2, 4, 8, 16, 32, 64} are depicted in Fig. 7.1.
We see that the gap between the normalized logarithmic asymptotic distributions of TSs and
ASs vanishes for small θ. Moreover, the gap between the AS and EAS enumerators increases
with increasing q and θ. We also observe that the trapping and absorbing set properties of
the ensemble improve with increasing the field order q. For instance θ⋆

TS = 0.086818 for
q = 4 and θ⋆

TS = 0.166643 for q = 32.
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Figure 7.1: Normalized logarithmic asymptotic distributions of trapping sets (solid lines),
absorbing sets (dashed lines) and elementary absorbing sets (dotted lines) of
the ensemble in Example 7.1.

7.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

7.3.1 Trapping Set Distribution

In this section, we derive the average finite-length TS enumerator for non-binary LDPC
codes from the U-NBPB and C-NBPB code ensembles and we present an analytical method
to evaluate the normalized logarithmic asymptotic distribution of TSs.

Unconstrained Protograph-Based LDPC Codes

Define the VN weight vector ϵ = [ϵ1, ϵ2, . . . , ϵnP ], where ϵj is the number of VNs of type vj

in Ta,b. Clearly we have 0 ≤ ϵj ≤ Q for all j ∈ {1, . . . , nP} and

nP∑
j=1

ϵj = a. (7.50)

Similarly, define the edge weight vector w(ϵ) = (wg)g∈E P where wg is the number of edges
of type g in Ta,b. The VN and edge weight vectors are related: for a given ϵ, we have
wg = ϵj if g ∈ E P

vj
.

Lemma 7.8. The average number of size (a, b) TSs in the Tanner graph of a code drawn
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randomly from the ensemble C P,u
q,n is

EP,u
TS (a, b) =

∑
ϵ

coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
nP∏

j=1

(
Q
ϵj

)dvj −1
(q − 1)ϵj(dvj −1)

(7.51)

where

Ai(xi, y) =1
q

 ∏
g∈E P

ci

(1 + (q − 1)xg) + (q − 1)
∏

g∈E P
ci

(1− xg)


+ q − 1

q
y

 ∏
g∈E P

ci

(1 + (q − 1)xg)−
∏

g∈E P
ci

(1− xg)


(7.52)

and where x = (xg)g∈E P , xi = (xg)g∈E P
ci

, y and xg, g ∈ E P
ci

are dummy variables. The proof
is analogous to the one of Lemma 6.12.

Lemma 7.8 provides the average number of size (a, b) TSs for a finite block length n. In
the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of TSs
for the ensemble C P,u

q,n for a = θn and b = γn.
The normalized logarithmic asymptotic distribution of TSs is a useful tool to analyze

and design LDPC codes with good TS properties and can be computed efficiently. In
particular, the analysis of the normalized logarithmic asymptotic distribution of TSs for a
given U-NBPB LDPC code ensemble allows to determine if the expected number of TSs
with size θn, with θ small, goes exponentially fast to zero, providing insights on the TS
properties of the ensemble.

Theorem 7.7. The normalized asymptotic distribution of (θn, γn) TSs for the ensemble
C P,u

q,n is

GP,u
TS (θ, γ) =− γ ln y + 1

nP

mP∑
i=1

lnAi(xi, y)

−
nP∑

j=1

dvj − 1
nP

Hb(nPϵ̃
⋆
j) + (dvj − 1)ϵ̃⋆

j ln(q − 1) + ϵ̃⋆
j

∑
g∈E P

vj

ln xg

 . (7.53)

The values xg for g ∈ E P, the value y and ϵ̃⋆
j for j ∈ {1, . . . , nP} are the unique positive

solutions of

xg
∂ lnAi(xi, y)

∂xg

=nPw̃
⋆
g (7.54)
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y
∂ ln

mP∏
i=1

Ai(xi, y)

∂y
=nPγ (7.55)

(dvj − 1) ln
(

nPϵ̃
⋆
j

(q − 1)(1− nPϵ̃⋆
j)

)
=
∑

g∈E P
vj

ln xg + µ (7.56)

where (7.54) is valid for all i ∈ {1, . . . ,mP}, g ∈ E P
ci

, µ is chosen to satisfy ∑j ϵ̃
⋆
j = θ and

Ai(xi, y) is defined in (7.52), and w̃⋆
g = ϵ̃⋆

j if g ∈ E P
vj

. The proof of Theorem 7.7 is similar
to the one of Theorem 6.17.

Theorem 7.7 shows that the evaluation of GP,u
TS (θ, γ) requires solving e+nP + 2 equations

in e + nP + 2 variables: xg (e variables), ϵ̃⋆
j (nP variables), y (one variable) and µ (one

variable). The following Lemma follows the approach of [119] to reduce the dimension of
the system of equations by exploiting symmetries in the protograph.

Lemma 7.9. Let u, v be two edges in E P. If u and v are connected to the same VN-CN
pair in the protograph, then xu = xv.

Proof. Consider two edges u and v that connect ci to vj . Note that in this case w̃⋆
u = w̃⋆

v = ϵ̃⋆
j .

It is clear that Ai(xi, y) in (7.52) is symmetric in the variables xg, g ∈ E P
ci

. We have

∂lnAi(xi, y)
∂xu

∣∣∣∣∣∣xu=κ
xv=β

= ∂lnAi(xi, y)
∂xv

∣∣∣∣∣∣xu=β
xv=κ

(7.57)

∂ln
mP∏
i=1

Ai(xi, y)

∂y

∣∣∣∣∣∣xu=κ
xv=β

=
∂ln

mP∏
i=1

Ai(xi, y)

∂y

∣∣∣∣∣∣xu=β
xv=κ

. (7.58)

Thus, for the system of equations in Theorem 7.7, if there is a solution with xu = κ, xv = β

then another solution exists with xu = β, xv = κ (all the other variables being unchanged).
Since the solutions xg, g ∈ E P are unique, we have κ = β. ■

Next, we extend the results to C-NBPB code ensembles.

Constrained Protograph-Based LDPC Codes

Define the VN frequency weight vector ϵ = [ϵ1, . . . , ϵnP ] with ϵj = [ϵj,0, . . . , ϵj,q−2], where ϵj,ℓ

is the number of times the symbol αℓ occurs in the VNs of type vj in Ta,b, j ∈ {1, . . . , nP}, ℓ ∈
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{0, . . . , q − 2}. Obviously, we have

nP∑
j=1

q−2∑
ℓ=0

ϵj,ℓ = a. (7.59)

Define also the edge frequency weight vector w(ϵ) = (wg)g∈E P with wg = [wg,0, . . . , wg,q−2]
where wg,ℓ is the number of times the symbol αℓ occurs in the edges of type g in Ta,b. For
a given ϵ, we have for all ℓ ∈ {0, . . . , q − 2}, wg,ℓ = ϵj,ℓ if g ∈ E P

vj
. We define next the

composition vector weight enumerator function (CVWEF) of a q-ary linear code which we
will use to derive the TS and AS enumerators of C-NBPB code ensembles.

Definition 7.4 (Composition vector weight enumerator function). Let P be an (n, k) linear
code over Fq = {0, α0, α1, . . . , αq−2} where α is a primitive element of Fq. The CVWEF is

WP(x) =
∑
c∈P

xϕ(c) (7.60)

where x = [x1,x2, . . . ,xn], xi = [xi,0, xi,1, . . . , xi,q−2], and xi,ℓ, i ∈ {1, 2, . . . , n}, ℓ ∈
{0, 1, . . . , q − 2} are dummy variables. Moreover, ϕ(c) = [ϕ1(c1),ϕ2(c2), . . . ,ϕn(cn)],
ϕi(ci) = [ϕi,0(ci),ϕi,1(ci), . . . ,ϕi,q−2(ci)] where for all ℓ = 0, 1, . . . , q − 2, i = 1, 2, . . . , n we
have ϕi,ℓ(ci) = 1 if ci = αℓ, ϕi,ℓ(ci) = 0 otherwise.

The following Theorem is an adapted version of the MacWilliams identity [131] and will
be useful to derive the TS and AS enumerators of C-NBPB code ensembles.

Theorem 7.8. Let P be an (n, k) linear code over Fq, where q = ps, p is a prime number
and s is a positive integer, with CVWEF WP(x). The CVWEF of its dual code P⊥ is

WP⊥(x) = 1
qk
WP(x′)

n∏
i=1

1 +
q−2∑
ℓ=0

xi,ℓ

 (7.61)

where x′ = [x′
1,x

′
2, . . . ,x

′
n], x′

i = [x′
i,0, x

′
i,1, . . . , x

′
i,q−2] and

x′
i,ℓ =

1 +
q−2∑
ℓ′=0

χ(αℓ+ℓ′)xi,ℓ′

1 +
q−2∑
ℓ′=0

xi,ℓ′

(7.62)

for ℓ = 0, 1, . . . , q − 2, i = 1, 2, . . . , n, and χ(u) is a non-trivial character of Fq. The proof
of Theorem 7.8 can be found in Appendix 7.4.2.
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In the next Lemma, we derive the finite-length TS enumerator for C-NBPB code ensem-
bles.

Lemma 7.10. The average number of size (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C P,c

q,n (f) is

EP,c
TS(a, b) =

∑
ϵ

coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
nP∏

j=1

( Q

Q−
q−2∑
ℓ=0

ϵj,ℓ,ϵj,0,ϵj,1,...,ϵj,q−2

)dvj −1 (7.63)

where

Ai(xi, y) =WPi
(xi) + y

 ∏
g∈E P

ci

1 +
q−2∑
ℓ=0

xg,ℓ

−WPi
(xi)

 (7.64)

and where Pi is the codebook of ci, x = (xg)g∈E P , xg = [xg,0, . . . , xg,q−2], xi = (xg)g∈E P
ci

, y
and xg,ℓ, g ∈ E P

ci
, ℓ ∈ {0, . . . , q − 2} are dummy variables and

WPi
(xi) = 1

q

 ∏
g∈E P

ci

1 +
q−2∑
ℓ=0

xg,ℓ

+
q−2∑
ℓ=0

∏
g∈E P

ci

1 +
q−2∑
ℓ′=0

χ
(
fgα

ℓ+ℓ′)
xg,ℓ′


 . (7.65)

Proof. First, note that for the edge labels f = (fg)g∈E P , the codewords c ∈ Pi satisfy
cTfi = 0, where fi = (fg)g∈E P

ci
. The dual code P⊥

i of Pi is characterized by its generator
matrix Gi = fi and CVWEF that is equal to 1 + ∑

l x
ϕ(αlfi). By applying Theorem 7.8

to Pi, we obtain (7.65). Consider now the Tanner graph of a code drawn randomly from
the ensemble C P,c

q,n . We randomly choose a set I of a VNs and assign a non-zero symbol
from Fq to each VN in the set. The edges connected to a VN v are assigned the non-zero
symbol chosen for v. For a given ϵ, each vj ∈ V has ϵj,ℓ replicas in Ta,b with VN symbol
value αℓ. Since there are Q copies of each VN type in the lifted graph, the number of VN
sets with frequency weight vector ϵ is

Nv(ϵ) =
nP∏

j=1

(
Q

Q−
q−2∑
ℓ=0

ϵj,ℓ, ϵj,0, ϵj,1, . . . , ϵj,q−2

)
. (7.66)
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Similarly, the number of edge sets with frequency weight vector w(ϵ) is

Ne(w(ϵ)) =
∏

g∈E P

(
Q

Q−
q−2∑
ℓ=0

wg,ℓ, wg,0, wg,1, . . . , wg,q−2

)

=
nP∏

j=1

(
Q

Q−
q−2∑
ℓ=0

ϵj,ℓ, ϵj,0, ϵj,1, . . . , ϵj,q−2

)dvj

.

(7.67)

Let Nc(b,w(ϵ)) be the number of configurations with edge set frequency weight vector w(ϵ)
that give exactly b unsatisfied CNs. We introduce the corresponding generating function

∑
b,w(ϵ)

Nc(b,w(ϵ))ybxw(ϵ).

Consider a CN of type ci. The number of configurations for which the CN is satisfied is
tracked by the generating function

gc(xi, y) := y0WPi
(xi)

while the number of configurations for which the CN is unsatisfied is tracked by the
generating function

gc̄(xi, y) := y1 ∏
g∈E P

ci

1 +
q−2∑
ℓ=0

xg,ℓ

− y1WPi
(xi).

The sum gc(xi, y) + gc̄(xi, y) yields Ai(xi, y). Considering all CN types and that there are
Q CNs of each type ci, we obtain

Nc(b,w(ϵ)) = coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
. (7.68)

Using
EP,c

TS(a, b) =
∑
ϵ

Nv(ϵ)Nc(b,w(ϵ))
Ne(w(ϵ)) (7.69)

completes the proof. ■

Note that the exact average number of size (a, b) TSs derived in Lemma 7.10 for a
finite block length n is extremely complex to compute for large n. Next, we analyze the
normalized logarithmic asymptotic distribution of TSs.
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Theorem 7.9. The normalized asymptotic distribution of (θn, γn) TSs for the ensemble
C P,c

q,n (f) is

GP,c
TS(θ, γ) =−

nP∑
j=1

dvj − 1
nP

H

1− nP

q−2∑
ℓ=0

ϵ̃⋆
j,ℓ, nPϵ̃

⋆
j,0, . . . , nPϵ̃

⋆
j,q−2


+

q−2∑
ℓ=0

ϵ̃⋆
j,ℓ

∑
g∈E P

vj

ln xg,ℓ

+ 1
nP

mP∑
i=1

lnAi(xi, y)− γ ln y.
(7.70)

The values xg,ℓ for g ∈ E P, the value y and ϵ̃⋆
j,ℓ for j ∈ {1, . . . , nP}, ℓ ∈ {0, 1, . . . , q − 2} are

the unique positive solutions of

xg,ℓ
∂ lnAi(xi, y)

∂xg,ℓ

=nPw̃
⋆
g,ℓ (7.71)

y
∂ ln

mP∏
i=1

Ai(xi, y)

∂y
=nPγ (7.72)

(dvj − 1) ln

 nPϵ̃
⋆
j,ℓ

1− nP
q−2∑
ℓ′=0

ϵ̃⋆
j,ℓ′

 =
∑

g∈E P
vj

ln xg,ℓ + µ (7.73)

where (7.71) is valid ∀i ∈ {1, 2, . . . ,mP}, g ∈ E P
ci
, ℓ ∈ {0, . . . , q − 2}, µ is chosen to satisfy∑nP

j=1
∑q−2

ℓ=0 ϵ̃
⋆
j,ℓ = θ, Ai(xi, y) is defined in (7.64), and w̃⋆

g,ℓ = ϵ̃⋆
j,ℓ if g ∈ E P

vj
. The proof of the

Theorem can be found in Appendix 7.4.3.

7.3.2 Absorbing and Elementary Absorbing Set Distribution

In this section, we extend the analysis developed for TSs to evaluate the average finite-length
AS and EAS enumerators for non-binary LDPC codes from the U-NBPB and C-NBPB
code ensembles, and we present an analytical method to evaluate the normalized logarithmic
asymptotic distributions of ASs and EASs.



202 7 Enumerators for Non-Binary LDPC

Unconstrained Protograph-Based LDPC Codes

Lemma 7.11. The average number of size (a, b) ASs in the Tanner graph of a code drawn
randomly from the ensemble C P,u

q,n is

EP,u
AS (a, b) =

∑
e,w

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
∏

g∈E P

(
Q

eg+wg

)(
eg+wg

eg

)
(q − 1)eg+wg

×

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w


(7.74)

with

Bj(t, s(1)
j , s

(2)
j ) =1 + (q − 1)t

∑
r(j)∈Rj

(s(1)
j )1dvj

−r(j)

(s(2)
j )r(j) (7.75)

where

Ai(x(1)
i ,x

(2)
i , y) =1

q

 ∏
g∈E P

ci

(1 + (q − 1)x(1)
g ) + (q − 1)

∏
g∈E P

ci

(1− x(1)
g )


+ q − 1

q
y

 ∏
g∈E P

ci

(1 + (q − 1)x(2)
g )−

∏
g∈E P

ci

(1− x(2)
g )


(7.76)

and where 1dvj
is the length dvj all-ones vector, Rj is the set of binary vectors of length dvj

and Hamming weight ≤ ⌊(dvj − 1)/2⌋, and s(o) = (s(o)
g )g∈E P , s(o)

j = (s(o)
g )g∈E P

vj
, x(o) = (x(o)

g )g∈E P ,
x(o)

i = (x(o)
g )g∈E P

ci
, y, t and s(o)

g , x
(o)
g , g ∈ E P

ci
, o = 1, 2 are dummy variables [54]. The proof is

similar to the one of Lemma 6.14. It is hence omitted.

Next, we analyze the normalized logarithmic asymptotic distribution of ASs for the
U-NBPB LDPC ensemble. The next Theorem presents a simple way to compute the
normalized logarithmic asymptotic distribution of ASs for the ensemble C P,u

q,n .

Theorem 7.10. The normalized asymptotic distribution of (θn, γn) ASs for the ensemble
C P,u

q,n is

GP,u
AS (θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y) + 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )

− γ ln y − θ ln t− 1
nP

∑
g∈E P

ln
(
1 + (q − 1)

(
x(1)

g s
(1)
g + x(2)

g s
(2)
g

))
.

(7.77)
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The values t, s(1)
g , s(2)

g , x(1)
g , x(2)

g , for g ∈ E P and the value y are the unique positive solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )

∂t
=nPθ (7.78)

s(1)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(1)
g

=x(1)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(1)
g

= nPẽ
⋆
g (7.79)

s(2)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(2)
g

=x(2)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(2)
g

= nPw̃
⋆
g (7.80)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

∂y
=nPγ (7.81)

where (7.79) and (7.80) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
,

Bj(t, s(1)
j , s

(2)
j ) and Ai(x(1)

i ,x
(2)
i , y) are defined in (7.75) and (7.76), respectively, and

ẽ⋆
g = 1

nP

(q − 1)x(1)
g s

(1)
g

1 + (q − 1)(x(1)
g s

(1)
g + x(2)

g s
(2)
g ) (7.82)

w̃⋆
g = 1

nP

(q − 1)x(2)
g s

(2)
g

1 + (q − 1)(x(1)
g s

(1)
g + x(2)

g s
(2)
g ) . (7.83)

The proof of Theorem 7.10 is omitted since it is similar to the one of Theorem 6.17.

The result can be easily extended to enumerate the EASs. In fact, to compute the
finite-length and the asymptotic distribution of EASs, we simply need to replace in (7.74)
and (7.77) the generating function Ai(x(1)

i ,x
(2)
i , y) given in (7.76) with

Ai(x(1)
i ,x

(2)
i , y) = 1 + (q − 1)

∑
g,g′∈E P

ci
:g ̸=g′

x(1)
g x

(1)
g′ + (q − 1)y

∑
g∈E P

ci

x(2)
g . (7.84)

We briefly explain the derivation of Ai(x(1)
i ,x

(2)
i , y) in (7.84). For EASs, each satisfied CN

is connected to zero or two VNs from I and each unsatisfied CN is connected to exactly
one VN from I. Consider a CN of type ci. If it is satisfied and connected to zero or
two VNs from I, the number of configurations can be tracked by the generating function
gc(x(1)

i , y) := y0∑
c(x(1)

i )p(c) where the sum is over all c ∈ Fdci
q such that wH(c) ∈ {0, 2} and∑

g∈E P
ci
cg = 0, and p(c) = (pg)g∈E P

ci
with pg = 1 if cg ̸= 0 and pg = 0 otherwise, yielding

gc(x(1)
i , y) = 1 + (q − 1)

∑
g,g′∈E P

ci
:g ̸=g′

x(1)
g x

(1)
g′ .
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If the CN is unsatisfied and connected to exactly one VN from I then its generating
function is

gc̄(x(2)
i , y) := y1 ∑

c∈F
dci
q :wH(c)=1

(x(2)
i )p(c) = (q − 1)y

∑
g∈E P

ci

x(2)
g .

We can see from Theorem 7.10 that to evaluate GP,u
AS (θ, γ) and GP,u

EAS(θ, γ) one must solve
4e+ 2 equations in 4e+ 2 variables: s(1)

g , s
(2)
g , x

(1)
g , x

(2)
g (4e variables), y (one variable) and t

(one variable). The following Lemma, also based on the approach of [119], is similar to
Lemma 7.9 and can reduce the dimension of the system of equations.

Lemma 7.12. Let u, v be two edges in E P. If u and v are connected to the same VN-CN
pair in the protograph, then for all o ∈ {1, 2} we have s(o)

u = s(o)
v and x(o)

u = x(o)
v .

Proof. Consider two edges u and v which connect ci to vj. We define z :=
[s(1)

u , s
(1)
v , s

(2)
u , s

(2)
v , x

(1)
u , x

(1)
v , x

(2)
u , x

(2)
v ], z1 := [χ1, ψ1, χ2, ψ2, κ1, β1, κ2, β2] and

z2 := [ψ1, χ1, ψ2, χ2, β1, κ1, β2, κ2]. It is clear that Bj(t, s(1)
j , s

(2)
j ) in (7.75) is symmet-

ric in the variables s(1)
g , s

(2)
g , g ∈ E P

vj
and the functions Ai(x(1)

i ,x
(2)
i , y) in (7.76) and (7.84) are

symmetric in the variables x(1)
g , x

(2)
g , g ∈ E P

ci
. Thus, for the system of equations in Theorem

7.10, if there is a solution with z = z1 then another solution exists with z = z2 (all the
other variables being unchanged). Since the solutions s(1)

g , s(2)
g , x(1)

g , x(2)
g , g ∈ E P are unique,

we have z1 = z2, i.e., ψ1 = χ1, ψ2 = χ2, κ1 = β1, κ2 = β2. ■

Constrained Protograph-Based LDPC Codes

Lemma 7.13. The average number of size (a, b) ASs in the Tanner graph of a code drawn
randomly from the ensemble C P,c

q,n (f) is

EP,c
AS(a, b) =

∑
e,w

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
∏

g∈E P

( Q

Q−
q−2∑
ℓ=0

(eg,ℓ+wg,ℓ),eg,0+wg,0,...,eg,q−2+wg,q−2

) q−2∏
ℓ=0

(
eg,ℓ+wg,ℓ

eg,ℓ

)×

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w


(7.85)

where

Bj(t, s(1)
j , s

(2)
j ) =1 + t

q−2∑
ℓ=0

∑
r(j)∈Rj

∏
g∈E P

vj

(s(1)
g,ℓ)1−r

(j)
g (s(2)

g,ℓ)r
(j)
g (7.86)
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and

Ai(x(1)
i ,x

(2)
i , y) =WPi

(x(1)
i ) + y

 ∏
g∈E P

ci

1 +
q−2∑
ℓ=0

x(2)
g,ℓ

−WPi
(x(2)

i )

 (7.87)

and where r(j) = (r(j)
g )g∈E P

vj
, Rj is the set of binary vectors of length dvj and Hamming weight

≤ ⌊(dvj − 1)/2⌋, WPi
(xi) is given in (7.65), s(o) = (s(o)

g )g∈E P , s(o)
g = [s(o)

g,0, . . . , s
(o)
g,q−2], s(o)

j =
(s(o)

g )g∈E P
vj

, x(o) = (x(o)
g )g∈E P , x(o)

g = [x(o)
g,0, . . . , x

(o)
g,q−2], x(o)

i = (x(o)
g )g∈E P

ci
, y, t and s(o)

g,ℓ, x
(o)
g,ℓ, g ∈

E P
ci
, o = 1, 2, ℓ = 0, . . . , q − 2 are dummy variables.

Proof. Define the edge frequency weight vectors e = (eg)g∈E P , eg = [eg,0, . . . , eg,q−2] and
w = (wg)g∈E P , wg = [wg,0, . . . , wg,q−2] where eg,ℓ represents the number of times the symbol
αℓ occurs in the edges of type g in Aa,b emanating from satisfied CNs in Aa,b and wg,ℓ is
the number of times the symbol αℓ occurs in the edges of type g in Aa,b emanating from
unsatisfied CNs. We randomly choose a set I of a VNs and assign a non-zero symbol from
Fq to each VN in the set. The edges connected to a VN v are assigned the non-zero symbol
chosen for v. We denote by Nc(b, e,w) the number of configurations with edge weight
vectors e,w that give exactly b unsatisfied CNs. Its generating function is

∑
b,e,w

Nc(b, e,w)yb(x(1))e(x(2))w.

Consider a CN of type ci. The number of configurations for which the CN is satisfied is
tracked by the generating function

gc(x(1)
i , y) := y0WPi

(x(1)
i )

while the number of configurations for which the CN is unsatisfied is tracked by

gc̄(x(2)
i , y) := y1 ∏

g∈E P
ci

1 +
q−2∑
ℓ=0

x(2)
g,ℓ

− y1WPi
(x(2)

i ).

Recalling that the sum gc(x(1)
i , y) + gc̄(x(2)

i , y) yields Ai(x(1)
i ,x

(2)
i , y), and considering all CN

types and that there are Q CNs of each type ci, we obtain

Nc(b, e,w) = coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
(7.88)

where Ai(x(1)
i ,x

(2)
i , y) is defined in (7.87).
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Let Nv(a, e,w) be the number of configurations with a VNs and edge weight vectors e,w
such that each of these VNs is connected to strictly fewer unsatisfied CNs than satisfied
CNs. Its generating function is

∑
a,e,w

Nv(a, e,w)ta(s(1))e(s(2))w.

Consider a VN of type vj. Let r(j) = (r(j)
g )g∈E P

vj
be a length dvj binary vector with r(j)

g = 1
if the type g edge emanates from an unsatisfied CN and r(j)

g = 0 otherwise. Note that
if the VN of type vj belongs to I, the Hamming weight of r(j) should satisfy wH(r(j)) =∑

g∈E P
vj
r(j)

g ≤ ⌊(dvj − 1)/2⌋. We can either include this VN in I or not. If we skip it we
obtain the zero-degree term in Bj(t, s(1)

j , s
(2)
j ) corresponding to zero VNs and zero edges. If

we include it in the set, we will have one node, dvj −wH(r(j)) edges emanating from satisfied
CNs and wH(r(j)) edges emanating from unsatisfied CNs with wH(r(j)) ≤ ⌊(dvj − 1)/2⌋.
Considering all possible non-zero symbols we can assign to the VN and all possible binary
vectors r(j), we obtain the second term in Bj(t, s(1)

j , s
(2)
j ). Taking into account all possible

VN types and that there are Q VNs of each type, we obtain

Nv(a, e,w) = coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w

 (7.89)

where Bj(t, s(1)
j , s

(2)
j ) is defined in (7.86). The number of edge sets with frequency weight

vectors e and w is

Ne(e,w) =
∏

g∈E P

(
Q

Q−
q−2∑
ℓ=0

(eg,ℓ + wg,ℓ), eg,0 + wg,0, . . . , eg,q−2 + wg,q−2

)
×

q−2∏
ℓ=0

(
eg,ℓ + wg,ℓ

eg,ℓ

)
.

(7.90)

Noting that
EP,c

AS(a, b) =
∑
e,w

Nv(a, e,w)Nc(b, e,w)
Ne(e,w) (7.91)

completes the proof. ■

We remark that in this case the exact average number of size (a, b) ASs for a finite block
length n is extremely complex to compute for large n.

Theorem 7.11. The normalized asymptotic distribution of (θn, γn) ASs for the ensemble
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C P,c
q,n (f) is

GP,c
AS(θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− θ ln t+ 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )

− γ ln y − 1
nP

∑
g∈E P

ln
1 +

q−2∑
ℓ=0

(
x(1)

g,ℓs
(1)
g,ℓ + x(2)

g,ℓs
(2)
g,ℓ

) . (7.92)

The values t, s(1)
g,ℓ, s

(2)
g,ℓ, x

(1)
g,ℓ, x

(2)
g,ℓ, for g ∈ E P, ℓ ∈ {0, . . . , q − 2} and the value y are the

unique positive solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )

∂t
=nPθ (7.93)

s(1)
g,ℓ

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(1)
g,ℓ

=x(1)
g,ℓ

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(1)
g,ℓ

= nPẽ
⋆
g,ℓ (7.94)

s(2)
g,ℓ

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(2)
g,ℓ

=x(2)
g,ℓ

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(2)
g,ℓ

= nPw̃
⋆
g,ℓ (7.95)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

∂y
=nPγ (7.96)

where (7.94) and (7.95) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
, ℓ ∈

{0, . . . , q− 2}, Bj(t, s(1)
j , s

(2)
j ) and Ai(x(1)

i ,x
(2)
i , y) are defined in (7.86) and (7.87), respectively,

and

ẽ⋆
g,ℓ = 1

nP

x(1)
g,ℓs

(1)
g,ℓ

1 +
q−2∑
ℓ′=0

(
x(1)

g,ℓ′s
(1)
g,ℓ′ + x(2)

g,ℓ′s
(2)
g,ℓ′

) (7.97)

w̃⋆
g,ℓ = 1

nP

x(2)
g,ℓs

(2)
g,ℓ

1 +
q−2∑
ℓ′=0

(
x(1)

g,ℓ′s
(1)
g,ℓ′ + x(2)

g,ℓ′s
(2)
g,ℓ′

) . (7.98)

The proof can be found in Appendix 7.4.4.

Note that for computing the normalized asymptotic distribution of EASs, we simply need
to replace in (7.85) and (7.92) the generating function Ai(x(1)

i ,x
(2)
i , y) given in (7.87) with

Ai(x(1)
i ,x

(2)
i , y) = 1 +

∑
g,g′∈E P

ci
:g ̸=g′

∑
ℓ,ℓ′:fgαℓ+fg′ αℓ′ =0

x(1)
g,ℓx

(1)
g′,ℓ′ + y

∑
g∈E P

ci

q−2∑
ℓ=0

x(2)
g,ℓ. (7.99)
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Table 7.1: The error profiles for the hard decision decoder for the QSC crossover probability
ϵ = 0.004.

(1,3) (2,2) (2,3) (2,4) (2,5) (3,2) (3,3) (3,4) (3,5)
TS 43 736 8 8 2 21 8 1 3
AS 0 736 0 0 0 0 4 0 0
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Figure 7.2: FER and SER versus the QSC crossover probability ϵ. The dashed lines
represent the contribution of the dominant (2, 2) TS to the FER and SER.

Example 7.2. We consider an LDPC code from the U-NBPB code ensemble defined by the
protograph base matrix B = [ 3 3 ] for q = 8 and Q = 80. We present some experimental
results to validate the effect of the TSs and ASs (as defined in Definitions 7.1 and 7.2)
on the performance of non-binary protograph-based LDPC codes under the hard message
passing decoding algorithm of [27] with list size one, which is similar to the SMP decoder in
Chapter 4. We transmit the all-zero codeword over a QSC with error probability ϵ, where
the channel alphabet cardinality is matched to the field order. For each channel realization
leading to a decoding failure, we check if the subgraph containing the corrupted VNs and
their neighboring CNs is a TS or AS. In this case, we determine its size. We collected 1000
frame errors at channel crossover probability ϵ = 0.004. Table 7.1 shows the obtained error
profiles, i.e., the number of occurrences of specific TSs and ASs. Simulation results of the
considered code are shown in Fig. 7.2 in terms of FER and SER versus the QSC crossover
probability ϵ. The dashed lines represent the contribution of the dominant (2, 2) TS to the
FER and SER. Note that for small ϵ, the FER and SER are dominated by the (2, 2) TS.

Example 7.3. Consider the protograph with the base matrix B = [ 2 2 ]. We evaluate
the TS distribution of the U-NBPB and C-NBPB ensembles from (7.51) and (7.63). The
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Figure 7.3: Average number of size (2, b) TSs for the ensemble in Example 7.3 for q = 4
and Q = 4.

Table 7.2: The relative minimum ∆-trapping and absorbing set sizes for the ensemble in
Example 7.4 for ∆ = 0.1.

q θ⋆
TS (B1) θ⋆

AS (B1) θ⋆
TS (B2) θ⋆

AS (B2)
4 0.014875 0.015016 0.068831 0.069397
8 0.023894 0.024167 0.098416 0.099534
16 0.031946 0.032384 0.121417 0.123159
32 0.037808 0.038421 0.137429 0.139788
64 0.040997 0.041772 0.147011 0.149935
128 0.041660 0.042566 0.151134 0.154555

average number of size (2, b) TSs of the U-NBPB and C-NBPB ensembles for q = 4, Q = 4
and different edge labels is depicted in Fig. 7.3. Observe that with a good edge weight
assignment, the C-NBPB ensemble can have fewer small sized TSs. Thus, we can obtain a
C-NBPB ensemble with better TS properties by carefully choosing the edge weights. For
instance, if the size (2, 2) TS dominates the error floor performance of the code under a
specific decoding algorithm, then the edge label (1, α, α2, α) would be a better choice than
the other edge labels since it has fewer (2, 2) TSs. Otherwise, the edge label (1, 1, 1, 1)
would be the best choice.

Example 7.4. Consider the U-NBPB code ensembles obtained from the base matrices
B1 = [ 3 3 ] and B2 = [ 4 4 ]. For both ensembles, we evaluate the expressions of the
normalized logarithmic asymptotic distribution of TSs, ASs and EASs from Theorems 7.7
and 7.10 for a fixed ratio ∆ = 0.1. The results are shown in Fig. 7.4 and 7.5. Observe that
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Figure 7.4: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and EASs (dotted lines) of the LDPC ensemble with base matrix
B1 in Example 7.4 for ∆ = 0.1.

Table 7.3: The relative minimum ∆-trapping and absorbing set sizes for the ensemble in
Example 7.4 for q = 4.

∆ θ⋆
TS (B1) θ⋆

AS (B1) θ⋆
TS (B2) θ⋆

AS (B2)
0.005 0.043007 0.043008 0.112292 0.112294
0.05 0.025367 0.025428 0.087155 0.087349
0.15 0.008667 0.008857 0.055246 0.056222
0.2 0.004904 0.005105 0.044668 0.0460343
0.3 0.001342 0.001487 0.029372 0.031380
0.4 0.000261 0.000325 0.019166 0.021595

the ensemble obtained from B2 has better TS and AS properties than the one with B1.
For instance, we can see in Table. 7.2 that for q = 4 and ∆ = 0.1, we have θ⋆

TS = 0.068831
while for the first ensemble, we have θ⋆

TS = 0.014875. A comparison of the relative minimum
∆-trapping and absorbing set sizes of these ensembles for q = 4 and different values of ∆ is
shown in Table. 7.3. We see that for a fixed rate, increasing the VN degrees improves the
TS properties of the ensemble and increases the relative minimum trapping and absorbing
sizes (for the same ∆ and q). This matches the observation made in [48].

We generate length N = 6400 codes from the ensembles characterized by B1 and B2

for q = 8. Fig. 7.6 shows the performance of these codes under the algorithm introduced
in [27] with list size one. We observe that the code obtained from B2 has a better error
floor performance. This is due to the better TS properties of the B2 base matrix that we



7.4 Appendices 211

0 5 · 10−2 0.1 0.15 0.2
−0.1

0

0.1

0.2

θ

T
he

as
ym

pt
ot

ic
di

st
rib

ut
io

ns

q = 4
q = 8
q = 16
q = 32
q = 64

Figure 7.5: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and EASs (dotted lines) of the LDPC ensemble with base matrix
B2 in Example 7.4 for ∆ = 0.1.

observed in the analysis.

7.4 Appendices

7.4.1 Proof of Corollary 7.1

The proof is based on obtaining expressions for t, s, x, y in terms of w̃⋆, and for w̃⋆ in terms
of θ. Consider (7.5)-(7.7) when θ → 0 and γ = ∆θ. These equations can be rewritten as

dmax
v∑

j=1
Λj

(q − 1)tsj

1 + (q − 1)tsj
=θ (7.100)

dmax
v∑

j=1
Λj

j(q − 1)tsj

1 + (q − 1)tsj
=w̃⋆ (7.101)

ξ
dmax

c∑
i=1

Pi

i∑
k=2

ukkx
k +

i∑
k=1

ckkx
ky

1 +
i∑

k=2
ukxk +

i∑
k=1

ckxky
=w̃⋆ (7.102)

ξ
dmax

c∑
i=1

Pi

i∑
k=1

ckx
ky

1 +
i∑

k=2
ukxk +

i∑
k=1

ckxky
=∆θ (7.103)
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Figure 7.6: SER versus the QSC crossover probability ϵ for 8-ary codes drawn from the
ensembles in Example 7.4 with N = 6400.

where

uk =
(
i

k

)
(−1)k(q − 1) + (q − 1)k

q
(7.104)

ck =
(
i

k

)
(q − 1)(q − 1)k − (−1)k

q
. (7.105)

From (7.100) and (7.101), we see that dmin
v θ ≤ w̃⋆ ≤ dmax

v θ. Thus, we have

lim
θ→0

w̃⋆ = 0 (7.106)

and the notations o(θ) and o(w̃⋆) are equivalent, i.e., for any function f , f = o(θ)⇐⇒ f =
o(w̃⋆). Therefore, we will use o(θ) and o(w̃⋆) interchangeably. The left hand side of (7.103)
is also o(1), i.e., for some odd k we have xky = o(1) and for all other k we have xky = o(θ).
Thus, we have

∆θ(1 + o(1)) = ξ
dmax

c∑
i=1

Pii(q − 1)xy = d̄v(q − 1)xy. (7.107)

Because of (7.106), the left hand side of (7.102) must be o(1), i.e., xk = o(1) for some k,
xk = o(w̃⋆) for the other k, xky = o(1) for some k and xky = o(w̃⋆) for the other k. The
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left hand side of (7.102) is dominated by the terms corresponding to k = 1, 2. We have

w̃⋆(1 + o(1)) =ξ(q − 1)
dmax

c∑
i=1

Pi

[
i(i− 1)x2 + ixy

]
=ξP′′(1)(q − 1)x2 + d̄v(q − 1)xy.

(7.108)

From (7.107) and (7.108), we obtain

x =
√

w̃⋆ −∆θ
ξ(q − 1)P′′(1)(1 + o(1)). (7.109)

Substituting (7.107) into (7.8), we obtain

s = w̃⋆

√√√√ P′′(1)
d̄cd̄v(q − 1)(w̃⋆ −∆θ)

(1 + o(1)). (7.110)

Thus, (7.101) can be written as

w̃⋆(1 + o(1)) = Λdmin
v

dmin
v (q − 1)tsdmin

v (7.111)

and we have

t = (q − 1)
dmin
v −2

2

Λdmin
v

dmin
v (w̃⋆)dmin

v −1

(
(w̃⋆ −∆θ)d̄cd̄v

P′′(1)

) dmin
v
2

(1 + o(1)). (7.112)

Similarly, from (7.100), we have

θ(1 + o(1)) =Λdmin
v

(q − 1)tsdmin
v (7.113)

and

w̃⋆ =dmin
v θ(1 + o(1)). (7.114)

Substituting (7.114) into (7.109), (7.110) and (7.112), we obtain

x =

√√√√θ dmin
v −∆

ξ(q − 1)P′′(1)(1 + o(1)) (7.115)
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s =dmin
v

√√√√θ P′′(1)
d̄cd̄v(q − 1)(dmin

v −∆)
(1 + o(1)) (7.116)

t =(q − 1)
dmin
v −2

2 θ
2−dmin

v
2

Λdmin
v

(dmin
v )dmin

v

(
(dmin

v −∆)d̄cd̄v

P′′(1)

) dmin
v
2

(1 + o(1)). (7.117)

From (7.107) and (7.115), we have

y =∆

√√√√ θP′′(1)
d̄cd̄v(q − 1)(dmin

v −∆)
(1 + o(1)). (7.118)

By substituting (7.115)-(7.118) into (7.4) and by using the Taylor series of ln(1 + x) at
x = 0, we obtain (7.11).

7.4.2 Proof of Theorem 7.8

Let P be an (n, k) linear code over Fq and ξ be a non-trivial character of Fq. We have [131]

χ(u+ o) = χ(u)χ(o) ∀u, o ∈ Fq. (7.119)

Define the function
g(c) =

∑
v∈Fn

q

χ(cTv)
n∏

i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ .

We have

∑
c∈P

g(c) =
∑
c∈P

∑
v∈Fn

q

χ(cTv)
n∏

i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ =

∑
v∈Fn

q

n∏
i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

∑
c∈P

χ(cTv)

=
∑

v∈P⊥

n∏
i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

∑
c∈P

χ(0) +
∑

v/∈P⊥

n∏
i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

∑
c∈P

χ(cTv)

=|P|WP⊥(x) +
∑

v/∈P⊥

n∏
i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

∑
c∈P

χ(cTv).

For v /∈ P⊥, ∃e ∈ P , u ∈ Fq with vTe ̸= 0 and χ(uvTe) ̸= 1. Thus, from (7.119) we obtain

∑
c∈P

χ(cTv) =
∑
c∈P

χ(vT (c + ue)) = χ(uvTe)
∑
c∈P

χ(vTc).
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Since χ(uvTe) ̸= 1 and χ(uvTe) ̸= 0, ∑
c∈P

χ(cTv) = 0 and as a result ∑
c∈P

g(c) = |P|WP⊥(x).
Using (7.119), we have

g(c) =
∑
v∈Fn

q

χ(cTv)
n∏

i=1

q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

=
∑
v∈Fn

q

n∏
i=1

χ(ci · vi)
q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

=
n∏

i=1

∑
vi∈Fq

χ(ci · vi)
q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ

(7.120)

with

∑
vi∈Fq

χ(ci · vi)
q−2∏
ℓ=0

x
ϕi,ℓ(vi)
i,ℓ =


1 +

q−2∑
ℓ=0

xi,ℓ if ci = 0

1 +
q−2∑
ℓ=0

χ(ci · αℓ)xi,ℓ otherwise.
(7.121)

We obtain

g(c) =
n∏

i=1

1 +
q−2∑
ℓ=0

xi,ℓ

 q−2∏
ℓ′=0


1 +

q−2∑
ℓ=0

χ(αℓ+ℓ′)xi,ℓ

1 +
q−2∑
ℓ=0

xi,ℓ


ϕi,ℓ′ (ci)

(7.122)

and therefore

WP⊥(x) = 1
|P|

∑
c∈P

g(c)

= 1
qk

 n∏
i=1

1 +
q−2∑
ℓ=0

xi,ℓ

∑
c∈P

n∏
i=1

q−2∏
ℓ′=0


1 +

q−2∑
ℓ=0

χ(αℓ+ℓ′)xi,ℓ

1 +
q−2∑
ℓ=0

xi,ℓ


ϕi,ℓ′ (ci)

= 1
qk

 n∏
i=1

1 +
q−2∑
ℓ=0

xi,ℓ

WP(x′)

(7.123)
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where x′ = [x′
1,x

′
2, . . . ,x

′
n], x′

i = [x′
i,0, x

′
i,1, . . . , x

′
i,q−2],

x′
i,ℓ =

1 +
q−2∑
ℓ′=0

χ(αℓ+ℓ′)xi,ℓ′

1 +
q−2∑
ℓ′=0

xi,ℓ′

, ℓ = 0, 1, . . . , q − 2, i = 1, 2, . . . , n. (7.124)

7.4.3 Proof of Theorem 7.9

From Lemma 3.1, we obtain

coeff
(

mP∏
i=1

Ai(xi, y)
n

nP ,xnw̃(ϵ̃)yγn

)
=̇ exp

{
n

[
1
nP

mP∑
i=1

lnAi(xi, y)

−γ ln y −
∑

g∈E P

q−2∑
ℓ=0

w̃g,ℓ ln xg,ℓ


where ϵ̃ = ϵ/n, w̃(ϵ̃) = w(ϵ)/n, y and xg,ℓ for g ∈ E P, ℓ ∈ {0, . . . , q − 2} are the unique
positive solutions of (7.71) and (7.72) if we replace w̃⋆

g,ℓ by w̃g,ℓ. We have

nP∏
j=1

(
Q

Q−
q−2∑
ℓ=0

nϵ̃j,ℓ, nϵ̃j,0, . . . , nϵ̃j,q−2

)dvj −1

=̇ exp

n
nP∑

j=1

dvj − 1
nP

H

1− nP

q−2∑
ℓ=0

ϵ̃j,ℓ, nPϵ̃j,0, . . . , nPϵ̃j,q−2


and also

EP,c
TS(θn, γn)=̇

∑
ϵ̃

exp(nS(ϵ̃))

with

S(ϵ̃) = 1
nP

mP∑
i=1

lnAi(xi, y)−
∑

g∈E P

q−2∑
ℓ=0

w̃g,ℓ ln xg,ℓ − γ ln y

−
nP∑

j=1

dvj − 1
nP

H

1− nP

q−2∑
ℓ=0

ϵ̃j,ℓ, nPϵ̃j,0, . . . , nPϵ̃j,q−2

 .
Thus, we have GP,c

TS(θ, γ) = max S(ϵ̃) where the maximization is subject to the constraint∑
j,ℓ ϵ̃j,ℓ = θ obtained from (7.59). Using Lagrangian multipliers, we obtain ϵ̃⋆ = argmax S(ϵ̃)

in (7.73).
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7.4.4 Proof of Theorem 7.11

From Lemma 3.1, we have

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

n
nP , (x(1)

i )nẽ(x(2)
i )nw̃yγn

)
=̇

exp

n
 1
nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− γ ln y −

∑
g∈E P

q−2∑
ℓ=0

(
ẽg,ℓ ln x(1)

g,ℓ + w̃g,ℓ ln x(2)
g,ℓ

)
coeff

 nP∏
j=1

Bj(t, s(1)
j , s

(2)
j )

n
nP , (s(1)

j )nẽ(s(2)
j )nw̃tθn

 =̇

exp

n
 1
nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )− θ ln t−

∑
g∈E P

q−2∑
ℓ=0

(
ẽg,ℓ ln s(1)

g,ℓ + w̃g,ℓ ln s(2)
g,ℓ

)
where ẽ = e/n, w̃ = w/n, t and y and x(1)

g,ℓ, x
(2)
g,ℓ, s

(1)
g,ℓ, s

(2)
g,ℓ ∀i ∈ {1, . . . ,mP},∀j ∈

{1, . . . , nP}, g ∈ E P
vj
∩E P

ci
, ℓ ∈ {0, . . . , q−2} are the unique positive solutions of (7.93)-(7.96)

if we replace ẽ⋆
g,ℓ and w̃⋆

g,ℓ by ẽg,ℓ and w̃g,ℓ. We obtain

∏
g∈E P

(
Q

Q−
q−2∑
ℓ=0

n(ẽg,ℓ + w̃g,ℓ), n(ẽg,0 + w̃g,0), . . . , n(ẽg,q−2 + w̃g,q−2)

) q−2∏
ℓ=0

(
n(ẽg,ℓ + w̃g,ℓ)

nẽg,ℓ

)
=̇

exp

n ∑
g∈E P

 1
nP
H

1− nP

q−2∑
ℓ=0

(ẽg,ℓ + w̃g,ℓ), nP(ẽg,0 + w̃g,0), . . . , nP(ẽg,q−2 + w̃g,q−2))


+
q−2∑
ℓ=0

(ẽg,ℓ + w̃g,ℓ)Hb

(
ẽg,ℓ

ẽg,ℓ + w̃g,ℓ

) .
Thus, we have

EP,c
AS(θn, γn)=̇

∑
ẽ,w̃

exp(nS(ẽ, w̃))

where

S(ẽ, w̃) = 1
nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− γ ln y − θ ln t+ 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )

−
∑

g∈E P

 1
nP
H

1− nP

q−2∑
ℓ=0

(ẽg,ℓ + w̃g,ℓ), nP(ẽg,0 + w̃g,0), . . . , nP(ẽg,q−2 + w̃g,q−2)


+
q−2∑
ℓ=0

(
ẽg,ℓ ln(x(1)

g,ℓs
(1)
g,ℓ) + w̃g,ℓ ln(x(2)

g,ℓs
(2)
g,ℓ) + (ẽg,ℓ + w̃g,ℓ)Hb

(
ẽg,ℓ

ẽg,ℓ + w̃g,ℓ

)) .
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We obtain GP,c
AS(θ, γ) = max S(ẽ, w̃) and the vector pair (ẽ⋆, w̃⋆) = argmax S(ẽ, w̃) in

(7.98).



8
Trapping and Absorbing Set
Enumerators for Binary GLDPC
Code Ensembles

In this chapter, we propose new definitions of a TS, AS and FAS for GLDPC codes. The
definitions stem from the definitions for LDPC codes and are based on a reference PBF
decoder. We consider the PBF algorithm since it has low-complexity and is suitable for
high-throughput applications. In particular, hard decision decoders for GLDPC-like codes,
e.g., product codes and staircase codes, with bounded distance decoding at the CNs are
currently considered as a baseline approach for very high speed fiber-optic communications;
see [2, 42].

We start from a broad definition of TSs that includes sets that may be resolved by the
PBF algorithm. The definition is then sharpened, yielding a simple definition of ASs and
FASs. The latter sets cannot be corrected by the PBF algorithm. If all CNs are SPC
codes, we recover the definitions of TSs and (fully) ASs of binary LDPC codes [35–37].
We use generating functions to derive the distribution of (elementary) TSs, ASs, and
FASs for irregular GLDPC code ensembles. We present a numerical technique to evaluate
the normalized logarithmic asymptotic distributions of these sets, which requires solving
a system of equations, and we derive asymptotic approximations for small-sized TSs.
Simulation results confirm the stability of FASs under the PBF algorithm and show the
impact of TSs and (fully) ASs on the performance of a GLDPC code. The proposed
enumeration technique is used to estimate the error floor performance for GLDPC codes.
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8.1 Preliminaries

We assign the value 1 to each VN in a set I and 0 to the VNs outside I. We denote by
N (I) the set of the neighboring CNs of I. Further, we denote by U(I) the set of unsatisfied
CNs in N (I) and S(I) the set of satisfied CNs in N (I). A CN in N (I) is satisfied if it
recognizes a valid local codeword when the edges connected to I are assigned the value 1
and the other edges the value 0. In the following, we propose definitions of TSs and (fully)
ASs for GLDPC codes that generalize the ones of LDPC codes [37,48,114].

Definition 8.1 (GLDPC trapping set). An (a, b) TS Ta,b is a set I of a VNs such that
U(I) contains b CNs.

It was observed in [36] that the error floor performance is dominated by small TSs
where CNs are connected to only one or two VNs. These sets were referred to as ETS.
Analogously, we propose a definition of ETSs for GLDPC codes.

Definition 8.2 (GLDPC elementary trapping set). An (a, b) ETS T E
a,b is an (a, b) TS where

∀τ ∈ {1, 2, . . . , nc} each CN of type τ in S(I) is connected to dmin,τ VNs in I and each CN
in U(I) is connected to exactly one VN in I.

An example of a (3, 1) ETS of a simple GLDPC code is given in Fig. 8.1. We have
Λ = [0, 6/7, 1/7], P = [2/3, 1/3], the CNs c1, c3 of type 1, are (4, 3) SPC codes and c2

is a (7, 4) Hamming code. We assign the value 1 to the set I = {v3, v5, v7}. Note that
c(1) = [0, 0, 1, 0] is not a valid codeword of the SPC code. However, c(2) = [0, 0, 1, 0, 1, 0, 1]
and c(3) = [0, 1, 0, 1] are valid codewords of the Hamming and SPC codes, respectively.
Thus, U(I) = {c1} and S(I) = {c2, c3}. Moreover, c3, which is of type 1, is connected to
dmin,1 = 2 VNs in I and c2, of type 2, is connected to dmin,2 = 3 VNs in I. The unsatisfied
CN c1 is connected to one VN in I. Note that |I| = 3 and |U(I)| = 1.

Note that some TSs and ETSs do not necessarily cause a decoding failure: For example,
suppose that each CN in U(I) is connected to a number of erroneous variable nodes that
is within the component code error correction capability, and that each VN in the (E)TS
is connected to more unsatisfied CNs than satisfied ones. The error pattern would be
resolvable in this case. The connection between (E)TS and decoding failures is difficult
to analyze in general, and it may require using numerical methods to obtain accurate
performance predictions; see [36,48,132]. The merit of the definitions above is to extend in
a natural way the ones that are commonly accepted for LDPC codes and to yield to the
following stricter definitions of AS and FAS. The latter, in particular, provides a rigorous
description of combinatorial structures that lead the PBF (Algorithm 3) to fail. Let n(f)

v be
the number of flip messages that the VN v receives from its neighboring CNs.
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c1 c2 c3

v1

0

v2

0

v3

1

v4

0

v5

1

v6

0

v7

1

0 0

1 0 0 1

0 1

0 0

1 0 1

0 1

H =
[
1 1 1 1

]
←

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


↑

H =
[
1 1 1 1

]
→

Figure 8.1: Example of an ETS for a GLDPC code.

Definition 8.3 (GLDPC absorbing set). An (a, b) ASAa,b is an (a, b) TS with the additional
property that for each VN v ∈ I, we have n(f)

v < dv/2.

Definition 8.4 (GLDPC fully absorbing set). An (a, b) FAS Fa,b is an (a, b) TS with the
additional property that for each VN v in the Tanner graph n(f)

v < dv/2.

Remark 8.1. Consider a set I of corrupt VNs, where each VN v in the Tanner graph
receives n(f)

v < dv/2 flip messages. Since for the PBF algorithm, each VN flips its estimate
only if n(f)

v > dv/2, no VN will flip its estimate. Thus, according to Definition 8.4, the VNs
in a FAS cannot be corrected by the PBF algorithm.

Definition 8.5 (GLDPC elementary (fully) absorbing set). An EAS AE
a,b (EFAS FE

a,b) is
an AS (FAS) where ∀τ ∈ {1, 2 . . . , nc} each CN of type τ in S(I) is connected to dmin,τ

VNs in I and each CN in U(I) is connected to exactly one VN in I.

The normalized logarithmic asymptotic distribution of (elementary) TSs or (fully) ASs
for a GLDPC code ensemble for a = θn and b = γn is defined by

G(θ, γ) := lim
n→∞

1
n

ln (E(θn, γn)) (8.1)

where E(θn, γn) is the average number of (θn, γn) (elementary) TSs or (fully) ASs in the
Tanner graph of a random code from the ensemble.

Definition 8.6 (Relative minimum ∆-trapping/ absorbing/ fully absorbing set size).
For fixed ratio ∆ = b/a = γ/θ, the second zero crossing of GΛ,P

TS (θ,∆θ)/ GΛ,P
AS (θ,∆θ)/
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GΛ,P
FAS(θ,∆θ) (the first one is zero), if it exists, is called the relative minimum ∆-TS/ AS/

FAS size that we denote by θ⋆
TS/ θ⋆

AS/ θ⋆
FAS.

8.2 Trapping and Absorbing Set Enumerators for
Unstructured Ensembles

For GLDPC codes, we cannot identify a TS only from the underlying topological structure.
For instance, unlike binary LDPC codes, we cannot determine if a CN is satisfied or not
by only checking the number of edges connected to it like binary LDPC codes. Thus, the
methods in [37,48] relying on random matrix enumeration techniques cannot be trivially
extended to GLDPC codes.

In this section, we derive the (elementary) TS and (fully) AS enumerators for unstructured
GLDPC code ensembles and we present an analytical method for evaluating the normalized
logarithmic asymptotic distributions of (elementary) TSs and (fully) ASs.

8.2.1 Trapping and Elementary Trapping Set Distributions

We derive next the TS and ETS enumerators for unstructured GLDPC code ensembles.

Lemma 8.1. The average number of (a, b) TSs in the Tanner graph of a code drawn
uniformly at random from the ensemble C Λ,P

n is

EΛ,P
TS (a, b) =

∑
w

coeff
(
g(x, y)n, xwyb

)
(

nd̄v
w

) coeff (f(t, s)n, tasw) (8.2)

where

f(t, s) =
dmax

v∏
j=1

[
1 + tsj

]Λj (8.3)

g(x, y) =
nc∏

τ=1

[
W (τ)(x) + y

[
(1 + x)nτ −W (τ)(x)

]]ξPτ (8.4)

and

W (τ)(x) =
∑
c∈Cτ

xwH(c) =
nτ∑

h=1
W

(τ)
h xh (8.5)



8.2 Enumerators for Unstructured GLDPC Ensembles 223

is the WEF of Cτ , wH(c) is the Hamming weight of c and W (τ)
h is the number of codewords

of Hamming weight h in Cτ .

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
C Λ,P

n . We randomly choose a set I of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We denote by α(a, w) the number
of ways to choose a VNs such that exactly w edges emanate from them. Its generating
function is ∑a,w α(a, w)tasw. Consider a single VN of degree j. This generating function is
1 + tsj because we can either skip this VN or include it in the set I. If we skip the VN,
then we will get 0 nodes and 0 edges and this gives us the term 1 corresponding to t0s0. If
we choose the VN, then we get 1 VN and j edges and this gives us t1sj. By considering
all possible VN degrees, and since we have Λjn VNs of degree j and for each VN we can
decide to include it in I or not, the generating function is f(t, s)n. Thus, we have

α(a, w) = coeff (f(t, s)n, tasw) .

Let β(b, w) be the number of ways to choose w edges such that exactly b CNs are unsatisfied.
Its generating function is ∑b,w β(b, w)ybxw. A CN is satisfied if it recognizes a valid local
codeword when the edges connected to I are assigned the value 1 and the other edges the
value 0, and it is unsatisfied otherwise. Consider a CN of type τ . If it is satisfied, then its
generating function is

gc(x, y) := y0 ∑
c∈Cτ

xwH(c) = W (τ)(x)

and if it is unsatisfied, then its generating function is

gc̄(x, y) := y1
[
(1 + x)nτ −W (τ)(x)

]
.

Considering all types of CNs and that there are ξPτn CNs of type τ , we obtain

β(b, w) = coeff
(
g(x, y)n, xwyb

)
.

Note that for an LDPC code where all CNs are SPC codes, g(x, y) in (8.4) simplifies to
(6.110). Let Z1 be a RV indicating the number of edges emanating from the set I. Further,
let Z2 be a RV that is equal to 1 if there are exactly b unsatisfied CNs. Thus, we have

EΛ,P
TS (a, b) =

(
n

a

)
Pr{Z2 = 1} (8.6)
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and
Pr{Z2 = 1} =

∑
w

Pr{Z1 = w}Pr{Z2 = 1|Z1 = w}

=
∑
w

coeff (f(t, s)n, tasw)(
n
a

) coeff
(
g(x, y)n, xwyb

)
(

nd̄v
w

) .
(8.7)

■

Lemma 8.1 characterizes the exact average number of (a, b) TSs for block length n. In
the asymptotic case, we analyze the normalized logarithmic asymptotic distribution of TSs
for the ensemble C Λ,P

n for a = θn and b = γn. This distribution is a useful tool to analyze
and design GLDPC codes with good TS properties and can be computed efficiently. In
particular, the analysis allows to determine if the expected number of TSs with size θn,
with θ small, goes exponentially fast to zero, hence providing insights on the TS properties
of the ensemble. We next present a simple way to compute the distribution.

Theorem 8.1. The normalized asymptotic distribution of (θn, γn) TSs is

GΛ,P
TS (θ, γ) = −d̄v ln(1 + xs)− θ ln(t)− γ ln(y) + ln (f(t, s)) + ln (g(x, y)) (8.8)

where t, s, x, y are the unique positive solutions of

t
∂ ln f(t, s)

∂t
=θ (8.9)

s
∂ ln f(t, s)

∂s
=x∂ ln g(x, y)

∂x
= w̃⋆ (8.10)

y
∂ ln g(x, y)

∂y
=γ (8.11)

where f(t, s) and g(x, y) are defined in (8.3) and (8.4), respectively, and

w̃⋆ = d̄v
xs

1 + xs
. (8.12)

The proof of Theorem 8.1 is omitted since it is similar to the one of Theorem 6.7.

Note that to compute the normalized distribution of ETSs, we need to replace g(x, y)
given in (8.4) with

g(x, y) =
nc∏

τ=1

[
1 +W

(τ)
dmin,τ

xdmin,τ + ynτx
]ξPτ

. (8.13)

We briefly explain the derivation of g(x, y) in (8.13). For an ETS, a satisfied CN of type τ ,
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which recognizes a valid local codeword, is connected zero or dmin,τ times to VNs in I. The
corresponding generating function is

gc(x, y) := y0
[
1 +W

(τ)
dmin,τ

xdmin,τ

]
.

Each CN in U(I) is connected to exactly one VN in I. The corresponding generating
function is gc̄(x, y) := ynτx. Considering all types of CNs, we obtain g(x, y) in (8.13).

We introduce next a Lemma that will be useful in analyzing the behavior of GΛ,P
TS (θ,∆θ)

for small θ and fixed ∆.

Lemma 8.2. For a fixed ∆ = γ/θ, the derivative in θ of GΛ,P
TS (θ,∆θ) is

dGΛ,P
TS (θ,∆θ)

dθ = − ln(t)−∆ ln(y) (8.14)

where for each θ, the values of t and y are given by the solution of the system of equations
(8.9)-(8.11).

Proof. Note that the solutions of the system of equations in (8.9)-(8.11) are implicit
functions of θ. From (8.12) and (8.8), we obtain

dGΛ,P
TS (θ,∆θ)

dθ =− ln(t)−∆ ln(y) + dt
dθ

 ∂f(t,s)
∂t

f(t, s) −
θ

t

+ ds
dθ

 ∂f(t,s)
∂s

f(t, s) −
w̃⋆

s


+ dx

dθ

 ∂g(x,y)
∂x

g(x, y) −
w̃⋆

x

+ dy
dθ

 ∂g(x,y)
∂y

g(x, y) −
∆θ
y

 .
(8.15)

The terms in the brackets are equal to zeros due to (8.9)-(8.11). ■

Consider now small θ and γ = ∆θ. We obtain a closed form expression of GΛ,P
TS (θ,∆θ),

which we introduce in the following corollary proved in Appendix 8.4.1.

Corollary 8.1. Let dmin
v be the minimum VN degree and r the smallest minimum distance

over all CNs. For fixed ∆ = γ/θ and θ → 0, we have

GΛ,P
TS (θ,∆θ) =θ

[
(r − 1)(dmin

v −∆)− r
r

(ln(θ)− 1)− dmin
v −∆
r

ln(d̄c)

− dmin
v −∆
r

ln

 dmin
v −∆

r
∑
τ

PτW
(τ)
r

− (r − 1)(dmin
v −∆)
r

ln(d̄v)

+ ln
(

(dmin
v )dmin

v Λdmin
v

∆∆

)]
+ o(θ).

(8.16)
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Note that a positive θ⋆
TS exists whenever the derivative of GΛ,P

TS (θ,∆θ) is negative as
θ → 0. Thus, by substituting (8.174) and (8.175) in (8.15) we find that a positive θ⋆

TS

exists whenever dmin
v > r

r−1 + ∆ or dmin
v = r

r−1 + ∆ and

Λdmin
v

(dmin
v )dmin

v

d̄v(d̄c)
1

r−1

(
(r − 1)

∑
τ

PτW
(τ)
r

) 1
r−1 (

dmin
v − r

r − 1

) r
r−1 −dmin

v

< 1. (8.17)

If the relative minimum ∆-TS size is small enough, then we can use Corollary 8.1 to
approximate it. Numerical simulations show that the relative minimum ∆-TS size is small
for the case of small VN degrees or high CN degrees, as observed in [48], especially if the
CNs are SPC nodes or super CNs with small minimum distance. We now only need to
determine θ such that GΛ,P

TS (θ,∆θ) = 0 with 0 < θ ≤ 1. By neglecting the term o(θ), we
have

θ⋆
TS ≈ exp(1)

(
dmin

v −∆
r
∑

τ PτW
(τ)
r

) dmin
v −∆

(r−1)(dmin
v −∆)−r

×

∆∆d̄
(r−1)(dmin

v −∆)
r

v d̄
dmin
v −∆

r
c

Λdmin
v

(dmin
v )dmin

v


r

(r−1)(dmin
v −∆)−r

.

(8.18)

Note that if all CNs are associated with SPC codes, the expression reduces to (6.123). The
approximation (8.18) is accurate when θ⋆

TS is sufficiently small and does not require solving
the system of equations in Theorem 8.1.

For the regular ensemble, Lemma 8.1 and Theorem 8.1 simplify as follows.

Lemma 8.3. The average number of (a, b) TSs in the Tanner graph of a code drawn
randomly from the regular ensemble with variable node degree dv and where all the CNs
are associated with the linear code C of length dc and WEF W (x) is

Edv,dc
TS (a, b) =

(
n

a

)coeff
(
g(x, y)n, xadvyb

)
(

ndv
adv

) (8.19)

where

g(x, y) =
[
W (x) + y

(
(1 + x)dc −W (x)

)]ξ
. (8.20)

Proof. The Lemma can be proved from Lemma 8.1. Note that w in (8.2) is equal to adv.
Moreover, the number of ways to choose a VNs such that exactly adv edges emanate from
them is equal to

(
n
a

)
. Further, the generating function g(x, y) in (8.20) can be obtained
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from the one in (8.4) by taking nc = τ = 1,Pτ = 1. ■

Theorem 8.2. The normalized asymptotic distribution of (θn, γn) TSs for the regular
ensemble is

Gdv,dc
TS (θ, γ) =− (dv − 1)Hb(θ)− γ ln(y)− θdv ln(x) + ln (g(x, y)) (8.21)

where

y = γ

ξ − γ
W (x)

(1 + x)dc −W (x) (8.22)

and x is the unique positive solution of

x
∂ ln g(x, y)

∂x
= θdv (8.23)

where g(x, y) is defined in (8.20). The proof is omitted since it is similar to the one of
Theorem 6.8.

To compute the distribution of ETSs for regular ensembles, we need to replace in (8.19)
the generating function g(x, y) given in (8.20) with

g(x, y) =
[
1 +Wdminx

dmin + dcxy
]ξ

(8.24)

where dmin is the minimum distance of C .
Due to the simplicity of g(x, y) in this case, we can obtain a closed form expression of

the normalized asymptotic distribution of (θn, γn) ETSs for the regular ensemble:

Gdv,dc
ETS (θ, γ) =− (dv − 1)Hb(θ)− γ ln(y)− θdv ln(x) + ln (g(x, y)) (8.25)

where

x =
(

θdv − γ
Wdmin (ξdmin − γ(dmin − 1)− θdv)

) 1
dmin

(8.26)

y = γ

ξ − γ
1 +Wdminx

dmin

dcx
. (8.27)

Proof. The proof is similar to the one of TSs. We need only replace in (8.21) the generating
function g(x, y) given in (8.20) with the one in (8.24), where x, y are the unique positive
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solutions of

x
∂ ln g(x, y)

∂x
=θdv (8.28)

y
∂ ln g(x, y)

∂y
=γ. (8.29)

Substituting (8.24) in (8.28), (8.29) and with some manipulations, we obtain x, y in (8.26)
and (8.27). ■

8.2.2 Absorbing Set Distribution

Similar to TSs, an AS cannot be identified only from its underlying topological structure
since we cannot determine if a CN is satisfied or not by only checking the number of edges
connected to it. Moreover, even if the constraints imposed by a CN are not satisfied, the
node will not necessarily send flip messages in the bit flipping algorithm, as would happen
for binary LDPC codes. The generating functions used for the AS enumerator capture
the behavior of the bit flipping decoder with BDD at the CNs. The approach can also be
used for other hard decision decoding algorithms by deriving a generating function that
enumerates the outgoing flip messages.

In this section, we derive the AS enumerator for GLDPC codes and we develop an
analytical method for evaluating the normalized logarithmic asymptotic distribution of
ASs.

Lemma 8.4. The average number of (a, b) ASs in the Tanner graph of a code drawn
randomly from the irregular GLDPC ensemble C Λ,P

n is

EΛ,P
AS (a, b) =

∑
e,w

coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)

(
nd̄v
e+w

)(
e+w

e

) × coeff (f(t, s1, s2)n, tase
1s

w
2 ) (8.30)

where

f(t, s1, s2) =
dmax

v∏
j=1

1 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(8.31)

g(x1, x2, y) =
nc∏

τ=1
Aτ (x1, x2, y)ξPτ (8.32)
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and

Aτ (x1, x2, y) =



1
2 [(1 + x1)nτ + (1− x1)nτ ] + y 1

2 [(1 + x2)nτ − (1− x2)nτ ] Cτ is SPC

W (τ)(x1)+y
[

nτ∑
k=1

tτ∑
δ=1

min(δ,nτ −k)∑
j=0

(
h

h−j

)(
nτ −h
δ−j

)
×

(xh−j
1 xk−h+j

2 − xk
1)W (τ)

h + (1 + x1)nτ −W (τ)(x1)
] else

(8.33)
where h = k − δ + 2j.

Proof. Consider the Tanner graph of a code drawn randomly from the ensemble C Λ,P
n . We

randomly choose a set I of a VNs and assign the value 1 to each VN in the set with a
uniform distribution over all possibilities. We have 2 types of edges connected to the VNs
in I. Edges of the first type do not carry flip messages and the edges of the second type are
the ones carrying flip messages. Compared to the TS analysis, we distinguish between the
edges connected to I which carry flip messages and the edges not carrying flip messages.
This lets us include the additional VN constraints imposed by the AS, namely that for each
of the VNs in I, we have n(f)

v < dv/2. Let α(a, e, w) be the number of ways to choose a
VNs such that exactly e type 1 edges and w type 2 edges emanate from them and for each
of these VNs n(f)

v < dv/2. The corresponding generating function is ∑a,e,w α(a, e, w)tase
1s

w
2 .

Consider a VN v of degree j. Let j − j1 and j1 be, respectively, the number of type 1 and
2 edges connected to v. Again, we can either include this VN in I or not. If we skip it,
then we obtain 0 nodes and 0 type 1 and type 2 edges. If we choose it, then we will have 1
node, j − j1 type 1 edges and j1 type 2 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋} (since for
the VNs in I we have n(f)

v < dv/2). Considering all possible VN degrees, the generating
function is f(t, s1, s2)n. Thus, we have

α(a, e, w) = coeff (f(t, s1, s2)n, tase
1s

w
2 ) .

Let β(b, e, w) be the number of ways to choose e type 1 edges and w type 2 edges
such that there are exactly b unsatisfied CNs. The corresponding generating function
is ∑b,e,w β(b, e, w)ybxe

1x
w
2 . We clarify briefly the derivation of Aτ (x1, x2, y) for super CNs.

A CN of type τ is satisfied if it recognizes a valid local codeword when the edges connected
to I are assigned the value 1 and the other edges the value 0. In that case, the super CN
doesn’t send flip messages to its neighboring VNs in I, i.e., the number of type 1 edges
connected to that CN is equal to the weight of the codeword and the number of type 2
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edges is 0. The generating function of a satisfied CN of type τ is then

gc(x1, y) :=
nτ∑

k=0
W

(τ)
k xk

1 = W (τ)(x1). (8.34)

For an unsatisfied super CN of type τ , the received vector z is not a valid codeword. Given
z ∈ Fnτ

2 \ Cτ of weight k, the decoded vector ĉ is a codeword if ∃c ∈ Cτ with dH(z, c) ≤ tτ .
Consider codewords of weight h, the number of which is W (τ)

h . For a given c ∈ Cτ with
wH(c) = h, assume z has h− j ones in h− j out of the h entries where c is 1. Thus, z has
k − (h− j) ones in k − (h− j) out of the nτ − h positions where c is zero. The number
of possibilities is

(
h

h−j

)(
nτ −h

k−h+j

)
. Note that the number of type 1 edges is the number of

positions where both c and z are 1 which is h− j, the number of type 2 edges is the number
of positions where c is zero and z is 1 which is k − h+ j and dH(z, c) = k − h+ 2j =: δ.
We need 1 ≤ δ ≤ tτ so that the decoded vector is c (δ ≥ 1 since z is not a valid codeword).
By summing over δ = 1, . . . , tτ , j = 0, . . . ,min(δ, nτ − k) and over all possible weights that
z can have we obtain the generating function

y
nτ∑

k=1

tτ∑
δ=1

min(δ,nτ −k)∑
j=0

(
h

h− j

)(
nτ − h
δ − j

)
xh−j

1 xk−h+j
2 W

(τ)
h . (8.35)

Consider now the case of z ∈ Fnτ
2 \ Cτ of weight k such that ∄c ∈ Cτ with dH(z, c) ≤ tτ ,

the decoded vector is z and the super CN will not send any flip messages to its neighboring
VNs in I, i.e., the number of type 1 edges connected that CN is equal to the weight of the
codeword and the number of type 2 edges is 0. We obtain the generating function

y
nτ∑

k=1

(nτ

k

)
−W (τ)

k −
tτ∑

δ=1

min(δ,nτ −k)∑
j=0

(
h

h− j

)(
nτ − h
δ − j

)
W

(τ)
h

xk
1. (8.36)

From (8.34), (8.35) and (8.36) we obtain (8.33) for a super CN. Consider now an SPC
node. An SPC node is satisfied if it is connected an even number of times (including zero)
to I. In this case, it doesn’t send any flip messages. The generating function of a satisfied
SPC node is

gc(x1, y) := y0 ∑
0≤i≤nτ
i is even

(
nτ

i

)
xi

1 = 1
2 [(1 + x1)nτ + (1− x1)nτ ] .

The SPC node is unsatisfied if it is connected an even number of times to I. In this case,
it sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
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SPC node is

gc̄(x2, y) := y1 ∑
0≤i≤nτ
i is odd

(
nτ

i

)
xi

2 = y

2 [(1 + x2)nτ − (1− x2)nτ ] .

Note that for an LDPC code, where all CNs are SPC codes, g(x1, x2, y) in (8.32) simplifies
to (6.135). We have

β(b, e, w) = coeff
(
g(x1, x2, y)n, xe

1x
w
2 y

b
)
.

Let Z1, Z2 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from I, where each VN in I is connected to fewer type 2 edges than to type 1
edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and
each of the other CNs is satisfied, and to 0 otherwise. Thus, we have

EΛ,P
AS (a, b) =

(
n

a

)
Pr{Z3 = 1} (8.37)

and

Pr{Z3 = 1} =
∑
e,w

Pr{Z1 = e, Z2 = w} × Pr{Z3 = 1|Z1 = e, Z2 = w}

=
∑
e,w

coeff (f(t, s1, s2)n, tase
1s

w
2 )(

n
a

) ×
coeff

(
g(x1, x2, y)n, xe

1x
w
2 y

b
)

(
nd̄v
e+w

)(
e+w

e

) .
(8.38)

■

Next, we analyze the normalized logarithmic asymptotic distribution of ASs and present
an efficient way to compute it.

The exact average number of (a, b) ASs derived in Lemma 8.4 is difficult to compute
for large block length n. As n→∞, one can use the Hayman Formula in Lemma 3.1 to
derive the normalized logarithmic asymptotic distribution of ASs for the ensemble C Λ,P

n

for a = θn and b = γn as shown in Theorem 8.3.

Theorem 8.3. The normalized asymptotic distribution of (θn, γn) ASs is

GΛ,P
AS (θ, γ) = ln(f(t, s1, s2))− θ ln(t)− γ ln(y) + ln(g(x1, x2, y))

− d̄v ln(1 + x1s1 + x2s2)
(8.39)
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where t, s1, s2, x1, x2, y are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (8.40)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2, y)
∂x1

= ẽ⋆ (8.41)

s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2, y)
∂x2

= w̃⋆ (8.42)

y
∂ ln g(x1, x2, y)

∂y
=γ (8.43)

where f(t, s1, s1) and g(x1, x2, y) are defined in (8.31) and (8.32), respectively and

ẽ⋆ =d̄v
x1s1

1 + x1s1 + x2s2
(8.44)

w̃⋆ =d̄v
x2s2

1 + x1s1 + x2s2
. (8.45)

Similar to the TS case, the expressions in Lemma 8.4 and Theorem 8.3 can be simplified
for regular ensembles. We consider the case where all the CNs are super CNs and are
associated with the linear code C of length dc, error correcting capability t and WEF W (x).
The case of SPC CNs is presented in Lemma 6.5 and Theorem 6.10.

Lemma 8.5. The average number of (a, b) ASs in the Tanner graph of a code drawn
uniformly at random from the regular ensemble is

Edv,dc
AS (a, b) =

∑
e

(
n

a

)coeff
(
g(x1, x2, y)n, xe

1x
adv−e
2 yb

)
(

ndv
adv

)(
adv
e

) coeff
(
f(s)a, sadv−e

)
(8.46)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (8.47)

g(x1, x2, y) =
W (x1) + y

 dc∑
k=1

t∑
δ=1

min(δ,dc−k)∑
j=0

(
h

h− j

)(
dc − h
δ − j

)
Wh×

(xh−j
1 xk−h+j

2 − xk
1) + (1 + x1)dc −W (x1)

)]ξ (8.48)

where h = k − 2δ + 2j.
The Lemma can be proved using Lemma 8.4.

We show now that to compute the normalized logarithmic asymptotic distribution of
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ASs for regular codes, one must solve 3 equations instead of 6 for the irregular case.

Theorem 8.4. The normalized asymptotic distribution of (θn, γn) ASs for the regular
ensemble is

Gdv,dc
AS (θ, γ) =− θdv ln(x1 + x2s)− γ ln(y)

+ ln (g(x1, x2, y)) + θ ln (f(s))− (dv − 1)Hb(θ)
(8.49)

where

y = γ

ξ − γ
W (x1)

dc∑
k=1

t∑
δ=1

min(δ,dc−k)∑
j=0

(
h

h−j

)(
dc−h
δ−j

)
(xh−j

1 xk−h+j
2 − xk

1)Wh + (1 + x1)dc −W (x1)
(8.50)

and s1, x1, x2 are the unique positive solutions of

θs
dln f(s)

ds =x2
∂ ln g(x1, x2, y)

∂x2
= (θdv − ẽ⋆) (8.51)

x1
∂ ln g(x1, x2, y)

∂x1
=ẽ⋆g(x1, x2, y) (8.52)

where f(s) and g(x1, x2, y) are defined in (8.47) and (8.48), respectively, and

ẽ⋆ = θdv
x1

x1 + x2s
. (8.53)

The proof follows the same steps of the proof of Theorem 6.8.

8.2.3 Elementary Absorbing Set Distribution

The following Lemma gives the EAS enumerator for GLDPC code ensembles.

Lemma 8.6. The average number of (a, b) EASs in the Tanner graph of a code drawn
uniformly at random from the LDPC ensemble C Λ,P

n is

EΛ,P
EAS(a, b) =

∑
e

coeff
(
g(x1, x2)n, xe

1x
b
2

)
(

nd̄v
e+b

)(
e+b

b

) coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
(8.54)

where f(t, s1, s2) is defined in (8.31) and

g(x1, x2) =
nc∏

τ=1
Aτ (x1, x2)ξPτ (8.55)
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and

Aτ (x1, x2) =


1 +

(
nτ

2

)
x2

1 + nτx2 if Cτ is an SPC code

1 +W
(τ)
dmin,τ

x
dmin,τ

1 + nτx2 otherwise.
(8.56)

Proof. Consider the Tanner graph of a code drawn randomly from the ensemble C Λ,P
n . We

randomly choose a set I of a VNs and assign the value 1 to each VN in the set with a
uniform distribution over all possibilities. As for ASs, we have 2 types of edges connected
to the VNs in I. Edges of the first type don’t carry flip messages and the edges of the
second type are the ones carrying flip messages. For EASs an unsatisfied super CN of type
τ is connected to only one VN in I, considering the received vector z with wH(z) = 1,
since tτ ≥ 1, the output of the BDD is the all-zeros vector. Thus, the super CN sends a flip
message to the VN in I. The edge connecting the VN from I and the super CN is then of
type 2. The same holds for SPC CNs. Since we have b unsatisfied CNs and each of them is
connected to exactly one VNs in I, we have b type 2 edges. Let α(a, e, b) be the number of
ways to choose a VNs such that exactly e type 1 edges and b type 2 edges emanate from
them and for each of these VNs n(f)

v < dv/2. Similar to the AS case, we obtain

α(a, e, b) = coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
.

Let β(b, e) be the number of ways to choose e type 1 edges such that there are exactly
b unsatisfied CNs connected each to exactly one VN from I and where all satisfied CNs
of type τ are connected to dmin,τ VNs from I. The corresponding generating function
is ∑e,b β(e, b)xe

1x
b
2. We clarify briefly the derivation of Aτ (x1, x2). Each satisfied CN is

connected to dmin,τ VN from I. The generating function of a satisfied CN of type τ is then

gc(x1) := 1 +W
(τ)
dmin,τ

x
dmin,τ

1 .

For a degree dc unsatisfied super CN of type τ , the received vector z is not a valid codeword
and has weight 1. Since tτ ≥ 1, the super CN corrects the error and sends a flip message
to the VN from I. The same holds for SPC CNs. We obtain the generating function
gc̄(x2) := nτx2 for an unsatisfied type τ CN. Note that for an LDPC code, where all CNs
are SPC codes, g(x1, x2) in (8.55) simplifies to (6.154). We have

β(e, b) = coeff
(
g(x1, x2)n, xe

1x
b
2

)
.
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We randomly choose a set I of a VNs with a uniform distribution over all
(

n
a

)
possibilities.

Let Z1 and Z2 be two RVs indicating, respectively, the number of type 1 and type 2 edges
emanating from I, where each VN in I is connected to strictly fewer type 2 edges than
type 1 edges. Further, let Z3 be a RV that is equal to 1 if there are exactly b unsatisfied
CNs, and is equal to 0 otherwise. We have

EΛ,P
EAS(a, b) =

(
n

a

)
Pr{Z3 = 1} (8.57)

and
Pr{Z3 = 1} =

∑
e

Pr{Z1 = e, Z2 = b}Pr{Z3 = 1|Z1 = e, Z2 = b}

=
∑

e

coeff
(
f(t, s1, s2)n, tase

1s
b
2

)
(

n
a

) coeff
(
g(x1, x2)n, xe

1x
b
2

)
(

nd̄v
e+b

)(
e+b

b

) .
(8.58)

■

Next, we analyze the normalized logarithmic asymptotic distribution of EAS and present
an efficient way to compute it.

Theorem 8.5. The normalized asymptotic distribution of (θn, γn) EASs for the ensemble
is

GΛ,P
EAS(θ, γ) =− d̄v ln(d̄v) + (d̄v − γ) ln(d̄v − γ)− θ ln(t)− (d̄v − γ) ln(1 + x1s1)

+ ln (g(x1, x2)) + ln (f(t, s1, s2))− γ ln(x2s2) + γ ln(γ)
(8.59)

where t, s1, s2, x1, x2 are the unique positive solutions of

t
∂ ln f(t, s1, s2)

∂t
=θ (8.60)

s1
∂ ln f(t, s1, s2)

∂s1
=x1

∂ ln g(x1, x2)
∂x1

= ẽ⋆ (8.61)

s2
∂ ln f(t, s1, s2)

∂s2
=x2

∂ ln g(x1, x2)
∂x2

= γ (8.62)

and where f(t, s1, s2) and g(x1, x2) are defined in (8.31) and (8.55), respectively, and

ẽ⋆ = (d̄v − γ) x1s1

1 + x1s1
. (8.63)

We now derive the EAS finite-length and asymptotic distributions for the regular en-
sembles. Suppose all the CNs are super CNs and are associated with the linear code C of
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length dc, minimum distance dmin and WEF W (x). The case of SPC CNs is presented in
Lemma 6.7 and Theorem 6.12.

Lemma 8.7. The average number of (a, b) EASs in the Tanner graph of a code drawn
uniformly at random from the regular ensemble is

Edv,dc
EAS (a, b) =

(
m

b

)(
n

a

)dc
b coeff

(
g(x)m−b, xadv−b

)
(

ndv
adv

)(
adv
b

) coeff
(
f(s)a, sb

)
(8.64)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (8.65)

g(x) =1 +Wdminx
dmin . (8.66)

The Lemma can be easily derived from Lemma 8.6.

We show now that to compute the normalized logarithmic asymptotic distribution of
EASs for regular codes, one must solve one equation compared to 5 for the irregular case.

Theorem 8.6. The normalized asymptotic distribution of (θn, γn) EASs for the regular
GLDPC ensemble is

Gdv,dc
EAS (θ, γ) =− (dv − 1)Hb(θ)− dvθHb

(
γ

θdv

)
+ γ ln(dc)− γ ln(s)

+ (ξ − γ) ln (g(x)) + θ ln (f(s))− (θdv − γ) ln(x) + ξHb

(
γ

ξ

) (8.67)

where

x =
(

θdv − γ
Wdmin(ξdmin − θdv − γ(dmin − 1))

) 1
dmin

(8.68)

and s is the unique positive solution of

θs
dln f(s)

ds = γ (8.69)

where f(s) is defined in (8.65). The proof of the Theorem is similar to the one of Theorem
6.8.
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8.2.4 Fully Absorbing Set Distribution

In this section, we derive the FAS enumerator for GLDPC codes and we present an analytical
method for evaluating the normalized logarithmic asymptotic distribution of FASs.

Lemma 8.8. The average number of (a, b) FASs in the Tanner graph of a code drawn
randomly from the ensemble C Λ,P

n is

EΛ,P
FAS(a, b) =

∑
e,w,l

coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)

(
nd̄v
e+w

)(
e+w

e

)(
nd̄v−e−w

l

) ×

coeff(f(t, s1, s2, s3)n, tase
1s

w
2 s

l
3)

(8.70)

where

f(t, s1, s2, s3) =
dmax

v∏
j=1

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj1

3 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(8.71)

g(x1, x2, x3, y) =
nc∏

τ=1
Aτ (x1, x2, x3, y)ξPτ (8.72)

and

Aτ (x1, x2, x3, y) =



(1+x1)nτ +(1−x1)nτ

2 + y (x3+x2)nτ −(x3−x2)nτ

2 Cτ is SPC

W (τ)(x1) + y

[
nτ∑

k=1

tτ∑
δ=1

min(δ,nτ −k)∑
j=0

(
h

h−j

)(
nτ −h
δ−j

)
×

(xh−j
1 xk−h+j

2 xj
3 − xk

1)W (τ)
h + (1 + x1)nτ −W (τ)(x1)

]otherwise (8.73)

where h = k − δ + 2j.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
C Λ,P

n . We randomly choose a set I of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We have 3 types of edges. Edges of
the first type are connected to the VNs in I and don’t carry flip messages, the edges of
the second type are the ones connected to the VNs in I and carrying flip messages and
the edges of the third type are connected to the VNs in V \ I and carry flip messages.
Compared to ASs, we differentiate between the edges connected to the VNs in V \ I that
carry flip messages and the ones not carrying flip messages. This is needed to include the
additional constraint on the VNs in V \ I imposed by the FAS. Let α(a, e, w, l) be the
number of ways to choose a VNs such that exactly e type 1 edges, w type 2 edges emanate



238 8 Enumerators for Binary GLDPC Code Ensembles

from them and l type 3 edges emanate from the other VNs and for each VNs n(f)
v < dv/2.

The corresponding generating function is ∑a,e,w,l α(a, e, w, l)tase
1s

w
2 s

l
3. Consider a VN v of

degree j. Let j − j1 and j1 be, respectively, the number of type 1 and 2 edges connected to
v. Again, we can either include this VN in I or not. If we skip it, then we obtain 0 nodes
and 0 type 1 and type 2 edges and j1 type 3 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋} (since
for the VNs in V \ I we have n(f)

v < dv/2). If we choose it, then we will have 1 node, j − j1

type 1 edges and j1 type 2 edges where j1 ∈ {0, 1, . . . , ⌊(j − 1)/2⌋} (since for the VNs in
I we have n(f)

v < dv/2). Considering all possible VN degrees, the generating function is
f(t, s1, s2, s3)n. Thus, we have

α(a, e, w, l) = coeff
(
f(t, s1, s2, s3)n, tase

1s
w
2 s

l
3

)
.

Let β(b, e, w, l) be the number of ways to choose e type 1 edges, w type 2 edges and l

type 3 edges such that there are exactly b unsatisfied CNs. The corresponding generating
function is ∑b,e,w,l β(b, e, w, l)ybxe

1x
w
2 x

l
3. We clarify briefly the derivation of Aτ (x1, x2, x3, y)

for super CNs. A CN of type τ is satisfied if it recognizes a valid local codeword when the
edges connected to I are assigned the value 1 and the other edges the value 0. In that case,
the CN doesn’t send flip messages to its neighboring VNs in I, i.e., the number of type 1
edges connected that CN is equal to the weight of the codeword and the number of type 2
and 3 edges is 0. The generating function of a satisfied CN of type τ is then

gc(x1, y) :=
nτ∑

k=0
W

(τ)
k xk

1 = W (τ)(x1). (8.74)

For an unsatisfied super CN of type τ , the received vector z is not a valid codeword. Given
z ∈ Fnτ

2 \ Cτ of weight k, the decoded vector ĉ is a codeword if ∃c ∈ Cτ with dH(z, c) ≤ tτ .
Consider codewords of weight h, the number of which is W (τ)

h . For a given c ∈ Cτ with
wH(c) = h, assume z has h− j ones in h− j out of the h entries where c is 1. Thus, z has
k − (h− j) ones in k − (h− j) out of the nτ − h positions where c is zero. The number
of possibilities is

(
h

h−j

)(
nτ −h

k−h+j

)
. Note that the number of type 1 edges is the number of

positions where both c and z are 1 which is h− j, the number of type 2 edges is the number
of positions where c is zero and z is 1 which is k− h+ j and the number of type 3 edges is
the number of positions where c is 1 and z is 0 which is j and dH(z, c) = k−h+2j =: δ. We
require 1 ≤ δ ≤ tτ so that the decoded vector is c (δ ≥ 1 since z is not a valid codeword).
By summing over δ = 1, . . . , tτ , j = 0, . . . ,min(δ, nτ − k) and over all possible weights that



8.2 Enumerators for Unstructured GLDPC Ensembles 239

z can have we obtain the generating function

y
nτ∑

k=1

tτ∑
δ=1

min(δ,nτ −k)∑
j=0

(
h

h− j

)(
nτ − h
δ − j

)
xh−j

1 xk−h+j
2 xj

3W
(τ)
h . (8.75)

Consider now the case of z ∈ Fnτ
2 \ Cτ of weight k such that ∄c ∈ Cτ with dH(z, c) ≤ tτ .

The decoded vector in that case is z and the super CN will not send any flip messages
to its neighboring VNs in I, i.e., the number of type 1 edges connected that CN is equal
to the weight of the codeword. Moreover, the number of type 2 and 3 edges is 0 and we
obtain the generating function

y
nτ∑

k=1

(nτ

k

)
−W (τ)

k −
tτ∑

δ=1

min(δ,nτ −k)∑
j=0

(
h

h− j

)(
nτ − h
δ − j

)
W

(τ)
h

xk
1. (8.76)

Consider now an SPC node. An SPC node is satisfied if it is connected an even number of
times (including zero) to I. In this case, it doesn’t send any flip messages. The generating
function of a satisfied SPC node is

gc(x1, y) := y0 ∑
0≤i≤nτ
i is even

(
nτ

i

)
xi

1 = 1
2 [(1 + x1)nτ + (1− x1)nτ ] .

The SPC node is unsatisfied if it is connected an even number of times to I. In this case,
it sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
SPC node is

gc̄(x2, x3, y) := y1 ∑
0≤i≤nτ
i is odd

(
nτ

i

)
xi

2x
nτ −i
3 = y

2 [(x3 + x2)nτ − (x3 − x2)nτ ] .

Note that for an LDPC code, where all CNs are SPC codes, g(x1, x2, x3, y) in (8.72)
simplifies to (6.170). We have

β(b, e, w, l) = coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)
.

Let Z1, Z2 and Z3 be three RVs indicating, respectively, the number of type 1, type 2, and
type 3 edges, where each VN in I is connected to strictly less type 2 edges than to type 1
edges and each VN in V \ I of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z4 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
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the other CNs is satisfied, and to 0 otherwise. We have

EΛ,P
FAS(a, b) =

(
n

a

)
Pr{Z4 = 1} (8.77)

and

Pr{Z4 = 1} =
∑
e,w,l

Pr{Z1 = e, Z2 = w,Z3 = l}Pr{Z4 = 1|Z1 = e, Z2 = w,Z3 = l}

=
∑
e,w,l

coeff
(
f(t, s1, s2, s3)n, tase

1s
w
2 s

l
3

)
(

n
a

) ×

coeff
(
g(x1, x2, x3, y)n, xe

1x
w
2 x

l
3y

b
)

(
nd̄v
e+w

)(
e+w

e

)(
nd̄v−e−w

l

) .

(8.78)

■

Similar to TSs and ASs, we study next the normalized asymptotic distribution of (θn, γn)
FASs and present an efficient way to compute it.

Theorem 8.7. The normalized asymptotic distribution of (θn, γn) FASs is

GΛ,P
FAS(θ, γ) =− d̄v ln(1 + x1s1 + x2s2 + x3s3)− θ ln(t) + ln (g(x1, x2, x3, y))

− γ ln(y) + ln (f(t, s1, s2, s3))
(8.79)

where t, s1, s2, s3, x1, x2, x3, y are the unique positive solutions of

t
∂ ln f(t, s1, s2, s3)

∂t
=θ (8.80)

s1
∂ ln f(t, s1, s2, s3)

∂s1
=x1

∂ ln g(x1, x2, x3, y)
∂x1

= ẽ⋆ (8.81)

s2
∂ ln f(t, s1, s2, s3)

∂s2
=x2

∂ ln g(x1, x2, x3, y)
∂x2

= w̃⋆ (8.82)

s3
∂ ln f(t, s1, s2, s3)

∂s3
=x3

∂ ln g(x1, x2, x3, y)
∂x3

= l̃⋆ (8.83)

y
∂ ln g(x1, x2, x3, y)

∂y
=γ (8.84)

where f(t, s1, s1, s3) and g(x1, x2, x3) are defined in (8.71) and (8.72), respectively, and

ẽ⋆ =d̄v
x1s1

1 + x1s1 + x2s2 + x3s3
(8.85)



8.2 Enumerators for Unstructured GLDPC Ensembles 241

w̃⋆ =d̄v
x2s2

1 + x1s1 + x2s2 + x3s3
(8.86)

l̃⋆ =d̄v
x3s3

1 + x1s1 + x2s2 + x3s3
. (8.87)

The proof of the Theorem is similar to the one of Theorem 6.7.

Similar to the TS and AS cases, the expressions in Lemma 8.8 and Theorem 8.7 can be
simplified for regular ensembles. We consider the case where all the CNs are super CNs
and are associated with the linear code C of length dc, error correcting capability t and
WEF W (x). The case of SPC CNs is presented in Lemma 6.9 and Theorem 6.14.

Lemma 8.9. The average number of (a, b) FASs in the Tanner graph of a code drawn
uniformly at random from the regular ensemble is

Edv,dc
FAS (a, b) =

∑
e,l

coeff
(
g(x1, x2, x3, y)n, xe

1x
adv−e
2 xl

3y
b
)

(
ndv
adv

)(
adv
e

)(
(n−a)dv

l

)
(
n

a

)
coeff

(
f(s1)a, sadv−e

1

)
coeff

(
f(s2)n−a, sl

2

) (8.88)

where

f(s) =
⌊ dv−1

2 ⌋∑
j1=0

(
dv

j1

)
sj1 (8.89)

and

g(x1, x2, x3, y) =
W (x1) + y

 dc∑
k=1

t∑
δ=1

min(δ,dc−k)∑
j=0

(
h

h− j

)(
dc − h
δ − j

)
Wh×

(xh−j
1 xk−h+j

2 xj
3 − xk

1) + (1 + x1)dc −W (x1)
)]ξ (8.90)

where h = k − 2δ + 2j. The Lemma can be proved using Lemma 8.8.

We show now that to compute the normalized logarithmic asymptotic distribution of
FASs for regular codes, one must solve 5 equations instead of 8 for the irregular case.

Theorem 8.8. The normalized asymptotic distribution of (θn, γn) FASs for the regular
ensemble is

Gdv,dc
FAS (θ, γ) =− θdv ln(x1 + x2s1)− γ ln(y)− (dv − 1)Hb(θ) + ln (g(x1, x2, x3, y))

+ θ ln (f(s1)) + (1− θ) ln (f(s2))− (1− θ)dv ln(1 + x3s2)
(8.91)
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where

y = γ

ξ − γ
W (x1)

dc∑
k=1

t∑
δ=1

min(δ,dc−k)∑
j=0

(
h

h−j

)(
dc−h
δ−j

)
(xh−j

1 xk−h+j
2 xj

3 − xk
1)Wh + (1 + x1)dc −W (x1)

and s1, s2, x1, x2, x3 are the unique positive solutions of

θs1
dln f(s1)

ds1
=x2

∂ ln g(x1, x2, x3, y)
∂x2

= (θdv − ẽ⋆) (8.92)

(1− θ)s2
dln f(s2)

ds2
=x3

∂ ln g(x1, x2, x3, y)
∂x3

= l̃⋆ (8.93)

x1
∂ ln g(x1, x2, x3, y)

∂x1
=ẽ⋆ (8.94)

where f(s1) and g(x1, x2, x3, y) are defined in (8.89) and (8.90), respectively, and

ẽ⋆ =θdv
x1

x1 + x2s1
(8.95)

l̃⋆ =(1− θ)dv
x3s2

1 + x3s2
. (8.96)

The proof follows the same steps of the proof of Theorem 6.8.

8.2.5 Elementary Fully Absorbing Set Distribution

In this section, we derive the finite-length and asymptotic EFAS enumerators for GLDPC
codes.

Lemma 8.10. The average number of (a, b) EFASs in the Tanner graph of a code drawn
randomly from the ensemble C Λ,P

n is

EΛ,P
EFAS(a, b) =

∑
e,l

coeff
(
g(x1, x2, x3)n, xe

1x
b
2x

l
3

)
(

nd̄v
e+b

)(
e+b

e

)(
nd̄v−e−b

l

) coeff(f(t, s1, s2, s3)n, tase
1s

b
2s

l
3) (8.97)

where

f(t, s1, s2, s3) =
dmax

v∏
j=1

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj1

3 + t

⌊ j−1
2 ⌋∑

j1=0

(
j

j1

)
sj−j1

1 sj1
2


Λj

(8.98)

g(x1, x2, x3) =
nc∏

τ=1
Aτ (x1, x2, x3)ξPτ (8.99)
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and

Aτ (x1, x2, x3) =


1 +

(
nτ

2

)
x2

1 + nτx2x
nτ −1
3 Cτ is SPC

1 +W
(τ)
dmin,τ

x
dmin,τ

1 + nτx2 otherwise.
(8.100)

Note that, using BDD, for a received sequence z with wH(z) = 1 and tτ ≥ 1, we have
ĉ = 0. That means, super check nodes never send flip messages to VNs outside I. Thus,
if all CNs are super check nodes, the condition that for each VN outside I, n(f)

v < dv/2 is
always fulfilled. In that case, EASs and EFASs are equivalent.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
C Λ,P

n . We randomly choose a set I of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. We have 3 types of edges. Edges of
the first type are connected to the VNs in I and don’t carry flip messages, the edges of
the second type are the ones connected to the VNs in I and carrying flip messages and
the edges of the third type are connected to the VNs in V \ I and carry flip messages.
Compared to ASs, we differentiate between the edges connected to the VNs in V \ I that
carry flip messages and the ones not carrying flip messages. This is needed to include the
additional constraint on the VNs in V \ I imposed by the FAS. As for EASs, there are b
type 2 edges. Let α(a, e, b, l) be the number of ways to choose a VNs such that exactly e
type 1 edges, b type 2 edges emanate from them and l type 3 edges emanate from the other
VNs and for each VNs n(f)

v < dv/2. Similar to the FAS case, we obtain

α(a, e, b, l) = coeff
(
f(t, s1, s2, s3)n, tase

1s
b
2s

l
3

)
.

Let β(e, b, l) be the number of ways to choose e type 1 edges, b type 2 edges and l type 3 edges
such that there are exactly b unsatisfied CNs connected to exactly one VN from I and where
all satisfied CNs of type τ are connected to dmin,τ VNs from I. The corresponding generating
function is ∑e,b,l β(e, b, l)ybxe

1x
b
2x

l
3. We clarify briefly the derivation of Aτ (x1, x2, x3). Each

satisfied CN is connected to dmin,τ VN from I, its generating function is then

gc(x1) := 1 +W
(τ)
dmin,τ

x
dmin,τ

1 .

For an unsatisfied super CN of type τ , the received vector z with wH(z) = 1. Since tτ ≥ 1,
using BDD, ĉ = 0. Thus, for EFASs, each super CN sends exactly one flip message to
its neighboring VN from I. Its generating function is gc̄(x2) := nτx2. Consider now an
unsatisfied SPC node connected to exactly one VN from I. It sends flip messages to all its
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neighboring VNs. Its generating function is gc̄(x2, x3) := nτx2x
nτ −1
3 . We have

β(e, b, l) = coeff
(
g(x1, x2, x3)n, xe

1x
b
2x

l
3

)
.

Let Z1, Z2 and Z3 be three RVs indicating, respectively, the number of type 1, type 2 and
type 3 edges, where each VN in I is connected to strictly less type 2 edges than to type 1
edges and each VN in V \ I of degree j is connected to strictly less than j/2 type 3 edges.
Further, let Z4 be a RV that is equal to 1 if there are exactly b unsatisfied CNs and each of
the other CNs is satisfied, and to 0 otherwise. We have

EΛ,P
EFAS(a, b) =

(
n

a

)
Pr{Z4 = 1} (8.101)

and

Pr{Z4 = 1} =
∑
e,l

Pr{Z1 = e, Z2 = b, Z3 = l}Pr{Z4 = 1|Z1 = e, Z2 = b, Z3 = l}

=
∑
e,b,l
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(
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) coeff
(
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b
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l
3

)
(

nd̄v
e+b

)(
e+b

e

)(
nd̄v−e−b

l

) .

(8.102)

■

We study next the normalized asymptotic distribution of (θn, γn) EFASs and present an
efficient way to compute it.

Theorem 8.9. The normalized asymptotic distribution of (θn, γn) EFASs is

GΛ,P
EFAS(θ, γ) =(d̄v − γ) ln(d̄v − γ)− d̄v ln(d̄v)− (d̄v − γ) ln(1 + x1s1 + x3s3)

+ γ ln(γ)− θ ln(t)− γ ln(x2s2) + ln (g(x1, x2, x3))
+ ln (f(t, s1, s2, s3))

(8.103)

where t, s1, s2, s3, x1, x2, x3 are the unique positive solutions of

t
∂ ln f(t, s1, s2, s3)

∂t
=θ (8.104)

s1
∂ ln f(t, s1, s2, s3)

∂s1
=x1

∂ ln g(x1, x2, x3)
∂x1

= ẽ⋆ (8.105)

s2
∂ ln f(t, s1, s2, s3)

∂s2
=x2

∂ ln g(x1, x2, x3)
∂x2

= γ (8.106)

s3
∂ ln f(t, s1, s2, s3)

∂s3
=x3

∂ ln g(x1, x2, x3)
∂x3

= l̃⋆ (8.107)
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Figure 8.2: Expected and average distributions of (2, b) TSs of the ensemble in Example
8.1 for n = 155.

Table 8.1: The error profiles for the PBF decoder.
SNR [dB] (2,3) (2,4) (3,2) (3,3) (3,4) (3,5) (3,6) (4,4) (4,6) (4,7) (4,8) (5,7) (6,7)

8.6 17 797 9 57 2 32 68 0 2 7 7 1 1
9 16 820 12 73 4 18 48 1 0 7 1 0 0

9.4 17 872 5 63 0 15 27 1 0 0 0 0 0

where f(t, s1, s2, s3) and g(x1, x2, x3) are defined in (8.98) and (8.99), respectively, and

ẽ⋆ =(d̄v − γ) x1s1

1 + x1s1 + x3s3
(8.108)

l̃⋆ =(d̄v − γ) x3s3

1 + x1s1 + x3s3
. (8.109)

Consider now a regular GLDPC code ensemble, where all the CNs are associated with
the same linear code C . If C is an SPC, we obtain Lemma 6.7 and Theorem 6.12. If
the CNs are super CNs, then an EFAS is equivalent to an EAS, and we obtain 8.7 and
Theorem 8.6.

Example 8.1. Consider regular GLDPC code ensembles with VN degree 3, length n ∈
{155, 930} and the (31, 26) Hamming code as component code. We generate from the length
155 ensemble 1000 random codes without using any girth optimization techniques. We
provide in Fig. 8.2 the average multiplicity of the (2, b) TSs within these codes and compare
them with the expected enumerator given in (8.88) to check the presented theoretical
results. Remarkably, the average multiplicities of TSs are close to the ensemble averages.
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Figure 8.3: FER and BER versus Eb/N0[dB] for the PBF decoder. The dashed lines
represent the contribution of the dominant (2, 4) FAS to the FER and BER.

In the following, we present experimental results to check the effect of the TSs and
(fully) ASs on the performance of GLDPC codes. We consider a code picked randomly
from the length 155 ensemble. We transmit the all-zero codeword over a biAWGN channel.
We perform a hard decision on the received sequence, thereby the biAWGN channel is
converted to a BSC, and apply the PBF algorithm. We set the maximum number of
iterations ℓmax = 20. Since the all-zero codeword is transmitted, we say that a VN is
corrupt after decoding if its corresponding final estimate is one. For each channel realization
leading to a decoding failure, we check if the subgraph containing the corrupted VNs and
their neighboring CNs is a TS or (fully) AS. In this case, we determine its size. We
collected 1000 error frames at SNRs Eb/N0 ∈ {8.6, 9, 9.4}. Table 8.1 shows the obtained
error profiles, which are converging errors, i.e., the VN estimates remain the same in the
last few iterations. All the errors provided in Table 8.1 are FASs and thus TSs and ASs.
This confirms the stability of FAS under the parallel bit flipping decoder. In this example,
all decoding failures are caused by FASs.

We can see from Table 8.1 that the (2, 4) FAS is the dominant FAS. Simulation results
of the considered GLDPC code are shown in Fig. 8.3 in terms of FER and BER versus
Eb/N0. The dashed lines represent the contribution of the dominant (2, 4) FAS to the FER
and BER. Note that at high SNR, the FER and BER are dominated by the (2, 4) FAS.

Next, we use the derived theoretical results to estimate the error floor performance of
the length 930 ensemble. We picked 50 random codes from this ensemble and simulated
their performance under the parallel bit flipping algorithm over a BSC obtained by hard-
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Figure 8.4: FER versus Eb/N0[dB] for length n = 930 codes drawn from the GLDPC code
ensemble in Example 8.1 under parallel bit flipping decoding with BDD at the
CNs and the predicted average performance (error floor).

quantizing the output of a binary-input additive white Gaussian noise channel. The
performance of the codes is provided in Fig. 8.4 in terms of FER versus Eb/N0[dB]. In
Fig. 8.4 an analytic estimate of the average error probability at large signal-to-noise ratios
is given. The estimate is based on Eq. 1 in [43], where we considered the dominant (2, 4)
FAS. As multiplicity of (2, 4) FASs, we employed the ensemble enumerator from (8.88).
The codes have an error floor performance that is close to the estimated average error
probability derived from the proposed analysis. Similar results were observed for other
block lengths.

The normalized logarithmic asymptotic distribution of TSs and (fully) ASs of this
ensemble are depicted in Fig. 8.5 for ∆ ∈ {0.005, 0.05, 0.1, 0.2, 0.3, 0.4}. We observe that
the gap between the normalized logarithmic asymptotic distributions of TSs and ASs
vanishes for small θ.

Example 8.2. Consider the rate 2/5 ensemble with Λ3 = 1, P1 = 0.8,P2 = 0.2, C1 is
the (7, 6) SPC code and C2 is the (7, 4) Hamming code. The normalized logarithmic
asymptotic distributions of (elementary) TSs and (fully) ASs, of this ensemble for ∆ ∈
{0.005, 0.05, 0.1, 0.3, 0.5} are depicted in Fig. 8.6 and Fig. 8.7, respectively. Fig. 8.8 compares
the exact value of the normalized logarithmic asymptotic distribution of TSs, obtained
from Theorem 8.1, and the approximation obtained from Corollary 8.1 for this ensemble.
Observe that the approximations are accurate for small values of θ. A comparison of
the exact value of the relative minimum ∆-TS size and its corresponding approximation
obtained from (8.18) for this ensemble and for different values of ∆ is shown in Table 8.2.
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Figure 8.5: The normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines), and fully ASs (dotted lines) of the ensemble in Example 8.1.

The relative minimum ∆-AS sizes are also provided. It can be observed that the values
obtained from (8.18), which we derived by analyzing the asymptotic distribution of TSs for
the small θ case, are very good approximations of the relative minimum ∆-TS sizes. We
can see that the values of θ⋆

TS are very close to the ones of θ⋆
AS especially for small θ. In

fact, as we can see in Fig. 8.6 and Fig. 8.7, the gap between the normalized logarithmic
asymptotic distributions of TSs and ASs vanishes for small values of θ.

We observed that this code ensemble has better TS and AS properties than the regular
(3, 7) LDPC ensemble. For instance, for ∆ = 0.005 we have θ⋆

TS = 0.0241249 while for
the regular ensemble, we have θ⋆

TS = 0.0118767. Both code ensembles have the same VN
degree distribution. For the regular (3, 7) LDPC code ensemble, all CNs are SPC codes
and for this ensemble some of the SPC CNs are replaced by the (7, 4) Hamming code.
This matches the approach in [133] to construct GLDPC codes by converting some of the
SPC CNs involving a TS into super CN corresponding to a stronger linear block code. By
converting some of the SPC CNs to super checks, the PBF decoder could correct the errors
in the TS and thus eliminate it as shown in [133]. In fact, this method improves the TS
properties of the code especially if the linear block code has good distance properties and
thus a high error correcting capability under BDD.
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Figure 8.6: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines) and fully ASs (dotted lines) of the ensemble in Example 8.2.

8.3 Trapping and Absorbing Set Enumerators for
Protograph-Based Ensembles

We derived in [66] the finite-length and asymptotic enumerators of (elementary) TSs and
(fully) ASs for protograph-based GLDPC code ensembles.

8.3.1 Trapping and Elementary Trapping Set Distributions

In this section, we derive the finite-length and asymptotic TS enumerators for protograph-
based GLDPC codes. Define the VN weight vector ϵ = [ϵ1, ϵ2, . . . , ϵnP ], where ϵj is the
number of VNs of type vj in Ta,b. Clearly, we have 0 ≤ ϵj ≤ Q ∀j ∈ {1, 2, . . . , nP} and

nP∑
j=1

ϵj = a. (8.110)

Define the edge weight vector w(ϵ) = (wg)g∈E where wg is the the number of edges of
type g in Ta,b. For a given ϵ, we have wg = ϵj if g ∈ E P

vj
. Define next the vector weight

enumerating function (VWEF) of a binary linear code which we will use to derive the TS
and (fully) AS enumerators.
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Figure 8.7: Normalized logarithmic asymptotic distributions of elementary TSs (solid lines),
elementary ASs (dashed lines), and elementary fully ASs (dotted lines) of the
ensemble in Example 8.2.

Definition 8.7. Let C be an (n, k) linear code. The VWEF of C is defined by

WC (x) =
∑
c∈C

xc (8.111)

where x = [x1, x2, . . . , xni
], xi, i ∈ {1, 2, . . . , n} are dummy variables.

Lemma 8.11. The average number of (a, b) TSs in the Tanner graph of a code drawn
randomly from the ensemble C P

n is

EP
TS(a, b) =

∑
ϵ

coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
nP∏

j=1

(
Q
ϵj

)dvj −1 (8.112)

where

Ai(xi, y) =WCi
(xi) + y

 ∏
g∈E P

ci

(1 + xg)−WCi
(xi)

 (8.113)

and Ci is the linear block code corresponding to ci and x = (xg)g∈E , xi = (xg)g∈E P
ci

, y and
xg, g ∈ E P

ci
are dummy variables.

Proof. Consider the Tanner graph of a code drawn uniformly at random from the ensemble
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Figure 8.8: Normalized logarithmic asymptotic distribution of TSs of the ensemble in
Example 8.2. The dashed lines denote the corresponding approximation obtained
from Corollary 8.1.

C P
n . We randomly choose a set I of a VNs and assign the value 1 to each VN in the set with

a uniform distribution over all possibilities. The edges connected to a VN v are assigned
the value chosen for v. Given ϵ, each vj ∈ V has ϵj replicas in Ta,b. Since there are Q copies
of each VN type in the lifted graph, the number of VN sets with weight vector ϵ is

Nv(ϵ) =
nP∏

j=1

(
Q

ϵj

)
. (8.114)

Similarly, the number of edge sets with weight vector w(ϵ) is

Ne(w(ϵ)) =
∏
g∈E

(
Q

wg

)
=

nP∏
j=1

(
Q

ϵj

)dvj

. (8.115)

Let I be a set of VNs. We assign to each of these VNs the value one and the other VNs
the value zero. Denote by Nc(b,w(ϵ)) the number of configurations with edge set weight
vector w(ϵ) that give exactly b unsatisfied CNs. Its generating function is

∑
b,w(ϵ)

Nc(b,w(ϵ))ybxw(ϵ).

A CN is satisfied if it recognizes a valid local codeword when the edges connected to I
are assigned the value 1 and the other edges the value 0 and it is unsatisfied otherwise.
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Table 8.2: The exact values of the relative minimum ∆-TS sizes, their corresponding
approximations obtained from (8.18) and the relative minimum ∆-AS sizes for
the ensemble in Example 8.2.

∆ θ⋆
TS θ⋆

TS from (8.18) θ⋆
AS

0.005 0.02412490 0.02257472 0.02412533
0.05 0.01327771 0.01285350 0.01330189
0.1 0.00740617 0.00730286 0.00746339
0.15 0.00414895 0.00413289 0.00422695
0.2 0.00227137 0.00227527 0.00235458
0.25 0.00119249 0.00119784 0.00126824
0.3 5.89737e-04 5.92944e-04 6.50374e-04
0.35 2.69265e-04 2.70679e-04 3.12226e-04
0.4 1.10733e-04 1.11223e-04 1.37493e-04

Consider a CN of type ci. If it is satisfied, its generating function is

gc(xi, y) := y0 ∑
c∈Ci

xc
i =WCi

(xi). (8.116)

If the CN is unsatisfied then its generating function is

gc̄(xi, y) := y1 ∑
c∈F

dci
2 \Ci

xc
i =y

 ∏
g∈E P

ci

(1 + xg)−WCi
(xi)

 . (8.117)

The sum gc(xi, y) + gc̄(xi, y) yields Ai(xi, y). Considering all CN types and that there are
Q CNs of each type ci, we obtain

Nc(b,w(ϵ)) = coeff
(

mP∏
i=1

Ai(xi, y)Q,xw(ϵ)yb

)
. (8.118)

Substituting these expressions in

EP
TS(a, b) =

∑
ϵ

Nv(ϵ)Nc(b,w(ϵ))
Ne(w(ϵ)) (8.119)

completes the proof. ■

Remark 8.2. Evaluating WCi
(xi) in (8.113) is complex for some (ni, ki) linear codes Ci if

ki is large. In that case, the following adapted version of the MacWilliams identity [131]
might be useful, where we consider VWEF instead of WEF.



8.3 Enumerators for Protograph-Based GLDPC Ensembles 253

Theorem 8.10. Let C be an (n, k) binary linear code with VWEF WC (x). The VWEF
of its dual code C ⊥ is

WC ⊥(x) = 1
2k
WC (x′)

n∏
i=1

(1 + xi) (8.120)

where x′ = [x′
1,x

′
2, . . . ,x

′
n] and

x′
i =1− xi

1 + xi

i = 1, 2, . . . , n. (8.121)

The proof of Theorem 8.10 can be found in Appendix 8.4.2.

We next present a simple way to compute the normalized logarithmic asymptotic distri-
bution of TSs for the ensemble C P

n .

Theorem 8.11. The normalized asymptotic distribution of (θn, γn) TSs is

GP
TS(θ, γ) = 1

nP

mP∑
i=1

lnAi(xi, y)−θ ln t−γ ln y−
nP∑

j=1

dvj −1
nP

H(nPϵ̃
⋆
j) +

∑
g∈E P

vj

ϵ̃⋆
j ln xg

 . (8.122)

The values xg for g ∈ E , the value y and ϵ̃⋆
j for j ∈ {1, . . . , nP} are the unique positive

solutions of

xg
∂ lnAi(xi, y)

∂xg

=nPw̃
⋆
g ∀i ∈ {1, . . . ,mP}, g ∈ E P

ci
(8.123)

y
∂ ln

mP∏
i=1

Ai(xi, y)

∂y
=nPγ (8.124)

(dvj − 1) ln
(

nPϵ̃
⋆
j

1− nPϵ̃⋆
j

)
=
∑

g∈E P
vj

ln xg + µ (8.125)

where (8.123) holds for all i ∈ {1, . . . ,mP}, g ∈ E P
ci

and µ is chosen to satisfy ∑j ϵ̃
⋆
j = θ,

Ai(xi, y) is defined in (8.113) and w̃⋆
g = ϵ̃⋆

j if g ∈ E P
vj

. The proof is similar to the proof of
Theorem 6.17.

Note that to compute the normalized asymptotic distribution of ETSs, we need to replace
Ai(xi, y) given in (8.113) with

Ai(xi, y) = 1 +
∑

c∈Ci:wH(c)=dmin,ci

xc
i + y

∑
g∈E P

ci

xg (8.126)
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where wH(c) is the Hamming weight of c.

8.3.2 Absorbing and Elementary Absorbing Set Distributions

The paper [47] gives an elegant approach to compute the TS enumerator of protograph-
based LDPC codes. The approach connects a flag VN to each CN, and each flag VN is
assigned a bit to satisfy its CN equation. This way a new protograph is obtained. A (a, b)
TS in the original protograph can be interpreted as a codeword of VN weight a and flag VN
weight b in the new protograph. This method can be used to determine the TS enumerator
of protograph-based GLDPC codes. However, for GLDPC codes, we cannot identify an
AS solely from its underlying topological structure since, e.g., if the constraints imposed
by a CN are not satisfied, then the node will not necessarily send flip messages in the bit
flipping algorithm. Therefore, generating functions are needed to obtain the AS enumerator
since they capture the behavior of the bit flipping decoder with BDD at the CNs.

In this section, we derive the AS and EAS enumerators for GLDPC codes and we develop
an analytical method for evaluating the normalized logarithmic asymptotic distributions of
ASs and EASs.

Lemma 8.12. The average number of (a, b) ASs in the Tanner graph of a code drawn
randomly from the ensemble C P

n is

EP
AS(a, b) =

∑
e,w

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
∏

g∈E

(
Q

eg+wg

)(
eg+wg

eg

) ×

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w


(8.127)

where

Ai(x(1)
i ,x

(2)
i , y) =



1
2

 ∏
g∈E P

ci

(1 + x(1)
g ) +

∏
g∈E P

ci

(1− x(1)
g )


+ y

1
2

 ∏
g∈E P

ci

(1 + x(2)
g )−

∏
g∈E P

ci

(1− x(2)
g )


Ci is SPC

WCi
(x(1)

i ) + y

 ∑
z∈F

dci
2 \Ci

(x(1)
i )z·ĉ(x(2)

i )z+z·ĉ

 otherwise

(8.128)
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Bj(t, s(1)
j , s

(2)
j ) =1 + t

∑
rj∈Rj

(s(1)
j )1j−rj (s(2)

j )rj (8.129)

and 1j is the length dvj all-ones vector, Rj is the set of binary vectors of length dvj and
Hamming weight ≤ ⌊(dvj − 1)/2⌋, and s(ℓ) = (s(ℓ)

g )g∈E , s(ℓ)
j = (s(ℓ)

g )g∈E P
vj

, x(ℓ) = (x(ℓ)
g )g∈E ,

x(ℓ)
i = (x(ℓ)

g )g∈E P
ci

, y, t and s(ℓ)
g , x

(ℓ)
g , g ∈ E P

ci
, ℓ = 1, 2 are dummy variables, ĉ in (8.128) is the

decoded vector with BDD and z is the received sequence at the CN. The multiplication
in z · ĉ is an element-wise multiplication and the addition in z + z · ĉ is an element-wise
modulo 2 addition. Note that the i-th entry of z · ĉ is 1 if zi = ĉi = 1 and zero otherwise
and the i-th entry of z + z · ĉ is 1 if zi = 1 and ĉi = 0 and zero otherwise.

Proof. We randomly choose a set I of a VNs and assign the value 1 to each VN in the
set with a uniform distribution over all possibilities. The edges connected to a VN v
are assigned the value chosen for v. We define the edge weight vectors e = (eg)g∈E and
w = (wg)g∈E where eg represents the number of edges of type g in Aa,b not carrying flip
messages and wg is the number of edges of type g in Aa,b carrying flip messages.

Denote by Nc(b, e,w) the number of configurations with edge set weight vectors e,w

that give exactly b unsatisfied CNs. Its generating function is

∑
b,e,w

Nc(b, e,w)yb(x(1))e(x(2))w.

A CN is satisfied if it recognizes a valid local codeword when the edges connected to I
are assigned the value 1 and the other edges the value 0. We clarify briefly the derivation
of Ai(x(1)

i ,x
(2)
i , y) for super CNs. Consider a super CN of type ci. If it is satisfied, then it

doesn’t send flip messages to its neighboring VNs in I, i.e., all the edges emanating from I
and connected to that CN don’t carry flip messages. Thus, the generating function of a
satisfied super CN is

gc(x(1)
i , y) := y0 ∑

c∈Ci

(x(1)
i )c = WPi

(x(1)
i ).

For an unsatisfied CN, the received vector z is not a valid codeword. Given z ∈ Fdci
2 \ Ci,

we denote by ĉ the decoded vector with BDD. The i-th entry of z · ĉ is 1 if zi = ĉi = 1 and
zero otherwise and the i-th entry of z + z · ĉ is 1 if zi = 1 and ĉi = 0 and zero otherwise.
If zi = ĉi = 1 (i-th entry of z · ĉ is 1), then the corresponding edge does not carry a flip
message and if zi = 1 and ĉi = 0 (the i-th entry of z + z · ĉ is 1), then the corresponding
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edge carries a flip message. The generating function of an unsatisfied super CN is

gc̄(x(1)
i ,x

(2)
i , y) := y

∑
z∈F

dci
2 \Ci

(x(1)
i )z·ĉ(x(2)

i )z+z·ĉ.

The SPC node is unsatisfied if it is connected an odd number of times to I. In this case, it
sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
SPC node is

gc̄(x(2)
i , y) := 1

2y

 ∏
g∈E P

ci

(1 + x(2)
g )−

∏
g∈E P

ci

(1− x(2)
g )

 .
Considering all CN types and that there are Q CNs of each type ci, we obtain

Nc(b, e,w) = coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)Q, (x(1))e(x(2))wyb

)
(8.130)

where Ai(x(1)
i ,x

(2)
i , y) is defined in (8.128).

Denote by Nv(a, e,w) the number of configurations with a VNs and edge set weight
vectors e,w such that for each of these VNs n(f)

v ≤ ⌊(dv − 1)/2⌋. Its generating function is

∑
a,e,w

Nv(a, e,w)ta(s(1))e(s(2))w.

Consider a VN of type vj. Let r(j) = (r(j)
g )g∈E P

vj
be a length dvj binary vector with r(j)

g = 1 if
the type g edge carries a flip message and r(j)

g = 0 otherwise. Note that if the VN of type vj

belongs to I, the Hamming weight of r(j) should satisfy wH(r(j)) = ∑
g∈E P

vj
r(j)

g ≤ ⌊(dvj−1)/2⌋.
We can either include this VN type in I or not. If we skip it we obtain the term 1 in
Bj(t, s(1)

j , s
(2)
j ) corresponding to zero VNs and zero edges. If we include it in the set, we will

have 1 node, dvj − wH(r(j)) edges emanating not carrying flip messages and wH(r(j)) edges
carrying flip messages with wH(r(j)) ≤ ⌊(dvj − 1)/2⌋. Considering all possible binary vectors
r(j), we obtain the second term in Bj(t, s(1)

j , s
(2)
j ). Taking into account all possible VN types

and that there are Q VNs of each type, we obtain

Nv(a, e,w) = coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )Q, ta(s(1))e(s(2))w

 (8.131)

where Bj(t, s(1)
j , s

(2)
j ) is defined in (8.129).
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The number of edge sets with weight vectors e and w is

Ne(e,w) =
∏
g∈E

(
Q

eg + wg

)(
eg + wg

eg

)
. (8.132)

Substituting these expressions in

EP
AS(a, b) =

∑
e,w

Nv(a, e,w)Nc(b, e,w)
Ne(e,w) (8.133)

completes the proof. ■

Theorem 8.12. The normalized asymptotic distribution of (θn, γn) ASs is

GP
AS(θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i , y)− γ ln y + 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j )

− θ ln t− 1
nP

∑
g∈E

ln
(
1 + x(1)

g s
(1)
g + x(2)

g s
(2)
g

) (8.134)

The values t, s(1)
g , s(2)

g , x(1)
g , x(2)

g , for g ∈ E and y are the unique positive solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j )

∂t
=nPθ (8.135)

s(1)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(1)
g

=x(1)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(1)
g

= nPẽ
⋆
g (8.136)

s(2)
g

∂ lnBj(t, s(1)
j , s

(2)
j )

∂s(2)
g

=x(2)
g

∂ lnAi(x(1)
i ,x

(2)
i , y)

∂x(2)
g

= nPw̃
⋆
g (8.137)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i , y)

∂y
=nPγ (8.138)

where (8.136) and (8.137) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
,

Bj(t, s(1)
j , s

(2)
j ) and Ai(x(1)

i ,x
(2)
i , y) are defined in (8.129) and (8.128), respectively, and

ẽ⋆
g = 1

nP

x(1)
g s

(1)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g

(8.139)

w̃⋆
g = 1

nP

x(2)
g s

(2)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g

. (8.140)

The proof is similar to the one of Theorem 6.17. Note that to compute the normalized
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asymptotic distribution of EASs, we must replace Ai(x(1)
i ,x

(2)
i , y) given in (8.128) with

Ai(x(1)
i ,x

(2)
i , y) =


1 + ∑

g1,g2∈E P
ci

g1 ̸=g2

x(1)
g1x

(1)
g2 + y

∑
g∈E P

ci

x(2)
g if Ci is a SPC code

1 + ∑
c∈Ci:wH(c)=dmin,ci

(x(1)
i )c + y

∑
g∈E P

ci

x(2)
g otherwise.

(8.141)

8.3.3 Fully and Elementary Fully Absorbing Set Distributions

In this section, we derive the FAS and EFAS enumerators for GLDPC codes and we develop
an analytical method for evaluating the normalized logarithmic asymptotic distributions of
FASs and EFASs.

Lemma 8.13. The average number of (a, b) FASs in the Tanner graph of a code drawn
randomly from the ensemble C P

n is

EP
FAS(a, b) =

∑
e,w,l

coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y)Q, (x(1))e(x(2))w(x(3))lyb

)
∏

g∈E

(
Q

eg+wg

)(
eg+wg

eg

)(
Q−eg−wg

lg

) ×

coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j , s

(3)
j )Q, ta(s(1))e(s(2))w(s(3))l


(8.142)

where

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y) =



1
2

 ∏
g∈E P

ci

(1 + x(1)
g ) +

∏
g∈E P

ci

(1− x(1)
g )


+ y

1
2

 ∏
g∈E P

ci

(x(3)
g + x(2)

g )−
∏

g∈E P
ci

(x(3)
g − x(2)

g )


Ci is SPC

WCi
(x(1)

i )+y ∑
z∈F

dci
2 \Ci

(x(1)
i )z·ĉ(x(2)

i )z+z·ĉ(x(3)
i )ĉ+z·ĉ otherwise.

(8.143)

Bj(t, s(1)
j , s

(2)
j , s

(3)
j ) =

∑
rj∈Rj

(s(3)
j )rj + t

∑
rj∈Rj

(s(1)
j )1j−rj (s(2)

j )rj (8.144)

and 1j is the length dvj all-ones vector, Rj is the set of binary vectors of length dvj and
Hamming weight ≤ ⌊(dvj − 1)/2⌋, and s(ℓ) = (s(ℓ)

g )g∈E , s(ℓ)
j = (s(ℓ)

g )g∈E P
vj

, x(ℓ) = (x(ℓ)
g )g∈E ,

x(ℓ)
i = (x(ℓ)

g )g∈E P
ci

, y, t and s(ℓ)
g , x

(ℓ)
g , g ∈ E P

ci
, ℓ = 1, 2, 3 are dummy variables, ĉ in (8.143) is the

decoded vector with BDD and z is the received sequence at the CN. The product z · ĉ
is an element-wise multiplication and the sum z + z · ĉ and ĉ + z · ĉ is an element-wise
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modulo 2 addition. Note that the i-th entry of ĉ + z · ĉ is 1 if zi = 0 and ĉi = 1.

Proof. Randomly choose a set I of a VNs and assign the value 1 to each VN in the set with
a uniform distribution over all possibilities. The edges connected to a VN v are assigned the
value chosen for v. Define the edge weight vectors e = (eg)g∈E , w = (wg)g∈E and l = (lg)g∈E

where eg represents the number of edges of type g in Fa,b not carrying flip messages and
wg is the number of edges of type g in Fa,b carrying flip messages and lg is the number of
edges of type g outside Fa,b carrying flip messages. We denote by Nc(b, e,w, l) the number
of configurations with edge set weight vectors e,w, l that give exactly b unsatisfied CNs.
Its generating function is

∑
b,e,w,l

Nc(b, e,w, l)yb(x(1))e(x(2))w(x(3))l.

A CN is satisfied if it recognizes a valid local codeword when the edges connected to I are
assigned the value 1 and the other edges the value 0. We clarify briefly the derivation of
Ai(x(1)

i ,x
(2)
i ,x

(3)
i , y) for a super CNs. Consider a super CN of type ci. If it is satisfied, then

it doesn’t send flip messages to its neighboring VNs in I, i.e., all the edges connected to
that CN don’t carry flip messages. Thus the generating function of a satisfied super CN is

gc(x(1)
i , y) := y0 ∑

c∈Ci

(x(1)
i )c =WPi

(x(1)
i ). (8.145)

For an unsatisfied CN, the received vector z is not a valid codeword. Given z ∈ Fdci
2 \ Ci,

we denote by ĉ the decoded vector with BDD. The i-th entry of z · ĉ is 1 if zi = ĉi = 1 and
zero otherwise and the i-th entry of z + z · ĉ is 1 if zi = 1 and ĉi = 0 and zero otherwise
and the i-th entry of ĉ + z · ĉ is 1 if zi = 0 and ĉi = 1 and zero otherwise. If zi = ĉi = 1
(i-th entry of z · ĉ is 1), then the corresponding edge connected to I does not carry a flip
message and if zi = 1 and ĉi = 0 (the i-th entry of ĉ + z · ĉ is 1), then the corresponding
edge not connected to I carries a flip message and if zi = 0 and ĉi = 1 (the i-th entry of
ĉ + z · ĉ is 1), then the corresponding edge not connected to I carries a flip message. The
generating function of an unsatisfied super CN is

gc̄(x(1)
i ,x

(2)
i ,x

(3)
i , y) := y

∑
z∈F

dci
2 \Ci

(x(1)
i )z·ĉ(x(2)

i )z+z·ĉ(x(3)
i )ĉ+z·ĉ.

The SPC node is unsatisfied if it is connected an odd number of times to I. In this case, it
sends flip messages to all its neighboring VNs. The generating function of an unsatisfied
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SPC node is

gc̄(x(2)
i ,x

(3)
i , y) := 1

2y

 ∏
g∈E P

ci

(x(3)
g + x(2)

g )−
∏

g∈E P
ci

(x(3)
g − x(2)

g )


and the generating function of a satisfied SPC node is

gc(x(1)
i , y) := 1

2

 ∏
g∈E P

ci

(1 + x(1)
g ) +

∏
g∈E P

ci

(1− x(1)
g )

 .
Considering all CN types and that there are Q CNs of each type ci, we obtain

Nc(b, e,w, l) = coeff
(

mP∏
i=1

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y)Q, (x(1))e(x(2))w(x(3))lyb

)
(8.146)

where Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y) is defined in (8.143).

Consider a VN of type vj. Let r(j) = (r(j)
g )g∈E P

vj
be a length dvj binary vector with r(j)

g = 1
if the type g edge carries a flip message and r(j)

g = 0 otherwise. Note that for each VN of
type vj, the Hamming weight of r(j) should satisfy wH(r(j)) ≤ ⌊(dvj − 1)/2⌋. We can either
include this VN type in I or not. If we skip it we obtain the first term in Bj(t, s(1)

j , s
(2)
j , s

(3)
j )

corresponding to zero VNs and wH(r(j)) ≤ ⌊(dvj − 1)/2⌋ edges carrying flip messages and
VNs outside I. If we include it in I, we will have 1 node, dvj−wH(r(j)) edges not carrying flip
messages and wH(r(j)) edges carrying flip messages with wH(r(j)) ≤ ⌊(dvj−1)/2⌋. Considering
all possible binary vectors r(j), we obtain the second term in Bj(t, s(1)

j , s
(2)
j , s

(3)
j ). Taking into

account all possible VN types and that there are Q VNs of each type, we obtain

Nv(a, e,w, l) = coeff
 nP∏

j=1
Bj(t, s(1)

j , s
(2)
j , s

(3)
j )Q, ta(s(1))e(s(2))w(s(3))l

 (8.147)

where Bj(t, s(1)
j , s

(2)
j , s

(3)
j ) is defined in (8.144). The number of edge sets with weight vectors

e, w and l is

Ne(e,w, l) =
∏
g∈E

(
Q

eg + wg

)(
eg + wg

eg

)(
Q− eg − wg

lg

)
. (8.148)

Summing over all possible weight vectors e, w and l completes the proof. ■
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Theorem 8.13. The normalized asymptotic distribution of (θn, γn) FASs is

GP
FAS(θ, γ) = 1

nP

mP∑
i=1

lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y) + 1

nP

nP∑
j=1

lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

− θ ln t− γ ln y − 1
nP

∑
g∈E

ln
(
1 + x(1)

g s
(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

) (8.149)

where t, s(1)
g , s(2)

g ,s(3)
g , x(1)

g , x(2)
g , x(3)

g for g ∈ E and y are the unique positive solutions of

t

∂ ln
nP∏

j=1
Bj(t, s(1)

j , s
(2)
j , s

(3)
j )

∂t
=nPθ (8.150)

s(1)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(1)
g

=x(1)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(1)
g

= nPẽ
⋆
g (8.151)

s(2)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(2)
g

=x(2)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(2)
g

= nPw̃
⋆
g (8.152)

s(3)
g

∂ lnBj(t, s(1)
j , s

(2)
j , s

(3)
j )

∂s(3)
g

=x(3)
g

∂ lnAi(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂x(3)
g

= nPl̃
⋆
g (8.153)

y
∂ ln

mP∏
i=1

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y)

∂y
=nPγ (8.154)

where (8.151)-(8.153) are for all i ∈ {1, . . . ,mP}, j ∈ {1, . . . , nP}, g ∈ E P
vj
∩ E P

ci
, ,

Bj(t, s(1)
j , s

(2)
j , s

(3)
j ) and Ai(x(1)

i ,x
(2)
i ,x

(3)
i , y) are defined in (8.144) and (8.143), respectively,

and

ẽ⋆
g = 1

nP

x(1)
g s

(1)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

(8.155)

w̃⋆
g = 1

nP

x(2)
g s

(2)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

(8.156)

l̃⋆g = 1
nP

x(3)
g s

(3)
g

1 + x(1)
g s

(1)
g + x(2)

g s
(2)
g + x(3)

g s
(3)
g

. (8.157)

The proof is omitted since it is similar to the one of Theorem 6.17.

To compute the normalized asymptotic distribution of EFASs, we must replace
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v1 v2 . . . vn0

H1 H2 H3

Figure 8.9: Protograph of the GLDPC code ensemble of the ensemble in Example 8.3.

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y) in (8.143) with

Ai(x(1)
i ,x

(2)
i ,x

(3)
i , y) =


1 + ∑

g,g′∈E P
ci

:g ̸=g′
x(1)

g x
(1)
g′ + y

∑
g∈E P

ci

x(2)
g

∏
g′∈E P

ci
:g′ ̸=g

x(3)
g′ Ci is SPC

1 + ∑
c∈Ci:wH(c)=dmin,ci

(x(1)
i )c + y

∑
g∈E P

ci

x(2)
g else.

(8.158)

where 1i is the length dci all-ones vector.
Note that, using BDD, for a received sequence z with wH(z) = 1 and ti ≥ 1, we have

ĉ = 0. That means, super check nodes never send flip messages to VNs outside I. Thus,
if all CNs are super check nodes, the condition that for each VN outside I, n(f)

v < dv/2 is
always fulfilled. In that case, EASs and EFASs are equivalent.

Example 8.3. Consider the rate 1/6 GLDPC code ensemble which has the protograph
shown in Fig. 8.9 where n0 = 6, P1 is a (6, 3) shortened Hamming code with the parity-check
matrix

H1 =


1 1 0
0 1 1 I3

1 0 1


and P2 and P3 are (6, 5) SPC codes. The normalized logarithmic asymptotic distribution
of (elementary) TSs and (fully) ASs of this ensemble are depicted in Fig. 8.10 and Fig. 8.11
for ∆ ∈ {0.005, 0.05, 0.1, 0.3}. We observe that the gap between the normalized logarithmic
asymptotic distributions of TSs and ASs is small and vanishes for small θ. Observe that
this code ensemble has better TS and AS properties than the regular (3, 6) LDPC ensemble.
For instance, for ∆ = 0.005, we have θ⋆

TS = 0.172580 while for the regular ensemble, we
have θ⋆

TS = 0.0207989. As mentioned previously, replacing some of the SPC CNs by a more
powerful code improves the TS properties of the code especially if the linear block code has
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Figure 8.10: Normalized logarithmic asymptotic distributions of TSs (solid lines), ASs
(dashed lines), and fully ASs (dotted lines) of the ensemble in Example 8.3.

good distance properties and thus a high error correcting capability under BDD.

8.4 Appendices

8.4.1 Proof of Corollary 8.1

We obtain expressions for t, s, x, y in terms of w̃⋆ and for w̃⋆ in terms of θ. We should
analyze the equations (8.9)-(8.11) for the case where θ → 0 and γ = ∆θ. These equations
can be rewritten as

dmax
v∑

j=1
Λj

tsj

1 + tsj
=θ (8.159)

dmax
v∑

j=1
Λj

jtsj

1 + tsj
=w̃⋆ (8.160)

ξ
nc∑

τ=1
Pτ

nτ∑
h=dmin,τ

W
(τ)
h hxh +

nτ∑
h=1

((
nτ

h

)
−W (τ)

h

)
hxhy

1 +
nτ∑

h=dmin,τ

W
(τ)
h xh +

nτ∑
h=1

((
nτ

h

)
−W (τ)

h

)
xhy

=w̃⋆ (8.161)

ξ
nc∑

τ=1
Pτ

nτ∑
h=1

((
nτ

h

)
−W (τ)

h

)
xhy

1 +
nτ∑

h=dmin,τ

W
(τ)
h xh +

nτ∑
h=1

((
nτ

h

)
−W (τ)

h

)
xhy

=∆θ (8.162)
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Figure 8.11: Normalized logarithmic asymptotic distributions of elementary TSs (solid
lines), elementary ASs (dashed lines), and elementary fully ASs (dotted lines)
of the ensemble in Example 8.3.

where W (τ)
h is the number of codewords of Hamming weight h in Cτ . From (8.159) and

(8.160), since for dmin
v ≤ j ≤ dmax

v we have

dmin
v Λj

tsj

1 + tsj
≤ jΛj

tsj

1 + tsj
≤ dmax

v Λj
tsj

1 + tsj

by summing over j = dmin
v , . . . , dmax

v we obtain dmin
v θ ≤ w̃⋆ ≤ dmax

v θ.

Thus, we have
lim
θ→0

w̃⋆ = 0 (8.163)

and the notations o(θ) and o(w̃⋆) are equivalent, i.e., for any function f , f = o(θ)⇐⇒ f =
o(w̃⋆). Therefore, we will use o(θ) and o(w̃⋆) interchangeably.

The left hand side of (8.162) should also be o(1), that means for some h, we have
xhy = o(1) and for all other h, xhy = o(θ). Thus, we have

∆θ(1 + o(1)) = ξ
nc∑

τ=1
Pτnτxy. (8.164)

Because of (8.163), the left hand side of (8.161) must be o(1), i.e., xh = o(1) for some h,
xh = o(w̃⋆) for the other h, xhy = o(1) for some h and xhy = o(w̃⋆) for the other h. The
left hand side of (8.161) is dominated by the terms corresponding to h = 1, r where r is
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the smallest minimum distance over all CN types. We have

w̃⋆(1 + o(1)) = ξr
∑

τ :dmin,τ =r

PτW
(τ)
r xr + ξ

nc∑
τ=1

Pτnτxy. (8.165)

From (8.164) and (8.165), we have

x =

 w̃⋆ −∆θ
ξr

∑
τ :dmin,τ =r

PτW
(τ)
r


1/r

(1 + o(1)). (8.166)

Substituting (8.164) into (8.12), we obtain

s = w̃⋆

d̄v


ξr

∑
τ :dmin,τ =r

PτW
(τ)
r

w̃⋆ −∆θ


1/r

(1 + o(1)). (8.167)

Thus, (8.160) can be written as

w̃⋆(1 + o(1)) = Λdmin
v

dmin
v tsdmin

v (8.168)

and thus

t = (d̄v)dmin
v

Λdmin
v

dmin
v (w̃⋆)dmin

v −1

 w̃⋆ −∆θ
ξr

∑
τ :dmin,τ =r

PτW
(τ)
r


dmin

v /r

(1 + o(1)). (8.169)

Similarly, from (8.159), we have

θ(1 + o(1)) = Λdmin
v
tsdmin

v . (8.170)

Thus,
w̃⋆ = dmin

v θ(1 + o(1)). (8.171)

Substituting (8.171) into (8.166), (8.167) and (8.168), we obtain

x =

 (dmin
v −∆)θ

ξr
∑

τ :dmin,τ =r
PτW

(τ)
r


1/r

(1 + o(1)) (8.172)



266 8 Enumerators for Binary GLDPC Code Ensembles

s =dmin
v

d̄v


ξr

∑
τ :dmin,τ =r

PτW
(τ)
r

dmin
v −∆


1/r

θ
r−1

r (1 + o(1)) (8.173)

t = (d̄v)dmin
v

Λdmin
v

(dmin
v )dmin

v

 dmin
v −∆

ξr
∑

τ :dmin,τ =r
PτW

(τ)
r


dmin

v /r

θ
r−(r−1)dmin

v
r (1 + o(1)) (8.174)

y =∆ξ 1−r
r

d̄c


r

∑
τ :dmin,τ =r

PτW
(τ)
r

dmin
v −∆


1/r

θ
r−1

r (1 + o(1)). (8.175)

By substituting (8.172)-(8.175) into (8.8) and by using the Taylor series of ln(1 +x) around
x = 0, we obtain (8.16). Note that we obtain exactly the same result for ETSs.

8.4.2 Proof of Theorem 8.10

The following Lemma is useful to derive the Theorem.

Definition 8.8. Let f be a function defined over Fn
2 . The Hadamard transform f̂ of f is

defined as

f̂(u) =
∑
v∈Fn

2

(−1)u·vf(v) (8.176)

where u · v is the scalar product of u and v.

The following Lemma is a property of the Hadamard transform.

Lemma 8.14. Let f be a function defined over Fn
2 . We have

∑
u∈C ⊥

f(u) = 1
|C |

∑
u∈C

f̂(u). (8.177)

Proof. ∑
u∈C

f̂(u) =
∑
u∈C

∑
v∈Fn

2

(−1)u·vf(v)

=
∑
v∈Fn

2

f(v)
∑
u∈C

(−1)u·v

=
∑

v∈C ⊥

f(v)
∑
u∈C

(−1)u·v +
∑

v/∈C ⊥

f(v)
∑
u∈C

(−1)u·v

(8.178)
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▷ For v ∈ C ⊥, u · v = 0 ∀u ∈ C . Thus, we have

∑
v∈C ⊥

f(v)
∑
u∈C

(−1)u·v = |C |
∑

v∈C ⊥

f(v). (8.179)

▷ For v /∈ C ⊥ :

Define the following sets: I0(v) = {u ∈ C : u·v = 0} and I1(v) = {u ∈ C : u·v = 1}.
Note that I0(v) ∪ I1(v) = C and I0(v) ∩ I1(v) = ∅. Let u⋆ ∈ C with u⋆ · v = 1
(such a vector exists since v /∈ C ⊥). Define the set I⋆ = {u⋆ + u : u ∈ I0(v)}. I⋆ is
a coset of I0(v) and as a result

|I0(v)| = |I⋆|. (8.180)

Let w⋆ ∈ I⋆, i.e., w⋆ = u⋆ + u, where u ∈ I0(v). We have

w⋆ · v = u⋆ · v + u · v = 1

and

I⋆ ⊆ I1(v). (8.181)

Let w1 ∈ I1(v) so w1 can be rewritten as w1 = u⋆ + (u⋆ + w1). Note that
u⋆ + (u⋆ + w1) ∈ I0(v), i.e., w1 ∈ I⋆. Hence, we have

I1(v) ⊆ I⋆. (8.182)

From (8.181) and (8.182), we obtain I1(v) = I⋆ and as a result |I1(v)| = |I⋆|. Thus
from (8.180), |I1(v)| = |I0(v)|.

We can now calculate the second term in (8.178):

∑
v/∈C ⊥

f(v)
∑
u∈C

(−1)u·v =
∑

v/∈C ⊥

f(v)
 ∑

u∈I0(v)
(−1)u·v +

∑
u∈I1(v)

(−1)u·v


=
∑

v/∈C ⊥

f(v)(|I0(v)| − |I1(v)|) = 0.
(8.183)

From (8.178), (8.179) and (8.183) we obtain the result in (8.177).

■
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Consider the function

f(u) = xu (8.184)

and note that

WC (x) =
∑
u∈C

f(u). (8.185)

The Hadamard transform of f is

f̂(u) =
∑
v∈Fn

2

(−1)u·vf(v) =
∑

v1∈{0,1}

∑
v2∈{0,1}

. . .
∑

vn∈{0,1}

n∏
i=1

(−1)uivixvi
i

=
n∏

i=1

∑
vi∈{0,1}

(−1)uivixvi
i =

n∏
i=1

(1 + (−1)uixi)

=
n∏

i=1
(1 + xi)

(1− xi

1 + xi

)ui

.

(8.186)

We can now use Lemma in (8.14) to determine the VWEF of the dual code:

WC ⊥(x) =
∑

u∈C ⊥

f(u) = 1
|C |

∑
u∈C

n∏
i=1

(1− xi

1 + xi

)ui

(1 + xi)

= 1
|C |

n∏
j=1

(1 + xj)
∑
u∈C

n∏
i=1

(1− xi

1 + xi

)ui

= 1
|C |

n∏
j=1

(1 + xj)WC (x′)
(8.187)

where x′ = [x′
1, x

′
2, . . . , x

′
n] with x′

i = 1−xi

1+xi
.



9
Conclusions and Outlook

This thesis investigated low-complexity decoding algorithms for binary, non-binary, and
generalized LDPC codes.

For binary LDPC codes and quantized message passing, optimized code ensembles were
obtained that perform close to theoretical Shannon limits at high code rates. Our decoders
provide a trade-off between decoding complexity and coding gain.

For non-binary LDPC codes, we considered different channel models: the QSC, QEC, the
AWGN and Poisson channels with PPM modulation where the modulation order matches
the field size. We introduced several decoding algorithms where the exchanged messages
are: symbols from Fq, lists of symbols from Fq, or symbols from Fq together with their
reliability scores. A DE analysis shows how our decoding algorithms improve decoding
thresholds, closing the gap to the performance achieved by the SPA.

For GLDPC codes, we studied quantized decoding algorithms where the exchanged
messages are binary or ternary, and the VN decoder can exploit soft information from
the channel. At the CNs, the binary and ternary messages are obtained either by using
BDD or by using optimum APP SISO decoding. In the latter case, the component decoder
soft-output (i.e., the extrinsic likelihood ratios) is mapped to messages from the desired
binary/ternary alphabet.

For future work, it would be interesting to derive a theoretical limit of quantized decoders
(other than the Shannon limit) that takes the quantization of the exchanged messages into
account. Further, it is well known that the thresholds of spatially coupled codes under SPA
saturate at the maximum a-priori threshold. We observed that spatial coupling increases
the iterative decoding thresholds (for instance, under TMP, QMP, and SMP) to specific
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values. The threshold saturation effect was observed numerically. A promising direction is
determining what these values represent and proving the saturation theoretically.

We have also studied the error floor performance of binary, non-binary, and generalized
LDPC codes. We reviewed the matrix enumeration method used in previous works to obtain
the TS, AS, and FAS enumerators for binary regular LDPC code ensembles. We extended
the method to irregular binary ensembles, and we explained that the technique is limited
to unstructured binary ensembles, i.e., it cannot be applied to non-binary codes, structured
ensembles, and GLDPC code ensembles. Therefore, we proposed generating functions
to obtain the TS, AS, and FAS enumerators. We derived the TS and (elementary) AS
enumerators for unstructured and (constrained and unconstrained) protograph-based non-
binary LDPC code ensembles. Further, we proposed new definitions of the (elementary) TSs
and (fully) ASs for GLDPC codes. Experimental results show that the proposed definitions
yield graph structures that are harmful for bit flipping decoders. Future works can use the
derived analysis to design LDPC and GLDPC codes free of harmful configurations.



10
Acronyms

AWGN additive white Gaussian noise

AR4JA accumulate-repeat-4-jagged-accumulate

BP belief propagation

MAP maximum a posteriori

SISO soft-input soft-output

SPA sum product algorithm

PMF probability mass function

CDF cumulative distribution function

PDF probability density function
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LDPC low-density parity-check

FER frame error rate

SER symbol error rate

BICM bit-interleaved coded modulation

SNR signal-to-noise ratio

DE density evolution

LLR log-likelihood ratio

BER bit error rate

SER symbol error rate

biAWGN binary-input additive white Gaussian noise

PEG progressive edge-growth

LLR log-likelihood ratio

RV random variable

SC-LDPC spatially coupled low-density parity-check code
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BSC binary symmetric channel

BEEC binary error and erasure channel

CN check node

VN variable node

TMP ternary message passing

QMP quaternary message passing

BMP binary message passing

QSC q-ary symmetric channel

QEEC q-ary error and erasure channel

SMP symbol message passing

AS absorbing set

EAS elementary absorbing set

TS trapping set

FAS fully absorbing set
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EFAS elementary fully absorbing set

ETS elementary trapping set

DMC discrete memoryless channel

QMS Quantized Min-Sum

GLDPC generalized low-density parity-check

SPC single parity-check

APP a posteriori probability

SRLMP scaled reliability list message passing

U-NBPB unconstrained non-binary protograph-based

C-NBPB constrained non-binary protograph-based

CVWEF composition vector weight enumerator function

WEF weight enumerator function

VWEF vector weight enumerating function

SS stopping set
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BDD bounded distance decoding

PBF parallel bit flipping

BCH Bose-Chaudhuri-Hocquengham

BSC binary symmetric channel

llv L-vector

DMC discrete memoryless channel

PPM pulse position modulation

MQMS matched quantized min-sum

QMS quantized min-sum

RSMP reliability-based symbol message passing

QEC q-ary erasure channel

SEMP symbol and erasure message passing
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