
Technische Universität München
TUM School of Engineering and Design

Dynamic Multi-Contact Locomotion for
Humanoid Robots
Hard- and Software Design, Contact Planning, and
Motion Generation for Autonomous Locomotion

Philipp Seiwald

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität
München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Markus Zimmermann

Prüfer der Dissertation:

1. Prof. dr.ir. Daniel J. Rixen

2. Prof. Dr. Timo Oksanen

3. Prof. Abderrahmane Kheddar

Die Dissertation wurde am 26.09.2023 bei der Technischen Universität München eingereicht und durch die
TUM School of Engineering and Design am 06.02.2024 angenommen.

Abstract

Despite the rapid progress of research in the field of humanoid robotics, even modern high-
end systems can not compete with human performance when it comes to biped locomotion. In
particular the capability of humans to adapt their gait to the environment and to compensate ex-
ternal disturbances remains unrivaled. The goal of this thesis is to bring humanoid robots closer
to the locomotion performance of humans. In particular, additional hand support during fast
biped walking alias dynamic multi-contact locomotion is investigated. The additional contacts
are primarily meant to increase the robustness against unforeseen disturbances.

Although the majority of the presented concepts, methods, and solutions can be transferred
to any humanoid robot, this thesis is closely related to the particular research prototype LOLA

developed at the Chair of Applied Mechanics of the Technical University of Munich. Since this robot
was originally designed for biped locomotion only, extensive modifications had to be made to
the hard- and software in order to make it capable of multi-contact locomotion. The changes to
the hardware involve the redesign of the entire upper body to make it withstand the increased
loads caused by the additional hand support. Moreover, the kinematic topology of the arms is
optimized to match the requirements of our target scenarios. Concerning the software revision,
this thesis focuses on the planning layer of the locomotion framework which receives an entire
new contact planning and motion generation system. Since real-time performance is a primary
objective, contact planning is based on a hierarchical search on different levels of detail while
the motion generator uses simplified models of the robot to efficiently plan a kinematically and
dynamically feasible gait.

The new multi-contact locomotion capabilities of the robot are validated within numerous
simulations and real-world experiments. Compared to similar systems, the proposed solution
stands out by the (relatively) high walking speed and robustness. Moreover, the entire planning
and control software runs onboard and in real-time which represents a distinctive feature when
compared to the international competition.

Acknowledgment

The contents of this thesis originate from my work as research assistant and member of the LOLA

group at the Chair of Applied Mechanics, TUM. In the following, I want to express my gratitude
to the numerous people who supported me in any way during this time.

To begin with, I want to thank my supervisor Prof. dr.ir. Daniel J. Rixen for giving me the
opportunity to work on such an inspiring project within this excellent environment and pleasant
working atmosphere. I am grateful for his trust and granting me great freedom in my research
which he supported through his genuine interest and valuable advice. At this point, I would also
like to thank the German Research Foundation (DFG) for funding the project Adaptives Laufen
durch Multi-Kontakt Stabilisierung und Nutzung von Teilkontakten für humanoide Roboter (DFG
project number 407378162).

Second, I want to express my gratitude to the previous and present researchers working on
the LOLA project. It is obvious that a high-end humanoid such as LOLA cannot be realized or
operated by a single person. Instead, a group of highly motivated experts with extraordinary
commitment to the project is required. Among many others, this includes Robert Wittmann
(who also supported me as mentor of my doctoral project), Arne-Christoph Hildebrandt, Daniel
Wahrmann Lockhart, Felix Sygulla, Nora-Sophie Staufenberg, Moritz Sattler, and Tomáš Slimák.
Note that working with a mechatronic system of this complexity requires a significant amount
of time for maintenance which has to be carried out by the entire project group and is typically
not directly visible to outsiders.

My greatest thanks go to Felix Sygulla, with whom I worked most closely during my time
at the chair. The success of the multi-contact project would not have been possible without his
exceptional expertise and commitment. I will always be grateful for the great time and fun we
had during our work on LOLA. I would also like to thank my project partner Shun-Cheng Wu
and his supervisor PD Dr. Ing. Habil. Federico Tombari, who contributed the visual perception
system and hereby enabled vision-guided experiments.

Concerning the electromechanical realization of the new upper body of LOLA, special thanks
are due to the staff of the mechanical and electrical workshop of the chair, namely Simon Gerer,
Georg König, Georg Mayr, and Andreas Köstler. In general, my thanks goes to all persons who
contributed, directly or indirectly, to the LOLA project. This certainly also includes the numerous
students assistants. I also want to thank all my former colleagues at the chair. I learned a lot
from each of you and really enjoyed our time together.

Last but not least I want to thank my family for their constant support and Moritz, Tomáš,
and Marisa for proofreading this thesis.

Garching Philipp Seiwald

https://gepris.dfg.de/gepris/projekt/407378162?language=en

Contents

Glossary vii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Author’s Contributions: Overview . 3
1.3 Outline . 4

2 Fundamentals and State of the Art 5
2.1 System Overview and Hardware Design . 5
2.2 Software Design . 14
2.3 Contact Planning . 19
2.4 Motion Generation . 27
2.5 Computer Vision (CV) . 40
2.6 Stabilization . 42
2.7 The Humanoid Robots JOHNNIE and LOLA . 43
2.8 Summary . 46

3 Hardware – A New Upper Body for LOLA 47
3.1 Preliminaries . 47
3.2 Starting Point . 51
3.3 Kinematic Optimization of Arm Topology . 54
3.4 Actuation and Sensing . 62
3.5 Mechanical Design . 68
3.6 Electrical Design . 72
3.7 Realization: Manufacturing, Assembly, and Initial Operation 73
3.8 Results and Discussion . 74

4 Software – Part A: Locomotion Framework 79
4.1 Overview . 79
4.2 Coordinate Systems (CoSys) . 82
4.3 Task-Space Definition . 84
4.4 Excursus: Computer Vision (CV) . 86
4.5 Walking Pattern Generation (WPG) . 90

4.5.1 Environment Model . 91
4.5.2 Reduced Kinematic and Dynamic Model . 94
4.5.3 State Estimation . 98
4.5.4 Solution Strategy . 99
4.5.5 Planning Pipeline . 102

4.6 Excursus: Stabilization and Inverse Kinematics (SIK) 104
4.7 Excursus: Hardware Layer (HWL) . 107
4.8 Results and Discussion . 108

iv

Contents v

5 Software – Part B: Contact Planning 111
5.1 Preliminaries . 111
5.2 Motion Plan: Higher Level Structure . 115
5.3 Quasi-Planar Walking Transition (QPWT) . 118
5.4 Transition Planner . 120
5.5 Autonomous Locomotion . 121

5.5.1 Discretization . 122
5.5.2 Pre-Processing . 123
5.5.3 A⋆ Algorithm . 128
5.5.4 Hierarchical Graph Search . 131
5.5.5 Post-Processing . 138

5.6 Results and Discussion . 143

6 Software – Part C: Motion Generation 146
6.1 Preliminaries . 146
6.2 Motion Plan: Lower Level Structure . 147
6.3 Phase Planner . 150
6.4 Support Area (SA) Planner . 152
6.5 Zero-Moment Point (ZMP) Planner . 152
6.6 Upper Body Orientation Planner . 155
6.7 Foot Motion Planner . 156
6.8 Toe Motion Planner . 161
6.9 Hand Motion Planner . 162
6.10 Head Orientation Planner . 165
6.11 Task-Space Selection Factor Planner . 165
6.12 Load Factor Planner . 166
6.13 External Wrench Planner . 168
6.14 Reduced Model Torso (RMT) Planner . 168

6.14.1 Vertical RMT Planner . 168
6.14.2 Horizontal RMT Planner . 172

6.15 Center of Mass (CoM) Planner . 176
6.16 Evaluation and Stream Processor . 177
6.17 Results and Discussion . 177

7 Software – Part D: Ecosystem 180
7.1 Overview . 180
7.2 The Open-Source Library Broccoli . 182
7.3 The Open-Source Vision Interface . 184
7.4 Simulation . 185
7.5 Visualization . 190
7.6 Control Panel . 192
7.7 Conclusions and Suggestions . 193

8 Validation – Testing LOLA’s New Capabilities 194
8.1 Simulation . 194
8.2 Real-World Experiments . 197

9 Closure 201
9.1 Summary . 201
9.2 Author’s Contributions and Innovation . 202
9.3 Conclusions . 204
9.4 Outlook . 205

Contents vi

A Notation 207

B Quaternion Calculus and Interpolation of Rotations using Quaternions 209
B.1 Fundamentals . 209
B.2 Spatial Rotation . 212
B.3 Interpolation . 215

B.3.1 Linear Interpolation (LERP) . 217
B.3.2 Normalized Linear Interpolation (NLERP) . 217
B.3.3 Spherical Linear Interpolation (SLERP) . 218
B.3.4 Quaternion BÉZIER (QBézier) Curve . 220
B.3.5 Spherical Quadrangle (SQUAD) Curve . 221
B.3.6 Quaternion B-Spline (QBSpline) Curve . 222
B.3.7 Comparison . 226
B.3.8 Advanced Speed Control . 227

C Swept Sphere Volumes (SSVs) 228

D Step Parameters 230

E Simplified Leg Kinematics 233

F Dynamics of the Five-Mass Model 234

G Cubic and Quintic Spline Interpolation and Collocation 237
G.1 Introduction . 237
G.2 Materials and Methods . 240

G.2.1 Problem Statement . 240
G.2.2 Spline Parametrization . 241
G.2.3 Spline Interpolation: Preliminaries . 243
G.2.4 Cubic Spline Interpolation: Derivation . 244
G.2.5 Quintic Spline Interpolation: Derivation . 246
G.2.6 Algorithm for Cubic/Quintic Spline Interpolation 249
G.2.7 Spline Collocation: Derivation . 250
G.2.8 Satisfying First Order Boundary Conditions for Cubic Splines 253
G.2.9 Algorithm for Cubic/Quintic Spline Collocation 253

G.3 Implementation . 253
G.4 Results . 255
G.5 Discussion . 261
G.6 Attachment: Spline Gradients . 262

H Hardware Details 266
H.1 Mechanical Specifications . 266
H.2 Electrical Specifications . 268
H.3 Calibration . 270

I Co-authored Publications 271
I.1 Scientific Publications . 271
I.2 Published Software . 272
I.3 Published Videos . 272
I.4 Press Reports (Indirect Publications) . 273

J Supervised Student Theses 274

K Bibliography 276

Glossary

Acronyms

ABD Almost Block Diagonal

ADA⋆ Anytime Dynamic A⋆ (variation of A⋆ search algorithm, see HORNUNG et al. [210])

AIST National Institute of Advanced Industrial Science and Technology (Japan)

ANA⋆ Anytime Nonparametric A⋆ (variation of A⋆ search algorithm, see VAN DEN BERG et al. [423])

ARA⋆ Anytime Repairing A⋆ (variation of A⋆ search algorithm, see LIKHACHEV et al. [284])

ASC Automatic Supervisory Control (velocity-level IK method, see LIÉGEOIS [283])

ASIC Application-Specific Integrated Circuit

BC Boundary Condition

Bi-RRT Bidirectional RRT (variation of RRT search algorithm, see LAVALLE and KUFFNER [270])

Broccoli Beautiful Robot C++ Code Library (see Section 7.2 and SEIWALD and SYGULLA [15])

B-Spline Basis Spline (see Appendix B.3.6 and DE BOOR [129, p. 87ff])

BVH Bounding Volume Hierarchy

BVP Boundary Value Problem

CAN Controller Area Network (communication bus, see [107])

CAD Computer Aided Design

CFRP Carbon Fiber-Reinforced Polymer

CI Condition Index (see Equation 3.2, Section 3.3, and MA and ANGELES [296])

CMOS Complementary Metal-Oxide-Semiconductor

CMP Centroidal Moment Pivot (see Section 2.4 and POPOVIC et al. [346])

CNC Computer Numerical Control

CNRS French National Centre for Scientific Research (France)

CoM Center of Mass

CoP Center of Pressure (see Footnote 18, Section 2.4, and GOSWAMI [174])

CoSy Coordinate System

CoT Cost of Transport (see Footnote 1 and TUCKER [415])

CP Capture Point (see Section 2.4 and PRATT et al. [349])

CPU Central Processing Unit

CV Computer Vision (see Section 4.4)

CWC Contact Wrench Cone (see Section 2.4 and CARON et al. [110])

DAE Differential Algebraic Equation

DARPA Defense Advanced Research Projects Agency (United States of America)

DC Direct Current

DCM Divergent Component of Motion (see Section 2.4 and TAKENAKA et al. [404])

vii

Glossary viii

DDM Double Description Method (see Footnote 21 and FUKUDA and PRODON [164])

DDP Differential Dynamic Programming (see Footnote 24 and MAYNE [303])

DFG German Research Foundation (Germany)

DH DENAVIT-HARTENBERG (see HARTENBERG and DENAVIT [191, p. 347ff] and CRAIG [122, p. 65ff])

DIP Double Inverted Pendulum (see Figure 2.17 and STEPHENS [392])

DIY Do It Yourself

DLR German Aerospace Center (Germany)

DoF Degree of Freedom

DRC DARPA Robotics Challenge (see Footnote 5 and [124])

DS Double Support (phase of biped gait: both feet in contact)

DSCB Distributed Sensor Control Board (see FAVOT [157, p. 18ff])

EE End Effector (see Footnote 7)

EMA Experimental Modal Analysis

EoM Equation of Motion

ETH Swiss Federal Institute of Technology in Zürich (Switzerland)

EtherCAT Ethernet for Control Automation Technology (communication bus, see [77])

FDM Fused Deposition Modeling (3D printing technology)

FEA Finite Element Analysis

FFT Fast Fourier Transformation

FK Forward Kinematics

FoR Frame of Reference (see Appendix A)

FPGA Field Programmable Gate Array

FRI Foot Rotation Indicator (see Footnote 19, Section 2.4, and GOSWAMI [174])

FSM Finite State Machine

FTS Force-Torque Sensor

FZMP Fictitious ZMP (see Footnote 19, Section 2.4, and VUKOBRATOVIĆ and BOROVAC [428])

GCoM Ground projection of the CoM

GFRP Glass Fiber-Reinforced Polymer

GIWC Gravito-Inertial Wrench Cone (see Section 2.4 and CARON et al. [108])

GPIO General-Purpose IO

GPOS General-Purpose OS

GPS Global Positioning System

GPU Graphics Processing Unit

GRF Ground Reaction Force

GRW Ground Reaction Wrench

HD Harmonic Drive (gear type, see [189])

HID Human Interface Device

HWL Hardware Layer (see Section 4.7 and SYGULLA [401])

HZD Hybrid Zero Dynamics (see Footnote 13)

ICP Iterative Closest Point (see Section 2.5 and BESL and MCKAY [76])

IHMC Florida Institute for Human & Machine Cognition (United States of America)

IIT Italian Institute of Technology (Italy)

IMU Inertial Measurement Unit (see Section 4.2, Figure 4.2, and Table H.2 for the corresponding CoSy)

Glossary ix

IK Inverse Kinematics

IO Input/Output

IP Internet Protocol

IR Infrared

IVP Initial Value Problem

JRA Joint Range Availability (see Equation 3.5 and Section 3.3)

JRL Joint Robotics Laboratory (cooperation between CNRS and AIST)

KAIST Korean Advanced Institute of Science and Technology (Korea)

KIT Karlsruhe Institute of Technology (Germany)

LERP Linear Interpolation (quaternion interpolation method, see Appendix B.3.1)

LiBM Linear Biped Model (see Section 2.4 and STEPHENS and ATKESON [393])

LiDAR Light Detection and Ranging

LIPM Linear Inverted Pendulum Mode (see Figure 2.17, Footnote 8, and KAJITA and TANI [230])

LSE Linear System of Equations

MEMS Micro-Electro-Mechanical System

MIT Massachusetts Institute of Technology (United States of America)

MM Manipulability Measure (see Equation 3.4, Section 3.3, and YOSHIKAWA [452])

MPC Model Predictive Control

MRAC Model-Reference Adaptive Control (see NGUYEN [322])

NASA National Aeronautics and Space Administration (United States of America)

NLERP Normalized Linear Interpolation (quaternion interpolation method, see Appendix B.3.2)

ODE Ordinary Differential Equation

OS Operating System

PC Personal Computer

PCA Principal Component Analysis

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCL Point Cloud Library (see RUSU and COUSINS [363])

PDE Partial Differential Equation

PDO Process Data Object (communication object for synchronous data, see CANopen [107])

PLA Polylactide (thermoplastic polymer)

PLY Polygon File Format (3D triangle mesh format, see TURK [416])

PMP PONTRYAGIN’s Maximum Principle (see GAMKRELIDZE [166] and NAKAMURA [319, p. 81ff])

PNM Portable Anymap Format (family of 2D image file formats, see POSKANZER [347])

POM Polyoxymethylene (thermoplastic polymer)

PP Piecewise Polynomial (description form for polynomial splines, see DE BOOR [129, p. 69ff])

PSO Particle Swarm Optimization (see KENNEDY and EBERHART [246])

QBézier Quaternion BÉZIER (quaternion interpolation method, see Appendix B.3.4 and SHOEMAKE [378])

QBSpline Quaternion B-Spline (quaternion interpolation method, see Appendix B.3.6 and KIM et al. [248])

QP Quadratic Program

QPWT Quasi-Planar Walking Transition (see Section 5.3)

RAM Random-Access Memory

RCA Reactive 3D Collision Avoidance (see Section 2.7 and HILDEBRANDT et al. [198])

Glossary x

RDMA Remote Direct Memory Access

RGB-D Red-Green-Blue Depth (image format with three color channels and one depth channel)

RI Reachability Index (see Equation 3.1 and Section 3.3)

RMC Resolved Motion Rate Control (velocity-level IK method, see WHITNEY [434])

RMP Reaction Mass Pendulum (see Figure 2.17 and LEE and GOSWAMI [274])

RMS Root Mean Square

RMT Reduced Model Torso (see Section 4.5.2 and Figure 4.7)

ROS Robot Operating System (middleware, see [330])

RRT Rapidly-Exploring Random Tree (search algorithm, see LAVALLE [269])

RTLinux Real-Time Linux (Linux-based RTOS, see BARABANOV [74])

RTM Robot Technology Middleware (middleware, see ANDO et al. [60])

RTOS Real-Time OS

SA Support Area (see Section 2.3)

SDF Signed Distance Field

SDL Simple DirectMedia Layer (see LANTINGA et al. [265])

SDO Service Data Object (communication object for asynchronous data, see CANopen [107])

SEA Series Elastic Actuator (see Footnote 2 and PRATT and WILLIAMSON [348])

Sercos Serial Realtime Communication System (communication bus, see [377])

SIK Stabilization and Inverse Kinematics (see Section 4.6 and SYGULLA [401])

SLAM Simultaneous Localization and Mapping (see Footnote 10)

SLERP Spherical Linear Interpolation (quat. interp. method, see Appendix B.3.3 and SHOEMAKE [378])

SLIP Spring-Loaded Inverted Pendulum (see Figure 2.17, Footnote 4, and BLICKHAN [86])

SMT Simultaneous Multithreading

SP Support Polygon (see Section 2.3)

SPI Serial Peripheral Interface (communication bus, see [203])

SQUAD Spherical Quadrangle (quaternion interpolation method, see Appendix B.3.5 and DAM et al. [123])

SQP Sequential Quadratic Program

SS Single Support (phase of biped gait: one foot in contact)

SSD Solid State Drive

SSV Swept Sphere Volume (see Appendix C)

SVD Singular Value Decomposition (see QUARTERONI et al. [352, p. 17f])

TCP Tool Center Point (see Footnote 33)

TCP/IP Transmission Control Protocol (here: used in combination with the Internet Protocol (IP))

TOML Tom’s Obvious Minimal Language (configuration file format, see PRESTON-WERNER et al. [351])

TUM Technical University of Munich (Germany)

UDP/IP User Datagram Protocol (here: used in combination with the Internet Protocol (IP))

UI User Interface

USB Universal Serial Bus (communication bus)

VPP Virtual Pivot Point (see Section 2.4 and MAUS et al. [301])

VRP Virtual Repellent Point (see Footnote 22 and ENGLSBERGER et al. [142])

WPG Walking Pattern Generation (Section 4.5)

ZMP Zero-Moment Point (see Section 2.4 and VUKOBRATOVIĆ and BOROVAC [428])

ZRAM Zero Rate of change of Angular Momentum (see Section 2.4, GOSWAMI and KALLEM [175])

Glossary xi

Symbols

a axis component a ∈ R
a axis a = [ax , ay , az]

T ∈ R3 (typically with ∥a∥= 1)

A area A∈ R
rotation matrix component Ai j ∈ R

A rotation matrix A ∈ Rn×n with n ∈ {2, 3} (see Appendix A)

B B-spline B ∈ R (see Appendix B.3.6)

B̃ cumulative B-spline B̃ ∈ R (see Appendix B.3.6)

c confidence c ∈ R (typically with c ∈ [0, 1])
cost c ∈ R

C convex cone (e. g. friction cone see Figure 2.19)

d diameter d ∈ R
e error e ∈ R
ex , ey , ez unit vector e ∈ R3 in x-, y-, or z-direction (FoR depends on context)

E elastic modulus E ∈ R
F force F ∈ R

exact solution F(t) ∈ R of second-order linear ODE (see Equation G.1)

F force vector F = [Fx , Fy , Fz]
T ∈ R3

g gravitational acceleration g ∈ R (here: g = 9.81m/s2)
reciprocal g = 1/h ∈ R of segment proportion or duration h ∈ R

g gravitational acceleration vector Wg = [0, 0, −g]T ∈ R3

h height h ∈ R
segment proportion or duration h ∈ R

H homogeneous transform H ∈ R4×4 (see Appendix A and CRAIG [122, p. 28])

H set of quaternions (see Equation B.1)

H1 set of unit quaternions (see Equation B.10)

i, j, k basic quaternions with i2 = j2 = k2 = i j k= −1 (see Equation B.1)

I second moment of area I ∈ R
J Jacobian matrix J ∈ Rp×n (see Appendix A)

k order k ∈ N1 of a B-spline curve (see Appendix B.3.6)

l length l ∈ R
LP angular momentum LP ∈ R at reference point P

LP angular momentum vector LP = [LP
x , LP

y , LP
z]

T ∈ R3 at reference point P

m mass m ∈ R
count of B-splines m ∈ N1 of a B-spline curve (see Appendix B.3.6)

M mass proportion M ∈ R (e. g. proportion M ∈ [0, 1] of the total mass of the robot)

n dimension of joint-space n ∈ N1 (see Figure 4.3)
count of knots n ∈ N2 of a B-spline curve (see Appendix B.3.6)
normal component n ∈ R

n normal n = [nx , ny , nz]
T ∈ R3 (typically with ∥n∥= 1)

N node N of A⋆ algorithm (see Section 5.5.3)

Glossary xii

p dimension of task-space p ∈ N1 (see Figure 4.3)
degree p ∈ N0 of a B-spline curve (see Appendix B.3.6)
linear momentum p ∈ R

p linear momentum vector p = [px , py , pz]
T ∈ R3

P plane (e. g. see Figure 5.13)

q joint-space component q ∈ R
q joint-space vector q = [q1, . . . , qn]

T ∈ Rn (see Figure 4.3)

r position r ∈ R
radius r ∈ R

r position vector r = [rx , ry , rz]
T ∈ R3 (see Appendix A)

R residual R ∈ R
s quaternion component s ∈ R

segment s(η) ∈ R of a spline (see Equation G.6)

s quaternion s = sw + sx i+ sy j+ sz k ∈H (see Equation B.1)

s̄ conjugate quaternion s̄ = sw − sx i− sy j− sz k ∈H (see Equation B.14)

S state S of A⋆ algorithm (see Section 5.5.3)

S̄ “conjugate” state S̄ of A⋆ state S (equivalent to S but with opposite stance foot)

t time t ∈ R
T torque T ∈ R
T torque vector T = [Tx , Ty , Tz]

T ∈ R3

v task-space velocity component v ∈ R
v task-space velocity vector v = [v1, . . . , vp]

T ∈ Rp (see Table 4.1)

V volume V ∈ R
W workspace (e. g. see Figure 3.4)

W P wrench W P = [Fx , Fy , Fz , Tx , Ty , Tz]
T ∈ R6 acting at point P

x task-space component x ∈ R
x task-space vector x = [x1, . . . , xp]

T ∈ Rp (see Figure 4.3)

y spline approximation y(t) ∈ R of second-order linear ODE solution (see Equation G.4)

α first left hand side coefficient α ∈ R of second-order linear ODE (see Equation G.1)

β second left hand side coefficient β ∈ R of second-order linear ODE (see Equation G.1)

γ load factor γ ∈ R (γe ∈ [0, 1] and γRF + γLF := 1, see Footnote 57)
third left hand side coefficient γ ∈ R of second-order linear ODE (see Equation G.1)

γ load vector γ= [γRF, γLF, γRH, γLH]
T ∈ R4

ϵ machine precision ϵ ∈ R with 0< ϵ≪ 1 (or equivalently a number very close to zero)

η interpolation parameter η ∈ R (typically η ∈ [0, 1])

ϑ rotation vector component ϑ ∈ R
ϑ rotation vector ϑ = [ϑx , ϑy , ϑz]

T ∈ R3 (see Appendix B.2)

ΘP mass moment of inertia tensor ΘP ∈ R3×3 with respect to point P

κ curvature κ ∈ R (see Section 5.5.2)

κ mean curvature normal operator κ ∈ R3 (see Section 5.5.2 and MEYER et al. [306, p. 44])

µ friction coefficient µ ∈ R
ξ task-space selection factor ξ ∈ R (ξ ∈ [0, 1] with ξ= 0: “in null-space” and ξ= 1: “in task-space”)

ξ task-space selection vector ξ= [ξRH, ξLH]
T ∈ R2

Glossary xiii

ρ density ρ ∈ R
σ singular value σ ∈ R of a matrix (see QUARTERONI et al. [352, p. 17f])

standard deviation

τ timing factor τ ∈ R (typically τ ∈ [0, 1])
knot τ ∈ R of a B-spline curve (see Appendix B.3.6)
right hand side τ ∈ R of second-order linear ODE (see Equation G.1)

τ knot sequence τ = {τ1, . . . , τn} of a B-spline curve (see Appendix B.3.6)

ϕ angle ϕ ∈ R
ω angular velocity ω ∈ R
ω angular velocity vector ω= [ωx , ωy , ωz]

T ∈ R3

0 vector or matrix with all components being zero

1 identity matrix with all components being one on the diagonal and zero otherwise

0H additive identity quaternion (see Equation B.12)

1H multiplicative identity quaternion (see Equation B.11)

E(n) Euclidean group in dimension n ∈ {2, 3} (all transformations of Rn that can be expressed as a
composition of a translation, a rotation, and (optional) a reflection [185, p. 10f])

SE(n) special Euclidean group in dimension n ∈ {2, 3} (all transformations of Rn that can be expressed
as a composition of a translation and a rotation)

O(n) orthogonal group in dimension n ∈ {2, 3} (all transformations of Rn that can be expressed as a
rotation or a composition of a rotation and a reflection [185, p. 6ff])

SO(n) special orthogonal group in dimension n ∈ {2, 3} (all transformations of Rn that can be
expressed as a rotation [185, p. 6ff])

Indices

(·)u|v component in u- or v-direction (barycentric coordinates)

(·)w component in w-direction (barycentric coordinates)
real (scalar) component of a quaternion (see Appendix B.1)

(·)x |y|z component in x-, y-, or z-direction (FoR depends on context)

(·)W world frame (inertial, equivalent to PW, see Section 4.2 and Figure 4.2)

(·)PW planning world frame (inertial, equivalent to W, see Section 4.2 and Figure 4.2)

(·)VW vision world frame (inertial, see Section 4.2 and Figure 4.2)

(·)t as body part: torso or RMT
as CoSy: torso segment frame (attached to torso, see Figure 3.5)

(·)UB upper body frame (origin: undef., orientation: same as IMU, see Section 4.2, Figure 4.2, and Table H.2)

(·)RF as body part: right foot
as CoSy: TCP frame of right foot (attached to zfr, see Section 4.2, Figure 4.2, and Table H.2)

(·)LF as body part: left foot
as CoSy: TCP frame of left foot (attached to zfl, see Section 4.2, Figure 4.2, and Table H.2)

(·)SF as body part: current stance foot
as CoSy: TCP frame of current stance foot (inertial, see Section 4.2 and Figure 4.2)

(·)SF as body part: current swing foot (opposite of stance foot, i. e., SF := {RF, LF} \ SF)
as CoSy: TCP frame of current swing foot

(·)MF mean foot TCP frame (see Section 5.1)

(·) f foot f ∈ {RF, LF}

Glossary xiv

(·)RH as body part: right hand
as CoSy: TCP frame of right hand (attached to efr, see Section 4.2, Figure 4.2, and Table H.2)

(·)LH as body part: left hand
as CoSy: TCP frame of left hand (attached to efl, see Section 4.2, Figure 4.2, and Table H.2)

(·)h hand h ∈ {RH, LH}
(·)e EE e ∈ {RF, LF, RH, LH} (without head)

(·)VTCP vision TCP frame (attached to vt, see Section 4.2, Figure 4.2, and Table H.2)

(·)EO environmental object frame (see Section 4.5.1 and Figure 4.6)

(·)acq acquisition

(·)act actual

(·)beg begin

(·)clo closest
close

(·)coll collocation

(·)cont contact

(·)cur current

(·)def default

(·)des desired

(·)dist distance

(·)dur duration

(·)end end

(·)ext external

(·)free free

(·)gau GAUSS

(·)goal goal

(·)hom homogeneous

(·)human human

(·)idle idle

(·)lag lag

(·)lead lead

(·)lift lift

(·)lower lower

(·)max maximum

(·)mean mean

(·)min minimum

(·)mult multi-contact

(·)new new

(·)next next

(·)open open

(·)opt optimum

(·)orig original

(·)par parent

(·)peak peak

Glossary xv

(·)perm permanent

(·)pha phase

(·)pre previous

(·)proj projection

(·)ref reference

(·)seg segment

(·)start start

(·)step step

(·)str stride

(·)succ successor

(·)surf surface

(·)test test

(·)thres threshold

(·)tra transition

(·)virt virtual

(·)vis vision

C(·) quantity related to cubic spline interpolation or collocation (e. g. see Equation G.8)

Q(·) quantity related to quintic spline interpolation or collocation (e. g. see Equation G.11)

Operators

(·)! factorial α! ∈ N1 of a non-negative integer α ∈ N0

(·)T transpose

(·)−1 for scalars: reciprocal
for matrices: inverse
for quaternions: multiplicative inverse (see Equation B.15)

(·)# pseudoinverse of a matrix (here: MOORE-PENROSE pseudoinverse [319, p. 41ff])

|(·)| for scalars: absolute value
for sets: cardinality
for quaternions: modulus (absolute value) (see Equation B.9)

∥(·)∥ for vectors: norm of the vector (Euclidean norm ∥·∥2 if not specified otherwise)
for matrices: norm of the matrix (spectral norm ∥·∥2 if not specified otherwise)

(·)⊗ (·) HAMILTON product of two quaternions (see Equation B.7)

(·)⊙ (·) dot product of two quaternions (see Equation B.8)

atan2(y, x) 2-argument arctangent atan2(y, x) ∈]−π, π]
axAng(·) constructor of axis-angle representation from unit quaternion (see Equation B.26)

e(·), exp(·) for scalars: natural exponential function eα = exp(α) ∈ R
for quaternions: quaternion natural exponential function (see Equation B.16)

det(·) determinant of a square matrix

diag(·) diagonal matrix diag(α1, . . . , αn) ∈ R
n×n composed of the given scalars or matrices

dim(·) dimension of a vector or matrix

heur(·) heuristic (estimated cost of remaining path) for the given A⋆ state (see Section 5.5.3)

Glossary xvi

ln(·) for scalars: natural logarithm function
for quaternions: quaternion natural logarithm function (see Equation B.17)

max(·) maximum element of the arguments

min(·) minimum element of the arguments

node(·) constructor of A⋆ node from state, predecessor node, and costs (see Section 5.5.3)

norm(·) for vectors: normalization
for quaternions: normalization (quaternion sign) (see Equation B.13)

pred(·) predecessor of an A⋆ node (see Section 5.5.3)
real/vec
quat(·) constructor of quaternion from real and vector part (see Equation B.4)
ax/ang
quat(·) constructor of unit quaternion from axis-angle representation (see Equation B.25)
rot-vec
quat(·) constructor of unit quaternion from rotation vector (see Equation B.27)

rank(·) rank of a matrix

real(·) real (scalar) part of a quaternion (see Equation B.3)

rotMat(·) constructor of rotation matrix from unit quaternion (see Equation B.24)

rotVec(·) constructor of rotation vector from unit quaternion (see Equation B.28)

stateCost(·) state cost for the given A⋆ state (see Section 5.5.3)

succList(·) list of possible successors for the given A⋆ node (see Section 5.5.3)

tranCost(·) transition cost from a given A⋆ node to a given A⋆ state (see Section 5.5.3)

vec(·) vector part of a quaternion (see Equation B.3)

Chapter 1

Introduction

Over the past 200 years, the global human population has increased significantly. This led to
a growing demand for goods and energy, which in turn caused severe industrial pollution and
depletion of resources. Although the growth rate of the population declined in the last decades
[361], the worldwide production capacities and thus the accompanying negative impacts on
our environment are expected to further increase. The industrial revolution, however, also had
positive effects on ecology: through extensive automation and production in large scales, a
sudden rise of efficiency allowed to reduce the amount of resources required to satisfy the needs
of such a large population. Since efficiency is also important from an economic point of view,
companies continuously try to raise the level of automation. Today, almost all goods of our
everyday life are produced through an automated process which is partly or completely taken
over by industrial machinery and robots.

Nevertheless, there remain countless physical tasks a machine is not yet able to perform.
This includes problems, which require a very flexible reaction to uncertainties and changing
environmental conditions. As an example, robotic manipulators in industry are optimized for
high throughput and reliability while performing a repetitive task in a well-controlled environ-
ment. While this fits well into the context of an industrial production line, this type of robots
cannot be used in uncertain environments or in the close vicinity of humans. However, recent
developments show that there is high interest of industry and society in making robots more
versatile and safe to explore new fields of application such as autonomous driving or the last
mile in parcel delivery. Apart from technological challenges, there are also societal implications,
especially with regard to (social) interaction between human and machine.

This thesis investigates a certain type of such versatile machines, namely Humanoids, i. e.,
robots with a visual appearance similar to humans. The focus of this work lies on core phys-
ical skills, in particular robust biped locomotion, which is a base requirement for most future
applications. Currently, the majority of mobile robotic systems, e. g. in logistics, is wheel- or
chain-driven, which seems reasonable when considering stability, robustness, and cost. The fo-
cus on legged robots with a topology similar to humans can be motivated through their potential
future applications as they are expected to perform better in environments which were designed
for humans such as the interior of buildings. In particular, climbing stairs or stepping over ob-
stacles is typically easier to achieve for legged machines. Moreover, acceptance by the society
strongly depends on the visual appearance of the robot which is relevant, e. g. for nursing, el-
derly care, or the entertainment industry. Although the focus of this thesis lies on biped robots,
many findings can be transferred to other types of autonomous, mobile systems.

Robust locomotion of biped robots is a broad area of research. This work focuses on so-
called dynamic multi-contact locomotion, where the term multi-contact stands for additional sup-
port with the robot’s hands to increase stability and robustness. In comparison to regular biped
walking, the additional contacts introduce higher requirements on the hardware and also make
controlling the robot much more complex. This work specifically addresses the challenges in
hard- and software design, contact planning, and motion generation and demonstrates the per-
formance of the proposed hard- and software through experiments under real-world conditions.
Apart from this, multi-contact locomotion also sets high requirements on low-level stabilization

1

1 Introduction 2

and control. These topics have been investigated for the same research platform by SYGULLA

and are described in his dissertation [401], which represents a complementary work to this
thesis. Finally, by the term dynamic, a moderate walking speed is assumed, such that the main
characteristics of biped gait are preserved. Up to now, most humanoid robots have been lim-
ited to rather low walking speeds when compared to humans. This holds true especially for
multi-contact situations where most humanoids slow down to quasi-static motion. In contrast,
the achievements of the work presented in this thesis include walking speeds of up to 1.8 km/h
under multi-contact conditions. Examples of target scenarios matching the label dynamic multi-
contact locomotion are depicted in Figure 1.1. Note that this thesis does not investigate non-
gaited multi-contact actions like crawling, climbing ladders, or manipulation. In addition, only
unilateral contacts, i. e., pushing forces, are considered.

F

Figure 1.1: Target scenarios for dynamic multi-contact locomotion. From left to right: additional support in the pres-
ence of walls, corridors, tables, and handrails (blue). The augmentation by explicit hand-contacts is meant to improve
robustness against unforeseen external disturbances and uncertainties in the environment (orange).

In the following section, the actual problem which is to be investigated by this thesis is
formulated. Subsequently, in Section 1.2 a rough overview of the contributions of the author is
given. Finally, Section 1.3 draws an outline of the structure of this thesis.

Notation and Quaternions An overview of the notation of mathematical formulations used
throughout this document is given in Appendix A. Moreover, for describing orientations in the
three-dimensional space, in most cases quaternions are used. Since some readers might not be
familiar with quaternion calculus, a brief introduction is given in Appendix B.

Hyperlinks The electronic version of this document is equipped with clickable hyperlinks,
which allow the reader to quickly jump to the corresponding reference. This also applies to the
various referred videos, for which a special citation style is used: e. g. [20]. Here, the leading
number is a classical (in-document) reference to the corresponding bibliography entry and the
subsequent “play button” redirects to the online video. For long videos, an additional time stamp
might be attached, e. g. [20 @t=10s]. The time stamp is integrated into the underlying link.
Moreover, not only citations highlighted in blue are clickable, but also

• references to chapters, sections, paragraphs, footnotes, figures, etc., e. g. Figure 1.1,
• acronyms, e. g. ZMP (redirects to the corresponding glossary entry),
• (most) symbols, indices, and operators, e. g. F = [Fx , Fy , Fz]

T (redirects to glossary),
• author names, e. g. SEIWALD et al. (redirects to the corresponding bibliography entry),
• (most) robot names, e. g. LOLA (redirects to a photo if included in this document), and
• segment names of the robot LOLA, e. g. arr|l (redirects to its location in the topology).

https://youtu.be/gUNZ0AmLiWU
https://youtu.be/gUNZ0AmLiWU?t=10s

1.1 Problem Statement 3

1.1 Problem Statement

The goal of this work is to improve the autonomy, versatility, and robustness of biped locomo-
tion. This seems to be essential in order to push humanoid robots further into the direction
of potential future applications. Impressive progress has been demonstrated in the past years,
however, even modern high-end prototypes in academia and industry do not satisfy the high
requirements on safety, reliability, and versatility when it comes to real-world use cases in the
vicinity of humans. Obviously, a life-sized, fully-actuated humanoid robot is a highly complex
system with a large number of subsystems, each of which representing an area of research on its
own. The main challenges lie in the design of potent hardware, the identification of dominating
dynamic effects, the creation of appropriate models, and the development of efficient planning
and control algorithms, which run in real-time under the restrictions of limited onboard comput-
ing power. In contrast to wheeled systems, locomotion of legged robots is characterized through
repeatedly opening and closing contacts, which is an additional challenge when considering the
multi-body dynamics for motion planning and stabilization purposes.

This thesis focuses on a special walking skill: autonomous, dynamic multi-contact locomo-
tion. In particular, the hard- and software of the research platform LOLA (introduced in Sec-
tion 2.7) was enhanced, so that it is capable of performing the target scenarios depicted in
Figure 1.1. Here, the additional hand support during locomotion is meant to improve robust-
ness and further enhance the performance in biped walking as a core skill of humanoid robots.
Compared to regular biped walking, multi-contact locomotion sets higher requirements on the
physical capabilities of the robot and further raises the complexity in planning and control. For
the humanoid LOLA, this requires substantial modifications to the hard- and software design,
the contact planning, and the motion generation system.

1.2 Author’s Contributions: Overview

The research on legged robots by the Chair of Applied Mechanics at the Technical University of
Munich (TUM) and in particular the research on the humanoids JOHNNIE and LOLA was mainly
funded by the German Research Foundation (DFG). Accordingly, the work described in this thesis
was funded by the DFG project Adaptives Laufen durch Multi-Kontakt Stabilisierung und Nutzung
von Teilkontakten für humanoide Roboter (DFG project number 407378162). The project was a
cooperation with the Chair for Computer Aided Medical Procedures & Augmented Reality, TUM,
responsible for work packages related to visual perception. The primary focus of the project was
set on autonomous multi-contact locomotion, where the main workload was split into

• a new visual perception system (contributed by WU et al., see [446, 448] and the brief
summary of this module in Section 4.4),

• a new upper body hardware design and a new contact planning and motion generation
pipeline (contributed by the author of this thesis, see Chapters 3 to 7), and

• an extension of the stabilization system (contributed by SYGULLA, see [401, p. 130ff] and
the brief summary of this module in Section 4.6).

Certainly, the overall results presented in this thesis have to be understood as common achieve-
ment. Moreover, the presented work substantially benefits from the outstanding contributions
of the former researchers of the JOHNNIE and LOLA projects (see Section 2.7). A more detailed
summary of the author’s individual contributions is given in Section 9.2.

https://gepris.dfg.de/gepris/projekt/407378162?language=en

1.3 Outline 4

1.3 Outline

This thesis starts in Chapter 2 with an introduction to the fundamentals and the state of the
art with regard to legged robots and a special focus on biped and multi-contact locomotion.
This is followed by the core contents, which separately discuss the (upper body) hardware in
Chapter 3, the locomotion framework in Chapter 4, and the software ecosystem in Chapter 7.
An overview of the organization of chapters and sections, visualized as simplified flowchart
representing the complete LOLA platform, is given in Figure 1.2. For a clear presentation, the
sections within Chapter 4 are sorted according to the main data flow. Since the modules for
contact planning and motion generation represent core contributions of the author to LOLA’s
locomotion framework, they are presented in full detail in the Chapters 5 and 6, respectively.
In Chapter 8, the new capabilities of the robot are validated on the basis of various locomotion
scenarios which are evaluated within simulations and real-world experiments. Finally, Chapter 9
contains a summary, a detailed list of the author’s individual contributions, and an outlook
including suggestions for future investigations.

Computer Vision (CV)

Walking Pattern Generation (WPG)

Contact Planning Motion Generation

Hardware Layer (HWL)

joint-space trajectories

Hardware
Chapter 3

Chapter 4

Chapter 5

Section 4.4

Section 4.7

Stabilization and Inverse Kinematics (SIK)
Section 4.6

Chapter 6

task-space trajectories

sensor data

contact

sequence

Section 4.5

environment model

Locomotion Framework
Chapter 7

Ecosystem

Simulation

Visualization

Section 7.4

Section 7.5

Figure 1.2: Overview of the organization of the core contents of this thesis on the basis of a simplified flowchart
of the LOLA platform. The description of the main contents (Chapters 3 to 7) is preceded by an introduction to the
fundamentals and state of the art (Chapter 2, not shown) and followed by a validation of the new locomotion capabilities
(Chapter 8, not shown) and closure (Chapter 9, not shown).

This document includes descriptions of software which has been contributed by others – in
particular the modules Computer Vision (CV) see Section 4.4, Stabilization and Inverse Kinematics
(SIK) see Section 4.6, and Hardware Layer (HWL) see Section 4.7. These sections are kept
rather short and are meant to give the reader a clue on the role of the corresponding module in
the governing framework. Moreover, Section 7.4 describes various extensions of the author to
the preexisting simulation framework of LOLA, which was originally developed by BUSCHMANN

[100] and SCHWIENBACHER [372].

Chapter 2

Fundamentals and State of the Art

Within the scope of this thesis, the challenges of multi-contact locomotion are investigated with
regard to the rather diverse disciplines hard- and software design, contact planning, and motion
generation. In the following sections, the state of the art for legged, biped, and multi-contact
locomotion of robots regarding the aforementioned disciplines is summarized. This is meant to
give a general overview and to introduce the reader to the fundamentals of this special field of
robotics. Moreover, it locates the results of this thesis in the broad context of robotic research.

2.1 System Overview and Hardware Design

Whenever a new legged robotic system is to be developed, special focus has to be put on a
carefully thought-out hardware design. The most impressive performances have been achieved
by high-end prototypes such as ASIMO [367] by Honda or ATLAS [321] by Boston Dynamics.
Although some design flaws might be compensated through smart control strategies, the overall
performance still strongly depends on a well engineered system and hardware design.

Nowadays, there exist various types of legged robots in the consumer market. These mainly
serve entertainment purposes, such as the internationally very successful toy robot dog AIBO

[162] (Figure 2.1, left) by Sony or the huge variety of Do It Yourself (DIY) kits for two-, four-, and
six-legged robots. All commercially sold systems have in common that they are of rather small
size. This also holds true for the prominent humanoids SDR-4X alias QRIO [163] (discontinued
– Figure 2.1, center) by Sony and NAO [176] (mainly intended as research platform – Figure 2.1,
right) by SoftBank / Aldebaran Robotics, which are both less than 60 cm high.

AIBO [162] 0.29 m
2.2 kg

QRIO [163] 0.58 m
6.5 kg

NAO [176] 0.58 m
5.5 kg

Figure 2.1: Small sized, commercial quadruped and humanoid robots. From left to right: toy robots AIBO and QRIO

by Sony and research platform NAO by SoftBank / Aldebaran Robotics. Images modified from [383, 386, 387].

Apart from cost reasons, the small form factor has two essential advantages: on the one hand,
relatively weak actuators can be used, which is important for product safety considerations. On

5

2.1 System Overview and Hardware Design 6

the other hand, the low mass in relation to the material strength makes these robots quite robust
against damage due to falling or unintended collisions. In contrast, with full-sized humanoids,
the potential damage to the machine or nearby humans is significantly higher. Thus, this taller
class of robots is – regardless of their not (yet) sufficient usability for real-world applications –
still restricted to prototypes and demonstrators in academic and industrial research institutes.

Some kind of intermediate step is made with large scale quadrupeds, for which significant
progress in terms of robustness has been made with BIGDOG [356] (Figure 2.2, left) and its
successors, e. g. the LS3 alias ALPHADOG [39] (Figure 2.2, center) by Boston Dynamics. While
BIGDOG was a first demonstrator for potential applications in military, ALPHADOG represented a
further developed heavy-duty version of it. Apart from a high-strength mechanical design driven
by hydraulic actuators, these robots also featured a very robust control which has evolved from
the heuristics-based methods developed for hopping machines at the Massachusetts Institute of
Technology (MIT) Leg Laboratory led by RAIBERT [355].

BIGDOG [356] 1.0 m
109 kg

ALPHADOG [39] 1.9 m
363 kg

WILDCAT [41]

Figure 2.2: Robust, hydraulically actuated quadrupeds developed by Boston Dynamics as prototypes for potential
military applications. From left to right: BIGDOG, ALPHADOG, and WILDCAT. Images modified from [90].

Further improvements in regard of locomotion speed were made with CHEETAH [40] (teth-
ered, 2D, up to 45 km/h) and it’s successor WILDCAT [41] (untethered, 3D, up to 25 km/h –
Figure 2.2, right) both by Boston Dynamics. Especially the latter seems to be very robust, how-
ever, energy efficiency at high running speeds is assumed to be poor. Concerning locomotion
efficiency of untethered quadrupeds, the MIT CHEETAH series achieved impressive results with
minimum Costs of Transport (CoT)1 of 0.5@21.6 km/h for the first [337], 0.47@14.4 km/h for
the second [338], and 0.45@4.9 km/h for the third [84] generation of the robot (Figure 2.3,
left). In contrast to the aforementioned examples, the MIT CHEETAH series uses electrome-
chanical, high-torque actuators featuring planetary gears with low transmission ratio (“almost”
direct-drives), resulting in low friction losses and good impact mitigation properties which is
important for locomotion at high speeds and jumping motions [337, 338].

Even greater robustness against impacts can be achieved with Series Elastic Actuators (SEAs)2,
which have been used for example by HUTTER et al. for STARLETH [215] (Figure 2.3, center)
and it’s successor ANYMAL [216] at the Swiss Federal Institute of Technology in Zürich (ETH).
Especially the latter was designed for applications in harsh environments, such as search and

1The Cost of Transport (CoT) as defined by TUCKER [415] is a measure for the efficiency of locomotion and is
calculated by the power consumption divided by the product of mass, the gravitational acceleration, and the velocity.
For comparison: a human of 70 kg weight has a minimum CoT of 0.376@6.3 km/h and 0.467@12.6 km/h [415].

2A classical Series Elastic Actuator (SEA) as described by PRATT and WILLIAMSON [348] consists of a motor, a gear,
and a passive stiffness (e. g. a spring) which are chained in series to obtain inherent compliance. This makes the
actuator very shock resistant and allows direct torque control since it turns the torque control problem into a position
control problem. Unfortunately, since the stiffness acts as a low-pass filter, it also limits control bandwidth.[348]

2.1 System Overview and Hardware Design 7

MIT CHEETAH 3 [84] 0.88 m
45 kg

STARLETH [215] 0.58 m
23 kg

HYQREAL [376] 0.9 m
130 kg

Figure 2.3: Quadruped robots with different principles of actuation. From left to right: MIT CHEETAH 3 (electric,
“almost” direct-drives), STARLETH (electric, SEAs), and HYQREAL (hydraulic). Images modified from [84, 215, 376].

rescue as well as oil and gas site inspections. Through numerous demonstrations, ANYMAL

showed to be very robust and versatile and thus, represents a large step towards real-world
applications. However, with a CoT of 1.2@2.9 km/h [216], it cannot achieve the same power
efficiency as the MIT CHEETAH series.

A combination of hydraulic and electric actuators was realized with the quadruped HYQ
[374] by SEMINI et al., where brushless Direct Current (DC) motors for the less heavily loaded
hip abduction/adduction joints allowed to use a smaller hydraulic pump and thus, reduce the
overall weight. For its successor, HYQ2MAX [375], all active Degrees of Freedom (DoF) are
hydraulically driven. In contrast to its predecessor, it also does not feature a passive (spring-
based) DoF in the “ankle” for shock absorbance. Note that the same can be observed for the
evolution from BIGDOG to ALPHADOG and WILDCAT. Compared to other quadrupeds of similar
size, HYQ and HYQ2MAX are rather heavy with a total mass of more than 80 kg while still being
tethered. This holds also true for the untethered, high-capacity variant HYQREAL (130 kg –
Figure 2.3, right) which demonstrated its strength by pulling a small airplane [376]. HYQREAL

represents the most recent generation of this series and the way it was presented suggests that
we may see a commercial variant in the near future.

As the given examples show, the development of quadruped robots has made tremendous
progress in the last years. Indeed, we observe a transition from pure research prototypes to
real, commercially sold products. Prominent examples are SPOT [184] (Figure 2.4, left) as the
most recent electrically actuated quadruped by Boston Dynamics and the enhanced, commercial
variant of ANYMAL [44] (Figure 2.4, center) by the ETH spin-off ANYbotics. Additional to these
high-end systems, which are mainly targeting industrial applications, also much cheaper (but
also smaller) robots, e. g. GO1 [47] (Figure 2.4, right) from Unitree Robotics, emerged, which
bring robust and versatile quadrupeds also into the consumer market.

Although quadruped and biped robots share similar hard- and software concepts in most
aspects, especially humanoids are – at the time of writing – not yet ready for real-world deploy-
ment. The inherent lower stability of bipeds when compared to tetrapods, the higher count of
active joints, and the greater total size are only examples for additional challenges which put
life-sized humanoid robots to another level of complexity. Apart from historic mechanisms and
automatons mimicking certain types of human motion, first dedicated investigations on full-
sized humanoid robots started with WABOT-1 [245] in 1973 at the Waseda University, Japan.
Ever since, impressive progress has been made with prototypes developed by various research
groups distributed all over the world. So far, a huge variety of biped robots emerged, which
differ in their size, count of DoF, actuation principles, control strategies, and hence capabilities
and potential future applications.

One way to structure this diversity with regard to hardware aspects, is to cluster biped robots
by their level of versatility, where a higher versatility in general also comes with a higher com-

2.1 System Overview and Hardware Design 8

SPOT [184] 0.84 m
25 kg

ANYMAL [44] 0.7 m
50 kg

GO1 [47] 0.4 m
12 kg

Figure 2.4: Commercial quadruped robots. From left to right: SPOT (formerly SPOTMINI) by Boston Dynamics,
ANYMAL (generation “C”) by ANYbotics, and GO1 by Unitree Robotics. Images modified from [44, 92, 418].

plexity and power consumption. The first group, so-called passive-dynamic3 walkers, does not
rely on any integrated actuation. Instead, they are typically driven by the potential energy re-
leased from descending a shallow slope. Early analysis of such mechanisms was done in the late
1980s by MCGEER [304], which triggered the investigation of more advanced systems, such as
the first 3D passive-dynamic walker by COLLINS et al. [119]. One might extend the definition of
this first group to also include quasi passive-dynamic walkers, which introduce a minor internal
actuation while the passive dynamics still dominate the motion. These are able to walk also on
level ground, nevertheless, they are still restricted to a single locomotion pattern based on a limit
cycle, thus representing the lowest level of versatility. The main motivation for such systems is
their simplicity and typical low CoT, e. g. 0.2@1.44 km/h for the CORNELL BIPED [120].

If we further increase the level of actuation such that active and passive elements have
about equal contribution to the total system dynamics, we enter the field of semi-passive walk-
ers. A prominent example is given by ATRIAS [213] (Figure 2.5, left), developed at the Oregon
State University, USA, which set a milestone with regard to versatility for this class of robots,
since it was one of the first to achieve untethered 3D motion. It features two series-elastic legs
based on fiberglass plate springs coupled with a four-bar mechanism in the sagittal plane for
mechanical compliance and to cyclically store and release energy. The robot embodies a realiza-
tion of the well-known Spring-Loaded Inverted Pendulum (SLIP)4 model and achieves a CoT of
1.13@3.06 km/h while being robust enough to handle difficult terrains without prior knowledge
of the environment [213].

The experience gained with ATRIAS was used to develop CASSIE [42] (Figure 2.5, center),
which was commercialized by the spin-off Agility Robotics. The step from ATRIAS to CASSIE was
huge, leading to a very robust biped system relying on proprioceptive feedback only. Apart from
the many optimizations required to move from a research prototype to a commercial product,
a prominent change is the different leg kinematics (“ostrich” alike), which allows CASSIE to be
even more efficient while using smaller motors [42]. Since CASSIE – like ATRIAS – basically
consists of two legs connected by a pelvis assembly, the real-world use cases are rather limited.

3In this context, the term dynamic indicates that the corresponding mechanism does not maintain static equilib-
rium throughout its motion [304]. Indeed, some passive-dynamic walkers are also not stable at standstill.

4The Spring-Loaded Inverted Pendulum (SLIP) locomotion model consists of a single point mass representing the
Center of Mass (CoM) which is connected to a massless spring representing the current stance leg during contact,
see Figure 2.17. It was derived (among others) by BLICKHAN [86] from an analysis of human and animal hopping
and running and became very common in the field of biomechanics. It approximates the real dynamics best for
frequencies above 2 Hz while being less representative for slower locomotion [86]. The pogo-stick-alike hopping
machines by RAIBERT [355] can be seen as an early adoption of a similar concept in the field of robotics. See [168]
for an overview of the origins of the SLIP model and its usage in robotics.

2.1 System Overview and Hardware Design 9

ATRIAS [213] 1.71 m
62 kg

CASSIE [42] 1.15 m
31 kg

DIGIT [45] 1.55 m
42 kg

Figure 2.5: Evolution of semi-passive biped walkers from research prototypes to commercial products. From left to
right: ATRIAS by the Oregon State University and its successors CASSIE and DIGIT by the spin-off Agility Robotics.
Images modified from [51, 52, 213].

Thus, Agility Robotics developed the humanoid DIGIT [45] (Figure 2.5, right), which represents
an extension of CASSIE by an upper body integrating multiple depth cameras, a Light Detection
and Ranging (LiDAR) sensor and (rather rudimentary) arms for simple manipulation tasks. The
target markets for DIGIT are promoted as warehouse logistics and the last mile in parcel delivery.
However, real-world usability in these fields remains to be shown.

Finally, the last group represents fully-actuated walkers, which sacrifice simplicity and energy
efficiency in exchange for highest versatility in locomotion and manipulation. Prime examples
are the humanoids developed by high-tech companies such as ASIMO [367] (Figure 2.6, left) by
Honda, PARTNER [402] by Toyota, and ATLAS [321] by Boston Dynamics. The first two examples
are electrically driven and demonstrated unmatched smoothness in biped walking and running
on flat ground. At their time, they gave a vision of how humanoid service robots might look
in a perfect world, i. e., without large disturbances and uncertainties. In contrast, ATLAS has
hydraulic actuators and currently sets the bar in terms of robustness while performing highly
dynamic and even acrobatic motions. A serious problem with (untethered) hydraulic robots is
their excessive weight: the variant Atlas-Unplugged which was designed for the DARPA Robotics
Challenge (DRC)5 finals in 2015 had a weight of 182 kg [321]. Through elaborate lightweight
design, the mass could be reduced to only 80 kg for the most recent generation [91] (see Fig-
ure 2.8 right). As a negative side effect, extensive customization in general also significantly
increases the production costs. Additionally, ATLAS’ great strength in combination with the gen-
eral dangers of hydraulic systems (especially the high oil pressure) still raises serious safety
concerns when thinking of operation in the close vicinity of humans.

Unfortunately, the development of ASIMO and PARTNER has been discontinued. In contrast,
ATLAS is still subject to ongoing research. However, it is handled as internal prototype and hence
– at least in its most recent form – not accessible to others. Note that Honda and Toyota still
show interest in the field of humanoid robotics through their more recent developments E2-DR
[451] (Figure 2.6, center) and T-HR3 [43] (Figure 2.6, right), respectively. While E2-DR is
specifically designed for disaster response on industrial sites, the focus of T-HR3 as successor of
the classical PARTNER robots seems to lie on teleoperation in domestic environments through a
sophisticated exoskeleton, thus, offloading the motion planning problem to a human operator.

In order to provide potent hardware to the research community, the company PAL Robotics
offers the humanoid platforms REEM-C [332] and its successor TALOS [390] (Figure 2.7, right).

5The DARPA Robotics Challenge (DRC) was an international competition, where semi-autonomous robots had to
perform “complex tasks in dangerous, degraded, human-engineered environments” [124]. Throughout the event it
became clear that there is still plenty of work left when it comes to reliability of hard- and software [70].

2.1 System Overview and Hardware Design 10

ASIMO [367] 1.3 m
48 kg

E2-DR [451] 1.68 m
85 kg

T-HR3 [43] 1.5 m
75 kg

Figure 2.6: High-end research prototypes of fully-actuated humanoids by automotive companies. From left to right:
ASIMO (domestic service) and E2-DR (disaster response – shown in transition from biped to quadruped mode) by
Honda and T-HR3 (without human teleoperator) by Toyota. Images modified from [43, 207, 451].

TALOS is electrically actuated, has torque sensors (except for the DoF in the head and wrists),
and handles payloads of up to 6 kg with out-stretched arms [390]. Up to now, only rather slow
walking motions have been demonstrated with it. Another prominent humanoid platform is
the HRP series developed by the National Institute of Advanced Industrial Science and Technology
(AIST), Japan and Kawada Industries, which started with the famous HRP-2 [236] in 2004,
see Figure 2.7 left. Over the years, various new variants have been presented, such as HRP-
3 [237] with focus on dust and spray protection for outdoor applications, the compact and
slender HRP-4C “Cybernetic Human” [238] designed for the entertainment industry (especially
exhibition and fashion shows), the lightweight and low powered HRP-4 [239] (based on HRP-
4C) targeting low cost and safety in the vicinity of humans, and HRP-2KAI [240] as a complete
overhaul of HRP-2 to make it ready for disaster response tasks as evaluated in the DRC. Finally,
their newest prototype HRP-5P (Figure 2.8, left) represents a heavy-duty variant meant for
assembly tasks at construction sites, aircraft facilities, and shipyards [241]. With 101 kg it is also
the heaviest of the series which puts it between JAXON (Figure 2.8, center) from the University
of Tokyo, Japan (127 kg, [255]) and TALOS (95 kg, [390]). Although JAXON has a lower mean
joint power to weight ratio when compared to HRP-5P [241], it also fits well into the category
of “heavy duty humanoids” due to its protective armor and special shock-absorbing structures,
see [255] for details.

HRP-2 [236] 1.54 m
58 kg

HUBO 2 [194] 1.25 m
45 kg

TALOS [390] 1.75 m
95 kg

Figure 2.7: Fully-actuated humanoid robots following conventional design approaches. From left to right: HRP-2 by
AIST and Kawada Industries, HUBO 2 by KAIST, and TALOS by PAL Robotics. Images modified from [55, 228, 333].

2.1 System Overview and Hardware Design 11

HRP-5P [241] 1.83 m
101 kg

JAXON [255] 1.88 m
127 kg

ATLAS [91] 1.5 m
80 kg

Figure 2.8: High-strength humanoids for heavy-duty manipulation and acrobatic locomotion. From left to right: HRP-
5P (electric) by AIST and Kawada Industries, JAXON (electric) by the University of Tokyo, and the most recent version
of ATLAS (hydraulic) by Boston Dynamics. Images modified from [56, 91, 255].

Apart from (more or less) shared humanoid platforms, there are numerous unique, in-house
developments. Examples are HUBO 2 (Figure 2.7, center) by the Korean Advanced Institute of Sci-
ence and Technology (KAIST) as the most recent version of their KHR/HUBO series [194], TORO

[143] (Figure 2.9, left) by the German Aerospace Center (DLR), WALK-MAN [414] as full-sized
successor of COMAN [413] by the Italian Institute of Technology (IIT), or VALKYRIE [354] (Fig-
ure 2.9, center) by the National Aeronautics and Space Administration (NASA), USA as biped suc-
cessor of their ROBONAUT 2 [134] space robot. While the HUBO series relies on a conventional
hardware design and control strategy, TORO has limbs which are based on DLR’s lightweight
LWR III [205] robotic arm featuring straingauge-based torque sensors in its joints. TORO is
used mainly to investigate locomotion and manipulation methods based on torque-control rather
than the classical position-control [193]. In contrast to the stiff mechanical design of HUBO and
TORO, WALK-MAN and VALKYRIE implement SEAs where the main intention is passive compli-
ance. With 132 kg for WALK-MAN [414] and 129 kg for VALKYRIE [354] they are rather heavy
when compared to systems of similar size and power. Nevertheless, their integration of SEAs
is an interesting approach, especially for safety-critical applications such as human-machine in-
teraction. Up to now, only rather slow, quasi-static locomotion has been demonstrated with the
SEA-based humanoids WALK-MAN and VALKYRIE.

TORO [143] 1.74 m
76 kg

VALKYRIE [354] 1.87 m
129 kg

KENGORO [62] 1.67 m
56 kg

Figure 2.9: Full-sized humanoid robots following non-conventional design approaches. From left to right: TORO

(based on LWR III robotic arms) by DLR, VALKYRIE (incorporates SEAs) by NASA, and KENGORO (musculoskeletal
humanoid) by the University of Tokyo. Images modified from [62, 137, 354].

2.1 System Overview and Hardware Design 12

All robots mentioned so far share an (in most parts) conventional joint design. A different
approach is made with so-called musculoskeletal humanoid robots, such as KOJIRO [308] and its
most recent successor KENGORO [62] (Figure 2.9, right) by the University of Tokyo. Instead of
a single actuator – or at the most a pair of actuators – to drive a single rotational or prismatic
DoF, a set of artificial muscles allows to realize highly complex joints, such as the human-like
shoulder mechanism of BLADE [382] (a pre-study to KOJIRO). Typically, the high count of mus-
cles realizes not only antagonism but also redundancy, thus, a malfunction of a single element
may be compensated by its neighbors. The electromechanic, tendon-based muscle design has
been published by ASANO et al. in [61] and is used for KENGORO to realize the excessive count
of 114 DoF (without hands) while keeping the total weight of the 1.67 m tall humanoid below
56 kg. The low mass is achieved by a lightweight design of the skeletal structures using Carbon
Fiber-Reinforced Polymers (CFRPs) and 3D printed aluminum components. The latter integrate a
pipe system for water cooling which in turn also allows artificial perspiration, i. e., “sweating”,
through special porous regions [62]. To date, the motion of musculoskeletal humanoids has
always looked somewhat “wobbly and clumsy” in demonstrations. However, due to the similar-
ity to human anatomy, they promise very flexible and dexterous motions once this technology
becomes more mature. Finally, it is worth noting that there are also hydraulically and pneumat-
ically driven artificial muscles. Unfortunately, they typically suffer from high response times and
modeling difficulties, especially for braided artificial muscles [411].

What has not been mentioned so far is the group of non-legged humanoids, i. e., robots
with a full-scale anthropomorphic upper body, but a lower body which is realized through a
static socket or a wheeled platform. Examples are the research prototypes JUSTIN [331] (with
wheeled platform called ROLLIN’ JUSTIN [161] - Figure 2.10, left) and DAVID [177] by the DLR,
but also the ARMAR series6, including the prominent ARMAR-III [66] and its newest successor
ARMAR-6 [68] (Figure 2.10, center) by the Karlsruhe Institute of Technology (KIT), Germany.
The restriction to the upper body circumvents the complexity of legged locomotion and instead
allows to put full focus on manipulation capabilities. While the natural motivation of the ARMAR

series is to develop domestic service robots helping in the household, there is also high interest
in non-legged humanoids as smart guides in public places. Here the arms and hands are typically
used for social interaction rather than manipulation, such as for the well-known PEPPER [334]
robot (Figure 2.10, right) by SoftBank / Aldebaran Robotics.

ROLLIN’ JUSTIN

[161, 331]
1.95 m
199 kg

ARMAR-6 [68] 1.92 m
160 kg

PEPPER [334] 1.21 m
28 kg

Figure 2.10: Non-legged humanoid robots designed for manipulation and human-machine interaction. From left to
right: ROLLIN’ JUSTIN (dexterous manipulation) by DLR, ARMAR-6 (collaborative manipulation) by KIT, and PEPPER

(social interaction) by SoftBank / Aldebaran Robotics. Images modified from [136, 253, 384].

6With ARMAR-4 [67], this series also has a legged variant (making it a “full” humanoid). Although walking
controllers have been proposed and evaluated through simulations, cf. [172], to the author’s best knowledge, no
real-world walking has been demonstrated yet.

2.1 System Overview and Hardware Design 13

Recently, rather exotic hardware designs also emerged which allow the transition between
different locomotion modes. An example is the hominid robot CHARLIE [257] (Figure 2.11, left)
by the German Research Center for Artificial Intelligence, which is based on the morphology of
chimpanzees and can switch between quadruped and biped gait. Another approach is to drop
the strict analogy to human or animal topology and instead allow the robot to transform itself
into a different locomotion mode. This has been successfully realized with DRC-HUBO+ [223]
(Figure 2.11, center) by the KAIST, which allowed the humanoid to switch to a wheeled mode
in a kneeling pose. The effectiveness of this approach has been demonstrated at the DRC finals,
where the team KAIST took the first place [223]. Instead of auxiliary wheels attached to the
knees such as for DRC-HUBO+, a more extreme approach is to replace the feet of a legged robot
by (active) wheels. For bipeds this has been realized with HANDLE [183] by Boston Dynamics
and for quadrupeds with a modification of ANYMAL, cf. [81] (Figure 2.11, right). By combining
the advantages of legged and wheeled systems, both demonstrated excellent locomotion skills in
various real-world scenarios. While the control of HANDLE seems to rely on classical strategies
for stabilizing an inverted pendulum, the modification of ANYMAL, as explained by BJELONIC

et al. in [81], includes a novel holistic Model Predictive Control (MPC) approach for wheel-
legged robots which allows complex hybrid maneuvers. Exploiting the natural efficiency of
wheeled locomotion, they achieve a CoT of 0.1@7.2 km/h for pure driving and 0.3@3.6 km/h
for a hybrid trotting gait [81]. BJELONIC et al. promote the last mile in parcel delivery as
potential future application for wheeled quadrupeds, which makes this modification of ANYMAL

a direct competitor of DIGIT.

CHARLIE [257] 1.36 m
22 kg

DRC-HUBO+ [223] 1.70 m
80 kg

ANYMAL (wheeled) [81]

Figure 2.11: Alternative hardware designs of legged robots allowing different locomotion patterns. From left to
right: CHARLIE (transition between quadruped and biped), DRC-HUBO+ (transition between biped and wheeled),
and wheeled ANYMAL (hybrid wheeled/legged locomotion). Images modified from [133, 229] and [82 @t=34s].

It remains open to classify the mentioned systems, in particular the subclass of legged hu-
manoids, according to their multi-contact capabilities. Obviously, as soon as actuated arms are
available, they may be used to establish supporting contacts during locomotion – at least for
less demanding, slow motions. However, if we consider moderate or even high walking speeds,
multi-contact locomotion sets much higher requirements on the mechanical design of the upper
body. To the author’s best knowledge, the torso and the arms of most presented humanoids have
been designed primarily with manipulation in mind. Unfortunately, versatility and dexterity in
manipulation goes hand in hand with complexity, (unintended) structural flexibility, and weight.
This seems to be one reason why real-world experiments of multi-contact locomotion are often
restricted to rather slow, quasi-static movements. An exception is the newest generation of AT-
LAS, which has proven that its hardware is well-suited for highly dynamic motions. Except for
some early experiments with its predecessor ATLASPROTO, cf. [321], multi-contact locomotion
does not seem to lie in the focus of Boston Dynamics (yet).

https://youtu.be/39rRhTqcQc0?t=34s

2.2 Software Design 14

Hardware Design A natural design goal for mobile robots is to keep the total weight low.
Especially for legged systems, an additional directive is to shift the mass from the limbs to the
torso. On the one hand, a high torso mass simplifies stabilization due to positive effects of
inertia. On the other hand, low mass in the limbs allows faster End Effector (EE)7 motion, which
in turn enables faster overall locomotion. To realize these directives, the presented robots use
lightweight structures made of high-strength steel, aluminum, and titanium, but also composite
materials and 3D printed elements. Moreover, in some cases limb joints are driven by motors
located in or close to the torso. The force is then transmitted through special mechanisms
or tendons. Finally, almost all examples implement custom actuators, which further allow to
optimize power density, cooling, and sensor integration. In recent prototypes, we see different
actuation principles including electric (rigid or as SEA), hydraulic, and pneumatic servos, each
of which having their advantages and disadvantages. Although there is no obvious “winner”, it
has to be mentioned that commercially available systems are electrically driven only.

Relations to this Thesis In Chapter 3, an upper body design especially targeting multi-contact
locomotion is proposed. Although most considerations are applicable to humanoids in general,
the presented implementation is tightly linked to the research prototype LOLA [291], which
is briefly introduced in Section 2.7. If we apply the same classification as above, LOLA can be
categorized as a life-sized, fully-actuated humanoid. Moreover, it is electrically driven, where no
SEAs are involved, thus, it can be labeled as conventional, “stiff” robot. With LOLA, autonomous,
robust, and fast biped locomotion has been investigated [100, 104, 201, 430, 443]. So far,
there have not been concrete plans for manipulation with LOLA, which is why it does not have
active hands. In comparison to other systems of similar size and strength, LOLA has a rather
lightweight design, mainly due to its aluminum structures with complex geometric shapes and
the custom actuator design [291]. However, it has no onboard battery and thus, requires an
external power supply, which in turn also prevents an untethered operation. Additional to the
power supply, the robot is also linked to a safety harness since it does not feature a protective
armor or explicit shock-absorbing structures to prevent damage from falls. Same as for other
fully-actuated humanoids, autonomy and versatility are the primary goals. Therefore, the actual
CoT of LOLA has not been evaluated yet. In general, energy efficiency considerations are not in
the scope of this thesis.

2.2 Software Design

Despite the rapid progress of digitalization, which made complex software omnipresent in our
modern society, the term software design is still ambiguous and not really tangible. Indeed, the
concept of design itself has countless meanings, which raises the urge for a universal definition,
see for example the one formulated by RALPH and WAND [357]. In the following, a definition
similar to the one proposed by FREEMAN and HART in [160] is used, which belongs to the
“broad-scoped” [357] type: instead of restricting software design to the high-level phases of
architecture conception and interface specification like it is typically defined as part of a formal
software engineering process, we also include lower level activities such as implementation and
optimization. Moreover, for the purpose of reviewing the state of the art related to legged robots
as embedded real-time systems, the definition is further extended to cover also the platform
needed to run the software, i. e., the hardware for computation and communication.

7In general, the term End Effector (EE) denotes the part of a robot which is in physical interaction with its envi-
ronment to fulfill the robot’s main purpose. Often this represents the end of a kinematic chain. Accordingly, in the
context of humanoid robotics, this term describes the robot’s feet and hands. It may also include the head since it is
the termination of the neck chain and typically carries sensors for visual perception of the environment.

2.2 Software Design 15

Same as with the hardware of legged robots, there are various different approaches related
to the software design. While the core concepts seem to be quite similar, the state of the art
still represents a mixture of differences and commonalities, which makes a strict separation
into groups difficult. Hence, the following summary tries to extract core properties and give
prominent examples for each direction.

Planning vs. Control Within this thesis, a software design for contact planning and motion
generation is presented, which in the following is referred to as the task of Walking Pattern
Generation (WPG) or shorter but less precise: planning. Certainly, the WPG represents only
a part of the software required to operate a humanoid robot. Another task of at least the
same importance is the control. Here, the term control has to be narrowed down since it is
highly ambiguous and can in general denote any piece of software related to the operation of
a robot: within the scope of this thesis, the term control describes the part of a legged robot’s
software responsible of executing a given motion while at the same time stabilizing the robot
and compensating unforeseen disturbances and modeling inaccuracies.

In contrast to the framework of LOLA where planning and control are clearly separated, the
boundaries between these two tasks are often blurred in related work. In some frameworks,
especially the ones based on simple heuristics or machine learning relying on proprioceptive
sensor information only, a dedicated planning module may not even exist at all. Therefore, the
following summarizes the state of the art related to the overall software design of legged robots
and is not restricted to the planning task. Additionally, there will be no explicit discussion on
multi-contact locomotion. Although it typically comes with higher computational cost and thus,
sets higher requirements on an efficient software design, incorporating multi-contact dynamics
in general does not require special design patterns.

Architecture: Centralized vs. Distributed Early work on legged robots which used rather
simple heuristics for stabilization, like the hopping machines by RAIBERT [355], implemented
all routines on a single interface computer. While the processing power might have been less
of a concern for these purposes, it becomes more important as soon as the complexity of the
hardware (e. g. the count of DoF, sensors, peripherals, etc.) increases or the used algorithms get
more elaborate. A paramount example of a highly complex system still operated by a centralized
compute unit is the fully-actuated humanoid robot H7 [324] by the University of Tokyo. For H7,
a central Personal Computer (PC), equipped with dedicated Input/Output (IO) boards, directly
interfaces sensors and actuators, thus, running the low-level servo-loop together with higher
level tasks such as stabilization, motion planning, and even processing of visual input on the
same processor [324]. Additional to custom, optimized interface drivers, time-critical modules
had to be run in the kernel-space of a Real-Time Linux (RTLinux) [74] Operating System (OS)
in order to maintain real-time performance. Other humanoids of the mid 2000s, such as the
HRP-2, started to offload computational expensive visual and audio processing to a separate
non-real-time computer [236].

While raw processing power of integrated circuits made incredible progress over the past two
decades, also the complexity of recent high-end robots increased significantly. To date, the trend
from a centralized to a distributed architecture seems to continue. In fact, most recent systems
feature decentralized servo controllers for each joint which allows to increase the cycle time for
individual motor control and at the same time reduce the load of the control computer and com-
munication bus. Moreover, low-level control and high-level planning are often split to run on
separated boards, see for example the three PCs of the quadruped ANYMAL [216]. The main ad-
vantages of such an architecture are the ability to encapsulate functionality and thus, counteract
the steady increase of complexity, but also the possibility to cluster modules according to their
real-time priorities and in particular their target cycle frequencies. The communication between
onboard PCs is typically realized through standard Ethernet, while distributed components such

2.2 Software Design 16

as servo controllers are interfaced mostly through industrial bus systems like Ethernet for Control
Automation Technology (EtherCAT) [77], Controller Area Network (CAN) [107], or Serial Realtime
Communication System (Sercos) [377] – in rare cases such as for KENGORO [62] with Universal
Serial Bus (USB). An example for a modern, distributed architecture is shown in Figure 2.12.

Et
he

rC
AT

,C
AN

,
Se

rc
os

,e
tc

.

vision, audio, LiDAR, etc.

Data Intensive Sensors

High Bandwidth Sensors

(mainly exteroceptive)

IMU, FTS, tactile sensors, etc.
(mainly proprioceptive)

Decentral Joint Control
servo controllers (inverters),
encoders, temperature sensors, etc.

Autonomy Level
large data processing,

decision making, navigation

Planning Level
motion planning,

trajectory generation

Control Level
stabilization,

disturbance rejection

Switch

Wireless

Operator
Interface

Bridge

Et
he

rn
et

USB
etc.

re
al

-t
im

e
pr

io
ri

ty

high

low

Figure 2.12: Simplified example for a typical distributed software architecture of a modern legged robot. The core
functionality of the software is clustered according to the respective real-time priority into an autonomy (green), plan-
ning (blue), and control (orange) level, which typically run at different cycle times and on separated PCs. Data inten-
sive sensors are processed by the autonomy level and interfaced through vendor specific protocols. The distributed
joint controllers and high bandwidth sensors (most prominently the Inertial Measurement Unit (IMU) and Force-Torque
Sensors (FTSs) in humanoid robots) are linked by an industrial (real-time capable) bus.

Computing Hardware In the past decades, the continuous shrinking of structures in semi-
conductor lithography together with major advances in the architectural design of integrated
circuits led to a significant increase of computing performance and power efficiency. Unfortu-
nately, these improvements did not result in a proportional universal speedup of code execution.
This is because the trend of raising clock frequencies slowed down due to technological and
physical limitations. Instead, chip manufacturers now focus on parallelism, e. g. by increasing
the count of Central Processing Unit (CPU) cores, in order to achieve the desired performance
gains. This makes an adaption of software necessary – in particular the transition from sequen-
tial to parallel workflows – which, depending on the actual algorithm, can be difficult or even
impossible. Moreover, certain resources such as main memory and cache are shared among
CPU cores (or at least groups of cores), which can easily become the bottleneck especially in
combination with hard real-time requirements on embedded systems. This represents another
motivation for the aforementioned trend to an architecture featuring multiple, distributed PCs,
which typically consume more space and power when compared to a single board solution.
Additionally, in some cases time-critical and computational expensive workloads get offloaded
to distributed Field Programmable Gate Arrays (FPGAs). Examples are the motor driver for the
artificial muscles of KENGORO [61], distributed control boards interfacing multiple joints and
sensors such as in VALKYRIE [354], and the FPGAs used in CHARLIE to realize control loops for
complex multi-dimensional joints with local calculation of Inverse Kinematics (IK) [257]. Due to
the low quantities, custom Application-Specific Integrated Circuits (ASICs) are typically not found
in legged robots. However, ASICs are often implemented indirectly, e. g. through the use of
fully-integrated vision sensors which internally take care of heavy-duty image processing such
as tracking, e. g. [219], and depth mapping, e. g. [218]. Additionally, some recent robots such
as ARMAR-6 integrate dedicated Graphics Processing Units (GPUs) as part of the autonomy level
(see Figure 2.12) to accelerate visual processing and neural networks [68].

2.2 Software Design 17

Real-Time Capabilities Related work proposing novel planning and control techniques for
legged locomotion rarely gives details on the actual implementation of algorithms. Although
it is reasonable to put emphasis on the proposed method, one has to keep in mind that when-
ever real-time performance is discussed, supposed details in the implementation might have –
together with the available computing hardware – a significant impact. Thus, only a rather
shallow comparison of the state of the art with regard to the real-time capabilities is possible.
Moreover, the discussion is restricted to the task of (ahead of time) planning since the task of
control, as defined earlier, always has to satisfy real-time requirements in order to allow real-
world experiments, hence, it is rarely benchmarked. Depending on the application, the planning
task might be allowed to take an unlimited amount of time. In such a case, the robot simply
starts moving once planning is finished. However, in most real-world scenarios either

• the planning horizon, i. e., the time span for which motion is planned (typically a couple
of strides), is too short to reach a certain user defined goal position, or

• a cyclic pattern (e. g. continuous walking) is desired, or
• the user input (e. g. goal position) or the environment (e. g. moving obstacles) changes,

which makes so-called dynamic replanning necessary. Thus, there is high interest in making
planning as fast as possible. In general, the planning time heavily depends on the complexity
of the underlying kinematic and dynamic models: while rather coarse approximations such as
the classical Linear Inverted Pendulum Mode (LIPM)8 [230] introduced by KAJITA and TANI allow
fast online methods for WPG [233], incorporating the full multi-body dynamics during planning
often requires offline computations such as in [317]. In order to make computations faster,
there are efforts to derive analytical formulations of complex kinematic and dynamic models by
automated symbolic tools such as the one proposed by HUTTER and GEHRING [214], which has
been used for STARLETH and later ANYMAL. However, the resulting equations are used for MPC
rather than explicit ahead of time planning. Moreover, considering full multi-body dynamics
still seems to be infeasible, which is why the MPC approach proposed for (wheeled) ANYMAL in
[81] uses the full robot model for incorporating kinematics only. In contrast, dynamics are still
restricted to the torso body. The same applies to the methods behind the impressive parkour and
dance performances of ATLAS, cf. [46]: an offline large-scale, non-linear trajectory optimization
creates template behaviors which are then executed and adapted by an online MPC considering
centroidal dynamics only [260]. Finally, if a discrete contact sequence for foot (and hand)
placement is not manually defined, but instead has to be computed autonomously based on
a model of the robot’s environment, the execution time increases significantly. Especially for
complex multi-contact actions, planning time may reach minutes or even hours [151].

Operating System (OS) In general, the choice of the actual OS does not have much impact
on the usability or performance of high-level applications such as a User Interface (UI). Con-
trary, it is crucial when considering hard real-time requirements on embedded systems, e. g. for
implementing a low-level interface to the hardware of a robot. For such purposes, a Real-Time
OS (RTOS) is required, which minimizes kernel overhead and interrupt latency, but also grants
extensive access to the scheduling for task prioritization. The majority of the aforementioned
robots makes use of a Linux based RTOS. While RTLinux (e. g. in H7 [324]) seems to be rarely
used nowadays, many recent systems, such as TALOS [390], employ the well known Linux ker-
nel patch PREEMPT_RT [359]. Same as for most other Linux based RTOSs, RTLinux is based
on a cokernel running the Linux kernel on top as a fully preemptible process [359]. In con-
trast, the PREEMPT_RT patch directly modifies the Linux kernel, which simplifies development

8The Linear Inverted Pendulum Mode (LIPM) approximates the dynamics of a legged robot by a point mass attached
to a massless leg which together form an inverted pendulum, see Figure 2.17. In order to derive linear dynamics, the
point mass is constrained to move along a straight line (typically chosen to be horizontal). Note that, in contrast to the
“classical” linearized inverted pendulum known from control theory, the LIPM is not restricted to small inclinations
(i. e. small strides), since it assumes a mechanism which can actively change the length of the leg [230].

2.2 Software Design 18

of real-time applications in user-space, but typically also has higher latencies and is less pre-
dictable [359]. For other robots, commercial RTOSs such as QNX Neutrino [83] by BlackBerry,
e. g. in WABIAN-2(R) [327] by the Waseda University (most recent successor of WABOT-1), or
VxWorks [437] by Wind River Systems, e. g. in the Honda robots ASIMO [207] and E2-DR [451],
are used. In rare cases, a Windows derivative is combined with other OSs, such as in E2-DR to
resolve driver compatibility restrictions of some peripherals mainly related to recognition [451].
Unfortunately, YOSHIIKE et al. do not specify in [451] the Windows variant, i. e., if it is the
General-Purpose OS (GPOS) for the consumer market or a variant of the independent RTOS sub-
family Windows Embedded Compact. FAYYAD-KAZAN et al. compare the real-time performance
of PREEMPT_RT (v3.6.6-rt17) with QNX Neutrino 6.5 and Windows Embedded Compact 7, which
shows that the Linux patch slowly approaches the performance of its commercial competitors
[158]. Since the publication of this study in 2013, all competitors received substantial updates,
thus, the results should be treated with caution. A recent study by PARK et al. [339] showed, that
the scheduling latency of their setup using PREEMPT_RT (v4.18.16-rt9) did not exceed 11 µs in
idle and 26 µs under heavy CPU load.

Middleware On top of an RTOS, a middleware for robotics applications, such as the well-
known Robot Operating System (ROS) [330], may be used, which provides a software ecosystem
for robotics applications and typically ships with a collection of state-of-the-art methods and
abstraction layers for common peripherals. Despite its name, ROS is not an OS but rather an
assembly of libraries which – thanks to recent efforts in the context of ROS 2 – can significantly
improve its real-time capabilities when used on top of an RTOS [339]. Certainly, also a combi-
nation of different middlewares is possible, such as for E2-DR, which uses a custom extension
of the Robot Technology Middleware (RTM) [60] for motion control and recognition on the two
low-level boards under hard real-time, and additionally ROS on the high-level console PC under
soft real-time [451].

Remarks and Conclusions Apart from the actual methods for planning and control, the soft-
ware design of the enclosing locomotion framework has a significant impact on the overall
performance and robustness but also the reliability and versatility of a legged robot. Especially
the latter two properties are rarely discussed in scientific publications, since they are typically
more important for commercial products rather than research prototypes in academia. A general
issue within the community seems to be that most research groups have their own individual
frameworks, which have grown over the years and have reached an extend that can barely be
maintained. Unfortunately, this also makes the exchange of methods and algorithms between
frameworks, e. g. for direct comparisons, time-consuming and tedious.

A successful framework requires a harmonic overall concept and components which are
matching to each other. Moreover, to achieve impressive results such as those showcased by
high-tech companies like Honda, Toyota, or Boston Dynamics, extensive optimization and tuning
of the software is necessary. This requires notable manpower, which typically cannot be car-
ried out in academia. Finally, with the continuous progress in performance and skills of legged
robots, we also see a steady increase in software complexity. Thus, a good software design
becomes more and more important in modern systems.

Relations to this Thesis The software design proposed by this thesis is described in Chapter 4
(main concept) and Chapter 7 (realization). A clear focus is put on the WPG module (Chapters 5
and 6), which represents the main contribution of the author with regard to the locomotion
system of LOLA. In contrast, the surrounding software ecosystem dates back to the various
previous researchers working on this project, such as (among others) LÖFFLER [289] for the
robot JOHNNIE and BUSCHMANN [100] for the robot LOLA.

2.3 Contact Planning 19

Referring to the properties discussed above, the software design of LOLA has in large parts
a modern, distributed architecture: it features decentral joint controllers and clearly separates
modules according to their real-time priority. However, except for the Computer Vision (CV)
module, all planning and control algorithms run on the same board which may be changed in
future to further improve real-time performance. As part of the redesign of the upper body of
LOLA (see Chapter 3), the hardware for computation also received a substantial upgrade. For the
main workload, two industrial PCs are available. Additionally, a single dedicated GPU attached
to one of the PCs allows to accelerate CV algorithms. No dedicated FPGAs are used, although
some microcontrollers are present in the lower body – mainly for interfacing sensors.

Previous projects on JOHNNIE and LOLA always had a strong focus on real-time performance.
This directive is continued with the methods presented in this thesis, which are based on efficient
models of the robot’s kinematics and dynamics. For the new WPG module, this results in total
execution times for fully-autonomous locomotion of less than 10 ms for motion generation and
around 1 s for contact planning in various complex scenarios including multi-contact situations.
Compared to the state of the art, this represents a significant improvement. The developed
algorithms are implemented on top of a QNX Neutrino RTOS. Additionally, a GPOS is deployed
on the PC dedicated to the CV module (not in the scope of this thesis).

Due to the strong focus on real-time performance, no robotics middleware is utilized in order
to avoid any kind of overhead, which also significantly increases the effort in implementing core
functionality. Though, common general purpose libraries, such as Eigen [182] for linear algebra
and vectorization, are used. All in all, the locomotion framework of LOLA is very generic and
versatile: all maneuvers discussed in this thesis can be executed without any modifications to
the source code or change of parameters. Thus, different experiments can be conducted subse-
quently without restart of the system. Moreover, the reliability and robustness of the software
of LOLA has proven itself through various public demonstrations with live-experiments. Similar
as it is done by other research groups, large parts of the source code used in LOLA are published
as free, open-source library.

2.3 Contact Planning

In the context of legged locomotion, the task of planning can be split up into contact planning
(alias navigation) and motion generation (alias trajectory generation). The first computes a dis-
crete contact sequence to reach a certain goal given a model of the robot’s environment, see
Figure 2.13. The second connects these discrete states by smooth trajectories which can be exe-
cuted by the subsequent control module and finally the hardware. Within the scope of this thesis,
contact planning and motion generation together form the WPG module9 (see Figure 1.2). De-
pending on the considered planning approach, there might not be a clear separation between
these two parts. Nevertheless, this section tries to summarize the main directions of the state of
the art related to contact planning, while the same is done in Section 2.4 for motion generation.

In order to find a discrete contact sequence leading the robot to a user-defined goal while
maintaining multiple constraints (such as step length, collisions, etc.), various well-known path
planning and search algorithms have been adopted. In general, one might distinct between
so-called continuous and discrete planners. The former typically first generate a continuous path
bypassing obstacles (often based on common mobile planners for “car-alike” systems) and af-
terwards place footholds along this path. Naturally, continuous planners are very efficient and
easily satisfy the real-time requirements of legged robots. In contrast, the great majority uses
discrete planners, which directly search for an optimal contact sequence and typically exploit

9Note that in the literature some authors use the term Walking Pattern Generation (WPG) for the motion generation
part only, while others (like in this thesis) also include the contact planning part. Since the term walking pattern is
quite imprecise anyway, the choice between these two definitions seems to be a matter of taste.

2.3 Contact Planning 20

Hand
Contacts

Foot
Contacts

Environment Contact Planner Result
Model

Start

Goal

non-traversable

su
pp

or
t

traversable

Contact
Specification “Guide” Path Contact Sequence

(optional)

sim
ple

ad
va

nc
ed

(optional)

simpleadvanced

A⋆-based

RRT-based
or

or others...

Heu
ris

tic

Obstacles

Figure 2.13: Simplified illustration of a typical contact planning workflow. From left to right: specification of possi-
ble contact areas on the robot; environment model containing traversable and non-traversable obstacles as well as
potential support areas for hand contacts; contact planner based on well-known search algorithms or optimization
techniques (or combinations of those); resulting contact sequence with (optional) preceding “guide” path for accelera-
tion (simple (blue): planar (“2D”) only; advanced (green): with stepping over, hand contacts, etc.).

the kinematic capabilities of legged robots better than continuous planners, especially when
cluttered terrain and stepping over obstacles are considered. As a general drawback, the in-
crease of solution quality also comes with higher computational cost. Therefore, they are often
accelerated by a preceding (continuous or discrete) planner creating a “guide” path.

Finally, it has to be mentioned that various frameworks for legged locomotion do not inte-
grate a contact planner at all. These are typically systems where only proprioceptive sensors are
used (“blind” walking), cf. ATRIAS and CASSIE. They do not maintain an explicit model of the
environment which, however, is a fundamental requirement for a navigation system. Although
robust locomotion over rough terrain has been demonstrated, there exist numerous scenarios
where locomotion planning benefits from visual perception.

Continuous Planners An example for a continuous planner is given by BUSCHMANN et al. in
[99] introducing the very first navigation system of the humanoid LOLA. They propose a reactive
approach, which does not require an explicit model of the environment and thus, avoids the (at
that time) expensive task of Simultaneous Localization and Mapping (SLAM)10. Instead, multiple
circular paths (alias “tentacles”) starting from the current position of the robot are used to
test the passability of the local surrounding as it is observed by the vision system. Similar
to teleoperated walking using a joystick, the robot then simply follows the best “tentacle” by
setting the walking direction and speed accordingly. In comparison to other approaches, this
method is very simple and fast, however, it is limited to flat floors and scenes of low complexity.
Another continuous footstep planner is proposed by DEITS and TEDRAKE in [130]. Their key
idea is to look at the problem the other way around: instead of searching for a path through a
scene containing non-convex obstacles, they formulate the environment as a set of admissible
obstacle-free convex regions which allows them to apply a mixed-integer convex optimization.
Drawbacks of this approach are that the automatic extraction of convex obstacle-free regions
from a “usual” environment description might be costly and that the restriction to these regions
artificially limits the solution space. As last example for continuous planners, KARKOWSKI and
BENNEWITZ suggest in [243] to segment the environment into connected planar regions. At first,
a global path is planned using a grid-based search, which is used to continuously update the sub-

10Simultaneous Localization and Mapping (SLAM) describes a class of methods in the field of CV, which processes
data from vision sensors (e. g. cameras, LiDAR, etc.) and generates a contiguous model of the environment (alias
mapping). During locomotion, each new viewpoint is used to gradually extend and update the scene. Additionally,
the current position and orientation of the robot within its environment is estimated (alias localization).

2.3 Contact Planning 21

goal of a subsequent local search. The local search computes a path consisting of connected line
segments which are iteratively splitted and shifted such that obstacles are bypassed. Footsteps
are then placed along this path. Same as for most continuous planners, climbing stairs or
stepping over obstacles (which is a key motivation for legged robots) is not covered.

Discrete Planners Representatives of the second group – discrete planners – typically are based
on well-known search algorithms, most prominently the famous A⋆ algorithm originally intro-
duced by HART et al. in [190]. A⋆ is an “informed” graph-based search algorithm which extends
DIJKSTRA’s algorithm [135] by a heuristic guiding the node expansion towards the goal. In its
original form, A⋆ is admissible, i. e., it is guaranteed to find the optimal path, and optimal, i. e.,
it expands the fewest possible nodes to obtain the optimal path [190]. Indeed, A⋆ is also used
by the contact planner proposed in this thesis – a detailed explanation of this algorithm is given
in Section 5.5.3. Seminal work with regard to navigation planning for legged robots especially
using A⋆ is given by CHESTNUTT, e. g. in his dissertation which also includes a good overview of
related work until the year 2007 [114, p. 9ff]. He successfully deployed his methods on ASIMO,
LITTLEDOG [315] by Boston Dynamics, HRP-2, and H7. Other early work based on A⋆ is the
navigation system of QRIO, which uses potential fields imposed on a 2D occupancy grid, where
each grid cell holds a probability value for being covered by an obstacle and the time of its last
update [364].

Due to its popularity, there exist various extensions and modifications of A⋆ which are also
used in the field of legged locomotion. Examples are Anytime Repairing A⋆ (ARA⋆) [284] and
R⋆ [285] as used by HORNUNG et al. in [210], Anytime Dynamic A⋆ (ADA⋆) as used by the same
author in [209], and Anytime Nonparametric A⋆ (ANA⋆) [423] as used by LIN and BERENSON in
[286]. The main motivation for these variations is often acceleration (by sacrificing optimality),
efficient anytime replanning (providing a non-optimal solution upon interruption e. g. due to a
user-specified time limit), or efficient re-use of previous search results. An interesting approach
is proposed by LIN and BERENSON, who accelerate the search by a so-called experience retrieval
module, which maintains a motion plan library by clustering previous motions based on their
contact pose similarity [286]. A new motion plan is generated by either planning from scratch
(using ANA⋆) or by retrieving and adapting a similar previous motion from the database, what-
ever execution branch finishes first. Unfortunately, the performance gain vanishes if the library
exceeds a certain size. Finally, there are acceleration techniques which are tailored to the spe-
cific application. As an example, KARKOWSKI et al. propose an adaptive node expansion using
a reachability map (pre-computed through an IK) for each new foothold based on the previous
step [244]. Many other works apply similar approaches to speed up contact planning.

After A⋆, the second most common search algorithm used for discrete contact planning are
Rapidly-Exploring Random Trees (RRTs) introduced by LAVALLE in [269]. In contrast to A⋆, RRTs
are typically faster but neither guarantee optimality of the solution nor provide a measure for the
error bound – at least in their original form. There also exist multiple variations and extensions,
such as RRT-Connect [259], where two RRTs are grown simultaneously, one from the start and
one from the goal. Later, this concept was referred to as Bidirectional RRT (Bi-RRT) [270]. In
RRT-Connect, the tree expansion is combined with a greedy heuristic which guides the two trees
to each other but also makes the algorithm less prone to local minima [259]. As one of the first
adoptions in the field of legged locomotion, OKADA et al. deployed in [328] an extension of
RRT-Connect on the humanoid HOAP-1 [251] by Fujitsu Automation.

Environment and Collision Model Independent of the chosen search algorithm, there is the
need for an appropriate environment model describing the robot’s surroundings. Certainly, a
rich and detailed model enables high-quality plans but also causes severe computational cost
during pre-processing and the actual search. In many cases, the terrain is described by an
occupancy or height map, e. g. obtained from a Red-Green-Blue Depth (RGB-D) camera and/or

2.3 Contact Planning 22

LiDAR, cf. [326], or a stereo camera system, see Figure 2.14. Apart from 2D or 2.5D grids,
also 3D representations such as voxel-based occupancy grids (e. g. in the form of an OctoMap
as proposed by HORNUNG et al. in [211]) or volumetric Signed Distance Fields (SDFs) (e. g. in
[154]) are possible. However, especially the latter is very expensive to compute. Note that
visual perception always suffers from occlusion (“shadows”) leading to a sparse, incomplete
reconstruction. Thus, methods have been developed to “guess” occluded areas by reasoning
about the semantics of the corresponding object (e. g. chair, table, etc.), cf. WU et al. [446].

•occupancy grid, e. g. [364]

Perception

oc
clu

sio
n

2D or 2.5D Grid 3D Grid Geometric Primitives
Common Environment Representations

•height map, e. g. [326]
•voxels, e. g. OctoMap [211]
•volumetric SDF, e. g. [154] •convex polygons, e. g. [178]

•circular areas, e. g. [118]

RG
B

-D
/L

iD
AR

/s
te

re
o

depth sampling

sweep (optional)

3D
po

in
t c

lo
ud

Figure 2.14: Common ways of representing the robot’s environment (in particular the terrain) for the example of a
simple staircase. Left: visual perception through an RGB-D, LiDAR (with optional sweep), or stereo camera system to
obtain a 3D point cloud. Right: representation as 2D, 2.5D, 3D grid or in the form of geometric primitives.

If a grid representation is too expensive, a common approach is to abstract the terrain by
geometric primitives. A recent footstep planner following this idea is presented by GRIFFIN et al.
in [178] for DRC ATLAS11 and VALKYRIE. Herein, rough terrain is approximated by planar sur-
faces which in turn are split into convex regions. Together with the drop of optimality by using
a weighted12 A⋆ implementation, this leads to a comparatively low overall runtime. Another ap-
proach proposed by HORNUNG and BENNEWITZ in [209] is to introduce different levels of detail.
The environment is segmented into regions which are classified according to their complexity,
i. e., obstacle density. In open spaces, a coarse but fast grid-based planning is used, while more
expensive ADA⋆-based footstep planning is performed in the vicinity of obstacles. The classifica-
tion of the environment is based on a distance map, which is expensive to compute. Therefore,
this method seems to be restricted to static scenes.

A general problem of common 3D sensors is the rather low accuracy of depth measurements
which can lead to displacement errors in the range of multiple centimeters [326]. For laser range
finders, an additional issue is the typically low image resolution or a restriction to line scans. The
latter can be compensated by an explicit sweep motion [326], cf. Figure 2.14. Unfortunately, this
also slows down the data acquisition and thus, degrades the model quality for moving objects
due to motion blur.

Finally, for avoiding collisions, not only the obstacle representation is relevant, but also its
counterpart: the model of the robot. A rather simple way is to approximate the robot by a
bounding box which may change its orientation and/or size to obtain a best fit for the actual
silhouette as proposed by KUMAGAI et al. in [261]. This way, collision checks become very
efficient, especially when lots of obstacles are involved. Certainly, there exist contact planners
which make use of a more detailed collision model of the robot, e. g. the one presented in [328],
which incorporates a cylinder and convex hull representation of the HOAP-1 robot.

11The most recent version of ATLAS is handled as an “internal” prototype by Boston Dynamics. However, previous
models – in particular the variant which was provided to various competitors in the DRC (alias DRC ATLAS) – are
still available to some research institutes such as the Florida Institute for Human & Machine Cognition (IHMC).

12With weighted A⋆, variations of the exact A⋆ algorithm [190] are meant, which release some of the original
restrictions (typically by multiplying the heuristic by a factor greater than one) and thus, sacrifice optimality in order
to accelerate the search while still providing an upper bound on suboptimality – see [139] for details.

2.3 Contact Planning 23

Quadrupeds Although motion generation and control for quadrupeds often differs in various
aspects when compared to bipeds, contact planning can be quite similar, cf. [114, p. 65ff]. A ma-
jor difference is that individual foot contacts are less important for quadrupeds when consider-
ing stability, however, the constraints (reachability, feasibility and coordination of foot positions)
typically are slightly more complex. An example for a recent contact (and motion) planner for
quadrupeds, in particular ANYMAL, is given by FANKHAUSER et al. in [154]. Nominal (“default”)
footholds are checked for kinematic feasibility and against the terrain which is classified in ad-
vance using a binary foothold score based on a height map evaluation. Subsequently, the swing
leg motion is planned, where collisions are checked using a volumetric SDF of the environment.
Finally, a pose optimization for the robot base (“torso”) is performed by formulating a Sequential
Quadratic Program (SQP) with analytic gradients and Hessians. The cost function of the SQP
pulls the Ground projection of the CoM (GCoM) towards the centroid of the Support Area (SA)
and additionally ensures that joint limits are respected.

Excursus: Support Area (SA), Support Polygon (SP) and Static Equilibrium In the field of
legged locomotion, the Support Area (SA) alias support region or area of support is a common
entity used to analyze static and dynamic balance. For coplanar contacts, e. g. standing or
walking on level ground, it represents a polygon alias Support Polygon (SP), which is defined
as the convex hull of all active ground contacts, see Figure 2.15 and [18 @t=4m7s] for an
animated explanation. A straightforward method to evaluate the balance of a static pose, e. g.
standing, is checking if the GCoM lies within the SP. In case it lies outside this area, the robot
will start to tip over. Moreover, by replacing the GCoM with another entity, the SP can also
be used to check balance during motion (will be explained in Section 2.4). Unfortunately,
these criterions for static and dynamic balance are only valid if all active contacts lie within a
horizontal plane. For non-coplanar contacts, e. g. for stair climbing or multi-contact locomotion,
the SP can be generalized to a curved support region as the projection of a nonlinear convex set,
see Figure 2.15 left and BRETL and LALL [95] for details. In combination with the GCoM, this
restores the possibility of quite simple checks for static equilibrium. In contrast to the coplanar
case, this generalized form considers individual friction cones at the contact point locations.
In [95], the authors additionally present an iterative algorithm, which gradually refines an
inscribed (convex) polygon approximating this curved region.

x
y

z
x

y

z
x

y

z

z

x

y
z

x

y
z

x

y

Coplanar Non-coplanar Non-coplanar

CoM

GCoM

SP

GCoM

GCoM

SP SA SA

CoM CoM

SA SA

SA = SP SA ̸= SP SA ̸= SP
(inside) (outside)(coincidence)

Single Support (SS)
(coplanar)

Double Support (DS)
(coplanar)

SP

SP

right
foot

right
foot

left
foot

left
foot

x
y

z

x
y

z

Figure 2.15: Static equilibrium test based on the GCoM and the SA/SP. Left: shape of the SA for coplanar (polygon)
and non-coplanar (curved) contacts (modified from [95]). The gray discs represent the individual friction cones at
the contact points (centroid) and the arrows the corresponding contact normal. Right: construction of the SP during
regular biped walking (level ground, rectangular feet) in the Single Support (SS) (top) and Double Support (DS)
(bottom) phase by computing the convex hull of all active ground contacts.

https://youtu.be/mGlsc_revMc?t=4m7s

2.3 Contact Planning 24

Multi-Contact Most of the contact planners mentioned so far are so-called footstep planners
for bipeds, i. e., they are restricted to foot contacts. In general, the extension to a “full” multi-
contact planner is straightforward but may require some extensions especially if multi-contact
stability is to be considered during contact planning. At this point, it has to be mentioned that in
some related work the term multi-contact has alternative meanings. In [455] for example, ZHAO

and SENTIS use it to describe the DS phase of a biped gait where both feet are in contact with
the ground. Since their method is based on an inverted pendulum model for which typically
an instantaneous stance leg switch is assumed (infinitesimal short DS phase between two SS
phases), their wording highlights the explicit investigation of the DS phase. Another example
is [264], where two or more contacts with the feet are meant, which requires special attention
when investigating Hybrid Zero Dynamics (HZD)13. Moreover, multi-contact is also used with
regard to locomotion of non-biped, legged robots such as the running tripod by THOMAS and
SENTIS in [409]. Within this thesis, the term is defined such that it complies with the general
understanding in the humanoid robotics community: multi-contact indicates explicit non-feet
contacts during legged locomotion. This includes but is not restricted to additional hand support
during biped locomotion.

Pioneering work for multi-contact planning following this definition has been made at the
University of Montpellier, France and the Joint Robotics Laboratory (JRL) of the French National
Centre for Scientific Research (CNRS) and AIST, which reaches from early work by ESCANDE

et al. [147] to recent investigations by MUROOKA et al. [313]. Their work focuses mainly on
complex, non-gaited, acyclic scenarios such as sitting down on and standing up from a chair
[149], simultaneously holding a glass of water as additional task [150], climbing ladders and
crawling through tunnels [151], and alternating or simultaneous object manipulation and lo-
comotion alias loco-manipulation [313]. Their framework follows the so-called contact-before-
motion14 planning approach, which is in accordance with the separation of contact planning
and subsequent motion generation as proposed in this thesis. An overview of the CNRS-AIST
JRL framework is given in [94], which also presents common approaches for considering multi-
contact stability. The contact planner is based on a best-first graph search in contact space,
which is guided by a potential function pulling towards the goal and pushing away from obsta-
cles [151]. Their method is very general and capable of generating highly complex motions with
the disadvantage of very high planning times in the range of minutes to several hours [151].
Additionally, actions like crawling require the robot to make contacts not only at the feet and
hands, but also at other parts of its hull, which makes the contact planning problem even more
complex and costly. In recent work by MUROOKA et al. [313], an ADA⋆-based graph search is
used in a loco-manipulation scenario for footstep and regrasp planning. They propose a spe-
cial transition model including a feasibility check by a pre-computed (offline) reachability map.
This leads to comparatively low online planning times of only 1 s for loco-manipulating a rolling
object, despite the highly complex reachability considerations in this scenario [313].

In order to incorporate stability considerations during multi-contact planning, a common
approach is to test for static equilibrium only, e. g. as proposed by TONNEAU et al. in [412].
Their contact planner is segmented into two stages. In the first stage, a guide path for the root
of the robot is generated using an RRT-based search and a feasibility check by testing contact
reachability. In the second stage, a discrete sequence of whole-body configurations is created by

13The Hybrid Zero Dynamics (HZD) of a biped walker are defined by WESTERVELT et al. as “the largest internal
dynamics compatible with the output being identically zero” [433]. Here the term zero dynamics is derived from
equivalent concepts in control theory, cf. [294, p. 193ff] or [49, p. 319ff]. By hybrid, the combination of contin-
uous multi-body dynamics described as Ordinary Differential Equations (ODEs) and discrete impacts is meant. The
primary goals of the HZD community are the development of controllers for exponentially stable gait cycles and a
formal stability analysis. This typically requires the restriction to planar (“2D”) biped walkers where additionally hy-
potheses are made for the robot (e. g. no closed kinematic chains), the gait (e. g. DS phase is instantaneous allowing
discontinuities in velocities) and the impact model (e. g. rigid, no rebound) [433].

14Originally, HAUSER et al. adopted the idea of contact-before-motion planning for humanoids from earlier work by
BRETL et al. which was related to free-climbing robots [192].

2.3 Contact Planning 25

expanding the root poses from the guide path and enforcing several constraints such as static
equilibrium and opening or closing only one contact during each transition. They focus on
acyclic motions and achieve computation times of only a few seconds depending on the actual
scenario. Note that generating a guide path or some kind of potential to accelerate the actual
contact planner is a common approach and can be found in most frameworks of the community.

A justifiable critique of contact-before-motion planning is made by CHUNG and KHATIB in
[118] by pointing out that it “might generate unnatural postures” [118] and that most algo-
rithms following this approach “require to manually assign or to uniformly sample the available
contact-points in the environment” [118]. In order to relax the strict separation of contact and
motion planning while still preserving the advantages of a fast global planner in contact space,
they propose a framework based on so-called contact-consistent elastic strips. In particular, they
extract circular contact regions from a segmented point cloud of the environment and let a global
planner compute a feasible sequence of contact regions. The constraints of the subsequent elas-
tic strips algorithm are then formulated in a way such, that contacts can be repositioned on the
corresponding circular contact region. This gives the motion planner the opportunity to modify
previously planned contact positions – at least to a certain extend.

Finding Contact Candidates When comparing multi-contact to biped locomotion planning,
we observe a significant raise of computational cost due to the larger branching factor (more
possible contact states) and the more complex stability considerations. Another difficulty is
finding feasible support regions in the environment for potential (non-feet) contacts. While a
conventional height map is suitable for placing footholds, other approaches are necessary for
planning contact with the hands. KUMAGAI et al. propose in [262] to compute the intersection
of the reachability volumes of the hands with environmental contact areas represented as con-
vex polygons. As governing framework, they use a similar approach as TONNEAU et al. in [412]
by combining an RRT-based global planner (guide path) with a subsequent A⋆-based footstep
planner. Hand contacts are then assumed to be feasible, if they are “geometrically sustainable
during one foot step” [262]. In [432], WERNER et al. present a multi-contact framework for
TORO, which circumvents this problem by planning footholds only. In contrast, hand contacts
have to be specified manually by the user. A rather unconventional approach is presented by
KAISER et al. in [227]. Inspired by natural language processing, they create an n-gram model
describing transition probabilities between whole-body poses. Herein, poses are equivalent to
words while motions are equivalent to sentences [227]. The model is trained by human motion,
which has been recorded using an optical tracking system. Additionally, each surface in the
environment is assigned a whole-body affordance15, which is used by the planner to derive an
optimal contact sequence. Additional to explicitly planned contacts, LIN et al. propose in [287]
to consider alternative foot/hand contacts, which can be used to recover from unforeseen dis-
turbances. Due to the great number of potential alternatives, the computational cost increases
significantly. In order to accelerate contact planning, dynamic feasibility of zero- and one-step
capturability for contact candidates is predicted by a neural network. The network is trained
offline with data from a kino-dynamic optimization.

Conclusions The vast majority of contact planners for legged locomotion builds upon well-
known search algorithms such as A⋆ and RRTs. Although these core elements differ in their
strengths and weaknesses, it seems like the actual choice does not have too much impact on
the overall effectiveness of a planner. Instead, it seems to be much more important how these
algorithms are adapted for the particular use-case, combined to exploit the advantages of each
technique, and finally embedded in a surrounding locomotion framework linking perception,

15Affordances describe action possibilities of the robot for locomotion and/or manipulation which are assigned to
environmental surfaces and objects [224]. In [225], KAISER et al. differentiate between higher level affordances
(e. g. bimanual object handling) which are composed out of lower level affordances (e. g. grasping).

2.3 Contact Planning 26

planning, and control. A common trend is to first plan a coarse guiding path, which then is used
to accelerate the actual heavy-duty search in contact space. A fair comparison of the proposed
contact planners with respect to their runtime performance is considered to be impossible, since
the investigated scenarios strongly differ with regard to

• the scene complexity (from flat ground and perfect environment models to previously
unknown, cluttered terrain with moving obstacles),

• the robot’s skills (from simple biped walking to climbing stairs, stepping over obstacles,
and finally complex, acyclic multi-contact loco-manipulations), and

• the considered model of the robot (from a mobile “car-alike” behavior to incorporating
whole-body kinematics and dynamics).

Note that some kind of collision avoidance is always involved since this is the main idea of
navigation. The same holds true for kinematics, which are always considered, at least in the
form of a reachability concept for EE placement. In contrast, dynamics are rarely included by
the contact planner and are instead introduced by the subsequent motion generator. For a cheap
feasibility check, however, it is common to perform a static equilibrium test for key poses. Since
the early works from the beginning of the 2000s, contact planners for legged locomotion have
received many improvements. For multi-contact planning, we observe a tremendous progress
over the past ten years, especially with regard to the real-time capabilities. Although the steady
increase of computational power plays a certain role here, the main reasons for this evolution
seem to be methodological improvements such as focusing on dominant effects by introducing
simplifications at the right places.

Relations to this Thesis The contact planner proposed in this thesis is described in Chapter 5.
Although there has been previous work on navigation planning for LOLA by BUSCHMANN et al.
[99] and later HILDEBRANDT et al. [13, 199, 200, 202], the contact planner has been completely
redesigned from scratch (based on the existing experience) in order to make it capable of multi-
contact planning. We restrict ourselves to gaited multi-contact locomotion, which means that
we aim at preserving the main characteristics of biped gait. This way, multi-contact situations
can be incorporated in an efficient way without combinatorial explosion in our A⋆-based graph
search. By separating contact planning and motion generation, we followed the contact-before-
motion paradigm. Moreover, we adopt the idea of a preceding coarse guide path by formulating
a hierarchy of two consecutive A⋆ searches with different discretization for both, the state space
and the environment model. The terrain is represented as a height map, while objects are ap-
proximated by triangle meshes representing their surface (for finding potential hand contacts)
and Swept Sphere Volumes (SSVs), see Appendix C, representing their volume (for fast distance
queries). Compared to related work, our method is very versatile since it is capable of planning
contact sequences which involve stepping over traversable and bypassing non-traversable obsta-
cles, stepping up/down platforms, climbing stairs and ramps, and making explicit hand contacts
for extra robustness simultaneous to all those actions mentioned before. All of this is done
fully autonomously given the mentioned height map and obstacle representation but without
any user interaction. Despite this high level of autonomy and versatility, we achieve runtimes of
only around 1 s for various complex scenarios which outperforms most other planners. Although
the source codes of various other contact planners has been published, the implementation is
rarely discussed in the associated papers. Since this thesis has a strong focus on real-time execu-
tion with limited onboard computation power, some implementation aspects with great impact
on overall planning time are discussed in Chapter 5.

2.4 Motion Generation 27

2.4 Motion Generation

Subsequent to the contact planner, the second component of a typical WPG (following the
contact-before-motion paradigm) is the motion generator. It takes the computed contact se-
quence as input and connects the discrete states by kinematically and dynamically feasible tran-
sitions. In case no contact planner is involved at all, e. g. for “blind” walking, the next couple of
contacts may be chosen such that a certain walking speed and direction on flat ground is main-
tained. As another option, future footholds may be obtained from a dynamics model predicting
the motion for a certain time horizon. So far, numerous approaches for motion generation on
legged robots have been proposed. They mainly vary in

• the comprehensiveness of the underlying robot and contact model,
• the solution strategy, i. e., the way how the model is used to compute smooth trajectories

and simultaneously ensure kinematic and dynamic feasibility,
• the robustness of the planned motion against modeling uncertainties and unforeseen dis-

turbances during real-world execution, and
• the computational complexity, which has direct impact on the real-time performance.

In many cases, the choice of a certain model does not prescribe a specific solution strategy and
vice versa. This leads to a large variety of possible combinations and makes a classification of
methods difficult. However, some combinations are very common in literature, while others
are used not so often. The following tries to summarize the state of the art by clustering the
available frameworks into the two most common variants, see Figure 2.16.

Contact
Sequence

or

1st Variant: Abstract Motion 2nd Variant: Whole-Body Motion

simpleadvanced

CoM

(optional)

hands

feet

“Simple” Model

Motion Generator

task-space trajectories

(lin.) inverted pendulum,

kinematics dynamics

“Full” Model

Motion Generator

joint-space trajectories

kinematics dynamics

flywheel, spring-loaded,
3 and 5 mass model, etc.

NEWTON-EULER eqs.,
(lin.) friction cones,

joint limits, etc.

IK: contacts→ poses,
contact stability,
optimization, etc.

ZMP, CP, DCM,
BVP: finite differences,
collocation, FFT, etc.

joints

t

q

Figure 2.16: Simplified illustration of common workflows for motion generation. From left to right: discrete contact
sequence as obtained from a contact planner (see Figure 2.13 right) used as input; 1st variant of motion generators
linked to a “simple” model of the robot providing kinematics and dynamics for generation of abstract motion in the form
of task-space trajectories; 2nd variant of motion generators linked to a “full” model of the robot providing kinematics
and dynamics for generation of whole-body motion in the form of joint-space trajectories.

Generation of Abstract Motion – Overview The first and probably most common variant
generates an abstract motion represented by task-space trajectories, which typically encompass
the motion of the EEs and the CoM or alternatively the root body (alias torso). The main focus
lies on the CoM motion, which is typically derived from a rather simple model of the robot in
combination with an appropriate feasibility concept. In many cases, this is done by formulating
a Boundary Value Problem (BVP) with the dynamics of the model describing the underlying ODE
and the first and last state of the given contact sequence defining the boundaries. Alternatively,
the boundaries might be chosen such that a cyclic gait is obtained. The motion of the EEs is
typically computed in advance based on heuristics. These ensure suitable contact transitions,
e. g. heel-strike and toe-lift-off, and may avoid collisions with the environment, e. g. for stepping

2.4 Motion Generation 28

over an obstacle. In contrast, multi-body dynamics are rarely used to optimize the EE motion.
The corresponding joint motion is then obtained by a subsequent IK (which may not be part
of the motion generator), automatically resolving the typical redundancy of limb kinematics.
The advantages of this first class of motion generators are the low computational cost due to
the simplicity of the underlying model, but also the robustness of the resulting motion under
real-world conditions. As a general drawback, the coarse approximation of the kinematics and
dynamics may lead to solutions which are not feasible on the real system, especially for difficult
maneuvers such as climbing stairs. As a countermeasure, certain safety margins might be intro-
duced, which, unfortunately, also artificially limit the robot’s full potential. In related work, this
first class of motion generators is mainly used to plan gaited motion.

Generation of Whole-Body Motion – Overview The second variant of motion generators
aims at computing an optimal whole-body motion in joint-space, i. e., individual trajectories for
each joint. It is mainly promoted by the CNRS-AIST JRL group, see for example [280]. Typi-
cally, these approaches make use of a comprehensive multi-body model of the robot and derive
the Equations of Motion (EoM) by setting up the NEWTON-EULER equations for the full topology,
i. e., all bodies. Since the full configuration of the robot is available at any time, individual
joint limits and per-segment collisions can be considered (in contrast to a task-space formu-
lation where only EE collisions can be checked). A typical first step is to compute a discrete
sequence of whole-body configurations from the given contact sequence using an IK method
combined with a check for static equilibrium (see Section 2.3). To obtain feasible transitions
between these configurations, a comprehensive optimization problem is formulated, which con-
siders kinematics, joint limits (position, torque, etc.), contact stability, and collision avoidance.
The advantages of this approach are that rather complex maneuvers can be handled and that
the planned motion is very likely to be executable on the real system since many kinematic and
dynamic effects and hardware constraints are considered in advance. Unfortunately, this comes
with an increased computational cost, which often makes online planning infeasible. Moreover,
a very detailed model may also decrease overall robustness in real-world experiments due to
inevitable inaccuracies and unforeseen disturbances which can represent significant deviations
from the model. In related work, this second variant of motion generators is mainly used to plan
complex, non-gaited motion.

Stability vs. Feasibility Before having a closer look on related work, the herein commonly
used terms stability and feasibility have to be clarified. In the context of legged locomotion, sta-
bility typically means that the robot does not tip over and fall. Note that the robot might deviate
from the original planned motion but still remain stable as long as a lower level control module
stabilizes the system by compensating errors and disturbances. Theoretically, even for complex,
high-DoF robots, a formal stability analysis for a certain motion is possible by considering a
sufficiently comprehensive multi-body model. However, even the best model only represents
an approximation of the real world and cannot consider all effects. Especially for legged loco-
motion, the repeatedly opening and closing contacts introduce highly complex dynamics which
are difficult to model. Indeed, there is no way to guarantee that the planned motion leads to
a stable behavior in a real-world experiment. Therefore, it is common practice to use the term
feasibility instead, which describes that a planned motion is theoretically doable under certain
assumptions. Depending on the underlying model, these assumptions may include for example
sufficient contact friction, sufficient joint torque, and – most important and independent of the
model – that there are no (unknown) external disturbances. Using this definition, the goal of a
motion generator is to plan a feasible motion. In combination with a lower level control module
supervising the actual motion, this hopefully leads to a stable real-world execution.

2.4 Motion Generation 29

Static Feasibility In related work, the feasibility of a static robot pose is almost exclusively
evaluated by checking static equilibrium (already introduced in Section 2.3 together with the
concept of the SA). Although static equilibrium is a necessary condition for static feasibility, it is
not sufficient: in addition, the joints of the robot have to be strong enough to keep the robot in
the specified pose. This becomes relevant for extreme configurations such as extra long steps or
standing on tiptoes. Obviously, this type of constraints can only be checked reliably by whole-
body approaches which have the necessary joint-level information. Static feasibility checks are
mainly used during contact planning, but are sometimes also used within motion generation,
especially for multi-contact frameworks where an evaluation of dynamic balance would be much
more complex. Moreover, for very slow, quasi-static motions, testing only for static feasibility
seems to be a valid simplification.

Robot Model Especially for motion generators using a task-space formulation, various simpli-
fied models for approximating dominant dynamic effects during legged locomotion have been
proposed, see Figure 2.17. Naturally, these models have a strong focus on centroidal dynamics
in the sagittal plane. In general, they are not restricted to motion generation but are also often
used within lower-level stabilization.

LIPM
[230]

SLIP
[86]

Flywheel
[349]

5-Mass
(proposed)

3-Mass
[98, 404]

CoM

DIP
[392]

RMP
[274]

CoM CoM torso torso

ha
nd

Full Model
(all bodies)

sw
ingst

an
ce

feet feet

in
er

tia
ha

nd

in
er

tia

inertiacontrollable

st
an

ce

sw
ing

torso

legssw
ingst

an
ce

sw
ingst

an
ce

sw
ingst

an
ce

C f C f

Figure 2.17: Selection of models for approximating the robot’s dynamics. From left to right: full model for comparison
(all bodies, with friction cones C f in contacts); Linear Inverted Pendulum Mode (LIPM); Spring-Loaded Inverted Pen-
dulum (SLIP); LIPM with flywheel; Double Inverted Pendulum (DIP); Reaction Mass Pendulum (RMP); three-mass
model; five-mass model. The colored arrows highlight rotational (green), 1D translational (orange), and 2D transla-
tional (blue) DoF. Apart from the depicted planar case, also a 3D variant exists for most models.

The probably most prominent example is the LIPM [230] by KAJITA and TANI (already in-
troduced in Footnote 8), which has been shown in [231] to be a suitable approximation of
biped gait dynamics and thus, has been used for planning and stabilization [234]. Originally
formulated for the planar case, it also has been generalized to the three-dimensional case in
[232]. Methods using the LIPM are typically restricted to a constant CoM height. Moreover,
only the current stance leg is considered, thus, focusing on the SS phase and making the DS
phase infinitesimal short (instantaneous leg switch). By considering the current stance leg as
linear spring, we obtain the SLIP model [86] (already introduced in Footnote 4), which is very
common especially in the field of biorobotics and mainly used to model hopping and running.
Another extension of the LIPM model is made (among others) by PRATT et al. in [349] through
replacing the point mass by a flywheel to model the angular momentum around the CoM. The
mass moment of inertia is set to be a constant model parameter.

Other examples for simplified robot models are the Double Inverted Pendulum (DIP) model
[392] by STEPHENS, the Reaction Mass Pendulum (RMP) model [274] by LEE and GOSWAMI, and
the Linear Biped Model (LiBM) [393] by STEPHENS and ATKESON. The DIP model consists of
two linked segments abstracting the legs and the torso. This allows to subdivide the control

2.4 Motion Generation 30

into an ankle strategy (counteracts small disturbances) and a hip strategy (counteracts large
disturbances) known from human balance control [392]. The RMP model splits the single mass
of the LIPM into a pair of equal point masses. The position of the point masses is symmetric
around the upper pivot center (CoM) and can be changed, such that the mechanism allows to
control the inertia (so-called “inertia shaping”) while maintaining the same CoM [274]. In the
three-dimensional case, this generalizes to three mass pairs forming an ellipsoid. Each pair is
aligned along a different axis and can be controlled independent of the others. In [274], the
RMP is presented as a tool to analyze the centroidal momentum as abstraction of the aggregate
limb dynamics. Finally, the LiBM resembles two superimposed LIPM (one for each leg) and
allows to explicitly consider the DS phase [393]. Within the SS phase, it remains identical to
the LIPM. In [393], a method to obtain periodic motion for the LiBM based on the concept of
orbital energy is presented. An unconventional but interesting approach is made by NAGARAJAN

and YAMANE. In [316], they automatically derive a robot model by performing a model order
reduction based on balanced truncation. In [316], they focus on balancing, fast arm swing, and
hip rock and roll only and do not consider actual locomotion such as walking.

In order to incorporate swing foot dynamics, the LIPM has been extended by TAKENAKA

et al. in [404] with two additional point masses at the feet forming the so-called three-mass
model16. The model has been adopted by BUSCHMANN et al. in [98], where, in contrast to the
LIPM, the upper body (torso) mass is typically not constrained to move along a straight line,
but instead can have an arbitrary (known) vertical motion. In [100, p.79], it has been shown
that including the effect of foot masses gives a more accurate approximation, especially for high
walking speeds. The three-mass model forms the basis of the five-mass model, which is used
within this thesis, see Section 4.5.2 for details. The five-mass model adds explicit hand masses
to introduce arm dynamics similar to the swing foot dynamics. It also introduces a mass moment
of inertia for the torso body which models the dynamic effects of (planned) upper body rotation.

Finally, it has to be mentioned that the foot-ground contact can be modeled in different ways.
On the one hand, some motion generators assume the feet to be point-alike, hence the contact
acts as a simple pivot point. On the other hand, if real feet are considered, an additional torque
representing an active ankle joint may be applied. Moreover, for most simplified robot models
used within task-space approaches, the contact is assumed to provide “sufficient” friction such
that no slipping occurs. In contrast, “full” models, typically used in whole-body approaches,
explicitly consider contact stability by incorporating (often linearized) friction cones (assuming
COULOMB friction) at each EE in contact, see [94] for details.

Dynamic Feasibility – ZMP, CoP, and FRI/FZMP For evaluating dynamic feasibility, a classic
approach is to extend the well-known criterion for static equilibrium (see Section 2.3) to a
criterion for so-called dynamic balance. Here dynamic balance means, that the contact between
the robot and the ground remains closed (no relative motion) and thus, the robot does not tip
over. A prominent example for such a criterion has been introduced by VUKOBRATOVIĆ and
STEPANENKO [427]: a gait is dynamically balanced, if the Zero-Moment Point (ZMP) remains
within the SP at all times. Herein, the ZMP denotes the point in the contact plane, at which
the horizontal17 torques of the net Ground Reaction Wrench (GRW) become zero [428]. If the
robot is in rest, the ZMP coincides with the GCoM, which shows that the ZMP criterion is indeed
a generalization of the static equilibrium test. Moreover, the definition of the ZMP makes it a
suitable choice for the (torque-free) pivot point in pendulum based simplified robot models such

16Extending the LIPM by a mass accounting for the swing leg has for example already been proposed by PARK and
KIM in [336]. However, in [336] it is assumed, that gravity represents the dominating effect and thus, the inertia of
the swing foot mass is neglected. In contrast, TAKENAKA et al. also consider the effects of inertia [404].

17Note that there might be a non-zero vertical torque component at the ZMP, which is why the wording zero-
moment may be perceived as misleading, cf. [174]. Indeed, under assumption of sufficient friction, a non-zero
vertical torque component has no impact on dynamic balance. However, to avoid slipping around the vertical axis
due to limited real-world friction, one typically tries to minimize the vertical torque component too.

2.4 Motion Generation 31

as the LIPM, see Figure 2.17. A more detailed explanation of the ZMP and how it is used in the
motion generator presented in this thesis is postponed to Section 4.5.4. In literature, multiple
other formulations with close relation to the ZMP exits. Prominent examples are the Center
of Pressure (CoP)18 or the Foot Rotation Indicator (FRI)19 point [174], which both are (almost)
equivalent to the ZMP. According to VUKOBRATOVIĆ and BOROVAC [428], the difference between
ZMP, CoP, and FRI point can be summarized as follows (see also Figure 2.18):

• If the gait is dynamically balanced, then ZMP, CoP, and FRI point coincide and lie within
the SP. The contact of the robot with the ground is stable (no tipping motion).

• If the gait is dynamically unbalanced, then the FRI point lies outside the SP, the CoP lies
on the border of the SP, and the ZMP does not exist. The robot tips over the edge of the
SP. The distance of the FRI point to the SP is a measure for the “unbalance” [174].

The motion generator presented in this thesis shall produce a dynamically balanced gait. Since
all three entities coincide in this case, only the ZMP will be discussed in the remaining chapters.

right
foot

right
foot

left
foot

left
foot

SP

SP

x

z

y
x

y
z

ZRAM/CMP CP, DCM
[142, 349, 404]

VPPZMP, CoP, FRI/FZMP

ZMP, CoP, FRI

CoP
FRI

tipping

balanced:

unbalanced:

CoP

CoM

GRF

ZRAM

CoM

CoP CP = CoP

CoM

ẋ ̸= 0 ẋ = 0

x
z

y
x

z

y

CoM

VPP

GRF

[301][175, 346][174, 428]

DCM

Figure 2.18: Illustration of common concepts related to the analysis of dynamic feasibility. From left to right: Zero-
Moment Point (ZMP), Center of Pressure (CoP), and Foot Rotation Indicator (FRI) alias Fictitious ZMP (FZMP) for
the balanced and unbalanced case; Zero Rate of change of Angular Momentum (ZRAM) alias Centroidal Moment
Pivot (CMP); Capture Point (CP) and Divergent Component of Motion (DCM); Virtual Pivot Point (VPP).

A severe limitation of the ZMP criterion is that all contacts have to lie in the same horizontal
plane. In practice, many motion generators (such as the one proposed in this thesis) use this
criterion also for scenarios with non-coplanar contacts, such as climbing stairs. Especially if
the step height is small when compared to the step length, the introduced error seems to be
negligible. Another important restriction of the ZMP criterion is the assumption of sufficient
friction, i. e., that the robot does not slip. Although the ZMP is introduced in [427] by modeling
the robot’s foot with a finite dimension, the ZMP criterion can also be used for robots with point-
alike feet, e. g. quadrupeds (three feet in contact are equivalent to a single triangle-shaped foot).
However, for bipeds with point-alike feet, the SP would degrade to a line in the DS phase and a
point in the SS phase. Aside from the interface of the robot with the ground, the ZMP criterion
does not set any requirements on the mechanism “above” the contact plane, i. e., the choice of
the robot model or (known) external forces and torques. This can be exploited for multi-contact
planning which will be explained later.

18 GOSWAMI describes the Center of Pressure (CoP) as the “point on the foot/ground surface where the net ground
reaction force actually acts” [174]. The CoP is very common in the field of biomechanics, where gait analysis is
mainly performed in the sagittal plane. In contrast to the Ground Reaction Wrench (GRW), which can be described at
an arbitrary reference point (the ZMP is only a special choice), the Ground Reaction Force (GRF) is defined to act at
a point such that there is no (planar) torque component (thus the name ground reaction “force”). This highlights the
equivalence between the CoP and the ZMP.

19GOSWAMI defines the Foot Rotation Indicator (FRI) point as a “point on the foot/ground contact surface, within
or outside the convex hull of the foot support area, at which the resultant moment of the force/torque impressed on
the foot is normal to the surface” [174]. In [428], VUKOBRATOVIĆ and BOROVAC call this point Fictitious ZMP (FZMP)
to indicate, that – in contrast to the ZMP – it also exists outside of the SP.

2.4 Motion Generation 32

Dynamic Feasibility – ZRAM/CMP Besides the ZMP as the probably most widespread balance
concept in robotics, various other entities describing core characteristics of legged locomotion
have been discovered. In [175], GOSWAMI and KALLEM introduce the Zero Rate of change of
Angular Momentum (ZRAM) point as the location on the ground, at which the net GRF would
have to act in order to obtain a zero rate of change of the robot’s centroidal angular momen-
tum. Later, they also call this point Centroidal Moment Pivot (CMP)20 [346]. They propose to
enforce a constant angular momentum, which is motivated by the fact, that the total angular
momentum changes when the robot starts to fall. However, there exist stable gaits which do
not satisfy this condition, see for example the motion generator proposed by TAJIMA et al. in
[402], which explicitly plans a non-constant angular momentum depending on the horizontal
CoM dynamics in order to avoid “unusual” motion. BUSCHMANN also reported from experience
with JOHNNIE and LOLA, that gaits satisfying this condition “appear very unnatural and lead to
large compensating motions of arms and/or the upper body in order to cancel the change of
angular momentum produced by the legs” [100, p. 51].

Dynamic Feasibility – Running It has to be highlighted, that although dynamic balance is an
often used criterion, it is not strictly required for stability or dynamic feasibility of a gait pattern.
An obvious example is locomotion with ballistic phases such as running where no SP exists
during the flight phase. Motion generators for running have been proposed for example for
Honda’s ASIMO by TAKENAKA et al. in [405] (10 km/h, 0.1 s flight phase) or for Toyota’s PARTNER

by TAJIMA et al. in [402] (7 km/h, 0.1 s flight phase). The key idea for ASIMO’s running gait was
to split it into a vertical, horizontal, and rotational component for which different robot models
are applied (vertical: single point mass, horizontal: three-mass model, rotational: flywheel)
[405]. Motion generation for PARTNER was realized by first planning running in place and then
superposing translational velocities to obtain a certain direction and speed [402]. Note that the
ZMP concept can still be used for the phases where one or both feet are in contact. During the
flight phases, the CoM is simply planned according to ballistics. Special care has to be taken for
the transition between contact and flight phases, where the horizontal components of the GRF
have to zero out to prevent slipping.

Dynamic Feasibility – CP and DCM A strategy similar to the ones for running gait generation
has been proposed by PRATT et al. in [349] with the Capture Point (CP) concept. Assuming
a biped modeled as a LIPM, the CP denotes the point on the ground where the next step has
to be placed in order to come to a full stop (zero kinetic energy) [349], see Figure 2.18. In
case a flywheel is added to the model (cf. Figure 2.17), this generalizes (together with certain
actuation limits) to a so-called capture region as set of all possible CPs. Among the first systems
using the CP concept was the SEA driven lower-body biped M2V2 [350] by the IHMC. Although
this approach was originally meant for disturbance rejection, it was later adopted for motion
generation, e. g. in [141]. Another analysis of the LIPM was done by TAKENAKA et al. in [404],
who separated the dynamics into a convergent and Divergent Component of Motion (DCM). The
convergent component represents the stable part of the LIPM dynamics and is typically ignored
since it converges without the need of an external control. The DCM represents the instable
part, for which various control techniques have been proposed. Originally, TAKENAKA et al.
formulated the DCM in the plane, nevertheless, it has been generalized to the three-dimensional
case by ENGLSBERGER et al. in [142]. In the two-dimensional case, the CP and the ground
projection of the DCM are equivalent (see Figure 2.18), which does not hold true for the three-
dimensional case, cf. [144].

20In [346], the authors give a formal definition of the Centroidal Moment Pivot (CMP) as “the point where a line
parallel to the ground reaction force, passing through the CM [=CoM – author’s note], intersects with the external
contact surface” [346], see Figure 2.18. In this publication they also show, that the mean separation distance between
ZRAM/CMP and ZMP measured in human gait is rather small.

2.4 Motion Generation 33

Dynamic Feasibility – VPP Another balance indicator, which became quite prominent in the
field of biomechanics, has been found by MAUS et al. In [301], they observed that for healthy
humans and some animals like chicken and dogs, the GRF (as seen from a reference frame at-
tached to the CoM) passes through a certain point above the CoM. The authors named this
point Virtual Pivot Point (VPP), since it can be seen as a virtual “hook” above the CoM introduc-
ing regular (non-inverted) pendulum dynamics which automatically compensate disturbances.
Their observations are restricted to the SS phase during straight walking and running and also
only consider the sagittal plane. For their analysis, they use a rather simple biped model, where
the CoM and VPP are fixed to the torso body having a constant distance to each other, see Fig-
ure 2.18. Recently, the VPP also received attention in the community around humanoid robotics.
An investigation by STAUFENBERG et al. [391] showed, that the motion generator proposed in
this thesis (and also its predecessor by BUSCHMANN et al., see [98]) does not establish a VPP,
yet it generates a quite smooth gait. Indeed, the VPP may not represent a stability or feasibility
criterion, but instead gives an insight on how nature solves the biped gait problem.

Dynamic Feasibility – Multi-Contact, Friction, and CWC In case of multiple, non-coplanar
contacts (e. g. climbing stairs, multi-contact, etc.), the aforementioned concepts are not directly
applicable anymore. To evaluate the feasibility of a certain motion also in these scenarios, a
common approach is to check if the individual contact forces at the EEs in contact remain within
their respective friction cones (which implies the assumption of COULOMB friction and point
contacts). This condition is also known as weak contact stability [94]. Pioneering work in this
direction was made by SAIDA et al. in [366], which was later generalized by HIRUKAWA et al.
in [204]. Instead of considering individual contact forces, they require the net (total) contact
wrench acting on the robot to lie within a certain set. By linearizing the individual friction
cones, this set becomes a polyhedral convex cone (see Figure 2.19), which is called Gravito-
Inertial Wrench Cone (GIWC) [108] or equivalently Contact Wrench Cone (CWC) [110]. The
net contact wrench and gravito-inertial wrench are obtained by splitting the NEWTON-EULER

equations into terms related to the robot-environment interface (contacts) and gravitational and
inertial multi-body effects, respectively. Since both parts together form an equilibrium, they can
be used synonymously (only the sign may differ). HIRUKAWA et al. consider the cases of weak
contact stability (with satisfied COULOMB friction) and strong contact stability (with assumption
of sufficient friction) as originally classified by PANG and TRINKLE in [335]. In [204], they show
that for a biped robot walking on a horizontal plane with sufficient friction, their formulation
for strong contact stability is equivalent to the ZMP criterion.

Ft xFn

µ

Fn

COULOMB Friction Friction Cone C f Lin. Friction Cone Cp f CWC Ccw

Ft

Ft,x

µ

Fn

−µ

Fn

ẋ

z

y

y
z

x

Fn

y

x
CoM

z

Fc

Fc

(inner approximation)

Note: Simplified illustration as 3D cone
and vector. Indeed, Ccw and WCoM

c are 6D.

Fc

multi-contactlinearization2D to 3D
C f Cp f

Ccw

WCoM
c

Figure 2.19: Contact Wrench Cone (CWC) as polyhedral convex cone. From left to right: COULOMB friction model
with friction coefficient µ and contact force Fc as vector sum of normal force Fn and tangential force Ft ; friction cone
C f ; linearized (polyhedral) friction cone Cp f ; CWC Ccw and net (total) contact wrench WCoM

c . See [108] for details.

The seminal work by SAIDA et al. and HIRUKAWA et al. motivated numerous extensions and
generalizations, such that this field now represents a new area of research on its own. A general
difficulty is to efficiently compute the CWC as a polyhedral convex cone for which typically an

2.4 Motion Generation 34

algorithm based on the Double Description Method (DDM)21 is used. A common simplification
for the use in a motion generator is to assume zero CoM acceleration, which results in a pure
static feasibility criterion [151]. Recently, new methods have emerged which also take the CoM
acceleration into account. An example is given by CARON and KHEDDAR in [109], who limit
the CoM position to compute an envelope of feasible CoM accelerations. In a dual manner,
AUDREN and KHEDDAR propose in [71] to limit the CoM acceleration for computing feasible
CoM positions. A typical drawback of methods based on polyhedral representations is that for a
slight increase in the number of contacts, the computation time often increases drastically [71].

Another approach for testing dynamic feasibility has been proposed by CARON et al. in [110]
where they generalize the classical SA used within ZMP-based methods by explicitly consider-
ing friction and multiple non-coplanar contacts. They first formulate a “full” SA (incorporates
friction) and subsequently a “pendular” SA as a subset. The latter additionally introduces the
constraints of a linear, regular (non-inverted) pendulum between the CoM and the ZMP. In
[110], the method is understood as a generalization of the ZMP criterion to check dynamic fea-
sibility also for non-coplanar contacts. However, the derivation is rather complex and requires
the incorporation of pendulum dynamics while the classical ZMP criterion for coplanar contacts
does not set any requirements on the dynamics model of the robot.

The explicit consideration of friction within motion generation can be seen ambivalently.
One the one hand, assuming infinite friction is surely unrealistic. On the other hand, if a friction
model is involved, it also has to be parameterized. In reality, the friction coefficients depend
on the actual material pairing (foot/ground) and are not known in advance. Moreover, the
aforementioned methods assume COULOMB friction with linearized friction cones, which is still
a very rough approximation when compared to the high complexity of real-world contacts.

Kinematic Feasibility Besides multi-body dynamics, also kinematic constraints of the robot
have to be considered in order to maintain feasibility of the generated motion. Since most hu-
manoid robots do not feature the same flexibility and range of motion when compared to the
human anatomy, certain limitations arise even for allegedly simple maneuvers such as climbing
stairs or stepping over obstacles. Within a whole-body approach, incorporating individual joint
limits is straight forward. In contrast, considering kinematic feasibility within a task-space for-
mulation always implies some kind of approximations since explicit joint-level information is not
available. Typical approaches are to use pre-computed reachability areas/volumes or a prelimi-
nary check of joint limits by a simplified kinematic model approximating the real limb topology.
Herein, the most important quantity is the vertical CoM/torso position since it has the greatest
influence on leg kinematics in a biped. Methods for planning a suitable vertical trajectory have
been proposed (among others) by STASSE et al. in [389] and NISHIWAKI and KAGAMI in [325].
For stepping over large obstacles, STASSE et al. propose to generate a vertical waist trajectory
built from third-order polynomials, which are connected by a key configuration. The key con-
figuration is obtained from a so-called feasibility unit, which considers the obstacle’s geometry
(height and length). NISHIWAKI and KAGAMI focus on stepping up and down a staircase for
which they use a simplified model of the leg kinematics in the sagittal plane. The upper bound
for the torso height is determined based on the existence of an IK solution (streched knee) and
the maximum joint velocity in the knee DoF. Apart from the vertical CoM/torso position, also
the horizontal components affect kinematic feasibility. However, they are typically computed
by the method for accomplishing dynamic feasibility instead. Indeed, some frameworks use a
classical LIPM-based approach, although – strictly speaking – this conflicts with the requirement
of a constant CoM height introduced by the LIPM.

21 A polyhedral convex cone can be described in a “face” form (set of inequalities) or in a “span” form (positive
combination of base vectors), hence the name “double description”, [108]. The Double Description Method (DDM)
is an algorithm to solve the so-called extreme ray enumeration problem, i. e., to compute one form from the other. It
was originally introduced by MOTZKIN et al. in [311] and later revisited by FUKUDA and PRODON in [164].

2.4 Motion Generation 35

Solution Strategies The chosen robot model together with the concepts for kinematic and
dynamic feasibility can be seen as input for the solution strategy, which defines how this infor-
mation is used to generate motion in the form of smooth trajectories. Among the frameworks
using a task-space formulation, the probably most prominent method has been proposed by KA-
JITA et al. in [233]. Herein, the ZMP concept has been first coupled with the three-dimensional
LIPM (the ZMP acts as pivot point of the pendulum), which is then used to formulate a pre-
view controller tracking a given ZMP reference trajectory under consideration of a certain time
horizon. In general, most ZMP-based approaches are formulated as a so-called inverse problem
[233]: instead of computing the ZMP from a given robot motion, the required robot motion (in
particular the CoM) is computed from a given (reference) ZMP trajectory. As a consequence,
one has to distinct between the desired (planned) ZMP and the actual (executed) ZMP.

A motion generator based on the DCM was first introduced by TAKENAKA et al. in [404],
where a desired ZMP trajectory is modified in a way such that the DCM matches a cyclic gait
at the boundaries. They use a three-mass model, where the torso mass follows the dynamics of
a LIPM and the CoM is finally computed as a combination of the torso and foot mass motion.
With this approach, they achieved impressive walking speeds of up to 4 km/h for ASIMO [404].
Besides the extension of the DCM concept to the three-dimensional case by ENGLSBERGER et al.
in [142], the authors also propose an accompanying motion generation workflow. First, they
prescribe the motion of a so-called Virtual Repellent Point (VRP)22 by placing it at a user-defined
height above the CoP. The CoP is given by the foot placement and the assumption of point-alike
feet. The VRP then defines the dynamics of the DCM which in turn determines the dynamics
of the CoM. Unfortunately, the assumption of instantaneous stance leg switch in [142] led to
discontinuous joint torques. This assumption was dropped in [144] by smoothing the DCM
reference trajectory in the DS phase using third-order polynomial interpolation. However, other
assumptions such as point-alike feet are still necessary to allow an analytic solution. In [145],
the smoothness was further improved by interpolating also the VRP reference trajectory through
polynomial splines. Earlier work at the DLR focused on the closely related CP, cf. [141]. Another
prominent advocate for CP-based motion generation and control is Boston Dynamics since they
used it for ATLAS, see [321].

The three-mass model proposed by TAKENAKA et al. was adapted by BUSCHMANN et al. in
[98], where the torso mass is not restricted to LIPM dynamics anymore but instead can have
arbitrary vertical motion. BUSCHMANN et al. formulate a second-order, linear BVP for the hori-
zontal components of the torso mass, which is solved by a spline collocation method. The motion
generator proposed in this thesis integrates an extension of this approach, thus a detailed expla-
nation is postponed. A main advantage of this strategy is that there are no restrictions for the
reference ZMP trajectory or the vertical torso motion. In particular the latter is beneficial since
it makes incorporating kinematic limits simple, e. g. by the methods proposed in [8, 325, 389].

The solution strategies mentioned so far use a rather simple model of the robot. In contrast,
there are numerous methods which incorporate a “full” multi-body model. Due to the signifi-
cant increase of complexity, these typically involve offline computations (at least in parts). An
example is given by DENK and SCHMIDT in [131], where a database of dynamically feasible
gait primitives is synthesized by optimal control techniques solved through direct collocation.
The precomputed walking patterns assume symmetric gait and differ in parameters like step
length (walking speed), direction (curve walking), or clearance (stepping over obstacles). The
synthesis is time consuming, thus performed offline, while the concatenation of primitives to an
executable sequence is done online. In [97], BUSCHMANN et al. propose a nonlinear parameter
optimization considering the full multi-body dynamics of JOHNNIE. The computation is accel-
erated by using recursively derived analytic gradients, however, the runtime still remains in the
range of several minutes which makes it an offline-only method. Another approach is suggested

22The Virtual Repellent Point (VRP) can be understood as the endpoint of a (virtual) linear spring attached to the
CoM, such that the spring force equals the total force acting on the CoM due to gravity and ground reaction [142].

2.4 Motion Generation 36

by BESSONNET et al. in [79], where the EoM of a full, but two-dimensional (sagittal plane)
multi-body model of the robot are transformed into a state space representation. An optimum
gait minimizing driving torques and reaction forces is found by applying PONTRYAGIN’s Maxi-
mum Principle (PMP) [166] to the state space EoM leading to a corresponding BVP. Constraints
are defined for transitions (SS, DS), states (joint limits, collision avoidance), and forces (unilat-
eral ground contact and maximum joint torques). The BVP is solved through a combination of
shooting (for initial guess) and finite differences (final solution). In [403], TAKANISHI et al. pro-
pose to linearize the EoM of the torso (alias “trunk”) as obtained from a full multi-body model
where the remaining motion (limbs) is assumed to be known. The resulting decoupled (x/y),
linear, second-order ODEs for the horizontal torso components are solved iteratively using a
Fast Fourier Transformation (FFT) together with periodic Boundary Conditions (BCs). Another
example for a motion generator tracking a certain reference ZMP trajectory while using a full
robot model is given by NAGASAKA et al. in [317]. They optimize the horizontal torso motion
of the humanoid H7 using a steepest gradient approach, where initial trajectories are obtained
from a static23 walking pattern. Since the full model has to be evaluated within each iteration
of the optimization, the method is also restricted to offline computation. In later work on H7,
real-time performance for planning up to three steps ahead has been achieved by NISHIWAKI et
al. in [323]. They modify the horizontal motion of all bodies by the same distance except for
the feet (fixed to the ground) in order to follow a given ZMP trajectory. Their BVP is solved by
an iterative finite difference method, which requires a feasible initial solution.

For frameworks using a full model of the robot, we observed a transition from classical ZMP-
based approaches to more generalized ones using contact stability and the CWC as feasibility
criterion. Here, contact stability (together with various other constraints) is embedded within a
comprehensive optimization to compute whole-body motion in the form of joint-space trajecto-
ries. A rough overview of the typical workflow of this class of motion generators (2nd variant in
Figure 2.16) has already been given above. Seminal contributions by the CNRS-AIST JRL group
are for example [149, 279, 280]. Unfortunately, the high degree of generality together with
the focus on complex multi-contact actions comes hand in hand with high computational cost,
which makes real-time execution infeasible in most cases. Another issue of the formulation as a
large-scale optimization problem is that the solver is prone to get stuck in local minima and that
manual corrections still might be necessary in some cases, cf. [149].

Model Predictive Control (MPC) A major step towards real-time performance has been made
(among others) by CARPENTIER et al. in [111]. Their key idea is to introduce various simpli-
fications to the optimization problem, most importantly using only centroidal dynamics (CoM
and angular momentum) for dynamic feasibility instead of considering all bodies. The optimal
control problem is solved by a MPC approach based on multiple shooting. Subsequently, the de-
sired whole-body motion is computed using a second-order hierarchical IK. For a multi-contact
scenario where HRP-2 climbs a stair while using a nearby handrail, the total planning time for
a single stair is less than 6 s, which represents a significant improvement for this class of motion
generators. Although their framework has been demonstrated on a biped, it can also be used
for quadrupeds. Note that especially for quadrupeds, numerous MPC-based approaches for mo-
tion generation exist, see for example the already mentioned publications around STARLETH
and ANYMAL and the impressive results recently achieved with wheeled ANYMAL [81]. For
humanoids, the clearly most impressive demonstration of motion generation using MPC have
been given by Boston Dynamics with the highly dynamic dance and parkour moves of ATLAS.
Apart from the general structure of their framework, which involves partial offline computation

23The terms static and walking might seem to be mutually exclusive at first sight. However, in this context, a static
walking pattern indicates that only static feasibility has been considered during motion generation. Although this
does not necessarily mean that the executed motion has to be slow, typically only rather slow, quasi-static motion is
planned to avoid falling due to unconsidered dynamic effects.

2.4 Motion Generation 37

[260], not too much details have been published yet. Finally, there also exist various MPC based
approaches which achieve real-time performance by considering a rather simple model of the
robot, such as the LIPM/ZMP-based method proposed by MAXIMO et al. in [302].

Embedding Multi-Contact Dynamics Per definition, whole-body motion generators using
contact stability as feasibility criterion (2nd variant in Figure 2.16) automatically support multi-
contact situations such as additional hand support during walking. For performance reasons
and to reduce complexity, multi-contact actions are often tested for static feasibility only (e. g.
by a static equilibrium check at key configurations). Nevertheless, approaches which are based
on solving a comprehensive optimization problem still suffer from high computation times.

On the other side, methods for generating abstract motion (1st variant in Figure 2.16) are
typically much faster. However, since they often rely on a feasibility criterion assuming coplanar
contacts, custom extensions for supporting multi-contact situations are necessary. An example
for such an extension is given by MASON et al. in [300]. They propose to generate the CoM
trajectory by MPC assuming LIPM dynamics. In case the ZMP is about to leave the classical
SP, a mixed-integer Quadratic Program (QP) is triggered to find an optimal hand contact po-
sition. Once the hand is in contact, another QP is solved to compute the required external
force at the hand, which centers the so-called shifted SP to the current ZMP. By considering
the additional hand support as a planned, external force shifting the SP (or equivalently the
ZMP) rather than as a non-coplanar contact, dynamic feasibility under multi-contact conditions
is established without violating the assumptions of the ZMP criterion (see also Figure 2.20).
Similarly, MUROOKA et al. present in [314] a multi-contact pattern generator tracking a refer-
ence ZMP trajectory by extending the classical preview control of KAJITA et al. from [233]. They
use the LIPM to describe the core dynamics of the biped and consider hand contacts as external
forces shifting the ZMP (in [314] called ext-ZMP). The subsequent DCM-based stabilizer is also
extended to account for the additional hand contact forces.

WRH
RH,ext

Equival.: ForceMulti-Contact Equival.: TorqueGround Contact

g

y
z

x

WLF
LF,cont

TRH,ext

WRF
RF,cont

FRH,ext

WZMP
f ,cont

ZMP

external
contact
wrenches

coplanar

interface
foot-ground

Assumption:
level ground

Assumption:
known (planned)

o

WZMP
f ,cont

ZMP

WZMP
f ,cont

ZMP

mvirt
mvirt

g
ω̇x

ÿ

g
≡≡

Figure 2.20: Restoring the validity of the ZMP criterion for multi-contact scenarios by making certain assumptions.
The interaction of the robot with its environment can be split up into coplanar contacts representing the foot-ground
interface (assuming level ground) and external contact wrenches at the hands (assumed to be known). Each external
wrench is equivalent to the gravito-inertial effects of additional (virtual) masses of the robot making a corresponding
contribution to the EoM. Since the ZMP criterion only sets requirements on the foot-ground interface but not on the
model of the robot, it remains valid as long as the external wrenches are considered in the EoM of the model.

Certainly, there are also numerous hybrids between the 1st and 2nd variant of motion gen-
erators such as the one proposed by KUMAGAI et al. in [262], where abstract motion is planned
using the concept of contact stability for evaluating multi-contact feasibility. Herein, the opti-
mum CoM motion and contact forces are computed by solving a QP. Since feasibility is checked
by testing for static equilibrium (using linearized friction cones), their method is restricted to
quasi-static motion. Although it is faster than classical whole-body approaches solving a compre-
hensive optimization problem, total planning times still remain in the range of several seconds
due to the subsequent whole-body IK based on a prioritized QP.

2.4 Motion Generation 38

Machine Learning The methods presented so far can be understood as “conventional” ap-
proaches. In the past decade, the great popularity of machine learning in the field of robotics
and in particular CV also triggered the investigation of corresponding motion generators for
legged locomotion. Here, a common approach is to implement joint-level controllers (often of
PD-type), which get parametrized through a learning process fed by simulated or real experi-
ment data. So far, most of these methods rely on proprioceptive sensor data only, thus learning
based methods are currently more associated with the task of control rather than planning. This
might change once CV is coupled with motion generation to maintain a certain planning horizon.

A direct comparison of a conventional LIPM/ZMP-based (preview control) method and a
novel, reflex based neuro-controller was conducted on ARMAR-4 by GOLDBECK et al. in [172].
With their neuro-controller they could slightly improve the CoT, maximum speed, and robust-
ness (walking on a slope and with external disturbances). However, their study is entirely
based on simulation data, which limits its meaningfulness for a real-world application. A suc-
cessful transition of a learning based controller to real hardware was achieved by SIEKMANN

et al. in [381] for the lower body biped CASSIE. They demonstrate very robust biped stair
climbing (only proprioceptive sensors – no CV) based on reinforcement learning, where the
training is performed exclusively in simulation and the resulting controller is deployed on the
real hardware without further modification (following the so-called sim-to-real paradigm). The
key to their success seems to be the randomization of dynamics parameters (friction, damping,
mass, etc.) in their simulation environment used for training, which makes the controller ro-
bust against real-world inaccuracies. A similar approach based on reinforcement learning was
presented earlier by LEE et al. in [275] for the quadruped ANYMAL. They propose a two-stage
learning process. First, a “teacher” policy is trained having access to privileged information such
as ground truth knowledge on terrain and contacts. In the second stage, a proprioceptive “stu-
dent” policy is trained under guidance by the teacher. Their system is robust enough to handle
challenging natural terrain including mud, snow, rubble, dense vegetation, and flowing water.

A remarkable feature of such methods is their zero-shot generalization, i. e., that they can
handle situations which did not occur during training. A general drawback is that it is difficult
to understand why certain learned policies work, which makes it hard to further improve meth-
ods. Moreover, it makes the system unpredictable and thus, potentially more dangerous than
conventional approaches. Finally, one has to keep in mind that a large amount of data is not
enough, but instead “every learner must embody some knowledge or assumptions beyond the
data it is given in order to generalize beyond it” [138]. Otherwise, the resulting policy will not
be better than random guessing, see the famous “no free lunch” theorem by WOLPERT [444].

Hybrid Zero Dynamics (HZD) Most frameworks based on HZD (already introduced in Foot-
note 13) focus on a rather simple, planar model of the robot and a pure simulative analysis,
see for example [264]. However, there are also recent investigations, which deploy HZD-based
motion generation on real, full-sized humanoids. In [195] for example, HEREID et al. propose to
use the full multi-body dynamics together with HZD-typical virtual constraints (i. e. constraints
enforced through feedback control) to formulate a nonlinear optimization problem, which is
solved through direct collocation. They achieve stable, three-dimensional walking with a mean
CoT of only 1.33 for the spring-legged humanoid DURUS. Due to the involved large-scale opti-
mization, the computation time lies in the range of several minutes.

Conclusions So far, countless approaches for motion generation of legged and in particular
biped robots have been published. The mentioned works have to be understood as examples
for the main directions in this field. Moreover, the separation into a 1st and 2nd variant made
in Figure 2.16 is just one way to look at the state of the art. The huge amount of possible
combinations of the core ingredients, such as the robot model, the concepts for kinematic and
dynamic feasibility, and the solution strategy, makes a further classification difficult.

2.4 Motion Generation 39

The common primary goal of all motion generators is to plan a feasible motion such that the
robot does not fall. Similar to the field of hardware design, there are different secondary objec-
tives depending on the research direction. Frameworks originating from the field of biorobotics
and the HZD community typically put strong focus on locomotion efficiency. The generated
motion is often restricted to straight, cyclic gait patterns, which are optimized for low CoT or
to behave similar to human or animal gait. In contrast, the community around fully-actuated
humanoids is more focused on versatility, traversing obstacles, or complex, acyclic multi-contact
maneuvers. Naturally, the real-time capabilities of a motion generator are directly related to
the complexity of the underlying model and feasibility concepts. Online processing has been
possible ever since – it’s just a matter of which kinematic/dynamic effects are considered.

Despite the great progress in research, there is still much room for improvement. Especially
for multi-contact scenarios, only rather slow, quasi-static motion has been achieved in real-world
experiments, see for example the videos attached to [150] or [314]. Here, further improvements
in the hardware design but also the incorporation of multi-contact dynamics during motion
generation are necessary. Both issues are tackled by this thesis, see Chapters 3 and 6.

Apart from conventional techniques, also locomotion frameworks based on machine learning
have recently been successfully deployed on hardware. Although this class of motion generators
is in its early days, impressive results have already been demonstrated, which promise even
better results once this area of research becomes more mature. In the author’s personal opinion,
a smart combination of both, conventional and learning based methods, has the potential to
achieve human like locomotion performance in the mid-term future.

Relations to this Thesis The motion generator presented in Chapter 6 is based on the previous
work by BUSCHMANN [100] (EE motion, robot model, dynamic feasibility, and solution strategy)
and HILDEBRANDT [201] (kinematic feasibility). In order to support multi-contact locomotion,
it has been rewritten from scratch, which allowed to integrate the necessary extensions. The
presented technique belongs to the first class of motion generators creating an abstract motion
(EE and CoM), which is translated to individual joint-space trajectories by the subsequent SIK
module (see Section 4.6 and SYGULLA [401]). The focus lies on real-time generation of gaited
multi-contact locomotion (less than 10 ms planning time in most scenarios). In this work, multi-
contact is meant to implicitly (preemptively) improve robustness. In contrast, some related work
focuses on explicit disturbance rejection similar to footstep modification, see for example [431].

For testing dynamic feasibility, a five-mass model as extension of the three-mass model pro-
posed by BUSCHMANN et al. [98] is used, see Figure 2.17. Moreover, the ZMP criterion is applied,
where hand contacts in multi-contact scenarios are considered as planned external forces (sim-
ilar to [300, 314]). To obtain a dynamically feasible CoM motion from a given ZMP reference
trajectory, a BVP is formulated, which is solved through quintic spline collocation as extension of
the cubic spline collocation method proposed by BUSCHMANN et al. in [98]. The use of quintic
polynomials leads to a smoother CoM trajectory and an easier incorporation of boundary con-
ditions without the need of tuning parameters. The proposed BVP describes locomotion, which
is gaited but not cyclic. Thus, individually placed contacts (as obtained from the contact plan-
ner) allow arbitrary walking patterns such as straight-, backwards-, curve-, and lateral-walking,
climbing stairs, additional hand-support, and all imaginable combinations of those. Note that
multi-contact dynamics are embedded without any approximation. In contrast, the proposed
motion generator violates the requirements of the ZMP criterion for climbing stairs or walk-
ing on uneven ground (non-coplanar contacts). As successful experiments demonstrate, the
introduced error seems to be small. Although, the motion generator assumes that the contacts
provide sufficient friction, (linearized) friction cones at the EEs are considered in the subsequent
SIK module for computing an optimal contact wrench distribution, see [401, p. 80ff] for details.

For evaluating kinematic feasibility, a planar, simplified leg model based on the one proposed
by HILDEBRANDT et al. in [8] is used. In contrast to the torso height optimization suggested in

2.5 Computer Vision (CV) 40

[8], the method presented in this thesis determines kinematic limits through a pure geometric
approach, which avoids manually tuned parameters and also significantly reduces the compu-
tational cost. In contrast to the aforementioned LIPM-based method by STASSE et al. [389], a
varying torso height does not violate the assumptions of the used five-mass model. Compared
to the method of NISHIWAKI and KAGAMI [325], kinematic feasibility is considered in this thesis
only on position level (no velocity limits). However, a more complex leg model is used and not
only an upper, but also a lower bound for the torso height is provided.

Finally, the motion generator proposed in this thesis is capable of producing dynamic multi-
contact locomotion with (comparatively) high walking speeds. The effectiveness has been
demonstrated by various experiments on the real hardware, where the robot copes with dif-
ficult multi-contact scenarios at up to 1.8 km/h, cf. [20 @t=10s]. This is (at the time of writing)
much faster than comparable systems.

2.5 Computer Vision (CV)

The WPG presented in this thesis is meant to be coupled with a CV system providing information
about the surroundings of the robot. Although visual perception is not in the scope of this thesis,
the following introduces fundamentals and collects some remarks on the state of the art. This
is meant to give a rough insight into the current activities in this field and also highlight joint
research areas, where the boundaries between CV and WPG blur.

Simultaneous Localization and Mapping (SLAM) To achieve full autonomy, a CV system
maintaining a model of the environment and localizing the robot within it (known as SLAM,
already introduced in Footnote 10) is required. This information is then used by the contact
planner to find an optimal contact sequence from the current position of the robot to a user-
defined goal. Indeed, SLAM has a very large research community, where mobile robots are
only one out of many applications. A core component of many SLAM pipelines is an efficient
implementation of the Iterative Closest Point (ICP) algorithm [76], which aligns two point clouds
as obtained from an RGB-D, LiDAR, or stereo sensor by minimizing a mean-square distance
metric. This can be used to update a 3D surface reconstruction or to localize the sensor relative
to the scene. At the time where SLAM was too expensive to be run onboard, some path finding
algorithms have been developed which do not need an explicit environment model but rather
directly use the (2D) image stream from the camera(s), see for example the already mentioned
“tentacle”-based method by ROHE et al. and BUSCHMANN et al. [99, 360]. Meanwhile, real-time
SLAM has not only become feasible, but also (partially) integrated into ASIC-accelerated low-
cost sensors (e. g. [218, 219]), such that current research focuses more on various extensions
building on top of SLAM. Examples are methods for completion of unseen/occluded areas
from semantics [446] and automatic generation of semantic scene graphs for high-level scene
understanding [448]. Both examples, [446] and [448], have been developed by WU et al. in
parallel to the WPG presented in this thesis as part of the new multi-contact locomotion system
of LOLA. Similar to most modern perception systems, the heavy-duty work is carried out by
neural networks, which are trained with synthetic or real datasets on potent workstations and
allow efficient real-time execution on the onboard hardware.

Accuracy In order to evaluate the accuracy of a SLAM system, a common strategy is to com-
pare the results against the ground truth obtained from an external motion capture system such
as the ones provided by Vicon Motion Systems [426]. On the one hand, the localization error can
be directly obtained by comparing the localized pose with the motion capture pose as suggested
by LASGUIGNES et al. in [268] (around 2 cm / 2◦ error for ICP-based localization using a combi-
nation of a low-cost tracking sensor [219] and a LiDAR). On the other hand, the accuracy of the

https://youtu.be/gUNZ0AmLiWU?t=10s

2.5 Computer Vision (CV) 41

scene reconstruction (surface accuracy) can be evaluated by computing the local per-point dif-
ference between the RGB-D SLAM result and the measurements of a potentially more accurate
LiDAR, cf. SCONA et al. [373] (around 5 cm error for a stereo camera system). Unfortunately, the
depth accuracy of common low-cost sensors is still in the range of several centimeters for typical
sensing distances of 2 m to 5 m, which can lead to severe disturbances in vision guided walking
due to wrong contact expectations. Finally, although external motion capture is a convenient
tool to obtain ground truth data, one has to keep in mind that these systems also have limited
accuracy. In the author’s personal experience, the official vendor specifications only match the
relative accuracy over small distances and in the center of the tracked volume, while the abso-
lute error over long distances or at the boundaries of the tracked volume is often much higher
even for a well calibrated setup.

Segmentation and Pre-Processing Providing a point or triangle cloud representing the sur-
roundings of the robot is in general not enough. Instead, the scene has to be segmented into
meaningful primitives (floor, walls, obstacles, etc.) in order to be usable by a subsequent contact
planner. In [96], BROSSETTE et al. give a good overview of their pipeline, which represents a
very common approach for extraction methods based on point clouds. They obtain an input
point cloud from the well-known Asus Xtion Pro Live RGB-D sensor [69], which gets filtered by
voxelization in order to reduce the amount of data. Then they cluster points belonging to the
same planar surface using a region growing algorithm, after which a convex hull algorithm is
applied to obtain an environment model consisting of convex polygons. Similar to most other
extraction pipelines based on point clouds, BROSSETTE et al. make extensive use of the promi-
nent Point Cloud Library (PCL) [363], which implements most of the algorithms used by this
pipeline. In order to choose from a set of potential contact surfaces, KAISER et al. propose in
[225] to assign affordances (already introduced in Footnote 15). This metric can be used ei-
ther to assist a human operator during high-level control in supervised autonomy (cf. [226]),
or to formulate contact costs in a fully-autonomous contact planning process. For fast distance
evaluations, e. g. in the context of collision avoidance, a coarse approximation of an obstacle’s
geometry by volumetric primitives can be useful. As an example, WAHRMANN et al. present in
[429] a method to compute an SSV representation of an object from its corresponding point
cluster. Apart from the description of an object’s surface and volume, a classification (e. g. as
floor, table, chair, etc.) helps the WPG to choose between possible path and contact options. The
task of splitting a scene into disjoint parts and adding semantic labels to them is called semantic
segmentation. The classification often relies on trained networks, cf. WU et al. [446].

Visual Servoing Aside of providing input data for ahead of time planning, CV in humanoid
robots may also be used for visual servoing. In [406], TANGUY et al. propose a so-called closed-
loop RGB-D SLAM framework for multi-contact scenarios. They align the perceived environment
model with a 3D Computer Aided Design (CAD) model of the scene used during planning, to con-
tinuously update the current pose of the robot and the target contact points. The updated poses
are fed into a QP-based whole-body controller compensating the discrepancies between the
planned and executed motion. Another example is given by GIRAUD-ESCLASSE et al. in [171],
where a whole-body motion generator based on a Differential Dynamic Programming (DDP)24

algorithm is augmented by so-called visual-tasks. These tasks describe the error between the
desired (expected) and actual (observed) position of visual features (e. g. points of interest
identified by edges, corners, etc.) expressed in the camera’s image plane. The error dynamics

24Differential Dynamic Programming (DDP) as introduced by MAYNE in [303] is an optimal control algorithm for
trajectory optimization. The main idea is to perform a preceding backward pass and subsequent forward pass in
alternation until convergence is achieved. During the backward pass, a new sequence of optimal control inputs
with regard to a user-defined cost function is computed (while moving backwards in time). The forward pass then
evaluates the resulting trajectory, which serves as new reference for the following iteration.

2.6 Stabilization 42

of the visual features are derived from the image plane motion, which in turn is defined by
the (known) camera motion. The gradient of the error dynamics is then fed into the DDP to
minimize the costs introduced by the visual tasks.

Active Camera Control For robots with active DoF controlling the pose of the camera(s) (alias
“head”), it is possible to track an object or certain point in space. Although this is mainly used
in manipulation scenarios, cf. [181], it can be useful during locomotion for fixation of close-by
obstacles, cf. [100, p. 84ff]. A general difficulty here is to stabilize the cameras since the active
DoF in the head cause additional vibrations and motion blur.

2.6 Stabilization

The WPG proposed in this thesis assumes a preceding CV system delivering appropriate input
data. Similarly, the WPG also expects its own output, i. e., the planned motion, to be processed
by a low-level stabilization system before being sent to the hardware. The stabilization module,
which is responsible for compensating any kind of real-world inaccuracies and disturbances, is
not in the focus of this thesis. For an overview of the fundamentals and the state of the art in this
research field, the literature review given by SYGULLA in his dissertation [401] is recommended.
In the following, only few notes in direct relation with the topics of this thesis are added.

Hardware Design – Sensors Since online stabilization relies on proprioceptive data, the hard-
ware design of a legged robot has to integrate the corresponding sensors. The most important
components are the Inertial Measurement Unit (IMU), often located in the torso/trunk, and a
six-axis Force-Torque Sensor (FTS) at each EE meant to get in contact. The IMU provides (among
other data) inclination and angular velocity as the most important indicators for balance in
legged locomotion. Depending on the available budget and space, commercial IMUs range from
Micro-Electro-Mechanical System (MEMS) based low-cost chips as used in handhelds to high-end,
low-drift systems with fiber-optic gyroscopes as used in aircrafts and missiles, cf. [217]. A FTS
delivers the current contact wrench at the corresponding EE, which can be used to control the
load distribution between the EEs and also to synchronize the desired (planned) with the actual
contact state. Additionally, one might include dedicated contact switches to determine if an EE
contact is open or closed. Due to gravity and inertia effects, the same information might be
difficult to derive from FTS data only (depends on the EE mass “after” the FTS). A further step
would be to integrate a tactile skin, e. g. at the sole of the foot, such as the low-cost, sewed sen-
sor presented by SYGULLA et al. in [399] or the one based on hexagonal printed circuit boards
alias HEX-O-SKIN proposed by MITTENDORFER and CHENG in [307]. Apart from the complex
mechanical integration of tactile sensors, designs based on a matrix of so-called taxels25 also
introduce high amounts of data, which have to be handled by the low-level communication
bus. Finally, various humanoids such as TORO and TALOS integrate torque sensors in their joint
modules to allow direct torque feedback. Indeed, there is a debate in the research community
whether position- or torque-control should be used for legged robots. Here, the distinction be-
tween position- or torque-control indicates, whether the inner control loop of the joints uses
position or torque as control variable, respectively. It does not provide information about the
presence or type of an outer control loop or a higher level strategy such as hybrid force/motion
control. In general, position-control is well-suited for fast and precise EE motion as required

25In the tactile sensor community, the term taxel is often used to describe an elementary tactile transducer measur-
ing pressure, friction, etc. at a certain point. Similar to pixels in an image, a matrix of taxels delivers a two-dimensional
data field. Considering a tactile skin on the sole of a foot, this allows to measure the pressure distribution and, in
case of uneven terrain, the contact area, i. e., the shape of the terrain underneath the foot.

2.7 The Humanoid Robots JOHNNIE and LOLA 43

in locomotion, while torque-control introduces virtual compliance in favor of impact mitigation
and safety in human-machine interaction. A recent (purely simulative) comparison of position-
and torque-based whole-body locomotion controllers is given by RAMUZAT et al. in [358] for the
humanoid platform TALOS (provides both, a position- and a torque-control mode).

Software Design – Real-Time Capabilities For a quick reaction to disturbances, the stabiliza-
tion module has to run with a high update rate. Typical cycle frequencies lie in the range of
200 Hz (e. g. DRC-HUBO+, cf. [223]) to 1 kHz (e. g. LOLA, cf. [400]) and are limited mainly by
the IO capabilities of peripherals and the processing time of the stabilization algorithm. Note
that in some systems the real-time communication bus connecting sensors and actuators with
the control level (see Figure 2.12) runs at even higher frequencies of up to 4 kHz (e. g. LOLA, cf.
[10]). This allows input-data filtering and output-data extrapolation (based on target velocities)
for increased smoothness of the motion [10]. The high cycle frequency of the stabilization mod-
ule implies that a higher level WPG has to be capable of providing trajectory data at this rate. In
particular, it must not be slowed down by other planning tasks running in parallel. Thus, heavy
duty loads such as the contact planning algorithm are typically offloaded to the autonomy level
(see Figure 2.12) running on a different thread, process, or even PC.

Motion Generation – Inverse Kinematics (IK) As mentioned earlier, the tasks of planning
and control, or – more precisely – motion generation and stabilization, are not always clearly
separated. This holds true in particular for the IK. For whole-body approaches using a joint-
space formulation, an IK is typically already integrated in the motion generation process in
some way, e. g. to compute a valid robot pose from a set of contacts or indirectly in the context
of a large-scale optimization. In contrast, motion generators providing abstract motion in the
form of task-space trajectories require an explicit IK, which may be part of the subsequent sta-
bilization system. In both cases, the IK typically allows to incorporate secondary goals due to
the kinematic redundancy of most legged robots. Common velocity level IK methods with re-
dundancy resolution are Resolved Motion Rate Control (RMC) introduced by WHITNEY in [434],
which (locally) minimizes joint velocities, and its extension Automatic Supervisory Control (ASC)
introduced by LIÉGEOIS in [283]. The latter is more popular, since it allows to additionally (lo-
cally) minimize a custom cost function by taking its corresponding gradient into account. This
can be used to formulate secondary objectives such as preferring a certain “comfort” pose or
avoiding joint limits and collisions. Furthermore, it is possible to prioritize objectives, either by
simple weighting of the corresponding cost terms, or by formulating a strict hierarchy alias stack
of tasks, see NAKAMURA et al. [318] and SICILIANO and SLOTINE [379] for corresponding exten-
sions of ASC. In general, tasks incorporating unilateral constraints such as joint limits are often
realized by regularization, e. g. through formulating the cost as a repulsive potential, cf. [371].
In [299], MANSARD et al. propose a method for strict enforcement of unilateral constraints in a
task hierarchy.

2.7 The Humanoid Robots JOHNNIE and LOLA

The contents of this thesis are tightly coupled to the research platform LOLA developed at the
Chair of Applied Mechanics, TUM. This institute has an almost 30 year long history with regard
to the design, realization, and control of legged robots. Starting in 1993 with the six-legged
robot MAX [342] based on the stick insect Carausius Morosus, further investigations led to the
eight-legged, pipe-crawling maintenance robot MORITZ [344], the biped JOHNNIE [169], and
finally its successor LOLA [417].

2.7 The Humanoid Robots JOHNNIE and LOLA 44

JOHNNIE [170, 289]
19 DoF

1.8 m
43 kg

LOLA [100, 157, 291]
24 DoF

1.74 m
63 kg

LOLA v1.1 [1]
26 DoF

1.76 m
68 kg

Figure 2.21: Humanoid robots (with topology) developed at the Chair of Applied Mechanics, TUM. From left to right:
JOHNNIE (1997-2003), LOLA (2004-2019), and LOLA v1.1 (since 2020). Photo of JOHNNIE modified from [170]. The
topology of JOHNNIE was taken from [343] and extended by the two DoF of the vision system (see “head”).

Previous Work – JOHNNIE The walking machine JOHNNIE (see Figure 2.21 left) was capable
of autonomously climbing stairs and bypassing or stepping over obstacles, which made it one
of the best performing humanoids at its time. With only 19 DoF26 and 43 kg at a height of
approximately 1.8 m, it is quite slender and rudimentary when compared to modern high-end
humanoids. Since the focus was set on biped walking, the arms are rather simple omitting an ex-
plicit hand design or an active elbow joint. For motion generation, a LIPM/ZMP-based approach
is used where the horizontal CoM motion is derived analytically from the decoupled LIPM-ODEs
assuming a known, polynomial ZMP reference trajectory [288]. All algorithms are executed
online on a single onboard PC, which receives only high-level signals from an external operator
via Ethernet [290]. The CV system of JOHNNIE was developed by the Chair of Automatic Control
Engineering, TUM. The data stream of two stereo cameras is used to build a two-dimensional
global and a three-dimensional local (close vicinity) map of the environment. Appropriate step
length, direction, and gait type (e. g. for stepping over obstacles) are transmitted from the CV
system to the motion generator [292]. Unlike most modern CV solutions, the navigation system
of JOHNNIE is restricted to structured environments, i. e., previous knowledge (to a certain ex-
tend) is required. A comprehensive description of the hard- and software of JOHNNIE is given in
the dissertations of its main contributors, namely GIENGER [170] (design and realization), LÖF-
FLER [289] (simulation and control), and LORCH [292] (visual perception and step sequence
planning).

Previous Work – LOLA The experience gained with JOHNNIE was used during the develop-
ment of its successor LOLA (see Figure 2.21 center), which should enable autonomous, fast,
and human-like walking together with an overall performance enhancement [417]. Prominent
changes in the hardware design are the additional DoF in the pelvis, elbows, and toes. Note that
active toe joints in humanoid robots are rare but not unique, cf. H7 [324] or PARTNER [402].
LOLA was originally 1.74 m tall, weighted 63 kg, and had 24 electrically actuated DoF. The very
first version of the robot had 25 DoF since the “head” featured an additional vergence joint allow-
ing to change the focus of the stereo camera system [291, p. 101ff]. With the transition to a new
CV system, the stereo cameras were replaced by a single RGB-D sensor such that only the two
DoF for pan and tilt remained [430, p. 22ff]. In contrast to JOHNNIE’s centralized control archi-
tecture, LOLA features a decentralized joint control driven by commercial servo controllers and

26Most previous descriptions of JOHNNIE’s hardware mention only 17 DoF which do not include the two additional
DoF in the “head” (vision pan and tilt).

2.7 The Humanoid Robots JOHNNIE and LOLA 45

custom Distributed Sensor Control Boards (DSCBs) communicating over a Sercos-III bus [156].
In a later hardware revision, the Sercos network was replaced by an EtherCAT bus, see [10] for
details. A more detailed overview of the previous hardware configuration of LOLA (representing
the starting point of this thesis) is given in Section 3.2.

The first CV system of LOLA was developed by the Institute of Autonomous Systems Technology
at the Universität der Bundeswehr München, Germany, see ROHE et al. [360]. It is based on a
stereo camera system providing input data for the “tentacle”-based navigation approach [99]
already mentioned in Section 2.3. The second generation of LOLA’s CV system computes an
explicit environment model from point cloud data obtained from an RGB-D sensor [6, 429]. The
environment model is used by the second generation of LOLA’s navigation system performing an
A⋆-based implicit graph search accelerated by a guiding 2D path to obtain an optimal foothold
sequence [13, 199]. For avoiding collisions, obstacles are approximated by SSVs obtained from
point clusters [429], which are used during ahead of time planning on the one hand [13, 199]
and online trajectory adaption alias Reactive 3D Collision Avoidance (RCA) on the other hand
[198]. An SSV-representation of the links is also used in the IK to avoid self-collisions [371].

In contrast to the LIPM-based motion generation approach in JOHNNIE, for LOLA a three-
mass model in combination with a spline collocation method to solve the decoupled BVP for the
horizontal CoM motion is used [98]. This allows a varying torso height, which can be optimized
to respect kinematic limits in challenging maneuvers [8]. Moreover, various approaches for
global kinematic optimization during motion generation have been investigated [9, 200]. As
an alternative to the default IK-based method to obtain joint-space trajectories from an abstract
reference motion [371], another approach incorporates the full multi-body model considering
kinematic and kinetic quantities alias inverse kineto-dynamics [103]. This allows to exactly track
the desired contact forces, however, at higher computational costs limiting the control loop
frequency [103]. For disturbance rejection, a state estimator for the CoM and acting external
force based on a KÁLMÁN filter [235] with LIPM dynamics is used [440]. Moreover, a three-mass
model27 allows to predict the robot’s motion in the near future [439], which is used to optimize
footstep modifications for compensation of large disturbances [441, 442]. An overview of the
combination of predictive collision avoidance and online disturbance rejection in LOLA is given
in [202]. For compensating smaller disturbances occurring in early- or late-contact situations
(e. g. stepping on an unseen small obstacle or in a hole), event-based control strategies triggering
gait phase transitions and modifying phase timings have been investigated [11, 102].

Details on the hard- and software of LOLA (up to the beginning of this thesis) are collected
in the dissertations of its main contributors, namely LOHMEIER [291] (mechanical design and
realization), FAVOT [157] (electrical design and realization), BUSCHMANN [100] (simulation
and control), SCHWIENBACHER [372] (simulation, collision avoidance, IK), EWALD [153] (event
based reactive trajectory adaption), WITTMANN [443] (disturbance rejection), HILDEBRANDT

[201] (navigation, collision avoidance, kinematic optimization), and WAHRMANN [430] (point
cloud based CV). An overview of the previous state and skills of LOLA is given in [25].

Author’s Contribution – LOLA v1.1 Since the initiation of LOLA’s development in 2004 and
the first public walking demonstration at the Hannover Fair in 2010, the robot continuously re-
ceived various hard- and software upgrades. The probably most invasive modification (concern-
ing hard- and software) was made in the context of the upgrade for multi-contact locomotion
as presented in this thesis. This includes a complete redesign of the upper body to make it with-
stand the increased loads in multi-contact scenarios, which finally led to a more “beefy” overall
appearance, see Figure 2.21 right. In order to distinct this new, multi-contact capable version
from its previous configuration, it is referred to as “LOLA v1.1”.

27Similar to the three-mass model used during motion generation (see Figure 2.17), but extended by explicit
foot-ground contacts modeled by a spring/damper pair and a mass moment of inertia for the torso body.

https://youtu.be/EctICoMPyS4

2.8 Summary 46

2.8 Summary

To date, there exists a large variety of legged robots reaching from small, commercial toy com-
panions manufactured in large quantities to highly complex, life-sized humanoid prototypes in
research facilities. Apart from various DIY kits for hobby use, the community around legged
robots mainly focuses on quadrupeds and bipeds. In the last years, tremendous progress has
been made, which has also led to an increased interest of the western society in such machines.
For quadruped robots, we recently observed a transition from research prototypes to commercial
products, which can be operated not only by a trained expert in an industrial environment, but
also by amateur users in the private sector. In contrast, large bipeds and full-sized humanoids
are still subject to ongoing research. Nevertheless, they have become mature enough result-
ing in large companies starting to eagerly work on commercial adaptions which are closer to a
mass-produced consumer product than the currently available low-quantity humanoids sold to
research institutes as test platforms.

Concerning the hardware, there are numerous successful concepts which differ in kinematics,
actuation, materials and design of structures. Since each approach has its own advantages, there
is currently no clear “winner” design. Key parameters are power density, locomotion efficiency,
robustness, and (structural) damping. Here, modern actuator concepts and materials (e. g.
composites) promise the highest potential for significant improvement of overall performance.
Full-sized humanoids may arrive in the consumer market in the mid-term future, thus new
hardware designs should keep potential mass production in mind.

Although there is still much to do on the hardware side, the current bottleneck of high-
end prototypes seems to be the software, in particular the way how the numerous joints have
to be controlled in order to obtain a versatile, fast, robust, and efficient gait. Same as with
the hardware, countless concepts emerged which gradually get refined and extended by the
research groups promoting their corresponding strategy. A comparatively new trend are ap-
proaches based on machine learning which, however, focus more on the task of control rather
than planning. In most classical frameworks, motion generation, i. e., connecting a discrete
contact sequence by feasible trajectories, became fast enough to be run online. Current inves-
tigations focus on the proper and efficient evaluation of kinematic and dynamic feasibility in
complex scenarios, especially multi-contact. In contrast, the contact planner (responsible for
generating a discrete contact sequence from a given environment model) often violates the hard
real-time requirements. Here, the common objective is to develop more efficient methods and
to find a good compromise between generality, versatility, and optimality on the one hand and
computational cost on the other hand. For a fully-autonomous system, all involved algorithms
have to run under the restrictions of rather limited onboard computational power. An efficient
software design is essential, however, related publications often lack of corresponding details.

In the field of visual perception, novel methods based on machine learning led to great
advances with regard to the segmentation and understanding of complex scenes. Moreover,
core techniques for localization and reconstruction have made their way into consumer products,
which accelerates further research building on top of it. A general issue is the performance of
mobile 3D sensors, which cannot compete with the versatility, adaptivity, and accuracy of human
vision. However, the recent trend of integrating hardware acceleration for neural networks into
modern microchips promises to push the limits for depth perception based on stereo vision.

Although the problems of biped and quadruped locomotion can be seen as “solved” on a
very fundamental level, today even the best high-end systems do not even come close to the
versatility and robustness of human and animal gait. In particular, additional hand support
during biped locomotion – a simple and natural skill for humans – is still in its early days. This
thesis tries to push the state of the art in this specific area.

Chapter 3

Hardware – A New Upper Body for LOLA
Parts of this chapter have already
been published in [1, 3, 5, 28, 75].

This chapter describes the redesign of LOLA’s hardware in order to make it capable of multi-
contact locomotion. Since the design of the robot’s hip, pelvis, and legs (see [291] for details)
has proven to perform very well in versatile and dynamic walking, cf. [101, 202], it is kept
unchanged while the focus is set on modifications to the upper body. The chapter starts in Sec-
tion 3.1 with general design considerations followed by an overview of the previous state of the
robot’s hardware in Section 3.2. In Section 3.3, the kinematic topology of the new arm design
is optimized with regard to various multi-contact target scenarios. Subsequently, Sections 3.4
to 3.6 describe the mechanical and electrical design of the new upper body in detail. The real-
ization and initial operation are presented in Section 3.7 after which the results are summarized
and discussed in Section 3.8.

A condensed overview of the changes made to the hardware of LOLA has already been pub-
lished in [1], see also the accompanying video presentation [19]. Moreover, the evaluation
of the structural dynamics of the old and new hardware through an Experimental Modal Analy-
sis (EMA) has been performed by BERNINGER et al. and is published in more detail in [75] and
[5], respectively. The kinematic optimization of the arm topology presented in Section 3.3 is
based in large parts on the master’s thesis of NEUBURGER, which has been published in [28]. An
overview of the hardware upgrade is visualized in the video [22]. First real-world experiments
with the new system demonstrating initial operation tests are presented in the video [21].

3.1 Preliminaries

The review of the state of the art provided in Section 2.1 gives an insight into the complexity
of the electromechanical design of legged robots and in particular life-sized, fully-actuated hu-
manoids. Developing a high-performance system requires multiple years of development and
numerous design iterations (see for example the long history of ASIMO and ATLAS). Apart from
knowledge gained from experience with previous prototypes, there are various general rules and
thoughts which should be considered throughout the development. The following paragraphs
try to summarize such common design considerations from a rather global perspective.

Legged Robots When compared to wheeled systems, legged robots feature a much higher
degree of flexibility and versatility. This makes it difficult to estimate real-world loads (e. g.
mechanical stress, joint torques, power consumption, etc.) within the design phase. Hence, it
is hard to predict the overall performance of the final system (e. g. maximum speed, interaction
forces, payload, etc.). As a consequence, the typical goal is to make the hardware as robust as
possible while respecting a certain budget for mass, volume, and cost. The probably greatest
impact on robustness is given by the choice of materials. A lightweight design using structures
made of steel, aluminum, or titanium alloys is common practice. In order to further reduce
weight, these “classical” materials may be replaced by high-strength composites such as CFRPs,
which however are typically more difficult to process and introduce stricter constraints on the

47

https://youtu.be/T0CiZQbd9H0
https://youtu.be/mpDqMFppT68
https://youtu.be/JCYmq6u0EEc

3.1 Preliminaries 48

geometric shape of a part when compared to 5-axis milling of solid metal. Due to the compara-
tively low strength, structures made out of conventional synthetic polymers (plastics) are almost
exclusively used in rather small robots or for non-essential parts such as covers.

Another way to achieve a high strength-to-weight ratio for structures is to perform a topol-
ogy optimization, which typically leads to rather complex geometries, see for example the so-
phisticated leg design of LOLA [291, p. 121ff]. As a drawback, the manufacturing of complex
geometries by milling, casting, or 3D printing (see Figure 3.1) is expensive, especially for low
quantities. Moreover, for casting and 3D printing, often a subsequent machining step (typically
milling) is required to achieve sufficient surface quality and precision for functional surfaces
such as junctions. In the author’s personal experience, this additional step accounts for about
half of the total part costs and should not be underestimated.

Milling / Turning Casting 3D Printing
AlZnMgCu1.5 G-AlSi7Mg0.6 T6 EOS Titanium Ti64

SLM on EOS M290
layer height 40 µm

anodized

Figure 3.1: Lightweight structures with complex geometry (selection from the humanoid LOLA): geometric shape
(CAD contour) and exemplary surface quality (photo) for parts manufactured by milling and turning (left), investment
casting (center), and 3D metal printing (right). The upper arm structure (left) has been designed by the author of this
thesis in the context of the upper body revision. The lower leg structure (center) and the ankle (right) are original
designs by LOHMEIER [291]. Originally, the ankle was cast in aluminum (same alloy as for other leg structures),
however, it was replaced in 2018 by a 3D printed version out of a titanium alloy, which is heavier but stronger.

For legged locomotion, not only the total mass but also its distribution is important. A com-
mon rule is to avoid heavy components (e. g. joint drives) in parts subject to strong accelerations
(e. g. the EEs), but instead locate them close to the torso/trunk body. Moreover, there should be
only as many DoF as necessary since each joint causes additional weight, undesired flexibility
(gears), and additional effort within planning and control. Note that not every DoF has to be ac-
tuated, but may instead be realized as passive joint which is typically simpler, lighter, and may be
able to store and release energy having a positive effect on locomotion efficiency. However, the
integration of a passive joint typically forces the designer to optimize it for a certain cyclic gait,
which drastically limits the versatility of the robot. An extreme example are passive-dynamic
walkers as introduced in Section 2.1.

Concerning actuation, it is reasonable to use the same principle (electric, hydraulic, etc.)
for all joints. This avoids additional weight due to multiple onboard power supplies. From
today’s perspective, electric actuation should be preferred whenever the robot is meant to be
deployed in domestic environments (no leakage, low noise, high safety). For inherent compli-
ance and best impact mitigation properties, one might implement SEAs (already introduced in
Footnote 2). However, in the author’s personal opinion, the rather poor performance in position
tracking makes SEAs less suitable for long kinematic chains such as the limbs of a fully-actuated
humanoid (positioning error accumulates). This does not relate to quadrupeds, which typically
have a much lower count of DoF per leg and are therefore not too much affected by this is-
sue. Note that also for a robot without SEAs, impacts can be mitigated (to a certain extend) by

3.1 Preliminaries 49

placing passive compliance (e. g. rubber coatings / pads) at contact surfaces.
Unfortunately, some flaws in the hardware design of a legged robot first become visible dur-

ing initial operation tests. Prominent examples are the transmission of vibrations and structural
damping properties, which are very difficult to forecast by simulation due to the large amount
of components and complex interconnections. This makes a reliable prediction of overall system
dynamics infeasible and enforces multiple design iterations to fix related issues. Finally, for a
commercial adaption, certain other aspects such as unit costs in the context of mass production,
reliability, and durability have to be considered. Due to the high count of bodies undergoing
complex motion, physical crashes and (self-)collisions of legged robots are more likely to hap-
pen than for wheeled systems. Hence, the hardware must not only be robust, but also simple to
maintain, repair, and replace.

Humanoids Giving robots a visual appearance similar to the one of humans can have differ-
ent motivations. On the one hand, some applications (e. g. elderly care) might require a certain
look so that the robot is accepted by the person who interacts with it. On the other hand, a
human-alike topology promises good locomotion performance in domestic environments. Sim-
ilarly, a humanoid robot may be used to physically simulate a human which can be useful for
testing prostheses or other medical devices. An example is given by OGURA et al. [327] with the
humanoid WABIAN-2(R), which has been designed to simulate human kinematics and motion
while supporting against a walking aid machine as used in rehabilitation.

One approach to mimic the appearance and motion capabilities of the human is trying to
replicate its anatomy, i. e., its structures (skeleton), transmissions (tendons), and actuators
(muscles). This requires to find electromechanical equivalents to highly complex components
of the human body, be it complex multi-dimensional joints (e. g. the shoulder, see the approach
made with BLADE [382] and KOJIRO [308]) or highly flexible and versatile actuators (e. g. arti-
ficial muscles, see the approach made with KENGORO [62]). Obviously, a detailed replica of the
human anatomy results in an extremely complex musculoskeletal humanoid which is difficult to
control and maintain. Thus, a more common approach is to replicate only the “outer” kinematic
behavior, e. g. by replacing spherical joints driven by a tendon- or parallel-mechanism with con-
ventionally actuated revolute joints chained in series. In [277], LENARČIČ and UMEK proposed
to experimentally identify the outer kinematics by visual tracking of human subjects. They use
the resulting kinematic model to compute the reachable workspace of the human arm.

For a natural appearance, the geometric proportions of the segments (in particular the link
lengths) should roughly match the human anthropometry, cf. [438, p. 82ff]. While this seems
to be fulfilled for most humanoid robots, the mass distribution often significantly deviates from
the human reference. An example is the humanoid LOLA (v1.1), where the lower body accounts
for 62 % and the upper body for 38 % of the total mass28. For comparison: a rough estimate for
the average male human mass proportions is 42 % for the lower and 58 % for the upper body29.
Figure 3.2 presents a more detailed comparison. For the multi-contact capable LOLA v1.1, the
main focus still lies on biped locomotion where the arms should only be used for additional
support and not for heavy-duty manipulation. Thus, the relatively heavy lower body is a result
of the high strength of the legs when compared to the arms. However, especially for biped
walking machines, it is beneficial to make the upper body heavier than the lower body. Since
the core dynamics of a biped walker can be modeled as an inverted pendulum (see Section 2.4),

28The upper body of LOLA v1.1 is defined by the segments torso, afr|l, aar|l, arr|l, efr|l, vp, and vt. The lower body
is defined by the remaining segments br, ba, hrr|l, har|l, hfr|l, kfr|l, sar|l, sfr|l, and zfr|l. See Figure 3.2 for details and
Figure 3.3 for an explanation of the segment codenames.

29This estimate is extracted from a study conducted by HERRON et al. [196], who measured the mass distribution
of the human body using biostereometrics. The presented proportions for the lower and upper body are averaged
over the data of the six male cadavers analysed in their study while assuming a homogeneous density (therein labeled
as “Density 1”). The upper body is defined by the segments 1, 2, and 4 to 9, while the lower body is defined by the
remaining segments 3 and 10 to 15. See Figure 3.2 and [196, p. 33] for details on the segmentation.

3.1 Preliminaries 50

a high CoM (i. e. long pendulum length) slows down its internal dynamics effectively making
stabilization easier. Since the actual mass distribution has a great impact on the dynamics of a
biped, it has to be taken into account whenever gaits are compared.

1.9 %

Human [196] LOLA LOLA v1.1

1 vp, vt

2

3

4 7

5

6

8

9

10 13

11 14

12 15

torso

vp, vt

afl, aal, arl
torso

afr, aar, arr

efr eflefr efl

afl, aalafr, aar

br, ba br, ba

hrl, hal, hflhrr, har, hfrhrl, hal, hflhrr, har, hfr

kflkfrkflkfr

sal, sfl, zflsar, sfr, zfrsal, sfl, zflsar, sfr, zfr

42.1 % 18.0 % 22.0 %

5.9 %

11.2 %

3.0 % 3.1 %

1.6 % 1.6 %

0.6 % 0.6 %

9.9 % 10.1 %

3.9 % 3.9 %

1.3 % 1.2 %

2.0 % 0.8 %

12.2 % 11.3 %

3.9 % 4.0 % 5.5 % 5.5 %

2.4 % 2.4 % 1.9 %

18.0 % 17.8 % 16.6 % 16.4 %

5.5 % 5.5 % 4.9 % 4.9 %

4.2 % 4.2 % 4.1 % 4.1 %

Lo
w

er
Bo

dy
41

.6
%

U
pp

er
Bo

dy
58

.4
%

Lo
w

er
Bo

dy
67

.3
%

U
pp

er
Bo

dy
32

.7
%

Lo
w

er
Bo

dy
62

.4
%

U
pp

er
Bo

dy
37

.6
%

(previous) (new)

Figure 3.2: Mass distribution of the human body (left) in comparison to the humanoid robot LOLA (center) and LOLA

v1.1 (right). The data (and contour) for the human body is extracted from HERRON et al. [196] (homogeneous density,
average over six male cadavers). The data for the robot is obtained from CAD (verified by real measurements). For
best comparability, the segmentation of the robot is chosen to be as similar as possible to the one of the human body.

Upper Body Design and Multi-Contact A core requirement for a humanoid to be capable of
multi-contact maneuvers is that the workspace of the hands is large enough to reach potential
contact areas in the vicinity of the robot. Moreover, it is not sufficient to reach a certain contact
point, but instead it must also still be possible to perform small EE motions to compensate
positioning or perception errors and to establish a certain desired contact force (see also the
manipulability measure introduced by YOSHIKAWA [452]). Indeed, there are numerous studies
on the design of humanoid arms, see for example BAGHERI et al. [73] who investigate the
optimum joint arrangement for realizing shoulders. A common objective of these works is to
replicate the versatility, dexterity, and strength of the human arm. In many cases, the resulting
kinematic configuration is similar to the model identified by LENARČIČ and UMEK [277], which
features a 2 DoF inner shoulder30 representing the sternoclavicular joint, a 3 DoF outer shoulder
representing the glenohumeral and acromioclavicular joint, and a 1 DoF elbow joint. A wrist is
not considered in this model, however, in related works it is typically realized as a 3 DoF joint
with intersecting axes similar to the last three joints in an industrial manipulator. In contrast
to complex biomechanical models, LENARČIČ and UMEK do not draw explicit connections to
the human anatomy but instead derive their model solely from experimental observation. This
makes it a great reference for the design of robotic arms, which are meant to have similar
(outer) kinematics but typically feature other principles of actuation when compared to the
human reference. In practice, many designs omit the inner shoulder joint for simplicity, see for
example ARMAR-III [58]. Examples for upper body designs featuring a (1 DoF) inner shoulder
joint are ARMAR-4 [67] and the subsequently developed KIT dual arm system [353] as used
for ARMAR-6 [68]. Here, the inner shoulder joint was added to maximize the dexterity in dual
arm manipulation. Depending on the type of the contact (uni- or bilateral), an explicit “hand”,
ranging from a single DoF gripper to a fully articulated hand, might be integrated. Independent

30The influence of the inner shoulder joint on the workspace is extensively discussed by LENARČIČ and KLOPČAR in
[278]. Moreover, KLOPČAR and LENARČIČ proposed in [254] to extend the model by an additional translational DoF
between the inner and outer shoulder joint.

3.2 Starting Point 51

of this choice, it is highly recommended to place a six-axis FTS close to the part of the arm
getting in contact such that the low-level stabilization module can match the desired and actual
contact wrench. Finally, if contacts should not only be possible at the hands, but also at other
parts of the arm (e. g. the elbow), the hull has to be designed accordingly.

Allowing additional hand contacts also sets higher requirements on the strength of the upper
body, which otherwise would only have to sustain the gravito-inertial forces of its own compo-
nents. Moreover, it is not sufficient to make the torso and arms strong enough to avoid stress
induced damage. Instead, also the structural dynamics, i. e., the transmission and damping of
impacts and vibrations, have to be considered since these can have a significant influence on the
performance of the low-level control, cf. [75]. For simplicity, most upper body designs feature
a stiff torso without any active or passive DoF. However, there are also torso designs with an
active spine driven by a parallel mechanism such as CAUTO [106] (cable driven) and CHARLIE

[258] (STEWART platform [397]). Even more sophisticated, high-DoF spines close to the human
anatomy have been realized with the musculoskeletal humanoids KOJIRO [308] and KENGORO

[62]. For a new upper body design of a humanoid robot, one has to weight the advantages (in-
crease of suppleness, flexibility, versatility, etc.) against the disadvantages (increase of weight,
complexity, cost, etc.) of a torso with active DoF.

3.2 Starting Point

Since an in-depth description of the original electromechanical design of LOLA is contained in
the dissertations of LOHMEIER [291] and FAVOT [157], only a brief overview is given in the
following. It summarizes the status of the hardware before the revision of the upper body and
focuses on the previous limitations in the context of multi-contact locomotion. Note that a brief
overview of the total system (including software) has already been given in Section 2.7.

The previous hardware of LOLA was 1.74 m tall and weighted 63 kg. It featured 7 DoF legs
(hip: 3, knee: 1, ankle: 2, toe: 1), 3 DoF arms (shoulder: 2, elbow: 1), a 2 DoF pelvis, and
a 2 DoF head, which sums up to 24 electrically actuated DoF in total. Figure 3.3 presents the
topology together with a list of codenames which are used to uniquely identify segments.

LOLA LOLA v1.1
24 DoF 26 DoF
(previous) (new)

vt
vp

torso

afr|l
aar|l
arr|l
efr|l

br
ba

hrr|l
har|l
hfr|l
kfr|l
sar|l
sfr|l
zfr|l

Vision Tilt
Vision Pan

Torso (root)

Arm Flexion
Arm Adduction
Arm Rotation
Elbow Flexion

Pelvis Rotation
Pelvis Adduction

Hip Rotation
Hip Adduction

Hip Flexion
Knee Flexion

Ankle Adduction
Ankle Flexion
Toe Flexionzfr

zfl

sfl

sfr
sar

sal

kfr kfl

hfl

hfr

hal

har
hrr

hrl

ba

torso

br
efr efl

aar
aal

afr afl

vp

vt

zfr
zfl

sfl

sfr
sar

sal

kfr kfl

hfl

hfr

hal

har
hrr hrl

ba

torso

br

efr
efl

aar
aal

afr
afl

vp

vt

arlarr

Figure 3.3: Kinematic topology of the previous hardware of LOLA (left, 24 DoF) and its newest revision LOLA v1.1
(right, 26 DoF). Each segment of the robot is assigned a unique codename (center) which is derived from its German
name. Here, “r|l” denotes both sides, right and left. The two topologies differ only in the upper body, where – additional
to the change of link lengths – the new design features an additional “Arm Rotation” DoF (bold) on each side.

3.2 Starting Point 52

The primary material for custom lightweight structures of the robot are high-strength alu-
minum alloys as used in aerospace applications. Only critical parts with small cross section are
made out of stainless steel or titanium. The main focus of the original design of LOLA was clearly
set on the lower body, where highly complex structures of the pelvis and legs were manufac-
tured by an external specialist for investment casting, see Figure 3.1 center. This applies only to
certain fundamental structures, while the majority of parts was made by the in-house workshop
through milling and/or turning from the solid. Since multi-contact locomotion was not consid-
ered at that time and the total mass of the robot had to be minimized, the upper body was kept
rather rudimentary. This led to riveted tubular structures for the torso and arms, which were
simple but sufficient for its purpose.

The drive system of LOLA is organized into modules, see [291, p. 96ff]. The modules have
a custom, lightweight design integrating a brushless DC motor (stator and rotor as separate
components), a Harmonic Drive (HD) [189] gear (circular spline, flex spline, and wave generator
as separate components), a motor-side incremental encoder, a link-side absolute encoder, and a
limit switch packed into a custom housing. The custom design allows to optimize the drives for
minimum weight, i. e., maximum power density, with respect to their individual requirements.
An exception are the low powered drives in the head (vp and vt), for which a commercial solution
was chosen for simplicity. Moreover, not all of the custom drive modules are equipped with
a high-ratio HD gear. Instead, the motors for the knee and ankle joints (kfr|l, sar|l, and sfr|l)
are linked to planetary roller screws and slider crank mechanisms, respectively. This allows
to maximize the joint torque and to shift the mass upwards effectively reducing leg inertia.
Accordingly, for these DoF the link-side absolute encoders are located directly at the driven
joint, i. e., “after” the parallel kinematics, which eliminates errors introduced by these special
mechanisms. Except for the ankles (sar|l and sfr|l), all joints of the robot are back-drivable and
show only minimal backlash.

Each drive is connected to a commercial servo controller by Elmo Motion Control [140]. The
servo controllers are chained via an EtherCAT bus, which also interfaces additional sensors such
as the main IMU31 located in the torso segment and the custom six-axis FTS and binary contact
switches32 located in the feet (sfr|l and zfr|l). Further details on the EtherCAT-based real-time
communication system of LOLA have been published by SYGULLA et al. in [10].

The previous torso of the robot contained two industrial mainboards, each with an Intel Core
i7-4770S@3.1 GHz quad-core CPU and 8 GiB Random-Access Memory (RAM). The first board
directly interfaced the EtherCAT bus and executed all real-time planning and control algorithms
on a QNX Neutrino 6.6 RTOS. The second board was dedicated to the vision system (soft real-
time) running on an Ubuntu 16.04 GPOS (without real-time patch), which obtained its input
data from an Asus Xtion Pro Live RGB-D sensor located in the head (vt) and connected via USB.
The two PCs communicated through an Ethernet network, which was also linked to a remote
“operator” PC used for monitoring and sending high-level signals.

Since LOLA does not feature an onboard power supply, it is restricted to tethered operation.
Note that a potential future upgrade with an onboard battery pack, e. g. located in the torso,
would have a significant impact on the overall mass distribution (cf. Figure 3.2), which could
make it more similar to human proportions. The previous power network of LOLA was fed by
48 V (joint servo controllers) and 80 V (motors except vp and vt) from an external rack. These
input lines were additionally converted onboard to 24 V (motors for vp and vt) and 12 V (com-
puting and various electronics). Further conversion to 5 V, 3.3 V, etc. for sensors and integrated
circuits was performed locally on the corresponding Printed Circuit Boards (PCBs).

31The main IMU of LOLA, an iVRU-FC-C167 by iMAR Navigation [217], provides a CAN interface which is linked to
the main communication bus by a commercial CAN-EtherCAT gateway, see Figure H.4.

32The electrical components of the custom FTS in the feet of LOLA provide a Serial Peripheral Interface (SPI) [203].
The master of the SPI bus is represented by an auxiliary microcontroller located in the upper leg (hfr|l), which pre-
processes the data from the FTS and the binary contact switches (read from General-Purpose IO (GPIO) pins) and
transmits it over the CAN and finally the EtherCAT bus through the CAN-EtherCAT gateway, see Figure H.4.

3.2 Starting Point 53

Hardware Revisions Note that the given description of the hardware refers to the state of
LOLA just before the modifications presented in this thesis began. Indeed, starting from its
original design by LOHMEIER and FAVOT in 2010, the hardware of the robot received numerous
modifications, such as

• the redesign of the head replacing the stereo camera system by a single RGB-D sensor and
the transition from 25 to 24 DoF (removing vergence joint),

• the redesign of the contact pads at the feet now featuring binary contact switches (≈ 30N
threshold per pad [401, p. 10]) and a new two-layer foot-sole material,

• the upgrade of the onboard PCs and corresponding OSs, and
• the upgrade of the low-level communication bus replacing the original Sercos-III bus by an

EtherCAT bus and removing the custom DSCBs.

Details on these revisions and the transition of the hardware from its original state to the “start-
ing point” of this thesis are omitted for brevity. However, the interested reader is referred to the
more detailed summary on important hardware revisions given by SYGULLA in [401, p. 9ff].

Previous Limitations In consideration of the target multi-contact scenarios shown in Fig-
ure 1.1, the previous hardware of LOLA had several limitations which made an extensive re-
vision of the upper body inevitable. First of all, the previous arm design featured only three
joints (Figure 3.3, left). This was sufficient to compensate leg dynamics during fast biped walk-
ing by performing corresponding counteracting arm motions. However, the resulting reachable
workspace of the hands is very limited, especially in the robot’s lateral proximity (Figure 3.6,
left). Moreover, if we imagine a fixed torso segment, a 3 DoF arm also provides only a very
limited set of joint configurations to reach a certain contact point (lack of redundancy). Ad-
ditionally, the hands were realized by simple dummy weights (Figure 3.5, top) introducing
artificial inertia. There was no dedicated contact surface or FTS to measure the contact wrench.

As a second major issue, the stiffness of the T-shaped, riveted tubular scaffolding representing
the backbone and shoulders (Figure 3.11, left) was too low. This manifested itself by undesired
oscillations of the upper body limiting the performance of the low-level controller even for
regular biped walking without hand contacts [401, p. 72ff]. An EMA evaluating the overall
structural dynamics of the robot showed that the first critical eigenmode visible to the low-level
controller was characterized by bending of the torso frame (see [19 @t=2m18s]) and occured at
9.7 Hz. See Figure 3.18 (top) for a brief overview of the results of the EMA and BERNINGER et al.
[5, 75] for details. Unfortunately, biped walking excites modes in such low frequency domains.
For multi-contact locomotion where the stress on the torso is substantial, it was expected that
the situation gets even worse.

Finally, the previous rudimentary upper body was only meant to carry core components
(e. g. the IMU, onboard PCs, etc.) and provide a minimalist design for humanoid arms. Clearly, it
would not have been able to withstand the increased loads occurring in a multi-contact scenario.

New Upper Body The aforementioned limitations of the previous hardware configuration re-
quired a complete redesign of the upper body. This allowed to change the kinematic topology
such that it fits the desired multi-contact scenarios. As a first step, one has to decide whether
the torso should contain active or passive DoF (e. g. an artificial spine). For LOLA, the moderate
increase in suppleness and flexibility did not justify the increase in mass and complexity. Thus,
it was decided to stay with a rigid torso. Instead, the focus was set on optimal arm kinematics.
Since the two DoF in the pelvis (br and ba) have shown to significantly increase the kinematic
capabilities during challenging maneuvers such as climbing stairs, they stayed mainly the same.
However, the mechanical realization of the br segment (structures) was changed in order to
make it strong enough for the increased multi-contact loads. Thus, the revision of the upper
body basically included all segments “above” the br segment.

https://youtu.be/T0CiZQbd9H0?t=2m18s

3.3 Kinematic Optimization of Arm Topology 54

3.3 Kinematic Optimization of Arm Topology

The design of new arms raises the question for their optimal kinematic topology, i. e., the count
and type (revolute/prismatic) of DoF, the joint arrangement, and link lengths. For LOLA, the
new arms should enable supporting capabilities similar to the ones of humans. Although the
design is inspired by the human arm, it does not try to replicate it. Since the focus lies on fast
gaited locomotion while grasping and manipulation are not considered, we prefer simplicity,
stiffness, and dynamic performance over dexterity and versatility. As a consequence, neither an
inner shoulder joint, nor an articulated hand are considered.

Workspace Analysis In order to evaluate the kinematic capabilities of a certain arm design,
it is reasonable to analyze the workspace of the hand. In the context of multi-contact locomo-
tion, it represents a direct measure for the supporting capabilities and is in particular useful
during contact planning for efficient reachability queries. Without further clarification, the term
workspace is somewhat imprecise and ambiguous. Indeed, most related works build on the
original definition by KUMAR and WALDRON [263] and distinguish between the

• reachable workspace as set of points the Tool Center Point (TCP)33 can reach in at least one
of the considered orientations and the

• dexterous workspace as set of points the TCP can reach in all considered orientations.

Following this definition, the dexterous workspace is a small (and often empty) subset of the
reachable workspace. Since analyzing the dexterous workspace is complex, only the reachable
workspace is considered in the following. However, being able to reach a certain point in multi-
ple orientations is still regarded as beneficial and can be easily mathematically formulated as a
corresponding metric indicating the dexterity of the mechanism at this point.

For evaluating the workspace of a humanoid arm, the torso body is typically defined as
root of the kinematic chain and considered to be fixed in space. Certainly, if we consider the
complete robot, the real reachable workspace of the hands is extended by moving the pelvis or
torso accordingly (the feet may still be fixed to the ground). On the one hand, performing a
whole-body motion to reach a certain point might conflict with other simultaneous tasks (in our
case biped walking). On the other hand, considering the full kinematic topology of the robot
significantly increases the computational effort. Thus, within this thesis, the analysis is restricted
to the kinematics between the torso and the hand.

With an increasing count of DoF, the analytic computation of the reachable workspace be-
comes more and more tedious. Moreover, incorporating joint limits drastically increases the
complexity, which makes an analytic evaluation infeasible in most cases. A straightforward
approach for numerical computation of the reachable workspace is to perform a “brute-force”
Forward Kinematics (FK) evaluation such as proposed by LENARČIČ et al. in [276]. Here, each
DoF gets sampled between its corresponding joint limits leading to a huge set of possible joint-
space configurations. For each configuration, the TCP pose is evaluated and registered in a
three-dimensional voxel grid as discretized representation of the workspace. An interesting
finding of the study by LENARČIČ et al. is that the workspace of the human arm kinematics
shows the maximum volume and maximum compactness34 at the same ratio of lower- to upper-

33The Tool Center Point (TCP) is typically a point fixed to the EE which is of special importance for the specific task
of the robot. For an industrial manipulator performing a pick-and-place task, the TCP is typically located between
the fingers of the gripper. Despite its name, the term TCP is often used to describe a Coordinate System (CoSy), i. e.,
a position and orientation, rather than just a single point. For LOLA, a TCP frame is defined for the end of each limb
(zfr|l and efr|l) and the head (vt). See Table H.2 for the definition of special CoSys of LOLA.

34LENARČIČ et al. define the compactness of a workspace as the “ratio between the dispersion of the workspace
elements [=reachable voxels – author’s note] and the dispersion of a sphere of the same volume” [276]. Here,
the dispersion is computed as the average squared distance of all reachable voxels to the arithmetic center of the
workspace. Following this definition, a spherical workspace has the maximum compactness of 1.

3.3 Kinematic Optimization of Arm Topology 55

arm length (0.8 for an average human) [276]. This can be seen as an indicator that nature may
consider similar metrics to optimize limbs within the process of evolution.

The main advantage of the brute-force FK approach is that – assuming a sufficiently fine-
grained sampling of the DoF – the entire workspace is guaranteed to be found. As a drawback,
the amount of evaluated configurations drastically increases (exponential growth) with each
additional DoF making this method infeasible for long kinematic chains. A pragmatic solution
to this problem was proposed for example by TONNEAU et al. in [412] where they use a lim-
ited set of randomly chosen joint-space configurations to compute TCP positions of the arm
of HRP-2. They compute the convex hull of the resulting point cloud, which is subsequently
simplified using the Decimate mesh modifier of Blender [85]. This leads to a rather coarse, con-
vex approximation of the reachable volume, while the real workspace is actually non-convex.
Within contact planning, they tackle this issue by intersecting the convex workspace approxima-
tion with a (simplified) collision volume of the robot effectively removing “false positives”, i. e.,
non-reachable areas which were incorrectly labeled as reachable [412].

A more elaborate method was proposed by ZACHARIAS et al. in [453]. In a first stage, they
also perform a FK computation of TCP poses with randomly sampled joint-space configurations.
In a second stage, they compute multiple IK solutions (with different initial configurations) for
each reached grid cell to also explore the null-space. They discretize the workspace in the full
SE(3), i. e., including orientations, which results in what they call the capability map. For the
discretization of SO(3), they use the spiral point algorithm proposed by SAFF and KUIJLAARS in
[365] to uniformly distribute points on a sphere inscribed in the currently investigated voxel.
At each point on the sphere, they place a CoSy, which is further sampled by rotating it around
its local z-axis (pointing towards the center of the voxel). The sampled CoSys of all points on
the sphere represent the set of discretized orientations for the voxel. Thus, their workspace is
represented by a five-dimensional grid (three parameters for position and two for orientation).

Local Metrics For evaluating the dexterity of a kinematic chain in a certain joint-space config-
uration (in the following dentoted by q ∈ Rn) or for a certain workspace cell (in the following
localized by the task-space coordinates x ∈ Rp), numerous measures have been proposed in
literature – see PATEL and SOBH [341] for a compact overview. This paragraph briefly intro-
duces four common local metrics which have been used during the kinematic optimization and
the subsequent more detailed (high-resolution) analysis of the finally realized arm topology of
LOLA. In the following, we assume that n≥ p holds.

The Reachability Index (RI) is probably the simplest metric since it indicates if a certain
discrete workspace cell is reachable (Boolean value) or how many joint-space samples hit this
cell (integer value). In contrast to the other three metrics, it is linked to a certain workspace cell
rather than a certain joint-space configuration. Possible definitions are

RI(x) :=

�

1 if ∃q : FK(q) = x ,
0 else

︸ ︷︷ ︸

Boolean variant

or RI(x) := |{q |FK(q) = x}| ∈ N0
︸ ︷︷ ︸

integer variant

. (3.1)

Indeed, there does not seem to be a common, unique definition. Instead, measures based on the
reachability are often defined with regard to the specific application. For example, ZACHARIAS

et al. compute the RI for a certain voxel as the percentage of reachable orientations out of all
possible orientations [453]. Within the scope of this thesis, the definitions from Equation 3.1 are
used. Here the Boolean variant is sufficient to compute a surface representation of the reachable
workspace, while the integer variant contains more information and can be used as indicator for
the dexterity at a certain workspace cell.

The second local metric is given by the Condition Index (CI) which was proposed (among
others) by MA and ANGELES in [296]. It is derived from the condition number (assuming the

3.3 Kinematic Optimization of Arm Topology 56

spectral matrix norm) of the homogeneous task-space Jacobian Jhom and is defined by

CI(q) :=
σmin

�

Jhom(q)
�

σmax

�

Jhom(q)
� ∈ [0, 1] (3.2)

with σmin and σmax as minimum and maximum singular values of Jhom, respectively. The homo-
geneous task-space Jacobian Jhom is given by35

Jhom(q) := diag
�

α1, . . . , αp

�

J(q) ∈ Rp×n with J(q) :=
�

∂ ẋ (q)
∂ q̇

�

∈ Rp×n (3.3)

and weights the individual task-space directions x i of the task-space Jacobian J by the scalars αi.
This allows to compensate dimensional inhomogenity between translation (e. g. TCP position)
and rotation (e. g. TCP orientation) within x . The weights αi may be chosen to 1 for rotational
and 1/l for translational components. Here, l denotes a characteristic length of the mechanism,
e. g. the maximum lever for an outstretched arm. Similarly, one can post-multiply J with a
diagonal matrix in case the mechanism has a mixture of revolute and prismatic joints.

Note that the CI is formulated as the reciprocal of the condition number of Jhom such that it
is bounded [341]. The CI can be seen as a measure for the kinematic isotropy of the Jacobian,
where the special case CI = 1 denotes an isotropic configuration and CI = 0 implies that the
mechanism is in a singular configuration, i. e., rank(J)< p.

The probably most prominent Jacobian-based metric is the Manipulability Measure (MM)
originally introduced by YOSHIKAWA [452]. By replacing J with Jhom in the original definition,
the dimensional homogeneous MM is given by

MM(q) :=
Ç

det
�

Jhom(q) J
T
hom(q)

�

=
p
∏

i=1

σi

�

Jhom(q)
�

∈ R (3.4)

with σi as the p singular values of Jhom. Note that the explicit computation of σi (e. g. through a
Singular Value Decomposition (SVD) of Jhom) also allows to efficiently compute the CI as a cheap
by-product. While the CI is a “better measure of the degree of ill-conditioning” [341], the MM
considers the motion of the TCP in all workspace directions rather than only the two workspace
directions related to σmin and σmax. YOSHIKAWA also showed, that the MM is proportional to
the volume of the so-called manipulability ellipsoid as the n-dimensional hyperellipsoid in Rp

linked to the SVD of Jhom. Here, σi represent the magnitudes of the principal axes (left-singular
vectors). Finally, it has to be mentioned that there exist numerous adaptions and extensions of
the MM. As an example, KIM and KHOSLA propose in [247] extensions to counteract order and
scale dependency.

While the Jacobian is a direct translator from joint- to task-space motion and thus, seems
to be a reasonable basis for evaluating local dexterity, it does not contain information about
non-linear constraints36. An example for such constraints are joint limits, for which another
specialized metric – often referred to as Joint Range Availability (JRA) – may be used. Similar to
the RI, there exist numerous definitions for the JRA. Possible formulations are

JRA(q) :=
n
∑

i=1

�

qi − qmean,i

�2

�

qmax,i − qmin,i

�

︸ ︷︷ ︸

cf. KAPOOR et al. [242]

or JRA(q) := n

√

√

√

√

n
∏

i=1

min
�

qmax,i − qi , qi − qmin,i

�

1
2

�

qmax,i − qmin,i

�

︸ ︷︷ ︸

cf. NEUBURGER [28, p. 39]

(3.5)

35In [296], MA and ANGELES investigate the design of platform manipulators (parallel mechanisms), hence, they
use a different formulation with their Jacobian being the inverse of the one presented in Equation 3.3. However, the
concept remains the same. Moreover, they propose to set the weights αi to l for rotational and 1 for translational
components of x . This is equivalent to a scalar multiplication of Jhom from Equation 3.3 with l, which has neither
influence on the condition number, nor the CI as its reciprocal.

36There are, however, efforts to incorporate such constraints into the MM. In [421], VAHRENKAMP and ASFOUR

formulate an augmented Jacobian integrating penalization terms for joint limits and obstacle- and self-collision. They
use their extended manipulability concept to analyze the manipulation capabilities of ARMAR-III and ARMAR-4.

3.3 Kinematic Optimization of Arm Topology 57

where qmin,i, qmax,i, and qmean,i =
1
2(qmin,i + qmax,i) are the minimum, maximum, and mid-range

angle/position of the i-th joint, respectively. Note that the JRA as defined by KAPOOR et al.
[242] (Equation 3.5 left) is theoretically unbounded and strongly depends on the count of DoF.
In contrast, the formulation by NEUBURGER [28, p. 39] (Equation 3.5 right) is bounded to
JRA ∈ [0, 1]. In fact, the formulation as geometric mean pulls JRA to zero if one of the joints
reaches its limit. Conversely, a JRA of one implies that all joints are perfectly centered between
their corresponding limits. Due to these properties, the formulation of NEUBURGER was used
during the optimization and analysis of LOLA’s arm topology.

The metrics CI, MM, and JRA are linked to a certain joint-space configuration. In order to ob-
tain a corresponding value for a certain workspace cell, one might use the minimum, maximum,
or average of all redundant joint-space configurations pointing to this cell, cf. VAHRENKAMP et
al. [420]. In our case, the per-cell average value was used during optimization. For the analysis
of the final result, all variants (minimum, maximum, and average) are computed and stored in
a dense octree (discretizing the workspace by position), which allows an efficient propagation
of metrics from lower to higher levels of the octree.

Kinematic Optimization of LOLA’s Arms The kinematic optimization of the arm topology of
LOLA was performed mainly by NEUBURGER within the context of his master’s thesis. His thesis
has been published in [28] and gives a comprehensive explanation of the proposed framework
for task-specific optimization of kinematic chains in general and the arm topology of LOLA as
specific application in particular. Thus, this paragraph represents only a brief summary while the
interested reader is instead referred to [28]. The main workflow of the proposed optimization
framework is given by the following steps:

1. Specify the discretization, i. e., step sizes, of the workspace. Positions are represented by
a three-dimensional voxel grid while orientations are discretized using the spiral point
algorithm of SAFF and KUIJLAARS [365] similar to the method of ZACHARIAS et al. [453].

2. Specify a set of “tasks” by defining desired workspaces Wdes. This is done by choosing tar-
get volumes (derived from typical dimensions of tables, handrails, etc.) and corresponding
orientations (direction of contact depends on surface normal), see Figure 3.4.

3. Specify a parameterized kinematic model of the robot. Typical optimization parameters
are link lengths while the count, type (revolute/prismatic), and limits of joints are fixed.

4. Select a valid initial parameter set.

5. Evaluate the workspace for the current parameter set by computing the FK and local met-
rics (e. g. RI, CI, MM, and JRA) of randomly sampled joint-space configurations.

6. Compute the integral of the local metrics over all reached cells as proposed by KUCUK

and BINGUL [256] (normalized by workspace volume). The individual cells are weighted
against each other according to the task-specific desired workspaces Wdes (see Step 2).
This results in a global, yet task-specific cost value.

7. Select a new set of parameters based on the governing optimization scheme and re-
peat starting from Step 5 or stop upon convergence. Meta-heuristic solvers based on
Particle Swarm Optimization (PSO) [246], Simulated Annealing [252], and Covariance Ma-
trix Adaption Evolution Strategy [188] showed comparable performance in our case.

The restriction to simple geometric parameters in Step 3 makes this scheme actually an “or-
dinary” parameter optimization. However, the whole optimization process was performed for
multiple manually specified topologies, i. e., with different count, type (revolute/prismatic),
and limits of joints. The resulting optimum parametrizations were compared against each other,
hence, making the whole procedure a topology optimization. Note that the comparison of dif-
ferent topologies by a single global cost value requires all involved metrics to be normalized,
i. e., independent of the count and type of DoF, which turns out to be difficult.

3.3 Kinematic Optimization of Arm Topology 58

Task: Walls (low) Task: Walls (high) Task: Tables Task: Handrails

Wnew Wnew Wnew Wnew

Wdes

Wdes

Wdes
Wdes

Wact

Wact

Wact
Wact

W
al

l

W
al

l

Ta
bl

e

H
an

dr
ai

l

Figure 3.4: Specification of various multi-contact “tasks” by defining desired workspaces Wdes. From left to right:
tasks for support against walls (low and high contact), tables, and handrails. The right side of each subfigure shows
the target volume (green) and corresponding target orientations (arrows) which are defined by local (per-cell) scalar
weights fading out at the boundaries. The left side of each subfigure shows the workspace of the new arm design
Wnew (final result of the kinematic optimization; collisions are not considered) and the actually “matched” task-specific
workspace Wact =Wnew ∩Wdes (right/left arm and tasks are symmetric).

In a first attempt of Step 5, a hybrid FK/IK approach similar to the one of ZACHARIAS et al.
[453] was implemented. First, the FK is evaluated for a limited set of joint-space configurations
leading to a sparse approximation of the workspace. Second, for all cells in the neighborhood
of the already explored cells, a position-level IK is triggered effectively filling the “gaps”. The
IK is based on the NEWTON-RAPHSON method [380, p. 133f] using the MOORE-PENROSE pseu-
doinverse [319, p. 41ff] to deal with redundancy and to be robust against singularities. Here,
the pseudoinverse of the task-space Jacobian is computed through an SVD. The iteration is ini-
tialized with the already known close-by (neighbor) joint-space configuration. Unfortunately,
this method showed a poor runtime performance due to the expensive exploration of neighbor
cells at the boundary of the reachable workspace, see [28, p. 55f] for details. However, a pure
FK-based approach within Step 5 led to satisfactory results in our case. Thus, the improvement
of the developed hybrid FK/IK approach is omitted but may be part of future investigations to
allow the optimization of longer kinematic chains where brute-force FK becomes infeasible.

Finally, it has to be mentioned that collisions are not considered during optimization. First,
self-collisions of the arm are not possible due to the specific arrangement and limits of the joints.
Second, collisions of the arm with the rest of the robot (e. g. the pelvis or hip) are rather unlikely
for the chosen target workspaces, see Figure 3.4. Nevertheless, considering collisions would
be straightforward by performing corresponding distance tests during sampling, e. g. using an
efficient SSV approximation of the link geometry (see Appendix C). For doing so, the lower and
upper arm each can be approximated by a line-SSV while a single point-SSV nicely matches
the shape of the hand. Hence, the additional computational cost is expected to be small when
compared to the cost of the involved SVD for computing the CI and MM.

Final Results – Topology The kinematic optimization by NEUBURGER resulted in a suggestion
for an arm topology which is optimal with respect to the selected tasks and metrics. Although
other design considerations were also taken into account for the finally realized arm kinematics,
the resulting topology complies – except for certain details – with the computed optimum. A
comparison of the previous three-DoF and new (finally realized) four-DoF arm design is shown
in Figure 3.5. A noteworthy deviation from the optimal topology is the additional offset lnew,3,
which was introduced in order to minimize the risk of collisions between the housing of the
elbow drive (qefr|l) and close-by objects in the lateral proximity of the robot such as walls in
multi-contact scenarios. Moreover, the hand is less likely to collide with the hip this way.

With the chosen shoulder topology, all three joint axes (qafr|l, qaar|l, and qarr|l) have a common

3.3 Kinematic Optimization of Arm Topology 59

Previous:

New:

3 DoF

4 DoF

afr

aar

efr

afr

aar

arr

efr

sa
gi

tt
al

pl
an

e

lpre,1

lnew,1

lpre,2

lpre,3

lnew,2

lnew,4

lnew,3

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

RH RH

RHRH

t

tt

t

(TCP)

(TCP) (TCP)

(TCP)

sa
gi

tt
al

pl
an

e

sa
gi

tt
al

pl
an

e

sa
gi

tt
al

pl
an

e

lpre,1 = 0.223m
lpre,2 = 0.311m
lpre,3 = 0.326m

mpre,afr = 0.561 kg
mpre,aar = 1.891 kg
mpre,efr = 1.486 kg

∑

= 3.938 kg

lnew,1 = 0.223m
lnew,2 = 0.383m
lnew,3 = 0.051m
lnew,4 = 0.345m

qaar

qafr

qefr

qaar

qefr

qarr qafr

x
y

z

W

x
y

z

W

mnew,afr = 1.046kg
mnew,aar = 1.278kg
mnew,arr = 1.345kg

∑

= 4.973kg

integrated
FTS

dummy
weights

−170◦

60◦

−120◦

1.5◦

−120◦5◦

360◦

360◦

−180◦

0◦

−158◦

24◦

qefr

qaar

qafr

qaar

qarr

qefr

qafr

mnew,efr = 1.305kg

Figure 3.5: Comparison of the previous (top, 3 DoF) and new (bottom, 4 DoF) arm design of LOLA. From left to
right: axis arrangement and main dimensions; per-segment and total mass; mechanical joint limits, previous dummy
weights (arms are used for compensating leg dynamics), and new integrated six-axis FTS (required for multi-contact;
simultaneously replaces dummy weights). The arms are shown in the configuration qafr = 40◦, qaar = −15◦, qarr = 0◦,
and qefr = −90◦. For the workspace analysis, the kinematic chain between the torso frame “t” (in sagittal plane) and
the TCP frame of the (right) hand “RH” is evaluated. Note that the torso frame “t” is rotated by 90◦ relative to the world
frame “W” which complies with the CAD definition of the corresponding segment.

point of intersection. From a pure geometric perspective, one might argue that the specific order
of these three DoF does not matter, since they behave like a single spherical joint. However, the
particular arrangement has a significant impact on the volume (reachability depends on joint
limits) and internal constitution (local metrics depend on Jacobian) of the workspace.

The kinematic limits of the DoF are a result of the corresponding mechanical realization.
Note that the available joint range of the new arm design is significantly larger than the previ-
ous one and even exceeds human capabilities. While the values given in Figure 3.5 represent
mechanical limits of the hardware, certain safety margins (5◦ in most cases) are applied in the
software to avoid physical damage in case of an error. Moreover, to avoid “unusual” arm config-
urations in multi-contact scenarios, the stricter limits qafr|l ∈ [−90◦, 90◦] and qaar|l ∈ [−100◦, 0◦]
are set via software and ensure that the elbow stays below the head. Certainly, these artificial
restrictions may be disabled to restore the full joint range for other scenarios.

3.3 Kinematic Optimization of Arm Topology 60

Final Results – Workspace Representative results of a high-resolution workspace analysis for
the previous and new (finally realized) arm topology are visualized in Figure 3.6. Here, the
task-space vector was chosen to x (q) := trh(q) with trh as the position of the TCP frame of the
hand described in the (fixed) torso CoSy (see Figure 3.5 for the CoSy definition and Appendix A
for the meaning of left and right subscripts). Collisions are not considered in this analysis.

Previous: New:
full Wpre (Vpre = 0.286 m3) full Wnew (Vnew = 1.303 m3)cross sectioncross section

Co
nd

it
io

n
In

de
x

(C
I)

M
an

ip
ul

ab
ili

ty
M

ea
su

re
(M

M
)

M
an

ip
ul

ab
ili

ty
M

ea
su

re
(M

M
)

Jo
in

t
Ra

ng
e

Av
ai

la
bi

lit
y

(J
RA

)
Re

ac
ha

bi
lit

y
In

de
x

(R
I)

Re
ac

ha
bi

lit
y

In
de

x
(R

I)
Co

nd
it

io
n

In
de

x
(C

I)
Jo

in
t

Ra
ng

e
Av

ai
la

bi
lit

y
(J

RA
)

0.478

0.0

0.692

0.0

0.0417

0.0

0.0857

0.0

1.0

0.0

1.0

0.0

Figure 3.6: High-resolution workspace analysis of the previous (left) and new (right) arm topology. The kinematic
chains are set up according to the topologies defined in Figure 3.5. The outer columns show the full workspaces Wpre
and Wnew, while the inner columns show their cross-sections in the y-z-plane of the torso frame. From top to bottom:
reachability as volume, CI from Equation 3.2, MM from Equation 3.4, and JRA from Equation 3.5 (right). For each
image in the last three rows, the local color is linearly interpolated between the global minimum and maximum of the
corresponding metric (based on the local, per-voxel maximum of the metric) using the provided color gradient. Note
that the color pattern appearing on the surface (workspace boundary) is a result of the workspace discretization and
the post-processing. See the video [22 @t=2m6s] for an animation explaining the post-processing and showing all
cross-sections.

https://youtu.be/mpDqMFppT68?t=2m6s

3.3 Kinematic Optimization of Arm Topology 61

The source code for the high-resolution workspace analysis has been published as part37 of
the free and open-source Beautiful Robot C++ Code Library (Broccoli) by SEIWALD and SYGULLA

[15] (see Section 7.2) and is completely independent of the implementation of the kinematic
optimization by NEUBURGER [28]. The code is based on an efficient, parallelized brute-force
FK and is capable of analyzing serial kinematic chains (without loops) consisting of an arbitrary
sequence of revolute and/or prismatic joints. The library also provides an example application
demonstrating the analysis of a common 7-DoF industrial manipulator simply by specifying
its DENAVIT-HARTENBERG (DH) parameters [191, p. 347ff] using the notation of CRAIG [122,
p. 65ff]. The example application is meant to encourage and assist others in using the code.

The dataset forming the basis of the visualizations shown in Figure 3.6 was created by the
aforementioned Broccoli module. For a clear and intuitive three-dimensional presentation, sev-
eral additional post-processing steps have been performed using Blender. These mainly include
smoothing of the surface, color interpolation for cross section views, and high-quality render-
ing. The combined workflow of the high-resolution analysis using Broccoli (Step 1 to 7) and the
post-processing using Blender (Step 8) can be summarized as follows:

1. Setup the kinematic chain from the torso to the TCP of the hand according to Figure 3.5.

2. Auto-compute38 (or manually specify) the count of uniformly distributed joint-space sam-
ples for each DoF. The total count of samples is given by the product of all individual joint
samples (evaluation of all possible combinations). In our case, this results in 1.1 · 108 and
1.5 · 1011 total samples for the previous and new arm topology, respectively.

3. Pre-sampling: compute the FK (only the TCP position) for a small subset of all discretized
joint-space configurations. In particular, evaluate only every second sample for each of the
n DoF. This results in processing only (1/2n) of the total count of samples (with npre = 3
and nnew = 4). From the resulting point cloud, compute a bounding box enclosing the
reachable volume (with applied safety margins).

4. Setup an octree representing the discretized workspace. The count of levels (in our case
four) and the dimensions of the bottom-level cells (in our case 1 cm for x , y, and z) is
manually specified by the user. The top-level grid size is automatically chosen such that
the octree encloses the bounding box computed in Step 3. This ensures that the octree is
only as large as necessary which minimizes memory consumption.

5. Main-sampling: compute the FK (including Jhom) for the full set of all discretized joint-
space configurations. For each sample, additionally compute the local metrics CI, MM,
and JRA and update the corresponding minimum, maximum, and mean value in the cor-
responding bottom-level cell of the octree. Additionally, each voxel stores the count of
joint-space samples reaching it (alias RI).

6. Update the octree by propagating the minimum, maximum, and mean values of the local
metrics upwards, i. e., from the bottom- to the top-level. The filled octree is equivalent to
similar grid-based workspace representations such as the capability map [453].

7. Compute a surface representation (as triangle mesh) of the reachable workspace. For this,
an extension39 of the well-known Marching Cubes algorithm [293] is used.

37See the class TaskSpaceEvaluator in the module analysis of Broccoli.
38The required resolution for sampling a certain DoF is computed by evaluating the maximum possible TCP move-

ment caused by this joint while considering the maximum lever arm of the subsequent links and a user-defined
maximum allowed displacement (e. g. based on the chosen workspace discretization, i. e., voxel dimensions).

39In particular, the method CGMeshFactory::createVolumeMarchingCubes from the module geometry of
Broccoli is used, which represents an extension of the original Marching Cubes algorithm of LORENSEN and CLINE

[293]. The core Marching Cubes algorithm is realized based on the implementation of BOURKE [93]. The Broccoli im-
plementation additionally interpolates per-vertex colors from the grid (color gradient from local metrics), computes
smooth per-vertex normals from the local density gradient (using the RI as density with surface threshold 0.5), and
provides an indexed mesh (reusing vertices among triangles to save memory by avoiding duplicates).

3.4 Actuation and Sensing 62

8. Smooth the surface representation by applying the Smooth mesh modifier of Blender. For
creating colorized cross section views, apply the Boolean mesh modifier (subtract a cube)
and use a Point Density based shader to interpolate colors from a corresponding point
cloud carrying per-vertex colors (extracted from the octree).

Note that storing the data in the form of an octree gives the user access to different levels of
detail. This comes in handy for using the same dataset also for coarse but fast real-time queries.
Due to the spatial resolution of only 1 cm, a very high count of joint-space configurations has to
be evaluated (see Step 2). Thus, the “pre-sampling” (Step 3) and “main-sampling” (Step 5) as
main workloads of the presented process are parallelized, which – thanks to an efficient parallel
batch access to the octree – turns out to scale linearly with the count of available CPU cores. In
our case, the evaluation of the previous and new arm topology took 69.5 s and 23.8 h (≈ 1.7 ·106

samples per second) on a 56-core server40, respectively. The much higher runtime for the new
arm topology complies with the much higher total sample count. The higher sample count in
turn is mainly a result of the additional DoF and the larger joint ranges. Moreover, the greater
span of the arm (lnew,1+ lnew,2+ lnew,4 = 0.951m vs. lpre,1+ lpre,2+ lpre,3 = 0.86m, see Figure 3.5)
requires smaller stepsizes for joint-space sampling.

3.4 Actuation and Sensing

Once the kinematic topology has been determined, the next step towards a new upper body is
the placement of core components such as actuators and sensors. While the actuators represent
the mechanical realization of an active joint, the sensors transmit valuable data describing the
state of the robot and its environment to the locomotion framework. Within this section, the
focus lies on “primary” sensors, which excludes the obvious ones integrated in the joint drives
such as rotary encoders. For the upper body, this mainly includes the FTSs in the hands, the IMU
in the torso, and the vision sensors in the head.

Actuators While the kinematics of the new arms has been optimized with respect to certain
target scenarios (see Figure 3.4), it is much more difficult to derive required dynamic capabil-
ities, i. e., maximum joint torques, from such coarse task descriptions. For gaited multi-contact
locomotion, the interaction force between the hand and the environment may reach from a
gentle touch (just as precaution to be ready for a potential external disturbance) to a “full”
support (e. g. for difficult maneuvers such as stepping over large obstacles). Thus, it is not
clear which maximum actuator torques are “sufficient” in the general case. Since LOLA shall
have supporting capabilities similar to humans, a rather pragmatic solution is chosen instead.
In particular, common maximum interaction forces are obtained from the military and NASA
standards MIL-STD-1472G [132] and NASA-STD-3000B [320], respectively. These standards
describe the maximum permitted interaction force for human-machine interfaces in the context
of military equipment design. Although manipulation is not considered within this thesis, these
standards give a good insight in the “minimum” physical capabilities of (adult, male) humans.
In particular, [132, p. 80, 330] specifies (maximum) torques Thuman that can be applied by 95 %
of male subjects in the General Forces of the United States of America. It seems reasonable, to
design the arms of LOLA such that they surpass these “minimum” capabilities.

As mentioned earlier, the drive system of LOLA (except for the knee and ankles) is organized
into modules enumerated from A to G with A as the largest (hip flexion) and G as the smallest
(toe flexion) drive [291, p. 96ff]. A brief summary of the components of each drive has already
been given in Section 3.2. In order to be consistent with the rest of the hardware, the original

40The used server hardware contains two 28-core Intel Xeon E5-2660v4@2.0 GHz CPUs on a dual socket board
running Ubuntu 20.04 in a virtualized environment.

3.4 Actuation and Sensing 63

joint design by LOHMEIER is also used for the DoF of the new upper body. In particular, the
modules D and E are used for the joints afr|l and arr|l, while the module F realizes the joints aar|l
and efr|l, see Table 3.1 for the specification and Figure 3.7 for the placement of the actuators.
This choice significantly reduces complexity and allows to benefit from the experience gained
through the last 10 years with these drive systems. Moreover, complete modules from the
previous hardware can be reused such that only two new drives had to be built for the revision
of LOLA’s upper body. In accordance with the performance of the human arm, the drive with
the highest torque rating (module D) is used for the DoF afr|l. Since module E and F share the
same Tperm and Tpeak (limited by the motor), their assignment to the remaining DoF aar|l, arr|l,
and efr|l is not prescribed by their dynamic performance. Instead, their assignment is derived
from the best mechanical integration (mechanical interface differs between module E and F).
As already explained in Section 3.2, the pelvis segments br and ba basically remain unchanged
except for the structural parts of br. Thus, they are still actuated by drive modules of type D
which, however, received maintenance during the hardware upgrade.

Table 3.1: Actuator specification of the new 4 DoF arm design. The maximum permanent and peak torques Tperm and
Tpeak are determined from the corresponding official ratings of the stator/rotor pair from Parker Hannifin [340] and the
HD gear [189] (the torque-limiting component is highlighted in red). The equivalent (maximum) human torque Thuman
is computed from the interaction forces specified in [132, p. 80] and the (average) lower/upper arm lengths specified
in [132, p. 330]. The mass of the modules has been determined by measuring the real hardware.

Joint Drive Motor / Gear Tperm Tpeak Thuman Mass

Arm Flexion afr|l Module D K064050-8Y1
HFUC-20-100-2A 49 Nm 147 Nm 61 Nm 1.14 kg

Arm Adduction aar|l Module F K064025-GD
HFUC-17-100-2A 31 Nm 99 Nm 30 Nm 0.97 kg

Arm Rotation arr|l Module E K064025-GD
HFUC-20-100-2A 31 Nm 99 Nm 34 Nm 1.05 kg

Elbow Flexion efr|l Module F K064025-GD
HFUC-17-100-2A 31 Nm 99 Nm 49 Nm 0.97 kg

Module D Module E Module F

afr (D)

aar (F) arr (E) efr (F)

Ø95 mm

14
0

m
m

Ø95 mm

13
5

m
m

Ø76 mm

14
2

m
m

Figure 3.7: Actuator placement in the arm. The DoF are actuated by drive modules of type D (afr|l), E (arr|l), and F
(aar|l and efr|l). The arm is shown in the configuration qafr = 0◦, qaar = −90◦, qarr = −90◦, and qefr = 0◦. The section
views show the housing with stator (gray), shaft with rotor (yellow), and output (red). See [291, p. 96] for details.

In order to maximize the torque-to-mass ratio, some other humanoids integrate double (or
even triple) motor drive systems for certain joints (typically the knee), cf. JAXON [255] or HRP-
5P [241]. Although being lighter, this concept increases overall complexity and typically re-

3.4 Actuation and Sensing 64

quires more space. For LOLA’s arms, the outer geometric shape of the drives is to be minimized
in order to avoid collisions in multi-contact scenarios. Therefore, each joint is driven by a single
motor. Moreover, the drive modules are placed in a way, such that collisions with the environ-
ment are impossible or at least unlikely (e. g. afr|l inside the torso, arr|l inside the upper arm, and
efr|l with the offset lnew,3, see Figure 3.7).

A severe disadvantage of reusing pre-existing drive modules is that no (major) improvements
are possible. An example is the lack of a dedicated torque-sensor. Although explicit torque-
control is currently not investigated by the research group around LOLA, the author highly rec-
ommends to integrate torque-sensors in the joints of a potential successor of LOLA such that
alternative control concepts can be tested. For future developments, it also has to be evaluated
if commercial, integrated servo drives can be used instead of complex, custom built actuators.
To the author’s best knowledge, commercial modules still do not reach the high torque-to-mass
ratio of LOLA’s drives. This might be due to the different margins of safety for dimensioning a
versatile and reliable mass-product versus a heavily specialized component for a research proto-
type. Since legged robots become more and more popular (cf. quadrupeds), it is likely that the
market for lightweight, high-torque motors specialized for this particular application will grow.

Force-Torque Sensors (FTSs) In order to measure and control the contact wrench in multi-
contact scenarios, a six-axis FTS is placed inside of each hand, see Figure 3.8. For this pur-
pose, the commercial sensor FTE-Axia80-Dual Si-200-8/Si-500-20 [369] from Schunk has been
selected. Its key advantages over competing products are its compactness and its aluminum
housing which leads to a relatively low mass of only 276 g (actual measured weight). Moreover,
it is fully integrated providing an EtherCAT interface such that no external evaluation or transla-
tion unit is required. The sensor supports two calibrations affecting the range of measurement
which can be selected via software, see Table 3.2.

Table 3.2: Specification of the six-axis FTS FTE-Axia80-Dual Si-200-8/Si-500-20. For the experiments conducted
within the scope of this thesis, the second calibration option (highlighted in green) has been used. This enables the
measurement of higher loads (e. g. due to impacts) by sacrificing absolute accuracy (at 22 ◦C the error is specified to
be < 2 % of the upper limit of the measurement range [369]).

Range of Measurement Overload Sampling
Calibration

Fx |y Fz Tx |y|z Fx |y Fz Tx |y|z Rate
Si-200-8

Si-500-20
±200 N
±500 N

±360 N
±900 N

±8Nm
±20 Nm

±2.5kN ±4.5 kN ±100 Nm up to 4 kHz

FTS [369] Hand Integration

x

z

y

Ø100 mm

25
.4

m
m

Ø82 mm

PLA
Plasti Dip

276 g 284 g

Elbow Flexion

Hand
(section view)

FTS

Figure 3.8: Integration of the six-axis FTS FTE-Axia80-Dual Si-200-8/Si-500-20 measuring the local contact wrench
at each hand. From left to right: photo of the sensor (modified from [369]) with definition of the sensor’s local CoSy,
enclosing 3D printed “hand” with rubber coating, and placement within the efr|l segment.

3.4 Actuation and Sensing 65

The sensor is enclosed by a spherical “hand” structure (0.1 m in diameter) acting as contact
surface in multi-contact experiments, see Figure 3.8 center. The structure is designed as a single
part which is 3D printed through Fused Deposition Modeling (FDM) using Polylactide (PLA) as
material. This makes the part very light and simple to replace. Here, the low mass minimizes
parasitic effects on the FTS measurement due to gravity and inertia. Within the multi-contact
scenarios considered in this thesis, the hand does not move during contact, thus inertia effects
are (theoretically) eliminated. However, during the transition between contacts, a quickly mov-
ing and heavy hand would cause significant inertia forces, which could be interpreted by the
robot as an unintended contact with the environment. In contrast to the feet, the hands of LOLA

do not feature explicit contact switches, but instead detect the state of a contact (open/closed)
by comparing the measured forces against a certain user-specified threshold. Making the hand
easy to replace is important since all parts getting in contact with the environment (such as the
foot sole) are subject to damage and extraordinary wear. The surface of the hand is coated with
liquid rubber commercially known as Plasti Dip [345]. The approximately 0.5 mm thick coating
significantly increases the friction coefficient compared to the blank PLA surface. Unfortunately,
it does not introduce any considerable damping. The multi-contact experiments conducted so
far suggest, that the integration of an additional (soft) damping layer similar to the foot sole (see
[396]) should be considered in future. Unfortunately, the spherical shape of the hand makes
this a non-trivial task. This holds true also for the integration of a contact switch or tactile skin.

For measuring the contact wrench in the foot of LOLA, a custom lightweight FTS (originally
designed by SCHWIENBACHER [370]) was used by LOHMEIER [291, p. 135ff]. This was mainly
due to the lack of appropriate commercial products at that time. Common off-the-shelf six-
axis FTSs – which are typically designed for the EE of an industrial manipulator rather than a
mobile robot – often have a relatively low range for sensing torques when compared to forces.
However, due to the large footprint of LOLA (currently 0.276m × 0.22m), rather high torques
may occur (about 95 Nm for single-legged standing on tiptoes). Moreover, the integration in the
(strongly accelerated) foot of a humanoid robot sets high requirements on the mass of the sensor
such that lightweight, aluminum-based solutions should be preferred. This led to the custom
design which is specialized for the loads that occur in biped walking. The sensor additionally
features an explicit overload protection mechanism to withstand large impacts [291, p. 70].
Meanwhile, the variety of commercial lightweight and fully-integrated FTSs matching these
specific requirements increased. Thus, for future developments it should be considered to use
an off-the-shelf product instead of a custom (typically less mature and reliable) solution.

Inertial Measurement Unit (IMU) The main property of a mobile robot is that the root seg-
ment is not fixed to the environment. Thus, besides the n joints, a legged robot has six additional
passive DoF representing the position and orientation of the root segment relative to the (iner-
tial) world. For walking on level ground, the horizontal position and rotation around the vertical
axis represent the core parameters to localize the robot within its environment. Hence, these
components of the root segment’s pose are essential for navigation, see Chapter 5. The remain-
ing components are typically used as indicators for balance: the rotation around the horizontal
axes (alias inclination) indicates tilting while the vertical position may be used to detect loss
of contact with the ground (falling/jumping) although this is more reliably detected by contact
switches and/or a FTS located in the foot instead. Accordingly, these components are primary
inputs for stabilization, see Section 4.6.

In order to measure these six passive DoF in LOLA, the IMU iVRU-FC-C167 by iMAR Naviga-
tion [217] has been selected by LOHMEIER, see [291, p. 153ff] for details and Figure 3.9 left for
a photo. It measures translation through MEMS-based accelerometers and rotational velocity
through fiber-optic gyroscopes. As a high-end IMU used in aircrafts and missiles, it features high
accuracy, low drift, and low mass compared to similar systems [291, p. 154]. However, since
position and orientation are computed by integration, there is still considerable drift. Indeed,

3.4 Actuation and Sensing 66

most high-end IMUs support drift compensation by using the Global Positioning System (GPS)
(position) and/or an integrated magnetometer (orientation). Unfortunately, due to the rela-
tively poor accuracy, this does not add much benefit for indoor use. An alternative technique
for drift compensation is to fuse the pose data from the IMU (high short-term accuracy) with
the pose data from visual odometry (high long-term accuracy) which tries to combine the best
of both worlds. This is known as visual-inertial odometry (or visual-inertial SLAM) and repre-
sents a research area on its own, see for example BLOESCH et al. [87] (based on the extended
KÁLMÁN filter) or LEUTENEGGER et al. [281] (based on non-linear optimization). Obviously,
vision-assisted methods work best in dense, feature-rich environments (e. g. indoors). Finally, in
the more specialized field of humanoid robotics, the IMU data may be augmented by a dynamic
model of the robot. Various state estimators using simplified models such as the LIPM (e. g.
STEPHENS [394]) or a full multi-body model (e. g. XINJILEFU et al. [450]) have been proposed.
Within this thesis, a rather pragmatic approach based on merging IMU and planned motion data
is used to determine the current state of the robot, see Section 4.5.3 for details.

IMU [217] Isolation

30 ◦

120 ◦

120
◦

120 ◦

Integration

[146]
CR3-100

0.8 kg top viewside view

Figure 3.9: Integration of the main IMU iVRU-FC-C167 measuring the global translation and rotation of the robot
relative to the (inertial) world. From left to right: photo of the sensor without housing (modified from [291, p. 155]),
mounting through compact wire rope isolators, and placement within the torso segment.

Since the aforementioned IMU fully satisfies the needs for LOLA, it was decided to keep
it also for the new upper body. Same as before, the measurement is acquired through the
IMU’s CAN interface (200 Hz sampling rate) where a CAN-EtherCAT gateway by ESD Electronics
[152] is used to integrate the IMU into the main communication bus of LOLA. The IMU is
placed within the center of the torso segment, see Figure 3.9 right. Similar to the original
design by LOHMEIER, it is mounted to the rigid torso through three compact wire ropes (CR3-
100 by Enidine [146]), which isolate the IMU from shocks and (high-frequency) vibrations in
all axes.41 The isolators act as a low-pass filter damping noise due to structural oscillations
and impacts. Following the original considerations of LOHMEIER [291, p. 156], we choose a
target cutoff frequency of 50 Hz. A rough calculation42 of the actual cutoff frequency using the
aforementioned components delivers 47.7 Hz. The main axes (primary force direction) of the
wire rope isolators intersect in the CoM of the IMU. The isolators are arranged symmetrically
(120◦) around their common intersection point, see Figure 3.9 center.

A severe drawback of using a high-end IMU is that it is typically much heavier and consumes
more space compared to pure MEMS-based systems. Thus, for future developments, it has to be

41At some point in time, the original wire rope isolators have been replaced by rigid connectors. Unfortunately, to
the author’s best knowledge, the time of this modification and the reason for it have not been documented. However,
comparing the properties of the previous wire rope isolators to the new ones suggests, that the previous setup may
have been not stiff enough which resulted in a too low cutoff frequency.

42Here, we use mIMU = 0.8kg [291, p. 154] and assume that the three wire rope isolators can be approximated by
three parallel linear springs each with stiffness 24 kN/m [146]. Note that this is just a rough estimate since the actual
alignment is much more complex and the isolators have non-linear, frequency-dependent behavior.

3.4 Actuation and Sensing 67

evaluated if modern low-cost IMUs – especially in combination with visual odometry for com-
pensating drift – would satisfy the requirements of a humanoid robot. Moreover, a cluster of
distributed mid-range IMUs might outperform a single high-end system while still being lighter
and cheaper. Finally, it has to be mentioned that most modern IMUs support sampling rates
higher than the mentioned 200 Hz in our case. However, since we are interested in the (com-
paratively slow) torso dynamics and high frequencies get damped by the wire rope isolators
anyway, a higher update rate (such as 1 kHz) is not expected to make a considerable difference.

Vision System The vision system of LOLA v1.1 is a combination of the Depth Camera D435
[218] and the Tracking Camera T265 [219] by Intel RealSense, see Figure 3.10 left. They have
been selected according to the requirements of the new CV system, see Section 4.4, and replace
the previously mounted (single) Asus Xtion Pro Live camera.

Sensors [218, 219]

Tr
ac

ki
ng

T2
65

108 mm

24
.5

m
m

12
.5

m
m

90 mm

25
m

m
25

m
m

RG
B

-D
D

43
5

Integration Kinematics

Vision Tilt

Tracking

RGB-D

qvp

qvt

vp

vt

coupler

lever

Figure 3.10: Integration of the Depth Camera D435 and the Tracking Camera T265 as new vision system of LOLA.
From left to right: photo of the sensors (modified from [218, 219]), placement within the vt segment, and kinematics of
the head realizing pan and tilt motion (DoF vp and vt – unchanged since [430]).

The Depth Camera D435 is an RGB-D sensor simultaneously providing a color and depth
stream. The color image (up to 1920×1080 and 30 Hz) is obtained from a regular (single)
rolling shutter Complementary Metal-Oxide-Semiconductor (CMOS) chip. The depth image (up
to 1280×720 and 90 Hz) is obtained by projecting a static Infrared (IR) pattern on the scene
which is observed by two (left/right) IR cameras. The actual depth values are computed by an
onboard ASIC. Thus, without external processing the camera provides an RGB-D image stream
or, equivalently, a colored 3D point cloud. Due to the projection of an IR pattern, a depth image
can be generated for surfaces without texture (e. g. a white wall) or even in complete darkness.
As a drawback, scenes with other IR light sources (e. g. sunlight) drastically degrade the quality
of depth measurements. Thus, this sensor works best for indoor applications.

The Tracking Camera T265 consists of two (left/right) monochrome global shutter CMOS
image sensors and a MEMS-based IMU. The camera’s IMU is theoretically redundant with the
primary IMU in the torso, but it is used to obtain better drift-free pose estimation through
visual-inertial odometry. The image sensors are equipped with wide angle (“fisheye”) lenses
to maximize the field of view which is important for visual tracking. The device integrates an
onboard ASIC, which performs visual-inertial odometry in real-time and provides the host a
6D-pose of the camera (with respect to an inertial world frame) at a rate of 200 Hz.

The realization of the DoF in the head, i. e., the segments vp and vt, have not been discussed
so far. This is because their design is kept (almost) unchanged, i. e., the kinematics and actuation
is exactly the same as in [430], see Figure 3.10 right. Indeed, only minor modifications to the
mechanical interfaces (new torso segment and new cameras) have been made. Within the scope
of this thesis, the pan and tilt DoF of the head are used to explore the scene at the beginning of
an autonomous walking experiment.

3.5 Mechanical Design 68

3.5 Mechanical Design

A severe limitation of the previous upper body was the insufficient stiffness of the T-shaped
frame representing the backbone and shoulders, see Figure 3.11 left. Moreover, the quite rudi-
mentary scaffold consisting of riveted aluminum tubes was not designed for multi-contact loads.
The previous design also had multiple minor issues such as a rather limited extensibility – an
important feature for a research platform where experimental components are added and re-
moved frequently. Thus, the upper body was redesigned from scratch. This includes the torso
and the arms. In contrast, the head remained mostly unchanged.

Materials As a first step, appropriate materials for structural parts had to be selected. For
LOLA, the main goal (apart from increasing the overall strength) was to simultaneously maxi-
mize the stiffness and minimize the weight. Prominent materials for lightweight structures in
aerospace applications are (sorted by descending density) steel, titanium, aluminum, and mag-
nesium. Note that the specific stiffness, i. e., the ratio between the elastic modulus E and the
density ρ, is very similar for these materials and lies in the range of E/ρ ≈ 24 . . . 27 ·106m2/s2.
With regard to the specific stiffness, these metals and their alloys are easily outperformed by
CFRPs. Unfortunately, CFRPs are much more difficult to process and set strong restrictions for
the shape, geometric tolerances, and interconnections. Moreover, while metals show plastic
deformation before rupture, CFRPs are more brittle and tend to break abruptly which renders
the inspection and repair more difficult. In case of a severe crash (not unlikely for a research
prototype) a damaged torso frame made out of CFRP would have to be replaced which in turn
would mean a complete disassembly of the upper body. Thus, CFRPs are not considered for the
main structures of LOLA’s new upper body. Nevertheless, they are a serious option for potential
mass-produced (and more mature) commercial humanoids in future.

The specific stiffness is a handy parameter for investigating deformation. Indeed, under
normal stress, it is inversely proportional to the strain. This can be easily verified by considering
a cylindrical beam with cross-section A which is stretched (or compressed) by a certain external
force acting along its main axis. We further assume the beam to be slender, the deformations
to be small, and the material to be isotropic, linear elastic, and homogeneous. For a fixed load,
the strain is proportional to 1/(E A) [180, p. 7ff]. If we assume that the beam has a fixed length
l and a certain budget for the mass m = Al ρ = const., then A is proportional to 1/ρ. As a
consequence, the strain is proportional to ρ/E. Thus, given a certain target weight m of the
structure, materials with the same specific stiffness E/ρ will show the same deformation under
normal stress. However, the weakness of the previous torso of LOLA is mainly related to bending
(2nd mode in [75]), for which the second moment of area I has to be taken into account. Given
a certain external moment bending our beam, the curvature is proportional to 1/(E I) [180,
p. 100ff]. With I = A2/(4π) for a cylindrical beam, the curvature is proportional to 1/(E A2)
and consequently ρ2/E. Similar considerations can be made for torsion where the twist is again
proportional to ρ2/E [180, p. 192ff]. Thus, for bending and torsion, the material with the lowest
density wins (in our case magnesium). These design rules apply to structural parts where the
load, mass, and primary dimensions (here: beam length) represent external constraints, while
the material (E and ρ) and the cross-section (A and I) are free design parameters. Obviously, if
the cross-section is constrained due to limited space, the material with the highest E should be
preferred (in our case steel).

Since aluminum is easier to process compared to magnesium, it was selected as primary
material for the upper body structures. Due to its high strength and good machinability, the
particular alloy AlZnMgCu1.5 was used in most cases. For critical parts in narrow spaces, i. e.,
with limited cross-section, stainless machining steel (mainly X 10 CrNiS 18 9) is used. An
example is the coupling flange between lower and upper body, see Figure 3.11 right. In contrast,
parts subject to low stress are made out of conventional polymers, mostly Polyoxymethylene

3.5 Mechanical Design 69

(POM) due to its high specific strength and dielectric properties. Examples are brackets for
mounting electrical components such as the PCs. Finally, the bulky and thin-walled covers of
the torso are made out of Glass Fiber-Reinforced Polymer (GFRP). Apart from optical purposes,
they prevent that the cables for power supply and high-level communication (attached to an
external rack) get caught in one of the numerous components of the torso assembly.

Torso Frame The structural dynamics of a humanoid robot are strongly influenced by the
design of the torso since it acts as central segment interfacing the legs and the arms. This espe-
cially holds true for multi-contact configurations, where contact forces from the hands propagate
through the torso towards the feet and vice versa. In the case of LOLA, an EMA of the previ-
ous hardware showed that the first two structural eigenmodes appeared at 6.5 Hz and 9.7 Hz,
respectively, see Figure 3.18 and BERNINGER et al. [5, 75] for details. The first mode represents
mainly a torsion around the vertical axis and seems to be caused by twisting of the legs [5].
Since the legs are connected through the hip (segment ba), the mechanical realization of the
torso does not have much influence here. Fortunately, the balance control of LOLA is based on
the rotation of the upper body around the horizontal axes measured through the primary IMU
located in the torso segment, see [401, p. 69] for details. Thus, structural oscillations around
the vertical axis do not (directly) affect the balance control. The second mode represents mainly
a bending motion around the horizontal axis (walking direction). Indeed, this mode is clearly
visible in the experimentally identified open-loop transfer function from vertical foot velocities
(main direction of impact in biped walking) to the horizontal inclination rates of the upper body
(used by balance controller) [75]. The shape of this mode indicates, that the main deformation
occurs in the torso segment. In accordance with these conclusions, the primary design goals for
the new torso frame were: (a) increase overall strength for multi-contact capabilities and (b)
increase the stiffness with special focus on the aforementioned bending mode. A comparison of
the previous and new torso frame is given in Figure 3.11. Note that the second moment of area
with respect to the critical horizontal axis has been significantly increased.

Previous: New:1.76 kg 2.97 kg
Ix = 1.2 · 107mm4

x

x

y

zt
Coupling Flange

t

x
y

z

z

x
z

sec
tio

n
sec

tio
n

Iz = 8.3 · 105mm4

A= 798mm2

Ix = 1.2 · 106mm4

Iz = 3.2 · 105mm4

A= 305 mm2

Handles

Main Scaffold
(aluminum)

(plastics)

(stainless steel)

Figure 3.11: Comparison of the previous (left) and new (right) torso frame. An exemplary section view (red) on the
same height highlights the increased second moment of area Ix =

∫∫

z2 dx dz with respect to the x -axis of the torso
frame “t”. For this, the x -axis is shifted to the centroid of the cross section, which still lies in the original x -y-plane due
to symmetry. The high robustness and stiffness is a result of the cube-alike shape on the one hand, and the increased
use of material (+68.8% mass) on the other hand.

Same as before, the new torso frame consists of interconnected aluminum tubes. However,
while the original T-shaped scaffold had connections through lightweight rivets, its cube-shaped
successor uses a (slightly heavier) screwed push-fit system which is more robust against vi-
brations and allows precise positioning and alignment, see Figure 3.12. Moreover, each tube
is flattened on four sides and provides a pattern of alternating threads and fitting pin holes.
This allows an easy attachment of new components with well-defined position and orientation,
e. g. through form-fit clamps. Apart from the tubes, the scaffold integrates a lightweight shoul-

3.5 Mechanical Design 70

der flange for mounting the afr|l drives, a T-shaped bottom plate, and a high-strength coupling
flange as main interface to the lower body. As with the rest of the upper body of LOLA, most
parts are made by milling and turning.

Push-Fit System Extensibility Assembly

Screws

clamp

Flattening

Thread

pin hole
Fitting

Form-fit

tu
be

tu
be

sh
ou

ld
er

fla
ng

e
pu

sh

sh
ou

ld
er

fla
ng

e

Figure 3.12: Interconnections of the new torso frame scaffold. The ends of each tube are connected via a push-
fit system for accurate positioning and alignment. Moreover, each tube features flattened sides and an alternating
pattern of fitting pin holes and threads for simple and precise extension by form- and/or force-fit.

Finite Element Analysis (FEA) Most parts of the new upper body have been designed in ac-
cordance with conventional engineering practice for low mass and high stiffness. However, for
critical43 parts, a Finite Element Analysis (FEA) was performed to further adapt the shape ac-
cording to the expected loads. As mentioned earlier, it is difficult to predict the actual loads on
an individual component for a multi-contact scenario. This holds true in particular for structural
parts in the torso frame, which typically have numerous mechanical interfaces. However, by
considering concrete target scenarios (e. g. horizontal/vertical support against a wall or table),
at least a rough estimate for the interface forces can be derived which allows to define load cases
required by the FEA. The result of the FEA analysis is then used to design an improved revision
of the part – simply by making regions thicker or thinner, placing holes, or adding stiffeners
depending on the predicted local stress. Due to the strict time constraints, an automated topol-
ogy optimization (cf. LOLA’s leg structures by LOHMEIER) was omitted. As a positive side effect,
the “manual” optimization of the geometry gave more control on the resulting shape. Thus, the
geometry was designed in a way, so that all parts could be manufactured through conventional
Computer Numerical Control (CNC) milling or turning.

Exemplary results of such an analysis are shown in Figure 3.13 for two different components
of the torso frame. Here, it is assumed that both hands of the robot are subject to contact forces
of 100 N acting in all three axes (combined to a worst-case scenario). By additionally considering
the weight of the upper body, rough estimates for the interface forces can be computed (see
FA−F in Figure 3.13). Since LOLA has been designed with the CAD software Catia [125], its
integrated FEA module has been used. For best results, the parts are meshed with a relatively
high resolution using parabolic tetrahedrons (element type TE10). Obviously, the described
load case represents a purely static scenario while much more complex loads will appear during
locomotion. Due to limited time, further investigations in the design phase have been omitted.
Instead, the structures have been tested directly in real-world multi-contact experiments.

43Due to the high structural complexity of a humanoid robot, it is difficult to identify “critical” parts in general.
Obviously, this strongly depends on the actual scenario. To obtain an “ideal” hardware, one would have to optimize
every single part according to its individual real-world loads. Since development time is limited, a more realistic
approach is to design parts such that they are surely strong/stiff enough (by applying a certain safety factor) and
optimize only the shape of parts which promise substantial savings in the total mass of the robot.

3.5 Mechanical Design 71

Coupling Flange: Bottom Plate:

Von Mises Stress/
�

N/mm2
�

2870.03D Deformation/mm 1.560.0Von Mises Stress/
�

N/mm2
�

2800.03D Deformation/mm 0.2790.0

Part:

Load Case:

Deformation: Stress:

Fixed

A

Part:

Load Case:

Deformation: Stress:

x

y
z

x

y

z

Fixed

C

B

A

B
C

D

E

F

Mesh:Mesh:

FA=[−67,−1185, 550]T N
FB =[−67, 1051, −830]T N
FC =[−67, −67,−2276]T N

FA=[700,−100, 265]T N
FB =[−500,−100, −475]T N
FC =[0, 0,−1486]T N
FD=[−1185, 67, −550]T N
FE =[1051, 67, 830]T N
FF =[−67, 67, 2276]T N

Material: X 10 CrNiS 18 9
Nodes: 714,144
Elements: 459,298

Material: AlZnMgCu1.5
Nodes: 812,466
Elements: 535,530

Figure 3.13: Exemplary Finite Element Analysis (FEA) of the coupling flange (left) and the bottom plate (right) as
critical structural components of the new torso frame. From top to bottom: CAD model and discretized geometry, load
case definition, and resulting local deformation and stress. The interface forces FA−F are applied as distributed loads
on the highlighted hole or pair of holes (orange). The visualizations in the last row use the deformed geometry (scaled
by the factor 10 for better visibility). See the video [22 @t=1m27s] for animated cross section views.

Miscellaneous The majority of structures and components of the new upper body has been
designed by the author of this thesis. However, various “non-critical” parts have been designed
by the student assistants REINHOLD POSCHER and DANIEL PÖLZLEITNER. This included in par-
ticular the three torso frame covers made out of GFRP, the main terminal (interface for the
power supply connectors etc., see Figure H.3), and the mountings for: the two PCs, the GPU,
the EtherCAT junction, the servo controllers (except for efr|l), and the CAN-EtherCAT gateway.
Most of these components are directly attached to the torso frame using the aforementioned
modular tube system. The only exception are the mountings for the PCs and the GPU, which
are linked to the torso frame through the same compact wire rope isolators as used for the IMU,
see Figure 3.14. This is meant to isolate these sensitive components from strong impacts and
vibrations.

Overview The video [22 @t=32s] shows all components of the upper body and visualizes
their mechanical assembly. A comprehensive list of the main mechanical parameters of the
robot (including per-segment mass, inertia, etc.) is given in Table H.1. The main dimensions of
LOLA v1.1 are illustrated in Figure H.1.

https://youtu.be/mpDqMFppT68?t=1m27s
https://youtu.be/mpDqMFppT68?t=32s

3.6 Electrical Design 72

3.6 Electrical Design

The torso segment of LOLA integrates core electrical components such as the power distribution
system, the main computing hardware, and the communication bus junctions. With the me-
chanical revision of the upper body, these systems have been upgraded, too. Special thanks goes
to the staff at the electronics lab of the Chair of Applied Mechanics, namely ANDREAS KÖSTLER

and GEORG MAYR, who significantly contributed in the design phase of LOLA’s new power dis-
tribution and communication system.

Power Distribution System Within the context of the upper body revision, the power inter-
face has been changed such that the robot is now provided input voltages of 80 V (unchanged)
and 24 V (previously 48 V). Both voltages are delivered by corresponding power supply units
located in an external rack. Consequently, the robot is still restricted to tethered operation lack-
ing a dedicated onboard battery pack44. Same as with the previous version of LOLA, the 80 V
are directly used to feed the majority of motors. An exception are the motors driving the vp
and vt joints, which are connected to the 24 V input line. The 24 V line additionally feeds all
other onboard components such as the PCs, the IMU, the FTSs, and the joint servo controllers
(auxiliary voltage). Indeed, the change from 48 V to 24 V led to higher currents, which required
an adaption of the wire cross sections. The main motivation for this change was to get rid of
the heavy onboard DC converters (e. g. 48 V to 24 V and 12 V). To a certain extend, the savings
in mass compensated the additional material used for the new torso frame (see Section 3.5).
The 80 V motor line is secured through emergency stop switches on the human operators desk
and the robot itself. While nonhazardous components such as the PCs and the IMU are directly
connected to the 24 V supply, the rest (joint servo controllers, etc.) is guarded through an addi-
tional onboard switch (triggered through the human operators desk) attached to the coupling
flange of the torso frame, see Figure 3.11. This additionally allows a comfortable forced reboot
of the joint servo controllers without turning off the onboard PCs. Note that the motors for the
head run with 24 V and are therefore not interrupted by the emergency stops. However, due to
their low performance, their danger potential is rather limited when compared to the rest of the
robot. A graphical overview of the power distribution system of LOLA is given in Figure H.2.

Computing Hardware The new torso integrates two industrial Mini-ITX mainboards (Advan-
tech AIMB-276 [50]), each with an Intel Core i7-8700@3.2 GHz hexa-core CPU, 32 GiB RAM, and
a 512 GB Solid State Drive (SSD). One of the PCs is mounted on the back of the torso and is setup
with a QNX Neutrino 7.0 64bit RTOS. It directly interfaces the EtherCAT bus and executes all
real-time planning and control algorithms (hard real-time), i. e., the WPG, the SIK, and the HWL
module. As required by this RTOS, Simultaneous Multithreading (SMT) of the CPU is disabled
such that only six threads can be processed simultaneously45. The second PC is mounted on the
front of the torso and runs Ubuntu 20.04 64bit (without real-time patch). It is dedicated to the
new CV system of LOLA (soft real-time). Here, SMT of the CPU is enabled such that up to twelve
threads can be processed in parallel. For acceleration of heavily parallelized computations (e. g.
neural networks), it additionally features an Nvidia Quadro P2000 GPU. In order to avoid dam-
age due to impacts, the GPU is mounted separately (again featuring wire rope isolators) and is
connected to the Peripheral Component Interconnect (PCI) bus of the mainboard through a corre-

44Although equipping LOLA with an onboard power supply would be possible, it was not part of the present
multi-contact project and would have required significant additional effort in the design, realization, and testing
phase. This was not compatible with the strict time schedule of the project. A potential successor of LOLA may
directly integrate batteries to allow a power-autarkic operation. Note that for untethered operation, the hardware
additionally has to be robust enough to withstand falls which is currently not the case.

45Note that more than six concurrent threads may be active. Their distribution to the available CPU cores is
managed by the scheduler of the OS which, based on the thread priority, assigns appropriate time slices.

3.7 Realization: Manufacturing, Assembly, and Initial Operation 73

sponding riser cable, see Figure 3.14. Note that the vision sensors (see Section 3.4) are directly
connected to the front PC using USB as data and power link.

Back PC “Control” Front PC “Vision”0.897 kg 1.347 kg

Isolation

Mounting
(wire rope)

(POM)

PCI Riser

Figure 3.14: Main computing hardware of LOLA v1.1 consisting of two industrial boards. The PC mounted on the
back of the torso (left) is running planning and control algorithms on an RTOS. The PC mounted on the front of the
torso (right) is running perception algorithms on a GPOS and is equipped with a dedicated GPU linked through a PCI
riser cable. The mountings for both PCs feature isolation from impacts and vibrations through compact wire ropes.

Joint Servo Controllers and Communication System Same as before, each drive module of
the upper body is connected to a corresponding commercial servo controller by Elmo Motion
Control. These directly control the motor current while interfacing the absolute (link side; used
for initialization) and incremental (motor side; used for commutation and control) rotary en-
coder to implement an enclosing velocity and position control loop (classical cascaded motor
control). Furthermore, they read the binary signal from the limit switch (integrated into the
drives) which is used as emergency stop to prevent collisions. The majority of servo controllers
is located in the torso segment (in the “neck”). An exception are the controllers for the elbow
joints efr|l, which are instead mounted on the lower arm segments arr|l. For data exchange, the
servo controllers are directly attached to the main EtherCAT communication bus of LOLA, which
in turn is linked to the real-time PC acting as master (see Figure 3.14 left). Apart from the
joint servo controllers, the EtherCAT bus also interfaces the already mentioned CAN-EtherCAT
gateway and the new FTSs in the hands. The CAN bus on the other hand connects the IMU
and the custom FTSs in the feet. Finally, there is also a Gigabit-Ethernet network connecting the
two onboard PCs, the operator PC (monitoring and high-level signals), and optionally a PC used
to interface the external motion tracking system. A graphical overview of the communication
system of LOLA is given in Figure H.4.

3.7 Realization: Manufacturing, Assembly, and Initial Operation

The CAD design of the new upper body started in August 2019 and was finished in January
2020. This was the starting point for the mechanical manufacturing of the 129 custom parts
(excludes the two newly built drive modules of type D). More than 94 % of all custom parts
were manufactured through milling and turning by staff of the in-house mechanical workshop
of the Chair of Applied Mechanics, namely SIMON GERER and GEORG KÖNIG. The remaining 6 %
were provided by external contract manufacturers.46

46The reason for the external production of custom parts was the strict time schedule of the project. Unfortunately,
the main manufacturing period fell into the time of the first local lockdown due to the Covid-19 pandemic. This
resulted in a limited access to the facilities (including the mechanical and electrical in-house workshops), which
made parallel manufacturing necessary.

3.8 Results and Discussion 74

In May 2020, the majority of custom parts was finished such that assembly could be started,
see Figure 3.15. As a preceding step, the weight of every single part of the upper body (reaching
from structural parts to single screws and pins) was measured with a high precision scale. Sub-
sequently, the density of the corresponding CAD part was adjusted to match the real measured
mass. While this is accurate for parts with homogeneous materials such as aluminum structures,
virtual correction masses were added to inhomogeneous components such as the PCs (heavy
CPU cooler) to account for the individual mass distribution. The main advantage of this extra
effort is that the CAD model becomes very accurate and can be used for exporting the mass,
CoM, and mass moment of inertia of each segment to the multi-body simulation framework of
LOLA (see Table H.1 for an overview of this data). Since the used multi-body simulation is re-
stricted to rigid bodies, flexible components such as wires cannot be considered. However, their
weight is accounted for by adding (rigid) correction masses to the corresponding segments. As a
result, the difference in the total mass of the robot between the CAD model (67.3 kg) and reality
(68.2 kg) is only 1.3 %. While the upper body was mechanically assembled by the author of this
thesis, the electrical wiring of components was done by the staff of the electronics lab of the
Chair of Applied Mechanics, namely ANDREAS KÖSTLER and GEORG MAYR.

Figure 3.15: Selection of components of the new upper body before their assembly. The weight of every single part
has been measured in advance to update the CAD model with accurate mass information.

In October 2020, the new hardware was ready for initial operation tests. This included the
mechanical calibration of the robot by attaching it to a special fixture which brings it into a
well-defined pose. The joint angles reported by the absolute encoders are saved in this special
pose for later use as (constant) offset within the initialization after powering up the robot.
The calibration jig was mainly designed by the student assistants DANIEL PÖLZLEITNER and
REINHOLD POSCHER, see Appendix H.3 for further details. Finally, the joint servo controllers
had to be tuned (i. e., setting the gains of the cascaded feedback control) which was done by
FELIX SYGULLA together with the adaption of the SIK and HWL module to support the new
hardware. First walking experiments are shown in the video [21].

3.8 Results and Discussion

The revision of the upper body of LOLA represents a major upgrade which significantly extends
the capabilities of the robot. The final configuration of the upper body (without covers) is
shown in Figure 3.16 together with a brief summary of the main specifications of the robot.
An interactive 360◦ view is available at the IEEE Robots Database, see [113] or alternatively the
video [21 @t=3s]. The general conclusion of the revision is positive: the original goals have

https://youtu.be/JCYmq6u0EEc
https://youtu.be/JCYmq6u0EEc?t=3s

3.8 Results and Discussion 75

been achieved such that the hardware is now capable of multi-contact locomotion. This has
been demonstrated through various real-world experiments such as described in Chapter 8.

Safety Harness

(80 V + 24 V)

(3×Ethernet +1×EtherCAT)

Power

Communication

LOLA v1.1:
Height: 1.763 m
Mass: 68.2 kg

Active Joints: 26
Power: 80 V + 24 V

Biped: up to 3.38 km/h
Multi-Cont.: up to 1.8 km/h

(see Figure H.3)
Terminal

Figure 3.16: Front and back view of the new upper body of LOLA v1.1 (without torso covers). The robot is tethered
for safety reasons and to supply it with power (no onboard batteries) and high-level signals (from human operator via
Ethernet). The additional EtherCAT interface in the terminal is meant for testing purposes and is not used in general.

Compared to other fully-actuated humanoids of this size (cf. Section 2.1), LOLA is still very
light. Through the recent hardware modification, the total mass of the robot gained only 4.9 kg
which equals a plus of 7.74 %. This is mainly because the hands are still quite simple, lacking an
explicit wrist or gripper/fingers. Moreover, there is still no onboard power supply. However, the
robot in its current form matches its purpose for our multi-contact scenarios.

Kinematic Optimization of Arm Topology In Section 3.3, the kinematic topology of the new
arms has been optimized for selected target scenarios. The analysis of the arm mechanism
shows that the reachable workspace significantly increased. While the total volume gained about
350 %, also the local dexterity (measured by the metrics CI, MM, and JRA) has been improved,
see Figure 3.6. For the considered multi-contact scenarios, especially the region in the lateral
proximity of the robot is important. A comparison with the previous hardware clearly shows the
improvement in this area. It is important to note that the hands of LOLA have a spherical shape,
thus the actual orientation of the EE upon contact is not prescribed. This makes many things
easier and is an important difference compared to an arm designed for manipulation.

Actuation and Sensing Concerning actuation, the new upper body relies on a proven modular
design, see Section 3.4. Fortunately, existing modules of the previous arms could be reused
such that only two new drives had to be build. The multi-contact experiments conducted so
far show that the performance of the joint drives is clearly sufficient. Indeed, using the full
torque capabilities would probably damage some of the lightweight arm structures. Thus, if the

3.8 Results and Discussion 76

performance of the arms has to be increased in future (e. g. for carrying large payloads), one
should first design stronger (but also heavier) structures connecting the DoF.

While the main IMU located in the torso segment was basically kept unchanged (except for
a slightly different mounting), the new six-axis FTSs in the hands have been added to measure
the contact wrench in multi-contact situations. Using commercial sensors instead of a custom
solution drastically reduced the complexity and effort during design, realization, and operation.
Although the selected sensor model is located in the lower price segment, it provides sufficient
accuracy and bandwidth for our use case. Note that the measurements of the FTSs are not used
by the WPG described in this thesis, thus, it is not further discussed. Instead, the FTS data
represents a primary input for the SIK module, which has been extensively explained in the
dissertation of SYGULLA. See in particular [401, p. 130ff] for a description of the used multi-
contact force control which also shows the desired and actual (measured) contact forces on the
right hand for a certain validation experiment (standing/stamping with right hand supporting
against a wall while being pushed by a human, cf. [20 @t=35s]).

To be prepared for fully-autonomous locomotion in unknown environments, also the vision
system has been upgraded now featuring two components, an RGB-D sensor and a tracking
camera. Unfortunately, the performance of these two components is mixed. On the one hand,
the tracking camera represents a major upgrade as it provides a reliable, drift-free 6D-pose
through visual-inertial odometry. This represents a very important input for the reconstruction
algorithms of the new CV module. An additional advantage is that the used IMU is integrated
into the camera which minimizes the error due to relative motion (e. g. when considering the
kinematic chain between the torso IMU and the vision system). On the other hand, the selected
(low-cost) RGB-D camera shows poor accuracy in depth sensing, see Figure 3.17. Moreover,
the already borderline47 performance in a best-case setting drastically degrades once sunlight
(strong IR component) hits the scene. For the experiments presented in this thesis, it was
necessary to keep the lab clear from sunlight. Unfortunately, the circumstances of the governing
project did not allow the exchange of the RGB-D sensor. For future investigations, it is highly
recommended to use another system – ideally a high-class industrial camera or LiDAR.

Color Depth

Figure 3.17: Exemplary captured frames from the RGB-D sensor of the new vision system. Left: color image showing
the environment. Right: color-coded depth image (averaged over 10 consecutive frames to filter noise) with blue
indicating close, red indicating distant, and black representing unknown points. Besides the rather poor absolute
accuracy of depth measurements, the data is also subject to severe noise and a “wavy” reconstruction of flat surfaces
such as the floor. See [17 @t=22s] for the full video of the corresponding experiment.

Mechanical Design An apparent proof that the new upper body is robust enough to withstand
multi-contact loads is given by the numerous videos of successfully conducted experiments, e. g.
[20]. Besides robustness, an additional goal of the mechanical redesign was to increase the

47Certainly, this rating has to be seen in the present context: while a depth accuracy of 4 cm at a distance of 2 m
[218] may be sufficient for numerous applications in robotics, it is highly problematic for identifying potential foot-
or hand-contact points for a full-sized humanoid robot.

https://youtu.be/gUNZ0AmLiWU?t=35s
https://youtu.be/ovG2Rz9-1p8?t=22s
https://youtu.be/gUNZ0AmLiWU

3.8 Results and Discussion 77

structural stiffness in order to counteract undesired oscillations affecting the bandwidth of the
low-level controller. To check if this goal has been achieved, BERNINGER et al. performed a
second EMA evaluating the structural dynamics of the new hardware, see [5] for details. The
first five mode shapes for the previous and new version of the robot as identified by the EMA
are shown in Figure 3.18.

6.5 Hz, 2.1 % 9.7 Hz, 3.5 % 13.8 Hz, 2.1 % 15.7 Hz, 4.5 % 24.8 Hz, 2.4 %

6.9 Hz, 2.1 % 11.6 Hz, 1.6 % 15.0 Hz, 1.43 % 17.7 Hz, 1.3 % 23.0 Hz, 1.5 %

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode
Old:

New:

F F F F F

F F F F F

Figure 3.18: First five mode shapes for the previous (row 1+2) and new (row 3+4) version of the robot presented
in the front (row 1+3) and top (row 2+4) view. For each mode, the respective eigenfrequency and damping ratio are
given. The dots represent the location of the attached accelerometers in their initial (blue) and displaced (orange)
state. During the EMA, the robot is commanded to remain in a default standing pose (in contact with the ground) while
it is excited in the lateral direction by an external shaker linked to the right knee (indicated by F). Note that modes
(same as for eigenfrequencies and damping) are theoretically independent of the location of the excitation as they
represent possible free vibrations of the system. Modified from [5].

As already predicted in Section 3.5, the revision of the upper body had only a small impact
on the shape and eigenfrequency of the first mode. Since torsion around the vertical axis due to
twisting of the legs is not visible to the balance controller, this mode is not considered critical.

3.8 Results and Discussion 78

Nevertheless, the strengthening of the torso frame seems to remove its contribution to the tor-
sional mode which leads to a slight overall improvement. Starting with the second mode, the
results differ when comparing the new to the previous hardware. Indeed, the eigenfrequency of
the second mode has been increased by 20 %. Much more importantly, the shape of the second
mode shows that we got rid of the undesired bending of the torso frame around the horizontal
axis. In fact, for the 2nd to the 5th mode, the torso stays almost rigid while the main deformation
appears in the arms instead. Certainly, structural oscillations of the arms are also an undesired
behavior. However, a stiff torso (carrying the IMU) is much more important in this case.

For potential future investigations it should be considered to further increase the stiffness of
the arms. According to the results of the EMA, it can be expected that this would effectively
raise the eigenfrequencies (starting with the second mode), eventually shifting them out of
the domain typically excited by legged locomotion. Besides stiffness, also damping plays an
important role. Since the new upper body design relies on the same core concept, i. e., scaffolds
made out of aluminum tubes, the damping behavior did not change significantly. For a potential
successor of LOLA, one might consider to use other materials, e. g. CFRPs, or to integrate passive
damping elements, e. g. sandwich composites (cf. intervertebral disc in the human spine).

For the purpose of tuning the low-level control, numerous walking experiments have been
conducted where the robot was commanded to move as fast as possible. Indeed, a new speed
record of 3.38 km/h (step length: 0.63 m; step duration: 0.67 s) could be set for regular biped
walking (no hand support) which is a slight improvement over the previous record of 3.34 km/h
set in 2011 [101]. This demonstrates that the revision of the upper body and the associated
increase of the total mass did not decrease the biped walking performance of the robot which
makes it a true upgrade. Certainly, LOLA received also many other improvements over the past
10 years. However, the revision of the upper body represents the most “invasive” modification.

Electrical Design The revision of the power distribution system represents another remarkable
improvement. The transition from 48 V to 24 V for the auxiliary voltage made multiple DC
converters obsolete, hence, reducing complexity and mass. As a consequence, the wire cross-
sections need to be greater which actually does not represent a notable disadvantage. In fact,
24 V are an industry standard in the field of automation, thus most components support it.

The upper body revision also led to a substantial improvement with regard to computational
power. For the PC dedicated to real-time control, this is simply a result of upgrading to modern
components. In contrast, the PC running CV algorithms now additionally features a dedicated
GPU, which significantly accelerates massive, parallel computations. Moreover, it allows to
use other vision sensors which run their algorithms on the host PC and, therefore, require a
dedicated GPU. An example is the stereo camera ZED 2i [395] by Stereolabs which seems to
be a reasonable alternative to the current (problematic) RGB-D sensor. Note that the particular
model of the GPU has been selected to provide the highest computing performance while still
being powered exclusively over the PCI bus (maximum 75 W). This avoids a direct power supply
of the GPU with corresponding DC converter.

For low-level communication, the already existing EtherCAT bus was adopted. For LOLA, it
has proven to be fast and reliable while still being simple to integrate. Unfortunately, due to
some legacy components such as the IMU and the custom FTSs in the feet, additionally CAN
and SPI buses are operated in parallel. For a potential successor of LOLA, a single EtherCAT bus
connecting all components should be considered to get rid of the complexity, latency, and weight
(cf. CAN-EtherCAT gateway) of translating between bus systems.

Chapter 4

Software – Part A: Locomotion Framework
Parts of this chapter have already
been published in [1–4].

In this chapter, the present locomotion framework of LOLA is introduced. The current state of
the framework represents the result of more than 20 years of evolution starting in 1997 with
JOHNNIE. Thus, it has to be seen as joint achievement of all researchers working on JOHNNIE

and LOLA so far (see Section 2.7 for a concrete list of persons). Although this chapter gives
an overview of the entire framework, it strongly focuses on the task of planning, i. e., the WPG
module integrating the contact planner and motion generator. As part of the upgrade for multi-
contact locomotion, the entire WPG has been redesigned and rebuilt from scratch. Besides the
revision of the upper body hardware described in Chapter 3, this represents the second core
contribution of the author to the LOLA project. To begin this chapter, the framework and its
main workflow are introduced in Section 4.1. This is followed in the Sections 4.2 and 4.3 by the
definition of frequently used CoSys and the “task-space” of LOLA, respectively. The actual WPG
module is discussed in Section 4.5, which is preceded by a brief summary of the CV system in
Section 4.4 and succeeded by a brief summary of the SIK and HWL module in the Sections 4.6
and 4.7, respectively. Finally, the chapter is concluded in Section 4.8. Note that the focus of this
chapter is the governing locomotion framework, while the actual contact planner and motion
generator are described in more detail in the Chapters 5 and 6, respectively.

A coarse overview of the multi-contact locomotion framework of LOLA has already been
published in [1], see also the accompanying video presentation [19]. With regard to the WPG,
its core method for generating a dynamically and kinematically feasible CoM motion (without
multi-contact) has been published in [3]. The underlying spline collocation algorithm has been
presented separately in much more detail in [2]. Moreover, planning of the CoM motion is
based on a simplified five-mass model of the robot, which has been parameterized according to
the optimum derived by ANIAN LEYERER within the context of his term paper [29]. Although
this term paper has not been published, it is briefly summarized in [4].

4.1 Overview

Developing an enclosing software framework for a real-time locomotion system is part of the
discipline software design, for which the state of the art has already been summarized in Sec-
tion 2.2. The main objective of such a framework is to connect the individual concepts for
perception, planning, and control and to provide an interface to the surrounding software in-
frastructure for communication, simulation, logging, and visualization. According to this brief
description, a locomotion framework may seem to be just a conglomeration of “glue code” nec-
essary for holding the essential parts together without actually affecting the final outcome, i. e.,
the motion of the robot. This might hold true for certain purely simulative investigations. How-
ever, if the locomotion system is to be executed on real hardware, hard real-time constraints
have to be satisfied. While the failure of high-level tasks such as speech recognition are typi-
cally not considered critical, a violation of the real-time constraints in the low-level locomotion
system of a humanoid robot is likely to cause a fatal crash.

79

https://youtu.be/T0CiZQbd9H0

4.1 Overview 80

Indeed, the hard real-time constraints do not only set high requirements on the efficiency
of algorithms and interfaces, but also the overall architecture of the framework itself. In par-
ticular, the possibility for efficient parallel execution (to reduce total cycle time) and advanced
synchronization (for low latency and jitter) are important. To achieve these goals, a common
approach is to cluster the components of the locomotion system according to their real-time
priorities. This typically results in a control, a planning, and an autonomy level (see Figure 2.12)
with control being the computational lightest and most time-critical and autonomy being the
computational heaviest and least time-critical level. The locomotion framework of LOLA follows
this hierarchical approach by forming the modules Hardware Layer (HWL), Stabilization and In-
verse Kinematics (SIK), Walking Pattern Generation (WPG), and Computer Vision (CV). Figure 4.1
gives an overview which is explained in the following paragraphs.

Thread 3 (4 kHz)

Walking Pattern Generation (WPG)
Process 3

Thread 5 (1 kHz) Thread 6+8 (event-triggered) Thread 9c

Process 2

Thread 9bThread 4 (1 kHz)

Process 1

Thread 9a

Cyclic Processing

•Pre-Processing
•Traj. Adaption
•Balance Control

Timing EtherCAT / IO

•Contact Planning

task-space trajectories

shared memoryjoint-space trajectories sensor data

Acyclic Processing

•Motion Generation
•Plan Evaluation
•Stream Processor

•“Clock”
•Trigger

Stabilization and Inverse Kinematics (SIK)

Computer Vision (CV)

Hardware Layer (HWL)

Hardware EcosystemLocomotion Framework

Vision PC (front), Ubuntu

Control PC (back), QNX (or within simulation)

Actuators / Sensors

Vision Sensors

Si
gn

al
B

ro
ke

r
Thread 7
Process 4

Thread 1 (4 kHz) Thread 2 (4 kHz)

•Master Stack
•Middleware

Main Loop

•FSM
•Processing

TC
P/

IP
si

gn
al

s

TC
P/

IP

TC
P/

IP

si
gn

al
s

si
gn

al
s

•Wrench Distribution
•Contact Force Control
•Inverse Kinematics

Lo
gg

in
g

Lo
gg

in
g

Lo
gg

in
g

Tracking PC, Windows

Operator PC, Ubuntu

Servo Controller

Pos./Vel.: 10 kHz
Current: 20 kHz

Et
he

rC
AT

(4
kH

z)
U

SB

•IMU, FTSs
•Cont. Switches

•RGB-D Sensor
•Tracking Cam.

Simulation

•Servo Controller

•Multi-Body Sys.
•Sensors
•Env. Model Gen.

perceived env. model synthesized env. model
TCP/IP

•Motors / Gears

Visualization

•Validation
•Rendering

Control Panel (UI)

•Monitoring
•Teleoperation

TCP/IP
signals

Tracker [426]

•Live Monitoring
•Offline Analysis

UDP/IPlive pose data
(100 Hz)(1 kHz)

si
gn

al
s

sensor/actor
data

signals, robot state

shared memory sensor data(1 kHz)

Figure 4.1: Overview of the real-time locomotion framework of LOLA and its interface to the hardware and the software
ecosystem. The CV module runs on the front PC with a GPOS under soft real-time, while the WPG, SIK, and HWL
modules run on the back PC with an RTOS under hard real-time. The software executed on the control PC is further
split into numbered processes and threads. The thread number indicates its respective QNX real-time priority with 1
representing the highest priority. The logging threads 9a, 9b, and 9c share the same (lowest) QNX real-time priority.
For details on the communication network, see Figure H.4.

Main Workflow In order to explain the main workflow, let us assume an autonomous locomo-
tion scenario where the robot is commanded to walk from its current position to a certain goal,
e. g. the opposite side of the laboratory. As a first step, the scenario has to be triggered by a hu-
man operator selecting the corresponding action for autonomous walking (with corresponding
goal position) in the UI alias Control Panel running on the Operator PC, see Figure 4.1 right. The
request is encoded as a corresponding high-level signal and transmitted to the Control PC where

4.1 Overview 81

it is received by a Signal Broker (Process 4, Thread 7) forwarding it to the modules HWL (Pro-
cess 1), SIK (Process 2), and WPG (Process 3). Certain high-level signals are additionally passed
(together with the current state of the robot) from the WPG to the CV which gives the human
operator also control over the CV module. The particular signal for autonomous locomotion
triggers a new planning activity in the WPG, which uses the current model of the environment
to create a corresponding motion plan leading from the start (current pose) to the destination
(goal position). The environment model is received and continuously updated from the CV mod-
ule, which is briefly summarized in Section 4.4. The creation of the motion plan is an acyclic
task (Thread 6) and consists of a preceding contact planning and subsequent motion generation
step. Once the motion plan is created, it is passed to the main WPG loop (Thread 5), which
evaluates the plan for the current time step and performs some additional post-processing. A
more detailed view on the general workflow of the WPG is given in Section 4.5.5. The output
of the WPG is (among other data) a current sample of the task-space trajectories, which is cycli-
cally passed to the SIK module. In the main loop of the SIK module (Thread 4), the task-space
sample is modified for the purpose of stabilization and finally converted to a corresponding
joint-space sample, see Section 4.6 for a brief summary and [401] for a full description. The
joint-space sample is then cyclically transferred to the HWL module which simultaneously pro-
vides the current sensor data to the SIK module. The main loop of the HWL (Thread 3) operates
a Finite State Machine (FSM) and performs some additional processing such as extrapolation of
the target joint-space data in order to upsample it from a 1 kHz to a 4 kHz cycle. The sensor and
actuator data is exchanged by a dedicated IO module (Thread 2) running a commercial EtherCAT
master stack by Acontis Technologies [48] and a custom middleware [10] for device abstraction.
The transmission of EtherCAT packets is triggered by a separate timing module (Thread 1, high-
est priority), which also represents the main “clock” of the real-time locomotion system and is
used for precise synchronization between HWL, SIK, and WPG with low latency and jitter. A
brief summary of the HWL module is given in Section 4.7, while a more detailed description
is found in [401]. The presented workflow of the locomotion framework is (almost) the same
for other scenarios, e. g. teleoperated walking, where corresponding high-level signals (walking
direction, speed, etc.) are cyclically emitted from the Control Panel.

Communication The real-time communication between the HWL, SIK, and WPG module is
realized through shared memory interfaces. This allows efficient transfer of large (commu-
nication) payloads and is precisely synchronized by the dedicated timing thread of the HWL
(Thread 1). Moreover, the communication is synchronized with the EtherCAT bus connecting
the majority of actuators and sensors (except vision sensors) using the distributed clocks func-
tionality of EtherCAT [10]. For high-level signals with small payloads, which typically consist
of a unique identifier and an (optional) small data packet such as a single float, LOLA uses a
publish/subscribe system originally introduced by BUSCHMANN, see [100, p. 122f] for details.
It basically consists of a central hub alias Signal Broker (Process 4) and multiple local brokers
(not shown in Figure 4.1) as counterparts within the connected modules. For communication
between processes, the signals are transmitted either using POSIX message queues (on same PC)
or Ethernet (separated PCs). Examples for such high-level messages are trigger signals or loco-
motion parameters which can be changed “online”, e. g. the step duration (speed) or step height
(ground clearance). For efficient transmission of large payloads in cases where a shared memory
interface is not possible (e. g. between separated PCs), a third option has been introduced by the
author of this thesis. It abstracts a regular network socket using either the Transmission Control
Protocol (TCP/IP) or the User Datagram Protocol (UDP/IP) and equips it with features such as

• internal serialization of complex types such as classes containing vectors and matrices,
• (optional) internal compression using the Deflate algorithm from zlib [165],
• thread-safe circular buffers for input/output objects to avoid dynamic memory allocation

and (optionally) run the costly serialization and compression in an asynchronous thread.

4.2 Coordinate Systems (CoSys) 82

The implementation of this enhanced socket has been published as part48 of Broccoli. A promi-
nent example for its usage is the connection between the CV and the WPG module, where a
large payload (the environment model) has to be transmitted efficiently without the overhead
of the publish/subscribe system.

Real-Time Logging For analyzing experiments in the aftermath, the core modules HWL, SIK,
and WPG each integrate a real-time logging module (Thread 9a, 9b, and 9c). Here, real-time
means that data logging is performed in an asynchronous thread of lowest priority such that
the impact on the actual locomotion system is kept minimal. The corresponding manager class
uses thread-safe circular buffers for storing the sequence of data objects to be written to the
various log files. Similar to the aforementioned network socket, the costly encoding, (optional)
compression using zlib, and actual file writing is offloaded to an asynchronous thread running
in the background. The real-time logging framework of LOLA is part49 of Broccoli.

Ecosystem In order to operate, test, and analyze a locomotion framework, a comprehensive
software ecosystem is required. Within the LOLA project, this is mainly realized through ded-
icated applications for Simulation (testing and debugging, cf. Section 7.4), Visualization (vali-
dation and analysis, cf. Section 7.5), and the already mentioned Control Panel (operation and
monitoring, cf. Section 7.6) each of which running on the external Operator PC.

The simulation system of LOLA was originally developed by BUSCHMANN and SCHWIEN-
BACHER [100, 372]. It replaces the hardware components of the real robot by corresponding
virtual counterparts and simulates their physical interaction with the environment. Moreover,
for the simulation system, the real-time locomotion framework is not executed on the Control
PC anymore, but instead integrated into the simulation application running on the Operator PC.
The sequential execution within a single process and single thread guarantees a deterministic,
repeatable output. The simulation is briefly summarized in Section 7.4, which also introduces
an extension contributed by the author of this thesis automatically synthesizing an environment
model as it would be generated from the CV system in a real experiment. The results of simu-
lations and experiments, i. e., the logged data, can be visualized through a dedicated graphical
tool described in Section 7.5.

Finally, the LOLA laboratory is also equipped with a commercial motion capture system from
Vicon Motion Systems [426]. The corresponding Vicon Tracker software runs on a dedicated
Windows PC and transmits a live stream of 6D pose data for various tracked CoSys (e. g. the
torso) via Ethernet using a UDP/IP broadcast. The data stream is received by the Control Panel
which forwards it to a corresponding logging module saving the current object poses together
with the current time stamp of the HWL for synchronized logs. It has to be highlighted that the
motion capture data is only used for offline analysis. It is not used by the real-time locomotion
system of LOLA since this would contradict the idea of autonomy.

4.2 Coordinate Systems (CoSys)

Before the task-space of LOLA is specified, frequently used CoSys have to be introduced. On the
one hand, they are used to describe the 6D pose of special parts of the robot. On the other hand,
certain quantities such as positions and orientations are typically described with respect to a
CoSy making it a so-called Frame of Reference (FoR). The used notation for a FoR as well as the
transformation from one frame to the other is explained in Appendix A. An overview of the most
important “special” CoSys of the robot LOLA is given in Figure 4.2. From a theoretical point of
view, the definition of a CoSy describing the pose of a (rigid) part of the robot is arbitrary. In

48See the class NetworkSocket in the module io of Broccoli.
49See the class Logger in the module io of Broccoli.

4.2 Coordinate Systems (CoSys) 83

practice, for the sake of a clear and intuitive handling, special frames are defined such that their
origin has a certain meaning, e. g. the center of the hand. Moreover, the orientation is chosen
such that the z-axis points upwards and the x-axis points forwards (for straight walking).

∆x

∆y

∆z

Origin: undefined
Orientation: same as IMU

∆ϕz

y
x

x

z

(zfl)
(zfr)

(efr)

(efl)

(torso)

(vt)
VTCP

IMU

RH

LH

LF
RF

W= PW

VW

Upper Body “UB”

y
x

z

y

x

z

y

z

y

z

z

y

x

y
x

z

x

coincides with current
stance foot, i. e., SF ∈ {RF, LF}

y
x

z
Stance Foot “SF”

Figure 4.2: Special CoSys of LOLA v1.1. The (planning) world frame “W” (alias “PW”) and the vision world frame “VW”
(shown for∆x = 0.5m,∆y = 0.3 m,∆z = 0.1m, and∆ϕz = 60◦) are inertial. The remaining frames are attached
to one of the 27 segments of the robot, see Table H.1. An explicit specification of the presented CoSys through their
(constant) pose with respect to the corresponding parent segment is given in Table H.2. The upper body frame “UB”
and the stance foot frame “SF” represent exceptions with a special definition.

World Frame First of all, an inertial world frame “W” is defined. Its concrete position and
orientation is arbitrary, however, we require that the positive z-axis, i. e., the unit vector Wez,
points into the opposite direction of gravitational acceleration such that Wg := [0, 0, −g]T holds.
Since the CV system of LOLA is in large parts detached from the rest of the locomotion framework
(see Figure 4.1), it uses its own world frame in the following denoted as vision world frame
“VW”. For a clear distinction, the planning world frame is also denoted by “PW” which is just
a more explicit alias for “W”. Indeed, VW has the same requirement for the z-axis such that
the relative transform between these two world frames can be described by a three-dimensional
translation and planar rotation (∆x , ∆y, ∆z, and ∆ϕz in Figure 4.2). Although both, PW
and VW, are inertial such that time derivatives described in these frames are absolute, they are
allowed to “jump”, i. e., instantaneously change their position and orientation (may be used
to reset odometry). The parallelism of the z-axes simplifies the use of the environment model
(described in VW) within contact planning by avoiding expensive transformations of large data.

Tool Center Point (TCP) Frames Next, a TCP frame is defined for each EE, i. e., for the feet
(“RF” attached to zfr and “LF” attached to zfl), the hands (“RH” attached to efr and “LH” attached
to efl), and the head alias vision (“VTCP” attached to vt). The origins of RF and LF lie in the
centroid of the contact surface of the corresponding toe segment. The origins of RH and LH
lie in the center of the sphere representing the contact surface of the hand. Finally, the origin
of VTCP is set to the mean optical center of both vision sensors (shifted along VTCPex to lie
“outside” the cameras). Note that the term TCP frame is used as synonym for the corresponding
EE frame. However, it is not equivalent to the body-CoSy of the respective robot segment which
it is attached to. As an example, RH is located in the center of the right hand, while the efr
segment (to which RH is attached) has its body-CoSy in the elbow.

4.3 Task-Space Definition 84

Stance Foot Frame While it would be possible to use the world frame W as FoR for all cal-
culations, in some cases it makes more sense to use a body attached frame instead. Especially
in biped walking, it is reasonable to describe the motion of the robot with respect to the TCP
frame of the current stance foot “SF”, which cyclically switches between RF and LF. Within the
scope of this thesis, we assume that once a foot becomes the current stance, it remains fixed to
the ground (idealized closed contact). Moreover, we assume the ground underneath the stance
foot to be static. Thus, same as for the world frame W, the stance foot frame SF remains inertial
(but jumps cyclically) and time derivatives described in SF are absolute, hence, do not require
special attention. An extension for scenarios with moving ground, e. g. an escalator, would re-
quire only minor modifications to the proposed locomotion framework – at least if the ground
motion is known. However, more effort would be required to describe running, i. e., situations
where no stance exists. Both, moving grounds and running, are not in the scope of this thesis.
The counterpart of the stance foot SF is the swing foot SF, whose TCP frame is not inertial.

Inertial Measurement Unit (IMU) and Upper Body Frame As a reference for the measure-
ments of the primary IMU located in the torso segment of the robot, we explicitly define an
“IMU” frame located in the mean50 origin of the integrated accelerometers and gyroscopes. We
additionally introduce the upper body frame “UB”, which will be used to specify a certain upper
body inclination (e. g. for stooped walking) since it represents a more intuitive alias for this
purpose. The UB frame is special in such that we do not specify its origin since it will not be
used anyway and would probably lead to confusion otherwise (What is the “origin” of the upper
body?). The UB frame copies the orientation of the IMU frame, i. e., it rotates with the torso
segment. Note that the IMU frame does not have the same orientation as the torso frame t
(which is only used for describing the pose of the corresponding CAD segment), but is instead
rotated by 90◦ around the common x-axis, see Figure 3.5 and Table H.2.

4.3 Task-Space Definition

The locomotion framework of LOLA is designed in a way such that the entire planning (module
WPG) and large parts of the control (module SIK) are describing motion in the task-space. In
general, the task-space should contain quantities relevant to the specific task of a robot, e. g.
the TCP pose for an industrial manipulator. It represents a set of constraints which has to
be satisfied under all circumstances. For redundant robots, the dimension of the joint space
dim(q) = n is greater than the dimension of the task-space dim(x) = p such that there remains a
certain freedom in motion typically called null-space51 of dimension n− p. Certain IK methods,
e. g. ASC in the case of LOLA, allow to exploit the null-space by specifying secondary objectives
during the transition from task- to joint-space such that the whole potential of the hardware is
used. Thus, the task-space definition should include the primary objectives of the robot, while a
certain freedom (n− p > 0) should be kept for fulfilling secondary objectives within the IK.

Since the main objective of LOLA is biped walking, its task-space includes components which
are essential in legged locomotion. The probably most important component is the overall 6D
pose of the robot with respect to its environment. For this, LOLA uses the position of the CoM
and the orientation of the upper body frame UB, which both represent essential characteristics
describing centroidal dynamics (cf. the various simplified models presented in Section 2.4).
For biped robots, it is also natural to include the position and orientation of both feet, here
through the TCP frames RF and LF attached to the corresponding toe segments. This allows
exact placement of footholds (e. g. for climbing stairs) and to align the foot sole with the ground

50In fact, the x-, y-, and z-axis of the IMU iVRU-FC-C167 do not intersect exactly in a single point, thus there is no
clear “center”. To keep errors low, a reasonable mean position is computed to define the origin of the IMU frame.

51The name null-space originates from the fact that a corresponding motion in the joint-space does not produce
any motion in the task-space, i. e., it lies in the kernel (=null-space) of the task-space Jacobian J = (∂ ẋ/∂ q̇).

4.3 Task-Space Definition 85

(e. g. for climbing ramps). A special property of LOLA’s hardware are the active toe joints zfr|l.
The corresponding DoF of the left and right foot is directly mapped into the task-space, which
allows explicit control within in the planning stage. The toe joints are mainly used to overcome
kinematic limits in fast walking (long strides) and climbing stairs (rapid change of CoM height)
for which corresponding heuristic-based trajectories are planned. Besides the toe joints, also the
DoF vp and vt are directly mapped from joint- to task-space. This gives explicit control over the
head motion, e. g. for visual tracking of environmental objects. If a third head DoF for “roll”
motion is added in future, one should consider to include the orientation of the vision TCP
frame VTCP instead, since this may give a more natural control over the head, e. g. through the
quaternion-based multi-axis interpolation methods presented in Appendix B.3.

For multi-contact locomotion, it is reasonable to add also the position of the hands, in par-
ticular the TCP frames RH and LH, to the task-space definition. For LOLA, a special approach is
chosen where the hand positions are optional members of the task-space. Indeed, their member-
ship can be changed dynamically, i. e., during locomotion. This allows us to specify an explicit
target position whenever it is necessary (e. g. for making a contact) or otherwise assign the hand
to the null-space for “assistance” in fulfilling primary objectives (e. g. the desired CoM position)
and secondary objectives (e. g. the compensation of leg dynamics). Dynamically changing the
task-space definition is realized by running four IK instances in parallel (without hands; with
right hand; with left hand; with both hands) and blending between these options by smooth
bilinear interpolation in joint-space, see Section 4.6 for a brief overview and [401, p.67f] for de-
tails (includes a brief overview of other/similar approaches in related work). Note that because
of the low DoF count in the arm, the orientation of the hand is not included in the task-space.
Due to the spherical contact surface, this is not necessary anyway for our target multi-contact
scenarios. The complete list of task-space components is given in Table 4.1.

Table 4.1: Components of the task-space vector x and the task-space velocity vector v of LOLA v1.1 (sorted according
to the location of the corresponding component within the vector x respectively v). The last two rows (gray) are
optional. Note that rotational quantities are represented in x by rotation vectors ϑ and in v by angular velocities ω.
Thus, in general v ̸= ẋ holds. Modified from [401, p. 49].

x -Comp. v -Comp. Description

WrCoM W ṙCoM position of the CoM described in the world FoR

WϑUB WωUB orientation of the upper body frame described in the world FoR

WrRF W ṙRF position of the right foot TCP frame described in the world FoR

WϑRF WωRF orientation of the right foot TCP frame described in the world FoR
qzfr q̇zfr right foot toe angle

WrLF W ṙLF position of the left foot TCP frame described in the world FoR

WϑLF WωLF orientation of the left foot TCP frame described in the world FoR
qzfl q̇zfl left foot toe angle

qvp q̇vp vision pan angle
qvt q̇vt vision tilt angle

WrRH W ṙRH position of the right hand TCP frame described in the world FoR

WrLH W ṙLH position of the left hand TCP frame described in the world FoR

The task-space vector x ∈ Rp and the task-space velocity vector v ∈ Rp with p ∈ {22, 25, 28}
presented in Table 4.1 together form the task-space trajectories describing the motion of the
robot. Indeed, this represents the main output of the WPG module which is transmitted to
the subsequent SIK module, see Figure 4.1. Since the SIK module uses an IK approach on
velocity level and planned accelerations are not used by the stabilization algorithms modifying
the task-space trajectories, it is sufficient for the WPG module to provide x and v . However,
since the motion generator presented in this thesis uses an analytic trajectory description (see
Section 6.2), computing higher order time derivatives would be cheap.

4.4 Excursus: Computer Vision (CV) 86

Unfortunately, dealing with rotations in three-dimensional space is always somewhat tricky.
There are numerous ways of describing spatial rotation, each of which having their own ad-
vantages and disadvantages. Within the WPG module, a representation by (unit) quaternions
is used almost exclusively. This is motivated by the absence of singularities, the computational
efficiency (especially in chaining rotations), and the capability of creating “natural” motions
when interpolating multi-axis rotation, see Appendix B. In contrast, the SIK module mainly uses
rotation vectors and angular velocities, which simplifies the modification of trajectories for the
purpose of stabilization. Thus, they are also used in the task-space formulation instead of the
rather unintuitive quaternions and their time derivatives. As a positive side-effect, the dimension
of x and v is kept minimal. The conversion from the quaternion formulation to the equivalent
rotation vectors and angular velocities is done as a very last post-processing step of the WPG
module. See Appendix B.2 for details on the conversion from one representation to the other.

In Figure 4.3, an overview of the task- and joint-space definition of LOLA is given. Since
the robot is mobile, its joint-space vector q contains – additional to the 26 actuated DoF – the
6D pose52 of the torso acting as “root” segment. Note that the torso pose can be seen as a
virtual (massless) mechanism consisting of three prismatic and three rotational (passive) joints
connecting the torso frame t with the world frame W. A detailed specification of the kinematic
topology of LOLA (including the specification of all components of q) is given in Table H.1.

x :=









































WrCoM

WϑUB

WrRF

WϑRF
qzfr

WrLF

WϑLF
qzfl
qvp

qvt

WrRH

WrLH









































q :=









































to
rs

o
po

se
∈
R

6
jo

in
t

an
gl

es
∈
R

26









































(s
ee

Ta
bl

e
H

.1
)

7
7

WϑUB

3

3

3

2

Task-Space x ∈ Rp Joint-Space q ∈ Rn

WrLF

WϑLF
qzfl

WrRF

WϑRF
qzfr

qvp

qvt

WrLH

WrRH

WrCoM
3

1
1

2
2

1
1

2

3
3

2

3

3

1

1

vp, vt

afl, aal, arl

afr, aar, arr

efl

efr

br, ba

hrr, har, hfr
hrl, hal, hfl

kfl
kfr

sar, sfr

zfr

sal, sfl

zfl

y

z

x

W

z

y

x
t

6
Inverse Kinematics (IK)

Forward Kinematics (FK)

RH LH p
=

di
m
(x
)

n
=

di
m
(q
)

n
−

p

28 32 4

(t
as

k-
sp

ac
e)

(j
oi

nt
-s

pa
ce

)

(n
ul

l-s
pa

ce
)

32

32

3222

25

25 7

10

7

Figure 4.3: Overview of task- (left) and joint-space (right) definition of LOLA v1.1. The numbers in the circles indicate
the DoF count at the corresponding location. Note that the dimension of the null-space n − p, i. e., the degree of
redundancy, decreases when the right and/or left hand are assigned to the task-space.

4.4 Excursus: Computer Vision (CV)

The CV system processes visual input obtained from the cameras to generate a virtual recon-
struction of the surroundings of the robot and provide an appropriate environment model to the
WPG module, see Figure 4.1. Within the WPG, the environment model is used by the contact
planner for generating a feasible contact sequence leading from the current position of the robot

52The 6D pose of the torso frame t with respect to the world frame W defines the first six components of q .
Originally introduced by BUSCHMANN [100], the pose is specified by the orientation described with z-x-z EULER

angles (q1 =ψ, q2 = ϑ, and q3 = ϕ, see [100, p.153]) followed by the position q4 = Wrt,x , q5 = Wrt,y , and q6 = Wrt,z .

4.4 Excursus: Computer Vision (CV) 87

to a user-specified goal. Indeed, the CV module is only used for fully-autonomous locomotion
in real experiments. Within simulation, the environment model is instead automatically synthe-
sized from a manually created scene description, which is also used for evaluating multi-body
interactions, see Section 7.4 for details. In other locomotion modes, an explicit environment
model is not required at all. Instead, either level ground is assumed (e. g. for teleoperated walk-
ing) or the contact sequence is specified manually (bypassing the contact planner). Since the
CV system is not in the scope of this thesis, it is only briefly summarized to show its connection
to other components of the locomotion framework. A short introduction into the fundamentals
and state of the art has already been given in Section 2.5.

Revision for Multi-Contact Locomotion The previous CV system of LOLA was developed by
WAHRMANN et al. and was designed to detect the floor (as plane), platforms (as polygon), and
simple obstacles approximated by SSVs, see [6, 429, 430] for details. Within the context of the
multi-contact revision, it has been completely replaced by a novel implementation developed by
WU et al. [446, 448]. For the new CV system, the focus was set on

• SLAM using visual-inertial odometry to minimize the error between model and reality,
• semantic segmentation, i. e., splitting the scene into meaningful objects, and
• classification, i. e., labeling objects to assist the contact planner in decision making.

In our target scenarios for multi-contact locomotion, the hand-environment contacts are meant
to increase the overall robustness and should not introduce additional disturbances due to unex-
pected impacts caused by a misperception of contact surfaces. For this reason, the estimated 6D
pose of the robot should be as accurate as possible. Moreover, the rather coarse approximation
of objects by SSVs is not sufficient anymore. Instead, a more detailed surface representation
(in our case triangle meshes) is required for precise hand placement. However, SSVs are still
used for representing the volume of an object enabling efficient distance calculations for colli-
sion avoidance and proximity tests. Finally, objects have to be classified such that the contact
planner can distinguish between “pure” obstacles (e. g. a swivel chair) and objects allowing po-
tential hand-support (e. g. walls, tables, etc.). The new CV system by WU et al. was specifically
designed with regard to these additional requirements.

Interface Specification Because its development is in large parts decoupled from the rest
of the locomotion system of LOLA, the CV module can be easily replaced by another solution
“plugged into” the generic interface provided by the WPG module. This interface was developed
by the author of this thesis and has been published as a free and open-source C++ library called
am2b-vision-interface [16] (utilizes Broccoli [15] and cpptoml [167] as dependencies). It uses
the enhanced network socket described in Section 4.1, which allows an efficient, compressed
transmission of large data objects under soft real-time53 conditions. An overview of the data
which is cyclically exchanged through this interface is given in the Tables 4.2 and 4.3.

The members tcur and tacq are used to synchronize the clocks of both endpoints and to assign
timing information to a data packet (e. g. the time of capturing images, i. e., the time of the
environment “snapshot”). The WPG further transmits an estimation of the robot’s current state,
in particular with regard to the vision TCP frame (rVTCP, sVTCP, ṙVTCP, and ωVTCP) and the torso
IMU frame (rIMU, sIMU, ṙIMU, and ωIMU), both described in the planning world frame PW. The
robot’s current state is computed by combining (planned) odometry, measurements from the
torso IMU, and joint encoder data through a rather simple sensor data fusion which is described
in more detail in Section 4.5.3. The motion of the VTCP and IMU frame together with the

53While the WPG, SIK, and HWL modules are connected through a shared memory interface within a precisely
timed 1 kHz cycle, a CV system typically runs at a much lower update rate of about 30 Hz (often limited by the
cameras). For comparison: the delay introduced by the (local) Ethernet network and the TCP/IP stacks of both
endpoints is expected to be much less than 3 ms, which would represent < 10 % of the cycle time at 30 Hz.

4.4 Excursus: Computer Vision (CV) 88

Table 4.2: Data transmitted from the WPG to the CV module (see the class ControlToVisionContainer in
am2b-vision-interface [16]). This container is sent with a typical cycle frequency of 100 Hz. The external motion
capture data (last row, gray) is optional and only used for calibration and (offline) analysis.

Symbol Description
tcur current time according to HWL “master” clock (Thread 1 in Figure 4.1)
tacq time of acquiring the data packaged within this container (acc. to master clock)

PWrVTCP position of vision TCP frame described in planning world FoR

PWsVTCP orientation of vision TCP frame described in planning world FoR

PW ṙVTCP abs. transl. velocity of vision TCP frame described in planning world FoR

PWωVTCP abs. angular velocity of vision TCP frame described in planning world FoR

PWrIMU position of (torso) IMU frame described in planning world FoR

PWsIMU orientation of (torso) IMU frame described in planning world FoR

PW ṙIMU abs. transl. velocity of (torso) IMU frame described in planning world FoR

PWωIMU abs. angular velocity of (torso) IMU frame described in planning world FoR

ϕr ,ϕp,ϕy Roll ϕr , pitch ϕp, and yaw ϕy measured by (torso) IMU (raw sensor data)

IMUωIMU abs. angular velocity of IMU described in IMU FoR (raw sensor data)

IMU r̈IMU abs. transl. acceleration of IMU described in IMU FoR (raw sensor data)

– list of high-level signals, e. g. “start calibration”, “reset scene”, etc.
– data stream from external motion capture system (optional)

Table 4.3: Data transmitted from the CV to the WPG module (see the class VisionToControlContainer in
am2b-vision-interface [16]). This container is sent whenever new information about the environment is available
(depends on the cycle time of the reconstruction pipeline).

Symbol Description
tacq time of acquiring the data packaged within this container (acc. to master clock)

PWrVTCP position of vision TCP frame described in planning world FoR

PWsVTCP orientation of vision TCP frame described in planning world FoR

VWrVTCP position of vision TCP frame described in vision world FoR

VWsVTCP orientation of vision TCP frame described in vision world FoR

– list of high-level signals, e. g. “calibration finished”, “reset model”, etc.

– list of terrain patches (height map) to reset or update (see Section 4.5.1)
– list of objects to remove or update (see Section 4.5.1)

raw sensor data of the torso IMU (ϕr , ϕp, ϕy , ωIMU, and r̈IMU) is meant to be used by the CV
system for improving the localization of the robot within the reconstructed scene. Finally, the
WPG module sends a list of high-level signals to control the CV system (forwarded from the
UI), which is typically empty most of the time. The WPG-CV interface is also used to transmit a
pre-processed data stream of the external motion capture system. It has to be highlighted, that
the CV system of LOLA does not use this data during experiments. The external motion capture
data is only used for the purpose of calibration and (offline) analysis, e. g. as “ground truth”
reference for evaluating the performance of the localization method.

In the opposite direction, the CV module transmits recent changes of the environment model
formulated as lists of terrain patches and objects to update, see Section 4.5.1. Moreover, it sends
the pose of the vision TCP frame described in two different FoR: the vision world frame VW and
the planning world frame PW. The first variant (VWrVTCP and VWsVTCP) represents the result of
visual-inertial odometry, e. g. obtained from the tracking camera integrated in the head of LOLA.
The second variant (PWrVTCP and PWsVTCP) is a simple copy of the pose previously received from
the WPG module with the restriction that it was taken from the time when the last image used

4.4 Excursus: Computer Vision (CV) 89

for visual-inertial odometry was captured by the camera. This way, the CV system ensures that
both descriptions of the VTCP frame are synchronized, i. e., linked to the same time tacq. Hence,
through

PWsVW = PWsVTCP ⊗ VW s̄VTCP and PWrVW = PWrVTCP − rotMat
�

PWsVW

�

VWrVTCP
︸ ︷︷ ︸

PWrVW-VTCP

(4.1)

it is possible to determine the current position PWrVW and orientation PWsVW of the vision world
frame described in the planning world frame, which fully specifies the transform PWHVW between
these two frames (cf. Appendix A). Since the environment model is described with respect to the
VW frame54, this information is essential for the WPG which internally uses PW as FoR. Note
that for real-world experiments the transform PWHVW changes over time due to inevitable drift
caused by slippage. By updating PWHVW according to Equation 4.1 with every message received
from the CV system, a feedback loop is realized effectively eliminating any discrepancy between
model and reality caused by drift.

Workflow The CV system developed by WU et al. is built on top of dense mapping algorithms
which utilize the full depth input from the RGB-D sensor located in the head of LOLA (cf. Fig-
ure 3.17). Indeed, two variants of the reconstruction pipeline have been investigated. The first
variant, Semantic Completion Fusion alias SCFusion [446], focuses on the completion of missing
geometry which is typically caused by view occlusion. The missing geometry is extrapolated by
a data-driven deep neural network trained to recognize objects by their shape. Real-time per-
formance is achieved through incremental updates of regions and acceleration through parallel
execution on the CPU and GPU. The second variant, Scene Graph Fusion alias SGFusion [448],
represents a more lightweight and efficient method for scene reconstruction. It fuses the input
depth stream into a map of so-called surfels. Although related work defines the term surfel in
slightly different ways, its core concept of an “oriented disc” is mostly the same. Within the
reconstruction pipeline of WU et al., a surfel explicitly assigns an orientation (describing the
local surface normal), a radius (derived from the local sparsity of the input point cloud), and a
confidence value (measure for the local shape accuracy) to a 3D point representing the center of
the disc. For segmentation and classification of the surfel map, a graph neural network is used.

The source code for both, SCFusion and SGFusion, has been made publicly available through
[447] and [449], respectively. For obtaining the results presented within this thesis, the second,
surfel-based variant was used. In order to generate a representation of the environment which
can be used by the contact planner of the WPG module, the surfel map is further converted into

• a model of the terrain represented as conventional height-map (by “rasterizing” surfels on
a 2D grid aligned with the x-y-plane of the vision world frame),

• a model of the (per-object) surface represented as triangle mesh (by using SurfelMeshing
as introduced by SCHÖPS et al. in [368]), and

• a model of the (per-object) volume represented as SSV segment (by extracting Euclidean
clusters and computing a minimum volume bounding box estimation).

Within this conversion, the confidence value of each surfel is transferred to the corresponding
height map and triangle mesh representations, which makes local confidence information avail-
able to the contact planner. A more detailed specification of the environment model is postponed
to Section 4.5.1. The surfel map reconstruction and the resulting environment model is shown
in Figure 4.4 for two exemplary multi-contact scenarios. For a clearer, animated presentation,
the video [17] is recommended.

54Typically, large parts of the environment model (in particular all regions which do not lie in the current field of
view of the vision sensors) remain static with respect to the vision world frame. Since the relative transform PWHVW
between VW and PW changes over time (drift), describing the environment with respect to the planning world frame
would require frequent and expensive coordinate transformations of the entire model.

https://youtu.be/ovG2Rz9-1p8

4.5 Walking Pattern Generation (WPG) 90

Scene Description Surfel Map Environment Model
Sc

en
ar

io
1:

Le
ft

W
al

l
Sc

en
ar

io
2:

C
or

ri
do

r

Figure 4.4: Scene reconstruction by the Computer Vision (CV) system for two multi-contact scenarios: “Left Wall” (top)
and “Corridor” (bottom). From left to right: description of the scene, reconstructed surfel map (colorized according to
segmentation), and final environment model consisting of the terrain as height map (colorized according to confidence)
and objects represented by triangle meshes (surface) and SSVs (volume). See also the video [17].

4.5 Walking Pattern Generation (WPG)

The WPG system is responsible of planning a feasible motion (in the form of ideal task-space
trajectories) to be transmitted to the subsequent SIK module, see Figure 4.1. For this purpose,
it maintains an environment model and formulates its own simplified representation of the
kinematics and dynamics of the robot, see the Sections 4.5.1 and 4.5.2, respectively. Moreover,
it maintains an estimation of the current state of the robot which is obtained from a fusion of
planned and measured data, see Section 4.5.3. The environment model represents the primary
input of the contact planner which assembles a discrete contact sequence connecting the current
with a user-specified target position. The reduced model of the robot together with the solution
strategy described in Section 4.5.4 is used by the motion generator to derive a kinematically and
dynamically feasible gait. Both, the contact planner and motion generator, are integrated into a
sequential planning pipeline which is introduced in Section 4.5.5.

The original WPG system of LOLA was designed and implemented by BUSCHMANN [100].
At that time, LOLA’s core capabilities were teleoperated walking and rather rudimentary au-
tonomous walking realized through a reactive contact planner which has already been described
in Section 2.3. Later, HILDEBRANDT et al. [13] extended this WPG system by a discrete, A⋆-based
footstep planner which allowed the robot to autonomously step on platforms (represented by
polygons) and bypass or traverse small obstacles (represented by SSVs). In order to enable
multi-contact locomotion, the previous WPG system would have required extensive changes in
almost all parts of the source code. Additionally, after more than 15 years of continuous mod-
ifications and extensions, this module had definitely reached the end of its life, especially with
regard to robustness, efficiency, traceability, coding style, and documentation. For this reason,

https://youtu.be/ovG2Rz9-1p8

4.5 Walking Pattern Generation (WPG) 91

the author of this thesis recreated the entire WPG module from scratch. This resulted in native
support for multi-contact locomotion but also partial footholds, i. e., toe-only contacts of the foot
(e. g. for walking on tiptoes and climbing stairs). Furthermore, the new planning pipeline has
a modern and modular design with clear interfaces, which allows an easy extension and/or re-
placement of components in future. Indeed, the new WPG module represents the author’s main
contribution to the locomotion system of LOLA. The following sections introduce core planning
concepts and give an overview of the planning pipeline, while the actual contact planner and
motion generator are described in the Chapters 5 and 6, respectively.

4.5.1 Environment Model

In order to safely navigate through space, a mobile robot needs information about its surround-
ings. For this purpose, a model of the environment has to be present which translates raw
perception data from the physical world (e. g. a 3D point cloud) into a format which is usable
for path-planning. Note that the state of the art for environment representations has already
been briefly reviewed in Section 2.3 (see also Figure 2.14). For structured environments such
as an industrial plant, one might generate the environment model from a corresponding CAD
model of the facility such that the robot only needs to localize itself. Within the scope of this
thesis, the focus lies on previously unknown and unstructured environments, thus, we assume
that the model is originally generated and cyclically updated by a CV system. From the point
of view of the WPG module, we handle the CV system as a black box since its actual realization
does not matter as long as it supports the interface specified in Section 4.4.

Terrain Although multi-contact locomotion is our primary objective, another core requirement
of the new WPG system is that LOLA must not lose existing biped skills, e. g. stepping up and
down platforms and bypassing or traversing small obstacles. The previous environment descrip-
tion by HILDEBRANDT et al. and WAHRMANN et al. [6, 202] relied on a rather coarse approxi-
mation of the ground by planes (floor) and polygons (platforms). With the new WPG, a more
feature-rich representation of the terrain through a height map is used. Apart from being more
general, this allowed to extend the biped capabilities of LOLA to climbing stairs with short treads
(partial contact) and walking up and down ramps (inclined ground).

In order to allow efficient real-time updates (the field of view of a CV sensor typically covers
only a small part of the entire scene), the terrain is partitioned into so-called patches which are
aligned with the vision world frame VW, see Figure 4.5. This also reduces memory consumption
since patches are only allocated if necessary (dynamic map size).

Terrain Patches Height Confidence Quadtree
y

x

VW

Stairs:

Ramps:

64× 64

x

z
x

z
sensor

field of view

c v
is

1
0

da
ta

pr
op

ag
at

io
n

le
ve

lo
fd

et
ai

l

z
x

CV

Figure 4.5: Representation of the terrain within the new environment model formulation. From left to right: partitioning
of the x -y-plane of the VW frame into patches (each containing 64× 64 cells of size 1 cm× 1 cm); discrete per-cell
height values approximating the shape of the ground (resolution 1mm); discrete per-cell confidence values cvis (256
steps, e. g. derived from the distance to the CV sensor and/or the local point cloud sparsity); single terrain patch
formulated as a quadtree (7 levels, 27−1 = 64) storing minimum, maximum, and mean of height and confidence data.

4.5 Walking Pattern Generation (WPG) 92

Each terrain patch consists of 64 × 64 = 4096 cells, where each cell stores an individual
height and confidence value. Since the z-axis of the VW frame is defined55 to point into the
opposite direction of gravitational acceleration (see Section 4.2) and the terrain patches lie in
the x-y-plane, the height value indeed represents the “real” (physical) height of a cell relative to
a horizontal ground plane. The confidence value cvis ∈ [0, 1] indicates with which certainty the
corresponding cell has been observed by the CV system. Here, a value of 1 denotes the highest
possible confidence, while 0 indicates that the corresponding cell has not been detected yet. The
confidence data will be used by the contact planner to avoid uncertain regions.

With a horizontal resolution of 1 cm and a vertical resolution of 1 mm, the discretization of
the terrain is rather fine when compared to related work. In general, using a high-res terrain
for contact planning leads to a more accurate placement of footholds which typically leads to
better overall results. Unfortunately, this also implies higher computational costs. In order to
maintain real-time performance, the contact planner presented in Chapter 5 is designed to work
on different levels of detail (coarse to fine). For this reason, we implement each terrain patch as
a quadtree (7 levels), where the lowest level cells store the data obtained from the CV system
and the higher level cells are filled by propagating data upwards (fine to coarse). Each cell of
the quadtree stores minimum, maximum, and mean of the corresponding height and confidence
values such that comprehensive terrain information is available on different levels of detail.

Objects Previously, each environmental object was modeled by an enclosing SSV segment only,
cf. WAHRMANN et al. [6]. Since bypassing and traversing obstacles can be realized using the
newly introduced height map, an explicit object representation is not required to this end. How-
ever, in contrast to the previous system, the new WPG does not handle objects exclusively as
obstacles but instead may use them for additional hand support. Thus, we need to model ob-
jects independently of the terrain. In particular, an accurate representation of the object’s surface
is required for precise hand placement during multi-contact locomotion. Moreover, an approxi-
mation of the object’s volume is necessary for efficient distance evaluations within collision and
proximity tests. We formally specify an environmental object through (see also Figure 4.6)

• a unique identifier for efficient handling within an object database,
• its classification (e. g. “floor”, “wall”, “table”, “chair”, etc.),
• the 6D pose (VWrEO, VWsEO) of the object’s local frame “EO” relative to the VW frame,
• a surface model formulated as a triangle mesh described in the EO frame, and
• a volume model formulated as an SSV segment described in the EO frame.

Relative Pose

VW y

z

x

y

z

x

Volume ModelIdentifier

Classification

Surface Model

EO

VWHEO

csurf0 1

triangle
mesh

SSV
segmentadd()

Object Database

update()

ID ID ID

remove()

“floor” “wall” “table”

indexed

Figure 4.6: Representation of an object within the new environment model formulation. From left to right: unique
identifier for efficient handling within an object database; classification (e. g. derived by CV system from semantics);
relation between Environmental Object frame “EO” and vision world frame VW; surface modeled as indexed triangle
mesh (colorized according to local surface confidence csurf, cf. Section 5.5.2); volume modeled as SSV segment.

55In our case, the CV system guarantees this by initializing the VW frame in a static configuration using measure-
ments of the IMU (the one integrated into the tracking camera) to identify the direction of gravitational acceleration.

4.5 Walking Pattern Generation (WPG) 93

Describing the surface and volume model relative to the local EO frame allows efficient updates
of an object’s pose without expensive transformation of geometry data (e. g. for moving rigid
objects). The surface is modeled as an indexed triangle mesh which contains buffers for

• vertex coordinates described in the EO frame (alias vertex buffer),
• per-vertex normals described in the EO frame (alias normal buffer),
• per-vertex (real-world) colors used for visualization purposes (alias color buffer),
• per-vertex confidence values (alias confidence buffer), and
• 3-tuples of vertex indices where each tuple specifies a triangle (alias index buffer).

Within the scope of this thesis, we assume that the CV system transmits only non-degenerated
triangles (non-zero area). Moreover, we require neighboring triangles to be coupled through
their vertices (same vertex indices of shared edge). This gives us the required topology informa-
tion for building the n-ring neighborhoods for vertices, edges, and triangles, such that we can
efficiently “move along” the surface. This is used in Chapter 5 to find an optimal contact point
for hand support. Note that the mesh does not necessarily have to be closed, i. e., there might
be one or multiple “borders” (edges which are connected to a single triangle).

The normal buffer carries additional information about the local shape of the surface. If
not provided by the CV system, angle weighted normals (as introduced by THÜRRNER and
WÜTHRICH [410]) are computed as fallback. Besides an individual normal and color (used for
visualization only), each vertex is also linked to a certain confidence value. For surface models,
the WPG module distinguishes between the visual perception confidence cvis describing a mea-
sure for the local shape accuracy and the multi-contact / surface confidence csurf as a local metric
justifying how well the corresponding point is suited for a potential hand contact. The visual
perception confidence cvis is transmitted by the CV system similar to the terrain confidence. The
surface confidence csurf represents a fusion of the visual perception confidence, the local mesh
curvature, and the distance to the surface boundary (for open meshes). See Section 5.5.2 for
details on the pre-processing of environmental surfaces.

There are much less constraints with respect to the volume model. Indeed, the only re-
quirements are that the SSV segment represents a meaningful approximation of the object’s
geometry and that it covers the entire geometry, i. e., it encapsulates all triangles of the surface
mesh. Since the SSV segment is used for collision avoidance, a too small volume (not fitting the
entire object) is not allowed. In contrast, a too large volume is still valid but may have negative
influence on the performance of the contact planner.

Real-Time Logging For the purpose of analysis, debugging, and visualization, it is necessary
to log the environment model. Especially for dense scenes with many objects the amount of data
becomes considerable. Hence, in order to maintain real-time performance within experiments,
one has to carefully select the format in which the environment model is logged. Here we choose
a hybrid approach which combines simplicity and readability for lightweight data and efficiency
and compactness for heavyweight components.

For the enclosing container and small data such as object identifiers, classifications, and
6D poses, the human-readable Tom’s Obvious Minimal Language (TOML) [351] is used. As a
configuration file format, TOML is simple to write and parse and makes manual modifications
easy (e. g. for debugging purposes). Since an object’s volume is simply described by a group of
point-, line-, and triangle-SSV elements, we directly embed it into the TOML container.

For the triangle mesh describing an object’s surface, we use the Polygon File Format (PLY)
[416]. PLY is a native format for indexed triangle meshes with per-vertex normals and colors
and comes with a computationally efficient binary variant (uncompressed). Moreover, it allows
custom attributes which is used in our case to encode per-vertex confidence values. For terrain
patches and their corresponding quadtrees, the Portable Anymap Format (PNM) [347] as col-
lection of native 2D raster image formats is used. Besides a Boolean variant, the PNM family

4.5 Walking Pattern Generation (WPG) 94

includes also a one- and three-channel (each 8bit or 16bit depth) pixel format. Depending on
the type of 2D data, we pick the variant with the least overhead. The PNM formats are rather
simple and lack (integrated) compression. However, their binary variants allow extremely fast
reading and writing (copy of entire memory block) such that they are a suitable choice for
real-time systems. Another advantage is the wide support by image manipulation software.

For interfacing the TOML format, the cpptoml [167] library is used. In contrast, custom
implementations are used for the PLY and PNM formats (see the module io in Broccoli). This
allowed further optimizations and an efficient integration into the WPG module. Depending on
the type of experiment, either the entire environment model or its components (e. g. triangle
meshes and terrain patches) are compressed using zlib [165] to reduce memory consumption.
Moreover, PLY and PNM structures are either referenced as separate files, or directly embedded
into the TOML container using the well-known Base64 [222] binary-to-text encoding.

4.5.2 Reduced Kinematic and Dynamic Model

The WPG proposed within this thesis plans abstract motion based on a simplified representation
of the robot. In the following, reduced models of LOLA’s kinematics and dynamics are presented
which together provide a reasonable approximation of the full system while still allowing an
efficient online evaluation. In Chapter 6, these models will be used to plan a kinematically
(joint limits) and dynamically (balanced gait) feasible motion in task-space. Note that the state
of the art for simplified robot models has already been briefly reviewed in Section 2.4.

Idle Pose As preparation, we first introduce the so-called idle pose as the configuration of the
robot which represents “default standing” shown in Figure 2.21 right. In particular, we define
the task-space vector xidle such that

• the GCoM coincides with the centroid of the SP (static equilibrium with maximum safety
margins) while the CoM has a height of 0.9 m above the ground,

• the upper body is upright (WsUB = 1H),
• the feet are parallel to each other and have full contact with the ground (Ws f = 1H and

qzfr|l = 0) while their TCPs have a lateral separation of 0.275 m,
• the hand TCPs have a lateral separation of 0.68 m, a height of 0.97 m above the ground,

and a shift in positive walking direction of 0.22 m relative to the foot TCPs, and
• the head is inclined to look at the ground in front of the robot (qvp = 0 and qvt = −25◦).

The given default height of the CoM has proven to be a suitable choice since slightly bent knees
provide a certain kinematic “reserve” (e. g. for walking on uneven ground). Note that due to
the two joints in the pelvis of LOLA, an outstretched knee does not represent a singularity in
general. Within idle, the only EEs in contact are the feet such that we choose the hands to be in
null-space. However, we still define an idle position for the hands since it will be used as starting
point for blending the hands from null- to task-space, see Section 6.9 for details.

After defining the idle pose in task-space xidle, we can compute the corresponding joint-space
configuration qidle. For this purpose, we simply trigger the same velocity-level IK as used by the
SIK module and stop the iteration upon convergence (

∆qidle

 ≤ ϵ). Since we define the idle
pose to be static, we use vidle = 0 which consequently leads to q̇idle = 0. Indeed, each action of
the robot (e. g. teleoperated walking, autonomous walking, balancing, etc.) is planned to start
and end in the static idle pose. This guarantees that actions can be chained arbitrarily.

The Models The reduced models for LOLA’s kinematics and dynamics are depicted in Fig-
ure 4.7 while their constant parameters are specified in Table 4.4. The kinematic model has a
strong focus on the leg mechanism in the sagittal plane which is in particular relevant to avoid

4.5 Walking Pattern Generation (WPG) 95

joint limits when climbing stairs. In contrast, the dynamic model considers the system as a
whole and approximates the robot by five point masses and an additional mass moment of in-
ertia. The models are coupled through the positions of the foot and hand TCPs and the position
of the “virtual” torso alias Reduced Model Torso (RMT), in the following abbreviated with “t”.
Attention: The RMT is not to be confused with the “physical” torso segment of the robot, whose
position is not part of the task-space vector x and therefore not known to the WPG. Instead, the
RMT describes the position of the central mass element of the five-mass model.

Table 4.4: Parametrization of the reduced kinematic and dynamic model of the robot (see also Figure 4.7). The
lengths li and the diameter dh are derived from the CAD model of the robot. An exception is l7, which is computed
from the idle pose (x idle, qidle) by resolving the kinematic chain l1 . . . l7 for the default CoM height of 0.9 m. The mass
proportions M f with f ∈ {RF, LF} and Mh with h ∈ {RH, LH} are related to a single foot or hand, respectively.

Parameter Description Parameter Description Parameter Description
l1 = 48 mm ...toe height l8 = 108.5 mm ...heel height l15 = 482.3 mm ...backbone length
l2 = 14.5 mm ...toe shift l9 = 46.5 mm ...heel shift l16 = 446 mm ...shoulder width
l3 = 130.1 mm ...mid foot length l10 = 85 mm ...toe length l17 = 383 mm ...upper arm length
l4 = 60.5 mm ...mid foot height l11 = 85 mm ...heel length l18 = 345 mm ...lower arm length
l5 = 430 mm ...lower leg length l12 = 276.1 mm ...foot length dh = 100 mm ...hand diameter
l6 = 440 mm ...upper leg length l13 = 220 mm ...foot width M f = 11 % ...foot mass proportion
l7 = 252.9 mm ...distance hip to RMT l14 = 246 mm ...hip width Mh = 2 % ...hand mass proportion

5-Mass Model (3D)Leg Kinematics (2D)Foot GeometryMain Dimensions
Foot Sole:

Ankle/Toe Kinematics: (2D)

mLHmRH

rLH
dh

mLFmRF

mt

Θt
t

rLFrRF

rt

rCoM

ϕ f

−ϕzf

−ϕUB

r f

r f

l1

l2
l3

l4 l5

l6

l7

l9
l8

(center)

−ϕsf
ϕkf

−ϕhf

l11 l10

l13

l12

(center)

Heel

l5 l5

l6 l6

l14

l15

l16

l17l17

l18

r f

rh

RMT

Toe

W h
h,ext

rsf

Figure 4.7: Reduced models of LOLA’s kinematics and dynamics as used by the WPG. From left to right: overview
of characteristic dimensions; foot sole model approximating the contact pads by a rectangular toe and heel segment
(green); simplified 2D (sagittal plane) ankle and toe kinematics; simplified 2D (sagittal plane) leg kinematics; five-mass
model approximating the robot’s 3D dynamics. With li , the corresponding 3D dimension is meant and not the projected
length. Angles ϕi highlighted in orange indicate that the corresponding rotational DoF is not (explicitly) defined by
the task-space vector x . The CoM of the five-mass model (blue) defines also the (desired) CoM of the full robot.
The kinematics and dynamics are linked through the positions re of the EE masses me (with e ∈ {RF, LF, RH, LH})
and the position rt of the “virtual” torso mass mt alias Reduced Model Torso (RMT). Multi-contact dynamics are
incorporated through the external contact wrench W h

h,ext. Constant parameters are specified in Table 4.4.

Kinematics The approximation of the robot’s main dimensions and foot geometry allows ef-
ficient checks for reachability (multi-contact) and state feasibility (footholds) within contact
planning. The simplified model of the leg is mainly used by the motion generator to compute an
upper and lower bound for the vertical RMT position Wrt,z during challenging maneuvers. The

4.5 Walking Pattern Generation (WPG) 96

2D leg mechanism is derived from a projection56 of the corresponding joints onto the sagittal
plane. Indeed, the kinematic model is almost identical to the one introduced by HILDEBRANDT

et al. in [8]. However, this thesis uses different approaches for computing the vertical RMT
boundaries (see Appendix E) and applying them to Wrt,z (see Section 6.14). Note that junctions
and endpoints in the presented kinematic model indicate special physical locations, e. g. a joint
axis or a TCP. An exception is rt, which denotes the position of the purely “virtual” RMT. As
a consequence, we cannot derive l7 (the constant distance from the hip to the RMT) from the
CAD model of the robot. Instead, l7 is computed by resolving the kinematic chain from r f to rt
in the idle pose (with Wrt,z obtained from Equation F.9 using the CoM height in idle).

Dynamics The five-mass model shown in Figure 4.7 is an extension of the three-mass model
originally introduced by BUSCHMANN et al. in [98] (see Section 2.4). In particular, the five-mass
model adds

• hand masses mh to incorporate the dynamic effects of fast arm motion,
• a dynamic mass distribution to allow blending the hands between null- and task-space,
• a mass moment of inertia tensor Θt linked to the “virtual” torso (centered at the RMT) to

incorporate the dynamic effects of upper body rotation, and
• arbitrary (known) external contact wrenches Wh

h,ext to incorporate multi-contact effects.

In case the hand h ∈ {RH, LH} is blended into null-space, the actual position rh of mh is a result
of the (local) null-space optimization performed by the SIK module and thus, not known to the
WPG in advance. In order to avoid wrong contributions to the overall dynamics, we set mh = 0
in this case. In particular, we use the dynamic mass distribution

m f := M f m= const. , mh(t) := ξh(t)Mh m , mt(t) := m−
∑

e

me(t) (4.2)

with f ∈ {RF, LF}, h ∈ {RH, LH}, e ∈ {RF, LF, RH, LH}, where m := 67.3 kg denotes the total
mass of the robot (derived from the CAD model) and M f and Mh are constant mass proportions
for a single foot and hand, respectively. With ξh(t), we introduce a time-dependent task-space
selection factor for each hand which is bound to ξh ∈ [0, 1] where ξh = 0 means that the cor-
responding hand is entirely in null-space and ξh = 1 means that it is entirely in task-space. In
order to avoid discontinuities, ξh will be planned as a C2-continuous blending function (see Sec-
tion 6.11 for details). Note that changes of the hand masses mh are compensated by mt such
that the total mass

m= mt(t) +
∑

e

me(t) = const. (4.3)

remains constant and there is no mass transport over system boundaries. A minor drawback
of this approach is that one has to pay special attention to the time-dependent masses during
analysis. A comprehensive derivation of the EoM of the five-mass model is given in Appendix F.

The constant mass proportions M f and Mh are not chosen arbitrarily but instead are the
result of a parameter optimization which has been performed by LEYERER within the context
of his term paper [29]. In his work, LEYERER investigated two planar projections of the five-
mass model (sagittal and frontal plane). These planar models are extended by foot-ground
contacts realized through a linear spring/damper pair located at both ends of each foot sole
(sagittal plane: toe/heel; frontal plane: inside/outside). Except for the hand masses, this is
equivalent to the prediction model introduced by WITTMANN et al. [439], which has proven to
deliver a reasonable approximation of LOLA’s dynamics – in particular with regard to disturbance
rejection. Hence, the same values for the (initial) mass distribution, the mass moment of inertia,
and the stiffness/damping of the foot-ground contacts have been used.

56For walking on curved paths, the 3D motion of the robot is projected onto a “mean” sagittal plane determined by
the orientation of the left and right foot, see also Section 5.1.

4.5 Walking Pattern Generation (WPG) 97

The actual optimization is given by the following steps:

1. Simulate a standard locomotion sequence (straight walking) with the full multi-body
model of the robot using the existing simulation framework of LOLA (as “ground truth”).

2. Specify the initial mass distribution, i. e., the set of masses for the feet, hands, and torso.

3. Simulate the five-mass model in the sagittal and frontal plane separately. The “internal”
motion of the robot (task-space trajectories defining the relative position of the masses) is
copied from the results of Step 1, while the “external” motion of the robot (floating-base
displacement and inclination) is to be computed based on the effects of gravity, inertia,
and the foot-ground contact.

4. Compute a global cost value accounting for the discrepancy between the motion of the
five-mass model and the full multi-body system (vertical position and planar rotation of
upper body). The cost further includes penalties to avoid negative masses and to prefer a
total mass close to the actual weight of the robot.

5. Select a new mass distribution based on the governing optimization scheme and repeat
starting from Step 3 or stop upon convergence. Due to the complex dynamics of legged
locomotion, local solvers tend to get stuck in local minima. Thus, global optimization
techniques based on PSO [282] and genetic algorithms [105] were used instead.

The optimization resulted in the mass distribution specified in Table 4.4. It has been shown
in [29] that the five-mass model is indeed a reasonable approximation of the full multi-body
dynamics – even for a relatively long time horizon of 10 s. A summary of LEYERER’s term paper
providing more details on the conducted parameter optimization has been published in [4].

Note that the resulting optimum hand masses are rather small which can be attributed to the
rather simple realization of the arms. If fully articulated hands are added in a future revision
of LOLA, the optimum Mh is expected to be higher. Moreover, the hand masses of the five-
mass model can also be used to incorporate the dynamic effects of carrying a payload in a
loco-manipulation use-case (by adding the object’s mass to mh). For controlling the trajectory
of the payload, the hands have to be assigned to the task-space (i. e. ξh = 1) such that the
gravito-inertial effects of carrying the object properly contribute to the overall dynamics.

After specifying M f and Mh, it is left to define the mass moment of inertia tensor of the
virtual torso Θt, which is meant to account for the dynamic effects of upper body rotation. For
simplicity, it is derived from the inertia tensor of the physical torso segment, i. e.,

UBΘ
t
t :=





1.03 0.0 −0.27
0.0 1.1 −0.01
−0.27 −0.01 0.27



kgm2 . (cf. tΘ
t
t from Table H.1) (4.4)

Note that UBΘ
t
t is constant because it is specified with respect to the RMT (“t”) and the upper

body frame (“UB”) which together define the pose of the virtual torso. It has to be mentioned
that the mass moment of inertia has only a rather small contribution to the overall dynamics
since the current gait of LOLA is characterized by an upright upper body. Thus, integrating a mass
moment of inertia into the five-mass model can be seen as preparation for future investigations
which may use a non-constant upper body inclination during locomotion. In this case, one may
also find a better parametrization by performing an optimization similar to the one for the mass
distribution. For now, Θt only affects walking along curved paths (rotation around vertical axis)
and special actions such as taking a bow (rotation around horizontal axis).

Finally, it has to be mentioned that there are also other works which approximate the dy-
namics of a humanoid robot by a five-mass model. An example is [295] by LUO et al., where
the masses for the legs and arms however are not located in the EEs (TCPs) but instead in the
center of the corresponding limbs (knee/elbow). Moreover, LUO et al. use a different approach
for motion generation based on the ZMP preview control by KAJITA et al. [233].

4.5 Walking Pattern Generation (WPG) 98

4.5.3 State Estimation

A locomotion system typically needs information about the current state of the robot. While joint
angles can simply be obtained from rotary encoders, the six passive DoF of a mobile robot are
much harder to determine. As already explained in Section 3.4, even the high-end IMU located
in the torso of LOLA is subject to drift and does not (directly) provide a sufficiently accurate 6D
pose. In the following, a rather simple method for determining the current state is presented. It
is based on a fusion of different data sources and meant to provide only a rough estimate with
moderate short-term accuracy. For better results, one might switch to a model-based approach
instead (e. g. [394] or [450]). Note that high long-term accuracy is achieved separately through
a visual-inertial localization performed by the CV system, see Section 4.4.

In order to estimate the current state on position and velocity level given by qcur, q̇cur, xcur,
and vcur, the following steps are performed within each cycle of the main WPG loop (Thread 5
in Figure 4.1):

1. Initialize the position Wrt,cur and translational velocity W ṙt,cur of the torso segment with
the planned position/velocity from the previous WPG cycle. Note that the IMU provides a
signal for translational acceleration, however, integration would lead to significant drift.

2. Compute the orientation Wst,cur of the torso segment as combination of the orientation
measured by the IMU (horizontal components only) and the planned orientation from
the previous WPG cycle (vertical component only). Note that the used IMU is capable of
canceling drift of rotation around the horizontal axes (gravity compensation) which is not
possible for the rotation around the vertical axis. The angular velocity Wωt,cur of the torso
segment is simply set to the drift-free measured angular velocity of the IMU.

3. Assemble the current state in joint-space qcur and q̇cur through concatenating the measure-
ments of the joint encoders and the 6D torso pose from Step 1 and 2.

4. Compute the current state in task-space xcur and vcur through evaluating FK(qcur, q̇cur).

5. Apply a translational shift to the entire robot (qcur, q̇cur, xcur, and vcur), such that the
position and translational velocity of the foot TCPs (“mean” frame) match the planned
values from the previous WPG cycle. We use the “mean” of the RF and LF frame – even in
the SS phase where only one foot is in contact – since using the SF frame would result in
discontinuities whenever the stance foot switches.

Through incorporating inclination measurements in Step 2 and performing the translational
shift described in Step 5, we indirectly realize an inverted pendulum model for the robot (entire
robot rotates around the foot-ground contact acting as pivot point). However, the presented
state estimator considers kinematics only (no dynamics involved).

From the estimated state of the robot we can compute the current pose of the VTCP and IMU
frame, which are both transmitted to the CV system, see Table 4.2. Currently, the contact planner
and motion generator of LOLA do not make use of the state estimation. This is mainly because
the WPG considers a certain planning horizon while the presented sensor data fusion only pro-
vides the current state without any extrapolation or prediction. Moreover, a drift-compensated
localization of the robot within its environment is indirectly realized through the continuously
updated transform PWHVW, see Section 4.4.

In order to get an idea of the long-term accuracy, i. e., the magnitude of drift to be com-
pensated by the visual-inertial localization of the CV system, the output of the state estimator
has been evaluated within simulations and real-world experiments. Figure 4.8 shows the trans-
lational (∆rx |y) and rotational (∆ϕz) drift for a scenario where LOLA is commanded to walk
along an S-shaped path. Within the simulation, we use the simulated (full multi-body system)
6D-motion of the torso as reference. For the real-world experiment, the reference motion is
obtained from optical tracking (external motion capture system by Vicon Motion Systems). Since
the simulation cannot consider the full spectrum of real-world disturbances, the drift observed

4.5 Walking Pattern Generation (WPG) 99

within experiments is significantly higher (here: max(|∆rx |y |) ≈ 60mm and max(|∆ϕz|) ≈ 3.5◦

within the first 12 s). The drift is caused by slippage in the foot-ground contact which becomes
worse for walking on curved paths, i. e., with foot rotation around the vertical axis. Apart from
this, the drift is also strongly affected by the step length and duration (walking speed) and the
surface properties of the ground.

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

t / s

∆
r x
|y
/

m
m

,∆
ϕ

z
/

m
ra

d

Simulation
∆rx ∆ry ∆ϕz 0

0 2 4 6 8 10 12
−80

−60

−40

−20

0

20

40

t / s

∆
r x
|y
/

m
m

,∆
ϕ

z
/

m
ra

d

Experiment

∆rx ∆ry ∆ϕz 0

x
y

z

t = 0s t = 12 s t = 26 s

5m

Figure 4.8: Drift of odometry for walking on a curved path. The plots show the translational and rotational error of
the (estimated) torso pose relative to the reference (simulation: full multi-body system; experiment: external motion
capture). At t = 0, all frames are aligned to start with ∆rx |y(0) =∆ϕz(0) = 0.

4.5.4 Solution Strategy

A motion generator for legged locomotion is mainly characterized by its strategy for accomplish-
ing kinematic and dynamic feasibility. There exists a variety of approaches which have already
been briefly summarized in Section 2.4. For LOLA, the main focus lies on robust and (compar-
atively) fast, gaited locomotion which is planned in real-time. Moreover, versatility is preferred
over locomotion efficiency as a general premise. In accordance with these boundary conditions,
the motion generator presented in this thesis uses a “classical” approach based on the combina-
tion of the ZMP concept with a simplified model of the robot. This section gives an overview of
the solution strategy, i. e., the main workflow for planning a corresponding CoM motion. Details
on the actual generation of task-space trajectories are given in Chapter 6. The relations to the
state of the art – including advantages and limitations of the presented approach – have already
been discussed in Section 2.4.

4.5 Walking Pattern Generation (WPG) 100

Contact Wrench and Zero-Moment Point (ZMP) The main idea of the ZMP and how it can
be used to evaluate dynamic feasibility in legged locomotion has already been discussed in
Section 2.4. It is left to formally relate the ZMP to the contact wrench so that it can be used
in combination with the five-mass model. For this purpose, we assume a biped robot with
either one foot (SS phase) or both feet (DS phase) in contact with level ground, see Figure 4.9.
Indeed, the following considerations also hold true for robots with more than two feet (e. g.
quadrupeds). Moreover, the feet do not have to be of rectangular shape. The only requirement
is a non-degenerated SA (ASA > 0) such that a ZMP can exist.

r ZMP

W
x

y

z

Double Support (DS)Single Support (SS)

SA

LF

RF

WW
f ,cont

WRF
RF,cont

W LF
LF,cont

WZMP
f ,cont

g

r LF

rRF

r ZMP

ZMP walking

direction

W
x

y

z

LF = SA

WW
f ,cont

W LF
LF,contWZMP

f ,cont

g

r LF

ZMP

walking

direction

Figure 4.9: Formulation of the foot-ground interface of a biped robot in the SS (left) and DS (right) phase using the
Zero-Moment Point (ZMP). The contact wrench acting on the robot can be described either with respect to the feet
(WRF

RF,cont and W LF
LF,cont), the world frame (WW

f ,cont), or the ZMP (WZMP
f ,cont) for which the horizontal torque components

vanish. The footholds are assumed to lie in a plane parallel to the x -y-plane of the world frame (perpendicular to g).

Within the scope of this thesis, we require the gait to be dynamically balanced such that
the ZMP stays within the SA at all times and coincides with the CoP and FRI point [428]. The
foot-ground contact wrench acting on the robot can be described either by

WRF
RF,cont := [FT

RF,cont, TT
RF,cont]

T and WLF
LF,cont := [FT

LF,cont, TT
LF,cont]

T , or (individual wrenches)

WW
f ,cont := [FT

f ,cont, TT
f ,cont]

T , or (combined wrench at world frame origin)

WZMP
f ,cont := [FT

ZMP, TT
ZMP]

T . (combined wrench at ZMP)

(4.5)

The relationship between these wrenches is given through the equality of forces and torques:

Ff ,cont = FZMP = FRF,cont + FLF,cont ,

T f ,cont = TZMP + rZMP × FZMP = TRF,cont + rRF × FRF,cont + TLF,cont + rLF × FLF,cont ,
(4.6)

where rRF = rW-RF, rLF = rW-LF, and rZMP = rW-ZMP denote the position of the foot TCPs and the
ZMP relative to the world frame, respectively. By inserting the definition of the ZMP

WTZMP :=
�

0, 0, WTZMP,z

�T
(horizontal torque components vanish at ZMP) (4.7)

into Equation 4.6, we further find the relation

WT f ,cont = WTZMP +WrZMP ×WFf ,cont =





0
0

WTZMP,z



+





WrZMP,x

WrZMP,y

WrZMP,z



×





WF f ,cont,x

WF f ,cont,y

WF f ,cont,z



 (4.8)





WT f ,cont,x

WT f ,cont,y

WT f ,cont,z



=





WrZMP,y WF f ,cont,z −WrZMP,z WF f ,cont,y

WrZMP,z WF f ,cont,x −WrZMP,x WF f ,cont,z

WTZMP,z +WrZMP,x WF f ,cont,y −WrZMP,y WF f ,cont,x



 . (4.9)

4.5 Walking Pattern Generation (WPG) 101

The first two rows of Equation 4.9 will be combined in Section 6.14 with the EoM of the five-
mass model to formulate a decoupled BVP describing the horizontal RMT motion.

Obviously, the assumption of level ground required by the ZMP does not apply for scenarios
with non-coplanar foot-ground contacts such as climbing stairs. Since the kinematic capabilities
of LOLA allow only moderate step heights anyway (potentially less than 15 cm per step), the error
introduced through violation of this requirement is assumed to be small and thus, considered as
minor disturbance. In contrast, considering hand-environment interactions as planned (known)
external wrenches acting on the five-mass model (see Wh

h,ext in Figure 4.7) allows to incorporate
multi-contact effects without violating any ZMP requirements, see also Figure 2.20.

Planning the CoM Motion Similar to most other ZMP-based WPGs, the motion generator
presented within this thesis solves the so-called inverse problem [233], i. e., it first plans a ZMP
reference trajectory which is then used to derive the corresponding (desired) CoM motion using
the reduced model introduced in Section 4.5.2. The particular workflow of the WPG for planning
a kinematically and dynamically feasible CoM motion is visualized in Figure 4.10. Note that
the idealized task-space trajectories generated by the WPG are modified by the subsequent SIK
module such that the real (executed) CoM and ZMP trajectories differ from their reference.

Contact Planning
•discrete foot/hand poses {re,i}, {s f ,i}
•discrete external wrenches {W h

h,ext,i}
•timing, step height, contact type, ...

environment

UB/EE Planning

•foot/hand/toe motion re(t), s f (t), qzfr|l(t)
•upper body orientation sUB(t)

•head orientation sVTCP(t)

•external wrenches W h
h,ext(t)

•task-space selection vector ξ(t)
•load vector γ(t)

SA/ZMP Planning
•SA: ground proj., convex hull, margins
•ZMP: purely geometric (based on SA)

model

CoM Planning
•reduced model: five-mass model
•CoM trajectory rCoM(t) =

∑

. . .

pose

sequencecontact

foothold
sequence

goal

•upper/lower bound for RMT height
•reduced model: 2D leg kinematics

•vertical RMT trajectory Wrt,z(t)

Horizontal RMT

•decoupled second-order linear BVP
•reduced model: five-mass model

•horizontal RMT trajectory Wrt,x |y(t)

W rt,x |y (t)W rt,z (t)

trajectoryZMP

UB/EE
trajectories

RMT Planning

(iteration)

trajectoriesEE

RMT
trajectory

Vertical RMT

Figure 4.10: Schematic showing the main workflow for planning a feasible CoM motion within an autonomous multi-
contact locomotion scenario. The kinematic and dynamic feasibility is achieved through incorporating the simplified
(2D) leg kinematics and the five-mass model (cf. Section 4.5.2) within the planning of the vertical and horizontal RMT
trajectory. The CoM is simply a result of the combined EE and RMT motion.

The entire process starts with the contact planner which uses the environment model to gen-
erate a feasible contact sequence guiding the robot from its current location to a user-specified
goal. The sequence represents a chain of discrete poses for the feet and hands ({re,i}, {s f ,i}),
which is extended in multi-contact situations by a desired (planned) external contact wrench
{Wh

h,ext,i} acting at the corresponding hand. Moreover, auxiliary parameters for specifying the
motion in-between two discrete poses (e. g. timing, step height for stepping over obstacles, etc.)
and the type of foot-ground contacts (full/partial/tiptoe, cf. Section 5.1) are added. The con-
tact sequence is formulated as a list of Quasi-Planar Walking Transitions (QPWTs) which will be
explained in more detail in Section 5.3.

4.5 Walking Pattern Generation (WPG) 102

The contact sequence is then passed to the generation of upper body and EE motion. In
particular, this section generates trajectories for the upper body orientation sUB(t) (upright in
most scenarios), the foot and hand poses (re(t), s f (t)), the toe joint angles qzfr|l(t) (for large
step lengths, tiptoe walking, etc.), the head orientation sVTCP(t) (controlling the field of view of
the CV sensors), the task-space selection vector ξ(t) = [ξRH(t), ξLH(t)]

T (enabling/disabling the
hands for multi-contact), the load vector57 γ(t) = [γRF(t), γLF(t), γRH(t), γLH(t)]

T, and the ex-
ternal wrenches Wh

h,ext(t) (multi-contact). These components are computed using rather simple
heuristics connecting the discrete states of the contact sequence by smooth trajectories.

The sequence of footholds (as subset of the contact sequence) is further used to compute
the SAs for each DS and SS phase of the walking pattern. Based on geometric considerations,
a ZMP trajectory is planned such that the ZMP lies inside the current SA at all times (dynamic
balance). The ZMP motion is fed – together with the upper body and EE trajectories – into the
RMT planner. The computation of the RMT position Wrt = [Wrt,x , Wrt,y , Wrt,z]

T is separated into
subroutines for generating the vertical Wrt,z(t) and horizontal Wrt,x |y(t) motion. At this point,
the reduced model from Section 4.5.2 comes into play: while the simplified 2D leg kinematics
are used to determine an upper and lower bound for Wrt,z(t) (kinematic feasibility), a decoupled
second-order BVP for Wrt,x |y(t) is formulated based on the five-mass model and the ZMP motion
(dynamic feasibility). Since the computation of the vertical RMT component requires knowledge
about the horizontal RMT components and vice versa, both subroutines are embedded within an
iteration. Finally, the CoM trajectory rCoM(t) is computed by combining the EE and RMT motion
using the five-mass model. Note that special attention has to be paid to the time-dependency of
masses (blended through ξh(t), cf. Equation 4.2 and Appendix F).

4.5.5 Planning Pipeline

Following the presentation of the solution strategy in the previous section, it is left to discuss the
realization of the WPG and its integration into the governing locomotion framework presented
in Figure 4.1. As already explained in Section 2.2, legged robots need a carefully thought-out
software design in order to satisfy the hard real-time requirements. This applies in particular
to interfaces between lower and higher levels of the locomotion system. Indeed, the WPG
represents such an interface as it connects the CV system (large data, low update rate) with
the SIK module (small data, high update rate). Moreover, the WPG involves heavy-duty tasks
on its own (e. g. contact planning), which must not jeopardize the real-time capabilities of the
locomotion system. For this reason, the WPG is split into sub-routines running either on the
main WPG loop (Thread 5 in Figure 4.1, cyclic processing @1 kHz) or in dedicated asynchronous
threads (Thread 6+8 in Figure 4.1, event-triggered acyclic processing). These domains are
connected through thread-safe data containers representing

• the (Planning) Context as a knowledge database holding all relevant information and
• the (Motion) Plan as an analytic description of the resulting task-space motion which will

be specified in the Sections 5.2 and 6.2.

The actual contact planning and motion generation are performed within a sequential planning
pipeline which makes use of the Context (=input) in order to create a new or update an existing
Plan (=output). The proposed software architecture is visualized in Figure 4.11.

The Context represents a collection of thread-safe data containers (bullet points in Fig-
ure 4.11), which are cyclically updated by a Context Manager responsible of pre-processing
received data (from shared memory, etc.) and performing the state estimation described in Sec-

57The load factors γe represent an auxiliary input to the SIK module indicating “the fraction of the maximum
contact wrench capability of an EE, which may be used by contact force control to generate the desired total CoM
wrenches and stabilize the robot.”[399, p. 51] The factors are bound to γe ∈ [0, 1] and the sum of the foot load
factors is constrained by γRF + γLF := 1. In contrast, the hand load factors γRH and γLH are not linked to each other.

4.5 Walking Pattern Generation (WPG) 103

•estimated state (qcur, q̇cur, xcur, and vcur)

Manager

•constants (options, reduced model, etc.)

•sensor data (joint enc., IMU, FTSs, etc.)
•previous WPG output (xdes, vdes, etc.)
•previous SIK output (qdes, q̇des, etc.)

•environment model (terrain, objects)
•planner options (step duration, etc.)

•extrinsic data (motion capture, etc.)

•pre-processing
•state estimation

•pre-processing
•model synthesis

Envir. Model

updateacyclic

si
gn

al
s,

ro
bo

t
st

at
e,

et
c.

(c
f.

Ta
bl

e
4.

2)

Manager

Context (working copy)

Context

CV

updatecyclic

HWL
bufferedTCP/IP @1 kHzshared memory

Thread 8 Thread 5

Thread 5

Context Snapshot

planning startupdate on

generationprogressive

Section 6.4

Section 6.7

@1 kHzshared memory

Section 6.10

Section 6.13 Section 6.14 Section 6.15

Planner (planning pipeline)
Thread 6

Plan (working copy)

Transitions
Section 5.4

Phases
Section 6.3

Support Areas ZMP
Section 6.5

UB-Orient.
Section 6.6

Foot Motion

SIK

Toe Motion Hand Motion
Section 6.9

Head Orient.

Section 6.8

Task-Space Sel. Load Factors
Section 6.12

Ext. Wrenches

Section 6.11

RMT CoM

Sequences
(scheduling)

Final Plan

successupdate on

Eval. and Stream Proc.
•evaluation→ plan snapshot
•WPG output (xdes, vdes, etc.)

@
1

kH
z

ev
al

ua
ti

on

Section 6.16

Sections 5.2 and 6.2

Sections 5.2 and 6.2
TC

P/
IP

si
gn

al
s

TC
P/

IP

Figure 4.11: Realization of the WPG as part of the locomotion framework presented in Figure 4.1. The planning
pipeline is represented by the Planner (blue) which consists of 15 consecutive planning stages. It uses the most
recent snapshot of the Context (yellow) in order to generate a new Plan (green) which is cyclically evaluated and post-
processed (orange) in order to obtain the task-space samples required by the SIK module. The Environment Model
Manager and the Planner involve heavy-duty workloads, thus, they are executed within asynchronous threads. The
context container for extrinsic data (gray) is used exclusively for synchronized logging and forwarding motion capture
data to the CV system (for calibration/logging).

tion 4.5.3. An exception is the environment model, which is updated by a dedicated Environment
Model Manager (Thread 8) performing the heavy-duty pre-processing of buffered environment
model updates received from the CV system (see Section 5.5.2). For simulating autonomous
locomotion, the Environment Model Manager is additionally responsible for synthesizing the en-
vironment model from a corresponding multi-body scene description (see Section 7.4).

The creation of a new Plan starts with taking a snapshot of the current Context. The snapshot
is kept constant during the whole planning process such that all sub-routines of the Planner have
access to the same input data, even if the working copy of the Context changes meanwhile. The
Planner (Thread 6) encapsulates the planning pipeline consisting of 15 consecutive stages. The
first stage is given by the Sequence Planner which defines the execution order of the remaining 14
stages. The entire pipeline has a modular design, such that individual stages can be easily added,
removed, or re-ordered. The second stage, the Transition Planner, realizes the contact planning
presented in Chapter 5. In contrast, the remaining stages (from Phase Planner to CoM Planner)
are part of the motion generation task and will be described in detail in Chapter 6. Apart from
managing the planning pipeline, the Planner additionally implements the logic for deciding if
and when a new planning event has to be triggered. For the purpose of dynamic replanning,
i. e., for updating a currently executed Plan, it has to predict the runtime of the pipeline such
that its result is obtained in time. Finally, the Planner is also responsible of “garbage collection”,
i. e., removing past/unused parts from the Plan to accelerate evaluation.

Each stage of the planning pipeline has full access to the Context Snapshot and an internal
working copy of the Plan. The thread-safe container holding the Final Plan is updated once
the pipeline succeeded. The Final Plan is cyclically evaluated to obtain the Plan Snapshot, i. e.,

4.6 Excursus: Stabilization and Inverse Kinematics (SIK) 104

a snapshot of the planned motion at the current sample time tcur. Subsequently, the Stream
Processor post-processes this snapshot and assembles the final output data container which is
transmitted to the SIK module. The plan evaluation and Stream Processor are executed within
the main WPG loop (Thread 5). Thus, the data container holding the Final Plan has to be
accessible and consistent at all times. This is guaranteed by updating the Final Plan only if the
planning pipeline has finished successfully.

The particular components of the data container sent from the WPG to the SIK module
are specified in Table 4.5. Most components of the container are directly obtained from the
Plan Snapshot. In contrast, the total contact wrench WWCoM

cont is a result of the post-processing
performed by the Stream Processor, see Section 6.16. Note that the SIK module implements
its own method to compute an optimal contact wrench distribution from WWCoM

cont . Indeed, the
planned external wrenches WWh

h,ext are used by the SIK module only to extract the orientation of
the environmental surface getting in contact with the spherical hand. In contrast, the feet have
a clear (planar) contact surface with orientation Wϑ f . Finally, the data container includes the
contact state of the feet to pass information on the contact area (toe-only or full foot sole).

Table 4.5: Data sent from the WPG to the SIK module through the shared memory interface (cf. Figure 4.1). Except
for the current sample time tcur which is passed through from the HWL, all components have to be understood as
planned/desired quantities at the particular time tcur, which may be modified by the SIK module.

Symbol Description
tcur current sample time according to HWL “master” clock (Thread 1 in Figure 4.1)
x , v task-space vector and task-space velocity vector
ξ task-space selection vector with ξ= [ξRH, ξLH]

T

γ load vector with γ= [γRF, γLF, γRH, γLH]
T

WWh
h,ext external (multi-contact) wrench acting on the hand h at the hand h

WWCoM
cont total contact wrench (feet and hands) acting on the robot at the CoM
– contact state (open/closed, full/partial/tiptoe cf. Section 5.1) for each foot

The numerous experiments conducted so far have shown that the presented WPG architec-
ture is very robust and fault tolerant. This is also a result of the countless distributed validity
and plausibility checks and their corresponding fallback strategies. In contrast to the previous
implementation of the WPG before the multi-contact revision, the interfaces between the indi-
vidual components have a clear specification while still avoiding unnecessary copy operations
for maintaining real-time performance. Moreover, the modular design of the planning pipeline
makes future modifications and extensions significantly easier.

4.6 Excursus: Stabilization and Inverse Kinematics (SIK)

The SIK module receives the planned motion as specified in Table 4.5 and modifies it (still using
the task-space description) to compensate disturbances and maintain balance. It further imple-
ments a velocity-level IK to generate the corresponding joint-space trajectories to be sent to the
HWL, see Figure 4.1. The original stabilization system of LOLA has been developed mainly by
BUSCHMANN [100]. In the past years, it has been completely reimplemented and extended by
SYGULLA, who documented the new SIK framework in his dissertation [401]. Indeed, [401] rep-
resents an excellent complementary work to this thesis. This section gives only a brief summary
of the main processing steps of the SIK module in order to explain how the data from Table 4.5
is used. Some remarks on related works relevant to the contents of this thesis have already been
given in Section 2.6. For a much more detailed presentation of the state of the art with regard
to stabilization, the literature review given in [401] is recommended.

4.6 Excursus: Stabilization and Inverse Kinematics (SIK) 105

Sensor Data Pre-Processing Apart from the planned motion transmitted by the WPG, another
important input of the SIK module are the current sensor measurements provided by the HWL.
Primary data sources are the torso IMU, the FTSs located in the feet and hands, and the four
binary contact switches per foot. A core indicator for balance is the floating base inclination,
i. e., the rotational error in the sagittal and frontal plane, which is computed from the IMU
measurements and the planned upper body rotation (WϑUB and WωUB as part of x and v).
In another pre-processing step, contact transitions (from opened to closed and vice versa) are
detected. In particular, the planned (“ideal”) contact transitions given by the load vector γ(t)
provided through the WPG are compared against the actual measurements of the foot FTSs
and binary contact switches in order to detect early- or late-contact situations. Based on this,
activation factors for blending an EE between position- and force-control are computed. In order
to mitigate noise and increase robustness, the sensor data pre-processing module also applies
rate limitations and low-pass filtering to various signals. This further guarantees C1-continuity
which is required by subsequent control laws.

Reactive Trajectory Adaption Based on the discrete events detected in the previous step, this
module implements feedforward strategies to counteract discrepancies between the planned and
real motion. This includes an early-contact reflex which modifies the reference trajectories of the
affected foot or hand in order to minimize the disturbance on the overall system. In particular,
this strategy tries to reduce the velocity of the corresponding TCP as fast as possible. While this
applies to all EEs in the same way, further adaptions are applied in particular to the current
swing foot. In order to avoid repeating early- or late-contacts due to an unexpected ground
height change (imagine stepping onto a carpet not detected by the CV system), the vertical goal
position of the swing foot is modified to match the height of the current stance foot. Note that
the deformation of the foot sole is compensated independently by introducing a corresponding
offset in vertical direction based on an experimentally determined stiffness.

Balance Control In order to stabilize the floating-base dynamics, this module modifies the
task-space trajectories x and v and the total contact wrench WWCoM

cont acting on the robot. For
this purpose, the robot is approximated by a flywheel model (non-linear inverted pendulum with
a point mass located in the CoM and an additional mass moment of inertia linked to the torso).
Based on this model, the floating-base inclination is stabilized in the frontal and sagittal plane
by a PD-type controller augmented by a non-linear gravity compensation term. Unfortunately,
the performance of this controller is strongly affected by structural resonances, which is the
reason for the careful torso design presented in Section 3.5. In addition, this module implements
control strategies based on vertical CoM motion. Since a vertical acceleration of the CoM directly
causes corresponding contact forces in the feet, it can be used indirectly as a force controller. For
this purpose, the robot is approximated by a single point mass located in the CoM (without mass
moment of inertia). This model is the basis of a strategy for mitigating late-contact situations
where the CoM and the foot expected to make contact are accelerated simultaneously effectively
reducing the time to establish the contact. Apart from the vertical CoM acceleration, a further
controller tracks the desired vertical CoM position. This is necessary to avoid an undesired CoM
drift caused by foot-height modifications, e. g. due to the previously mentioned early-contact
reflex. The tracking controller is realized through a virtual spring-damper pair “pulling” the
actual CoM to its reference height.

Optimal Contact Wrench Distribution After the total contact wrench WWCoM
cont acting on the

robot has been modified by the balance controller, it has to be distributed to the individual EEs
in contact. Originally, BUSCHMANN used a heuristics based approach to compute the contribu-
tions of the right and left foot (hand contacts were not considered at that time). Within the
scope of the multi-contact revision of LOLA, SYGULLA developed an optimization based method

4.6 Excursus: Stabilization and Inverse Kinematics (SIK) 106

which respects constraints such as unilateral interaction (pushing only) and linearized friction
cones with individual friction coefficients (µ f = 0.8 and µh = 0.05) [401, p. 80ff]. Since the
hands have a spherical shape, point contact is assumed such that only forces can be transmit-
ted. As mentioned earlier, the contact normal is extracted from WWh

h,ext provided by the WPG
(direction of force component which is perpendicular to the environment model surface). The
interaction of the foot with the ground is modeled as surface contact such that also torques can
be transmitted. The torque limits depend on the foot geometry (components lying in contact
plane) and the friction coefficient (component around contact normal) where the contact area
is obtained from the contact state sent from the WPG. The contact normal of the foot is defined
by the foot orientation Wϑ f as part of x . The contact wrench distribution problem is formulated
as a convex QP which involves costs to minimize the contact forces/torques at the EEs and the
residual of the desired total contact wrench provided by the balance controller.

Contact Force Control For each EE, the SIK module implements an individual contact force
controller which tries to establish the previously computed wrench distribution. For the feet,
only the components f F f ,cont,z, f T f ,cont,x , and f T f ,cont,y are force-controlled. The remaining
directions of the local TCP frame are position-controlled. The controller uses an explicit contact
model featuring an infinite number of linear springs between the four contact pads of the foot
and the ground. The actual contact surface is estimated based on the input signal of the binary
contact switches which is filtered with a second-order low-pass for smoothness. The binary
switches may be replaced in future with a tactile skin such as the one developed by SYGULLA

et al. in [399]. The controller computes primarily the foot velocity while the corresponding
modification of the foot position is obtained by integration. In order to deal with changing
ground stiffness (e. g. for stepping on a soft carpet), SYGULLA also implemented an adaptive
control law based on a Model-Reference Adaptive Control (MRAC) [322] scheme which includes
an online estimation of the mechanical properties of the foot-ground contact. In comparison to
the feet, the contact force control for the hands is much simpler: due to the assumption of point
contact (modeled as 3D linear spring), only the position needs to be controlled. Apart from this,
the same hybrid force/motion control approach as for the feet is applied.

Inverse Kinematics (IK) As a final step, the SIK module computes the joint-space trajectories
q and q̇ which correspond to the desired (modified) task-space trajectories x and v . For this
purpose, a velocity-level IK scheme based on ASC [283] is applied. In particular, we compute

q̇ := J# (v + K∆x) − αN

�

1− J# J
�

�

∂ H
∂ q

�T
, J :=

�

∂ v
∂ q̇

�

, J# := JT�J JT�−1
(4.10)

where J and J# denote the task-space Jacobian and its pseudoinverse and K ∈ R and αN ∈ R
are scalar weights. The joint-space vector q is obtained by numerical integration of q̇ . Special
attention has to be paid to the computation of the task-space error ∆x = f (x , xcur) since it
involves orientations described by rotation vectors, see [401, p. 66ff] for details. The current
(actual) task-space vector xcur is obtained by evaluating the FK using the joint-space vector q
from the previous cycle (instead of using measured joint angles). The IK scheme presented in
Equation 4.10 is the solution to the optimization problem

min

�

1
2

q̇T q̇ +αN

�

∂ H
∂ q

�T
q̇

�

with the constraint v = J q̇ , (4.11)

which allows to exploit the kinematic redundancy by specifying secondary objectives through a
corresponding gradient of the cost function H. For LOLA, these secondary objectives include a
comfort pose, joint limit- and self-collision avoidance (the latter uses the new implementation
of the SSV library – see Appendix C), and minimization of the total vertical angular momentum
to reduce slippage by rotation around the vertical axis, see [104, 371, 372] for details.

4.7 Excursus: Hardware Layer (HWL) 107

As already explained in Section 4.3, the multi-contact locomotion system of LOLA uses a
variable task-space definition. In particular, the position of the right and left hand may be
assigned either to the task-space or the null-space. In order to allow a smooth transition between
these configurations, the task-space selection vector ξ = [ξRH, ξLH]

T has been introduced. With
regard to the IK as part of the SIK module, SYGULLA implemented a solution similar to the
one proposed by AN and LEE [59]. In particular, four individual IK algorithms are triggered
which differ only in the used task-space definition (cf. Table 4.1). The results are then combined
through smooth bilinear interpolation using ξ as weights:

q̇ =
�

1− ξRH

� �

1− ξLH

�

q̇RH,LH (both hands in null-space)

+ξRH

�

1− ξLH

�

q̇RH,LH (right hand in task-space, left hand in null-space)

+
�

1− ξRH

�

ξLH q̇RH,LH (right hand in null-space, left hand in task-space)

+ξRH ξLH q̇RH,LH (both hands in task-space)

(4.12)

In order to obtain C2-continuous joint-space trajectories q , the task-space selection factors have
to be at least C1-continuous. Indeed, the WPG generates C2-continuous task-space selection
factors since they are also used to control the mass-distribution in the five-mass model (cf.
Equation 4.2) and therefore, have direct influence on the continuity of the CoM trajectory.

4.7 Excursus: Hardware Layer (HWL)

The HWL receives the current sample of the joint-space trajectories q and q̇ (without the “pas-
sive” 6D torso pose) from the SIK module and forwards it – after some additional processing – to
the 26 individual servo drives. In return, it receives the current sensor measurements (joint en-
coders, IMU, FTSs, and contact switches) and provides it to the higher levels of the locomotion
system. In other words, the HWL represents a low-level abstraction layer of the robot’s hard-
ware. The main focus lies on highest possible real-time performance, i. e., low communication
latency (affects control bandwidth) and jitter (standard deviation of control loop cycle time).
A brief summary on the state of the art with regard to low-level locomotion control for legged
robots has already been given in Section 2.2. For LOLA, an EtherCAT [77] real-time bus repre-
sents the backbone of the low-level communication system. It was introduced by WITTMANN

and SYGULLA as replacement of the previous Sercos-III [377] bus. Details on this upgrade –
which includes a complete redesign and reimplementation of the HWL of LOLA – have been
published in [10]. Since a comprehensive explanation of the present state of the HWL is already
given in [401, p. 15ff], the following paragraphs give only a brief summary of the three main
subroutines (Thread 1, 2, and 3 in Figure 4.1). Note that SYGULLA has published parts of the
HWL source-code as part58 of Broccoli.

Timing (Thread 1) The only purpose of this module is to realize a high-precision “master”
clock for the locomotion system. It runs at 4 kHz in a background thread with highest QNX
real-time priority and defines the timing of all cyclic tasks in the HWL, SIK, and WPG modules
(Threads 1-5 in Figure 4.1). The timing thread is optimized for low latency and jitter to allow a
precise synchronization between the different modules.

EtherCAT / IO (Thread 2) This module implements an interface to a commercial EtherCAT
master stack by Acontis Technologies [48] through a custom middleware developed by SYGULLA

et al. in [10]. The communication between bus nodes is based on Process Data Objects (PDOs)
58See the module hwl of Broccoli.

4.8 Results and Discussion 108

(for synchronous data) and Service Data Objects (SDOs) (for asynchronous data) as defined by
CANopen [107]. For each bus device (servo drives, CAN-EtherCAT gateway, IMU, and FTSs), an
abstraction class with its own internal FSM is implemented. The IO operations of the EtherCAT
bus are triggered by the high-precision timing thread with a frequency of 4 kHz.

Main Loop (Thread 3) The main execution loop of the HWL primarily manages the communi-
cation with the higher levels of the locomotion system. In particular, it provides a synchronized
shared memory interface to the SIK and WPG modules, a socket to communicate over the pub-
lish/subscribe system with the high-level signal broker (Process 4 in Figure 4.1), and handles
the access to the file system, e. g. for logging or loading calibration data (cf. Appendix H.3).
Moreover, this module performs pre- and post-processing such as

• target data extrapolation based on target data gradients to upsample the joint-space tra-
jectories provided by the SIK module at 1 kHz to the 4 kHz required by the EtherCAT bus,

• conversion of joint- to motor-angles and vice versa by a dedicated joint model (incorpo-
rates HD gears and the special kinematics for the knee and ankle mechanisms),

• joint feedforward control on velocity level to reduce position tracking errors (gains ob-
tained through reinforcement learning, see WITTMANN [443, p. 33ff] for details), and

• extensive safety checks (plausibility of sensor data, monitoring tracking error, detecting
violations of real-time constraints indicated by working counter mismatches, etc.).

Finally, this module implements a FSM which is responsible of switching between different
modes of operation and handling all types of errors.

4.8 Results and Discussion

Through numerous successful experiments, the presented multi-contact locomotion framework
of LOLA has proven to be

robust: biped walking with additional hand support has been shown to be stable even
under large disturbances in the form of an uncertain ground (uneven terrain / rolling
board) and unforeseen external interaction (pushing by human), see [20 @t=10s],

versatile: the numerous scenarios shown in [18 @t=6m45s] (support against walls /
tables / corridors, bypassing / stepping over obstacles, climbing ramps / stairs with full
or partial foot contact, etc.) and also the combined scenario shown in [20 @t=1m41s]
(stepping up and down platform with hand support and partial / tiptoe contact) have
been achieved using the same parametrization of the locomotion system, i. e., no scenario
dependent tuning is required – these capabilities work “out of the box”, and

efficient: planning and control is performed onboard and in real-time even for complex
autonomous locomotion without any prior knowledge of the environment, see [17].

While the qualitative performance has been demonstrated by the aforementioned videos, this
section focuses on the quantitative performance of the governing framework (software design).
Note that conclusions on the embedded contact planner and motion generator are drawn sepa-
rately at the end of the Chapters 5 and 6, respectively. Moreover, we focus in the following on
the WPG, SIK, and HWL modules as the three main processes of the locomotion system which
are subject to hard real-time constraints, cf. Figure 4.1.

Real-Time Performance The presented hierarchical architecture which separates tasks accord-
ing to their real-time priority makes the locomotion system of LOLA very robust, in particular
with regard to maintaining hard real-time constraints. This is shown by the fact that even under

https://youtu.be/gUNZ0AmLiWU?t=10s
https://youtu.be/mGlsc_revMc?t=6m45s
https://youtu.be/gUNZ0AmLiWU?t=1m41s
https://youtu.be/ovG2Rz9-1p8

4.8 Results and Discussion 109

heavy load (e. g. while planning autonomous locomotion in a complex environment), critical
tasks still remain within their individual time budget without “skipping a beat”. For the WPG
and SIK module, this means that each cycle of their respective “main loops” (Threads 4 and 5
in Figure 4.1) running at 1 kHz (synchronized through shared memory) does not exceed a max-
imum runtime of 1 ms. Moreover, the HWL module has to maintain a cycle frequency which
should be as close as possible to 4 kHz. Table 4.6 shows the experimentally evaluated real-time
performance of the WPG, SIK, and HWL module in different situations.

Table 4.6: Real-time performance of the WPG, SIK, and HWL module in different situations (execution time of a
single cycle in the respective “main loop”, see Figure 4.1). The corresponding mean tmean, standard deviation tσ, and
maximum tmax are evaluated over a time horizon of 10 s (WPG/SIK: 10,000 samples; HWL: 40,000 samples).

WPG (Thread 5)/µs SIK (Thread 4)/µs HWL (Thread 3)/µs
Situation

tmean tσ tmax tmean tσ tmax tmean tσ tmax
idle 112.4 11.5 296.6 378.3 17.3 474.3 249.2 14.2 296.6

motion 121.0 15.5 514.5 396.5 19.5 593.4 249.2 14.0 327.3
planning 102.3 14.3 251.8 364.4 15.5 447.5 249.3 17.5 303.5

The data shown in Table 4.6 is based on a high-precision time measurement routine59 which
is used for all runtime evaluations presented within this thesis. During “idle”, the robot re-
mains in the static idle pose (see Section 4.5.2) which causes the lowest possible computational
load for the WPG module. During “motion”, the robot executes a rather long fixed (no contact
planning) walking sequence similar to the one shown in Figure 4.8 such that it is in motion
throughout the entire measurement period. For this situation, we observe a moderate increase
of the overall system load and a significant increase of tmax for the WPG which is due to the eval-
uation of the more complex motion plan. However, the real-time constraints are still satisfied.
For “planning”, the robot is physically at rest (same as “idle”) but computes a complex motion
plan. In particular, an autonomous locomotion scenario similar to [18 @t=9m19s] is chosen.
Since the computationally expensive contact planning and motion generation are offloaded to
an asynchronous thread, the cycle times of the WPG, SIK, and HWL remain similar to the “idle”
case. A more detailed review of the runtimes for contact planning and motion generation is
postponed to the end of the following chapters. A runtime analysis for the different components
of SIK has already been given by SYGULLA in [401, p. 139ff]. Note that in contrast to [401], the
measurements shown in Table 4.6 cover the entire SIK “application”, hence, it also includes the
management of interfaces and the FSM.

Memory Consumption Besides computational effort, another metric which is important to an
embedded system is the memory consumption. The maximum per-thread stack (used for static
allocation) consumption is independent of the situation and amounts to 96 KiB for the HWL,
76 KiB for the SIK, and 336 KiB for the WPG module (Threads 3, 4, and 5 in Figure 4.1). The
total per-process heap (used for dynamic allocation) consumption amounts in “idle” to 33 MiB
for the HWL, 127 MiB for the SIK, and 519 MiB for the WPG module (Process 1, 2, and 3 in
Figure 4.1). While the heap consumption remains constant for the SIK and HWL module, it
increases for the WPG module within “motion” to 531 MiB and within “planning” to 2.3 GiB. The
additional 1.8 GiB for the WPG are mainly due to the contact planner, which makes extensive
use of pre-computed (scenario independent) buffers for acceleration (see Section 5.5.2) and
also implements a custom pool allocator for the D-ary heap used by the A⋆ search (see Sec-
tion 5.5.3). The actual complexity of the scene, i. e., the count of terrain patches and objects,

59On QNX, time is measured with ClockCycles() on the basis of CPU clock cycles. The resolution is 1 ns and
the duration of a single time measurement is identified as 152 ns on the used hardware (averaged over 106 sam-
ples). On Linux, time is measured using clock_realtime() using the system-wide realtime clock. See the method
PlatformHelper::currentTime() in the module core of Broccoli for details.

https://youtu.be/mGlsc_revMc?t=9m19s

4.8 Results and Discussion 110

has only a minor contribution (typically less than 50 MiB for the scenarios considered within
this thesis). Since the control PC is equipped with 32 GiB RAM and runs a 64bit OS, the present
memory consumption is far away from the system’s limits. Moreover, dynamic memory alloca-
tion by the WPG is performed at startup within the scope of a dedicated initialization routine or,
alternatively, after triggering the corresponding planning stage for the very first time. Indeed,
dynamically allocated memory is re-used whenever possible in order to avoid computational
expensive re-allocation.

Bottlenecks and Suggestions Although the HWL module communicates with the hardware at
a frequency of 4 kHz, Table 4.6 clearly shows that the WPG and SIK module cannot keep up with
this rate. Instead, they are limited to their present 1 kHz cycle, however, providing some reserves
for future extensions. Since the planned trajectories are mostly C2-continuous with moderate
rates of change, raising the update rate of the WPG above 1 kHz is not expected to improve the
overall locomotion performance. In contrast, the SIK module may benefit from a 2 kHz cycle as
this would lead to lower latencies in the involved reflex strategies. Currently, almost 70 % of the
SIK workload is caused by the FK and IK evaluation [401, p. 140]. Runtime optimizations of
these components might allow a 2 kHz cycle in future.

A serious issue of the presented locomotion framework is its logging capability. As with
most research prototypes, one is typically interested in logging as much data as possible to al-
low extensive analysis or debugging in the aftermath. Unfortunately, logging all available data
of LOLA (environment model, planned motion, internal states, sensor / actuator signals, etc.)
typically leads to a violation of the real-time constraints. Although the main workload for log-
ging (buffering data containers, compression, and file IO) is offloaded to asynchronous threads
running with the lowest QNX real-time priority (Threads 9a, 9b, and 9c in Figure 4.1), the raw
amount of data seems to exceed the available bandwidth of the platform: only six CPU cores
are available on the control PC (the RTOS requires SMT to be disabled) which share cache and
main memory. The current workaround to this problem is to limit the bandwidth by disabling
log data which is not in the focus of the particular experiment. For future developments, a better
solution might be to offload the task of logging to a separate board. The communication with
the real-time locomotion system may then be realized by a high-throughput and low-latency
technology such as Remote Direct Memory Access (RDMA) (allows transfers between the main
memory of separated PCs without CPU interaction). A further step would be to distribute the
HWL, SIK, and WPG modules onto separated (potentially less powerful) boards where the cur-
rently used shared memory interface may also be realized on top of RDMA. This could further
increase robustness with respect to real-time performance.

Chapter 5

Software – Part B: Contact Planning
Parts of this chapter have already
been published in [1, 7].

This chapter presents a novel contact planner which has been developed by the author of this
thesis within the context of the multi-contact revision of LOLA. Indeed, autonomous biped lo-
comotion (without hand contacts) was already possible for LOLA prior to this revision thanks
to the excellent work of BUSCHMANN [100, 104], WAHRMANN [430], HILDEBRANDT [201], and
many others. The contact planner described within this thesis represents an entirely new sys-
tem which extends the autonomous locomotion capabilities of the robot not only for multi-
contact scenarios, but also for biped walking without hand contacts such as climbing stairs and
traversing ramps. Although the contact planner has been redesigned and reimplemented from
scratch, some ideas and concepts have been adopted from the previous system. Moreover, the
involved search strategies have many similarities to those used for action planning in manip-
ulation. Indeed, the experience gained from pre-studies on cooperative manipulation (which
independently led to [7]) also contributed to the planner presented in the following. The chap-
ter starts with Section 5.1 which introduces the reader to some important concepts and models
used within the remainder. Subsequently, in Section 5.2 it is explained how the WPG describes
abstract motion in the form of a hierarchical tree structure. The explanation will be restricted to
the higher levels of the tree which are in particular relevant for contact planning. The specifica-
tion of the lower levels is postponed to the following chapter describing the motion generation
pipeline. In Section 5.3, the so-called Quasi-Planar Walking Transition (QPWT) is introduced,
which allows to describe discrete contact sequences in a convenient and human readable form.
This is followed in Section 5.4 by an overview of the transition planner representing the second
stage of the planning pipeline shown in Figure 4.11. In Section 5.5, the actual multi-level search
for autonomous locomotion as part of the transition planner is explained. Finally, the chapter is
concluded in Section 5.6.

The main concept of the multi-level search used for planning autonomous multi-contact lo-
comotion in real-time has already been presented in [1]. Since the new contact planner was
the very last piece in the puzzle for making LOLA ready for multi-contact locomotion, its devel-
opment finished together with the end of the accompanying DFG project. As a consequence,
the details presented within this chapter have not been published before. An exception is the
video [18 @t=1m54s], which briefly visualizes the main workflow and shows results for selected
scenarios demonstrating the new autonomous locomotion capabilities of LOLA. As already men-
tioned above, the presented contact planner was inspired by the results of multiple pre-studies
partially performed by student assistants, see Appendix J for details.

5.1 Preliminaries

The contact planner is the component of the WPG which is responsible for creating a feasi-
ble sequence of discrete contact configurations guiding the robot from its current location to
a user-specified goal. Within this context, feasibility means that collisions with obstacles are
avoided, contacts remain stable, and the resulting motion complies with the robot’s kinematic

111

https://youtu.be/mGlsc_revMc?t=1m54s

5.1 Preliminaries 112

and dynamic capabilities. Since a primary objective for the new contact planner is real-time
performance, feasibility has to be estimated on the basis of rather coarse approximations of the
robot and its environment. In addition, generous safety margins have to be applied which, un-
fortunately, also prevent the contact planner from exploiting the full potential of the hardware.

Note that the fundamentals and state of the art with regard to contact planning for au-
tonomous legged locomotion have already been summarized in Section 2.3. This section focuses
on core concepts and models used by the particular contact planner proposed within this thesis.

Contact Model: Full, Partial, and Tiptoe In accordance with the reduced model of the robot
presented in Section 4.5.2, the interactions of the feet with the ground are modeled as surface
contacts while support with the spherical hands is approximated by point contacts. For the feet,
the WPG additionally distinguishes between full, partial, and tiptoe contact, see Figure 5.1. For
full contact, the interfacing areas of the toe and heel segment are combined to a single enclosing
rectangle (l12 × l13 in Figure 4.7) representing the entire foot sole. It implies qzfr|l = 0 and
represents the default contact type for the feet. With partial contact, the interface is restricted
to the toe segment only (l10× l13 in Figure 4.7). Same as before, we assume a flat foot, i. e., qzfr|l
to be zero. This variant is used for example to climb stairs with short treads where a full contact
is not possible. Finally, there is the tiptoe contact, which uses also only the toe segment but
explicitly requires a bent foot, i. e., qzfr|l ̸= 0. A typical scenario is stepping down a platform (or
stairs), where the heel is lifted in order to increase the kinematic capabilities of the robot (less
abrupt lowering of the CoM) and additionally to avoid collision of the heel with the platform.

Full Contact Full Contact Full Contact Partial Contact Tiptoe Contact
(level ground) (stepping up ramp) (stepping down ramp) (stepping up platform) (stepping down platform)

Figure 5.1: Types of contact for the foot-ground interface as used by the WPG. From left to right: full contact shown
for level ground and stepping up/down a ramp, partial contact shown for stepping up a platform, and tiptoe contact
shown for stepping down a platform. The corresponding contact area is highlighted in green. Note that for full contact
we use the convex hull of the toe and heel segment area (cf. Figure 4.7) which includes the “foot arch” in between.

Mean Foot TCP Frame The contact planner presented within this chapter is based on a hier-
archical search on different levels of detail. For finding a rough guiding path (coarsest level),
there won’t be an explicit consideration of individual feet. Instead, their mean pose will be used
to roughly specify the location of the robot. For this reason, we formally define the mean foot
TCP frame “MF” extending the CoSy definitions from Section 4.2:

rMF := 0.5
�

rRF + rLF

�

and sMF :=

¨

SLERP
�

sRF, +sLF, 0.5
�

if sRF ⊙ sLF ≥ 0 ,

SLERP
�

sRF, −sLF, 0.5
�

else
(5.1)

where we simply use the arithmetic mean for the position rMF and the great circle arc mean
obtained through a SLERP operation for the orientation sMF. The case differentiation in Equa-
tion 5.1 guarantees minimum rotation, see Appendix B.3.3 for details. Note that we already
used a simplified version of the MF frame (position only) for Step 5 of the state estimation
described in Section 4.5.3.

5.1 Preliminaries 113

Since the contact planner discretizes the robot’s location in the search space through a two-
dimensional grid aligned with the VW frame to match the terrain discretization, footholds are
predominantly assumed to be horizontal (except for the post-processing step where footholds
are adapted to the terrain inclination). Thus, instead of evaluating sMF through SLERP, the
average of the foot rotation angles around the vertical axis can be used. Again, special care has
to be taken to interpolate the shortest rotation (“wrapping” angles within [0, 2π[).

Task-Space Collision Model For efficient evaluation of the (minimum) distance between two
bodies, the locomotion framework of LOLA uses SSV approximations, see Appendix C. Distance
queries are mainly used for avoiding collisions where we distinguish between self-collisions and
collisions of the robot with its environment. The former is realized through a joint-space SSV
model of the robot which defines an individual SSV segment for each physical segment of the
robot. Instead of testing each segment against all others, only selected pairs60 are evaluated
which drastically reduces overall runtime. Self-collisions are then avoided by formulating a
corresponding cost gradient61 within the velocity-level IK algorithm presented in Section 4.6,
see also [372, p. 81ff] for details. Since the WPG describes motion in task-space, it does not
have (explicit) access to joint-space data. Hence, self-collision avoidance is restricted to the
SIK module. However, it is still possible for the WPG to avoid collisions of the robot with
environmental objects. For this purpose, the contact planner defines a task-space SSV model of
the robot, see Figure 5.2.

Joint-Space Task-Space Collision Avoidance

LH SSVRH SSV

Base SSV

x
y

z

MF

(linked to MF)

(linked to MF)(linked to MF)

SS
Vs

lin
ke

d
to

se
gm

en
ts

collision model collision model within contact planning

Figure 5.2: Collision avoidance within the locomotion framework of LOLA. From left to right: joint-space SSV model
used by the SIK module for self-collision avoidance; task-space SSV model used by the WPG module for avoiding
collisions with the environment (split into components for the base (red) and each arm (yellow) – all linked to MF
frame); illustration of collision avoidance within contact planning by evaluating the distance between the (task-space)
SSV model of the robot and environmental objects. See the video [18 @t=3m13s] for an animated 3D visualization.

The task-space SSV model is much less detailed and consists of only three individual SSV
segments: one for the legs and torso (“base”) and one for each arm. While the representation
of the legs through the “base” SSV is very coarse, it is sufficient to prevent collisions of the

60Currently, only the segments efr|l are tested against torso, ba, hrr|l, and hfr|l. As a further optimization, the segments
torso and ba each define an SSV segment for their left and right side which are only tested against the corresponding
elbow on the same side. Note that collisions of the right and left leg are not possible since the WPG plans the
corresponding foot TCP frame motions accordingly.

61Although the (scalar) minimum distance between two SSV segments is continuous, the 3D vector connecting the
closest points may jump (e. g. in case two pairs of SSV elements have the exact same distance). In order to avoid
discontinuities in the joint-space velocities, the cost gradient originally formulated by SCHWIENBACHER (which uses
the connection vector in the form of the translational Jacobians of the closest points, cf. [372, p. 81ff]) has been
extended by a subsequent first-order low pass filter with 6 Hz cutoff frequency. This modification has been made by
the author of this thesis during the integration of the new SSV library (see Appendix C) into the SIK module.

https://youtu.be/mGlsc_revMc?t=3m13s

5.1 Preliminaries 114

(yet unknown) knee and hip motion with close-by obstacles. Note that collisions of the feet
with environmental objects will be handled separately based on the terrain (see Section 5.5.4
for details). By detaching the arms, the contact planner can choose between four possible
configurations depending on the current multi-contact situation (without arm SSVs / with right
or left arm SSV / with both arm SSVs). The arm SSVs are only active if the corresponding hand
is not meant to make contact such that collisions due to the (unknown) null-space motion of the
arm are avoided. All three SSV segments are defined relative to the MF frame such that they
move with the robot through the discretized search space.

Multi-Contact Target Volume The WPG uses SSV approximations not only for collision avoid-
ance, but also for efficient proximity tests. In particular, the contact planner defines a so-called
multi-contact target volume, which represents a rough approximation of the set of “in-motion”
reachable hand TCP positions. The target volume is given by two line-SSVs for each hand as
shown in Figure 5.3 which are derived from the workspace computed in Section 3.3. In order to
check if a certain environmental object is close enough for a potential hand contact, the object’s
SSV model is tested for intersection with the multi-contact target volume of the corresponding
hand. Note that this represents only a very rough (but conservative) check for proximity since
the object’s volume model delivered by the CV system might be very coarse. Indeed, testing
for actual reachability requires a more accurate representation of the object’s geometry by its
surface model which will be explained later in Section 5.5.

Proximity Test

x
y

z

MF

RH LH

ta
bl

e
(a

s
SS

V)

w
al

l(
as

SS
V)

Shifted Workspace Intersection Target Volume

∆xmin

∆xmax

x y

z
MF

x y

z
MF

x
y

z

MF

2×Line-SSV

Figure 5.3: Construction and usage of the multi-contact target volume. From left to right: workspace of the right arm
from Section 3.3 shifted in walking direction by ∆xmin = −0.35m (red), ∆x = 0 m (green), and ∆xmax = 0.35 m
(blue); intersection volume (yellow) of shifted workspaces from ∆xmin to ∆xmax with step size 5 cm; multi-contact
target volume as SSV segment fitted into intersection volume; illustration of proximity tests within contact planning to
identify objects for potential hand contact. See the video [18 @t=3m25s] for an animated 3D visualization.

For computing the workspace of LOLA’s arm, we assumed in Section 3.3 that the torso seg-
ment is fixed in space. However, for most multi-contact scenarios considered within this thesis,
the torso is in motion. Obviously, once a hand gets in contact, it has to be guaranteed that the
contact point remains reachable for the entire duration of the contact. To take this into account,
we duplicate the workspace volume to generate a series of instances which are shifted along the
typical walking direction. For the shift, we choose an interval of 0.7 m (rough upper bound for
foot step length) which is split symmetrically (∆xmin = −0.35 m and ∆xmax = 0.35m). We then
compute the intersection of the entire series through successive application of the correspond-
ing Boolean operator of Blender. The resulting volume is reachable by the hand while walking
on a straight path (neglecting lateral torso motion) with a maximum step length of 0.7 m (as
seen from the middle of the SS phase). This intersection volume is finally replaced by an inner
approximation with the aforementioned line-SSVs. Same as with the task-space collision model,
the multi-contact target volume is linked to the MF frame such that it moves with the robot.

https://youtu.be/mGlsc_revMc?t=3m25s

5.2 Motion Plan: Higher Level Structure 115

5.2 Motion Plan: Higher Level Structure

The WPG stores the output of the planning pipeline (cf. Figure 4.11), i. e., the planned task-space
motion, in an analytical form alias (Motion) Plan. In order to allow efficient online modifications
of the plan by replacing outdated future motion with an alternative solution, e. g. as reaction to
changes of the environment or to abort the currently executed motion, the data is organized as
the hierarchical tree structure shown in Figure 5.4.

Phase 1
load switch

Phase 2

Transition 1
Begin Pose End Pose

Transition 2
Begin Pose End Pose

Transition 1
End

Sequence 1 Action Type Begin Pose Actio

Transition n
Begin Pose End Pose

Sequence 2

Begin Pose

Phase 1 Phase 2 Phase 1

Begin PosePlan

Phase 1 Pha

t

Begin Time

motion load switch motion load switch load switch mo

...

...

Figure 5.4: Higher level structure of the (Motion) Plan. The Plan (blue) represents the root element and contains a
sorted list of Sequences (green) which in turn have consecutive Transitions (orange) as children. The Robot Pose at
the beginning of the plan (at Begin Time) is identical to the Begin Pose of the very first sequence and its very first
transition. Moreover, the End Pose of each transition defines the Begin Pose of its successor. This illustration focuses
on the higher levels of the plan while the lower levels (e. g. Phases) will be described in Section 6.2.

Hierarchy The upmost level of the tree structure is given by the Plan itself. It specifies a Begin
Pose, i. e., the initial Robot Pose to begin the planned motion with. A Robot Pose primarily specifies
the pose and contact state of all EEs (details follow in a dedicated paragraph). The plan contains
an arbitrary count (greater zero) of consecutive Sequences which are assigned a certain Action
Type describing the actual type of motion (e. g. autonomous / teleoperated walking, balancing,
etc.). Each sequence is split up into an arbitrary count (greater zero) of consecutive Transitions
which each describe the motion between their respective Begin Pose and End Pose (a single
footstep in biped walking). The begin and end pose of two consecutive transitions are required
to be equivalent such that switching from the end of a transition to the beginning of its successor
does not cause any discontinuities in the executed motion. The begin pose of the plan, the very
first sequence, and the very first transition are equivalent (dotted line in Figure 5.4). Finally,
each transition contains either one or two Phases. The description of phases is postponed to
Section 6.2 together with the introduction of other lower level components of the motion plan.

If an entirely new sequence is to be planned, its begin pose is copied from the end pose
of the very last transition in the previous sequence, or, if there is none, from the begin pose
of the plan. Independent of the action type, each sequence ends with an end pose where the
robot is in an idle configuration as specified in Section 4.5.2. This guarantees that each plan
terminates with a safe stop. In case an already planned motion has to be modified, e. g. to react
to an updated environment, the presented tree structure allows to efficiently “cut” a sequence
to remove outdated future transitions and replace them with new ones. Cutting sequences can
also be used to remove already executed transitions from the front (in Section 4.5.5 referred
to as “garbage collection”) effectively reducing the total size of the plan, hence, accelerating
its evaluation. This requires updating the begin pose (and begin time) of the corresponding
sequence (and plan) such that it matches the new first transition.

5.2 Motion Plan: Higher Level Structure 116

Timing Besides the begin pose, the plan also specifies a corresponding Begin Time as the start-
ing time of the entire plan measured relative to the HWL clock. The duration of the plan is
simply given as the accumulated duration of its sequences which in turn inherit their duration
from the corresponding transitions. The duration of a transition, i. e., the time spent for the
motion between the respective begin and end pose ttra,dur = ttra,end − ttra,beg, is either defined
by a global parameter (alias step duration; typically 0.8 s) or is set individually. Customized
transition durations are primarily used to (locally) slow down motion, e. g. for stepping over
obstacles, stepping up or down platforms/stairs, or in multi-contact situations.

Action Types The proposed WPG supports a variety of actions which gives a clue on the current
motion capabilities of LOLA and simultaneously demonstrates the generality and versatility of
the presented planning framework. The most important action types are

idle: static standing in the idle configuration (cf. Section 4.5.2) as the default action typi-
cally used for early tests of new low-level control settings or methods (cf. [21 @t=20s]),

fixed sequence walking (straight): biped walking (no multi-contact) on a straight path
configured by user-defined parameters such as the total distance, the minimum / maxi-
mum step lengths, and the step length gradient (cf. [21 @t=51s]),

fixed sequence walking (input file): biped walking (optionally with multi-contact) by
executing a user-defined contact sequence described as list of QPWTs (see Section 5.3)
read from an input file in TOML [351] format (cf. [20 @t=1m41s]),

teleoperated walking: biped walking (no multi-contact) with sagittal step length lx , lat-
eral step length l y , and vertical step angle ϕz (cf. Table 5.2) controlled in real-time through
a Human Interface Device (HID) such as a joystick (e. g. used for live-demonstrations),

autonomous walking: biped walking (optionally with multi-contact) with autonomously
planned contact sequence towards a custom goal (cf. [17] and [18 @t=6m46s]), and

special motion: typically non-gaited motion such as bowing, standing on one foot, turning
the head for exploring the environment, etc. (cf. [20 @t=47s]).

The action type is primarily used to select the particular submodule of the transition planner
which is responsible for handling this type of sequence. Moreover, it allows to estimate the
execution time of the entire planning pipeline. Obviously, planning idle causes minimum cost
while autonomous locomotion is the computationally most expensive operation. The predicted
runtime is used for dynamic replanning, i. e., for updating the currently executed sequence by
replacing future transitions. In particular, it has to be guaranteed that transitions are replaced in
time (before their planned execution). Finally, the action type also specifies if a sequence allows
dynamic replanning (teleoperated and autonomous walking only) and if it supports stopping (all
actions except for idle and special motions). Stopping can be seen as special form of dynamic
replanning where all future transitions of the currently executed sequence are discarded and
replaced by a minimum set of transitions which bring the robot to a safe stop, i. e., a static
standing pose in the idle configuration from Section 4.5.2.

Robot Pose In order to describe the task-space configuration of the robot at a certain point in
time, the WPG uses the so-called Robot Pose as data container. Robot poses are primarily used
to describe the robot’s state at the beginning and end of a transition. The sequence of robot
poses obtained from chaining transitions as shown in Figure 5.4 actually represents what was
previously called (discrete) contact sequence, i. e., the main output of the contact planner (cf.
Figure 1.2 and Figure 4.10). Based on the definition of the task-space vector x (cf. Table 4.1), a
robot pose is defined by the components listed in Table 5.1.

Although the SF and SF TCP frames have already been introduced in Section 4.2, this is
actually the first time we explicitly use the concept of a stance and swing foot. Indeed, almost all

https://youtu.be/JCYmq6u0EEc?t=20s
https://youtu.be/JCYmq6u0EEc?t=51s
https://youtu.be/gUNZ0AmLiWU?t=1m41s
https://youtu.be/ovG2Rz9-1p8
https://youtu.be/mGlsc_revMc?t=6m46s
https://youtu.be/gUNZ0AmLiWU?t=47s

5.2 Motion Plan: Higher Level Structure 117

Table 5.1: Components of a Robot Pose representing the task-space configuration (cf. Table 4.1) of the robot at a
certain point in time. Within a robot pose, the task-space selection factors ξh are of Boolean type (ξh ∈ {0, 1}) while
in general they are formulated as floating point numbers within the interval [0, 1].

Symbol Description
SF, SF type of the stance foot SF ∈ {RF, LF} and swing foot SF := {RF, LF} \ SF

WrSF, WsSF pose of the stance foot TCP frame described in the world FoR

SFrSF, SFsSF pose of the swing foot TCP frame described in the stance foot TCP FoR
ξh task-space selection factor for each hand h ∈ {RH, LH} (here: ξh ∈ {0, 1})

SFrh position of the TCP frame for each hand described in the stance foot TCP FoR
– contact state (open/closed) for each foot and hand
– contact type (full/partial/tiptoe cf. Section 5.1) for each foot

SFWh
h,ext external wrench at each hand described in the stance foot TCP FoR

SFsUB orientation of the upper body frame described in the stance foot TCP FoR

SFsVTCP orientation of the head (VTCP frame) described in the stance foot TCP FoR

WrSF-CoM,z (desired) height of the CoM relative to the stance foot TCP frame

components of a robot pose are described with respect to the stance foot TCP as FoR, while SF
itself is described relative to the world frame. This greatly simplifies the procedural generation
of contact sequences since new poses can be constructed by copying an already existing one
and transforming only its stance foot (all other quantities are moved automatically). Note that
changing the stance foot type also requires to update the FoR for components described relative
to SF. For biped walking, a robot pose typically describes the state at the beginning of a DS
phase (details follow in Section 6.3). Since in DS both feet are in contact, either foot can be
considered as current “stance”. For this reason, the WPG distinguishes between equality and
equivalence of two robot poses: while equality requires all components to be strictly identical,
equivalence allows the stance foot to be swapped (if both feet are in contact). Indeed, the Begin
Pose of a transition or sequence has to be equivalent but not necessarily equal to the End Pose of
its predecessor in order to avoid discontinuities in the executed motion.

For planning multi-contact locomotion, we also include the task-space selection factors ξh
which, however, have to be either zero or one, i. e., each hand must be either entirely in null- or
task-space. Furthermore, a robot pose also includes the current contact state / type for each foot
and hand as well as the planned external wrenches for multi-contact situations. Note that by
specifying both, the task-space selection factors and contact states, it is possible to blend a hand
into task-space without making contact (currently used to realize “waving” as special motion).

Transition: Additional Parameters Besides the begin and end pose, each transition stores
additional parameters which roughly characterize the motion in between. An example is the
already mentioned (optional) custom duration ttra,dur. In addition, each transition specifies an
(optional) custom step height hstep and a swing foot timing factor τSF. Both modify the swing
foot trajectory which is used for traversing obstacles and stepping up and down. Details are
postponed to Section 6.7 which explains how the swing foot motion is planned.

Limitations Although the description of motion through the presented tree structure supports
a very broad spectrum of gaited and even non-gaited motions, it comes with certain restrictions.
Most importantly, foot and hand contacts are forced to be synchronized which is due to the fact
that they use the same timing specified by the partitioning of the motion plan into sequences and
transitions. Since this thesis focuses on gaited locomotion where foot and hand contacts execute
a similar cyclic pattern, this constraint does not represent a severe restriction. However, if
more complex non-gaited locomotion or loco-manipulation are considered in future, one should
consider to separate the description of the foot and hand motion into individual containers.

5.3 Quasi-Planar Walking Transition (QPWT) 118

5.3 Quasi-Planar Walking Transition (QPWT)

In order to describe a robot pose relative to its predecessor in a convenient and intuitive way,
this thesis introduces the Quasi-Planar Walking Transition (QPWT). It represents an extension of
the step parameters used by BUSCHMANN to describe walking along a “standard circular path”
[100, p. 57ff]. Note that there exist numerous similar approaches for describing biped loco-
motion through a limited set of parameters, cf. [114, 324]. While the original formulation of
BUSCHMANN was restricted to planar walking on level ground, QPWTs extend this by parameters
for climbing platforms / stairs (varying ground height and partial / tiptoe contact) and walk-
ing on ramps (inclined ground) which actually motivates the prefix quasi-planar in the name.
Furthermore, QPWTs allow a full specification of the robot pose, thus, they contain also param-
eters for the upper body and head orientation, the CoM height, and multi-contact interaction. A
formal definition of the QPWT is given in Table 5.2.

Table 5.2: Components of a Quasi-Planar Walking Transition (QPWT) as intuitive specification of the End Pose relative
to the Begin Pose of a Transition (cf. Figure 5.4 and Table 5.1). The first six components lx |y|z and ϕx |y|z are referred
to as Step Parameters as they describe the relative transform between the previous and next stance foot pose, see
Appendix D for details.

Symbol Default Description
lx 0 m step length in sagittal plane (equiv. to Lx in [100, p. 60], cf. Appendix D)
l y 0 m step length in lateral plane (equiv. to L y in [100, p. 60], cf. Appendix D)

lz 0 m step length in vertical direction (see Appendix D)
ϕx 0◦ step angle around local x-axis (see Appendix D)
ϕy 0◦ step angle around local y-axis (see Appendix D)

ϕz 0◦ step angle around vertical axis (equiv. to ϕstep in [100, p. 60], cf. Appendix D)
ttra,dur 0.8 s custom duration of transition (ttra,dur = ttra,end − ttra,beg)

hstep 3 cm custom step height (see Section 6.7)

τSF 0 swing foot timing factor τSF ∈ [0, 1] (see Section 6.7)
– false flags to force partial/tiptoe contact for the stance foot (at end pose)
– false flags to force blending the hands into task-space (at end pose)
– false flags to force contact for each hand (at end pose)

SFrh (see Section 6.9) position of the TCP frame for each hand h ∈ {RH, LH} (at end pose)

SFWh
h,ext 0 external (multi-contact) wrench at each hand (at end pose)

SFsUB (see Section 6.6) custom orientation of the upper body frame (at end pose)
qvp, qvt 0◦, −25◦ custom joint angles for vp and vt (at end pose)

∆WrCoM,z 0 m custom vertical shift applied to (desired) CoM height (at end pose)

Since QPWTs describe biped walking, it is not necessary to specify the stance foot type (the
stance switches with each step). The relative transform between the previous (begin pose) and
next (end pose) stance foot pose is determined by the first six components alias Step Parameters,
i. e., lx |y|z and ϕx |y|z. The formulas for computing the relative transform from the step param-
eters and vice versa are presented in Appendix D. Note that all components listed in Table 5.2
are optional, i. e., for defining a QPWT only parameters have to be specified which should differ
from their default. If no component is specified at all, the robot performs a “stamping” motion
(walking with zero step length). Moreover, the Boolean flags in Table 5.2 are meant to “force”
a certain behavior which is not necessary if the intention is clear form the other parameters. As
an example, a hand is automatically blended into task-space if its position SFrh is specified. Sim-
ilarly, a hand is automatically considered to be in closed contact if a non-zero contact wrench

SFWh
h,ext is given. The main advantage of QPWTs over a direct specification of a sequence of

robot poses is their human readable and compact description. In Table 5.3, two exemplary
TOML files are shown which demonstrate the simple syntax for regular walking (left) and the

5.3 Quasi-Planar Walking Transition (QPWT) 119

compact description of complex scenarios (right). Although QPWTs allow to specify all compo-
nents of a robot pose, they are limited to biped walking with cyclically switching stance foot.
Hence, they are not suitable for describing non-gaited (“special”) motion.

Table 5.3: Exemplary TOML files specifying a sequence of QPWTs (cf. Table 5.2). Left: biped walking on a curved
path as shown in Figure 4.8. Right: stepping up and down platform with hand supporting against a wall as shown
in [20 @t=1m41s] (includes partial and tiptoe contact). The flag StartWithRightLeg in line 1 allows to select the leg
which moves first, i. e., the swing foot SF of the first transition. After this, SF and SF switch with each transition.

Sequence: Curve (cf. Figure 4.8)
1 StartWithRightLeg = true

2 [Transitions]
3 [Transitions.0] ↓ straight walk
4 StepLengthX = 0.19← lx /m

5 [Transitions.1]
6 StepLengthX = 0.19

7 [Transitions.2] ↓ turn left
8 StepLengthX = 0.19
9 StepAngleZ = 0.2← ϕz / rad

... ...

13 [Transitions.4]
14 StepLengthX = 0.19
15 StepAngleZ = 0.2

16 [Transitions.5] ↓ straight walk
17 StepLengthX = 0.19

18 [Transitions.6] ↓ turn right
19 StepLengthX = 0.19
20 StepAngleZ = -0.2

... ...

33 [Transitions.11]
34 StepLengthX = 0.19
35 StepAngleZ = -0.2

36 [Transitions.12] ↓ straight walk
37 StepLengthX = 0.19

... ...

44 [Transitions.16]
45 StepLengthX = 0.19

46 [Transitions.17] ↓ turn left
47 StepLengthX = 0.19
48 StepAngleZ = 0.2

... ...

61 [Transitions.22]
62 StepLengthX = 0.19
63 StepAngleZ = 0.2

64 [Transitions.23] ↓ straight walk
65 StepLengthX = 0.19

66 [Transitions.24] ↓ turn right
67 StepLengthX = 0.19
68 StepAngleZ = -0.2

... ...

72 [Transitions.26]
73 StepLengthX = 0.19
74 StepAngleZ = -0.2

75 [Transitions.27] ↓ straight walk
76 StepLengthX = 0.19

77 [Transitions.28]
78 StepLengthX = 0.19

Sequence: Multi-Contact Platform Wall (cf. [20 @t=1m41s])
1 StartWithRightLeg = true

2 [Transitions]
3 [Transitions.0] ↓ stamping
4 StepLengthX = 0.0← lx /m

5 [Transitions.1]
6 StepLengthX = 0.0

7 [Transitions.2] ↓ straight walk
8 StepLengthX = 0.2

... ...

17 [Transitions.7]
18 StepLengthX = 0.2

19 [Transitions.8] ↓ step up platform (hand / partial contact)
20 CustomDuration = 1.0← ttra,dur / s
21 StepLengthX = 0.3
22 StepLengthZ = 0.125← lz /m
23 ForcePartialContact = true
24 LeftHandPositionXYZ = [0.0, 0.7875, 1.25]← SFrLH /m
25 LeftHandExternalForceXYZ = [0.0, -50.0, 0.0]← SFFLH,ext /N

26 [Transitions.9]
27 CustomDuration = 1.0
28 StepLengthX = 0.2
29 LeftHandPositionXYZ = [-0.2, 0.5125, 1.25]
30 LeftHandExternalForceXYZ = [0.0, -50.0, 0.0]

31 [Transitions.10] ↓ straight walk (slowed down)
32 CustomDuration = 1.0
33 StepLengthX = 0.25

... ...

40 [Transitions.13]
41 CustomDuration = 1.0
42 StepLengthX = 0.20

43 [Transitions.14] ↓ step down platform (hand / tiptoe contact)
44 CustomDuration = 1.0
45 StepLengthX = 0.4
46 StepLengthZ = -0.125
47 LeftHandPositionXYZ = [0.0, 0.7875, 1.25]
48 LeftHandExternalForceXYZ = [0.0, -50.0, 0.0]
49 TipToeContact = true

50 [Transitions.15]
51 CustomDuration = 1.0
52 StepLengthX = 0.2
53 LeftHandPositionXYZ = [-0.2, 0.5125, 1.25]
54 LeftHandExternalForceXYZ = [0.0, -50.0, 0.0]

55 [Transitions.16] ↓ straight walk
56 StepLengthX = 0.2

... ...

59 [Transitions.18]
60 StepLengthX = 0.2

https://youtu.be/gUNZ0AmLiWU?t=1m41s
https://youtu.be/gUNZ0AmLiWU?t=1m41s

5.4 Transition Planner 120

5.4 Transition Planner

The task of contact planning is realized through the so-called Transition Planner. It represents
the second stage in the planning pipeline (cf. Figure 4.11) and is responsible of filling a sequence
with given begin pose and action type by a list of consecutive transitions (cf. Figure 5.4). In
particular, the transition planner computes the begin and end pose of each transition as well
as the additional parameters characterizing the motion in between, i. e., ttra,dur, hstep, and τSF.
Since the workflow of contact planning depends on the particular action type, the transition
planner is split into corresponding submodules as shown in Figure 5.5.

Special Motion Planner

Fixed Sequence Walking Planner Conversion

Teleoperated Walking Planner

Autonomous Walking Planner

Context Snapshot
Transition Planner

Se
qu

en
ce

Pl
an

ne
r

begin pose
action type

containercontext

Begin Pose

Transition 1

QPWT 1

QPWT n

...

Phase Planner

. . .(s
ch

ed
ul

in
g)

Section 4.5.5

Section 6.3

ac
ti

on
ty

pe

File System
QPWTsinput QPWTsoutput

Transition n

CoM Lowering:
∆

lx

llegl le
g

Figure 5.5: Overview of the Transition Planner as second stage of the planning pipeline (cf. Figure 4.11). Depending
on the action type of the sequence, the corresponding submodule (blue) is triggered. The submodules for fixed
sequence, teleoperated, and autonomous walking generate a sequence of QPWTs (green) which is then converted
(with optional CoM lowering based on the step length lx) to a chain of transitions (orange) using the formulas given in
Appendix D. In contrast, the submodule for special (non-gaited) motions directly generates the sequence of transitions.
The file system allows to read user-defined QPWT sequences from TOML files (cf. Table 5.3). Similarly, the QPWTs
generated by the autonomous walking planner may be saved to the file system (e. g. for later playback).

The desired behavior for fixed sequence and teleoperated walking has already been ex-
plained in Section 5.2. Contact planning for this type of actions boils down to specifying QPWTs
either from a parameterized (straight) path, an input (TOML) file, or HID controlled step pa-
rameters. For autonomous walking, the QPWTs are generated by a multi-level search presented
in Section 5.5. The QPWTs are then converted to a chain of transitions which is stored in the
data structure holding the motion plan. The submodule for planning special motions generates
transitions directly, which allows to plan non-gaited motion not describable by QPWTs (e. g.
bowing). Note that the described workflow of the transition planner is the same for dynamic
replanning, i. e., the responsibility for properly updating or stopping the currently executed se-
quence is assigned to the corresponding submodule depending on the action type.

CoM Lowering As part of the conversion of a QPWT to the corresponding end pose of a tran-
sition, the transition planner decreases the (desired) CoM height depending on the current step
length in the sagittal plane lx , cf. Table 5.2. This is meant to keep the CoM height roughly in the
center of the kinematically feasible region (a much more accurate consideration of the kinematic
limits follows in Section 6.14). For the vertical shift, we use

∆WrSF-CoM,z =
1
2

�

lleg −

√

√

l2
leg −

4
25

l2
x

�

with lleg := l5 + l6 (leg length, see Table 4.4) (5.2)

which is subtracted from WrSF-CoM,z (cf. Table 5.1) at the end pose of the transition. This heuristic
has been adopted from the original WPG implementation by BUSCHMANN. The WPG proposed
within this thesis uses the CoM lowering as optional feature which is enabled by default.

5.5 Autonomous Locomotion 121

5.5 Autonomous Locomotion

This section describes the Autonomous Walking Planner (cf. Figure 5.5) as the component of
the transition planner which is responsible of contact planning for autonomous (multi-contact)
locomotion – also referred to as “path finding” or “navigation”. As input data, this module takes

• the begin pose of the governing sequence (for dynamic replanning: the end pose of the
last transition to be kept unchanged) representing the initial state of the robot (“start”),

• the pre-processed environment model as part of the context snapshot, and
• a user-specified “goal” formulated as (horizontal) position PWrMF,x |y and (vertical) rotation

PWϕMF,z of the mean foot TCP frame MF described in the planning world FoR PW.

For an intuitive specification of the goal, we use the 2D pose of the mean foot TCP frame while
the remaining “passive” DoF of the robot, i. e., the vertical position and horizontal rotation, are
automatically derived from the terrain. Based on this information, the contact planner generates
a series of QPWTs reaching from the start to the goal which are then converted into a chain of
transitions as described in the previous section.

Numerous contact planners for autonomous locomotion of legged robots have been proposed
so far. A brief summary of the state of the art has already been given in Section 2.3. Most of the
presented works adapt and extend well-known search algorithms such as A⋆ or RRTs in order
to find a (close to) optimal solution in a reasonable amount of time. In particular for complex
problems with high-dimensional search space (such as multi-contact locomotion of humanoids),
real-time planning is an active area of research. This thesis presents a discrete planner based
on the A⋆ algorithm, where real-time performance is achieved through a hierarchical approach
using multiple levels of detail. In particular, the contact planner is organized as a pipeline of the
five consecutive stages shown in Figure 5.6.

1st Level A⋆Pre-Processor 2nd Level A⋆Rasterization Post-Processor

traversable

non-traversable

non-traversable

Start

Goal

En
vi

ro
nm

en
t

M
od

el
(t

op
do

w
n

vi
ew

)

Ex
pl

or
ed

St
at

es

D
is

ta
nc

e:
1st

le
ve

ls
ol

ut
io

n

Ex
pl

or
ed

St
at

es

O
pt

im
iz

ed
C

on
ta

ct
s

max

min

max

min

max

minso
lu

tio
n

sp
lin

e

Figure 5.6: Illustration of the workflow of the contact planner for autonomous locomotion. The pipeline consists of five
consecutive stages (from left to right): pre-processing (bottom: environment model in top down view with traversable
(step over) and non-traversable (bypass) obstacles); 1st level A⋆ search (bottom: map of explored states – each pixel
corresponds to a terrain cell); rasterization of the solution spline (alias “guiding path”) of the 1st level search (bottom:
distance map); 2nd level A⋆ search (accelerated by rasterized solution spline); post-processing (bottom: sequence of
refined footholds). See [18 @t=1m54s] and [18 @t=7m54s] for an animated visualization.

The main idea is to start with a rough search using a rather coarse search space discretization
in the following denoted as the 1st level. The sequence of discrete states representing the solution

https://youtu.be/mGlsc_revMc?t=1m54s
https://youtu.be/mGlsc_revMc?t=7m54s

5.5 Autonomous Locomotion 122

of the first level are connected by a solution spline acting as “guiding path”. The solution spline
gets rasterized, meaning the creation of a special 2D map (aligned with the terrain). The cells
of the map store local metrics such as the distance to the solution spline or its orientation, the
remaining path length, and the remaining rotation at the closest point on the solution spline.
These metrics take effect on the state costs and heuristics of A⋆ in order to accelerate the fine-
grained 2nd level search. Furthermore, both, the first and second level search, are accelerated
through extensive use of pre-computed (scenario independent) buffers which are setup once
during initialization of the WPG. The solution of the second level is passed to the post-processor
which refines the 6D pose of footholds and finds optimal contact points for the hands in multi-
contact scenarios.

In the following subsections, the contact planning pipeline is explained in more detail. In
Section 5.5.1, the discretization of the search space for the first level (“coarse”), the second level
(“medium”), and the post-processing (“fine”) is specified. This is followed in Section 5.5.2 by
a description of the pre-processing which includes the setup of buffers for acceleration as well
as a pre-evaluation of environmental surfaces. In Section 5.5.3, the A⋆ algorithm is introduced
together with remarks on an efficient implementation on real-time platforms. The formulation of
the first and second level search as well as their coupling through the rasterized solution spline
follows in Section 5.5.4. The last stage of the contact planning pipeline, the post-processor,
is finally described in Section 5.5.5. For a better understanding of the overall workflow, the
animated visualization given in [18 @t=1m54s] is recommended.

5.5.1 Discretization

Before setting up a graph search for contact planning, we first have to specify a discretized form
of the robot’s state. Since the computational effort increases drastically with each additional di-
mension of the search space, a very abstract description is necessary in order to achieve real-time
performance. For the first and second level search, an approach similar to the one proposed by
CHESTNUTT [114, p. 21] is used. In particular, only the 2D pose of the robot, i. e., the horizontal
position and vertical rotation, and the stance foot type (second level only) are used which is
obviously much less detailed when compared to the Robot Pose from Section 5.2. For describing
the horizontal position, we discretize the x-y-plane of the vision world frame VW such that the
resulting 2D grid is aligned with the terrain specified by the environment model (cf. Figure 4.5).
The vertical position of the robot (in direction of VWez) is implicitly given by the height value
stored in the corresponding terrain cell. The entire process of contact planning takes place in
the VW FoR where we use PWHVW provided by the CV system (cf. Section 4.4) to transform
(lightweight) robot poses during the pre- and post-processing, while the (heavyweight) data
structures of the environment model do not need any transformation.

With a maximum resolution of 1 cm × 1 cm provided by the terrain specification, a rather
fine discretization of the location is possible, e. g. when compared to GRIFFIN et al. [178] with
5 cm× 5cm. To the author’s best knowledge, only NISHIWAKI et al. [326] use a similar precision
with a horizontal resolution of 2 cm × 2cm. The same holds true for discretizing the rotation
around the vertical axis, for which we use a maximum resolution of 3.75◦ while related work
typically uses a much greater step size (e. g. 10◦ in GRIFFIN et al. [178]). However, the contact
planner proposed within this thesis uses the maximum resolution only for post-processing while
the previous stages work with coarser grids. At this point, we benefit from describing terrain
patches by quadtrees which provide ground information on different levels of detail.

1st Level Within the first level search, the robot’s state is described by a horizontal position

VWrMF,x |y discretized with a resolution of 8 cm and a discrete vertical rotation VWϕMF,z around
the positive VWez axis with a step size of 7.5◦. Since the first level search does not consider

https://youtu.be/mGlsc_revMc?t=1m54s

5.5 Autonomous Locomotion 123

individual feet, the 2D pose is related to the mean foot TCP frame MF. Moreover, the robot is
assumed to be in an idle configuration with parallel feet (cf. Section 4.5.2). Thus, the contact
with the ground is assumed to be of rectangular shape (convex hull of both footholds with
default foot separation). Both feet are assumed to be in full contact.

2nd Level For the second level, the resolution of VWrSF,x |y is increased to 4 cm while VWϕSF,z
uses the same step size of 7.5◦. In contrast to the first level, the 2D pose is no longer related to
MF, but the stance foot TCP frame SF instead. For this reason, the robot’s state additionally pro-
vides a binary variable indicating the stance foot type (right / left). Moreover, the contact area
with the ground is given by a single foothold (current stance) which adapts its size depending on
the contact type (l12× l13 for full and l10× l13 for partial / tiptoe contact, cf. Table 4.4). In order
to keep the dimension of the search space low, we do not include the contact type within the
state description. Instead, it affects the state costs within the related graph search making full
contact the preferred option. The same applies to collision detection and multi-contact reach-
ability (both evaluated using the SSV models introduced in Section 5.1), which are considered
in all three stages: the first and second level search, and the post-processing. Transforming a
2D pose from the first level to the corresponding 2D pose on the second level is straightforward,
however, one has to consider the relation between the MF and SF frame (translational shift by
half foot separation in idle configuration).

Post-Processing During post-processing, the stance foot pose is refined using the maximum
resolution of 1 cm for the horizontal position VWrSF,x |y and 3.75◦ for the vertical rotation VWϕSF,z.
Remaining quantities (horizontal foot rotation, hand positions for multi-contact, etc.) are di-
rectly derived from environmental geometry and have continuous values.

State Hashing A frequently occurring operation in graph-based search algorithms is the com-
parison of states. For the A⋆ algorithm presented in the following, this primarily applies to
checks for equality in order to find out if a certain state is contained in a given set. In order
to test equality between two data structures, a simple solution is to compare their members
individually. Under certain circumstances, it can be more efficient to encode each container into
a single integer using a certain hash function such that testing equality between two data struc-
tures boils down to comparing two integers. A drawback of this approach is that – depending on
the complexity of the structure – a hash collision might occur (differing containers get encoded
to the same hash). In our case, the state descriptions on the first and second level are small
enough to fit in a single 64-bit integer (stance foot type: 1 bit, horizontal position: 2× 2 bytes,
vertical rotation: 1 byte). This allows us to formulate an extremely efficient and guaranteed
collision-free hash function by simply concatenating the memory of the components. Moreover,
it is possible to efficiently recover the full state description from a given hash value without loss
of information.

5.5.2 Pre-Processing

The task of pre-processing can be split up into the computation of scenario independent ac-
celeration buffers (performed only once within an initialization routine of the WPG) and the
preparation of environmental surfaces for finding optimal hand contact points (performed by the
environment model manager, cf. Figure 4.11, together with building terrain patch quadtrees).
The acceleration buffers might seem like a minor implementation detail, however, they have a
significant influence on the overall runtime of the contact planning pipeline. Since a detailed
explanation would go beyond the scope of this thesis, the following paragraph represents only
a brief summary.

5.5 Autonomous Locomotion 124

Acceleration Buffers In order to maximize the performance of the contact planning pipeline,
the individual stages make extensive use of pre-computed internal buffers acting as lookup tables
for certain quantities. Prime examples are buffers storing

• 2D rotation matrices (combined with a constant scaling factor to account for the step size
of translational coordinates) for all possible (discrete) orientations,

• potential state successors and terrain cells representing the foot-ground interface for all
possible orientations and contact types,

• the transformed SSV models used for collision detection (cf. Figure 5.2) and multi-contact
reachability tests (cf. Figure 5.3) for all possible orientations, and

• terrain cells traversed by the swing foot for all possible (straight) swing foot paths (limited
by maximum step size in sagittal and lateral plane).

For a given discrete 2D pose of the robot, these buffers allow to lookup the corresponding
element related to the robot’s orientation and shift it afterwards according to the robot’s position.
This gives a significant performance boost, since rotation is typically an expensive operation
while translation is cheap for most quantities, e. g. SSV models62. Moreover, 2D areas (foot-
ground interface, swing foot traversal, etc.) are described as clusters of terrain cell coordinates,
which can be moved efficiently across the grid (like a “stamp”) by simply applying the robot’s
position as translational offset. The buffers for storing clusters of cell coordinates are generated
by rasterizing a continuous geometry onto the 2D grid (cf. Figure 5.13 left-bottom).

Surface Preparation – Adaptive Subdivision The proposed WPG models the surface of envi-
ronmental objects by an indexed triangle mesh, cf. Section 4.5.1. While it is assumed that the
triangles provided by the CV system are non-degenerated, they still can have an arbitrary size
and shape. Since the surface evaluation method presented in the following paragraph benefits
from a fine-grained grid with only slightly distorted triangles (ideally equilateral), an adaptive
subdivision is applied. Instead of methods which simultaneously smooth the mesh (e. g. the clas-
sical subdivision algorithm by CATMULL and CLARK [112]), a rather simple approach was chosen
which does not alter the original geometry. In particular, a maximum edge length lmax = 10cm is
introduced on the basis of which either none, one, two, or all three edges of a triangle are split
into half, see Figure 5.7. Whenever an edge is split, it has to be ensured that the neighboring
triangles remain connected, i. e., that the topological information is preserved. Depending on
the maximum edge length of the original mesh, the subdivision algorithm might require mul-
tiple iterations. The adaptive subdivision algorithm has been published as part of the library
am2b-vision-interface [16] (see the method CGMeshExtended::adaptiveSubdivision).

One Edge Two Edges Three Edges Mesh Subdivision

lmax

l max

lmax lmax

l m
ax l m
ax

Figure 5.7: Adaptive subdivision applied to the triangles of an environmental surface mesh. Each edge exceeding
the maximum allowed length of lmax is split into half effectively increasing the total count of triangles. Left: subdivision
of a triangle with one, two, or three edges exceeding the maximum length. Right: exemplary subdivision of a large
rectangle (represented by two triangles) into a fine-grained grid of small-sized triangles (3 iterations).

62For this purpose, the SSV library shipped with Broccoli [15] implements special, optimized methods for efficient
translation-only transformations (see for example the method SSVSegment::translateSegmentAndUpdate).

5.5 Autonomous Locomotion 125

Surface Preparation – Multi-Contact / Surface Confidence Subsequent to the adaptive sub-
division, the surface’s local suitability for potential hand contacts is evaluated. In order to
quantify the fitness of a certain point on the surface, we introduce the multi-contact / surface
confidence csurf given as the product

csurf(cvis, cdist, cκ) := cvis cdist cκ ∈ [0, 1] (5.3)

where cvis ∈ [0, 1] denotes the visual perception confidence and cdist ∈ [0, 1] and cκ ∈ [0, 1]
represent confidence values related to the distance to the mesh boundary and the local curva-
ture, respectively. While cvis is provided by the CV system (similar to the terrain confidence, see
Section 4.5.1), we derive cdist and cκ purely from geometry. Same as before, a confidence value
of 1 indicates that the considered location is an ideal contact point while a value of 0 is assigned
to regions which are not suitable for hand support at all.

In a first step, the topology of the triangle mesh is analyzed to allow an efficient computation
of the n-ring neighborhood of a vertex (see Figure 5.8, left). For “open” meshes, this includes
the identification of the boundary of the mesh, i. e., the set of edges which are connected to
a single triangle. Once the boundary is identified, we can move towards the interior of the
mesh by repeatedly “growing” along the 1-ring neighborhood until all vertices of the mesh have
been visited. For each interior vertex, the connection to the boundary is stored in the form of
the minimum distance ldist,min (see Figure 5.8, center) which is measured along the traversed
edges taking the individual edge length into account. While this represents only a rather coarse
approximation, it can be implemented very efficiently within the aforementioned process of
growing rings. The corresponding confidence value cdist is then given by

cdist(ldist,min) :=

¨ ldist,min
ldist,max

if ldist,min ≤ ldist,max ,

1 else
with ldist,max :=

3
4

dh (dh from Table 4.4) (5.4)

such that regions in the close vicinity of the boundary (parameterized by the hand diameter dh)
are penalized. In the case of a “closed” mesh (each edge is connected to two triangles such that
no boundary exists), we assume ldist,min→∞ and consequently cdist = 1.

n-Ring Neighborhood 1-Ring VORONOI CellsDistance to Boundary

ring 1

ring 2

ring 3

ring 4

m
es

h
bo

un
da

ry

l1

l2 l3

l4

vertex
A1

ldist,max A4

A2

A3

A6

A5

1

0

cdist

vertex

Figure 5.8: Illustration of concepts used during evaluation of environmental surfaces. From left to right: n-ring neigh-
borhood of a vertex; minimum distance of a vertex to the mesh boundary (here: ldist,min = l1 + l2 + l3 + l4) and its
influence on cdist; areas A1-6 of 1-ring VORONOI cells around a vertex used to compute the local curvature affecting cκ.

For computing the local curvature of a surface represented by a triangle mesh, numerous
methods have been proposed in literature. Within this thesis, the method presented by MEYER

et al. in [306, p. 35ff] is used since it is consistent (exact for tesselation with infinitesimal
small triangles), robust (works for irregular meshes), accurate, and efficient. The main idea
is to approximate the surface integral around the considered vertex by using a mixed finite
element/volume approach based on the VORONOI cells of the triangles in the 1-ring neighbor-
hood (see Figure 5.8, right). The algorithm proposed by MEYER et al. delivers the principal
curvatures κ1, κ2 ∈ R with κ1 ≥ κ2, the Gaussian curvature κgau := κ1 κ2, the mean curvature

5.5 Autonomous Locomotion 126

κmean := 1
2 (κ1 + κ2), and the (discrete) mean curvature normal operator κ ∈ R3 alias LAPLACE-

BELTRAMI operator (divergence of the gradient, see [306, p. 44ff]) with ∥κ∥ = 2κmean for each
interior vertex. For vertices lying on the boundary of the mesh, a curvature is not defined. In
this case, we use κ1 = κ2 = 0 as a fallback solution. Note that this choice does not affect csurf
since also cdist = 0 for ldist,min = 0. For a better understanding of these metrics, Figure 5.9 shows
the evaluation results for an exemplary (synthetic) surface.

Input Mesh
(triangulated)

z(x , y) = 2.5
�

x2 − y2�

1st Principal Curvature κ1
(interpolated)

min (0) κ1 max (>0)

2nd Principal Curvature κ2
(interpolated)

min (<0) κ2 max (0)

Normals n
(per-vertex)

�

�nx

�

�→ red,
�

�

�ny

�

�

�→ green,
�

�nz

�

�→ blue

Gaussian Curvature κgau
(interpolated)

min (<0) κgau max (0)

Mean Curvature κmean
(interpolated)

min (0) κmean max (>0)

LAPLACE-BELTRAMI κ
(per-vertex)

min (<0) nT κ max (>0)

Minimum Distance ldist,min
(interpolated)

min (0) ldist,min max (>0)

Filtered Confidence csurf
(interpolated)

0 csurf 1

x
y

z

Figure 5.9: Evaluation of a hyperbolic paraboloid as an exemplary surface featuring curvatures in two directions. The
corresponding triangle mesh is considered “open” (with x ∈ [−0.2, 0.2] and y ∈ [−0.2, 0.2]). The per-vertex nor-
mals n (color-coded by direction) are automatically derived using the method proposed by THÜRRNER and WÜTHRICH,
see [410]. The principal curvatures κ1 and κ2, the Gaussian curvature κgau, the mean curvature κmean, and the
LAPLACE-BELTRAMI operator κ are computed according to MEYER et al. [306, p. 35ff]. The minimum distance to the
boundary ldist,min is obtained following the scheme illustrated in Figure 5.8 (center). Finally, Equation 5.3 (with subse-
quent Gaussian filtering) leads to the depicted surface confidence csurf (assuming a constant cvis = 1).

For computing cκ from the local curvature, we introduce the maximum (absolute) principal
curvature κmax :=max(|κ1|, |κ2|). Furthermore, we differentiate between three cases character-
izing the shape of the surface in the neighborhood of the considered vertex:

cκ(κmax) :=











cκ,convex(κmax) if κgau ≥ −ϵ and nTκ> 0 ,

cκ,concave(κmax) if κgau ≥ −ϵ and nTκ≤ 0 ,

cκ,saddle(κmax) else

. (5.5)

5.5 Autonomous Locomotion 127

Here, we use κgau to determine if the considered vertex represents an elliptic point (κgau > ϵ:
both principal curvatures have the same sign), a parabolic point (|κgau| ≤ ϵ: at least one principal
curvature is close to or equal to zero), or a saddle point (κgau < −ϵ: principal curvatures have
different sign). For computing cκ, we handle elliptic and parabolic points in the same way.
However, we differentiate between a convex and concave surface by checking if the normal n
(defines “inside” and “outside” of the object) and the mean curvature normal operator κ point
into the same or opposite direction (sign of nTκ). We concretize the three cases presented in
Equation 5.5 by defining

cκ,convex(κmax) :=

¨

cκ,flat

�

1− κmax
κthres,1

�

if κmax ≤ κthres,1 ,

0 else
(5.6)

cκ,concave(κmax) :=















cκ,flat +
�

1− cκ,flat

� κmax
κopt

if κmax ≤ κopt ,

1−
�

κmax−κopt

�

�

κthres,2−κopt

� if κopt < κmax ≤ κthres,2 ,

0 else

(5.7)

cκ,saddle(κmax) := cκ,convex(κmax) (5.8)

where we use the parametrization

cκ,flat :=
3
4

, κthres,1 :=
2

3 dh
, κthres,2 :=

2
dh

, and κopt :=
1
dh

. (dh from Table 4.4) (5.9)

For zero curvature κmax = 0 representing a flat surface, we choose cκ,flat as a “default” confidence.
Due to the higher risk of slipping on convex- and saddle-shaped areas, the confidence degrades
in these cases with increasing curvature until it reaches 0 at the threshold κthres,1. In contrast,
concave regions promise a higher contact stability, thus, in this case the confidence increases
with the curvature finally reaching its maximum of 1 at the optimum κopt. Beyond κopt, the
confidence decreases again and reaches 0 at the threshold κthres,2.

Once, cdist and cκ have been computed, we can derive the overall surface confidence csurf by
evaluating Equation 5.3. In order to compensate parasitic effects due to the approximation of
a continuous surface by a discrete triangle mesh, we blur csurf by applying a Gaussian filter. To
limit the computational cost, the kernel size is chosen to the 3-ring neighborhood. Moreover,
we use the Euclidean distance between the currently investigated vertex and its neighbors in
combination with a standard deviation of csurf,σ = dh/2. Vertices lying on the boundary of the
mesh are not filtered in order to keep their confidence at zero.

The parametrization presented in Equation 5.9 has been determined empirically such that
a reasonable cκ is obtained for typical geometries occurring in our target scenarios such as the
lab table shown in Figure 4.6. In addition to the assumption of cvis = 1 (perfect perception),
the table is approximated by a closed mesh (cdist = 1) such that the depicted surface confidence
csurf is equivalent to the (filtered) cκ. Note that the flat area on the top (cyan) yields the object’s
maximum confidence of cκ,flat = 0.75. At the table’s (convex) edges, the confidence rapidly
degrades (blurred by Gaussian filter).

The presented method for evaluating environmental surfaces based on cvis, cdist, and cκ has
not been published before. To the author’s best knowledge, no other work has proposed a
comparable algorithm in the context of multi-contact locomotion. The probably closest match
is given by CHESTNUTT in [114, p. 24ff], where the local curvature of the terrain is computed
in order to reason about the “stability” of footholds. While level ground is considered optimal,
convex areas are penalized more than concave ones. Besides the curvature, CHESTNUTT also
proposed other measures such as the roughness of the terrain. A similar (but much simpler)
metric based on the maximum height difference within a cluster of terrain cells is used also by
the graph search presented within this thesis (details follow in Section 5.5.4).

5.5 Autonomous Locomotion 128

5.5.3 A⋆ Algorithm

For finding the optimum path from a given start state to a user-specified goal state within the
discretized search space, the WPG uses (except for slight modifications) the original A⋆ algorithm
introduced by HART et al. in [190]. Among the variety of search algorithms, A⋆ is probably the
most prominent one. Consequently, there exists an excessive amount of literature covering its
working principle and properties. Instead of repeating well-known fundamentals, this section
focuses on the particular implementation of A⋆ within the contact planning pipeline of LOLA.
Note that there exist numerous extensions and variations of A⋆. A brief overview with regard to
legged locomotion planning has already been given in Section 2.3. For LOLA, real-time contact
planning for multi-contact locomotion represented an entirely new domain. Hence, it seemed
reasonable to stick to the original form of A⋆ and focus on the formulation of appropriate models,
costs, and the search space instead. Further optimizations through extending or replacing A⋆ as
the underlying graph search algorithm are left for future investigations.

As a graph traversal algorithm, A⋆ builds a tree of states {Si} which, in our case, represent the
robot’s discretized state as defined in Section 5.5.1. Each state Si is assigned to a corresponding
node Ni, which is simply a data container holding the state (includes it’s hash, cf. Section 5.5.1)
and related costs. Except for the start node alias “root”, each node additionally stores a link to
its predecessor (describes the optimum path) and the total count of predecessors. The nodes
are connected through transitions, for which (unidirectional) transition costs ct(Npre, Snext) are
defined. As a slight modification to the original formulation by HART et al., we additionally in-
troduce state costs cs(Si), which are applied – independently of the predecessor – upon reaching
the corresponding state Si. State costs can be seen as an additional contribution to the tran-
sition costs, thus, they do not affect the properties of A⋆ in any way. However, they make the
specification of costs clearer and allow a much more efficient63 implementation in our case. In
order to limit memory consumption, an implicit graph description is used such that only space
for explored nodes needs to be allocated. For each node Ni of the graph, A⋆ assigns a score

c f (Ni) := cg(Ni) + ch(Si) with cg(Nnext) := cg(Npre) + ct(Npre, Snext) + cs(Snext) (5.10)

where cg(Ni) denotes the minimum path cost from the start to the current state Si (as accu-
mulation of transition and state costs) and ch(Si) represents the heuristic estimating the costs
from the current state to the goal. An important requirement for optimality is that the heuristic
represents a lower bound, i. e., it must be lesser or equal to the real costs of the remaining path
[190]. For finding the shortest path between two locations in Cartesian space, a frequently used
approach is to use a heuristic based on the Euclidean distance. Indeed, choosing a heuristic of
ch = 0 is also valid (equivalent to DIJKSTRA’s algorithm [135]). However, in order to obtain a
decent acceleration of the search, one has to find a close approximation of the real costs which is
also cheap to compute. The score c f (Ni) is used to sort Ni within a list of currently investigated
nodes, the so-called open list. Upon each iteration of A⋆, the node with the lowest score c f is ex-
tracted and expanded (evaluation of potential successors). The iteration continues until the goal
is reached. Same as with the original formulation of A⋆, we allow the definition of multiple64

goal states. Once the goal is reached, the optimum path is obtained by recursively following the
predecessor links stored within each node. Algorithm 5.1 provides a more detailed description
of the particular implementation of A⋆ used within the WPG of LOLA.

63The state costs cs(Si) are evaluated only once upon first occurrence of the state Si . In contrast, the transition
costs ct(Npre, Snext) towards the state Snext depend on the previous node Npre, i. e., they have to be evaluated for each
potential predecessor. Thus, splitting the costs for moving from node Npre to state Snext into separated transition and
state costs allows to avoid duplicate calculations which depend on Snext only. Since the state costs (specified in the
following section) are rather expensive to compute, this extension leads to a significant performance boost.

64The proposed WPG allows the user to select a goal through specifying the horizontal position PWrMF,x |y and the
vertical rotation PWϕMF,z of the mean foot TCP frame. This leads to a single goal state within the first level and two
(equivalent) goal states (left or right stance) in the second level A⋆ search of the contact planning pipeline. The
heuristic has to be chosen such that it does not overestimate the remaining path costs for any goal state.

5.5 Autonomous Locomotion 129

Algorithm 5.1: Implementation of the A⋆ search algorithm within the contact planning pipeline of LOLA.

Input: Start state Sstart and finite set of goal states {Sgoal,i}
Output: Optimum path from the start state Sstart to one of the goal states {Sgoal,i}

begin
cs,start← stateCost(Sstart) // state cost of start state
cs,goal←min({stateCost(Sgoal,i)}) // minimum state cost of all goal states

if cs,start =∞ or cs,goal =∞ then // check if start state or all goal states are invalid
return Error // start state and/or all goal states are invalid

end
cg,start← cs,start // initialize minimum path cost with state cost of start state

ch,start← heur(Sstart, {Sgoal,i}) + cs,goal // heuristic of start state (cs,goal is not included in operator heur())

Nstart← node(Sstart, ∅, cs,start, cg,start, ch,start) // create start (“root”) node (no predecessor: pred(Nstart) =∅)

openList.insert(Nstart, c f ,start = cg,start + ch,start) // initialize open list with root node

while openList.isEmpty() = false do // repeat unless open list becomes empty
Ncur, Scur, cg,cur← openList.extractMin() // extract node with lowest score c f from open list

if Scur ∈ {Sgoal,i} then // check if we reached the goal
optimumPath.insert(Scur) // initialize optimum path with reached goal state
while pred(Ncur) ̸=∅ do // follow chain of predecessors until root node is reached

Ncur, Scur← pred(Ncur) // switch to the predecessor of the current node
optimumPath.insert(Scur) // add predecessor state to the optimum path

end
return optimumPath.invertOrder() // output optimum path (in reverse order)

end
closedSet.insert(Scur) // add current state to closed set such that it does not get investigated again
{Ssucc,i} ← succList(Ncur) // compute list of potential successors of current node
for Ssucc ∈ {Ssucc,i} do // iterate over all potential successors

if closedSet.contains(Ssucc) = false then // skip successors which are in the closed set
Nsucc← openList.find(Ssucc) // try to find corresponding node in open list
if Nsucc ̸=∅ then // check if successor was found in open list

ct ← tranCost(Ncur, Ssucc) // transition cost from current node to successor state
if ct ̸=∞ then // skip successor if transition is invalid

cs,succ, cg,succ,pre, ch,succ←Nsucc // extract previously computed costs

cg,succ,new← cg,cur + ct + cs,succ // min. path cost of successor assuming Ncur as predecessor

if cg,succ,new < cg,succ,pre then // check if we found a less expensive path
cg,succ← cg,succ,new // replace minimum path cost for using Ncur as new predecessor

Nsucc← node(Ssucc, Ncur, cs,succ, cg,succ, ch,succ) // update successor (new predecessor)

openList.update(Nsucc, c f ,succ = cg,succ + ch,succ) // reorder successor node in open list

end
end

else // successor is not in open list
cs,succ← stateCost(Ssucc) // state cost of successor state
if cs,succ ̸=∞ then // check if successor state is valid

ct ← tranCost(Ncur, Ssucc) // transition cost from current node to successor state
if ct ̸=∞ then // skip successor if transition is invalid

cg,succ← cg,cur + ct + cs,succ // minimum path cost of successor

ch,succ← heur(Ssucc, {Sgoal,i}) + cs,goal // heuristic of successor state

Nsucc← node(Ssucc, Ncur, cs,succ, cg,succ, ch,succ) // create successor node

openList.insert(Nsucc, c f ,succ = cg,succ + ch,succ) // insert successor node to open list

end
else // successor state is invalid

closedSet.insert(Ssucc) // add successor state to closed set (do not investigate again)
end

end
end

end
end
return Error // no solution found (none of the goal states is reachable from the start state)

end

5.5 Autonomous Locomotion 130

Within Algorithm 5.1, the node graph is represented by two containers, the open list and the
closed set. The open list stores all currently investigated nodes in a special way such that it allows
an efficient extraction of the element with the lowest score c f (best-first). Since its particular
realization has a significant influence on the overall runtime of A⋆, a custom (optimized) imple-
mentation is used which will be described in the following. In contrast, the closed set represents
a much simpler container storing finally evaluated and invalid states such that they do not get
considered again. Since the closed set only needs to provide methods for inserting elements and
checking containment, it is realized through a std::unordered_set container (elements are
hash values of states) as provided by the C++ standard library.

Note that Algorithm 5.1 is not restricted to LOLA or even legged locomotion but instead repre-
sents a generic implementation of A⋆. Indeed, the application-specific functionality is introduced
with the operators succList(), stateCost(), tranCost(), and heur(), which are defined individually
for the first and second level search of the contact planning pipeline, see Section 5.5.4 for de-
tails. The presented implementation of A⋆ minimizes the count of calls for these operators by
reusing previous results whenever possible. Moreover, by returning an infinite cost, the opera-
tors stateCost() and tranCost() can label certain states and transitions as invalid such that they
do not get considered again. This way, states and transitions can be excluded on the basis of the
local environment (e. g. the terrain) right after expansion of potential successors (similar to the
“adaptive node expansion” proposed by KARKOWSKI et al. in [244]).

Efficient Implementation of the Open List Besides the four application-specific operators, a
major impact on the overall performance of A⋆ is given by the realization of the open list. In ad-
dition to guaranteeing consistency, i. e., correct order of the contained elements, Algorithm 5.1
requires the open list to provide the methods

isEmpty(): returns flag indicating if elements are contained,

insert(Ni , c f ,i): inserts the node Ni and sorts it according to its score c f ,i,

extractMin(): returns the node with minimum score and removes it from the container,

update(Ni , c f ,i): replaces the node Ni and sorts it according to the new score c f ,i, and

find(Si): returns the node related to the state Si (without removing it from the container).

The first three operations are characteristic for a priority queue, while update() and find() rep-
resent less common extensions. A classic implementation of a priority queue is the binary heap
originally introduced by WILLIAMS in [435] as data structure for the famous heap sort algo-
rithm. Indeed, numerous other realizations of priority queues have been proposed so far. In
[266], LARKIN et al. compared the performance of different implementations for the specific
application as an open list within DIJKSTRA’s algorithm [135]. For their path finding scenario
(full USA road map), LARKIN et al. identified the implicit D-ary heap65 with branching factor
4 as the optimum choice effectively being more than three times faster than the (often for A⋆

suggested) FIBONACCI heap introduced by FREDMAN and TARJAN in [159]. For the open list
used in Algorithm 5.1, we adopt the implicit D-ary heap proposed in [266] and extend it for our
purposes. The source code of the resulting open list container has been published as part66 of
Broccoli. In order to avoid dynamic memory allocation at runtime, our heap further integrates a
custom pool allocator67 responsible for storing the actual node data.

65An implicit D-ary heap is a generalization of a binary heap (D = 2), where each node has D > 1 child nodes. The
data is stored as an implicit heap, which means that it is encoded as a level-order traversal in an array (in contrast to
an explicit heap which stores heap-allocated nodes and pointers). This typically has better caching behavior since all
nodes are stored in a continuous container. Moreover, it allows an efficient iteration over all nodes in the tree.

66See the class ImplicitDaryHeap in the module memory of Broccoli.
67See the class PoolAllocator in the module memory of Broccoli.

5.5 Autonomous Locomotion 131

5.5.4 Hierarchical Graph Search

This section briefly describes the first level search, the rasterization of its solution, and the sec-
ond level search which together represent the stages two, three, and four of the contact planning
pipeline shown in Figure 5.6. As already discussed in Section 2.3, accelerating a (heavyweight)
fine-grained search by some kind of guiding path computed by a preceding (lightweight) coarse-
grained search is a common approach in locomotion planning. Indeed, the novelty of the contact
planner proposed within this thesis lies in the used models for evaluating foot contacts, colli-
sions, and multi-contact situations as well as the specification of corresponding A⋆ costs and the
way how the first and second level search are coupled – all together leading to a versatile multi-
contact planner with real-time performance. Since a full specification of the used cost functions
would go beyond the scope of this document, only a brief summary of the main contributions
together with the most important parameters is given instead. Indeed, the proposed contact
planning pipeline is configured through more than 120 parameters which have been tuned such
that reasonable results are obtained for the scenarios shown in the video [18 @t=6m46s]. It
has to be highlighted that the same set of parameters is used for all scenarios, thus, no scenario-
dependent tweaking is necessary. In the following, we make use of the models which have been
introduced in Section 5.1. In particular,

• the contact area between the foot and the ground is represented by a cluster of terrain
cells whose shape depends on the contact type (full or partial / tiptoe, cf. Figure 5.1),

• the task-space SSV model (with optional SSVs to model the left / right arm’s null-space
motion depending on the multi-contact situation, cf. Figure 5.2) is used to detect collisions
with environmental objects and label corresponding A⋆ states as invalid, and

• the multi-contact target volume (cf. Figure 5.3) is used to efficiently evaluate reachability68

and reward corresponding A⋆ states which allow hand support.

Furthermore, we filter the environment model provided by the context snapshot in order to
generate a list of objects which are relevant for multi-contact locomotion (the ones classified as
walls, tables, etc. and with a minimum surface confidence csurf,min of 1/3) and a list of objects
which should be considered during collision detection (the ones not classified as floor).

1st Level – States and Successors Within the first level A⋆ search, each state Si describes a
position VWrMF,x |y and an orientation VWϕMF,z which are discretized according to Section 5.5.1.
The operator succList(Ni) provides a set of potential successors69 which lie in front of the 2D
pose described by Si. The set is parameterized through the step parameters lx ,min = 8cm, lx ,max =
64 cm, ϕz,min = −15◦, and ϕz,max = 15◦. Since lx ,min > 0, walking backwards is not considered.

1st Level – State Costs In a first step, the operator stateCost(Si) checks if the terrain cell re-
lated to the state Si has a non-zero confidence. This allows to quickly discard unrevealed regions.
Then, the cluster of terrain cells describing the foot-ground interface is analyzed. The cluster
is determined through rasterization of the (minimum) rectangle enclosing parallel footholds (in
full contact) with default foot separation. We formulate the state costs cs(Si) as linear function
of the maximum height difference (lower is better) and the mean confidence value (higher is
better) of all cells in the cluster. A height difference of more than 4 cm (very bumpy terrain) or a
mean confidence cvis,mean of less than 2/3 (uncertain regions) make the state invalid. Next, the
multi-contact target volumes for the left and right hand are used to check reachability of envi-
ronmental objects. If no multi-contact capable object is reachable, the state is further penalized

68Similar to KUMAGAI et al. [262], we assume that a hand contact is feasible if it is geometrically reachable during
the considered step. However, this thesis uses a different approach for modeling volumes and surfaces and also
considers geometric properties of the object’s shape.

69Since the successors of an A⋆ state do not necessarily have to be in its “physical” vicinity, the often equivalently
used term “neighbors” can be misleading and is therefore avoided in this thesis.

https://youtu.be/mGlsc_revMc?t=6m46s

5.5 Autonomous Locomotion 132

with additional costs. Left and right hand are considered individually such that a configuration
with both hands in contact is preferred over single-handed support. Finally, a collision check
is performed where the configuration of the task-space SSV model (activation of left / right
arm SSV) depends on the previously identified multi-contact feasibility. In case of a collision,
the state is labeled as invalid. Note that the order of execution of validity checks is chosen
according to the likelihood of the corresponding event such that – in case of an invalid state –
calculations are aborted as soon as possible.

1st Level – Transition Costs The operator tranCost(Npre, Snext) evaluates the traveled path
length (Euclidean distance between Spre and Snext), the step length in vertical direction (dif-
ference of mean heights between terrain cells related to Spre and Snext), and the cluster of ter-
rain cells traversed by the robot (foot-ground interface extruded along line connecting Spre
and Snext). The traveled path length is used to limit the step length in walking direction
(lx ,max = 32cm) for the very first70 and last71 transition of a sequence. This effectively limits the
walking speed at the beginning and end of the sequence leading to a more decent acceleration
and deceleration. For the (absolute) step length in vertical direction, we set a maximum of 13 cm
which complies with the kinematic capabilities of LOLA. The cluster of terrain cells traversed by
the robot allows to identify the height of obstacles for which we choose a maximum of 15cm.
After these validity checks, the transition costs ct(Npre, Snext) are computed as the sum of: a con-
stant penalty (such that sequences with fewer steps are preferred), a linear cost for the traveled
path length (lower is better; to reward short paths), a linear cost for the step length in walking
direction (optimum at lx ,opt = 40cm representing the “desired” step length), a quadratic cost
for the vertical rotation (optimum at ϕz,opt = 0 to prefer straight walking), a linear cost for the
step length in vertical direction (lower is better), and a linear cost for the obstacle height (lower
is better). Obviously, the individual weighting of cost terms has a significant influence on the
“decisions” the A⋆ algorithm makes, e. g. if an obstacle is traversed or bypassed or – considering
a multi-contact scenario – if the robot leaves the shortest path in order to allow hand support
against a close-by object. Indeed, the “optimum” path strongly depends on the application and
has no universal definition.

1st Level – Heuristic The minimum path cost from the given state Si to one of the goal states
{Sgoal,i} is given by the accumulation of state and transition costs assigned to the remaining
section of the (unknown) optimum path. The operator heur(Si) returns a lower bound for
these costs. Note that this excludes the minimum state cost of the goal states cs,goal which is
directly added by Algorithm 5.1 instead. For this purpose, we first compute a lower bound
for the remaining path length (minimum Euclidean distance between Si and {Sgoal,i}) and the
remaining rotation (minimum relative rotation between the Si and {Sgoal,i}). Together with
the previously declared maximum step length in walking direction and the maximum vertical
rotation per step (see the operator succList(Ni)), this allows us to compute the minimum count
of steps the robot has to make in order to reach one of the goal states. In addition, we determine
the minimum height difference between Si and {Sgoal,i} by comparing the mean height values
stored in the corresponding terrain cells. The heuristic ch(Si) is then computed as the sum of:
the minimum step count times the constant penalty for transitions, the linear cost for the path
length, the minimum step count required for the remaining rotation times the quadratic cost
for rotation with the smallest possible step angle, and the linear cost for the height difference.
For computing ch(Si), we use the same parametrization as for the transition costs such that the
heuristic is guaranteed to represents a lower bound. In contrast to the transition costs, we do
not formulate a contribution for the step length in walking direction since we assume that every
step has optimal length. Similarly, we assume that there are no obstacles on the remaining path
such that there is no contribution related to the obstacle height.

70To identify the very first transition, we check if the node Npre lacks of a predecessor, i. e., if it is the root node.
71To identify the very last transition, we check if the state Snext is contained in the set of goal states {Sgoal,i}.

5.5 Autonomous Locomotion 133

1st Level – Results Figure 5.10 presents exemplary results for a scenario where the robot
traverses and bypasses obstacles. It has to be highlighted that the proposed first level search is
much more general when compared to continuous 2D path planners (e. g. the one proposed by
KARKOWSKI and BENNEWITZ in [243]) which typically do not allow stepping over obstacles or
climbing stairs. Hence, although we do not consider individual feet in the first level, the discrete
nature of legged locomotion is still accounted for.

Expl. States Path Cost cg(Ni) Heuristic ch(Si) Score c f (Ni)

34
0

m
ax

m
in

m
ax

m
in

m
ax

m
in

st
at

e
co

un
t

c g
(N

i)

c h
(N

i)

c f
(N

i)

Optimum Path

S1 = Sstart

S2
S3

S4

S5

S6

S7
S8
S9

S10

S11

S12
S13
S14
S15

S17

S16

S18 = Sgoal

Sstart Sstart Sstart Sstart

Sgoal Sgoal Sgoal Sgoal

Figure 5.10: Exemplary results of the first level A⋆ search for the scenario shown in Figure 5.6 and [18 @t=7m54s].
From left to right: map showing the count of explored (valid) A⋆ states for each terrain cell; path costs cg(Ni), heuristic
ch(Si), and score c f (Ni) (minimum of corresponding terrain cell); optimum path described as sequence of states
{Si} connecting Sstart and Sgoal. According to the search space discretization specified in Section 5.5.1, each terrain
cell has a size of 8cm× 8cm and represents 48 (= 360◦/7.5◦) individual A⋆ states. For an animated visualization
showing the progress of the node expansion, see [18 @t=2m5s].

For the depicted example scenario, the solution of the first level search is obtained in about
42 ms (σ = 165µs) on average72. In particular, the A⋆ search involves 9,646 explored nodes,
17,444 invalid states, and 22 invalid transitions. Moreover, we count > 105 calls to the openList
container (9,646× insert(), 8,654×extractMin(), 3,851×update(), 98,341×find()) and > 3 ·105

calls to the closedSet container (26,097× insert(), 340,160× contains()).

Rasterization In order to convert the discrete solution of the first level search into a continu-
ous “guide path”, we compute a C2-continuous cubic spline (with zero second-order derivatives
at the boundaries) interpolating the first level solution states shown in Figure 5.10 right. The
resulting path is called solution spline (Figure 5.11, left) and will be used to accelerate the sec-
ond level A⋆ search by affecting the state costs cs(Si) and heuristics ch(Si). For this purpose, we
define four individual local metrics which depend on the test point rtest and its closest point rclo
on the solution spline. Both, rtest and rclo, lie in the horizontal plane of the vision world FoR. In
order to efficiently determine rclo, we approximate the solution spline by splitting each segment
of the cubic spline into ten interconnected line segments.

72For analyzing the runtime of WPG components, we perform 200 (identical) simulations of the considered sce-
nario. After trimming the slowest and fastest 10 %, we compute the arithmetic mean of the remaining 160 runtime
samples. The simulations are run on the Operator PC where we assign the highest OS priority to the single-threaded
simulation process and pin it to a single CPU core to minimize cache misses. Moreover, SMT of the CPU is disabled
to maximize reproducibility. The simulations are executed one after the other while the remaining system load is
kept as low as possible. Time is measured using the method explained in Footnote 59. We stick to simulations since
obtaining reliable measurements for the “real-world” runtime (using the onboard PC during walking experiments) is
difficult due to the strong interference with other real-time applications running on the same platform.

https://youtu.be/mGlsc_revMc?t=7m54s
https://youtu.be/mGlsc_revMc?t=2m5s

5.5 Autonomous Locomotion 134

The local metrics at rtest are then given by

• the Euclidean distance between the test point rtest and the closest point rclo,
• the direction of the solution spline (tangent) at the closest point rclo,
• the remaining arc length (accumulated line segment lengths) at the closest point rclo, and
• the remaining rotation (accumulated absolute values of relative angles between consecu-

tive line segments) at the closest point rclo.

Although computing these metrics for every expanded A⋆ state of the second level search is pos-
sible, it would be very inefficient. Indeed, each terrain cell in the second level search represents
48 (= 360◦/7.5◦)×2 (left/right stance) = 96 individual A⋆ states which are all linked to the same
discretized position rtest. Since the metrics depend on rtest but not on the orientation or stance,
they are identical for all 96 states. Therefore, it is sufficient to evaluate the metrics only once
for each terrain cell. For this purpose, the solution spline is rasterized, i. e., we setup a two-
dimensional map storing the local metrics in each cell. The map can be interpreted as image,
where each “pixel” represents a terrain cell of the second level search. The dimensions of the
map are chosen such that they enclose the entire solution spline with an inner margin of 1.5 m.
If an A⋆ state outside this area needs to be evaluated, the metrics have to be computed directly
from the solution spline, i. e., without accelerated map lookup. However, since states which are
too far away from the solution spline will be labeled invalid (details follow with the description
of state costs), it is guaranteed that node expansion does not exceed the map boundaries.

Similar to rasterized images in computer graphics, the resulting map suffers from artifacts
caused by the finite resolution of the map. In particular, segments of the solution spline which
are not parallel to the x- or y-axis of the grid will have a staircase-alike appearance in the
map. In order to counteract this effect, we perform spatial anti-aliasing through supersampling.
In particular, each map cell is split uniformly into four square subcells. The metrics are then
evaluated at the centroids of this 2× 2 pattern and simply combined by forming the arithmetic
mean. An exception is made for the component storing the direction of the solution spline, for
which we have to use the circular mean instead (proper wrapping of angles). Exemplary results
for the acceleration map are presented in Figure 5.11.

Solution Spline Distance Direction Arc Length

1.
3

0.
0

∥r
te

st
−

r c
lo
∥/

m

rtest

Rotation

start

goal goal goal

5.
2

0.
0

re
m

.
ar

c
le

ng
th
/

m

55
2.

3
0.

0
re

m
.

ro
ta

ti
on
/
◦

original filtered original filtered original filtered

x
y

VW

rclo

V
W
ϕ

M
F,

z
/
◦VWϕMF,z

50
.0

−
50

.0

Figure 5.11: Rasterization of the solution spline (left) which interpolates the sequence of first level states forming the
optimum path (cf. Figure 5.10 right). The generated map stores local metrics for each test point rtest (discretized by
4 cm× 4 cm cells alias “pixels”) such as the distance to the solutions spline and the direction, remaining arc length,
and remaining rotation of the closest point rclo on the solution spline. The last three images are split into half where
the left side shows the original data and the right side shows the final output after Gaussian filtering.

5.5 Autonomous Locomotion 135

Independent of the shape of the solution spline, the distance field is guaranteed to be smooth.
In contrast, the remaining three metrics (direction, arc length, and rotation field) show discon-
tinuities at locations where the closest point on the solution spline is not unique. This leads
to visible edges in the corresponding data fields. In order to blur discontinuities, we apply a
Gaussian filter (standard deviation: σ = 8cm, normalized kernel: 6σ × 6σ) to the direction,
arc length, and rotation field. Since the direction field stores orientations, its Gaussian filter is
modified to use the (weighted) circular mean of the samples. For the shown example scenario,
the entire rasterization process takes 41 ms on average (map size: 100× 190 cells).

Unfortunately, the interpolation by a cubic spline can lead to bumpy spline segments, espe-
cially between control points which lie close to each other (e. g. S7-S10 and S12-S16 in Figure 5.10
right). While this has only a minor effect on the computed arc length, it can lead to a consid-
erable overestimation of the remaining rotation. Within a potential future revision, one might
consider to replace the cubic spline by a simple piecewise linear path instead.

2nd Level – States and Successors Within the second level A⋆ search, each state Si is char-
acterized by the current stance foot type (right / left) as well as its position VWrSF,x |y and ori-
entation VWϕSF,z (discretized according to Section 5.5.1). Note that it is simple to derive the
corresponding 2D pose of the MF frame used by the first level search and the acceleration map
(rasterized solution spline). The operator succList(Ni) provides a set of potential successors to
the second level state Si which is defined through the following constraints:

• the stance foot type has to switch (restriction to biped walking),
• the step length in the sagittal plane is limited by lx ,min = 0 and lx ,max = 64cm,
• the step length in the lateral plane (stepping “outside”) is limited by l y ,max = ±24 cm,
• the step angle around the vertical axis is limited by ϕz,min = −15◦, and ϕz,max = 15◦, and
• the joint-space SSV models (cf. Figure 5.13 center) of the right foot (sfr+zfr for qzfr = 0)

and the left foot (sfl+zfl for qzfl = 0) must have a minimum distance of 2 cm.

In order to forbid large diagonal steps (e. g. with lx = lx ,max and l y = l y ,max at the same time),
we further setup the constraint |lx/lx ,max|+ |l y/l y ,max| ≤ 1 such that the permitted area for plac-
ing successors is triangle-shaped. It has to be highlighted that evaluating the aforementioned
constraints (which involves costly collision detection between the rather complex SSV models
of the left and right foot) comes with zero runtime cost since the operator succList(Ni) extracts
the list of potential successors from pre-computed buffers (cf. Section 5.5.2).

2nd Level – State Costs Same as in the first level, the operator stateCost(Si) first checks if the
terrain cell related to the state Si has been revealed. Subsequently, the cluster of terrain cells
resembling the foot-ground interface (single footprint of current stance assuming full contact)
is analyzed. The state costs cs(Si) are formulated as a linear function of the maximum height
difference (lower is better) and the mean confidence value (higher is better) of all cells in the
cluster. If the height difference exceeds 4 cm (bumpy terrain) or the mean confidence is less
than 2/3 (uncertain regions), full contact is considered to be infeasible. In contrast to the first
level, the state Si might still be valid for partial (or tiptoe) contact. To find out, another cluster
of terrain cells representing the foot-ground interface is assembled – now using the toe segment
rather than the full foot sole as contact surface (cf. Figure 5.1). Again, we check the maximum
height difference and the mean confidence value against the same validity thresholds. In order
to avoid collisions of the heel with the ground, we additionally require the maximum cell height
of the partial contact cluster to be greater or equal to the maximum cell height of the full contact
cluster. If all constraints are satisfied, the contact is considered to be valid and the state costs are
computed as linear function of the maximum height difference and the mean confidence with
regard to the partial contact cluster. Furthermore, a constant penalty for partial contact is added
such that full contact is preferred in general.

5.5 Autonomous Locomotion 136

If the first level search was successful, the operator stateCost(Si) additionally extracts the
metrics distance and direction (using the position of the MF frame) from the acceleration map,
cf. Figure 5.11. If the distance to the solution spline exceeds 15 cm or the error in the orientation
exceeds 30◦, the state is drawn invalid. The start state Sstart and the goal states {Sgoal,i} are
excluded from this check. Discarding states which deviate too much from the first level solution
leads to a significant acceleration. Unfortunately, we also loose the guaranty of optimality.
However, for most scenarios considered within this thesis, we still obtain the optimum while a
suboptimal path – which still represents a valid solution – occurs only in rare cases. Note that
in very complex scenarios, e. g. where the robot has to walk sideways to pass a narrow corridor,
the first level search will fail such that the second level search delivers the optimum, however,
without acceleration. See also [18 @t=9m20s] for another example.

Feasibility of multi-contact configurations and collisions are evaluated similar to the first
level. However, we further constrain that support with one or both hands is only allowed if the
hand on the opposite side of the current stance foot is involved. This prevents situations where
only the left or right side of the robot is in contact which is potentially less stable than without
hand support. Multi-contact configurations are rewarded in the same way as within the first
level. Similarly, collisions again draw the state invalid.

2nd Level – Transition Costs The operator tranCost(Npre, Snext) starts with an evaluation of
the traveled path length and the step length in vertical direction. Same as for the first level, the
traveled path length is used to limit the step length in walking direction to 30 cm for the very
first and last transition of a sequence. The step length in vertical direction is (again) limited
to ±13 cm. Within the second level search, we additionally limit the step length in walking
direction to 50cm for vertical step lengths exceeding 4 cm. This leads to shorter steps whenever
the robot is about to step up or down (e. g. for climbing platforms or stairs).

The transition cost operator additionally analyses the terrain cells which are traversed by
the swing foot. For assembling the corresponding cluster of terrain cells, one might be tempted
to use the predecessor pred(Npre) as starting point of the swing foot motion. However, the A⋆

algorithm forbids transition costs which depend on predecessor states since predecessor links
change whenever a less expensive path is found. For this reason, we consider only half of the
swing foot motion, however, for the left and right foot simultaneously. In particular, we analyze
the motion from Spre to S̄next and the motion from S̄pre to Snext. Here, we introduced the “con-
jugate” A⋆ state S̄i which is equivalent to Si but with opposite stance foot and VWrSF,x |y shifted
accordingly (assuming default foot separation in lateral direction). For the considered walking
patterns, this approach delivers a sufficiently accurate approximation. The identified terrain cell
clusters (one for each half) are then used to determine the height of traversed obstacles. Same
as within the first level, we define a maximum obstacle height of 15cm. Moreover, we limit the
step length in walking direction to 50 cm for obstacles taller than 4 cm.

Once these validity checks are passed, the transition costs ct(Npre, Snext) are computed in
(almost) the same manner as for the first level. Notable specifics are the use of the mean foot
TCP frame MF to determine the traveled path length, the introduction of linear costs depending
on the step length in the lateral plane (walking sideways was not considered in the first level),
and individual obstacle traversal costs for each half of the swing foot motion.

2nd Level – Heuristic The operator heur(Si) begins with an estimation of the remaining path
length and rotation for the state Si. If the first level search was successful, we directly extract the
corresponding metrics arc length and rotation (using the position of the MF frame) from the ac-
celeration map, cf. Figure 5.11. Otherwise, we proceed like in the first level: the remaining path
length is estimated through the minimum Euclidean distance between Si and {Sgoal,i} (again
using the MF frame) while the remaining rotation is approximated by the minimum relative
rotation between Si and {Sgoal,i}. Apart from this, ch(Si) is computed in the exact same manner

https://youtu.be/mGlsc_revMc?t=9m20s

5.5 Autonomous Locomotion 137

as within the first level search. By using the pre-computed metrics from the acceleration map,
we get a (in most cases) better approximation of the remaining path costs which further accel-
erates the second level search. Unfortunately, it is not guaranteed that this enhanced heuristic
is a lower bound for the true remaining optimum path costs under all circumstances. However,
same as for the definition of second level state costs, we prefer real-time performance over strict
optimality – especially because the “optimum” strongly depends on the (empirically chosen)
weighting of costs.

2nd Level – Results Figure 5.12 presents the results of the second level search for our ex-
emplary scenario. It is clearly visible how the proposed acceleration technique limits node
expansion to the close vicinity of the solution spline. Note that even if the first level fails, the
second level still might find a valid solution. However, except for very simple scenarios, real-time
performance will be lost.

While the first level search always plans the full path towards the user-specified goal, the
second level search can be limited to a certain “planning horizon” – in our case implemented as
a user-defined maximum count of future steps. For this, we simply set the goal of the second
level to the corresponding state in the first level’s optimum path. For computing the heuristic, we
additionally need to subtract a constant offset from the metrics remaining arc length / rotation
(cf. Figure 5.11) to account for the discarded trailing part of the solution spline. The planning
horizon is then cyclically updated through our dynamic replanning approach (demonstrated in
the video [18 @t=10m28s]). Restricting the second level search to a certain planning horizon
allows to maintain real-time performance even for planning over long distances.

Sgoal,1Sgoal,2

Expl. States Path Cost cg(Ni) Heuristic ch(Si) Score c f (Ni)

16
0

m
ax

m
in

m
ax

m
in

m
ax

m
in

st
at

e
co

un
t

c g
(N

i)

c h
(N

i)

c f
(N

i)

Optimum Path

S1 = Sstart

S2 S3S4

S5

S6

S7

S8
S9

S10
S11

S12

S13

S14

S15

S17S16

S20 = Sgoal,1

Sstart Sstart Sstart Sstart

Sgoal,1

S18

S19Sgoal,2 Sgoal,1 Sgoal,2 Sgoal,1 Sgoal,2

Figure 5.12: Exemplary results of the second level A⋆ search for the scenario shown in Figure 5.6 and [18 @t=7m54s].
From left to right: map showing the count of explored (valid) A⋆ states for each terrain cell; path costs cg(Ni), heuristic
ch(Si), and score c f (Ni) (minimum of corresponding terrain cell); optimum path described as sequence of states
{Si} connecting Sstart and {Sgoal,i} (right / left stance). According to the search space discretization specified in
Section 5.5.1, each terrain cell has a size of 4 cm×4cm and represents 48 (= 360◦/7.5◦)×2 (left/right stance) = 96
individual A⋆ states. For an animated visualization showing the progress of the node expansion, see [18 @t=2m26s].

For the depicted example scenario, the solution of the second level search is obtained in
632 ms (σ = 1.19 ms) on average. In particular, the A⋆ search involves 9,863 explored nodes,
42,952 invalid states, and 4,343 invalid transitions. Moreover, we count > 4 · 105 calls to the
openList container (9,863× insert(), 9,320× extractMin(), 18,038× update(), 365,278× find())
and > 2 · 106 calls to the closedSet container (52,271 × insert(), 2,235,124 × contains()). The
acceleration map storing the rasterized solution spline is queried 53,508 times.

https://youtu.be/mGlsc_revMc?t=10m28s
https://youtu.be/mGlsc_revMc?t=7m54s
https://youtu.be/mGlsc_revMc?t=2m26s

5.5 Autonomous Locomotion 138

If the second level is triggered without acceleration by the first level, the search takes 23.7 s
(σ = 45.3 ms) on average. Consequently, the proposed hierarchical contact planning approach
leads to a more than 33 times speedup in this particular scenario. With disabled acceleration,
the second level A⋆ search involves > 2·105 explored nodes, > 107 calls to the openList container
and > 4 · 107 calls to the closedSet container. The maximum count of (simultaneously) stored
nodes in the openList container is 28,268. The presentation of these figures is meant to highlight
the importance of an efficient implementation of the node containers. Moreover, the greatest
count of calls is related to the methods find() or equivalently contains(), which strongly benefit
from an efficient state hash function, cf. Section 5.5.1.

5.5.5 Post-Processing

The last stage of the contact planning pipeline (cf. Figure 5.6) is given by the post-processor,
which is itself organized as chain of three consecutive subroutines responsible for

• computing the final 6D pose of footholds based on local terrain information using the
maximum available resolution (1cm× 1cm discretization),

• finding optimal contact points for hand support based on the pre-processed surface model
of environmental objects and the multi-contact target volume, and

• converting the refined sequence of states into a corresponding chain of QPWTs.

The generated sequence of QPWTs is processed further by the Transition Planner in the exact
same way as it is done for fixed sequence or teleoperated walking, see Figure 5.5.

Foothold Refinement Each state Si of the second level’s optimum path {Si} stores the type and
planar pose (VWrSF,x |y , VWϕSF,z) of the corresponding stance foot. Within foothold refinement,
this 2D pose is handled as rough initial guess which shall be refined to a full 6D pose specifying
the final position and orientation of the foot’s TCP frame. This is done by aligning the foot
with the terrain, where we allow a small shift in the horizontal plane to find an optimal fit. In
particular, we run an alignment procedure which can be summarized by the following steps:

1. Setup a search space which is specified by the parameters ∆VWrSF,x |y ∈ {−2, −1, 0, 1, 2}cm
and ∆VWϕSF,z ∈ {−3.75, 0, 3.75}◦ describing the offset from the initial 2D pose provided
by the state Si, see Figure 5.13 top-left. The parameter ranges have been chosen such that
the input pose is refined using the maximum resolution as specified in Section 5.5.1.

2. Pick a not yet evaluated parameter set (∆VWrSF,x |y , ∆VWϕSF,z) from the search space and
compute the corresponding refined 2D pose.

3. Detect self-collisions between the feet using the joint-space SSV models of the right foot
(sfr+zfr for qzfr = 0) and the left foot (sfl+zfl for qzfl = 0), see Figure 5.13 center. The SSVs
are positioned according to the refined stance foot pose of the currently investigated state
Si and its predecessor Si−1. If the distance is less than 1 cm, the configuration is considered
as invalid and we switch to the next parameter set (repeat starting from Step 2).

4. Assemble the cluster of terrain cells representing the foot-ground interface under assump-
tion of full contact (like it was done during the second level A⋆ search, see Figure 5.13
bottom-left). If full contact is not feasible, i. e., if the maximum height difference is greater
than 4 cm or the mean confidence is less than 2/3, then assemble the cluster of terrain
cells for partial contact and perform another feasibility test with additional check for heel-
ground collision (maximum cell height for partial contact must be greater or equal than
for full contact). If even partial contact is not feasible, the configuration is considered as
invalid and we switch to the next parameter set (repeat starting from Step 2).

5.5 Autonomous Locomotion 139

5. Based on the cluster of terrain cells, compute costs depending on the maximum height
difference and the mean confidence similar to the state costs of the second level A⋆ search.
Same as before, a constant penalty is added in case partial contact is necessary (to prefer
full contact). Moreover, we add costs which depend on the (absolute) offset from the
initial pose (to prefer small shifts ∆VWrSF,x |y , ∆VWϕSF,z).

6. If the search space has not been fully evaluated yet, repeat starting from Step 2. Other-
wise, determine the optimum based on the computed costs and focus on this parameter
configuration for the rest of the alignment procedure while discarding all other candidates.

7. Based on the previously computed terrain cell cluster (full or partial contact as identified
in Step 4) related to the optimum parameter set, generate a point cloud where each point
corresponds to a cell of the cluster. Each point’s horizontal position is given by the centroid
of the related cell while the vertical position is specified by the cell’s height value. After-
wards, perform a Principal Component Analysis (PCA) (through an SVD) to approximate
the point cloud by the contact plane Pcont, see Figure 5.13 right.

8. Compute the final 6D pose of the stance foot’s TCP frame using the refined 2D pose (initial
pose with applied optimum offset) for the horizontal position and vertical rotation. The
vertical position is obtained by projecting the refined 2D position onto the plane Pcont (such
that the TCP lies on Pcont). The rotation around the horizontal axes is chosen according to
the normal ncont of Pcont (such that the x- and y-axis of the TCP frame lie in Pcont).

9. In addition to the 6D pose of the stance foot, we also store its contact type (full or partial)
from Step 4. Moreover, in order to reduce the likelihood of hitting kinematic limits, we
check if the robot is about to take a large step down (current stance’s TCP more than 10 cm
below previous stance’s TCP) and force tiptoe contact in this case (cf. [20 @t=1m54s]).

This procedure is repeated for every state Si of the second level’s optimum path {Si} – except for
S1 = Sstart, which will be replaced anyway by the end pose of the last unchanged transition in
the motion plan. Note that the involved optimization (Step 1 to 6) uses a brute-force approach
since the search space contains only 5× 5× 3 = 75 possible parameter configurations. For the
sequence of 20 footsteps in our example scenario (cf. Figure 5.12 right), the entire footstep
refinement subroutine takes less than 14 ms on average. Similar to the first and second level
A⋆ searches, we make extensive use of pre-computed, scenario independent buffers, e. g. for
efficiently assembling terrain cell clusters. Among the scenarios considered within this thesis,
foothold alignment is most relevant for climbing ramps as shown in the video [18 @t=8m27s].

y

Search Space Self-Collision Detection Terrain Alignment

Terrain Cell Cluster

∆VW rSF,x

∆VW rSF,y

4
cm















(full contact) (partial contact)

∆VW
ϕSF,z

initial 2D pose

y

x

x RF

LF

zfl-SSV
sfl-SSV

zfr-SSV
sfr-SSV

TCP

TCP

∆
(from Si)

TCP TCP
z

z TCP

P cont

refined 2D position
(from optimization)

ncont

VW

7.5◦

Figure 5.13: Foothold refinement as part of the post-processing stage of the contact planning pipeline. From left
to right: search space describing admissible planar offsets ∆VWrSF,x |y , ∆VWϕSF,z during optimization; assembly of
terrain cell clusters for full and partial contact (rasterization of foot geometry); self-collision detection based on the
joint-space SSV models of the feet (assuming qzfr|l = 0); alignment of the foot’s TCP frame to the contact plane Pcont.

https://youtu.be/gUNZ0AmLiWU?t=1m54s
https://youtu.be/mGlsc_revMc?t=8m27s

5.5 Autonomous Locomotion 140

Optimum Hand Contact Points Within the previous stages of the contact planning pipeline,
multi-contact situations have been considered through the definition of corresponding cost
terms. In particular, feasibility of hand support has been rewarded by a decrease of the state
costs of the first and second level’s A⋆ search. This way, paths have been preferred which bring
the robot close to environmental objects suitable for multi-contact. However, concrete contact
points for hand support have not been considered yet. Indeed, the post-processor is responsible
of finding optimal contact points depending on the robot’s pose and the geometry of close-by
environmental objects. Moreover, the post-processor makes the final decision if a hand contact
should be made or not.

First of all, we have to formally define the “optimum”. For this purpose, we specify a cost
function, which depends on the local surface confidence csurf ∈ [0, 1] of the considered object
(evaluated during pre-processing, cf. Section 5.5.2) and the distance ldist to the multi-contact
target volume (cf. Figure 5.3). In particular, we introduce the multi-contact cost cmult as

cmult(csurf, ldist) :=

� 3
2

�

1− csurf

�

+ 5 ldist if csurf ≥
1
3 and ldist ≤ ldist,max ,

∞ else
(5.11)

where the second branch is used to discard individual triangles or entire objects which do not
fulfill the minimum requirements for multi-contact. The length ldist is computed as the minimum
distance between two SSVs: the multi-contact target volume and either the entire volume model
(cf. Figure 4.6 right) or a single point/triangle (represented by a corresponding point/triangle-
SSV, see Figure C.1) of an object. Note that ldist becomes negative in the case of penetration.
Since the multi-contact target volume approximates the reachable workspace of the TCP, i. e.,
the center of the hand, we choose ldist,max = dh/2 (hand radius) to check if the surface of the
hand is capable of touching an object’s volume model. Similarly, if we evaluate the distance of
the multi-contact target volume to an individual point/triangle, we use ldist,max = 0 and set the
SSV radius of the point/triangle to dh/2 instead. According to Equation 5.11, a contact point
is ideal (minimum cost) if csurf = 1 and it lies on the base geometry of the multi-contact target
volume (the two lines shown in Figure 5.3). Conversely, a (valid) contact point has maximum
cost if csurf = 1/3 and it is just about reachable (ldist = ldist,max).

Based on the cost cmult, the post-processor tries to find optimal contact points for each state Si
of the second level’s optimum path {Si}. Again, we skip S1 = Sstart and perform the same proce-
dure for each state Si until we reach Sgoal. For locating the robot and its attached multi-contact
target volume relative to environmental objects, we use the 6D stance foot poses computed
during foothold refinement (without rotation around the horizontal axes since we assume an
upright torso). For each state Si, we evaluate contact with the right and left hand individually.
However, same as for the second level A⋆ search, we stipulate that support with one or both
hands is only allowed if the hand on the opposite side of the current stance foot is involved. In
addition, once a hand gets in contact, its contact configuration (position, force, etc.) is copied
to the subsequent state Si+1. This ensures, that the hand remains in contact during the entire
transition from Si to Si+1. Note that for the feet this behavior is implicitly dealt with through
introducing the concept of a “stance” foot.

Depending on the complexity of the scene, the environment model may contain a large num-
ber of objects. Instead of a costly “full” evaluation of all objects, we first compute the minimum
distance between an object’s volume model and the multi-contact target volume. Since we as-
sume that the entire surface of an object is encapsulated by its volume model (cf. Section 4.5.1),
this delivers a cheap lower bound for ldist. Together with the object’s global maximum of csurf
(determined during pre-processing), Equation 5.11 allows us to compute a lower bound of cmult
for each object. In case cmult =∞, the entire surface is guaranteed to be infeasible for multi-
contact, thus, the corresponding object can be safely ignored. Indeed, this limits our search
to a very small subset of objects which are in the close vicinity of the robot. Furthermore, the
remaining objects are arranged in a list which is sorted according to the computed lower bound

5.5 Autonomous Locomotion 141

of cmult. The iteration of this list starts with the most promising object which further accelerates
the search: once a valid contact point is found, we compare its cmult against the lower bound
related to the next object in the list and – in case cmult undercuts this lower bound – we can
safely stop the iteration without risking to miss the optimum.

In order to find the optimum contact point for a given object, we iterate over all triangles
of the corresponding surface model. In a first step, we check if the triangle’s normal points
into a feasible direction, i. e., towards the upper body of the robot. For this purpose, we specify
valid ranges for the direction of the normal in the frontal and transverse plane of the UB FoR,
see Figure 5.14 left. While this represents a rather simple classification into valid and invalid
triangles, one may consider to introduce a cost term depending on the normal as part of a future
revision (which would allow to penalize or reward certain directions).

Au Awr

∇c su
rf

UB

z

Normal Feasibility

UB

y
x

left hand

10
◦

right hand

left hand right hand

y
z

y
x

y

Frontal Plane

Transverse Plane

100 ◦

30
◦

30
◦

Barycentric Coord.

Av

rv , cv

rw, cw ru, cu

∇csurf = 0∇csurf ̸= 0

c u
>

c v
>

c w

∇csurf ̸= 0

c u
=

c v
>

c w

c u
=

c v
=

c w

Confidence Gradient

Optimum Contact Point
Step 1: Closest Point

Step 2: Projection

rclo

rclo

rproj

Step 3: Optimization

ba
se

ge
om

et
ry

m
ulti-contact

target volum
e

rclo rprojropt

ηopt ∈ [0, 1]

(line search through bisectioning)

ropt = rclo +ηopt

�

rproj − rclo

�

A= Au + Av + Aw
u= Au/A
v = Av/A
w= Aw/A

csurfmin max

Figure 5.14: Searching for optimum hand contact points as part of the post-processing stage of the contact planning
pipeline. From left to right: feasible directions (blue) of the triangle’s normal in the frontal (top) and transverse (bottom)
plane; linear interpolation of csurf using barycentric coordinates (top) and the corresponding confidence gradient∇csurf
(bottom) with {rc,max} as the set of points with maximum confidence for three example configurations; finding the
optimum through computing (1) rclo as the point closest to the multi-contact target volume, (2) rproj as the projection
of rclo onto the triangle’s boundary (along ∇csurf), and (3) ropt as the optimum contact point lying on the connection
line between rclo and rproj. For an animated visualization, see the video [18 @t=3m34s].

For each triangle with feasible normal direction, we search for the point on the triangle which
minimizes the multi-contact cost cmult(csurf, ldist) as specified in Equation 5.11. For describing the
location of points on the triangle, a barycentric coordinate system is used:

r (u, v) := u ru + v rv +w rw with u, v, w≥ 0 (∈ [0, 1]) and u+ v +w= 1 , (5.12)

where ru|v|w ∈ R
3 represent the vertices of the triangle and u, v, w ∈ R the corresponding

barycentric coordinates as ratios of the triangle’s total area A, see Figure 5.14 center-top. In
order to compute cmult(u, v), we have to evaluate the local surface confidence csurf(u, v) and the
distance to the multi-contact target volume denoted by ldist(u, v). For csurf, we choose a linear
interpolation scheme based on the barycentric coordinates:

csurf(u, v) := u cu+ v cv +w cw = cw+∇cT
surf

�

u
v

�

with ∇csurf :=

�

∂ csurf
∂ u
∂ csurf
∂ v

�

=

�

cu − cw
cv − cw

�

(5.13)

where cu|v|w are the per-vertex confidence values and ∇csurf is the confidence gradient which
is constant throughout the entire triangle. Both, cu|v|w and ∇csurf, are computed during the
pre-processing stage, cf. Section 5.5.2. Since csurf is linear, the set of points with maximum
confidence {rc,max} either contains a single vertex, an edge, or the entire triangle depending on
the particular values of cu|v|w, see Figure 5.14 center-bottom. In any case, the global maximum
of csurf is simply given by max({cu, cv , cw}) and has to be greater or equal to the threshold 1/3
(cf. Equation 5.11), otherwise the entire triangle is discarded.

https://youtu.be/mGlsc_revMc?t=3m34s

5.5 Autonomous Locomotion 142

For evaluating ldist(u, v), we consider a point-SSV element with radius dh/2 at the position
r (u, v) and compute the minimum distance to the multi-contact target volume. Since the multi-
contact target volume represents an SSV segment, i. e., a compound of multiple SSV elements,
the distance ldist is highly non-linear and only C0-continuous (shortest connection might jump).
Instead of formulating a non-linear optimization problem, we stick to a rather pragmatic process
to find an approximate solution for the optimum contact point ropt which minimizes cmult (see
Figure 5.14 right):

1. Compute rclo as the point on the triangle which is closest to the base geometry of the
multi-contact target volume (represents the global optimum with regard to ldist). If the
corresponding distance exceeds ldist,max (cf. Equation 5.11), the entire triangle is discarded.

2. Compute rproj as the projection of rclo along ∇csurf onto the triangle’s boundary. While
rproj has a greater confidence than rclo, it does not necessarily have maximum confidence.
Instead, one could compute rproj by projecting rclo onto {rc,max}, however, the resulting
point would be further away from rclo (potentially leading to a higher ldist). In the special
case of cu = cv = cw such that ∇csurf = 0, the optimum is simply given by ropt = rclo.

3. In case ∇csurf ̸= 0, compute ropt through bisecting the connection line between rclo and
rproj (line search). For each sample, evaluate cmult as specified above (with csurf from
Equation 5.13 and ldist from the SSV distance) and abort the iteration upon convergence.

The presented scheme delivers a computational efficient approximation of the optimum contact
point. Due to the bounded triangle size (ensured by the adaptive subdivision, cf. Section 5.5.2),
the error remains small. From the optimum contact point ropt and the triangle’s normal n, we
directly obtain the optimum position of the hand’s TCP frame rh = ropt + (dh/2)n. To minimize
the risk of slipping, we assume point-contact without tangential force components such that
the desired external contact wrench is given by Wh

h,ext = [Fh,ext, Th,ext]
T with Fh,ext = Fh,ext n

and Th,ext = 0. Currently, the magnitude of the contact force Fh,ext is controlled by a user-
defined parameter. Within the scope of this thesis, a constant value of Fh,ext = 50N is used. As
a future improvement, one might consider to set Fh,ext automatically depending on the object’s
classification or not yet considered surface properties such as the (estimated) friction coefficient.

Conversion to QPWTs The very last step of the post-processor is the conversion of the so-
lution to a corresponding sequence of QPWTs. In particular, we create a QPWT for each pair
of (refined) states Si and Si+1 and fill its components (specified in Table 5.2) according to the
computed optimum. In particular, we obtain the step parameters lx |y|z and ϕx |y|z from the rel-
ative transform between the previous and next stance foot pose using the formulas provided in
Appendix D. Subsequently, we assemble the cluster of terrain cells (using the maximum terrain
resolution such as during foothold refinement) representing the area traversed by the swing
foot. In contrast to the second level A⋆ search, we have full knowledge of all preceding and
following stance foot poses, thus, the start and end of the swing foot motion is precisely known
(splitting the swing foot motion into halves is not necessary anymore). From the maximum cell
height within this cluster, we obtain the height of traversed obstacles which is measured relative
to the maximum vertical stance foot position. If this height exceeds 4 cm, we assume that an
obstacle is present and has to be traversed by the swing foot. Consequently, we set the custom
step height hstep to the obstacle height and add a vertical clearance of 4 cm.

From the vertical stance foot positions, we can detect if the robot is stepping up or down
(using again a threshold of 4 cm). In either case (and also for stepping over obstacles), we
reduce the likelihood of collisions by setting the swing foot timing factor τSF to 0.5. Note that
the influence of hstep and τSF on the swing foot trajectory will be explained in Section 6.7. For
these challenging maneuvers, we additionally slow down the motion by a factor of 1.5 through
setting a corresponding custom transition duration ttra,dur. The same slow-down factor is applied
for transitions which involve multi-contact configurations.

5.6 Results and Discussion 143

The QPWT flags specifying the foot and hand contacts are set according to the results of the
foothold refinement and the computation of optimum hand contact points. The same applies
to the hand’s position SFrh and desired external wrench SFWh

h,ext. The remaining components of
the QPWT, i. e., SFsUB, qvp, qvt, and ∆WrCoM,z, are set to their defaults (cf. Table 5.2).

5.6 Results and Discussion

Within this chapter, a novel contact planner for multi-contact locomotion has been presented.
The main focus was set on real-time performance which was achieved on the one hand through
the use of rather coarse models describing the foot-ground interface, collision volumes, and the
reachable workspace of the arms and on the other hand through a hierarchical search on multi-
ple levels of detail. Within the WPG module, the task of contact planning is realized through the
Transition Planner, which implements semi-autonomous (fixed sequence / teleoperated walking
and special motions) and fully-autonomous locomotion. The output of the transition planner is
stored in the form of a hierarchical tree structure, the (Motion) Plan, which represents an ana-
lytic description of the planned task-space motion and allows to describe a very broad spectrum
of gaited and non-gaited motions. Moreover, the special structure of the tree allows an efficient
online modification of the planned motion in parallel to its execution (dynamic replanning).
For gaited motions, this chapter additionally introduced the concept of QPWTs, which are a
very powerful tool for describing even highly complex multi-contact locomotion in a compact
and human readable form. By loading a sequence of QPWTs from a simple text-based input
file, recompilation73 of source code becomes unnecessary in many cases which greatly simpli-
fies the test of new scenarios and locomotion patterns within both, simulation and real-world
experiments. The focus of this chapter was clearly set on contact planning for fully-autonomous
locomotion for which LOLA’s capabilities have been extended significantly. The videos [17]
and [18] show multiple scenarios which highlight the new primary skills. While a general dis-
cussion of the conducted simulations and experiments is given in Chapter 8, this section focuses
on a runtime analysis of the contact planner.

Runtime Analysis For semi-autonomous locomotion, the entire contact planning process takes
less than 1 ms which turns out to be marginal when compared to the computational cost of
motion generation. Thus, this paragraph focuses on fully-autonomous locomotion where con-
tact planning represents (by far) the computational most expensive part of the entire planning
pipeline. In particular, we consider nine individual scenarios where the robot is commanded
to traverse a certain environment autonomously (action autonomous walking, cf. Section 5.2).
With regard to the WPG, all scenarios are handled in the same way, i. e., with the same set of
configuration parameters. The only difference is the environment model and the commanded
goal position VWrMF,x (while VWrMF,y = VWϕMF,z = 0). For evaluating the runtime of the contact
planning pipeline, we conduct a series of simulations as described in Footnote 72. The results
of this analysis are shown in Table 5.4.

As expected, the runtime of the pre-processor scales with the size of the environment model,
i. e., the count of terrain patches (building quadtrees) and objects (surface evaluation). Note
that the environment model pre-processing is run in parallel by the environment model manager
(Thread 8, cf. Figure 4.11) and thus, does not directly add to the total runtime of the contact
planning pipeline. The main workload is given by the second level A⋆ search which, however,
gets significantly accelerated in case the first level search was successful (which applies to all
scenarios except for “Stairs – Partial”). The total speedup factor (second level only vs. combined
first level, rasterization, and second level) reaches up to 64.5. However, this peak value is

73On the Operator PC, compilation of LOLA’s source code takes more than 200 s (using 32 parallel threads).

https://youtu.be/ovG2Rz9-1p8
https://youtu.be/mGlsc_revMc

5.6 Results and Discussion 144

Table 5.4: Analysis of the contact planning pipeline (cf. Figure 5.6) for multiple example scenarios demonstrating
the autonomous locomotion capabilities of LOLA. From top to bottom: general parameters describing the scenario;
pre-processing as described in Section 5.5.2 (green); hierarchical graph search as described in Section 5.5.4 (yellow);
post-processing as described in Section 5.5.5 (orange); overall results (blue) of the contact planning (bold) and motion
generation process. Runtimes are determined following to procedure described in Footnote 72. For the 2nd level A⋆

search, the tag “acc.” indicates the runtime with acceleration by the 1st level while the tag “raw” denotes the runtime
without acceleration by the 1st level (used to compute the total speedup factor). Note that the 1st level search fails in
the particular scenario “Stairs – Partial”, thus, the 2nd level lacks of acceleration in this case.

Parameter

Scenario
Pl

at
fo

rm
[1

8
@

t=
5m

51
s]

R
ig

ht
W

al
l

[1
8

@
t=

6m
46

s]

R
ig

ht
Ta

bl
e

[1
8

@
t=

7m
8s

]

C
or

ri
do

r
[1

8
@

t=
7m

31
s]

O
bs

ta
cl

es
[1

8
@

t=
7m

54
s]

R
am

ps
[1

8
@

t=
8m

27
s]

St
ai

rs
–

Fu
ll

[1
8

@
t=

8m
53

s]

St
ai

rs
–

Pa
rt

ia
l

[1
8

@
t=

9m
20

s]

Tr
ap

[1
8

@
t=

9m
49

s]

goal PWrMF,x /m 4.0 3.0 3.0 3.0 4.5 4.5 3.5 3.5 4.5
terrain patch count 50 49 48 46 50 30 30 30 72
object count 3 1 1 2 3 3 2 2 4
pre-pro.: terrain/ms 2.2 2.1 2.2 1.9 2.2 0.9 1.0 1.0 3.9
pre-pro.: objects/ms 14.5 5.7 2.6 11.3 2.7 1.5 5.0 4.2 4.9
pre-pro.: total/ms 16.7 7.8 4.8 13.2 4.9 2.5 6.0 5.2 8.8
1st lvl.: expl. nodes 5,496 9,413 8,972 5,397 9,646 3,888 2,122 10,012 37,280
1st lvl.: A⋆-search/ms 28.0 54.9 52.1 35.3 42.1 12.9 6.6 27.4 202.2
1st lvl.: success yes yes yes yes yes yes yes no yes
rasterization/ms 17.8 13.0 13.0 11.9 41.4 20.4 15.1 – 53.7
2nd lvl.: expl. nodes 7,085 9,026 7,272 7,969 9,863 11,169 6,837 75,580 11,984
2nd lvl.: A⋆ (acc.)/ms 587.8 1,264.8 817.8 933.3 631.7 1,005.9 490.6 – 682.9
2nd lvl.: A⋆ (raw)/ s 10.2 14.5 11.8 4.8 23.7 7.6 4.8 7.2 60.5
total speedup factor 16.1 10.9 13.4 4.9 33.1 7.3 9.4 – 64.5
post-pro.: feet/ms 3.9 2.5 3.6 3.1 13.4 4.6 4.2 4.4 28.7
post-pro.: hands/ms 0.5 0.2 0.1 0.5 – – – – –
post-pro.: QPWT/ms 0.9 1.4 1.1 0.7 4.4 1.0 0.9 0.9 6.2
post-pro.: total/ms 5.3 4.1 4.8 4.4 17.8 5.7 5.1 5.2 34.9
contact planner/ms 639.0 1,337.0 887.9 985.0 733.3 1,044.9 517.6 7,225.8 974.0
motion generator/ms 3.0 1.9 1.9 2.1 5.9 3.0 3.4 3.6 7.0
total runtime/ s 0.642 1.339 0.890 0.987 0.739 1.048 0.521 7.229 0.981
executed motion/ s 12.3 8.7 8.7 9.5 18.7 12.3 13.5 13.1 21.1
transition count 12 9 9 10 22 13 13 13 26
involves multi-contact yes yes yes yes no no no no no

achieved in the scenario “Trap” which is explicitly designed to highlight the benefit of a guiding
path. For more realistic scenarios, one can expect a tenfold speedup. The runtime of post-
processing mainly depends on the count of transitions and the complexity of environmental
objects (triangle count). Table 5.4 also shows that – for autonomous walking – the task of motion
generation has an almost negligible runtime when compared to contact planning. Finally, by
setting the total runtime of the planning pipeline (typically around 1 s if the first level search is
successful) in relation to the duration of the generated motion, the proposed contact planner
can be considered to be real-time capable. Under assumption of a sufficiently fast CV system, the
proposed WPG is capable of generating new motion plans with a frequency of around 1 Hz which
enables the robot to also handle dynamic environments (e. g. with slowly moving obstacles).

Although the overall runtime still depends on the particular scene, it shows a much lower
variance when compared to the previous step planner by HILDEBRANDT [201, p. 63ff, 74ff]. This
renders the runtime of the planning pipeline much more predictable which – in addition to the
significantly improved overall performance – represents a further major enhancement in partic-
ular with regard to real-time execution. A rather unintuitive property of the proposed navigation
system is that a complex scene featuring a large count of obstacles does not necessarily imply
a higher runtime. As an example, contact planning for the scenario “Platform” (1×platform,

https://youtu.be/mGlsc_revMc?t=5m51s
https://youtu.be/mGlsc_revMc?t=6m46s
https://youtu.be/mGlsc_revMc?t=7m8s
https://youtu.be/mGlsc_revMc?t=7m31s
https://youtu.be/mGlsc_revMc?t=7m54s
https://youtu.be/mGlsc_revMc?t=8m27s
https://youtu.be/mGlsc_revMc?t=8m53s
https://youtu.be/mGlsc_revMc?t=9m20s
https://youtu.be/mGlsc_revMc?t=9m49s

5.6 Results and Discussion 145

2×walls, 2×hand contact, 4 m distance) finishes in less than half of the time when compared to
the much simpler scenario “Right Wall” (1×wall, 1×hand contact, 3 m distance). This can be
explained by the higher proportion of invalid A⋆ states (terrain around edges of platform) which
get evaluated only once and do not spawn any successors.

Limitations and Suggestions Currently, real-time contact planning for autonomous locomo-
tion is limited to rather short paths of about 5 m length. For greater distances, one should either
limit the planning horizon of the second level search (as described in Section 5.5.4), or consider
to introduce a higher level search where the present contact planning pipeline is used to find the
optimum contact sequence between two waypoints of the high-level path. Besides, there exist
numerous possibilities to optimize the current implementation. Examples are the acceleration
by (further) sacrificing optimality through a weighted A⋆ approach (cf. Footnote 12), switching
to an anytime A⋆ variant such as ARA⋆ as used in [210] or its modification ADA⋆ as used in [209]
to allow specifying a maximum planning time, or the implementation of a more adaptive action
model similar to [114, p. 33ff] which reduces the set of successor states in simple regions with
level ground and without obstacles. Another idea is to split the solution of the first level search
into multiple segments for which individual (small) second level searches are triggered in par-
allel. However, since the present locomotion system of LOLA consisting of WPG, SIK, and HWL
module already approaches the limits of the control PC – in particular with regard to parallel
real-time threads (cf. Section 4.8) – this might require to upgrade the control PC or, even better,
to port the contact planner and the environment model manager to the vision PC. With the
sequence of QPWTs as primary output of the contact planner, an appropriate exchange format
for transmission over the Ethernet link already exists.

Besides optimizing real-time performance, future investigations might also further extend
the contact planning capabilities. As an example, the search for optimal hand contact points
on environmental surfaces does not consider collisions of the hand with other objects. Fur-
thermore, the fitness of a contact point only depends on the perception confidence and pure
geometric properties (feet: roughness of terrain; hands: local mesh curvature) but not on me-
chanical properties such as the (predicted) friction coefficient. Through extending the terrain
and surface confidence specification accordingly, it would be simple to include additional local
metrics. The current environment model formulation is very generic, i. e., it allows to describe
scenes with arbitrary geometry. However, it seems reasonable to additionally introduce pa-
rameterized models for common object types. As an example, an object describing a staircase
could – additional to its classification and surface / volume model – include a set of parameters
which specify its geometry in an abstract way (step width, length, height, and count). In case
the contact planner reaches this object, it could switch to a purely geometric-based algorithm
specifically designed for stair traversal which is potentially much faster than a generic graph
search and most likely will also generate a solution of higher quality. Certainly, the CV system
would need to be capable of generating such parameterized models.

Chapter 6

Software – Part C: Motion Generation
Parts of this chapter have already
been published in [1–4].

Within this chapter, the motion generation system of LOLA v1.1 is described. Similar to the gov-
erning locomotion framework, the general workflow for motion generation has undergone more
than two decades of evolution. Indeed, the present state is strongly based on the real-time tra-
jectory generation system proposed by BUSCHMANN [100, p. 55ff]. However, within the context
of the multi-contact revision of LOLA, the author of the present thesis redesigned and rebuilt
the entire WPG module (including the motion generation pipeline) from scratch. Apart from
a modular software design with clearly specified interfaces, this also includes methodological
changes in particular regarding planning the ZMP, RMT, and CoM motion. Furthermore, the
modifications also comprise the remaining stages of the planning pipeline. In order to support
multi-contact locomotion, entirely new components have been introduced, e. g. for planning the
trajectories of the task-space selection factors or external (multi-contact) wrenches. Putting all
changes together, we obtain a novel motion generation system for humanoid robots which is ca-
pable of planning kinematically and dynamically feasible multi-contact locomotion in real-time.
As an introduction to this chapter, Section 6.1 gives a brief overview of the objectives and core
concepts of the proposed motion generator. This is followed in Section 6.2 by a description of
the lower levels of the Motion Plan (which completes its specification from Section 5.2). Within
Sections 6.3 to 6.15, the individual stages of the motion generator are described following their
order of execution within the planning pipeline (cf. Figure 4.11). Section 6.16 explains how a
particular task-space sample alias Plan Snapshot is extracted from the motion plan. Additionally,
it describes the Stream Processor which converts the plan snapshot into a corresponding WPG
output data structure (cf. Table 4.5). The chapter is concluded in Section 6.17.

In order to reason about kinematic and dynamic feasibility, this chapter uses the reduced
models presented in Section 4.5.2. The simplified kinematics of the leg as well as a prelimi-
nary version of the dynamics model (without hand masses) have already been published in [3].
Moreover, [3] describes the main workflow of generating LOLA’s CoM motion from the (refer-
ence) ZMP trajectory and the reduced models which includes solving an overdetermined BVP
through quintic spline collocation. The used algorithm for spline collocation has been published
separately in [2]. A coarse summary describing the extension of the motion generator from [3]
to support multi-contact locomotion has already been given in [1]. Among other changes, this
includes the transition from the three-mass model to the five-mass model which is parameter-
ized according to LEYERER [29] (summarized in [4]). A visualization of the present workflow
for motion generation has been published independently through the video [18 @t=4m2s].

6.1 Preliminaries

The motion generator represents the second major component of the WPG module. It is respon-
sible of connecting the discrete contact configurations (provided by the contact planner) with
smooth trajectories describing the robot’s motion in task-space. While doing so, the primary ob-
jective is to establish kinematic and dynamic feasibility such that the planned motion leads to a

146

https://youtu.be/mGlsc_revMc?t=4m2s

6.2 Motion Plan: Lower Level Structure 147

stable behavior when executed on the real hardware. At the same time, the computational cost
should be kept as low as possible in order to maintain a high responsiveness which is in partic-
ular relevant for teleoperated walking and changing environments (dynamic replanning). This
requires LOLA’s motion generator to operate on a rather high level of abstraction with accord-
ingly generous safety margins (first variant according to Figure 2.16). As already mentioned
in Section 2.4 which summarized the state of the art, motion generation on an abstract level
represents the most common approach in the field of humanoid robotics. In the following para-
graphs, we briefly recall essential models and concepts which have already been introduced as
part of the description of the WPG module (see Section 4.5).

Reduced Kinematic and Dynamic Model In order to maintain real-time performance, LOLA’s
motion generator makes use of the simplifying models presented in Section 4.5.2 (see in par-
ticular Figure 4.7). For reasoning about kinematic feasibility, a planar model of the leg is used
to find a lower and upper bound for the vertical torso position. The dynamics of the robot are
approximated by the five-mass model which represents an extension of the previous three-mass
model by point masses located at the hands. Note that the mass distribution changes dynami-
cally depending on the particular task-space configuration which is controlled by the task-space
selection factors. For incorporating multi-contact effects, the five-mass model additionally con-
siders external contact wrenches acting at the hands. The kinematics and dynamics are coupled
through the position of the feet, the hands, and the virtual torso mass alias RMT. The models
are primarily used by the RMT planner (see Section 6.14). In particular, the kinematic limits
constrain the vertical position while the dynamics define the horizontal position of the RMT.

Solution Strategy The overall strategy for generating a kinematically and dynamically feasible
CoM motion has already been presented in Section 4.5.4. To summarize, we first compute a
reference ZMP trajectory passing through the SAs which in turn are defined by the foothold
sequence provided by the contact planner. Independent of the SAs and the ZMP, we generate
trajectories for the EE motion (feet, toes, hands, head) and the upper body rotation. Same as
for the task-space selection factors, the load vector, and the external (multi-contact) wrenches,
these trajectories are planned using rather simple heuristics. The data generated so far is then
fed into the RMT planner which computes – based on the aforementioned robot models – an
RMT motion such that kinematic limits of the leg are respected and the ZMP moves according
to its reference trajectory. The CoM is then simply a result of the EE and RMT motion.

Planning Pipeline In favor of a modular and easily extendable software structure, the motion
generator is subdivided into individual stages which are executed one after another. Together
with the sequence and transition planner, these stages form the planning pipeline shown in
Figure 4.11. Since the presented solution strategy defines a certain flow of data, the order of
execution is not arbitrary. Nevertheless, some branches (such as the SA/ZMP and the UB/EE
planning – see Figure 4.10) are independent of each other and thus, would allow parallel ex-
ecution. However, since the main workload is given by the RMT planner (which already uses
multiple threads internally – details follow in Section 6.14.2), a parallelization of the remaining
stages would not lead to a substantial reduction of the overall runtime. Nevertheless, parallel
execution branches may be considered within a future revision of the WPG.

6.2 Motion Plan: Lower Level Structure

While the higher level structure of the Motion Plan has already been described in Section 5.2,
this section focuses on its lower levels. First of all, we introduce the concept of Phases which

6.2 Motion Plan: Lower Level Structure 148

act as children of the already specified Transitions. In particular, each transition is split into
either one or two phases. Within the WPG module, phases primarily serve as data containers for
storing the planned task-space trajectories in an analytical form, see Figure 6.1.

Phase 1
load switch

Phase 2

Transition 1
Begin Pose End Pose

Transition 2
Begin Pose End

Sequence 1 Action Type Begin Pose

Phase 1 Phas

Begin PosePlan

t

Begin Time

motion load switch moti

Phase i Phase Type Duration

•SA: 2D polygon (horiz.)

WrZMP(t), Wrt(t), WrCoM(t)

Relative to W

•task-sp. sel. ξ(t)
•toe motion qzfr|l(t)

Without FoR

•foot / hand motion SFr f (t), SFs f (t), SFrh(t)
•upper body / head orient. SFsUB(t), SFsVTCP(t)

•external (multi-contact) wrenches SFW h
h,ext(t)

Relative to SF of Begin Pose

•ZMP, RMT, CoM:
•load vector γ(t)

Figure 6.1: Lower level structure of the (Motion) Plan. Each Transition contains either one or two Phases (yellow).
Each phase is assigned a certain type (Load Switch or Motion) and duration. Moreover, it stores quantities described
relative to the world frame “W” (blue), quantities described relative to the stance foot TCP frame “SF” related to the
Begin Pose of the corresponding transition (orange), and quantities without dedicated FoR (green). This illustration
focuses on the lower levels of the plan while the higher levels have already been described in Figure 5.4.

Phase Type and Duration Each phase is labeled with an individual Phase Type which can be
either Load Switch or Motion. Within a Load Switch phase, all EEs residing in the task-space
remain static holding their current global position / orientation. Moreover, the (desired) CoM
height and upper body orientation are constant. The Motion phase represents its counterpart,
i. e., a time span where at least one of the aforementioned components is subject to changes.
The distinction between these two phase types allows to split a transition into periods with
and without task-space motion. Within the context of “regular” biped locomotion, i. e., without
hand support, the Load Switch phase is equivalent to the DS phase while the Motion phase is
equivalent to the SS phase. Indeed, this new terminology represents a generalization of the
DS/SS concept to the multi-contact case. Moreover, it allows to describe certain non-gaited
motions such as bowing (upper body rotation is interpreted as motion while the remaining
task-space components are constant). Besides the type, each phase is assigned an individual
duration tpha,dur which is computed by the Phase Planner based on the duration of the governing
transition. Details on how the phase type and duration are determined follow in Section 6.3.

Phase Data and FoR The individual quantities stored within each phase can be clustered ac-
cording to the used FoR, see Figure 6.1. For practical reasons, the current SA is described as
a 2D polygon lying in the x-y-plane of the (planning) world frame “W”. This allows a simple
computation by projecting footholds to the horizontal plane. Since the ZMP trajectory WrZMP(t)
is constructed based on the SAs, it is natural to describe it in the same FoR. Moreover, same as
for the RMT motion Wrt(t), the ZMP trajectory is split into a horizontal and vertical component
which are planned individually. This further motivates the use of W as FoR. Since the CoM
motion WrCoM(t) is mainly affected by the RMT trajectory, we use the same FoR which makes
comparisons of the CoM and RMT motion more convenient during data analysis. Besides, most
other quantities are described relative to the stance foot TCP frame “SF” related to the Begin
Pose of the corresponding transition. In particular, this applies to the upper body and head ori-
entation trajectories SFsUB(t) and SFsVTCP(t), the foot and hand position/orientation trajectories

SFr f (t), SFs f (t), SFrh(t), and the external (multi-contact) wrench trajectories SFWh
h,ext(t). In-

6.2 Motion Plan: Lower Level Structure 149

deed, this choice of the FoR minimizes the count of necessary coordinate transformations since
most quantities of a Robot Pose are already described relative to the SF frame (cf. Table 5.1).
However, within motion generation, the computational cost of coordinate transformations is
almost negligible so that the FoR is chosen according to convenience during implementation.
Finally, a phase also stores FoR-independent quantities such as the toe joint trajectories qzfr|l(t),
the task-space selection trajectory ξ(t), and the load trajectory γ(t).

Describing Trajectories Within the motion plan, all time-varying quantities are described in
an analytical form. Compared to a representation by a large series of time step samples, analytic
signals use much less memory and can be modified much more efficiently (e. g. by shifting con-
trol points). Moreover, depending on the particular type of the underlying function, cheap and
exact analytic derivatives may be available. Certainly, the motion generator has to be capable
of generating analytic signals which may not be the case depending on the chosen planning
approach. However, the solution strategy proposed within this thesis is well suited for an an-
alytic description of signals. Note that trajectories are generated by the asynchronous Planner
(Thread 6 in Figure 4.11) while they are evaluated within the WPG’s main loop (Thread 5 in
Figure 4.11). Thus, with regard to real-time performance, we focus in general on an efficient
evaluation while the computational cost of generation is less critical.

For the majority of signals, the WPG uses polynomial splines, i. e., a chain of (indepen-
dent) polynomial segments. With regard to our use case, the main advantages of a polyno-
mial representation are the straightforward superposition of signals (the sum of polynomials
is again a polynomial) and the numerous available methods for interpolation and collocation
(see also Appendix G). While there exist multiple ways of describing a polynomial spline (with
B-splines [129, p. 87ff] being the probably most prominent one), we use in particular the so-
called Piecewise Polynomial (PP) form [129, p. 69ff] which describes the spline through the
coefficients of interconnected, yet independently defined, polynomial segments. The PP form
allows an efficient evaluation of the spline and its derivatives by using the method of HORNER

and GILBERT (see [208] and [197, p. 94ff]). The implementation used by the WPG of LOLA has
been published as part74 of the Broccoli library.

For describing spatial rotation, the motion generator uses a custom formulation based on
quaternions. In particular, we introduce the concept of quaternion trajectories which combine a
quaternion spline s(η) ∈H1 defining the “shape” and a parameter spline η(t) ∈ R specifying the
“timing” of the motion. A quaternion trajectory is simply evaluated through the chained opera-
tion s(η(t)). Augmenting the quaternion spline with a parameter spline gives us full control over
the speed of traversal. Within motion generation, this feature is primarily used to enforce zero
velocity and acceleration at the start and end of a trajectory which ensures smooth accelerations
and C2-continuity at junctions (independent of the type of the quaternion spline). The main
motivation for using an approach based on quaternions is their robustness (no singularities)
and ability to describe rotations in a “natural” way. The fundamentals of quaternion calculus,
describing spatial rotation with quaternions, and the interpolation of quaternions are discussed
in Appendix B. The implementation of the proposed quaternion trajectories has been published
as part75 of the Broccoli library. This also includes efficient algorithms for evaluating the n-th
derivative of a quaternion trajectory as well as the computation of the corresponding angular
velocity and acceleration. Among the multiple interpolation methods presented in the appendix,
we primarily use quaternion trajectories based on the QBSpline curve (cf. Appendix B.3.6).

Planning on Sequence-, Transition-, or Phase-Level While the contact planner computes
the higher levels of the motion plan down to the level of transitions (begin/end pose and addi-
tional parameters ttra,dur, hstep, and τSF), the motion generator is responsible of creating phases

74See the class PolynomialCurve|Spline|Trajectory in the module curve of Broccoli.
75See the class QuaternionCurve|Spline|Trajectory in the module curve of Broccoli.

6.3 Phase Planner 150

and filling them with trajectory data. To that end, trajectories may be generated on sequence-,
transition-, or phase-level. In order to store a sequence/transition-level trajectory in the mo-
tion plan, we simply split it into corresponding phase-level chunks taking the individual phase
duration into account. For this purpose, the Broccoli library provides methods76 to split/join
polynomial trajectories (without loss of information). Note that splitting quaternion trajecto-
ries has not been implemented yet since the corresponding task-space quantities are (currently)
planned exclusively on phase-level. However, a corresponding extension of the library would be
straightforward. Indeed, for splitting a sequence/transition-level quaternion trajectory, a sim-
ple solution would be to copy the underlying quaternion spline (remains unchanged) and only
modify the (polynomial) parameter spline of the corresponding phase-level chunks.

6.3 Phase Planner

The process of motion generation starts with the Phase Planner which represents stage 3 in
the planning pipeline (cf. Figure 4.11). Based on the data stored in the motion plan so far, it
creates phases for each transition and assigns the particular phase type (Load Switch or Motion,
cf. Section 6.2) and duration to it. However, the phase planner does not specify any of the task-
space quantities stored within the phase – this is left to the remaining stages of the planning
pipeline. For creating the phases of a particular transition, the phase planner considers the
entire sequence. While doing so, it guarantees that following constraints are satisfied:

• A sequence has to begin and end with a load switch phase (allows to start and finish the
sequence with the same static idle pose specified in Section 4.5.2).

• Load switch and motion phases have to alternate within a sequence (equivalent to alter-
nating DS/SS phases in regular biped locomotion).

• A transition consists of either one or two phases (a transition with more than two phases
can always be split into multiple transitions with a maximum of two phases each).

• A transition contains a motion phase if and only if it involves task-space motion (automat-
ically detected by comparing the begin and end pose of the transition).

• In case a transition consists of two phases, the load switch phase has to be executed before
the motion phase.

Considering these rules, a transition may contain either a single load switch phase, a single
motion phase, or a leading load switch and trailing motion phase. Moreover, these constraints
imply that the last transition of a sequence always consists of a single load switch phase, see
Figure 6.2. As a consequence, the transition planner has to guarantee that the last transition
of a sequence does not involve any task-space motion. Indeed, this is satisfied by the transition
planner’s strategy for finishing/stopping a sequence to bring the robot back to its static idle pose
(automatically appends corresponding trailing transitions).

Detecting Motion A motion phase is only generated if the corresponding transition involves
task-space motion. In order to detect such motion, we compare the begin and end pose of the
transition. In particular, we consider a transition to involve task-space motion if

• the (desired) orientation of the upper body changes, or
• the (desired) height of the CoM changes, or
• the position and/or orientation of at least one EE changes and the corresponding EE is

assigned to the task-space at the begin and/or end pose, or
• at least one EE is blended from null-space to task-space or vice versa.

76See the class Spline|TrajectorySplitter in the module curve of Broccoli.

6.3 Phase Planner 151

x

z

x

y
lx

Load Switch Motion LS Motion Load Switch

Transition 1 Transition 2 Transition 3
Phase:

motion

motion

t

Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5 Snapshot 6
t1 = 0 s t2 = 0.48 s t3 = 1.12 s t4 = 1.28 s t5 = 1.92 s t6 = 2.72 s

∆t = 0.48 s ∆t = 0.64 s ∆t = 0.64 s ∆t = 0.8 s∆t = 0.16 s

Figure 6.2: Sequence of alternating Load Switch and Motion phases generated by the Phase Planner for an exem-
plary walking sequence. The transitions are provided by the Transition Planner on the basis of a “Fixed Sequence”
action featuring a single QPWT (lx = 0.4m). Transition 2 and 3 are automatically appended by the transition planner
to bring the robot back to its static idle pose. The load switch phases are used to shift the CoM (horizontally) and
redistribute the EE loads while the motion phases are used to move the EEs.

Note that in terms of an easily understandable presentation, Figure 6.2 focuses on regular biped
walking without hand support. However, the phase planner does not distinct between feet and
hands as EEs. Thus, the presented workflow is identical for multi-contact locomotion.

Enforcing Motion Although the proposed motion detection allows to automatically generate
an appropriate segmentation, it may fail in certain situations. An example is stamping, i. e.,
walking with zero step length where the begin and end pose of the transitions are equivalent
and, hence, seem to involve no task-space motion. To circumvent this problem, the transition
planner is further given the capability to enforce motion either for a particular task-space com-
ponent or the entire transition effectively bypassing the automatic motion detection. For the
action types “fixed sequence”, “teleoperated”, and “autonomous” walking, the transition plan-
ner enforces motion for the swing foot (except the very last transition) which enables walking
in place. For special actions such as bowing, the transition planner enforces motion for a virtual
transition in order to artificially keep the robot in a (special) static pose for a certain duration.

Phase Duration For determining the duration of a phase, we distinct between the cases of a
default and a custom transition duration ttra,dur. In case of using the default ttra,dur = 0.8 s, we
use tpha,dur = 0.2 ttra,dur = 0.16 s for the load switch phase (if present) and tpha,dur = 0.8 ttra,dur =
0.64 s for the motion phase (if present). Note that these proportions are adopted from the
previous trajectory generation system by BUSCHMANN and can be easily changed through a user-
specified parameter. For the very first and last load switch phase of a sequence, we additionally
slow down the phase by a factor of three (3 × 0.16 s = 0.48 s) and five (5 × 0.16 s = 0.8 s),
respectively (cf. Figure 6.2). This ensures a decent acceleration and deceleration from/towards
the static idle pose. In case of a custom ttra,dur, we either set the phase duration to tpha,dur =
ttra,dur (one phase) or according to the aforementioned proportions (two phases).

6.4 Support Area (SA) Planner 152

6.4 Support Area (SA) Planner

In the fourth stage of the planning pipeline, the SAs are computed. This happens on phase-level,
i. e., for each phase individually. For load switch phases, the SA is computed using the begin pose
while for motion phases we use the end pose of the enclosing transition. This is reasoned by
our convention that load switch phases always precede motion phases within a transition. In
order to decide if a foot contributes to the SA, we check if it is in closed contact throughout the
entire phase. As already explained in Section 4.5.4, we assume level ground (as approximation)
and thus, project the rectangular outline of the foot sole onto the horizontal plane of the world
frame. The dimensions of the contact area are taken from Table 4.4, where we distinct between
full and partial/tiptoe contact as indicated by the corresponding robot pose. In addition, we
apply symmetric safety margins of 20 % and 30 % to reduce the length and width of the contact
area, respectively. The margins take effect on the shape of the ZMP trajectory and are meant to
increase robustness (the distance of the ZMP to the SA’s border can be seen as metric for the
“stability reserve”). Due to the assumption of coplanar contacts in the foot-ground interface,
the SA is given by a 2D polygon (cf. Section 2.3) which is computed as the convex hull of
all contact points. For constructing the convex hull, we use GRAHAM’s scan [121, p. 1030ff]
where the particular implementation has been published as part77 of Broccoli. An animation
demonstrating the construction of SAs is given in the video [18 @t=4m7s].

6.5 Zero-Moment Point (ZMP) Planner

Once the SAs have been determined, we generate the reference ZMP trajectory WrZMP(t) ∈ R
3.

Within this thesis, we require the gait to be dynamically balanced (cf. Section 4.5.4), thus, the
ZMP has to reside within the current SA at all times. Apart from this constraint, we can freely
choose the path and its speed of traversal. In the following, we use a path consisting of linear
segments, however, we could also use other shapes such as cubic splines as proposed by KAJITA

et al. in [233]. In fact, the only requirement made by the subsequent planning stages is that

WrZMP(t) is C0-continuous (required for C2-continuity of CoM, see Section 6.14.2 for details). In
contrast to related work, we propose to use a three-dimensional ZMP where the horizontal and
vertical components are processed independently of each other (cf. [18 @t=4m38s]).

Horizontal Components The components WrZMP,x |y(t) which describe the horizontal ZMP
motion are planned on sequence-level. In particular, we first generate a series of control-points
where each load switch phase spawns a control-point at its beginning and end. In the exemplary
walking sequence shown in Figure 6.2, this would result in a total of six control-points (one for
each snapshot). The position of a control-point is computed solely based on geometric consid-
erations where we only take the SAs (with applied safety margins) into account. In particular,
we use the following scheme (see also Figure 6.3):

• The very first and last control-point of the sequence are placed at the centroids of the
corresponding SAs (first and last load switch phase). This particular choice maximizes the
“stability reserve” at the beginning and end of a sequence where the robot resides in the
static idle pose. In the case of dynamic replanning, the first control-point is instead given
by the ZMP position at the end of the last unchanged transition.

• The second control-point is chosen to the point on the SA of the first motion phase which
is closest to the very first control-point. Similarly, the second last control-point is chosen to
the point on the SA of the last motion phase which is closest to the very last control-point.

77See the method Polygon2D::reComputeConvexHull in the module geometry of Broccoli.

https://youtu.be/mGlsc_revMc?t=4m7s
https://youtu.be/mGlsc_revMc?t=4m38s

6.5 Zero-Moment Point (ZMP) Planner 153

• For determining the position of the remaining control-points, we iterate over all “inte-
rior” load switch phases. For each of which, we compare the SAs of the preceding and
subsequent motion phase where we distinct between two cases:

– In case the SAs intersect, both control-points related to the currently investigated load
switch phase are set to the centroid of the intersection polygon (maximizing stability
reserve). In fact, this case can only occur within non-gaited motion – in particular,
if the preceding and/or subsequent motion phase does not involve any foot motion.
Note that the intersection of two convex polygons is also a convex polygon, which
allows an efficient implementation78.

– In case the SAs do not intersect, the control-points of the currently investigated load
switch phase are chosen to the end points of the shortest connection between the
SAs. Note that the shortest connection line between two non-intersecting (otherwise
arbitrary) polygons starts and/or ends at one of the vertices of the polygons – at
least if it is unique. For parallel edges, there might be an infinite set of shortest
connections. In this case, we use the “mean value” of the set (computed from its
“boundaries” which are given by the two shortest connection lines which start/end at
a vertex). Since both polygons are convex and have kinks at their vertices (ensured
by the algorithm used for computing the convex hull), there can be at most one pair
of parallel edges with shortest distance. Also note that parallel edges occur frequently
e. g. for straight walking (parallel feet) with small step lengths.

In comparison to more elaborate techniques, e. g. the formulation of an optimization problem as
suggested by BUSCHMANN et al. in [98], this purely geometric approach is much simpler, more
efficient, and guarantees to find a valid solution in a deterministic time.

Load Switch 1 (first) Load Switch {2, . . . , n− 1} (“interior”) Load Switch n (last)

Control-Point 1:

Control-Point 2:

Control-Point 2 n:

Control-Point 2 n− 1:

Case B: non-intersect. SAsCase A: intersecting SAs

RFLF

SA

RFLF

SA

RFLF

SA

RFLF

SA

SA

SA

SA

SA RF
LF

LF

RF

pr
ec

ed
in

g
m

ot
io

n
pr

ec
ed

in
g

m
ot

io
n

su
bs

eq
ue

nt
m

ot
io

n
su

bs
eq

ue
nt

m
ot

io
n

fir
st

m
ot

io
n

lo
ad

sw
it

ch

la
st

m
ot

io
n

lo
ad

sw
it

ch

no
n-

pa
ra

lle
l

pa
ra

lle
l

Example: only hand motion
motion load switch motion

pr
ece

din
g moti

on
subsequent motion2×

SAs

boundary

boundary

Figure 6.3: Strategy for placing the 2 n control-points of the horizontal ZMP trajectory WrZMP,x |y(t) for a sequence
containing n load switch phases and n − 1 motion phases. From left to right: control-point placement for the first,
interior, and last load switch phase. Each load switch phase spawns two control-points.

Same as for the original WPG system by BUSCHMANN [98], we prefer a slowly moving ZMP
in order to obtain smoother CoM trajectories. For this reason, we choose to connect the control-
points with linear segments (shortest path). Since the SAs are convex polygons, this also guar-
antees that every point on the path lies within the corresponding SA. Finally, it is left to specify
the speed at which the ZMP traverses this path. For the very first and last load switch phase,
we choose a cubic interpolation with zero velocity and acceleration at the very first and last
control-point. This ensures a decent acceleration and deceleration of the ZMP at the beginning
and end of a sequence which, however, only has a rather small impact on the overall locomotion
performance of the robot. For all other phases, we use constant velocity, see Figure 6.4.

78See the method Polygon2D::computeAsConvexPolygonIntersection in the module geometry of Broccoli.

6.5 Zero-Moment Point (ZMP) Planner 154

fir
st

w
al

l

se
co

nd
w

al
l

A B

rZMP(t)
W x

z

0 1 2 3 4 5 6 7 8 9
−0.1

−0.05

0

0.05

0.1

0.15

t / s

WrZMP,y

WrZMP,z

LS M LS M LS M LS M LS M LS M LS M LS M LS

A B

m

Figure 6.4: Horizontal and vertical components of the ZMP trajectory WrZMP(t) for a multi-contact scenario similar
to [20 @t=1m40s] (stepping up and down platform of 12.5 cm height). The background color of the plot shows the
partitioning into load switch (“LS”) and motion (“M”) phases. Within the very first and last load switch phase, WrZMP,x |y
use cubic interpolation while a constant velocity is set for the remaining phases. Within load switch phases, the vertical
component WrZMP,z is formulated as a quintic polynomial which tracks the height of the stance foot (stepping up at “A”,
stepping down at “B”). In motion phases, WrZMP,z is kept constant. The dots indicate control-point locations.

Vertical Component According to Equation 4.9, the contact wrench of the foot-ground in-
terface does not only depend on the horizontal components WrZMP,x |y , but also the vertical
component WrZMP,z. For walking on level ground which coincides with the x-y-plane of the
world frame, one could simply set WrZMP,z = 0 and cancel all related terms. Since the ZMP cri-
terion requires coplanar foot-ground contacts anyways, the vertical component of the ZMP is de
facto not considered in most related works. Within this thesis, we also allow non-coplanar foot-
ground contacts (uneven terrain, stairs, ramps, etc.) and treat the violation of this constraint as
(tolerated) modeling error. In order to keep this error as small as possible, we plan WrZMP,z(t)
such that it tracks the vertical position of the current stance foot. In particular, we use a quintic
polynomial with zero velocity and acceleration at the start and end for load switch phases while

WrZMP,z remains constant within motion phases, see Figure 6.4. The polynomial connects the
previous control-point with WrSF,z of the end pose (last load switch phase) or the begin pose (all
other load switch phases) of the governing transition.

Note that the previous version of the ZMP planner presented in [3] did not consider the
vertical component but instead used the approximation WrZMP,z ≈ 0. While the error remains
small for the therein presented scenario of stepping up and down a platform of 12.5 cm height,
it is not negligible for climbing stairs (vertical displacement accumulates) or in case the robot
is initialized at a certain non-zero height. At this point, special thanks go to MORITZ SATTLER

for drawing attention to this issue which finally motivated the extension of the ZMP planner to
include the vertical component.

https://youtu.be/gUNZ0AmLiWU?t=1m40s

6.6 Upper Body Orientation Planner 155

6.6 Upper Body Orientation Planner

In the sixth stage of the planning pipeline, the rotational motion of the upper body frame “UB”
(cf. Figure 4.2) is generated. In particular, we setup SFsUB(t) as a quaternion trajectory com-
bining a quaternion spline and a parameter spline as described in Section 6.2. The trajectory
is planned on phase-level where we consider the upper body orientations stored within the
begin pose (SFsUB,beg) and end pose (SFsUB,end) of the corresponding transition as keyframes.
Within motion phases which involve upper body rotation, we connect these keyframes by a
C2-continuous QBSpline of order k = 4. Note that a comprehensive description of quater-
nion interpolation by QBSplines is given in Appendix B.3.6. The control-quaternions are set to
{SFsUB,beg, SFsUB,beg, SFsUB,end, SFsUB,end} where we duplicated the first and last element in order
to reach the minimum count of control-quaternions required by this interpolation type. More-
over, we use a clamped, uniform, and normalized knot sequence which ensures that the very
first and last control-quaternions are interpolated. The QBSpline is combined with a quintic
polynomial as parameter spline to force zero velocity and acceleration at the beginning and end
of the phase. This guarantees C2-continuity also at phase boundaries. Within the remaining
phases, i. e., for load switch and motion phases without involved upper body motion, SFsUB(t)
is kept constant. Exemplary results for a bowing motion (rotation around horizontal axis) and
walking on a curved path (rotation around vertical axis) are shown in Figure 6.5.

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

t / s

WsUB,w

WsUB,y

LS M LS M LS M LS

Scenario: Bowing
(see [21 @t=1m9s])

4 4.5 5 5.5 6 6.5

0

0.2

0.4

0.6

0.8

1

t / s

WsUB,w

WsUB,z

LS M LS M LS M LS M

Scenario: Curve Walking
(see Figure 4.8 bottom)

0 1 2 3 4
−4
−3
−2
−1

0
1
2
3
4

t / s

WωUB,y / rad/s

Wω̇UB,y / rad/s2

LS M LS M LS M LS

4 4.5 5 5.5 6 6.5

−6

−4

−2

0

2

4

6

t / s

WωUB,z / rad/s

Wω̇UB,z / rad/s2

LS M LS M LS M LS M

Figure 6.5: Quaternion trajectory describing the rotation of the upper body WsUB(t) for two exemplary scenarios:
bowing motion (left) and walking on a curved path (right). The plots show relevant components of the orientation

WsUB(t), angular velocity WωUB(t), and angular acceleration Wω̇UB(t). Not shown components are zero in the entire
time interval. Although the trajectory is generated with respect to the SF FoR, it is plotted for the W FoR to demonstrate
its C2-continuity. The dots indicate control-quaternion locations (left: hard-coded; right: default upper body orientation
computed from mean foot orientation).

https://youtu.be/JCYmq6u0EEc?t=1m9s

6.7 Foot Motion Planner 156

Control-Quaternions and Default Upper Body Orientation The control-quaternions are de-
rived from SFsUB stored in the robot poses at the beginning and end of the governing transition.
For special, non-gaited motions, these are typically hard-coded. An example is the bowing mo-
tion shown in the left column of Figure 6.5, where the upper body is tilted by an angle of 15◦. For
action types describing gaited motion (fixed sequence, teleoperated, and autonomous walking),

SFsUB in the transition’s end pose is set to the custom orientation specified in the corresponding
QPWT, see Table 5.2. In case no custom orientation is set, a default orientation is computed
from the mean foot orientation (only vertical rotation such that torso stays upright even for
non-horizontal feet). This case is shown in the right column of Figure 6.5 which is obtained
from the curve walking scenario shown in Figure 4.8 (bottom). The depicted plots focus on a
time span where the step angle around the vertical axis changes from ϕz = 0.2 rad (turning left)
to ϕz = −0.2 rad (turning right).

Discussion and Outlook Since planning an ideal upper body rotation is not in the scope of
this thesis, a rather simple scheme has been used. Finding a motion which is optimal with
respect to a certain criterion (e. g. minimization of total angular momentum) is instead left
for potential future investigations. Note that the subsequent stages of the planning pipeline
only demand C2-continuity of sUB(t) (required for C2-continuity of CoM, see Section 6.14.2 for
details). Nevertheless, one should handle the upper body orientation with care: as a task-space
component, sUB(t) directly affects the resulting joint-space motion. Moreover, sUB(t) acts as
input to the five-mass model (linked to mass moment of inertia of torso mass), therefore, it has
also a certain influence on the planned (horizontal) RMT and CoM trajectory.

6.7 Foot Motion Planner

The task of this submodule is to generate C2-continuous trajectories describing the full 6D mo-
tion of the left and right foot’s TCP frame. Same as for sUB(t), the construction is performed
on phase-level where we focus on the motion phases. Within load switch phases or in case the
currently investigated foot is not subject to motion (e. g. the stance foot SF), we simply keep the
position and orientation constant. For the (moving) swing foot SF, we have to connect the 6D
pose of the TCP frame at the beginning (SFrSF,beg, SFsSF,beg) with the one at the end (SFrSF,end,

SFsSF,end) of the governing transition in an appropriate way. Apart from these BCs, the corre-
sponding motion plan transition also provides the step height hstep and the swing foot timing
factor τSF as additional parameters (cf. Section 5.2). While the step height simply specifies the
vertical clearance, the swing foot timing factor allows more substantial modifications of SFrSF(t)
by blending between a regular (τSF = 0; for level ground) and a collision-aware (τSF = 0.5; for
stepping up/down and obstacle traversal, cf. Section 5.5.5) set of timing parameters. See the
video [18 @t=4m58s] for a 3D visualization of both parametrizations.

Orientation Similar to the trajectory generation system by BUSCHMANN [100, p. 70ff], we
consider two components for the foot rotation. The first component represents the transition
from SFsSF,beg at the beginning tbeg towards SFsSF,end at the end tend of the phase. The previous
locomotion system assumed a horizontal ground, thus, the first component described a rotation
around the vertical axis. Since the new WPG also allows non-horizontal foot-ground contacts
(e. g. for climbing ramps), the axis of rotation does not necessarily have to be vertical anymore.

The second component describes a superimposed “interior” (tbeg < t < tend) motion which
facilitates a lift-off with the toe right after the beginning (at tbeg + ϵ) and a strike with the heel
just before the end (at tend − ϵ) of the motion. While toe-lift-off is meant to push kinematic
limits in particular for large steps (similar to the toe joint motion, see Section 6.8), heel-strike

https://youtu.be/mGlsc_revMc?t=4m58s

6.7 Foot Motion Planner 157

increases overall robustness in the presence of upper body inclination errors [100, p. 72f].
Combining both components yields a multi-axis rotation which we realize by formulating a

corresponding quaternion79 trajectory. Similar to SFsUB(t), we setup a QBSpline of order k = 4
as underlying quaternion spline. The control-quaternions are set to {SFsSF,beg, s1, s2, SFsSF,end}
while the knot sequence is again clamped, uniform, and normalized. The first and last control-
quaternions (in combination with the clamped knot sequence) ensure that the BCs are satisfied.
The interior control-quaternions, s1 and s2, are used to establish the second component of foot
rotation, i. e., toe-lift-off and heel-strike. In particular, we use

ϕSF,y ,ref := asin
�

0.1m−1
�

SFrSF,end,x − SFrSF,beg,x

��

, (reference angle for tilting motion) (6.1)

s1,∆ :=
ax/ang
quat(ey , +ϕSF,y ,ref) , (relative rotation describing toe-lift-off)

s2,∆ :=
ax/ang
quat(ey , −ϕSF,y ,ref) , (relative rotation describing heel-strike)

(6.2)

s1,virt :=

(

SLERP
�

SFsSF,beg, +SFsSF,end, 1
3

�

if SFsSF,beg ⊙ SFsSF,end ≥ 0 ,

SLERP
�

SFsSF,beg, −SFsSF,end, 1
3

�

else
,

s2,virt :=

(

SLERP
�

SFsSF,beg, +SFsSF,end, 2
3

�

if SFsSF,beg ⊙ SFsSF,end ≥ 0 ,

SLERP
�

SFsSF,beg, −SFsSF,end, 2
3

�

else
,

(6.3)

s1 := s1,virt ⊗ s1,∆ , (first interior control-quaternion)

s2 := s2,virt ⊗ s2,∆ . (second interior control-quaternion)
(6.4)

With ϕSF,y ,ref, we first compute a reference angle for tilting the swing foot around its local y-axis.
The heuristic provided in Equation 6.1 is based on the previous implementation by BUSCHMANN

and makes ϕSF,y ,ref dependent on the stride length, i. e., the distance traveled by the swing foot
in walking direction (measured in stance foot FoR). Note that the sign of ϕSF,y ,ref becomes neg-
ative for SFrSF,end,x < SFrSF,beg,x such that an equivalent roll-off strategy is obtained for walking
backwards. The reference angle is used to compute the relative rotations describing toe-lift-
off (s1,∆) and heel-strike (s2,∆) as elementary rotations around the swing foot’s local y-axis,
see Equation 6.2. Furthermore, we construct virtual control-quaternions s1,virt and s2,virt which
represent snapshots of a virtual SLERP operation from SFsSF,beg towards SFsSF,end at η = 1/3
and η = 2/3, respectively. Note that the case distinctions in Equation 6.3 ensure minimum
rotation, i. e., moving along the “shortest path”, cf. Appendix B.3.3. Finally, the interior control-
quaternions s1 and s2 are obtained by superimposing the virtual control-quaternions s1,virt and
s2,virt with the relative rotations s1,∆ and s2,∆ as shown in Equation 6.4.

An important property of the resulting QBSpline SFsSF(η) with η ∈ [0, 1[is that it does not
pass through s1 or s2. However, due to the uniform knot sequence and the symmetric choice
of s1 and s2, the QBSpline will be close (but not closest) to s1 and s2 at η = 1/3 and η = 2/3,
respectively. This motivates the partitioning of the motion phase into the three sub-phases lift-
off (η ∈ [0, 1/3]), mid-swing (η ∈ [1/3, 2/3]), and strike (η ∈ [2/3, 1]). In order to control
the speed of traversal, we setup a parameter spline η(t) consisting of three quintic polynomial
segments. The coefficients of the segments are chosen such that η(t) forms a smooth (C4-
continuous) spline with zero velocity and acceleration at tbeg and tend (see Algorithm G.1). The
control-points are set to η(tbeg) = 0, η(t1) = 1/3, η(t2) = 2/3, and η(tend) = 1. For simplicity, we
choose t1 and t2 such that they split the phase duration into three uniform segments. However,
t1 and t2 are driven by dedicated parameters of the WPG such that the proportions of the three

79The previous locomotion system of LOLA used special, custom representations for describing orientations of the
feet and the upper body which were originally developed by LÖFFLER for JOHNNIE (see [100, p. 68ff] for details).
Within the context of redesigning the WPG, the author of this thesis decided to use a uniform formulation by quater-
nions instead. Besides the general advantages of quaternions such as robustness and numerical efficiency, its is also
easier to convert them to/from other representations – in particular with regard to time derivatives.

6.7 Foot Motion Planner 158

sub-phases lift-off, mid-swing, and strike can be customized easily. The resulting quaternion
trajectory SFsSF(t) is C2-continuous and has zero angular velocity and acceleration at the phase
boundaries, see Figure 6.6.

tbeg t1 t2 tend

−0.005

0

0.005 1−WsSF,w

WsSF,y

lift-off mid-swing strike

Single-Axis Rotation
(straight walking)

tbeg t1 t2 tend

0

0.02

0.04

0.06
1−WsSF,w

WsSF,x

WsSF,y

WsSF,z

lift-off mid-swing strike

Multi-Axis Rotation
(curve walking)

tbeg t1 t2 tend

−0.1

−0.05

0

0.05

0.1

0.15
WωSF,y

lift-off mid-swing strike

ra
d/

s

tbeg t1 t2 tend

−0.1

0

0.1

0.2

0.3

WωSF,x

WωSF,y

WωSF,z

lift-off mid-swing strike

ra
d/

s

tbeg t1 t2 tend

−3
−2
−1

0
1
2
3

Wω̇SF,y

lift-off mid-swing strike

ra
d/

s2

tbeg t1 t2 tend

−3
−2
−1

0
1
2
3

Wω̇SF,x

Wω̇SF,y

Wω̇SF,z

lift-off mid-swing strike

ra
d/

s2

Figure 6.6: Quaternion trajectory describing the orientation of the swing foot WsSF(t) for the case of single-axis
rotation (left) and multi-axis rotation (right). The plots show the orientation WsSF(t), angular velocity WωSF(t), and
angular acceleration Wω̇SF(t) for an exemplary motion phase (partitioned into the three sub-phases lift-off, mid-swing,
and strike). The plots on the left omit the x - and z-components as they are zero in the entire time interval. The
trajectory is C2-continuous and has zero angular velocity and acceleration at the phase boundaries at tbeg and tend.

Position – Timing In preparation of specifying the trajectories for horizontal80 and vertical
swing foot position, this paragraph introduces the therein used timing parameters. Same as for

SFsSF(t), the trajectories SFrSF,xy(t) ∈ R
2 and SFrSF,z(t) ∈ R are partitioned into three intercon-

nected segments. However, the duration of these segments is not uniform but instead derived
from corresponding proportions which are controlled by the swing foot timing factor τSF. In

80Note that the position of the swing foot SFrSF is described relative to the TCP frame of the current stance foot.
Thus, for inclined ground (e. g. on a ramp), SFrSF,xy and SFrSF,z actually do not represent the “horizontal” and “vertical”
position (as defined by the world frame), but rather the components in “tangential” and “normal” direction (with
respect to the ground). In the following, we still use the (inexact) terminology “horizontal” and “vertical” since it
appears to be more intuitive.

6.7 Foot Motion Planner 159

particular, we introduce the proportions τlag and τlead specifying the duration of the first and
last segment of SFrSF,xy(t) and the proportions τlift and τlower specifying the duration of the first
and last segment of SFrSF,z(t). The proportions of the segments in the middle are simply given
by 1−τlag−τlead and 1−τlift−τlower. Note that these proportions are related to the duration of
the motion phase tpha,dur = tend− tbeg and not the duration of the governing transition. In order
to define the proportions for both, the regular (τSF = 0) and the collision-aware (τSF = 0.5)
parametrization, we use a linear relationship:

τlag(τSF) :=
�

1−τSF

�

0% + τSF 25% , (τlag(0) = 0% and τlag(0.5) = 12.5 %)

τlead(τSF) :=
�

1−τSF

�

8.75% + τSF 25% , (τlead(0) = 8.75% and τlead(0.5) = 16.875%)

τlift(τSF) :=
�

1−τSF

�

45% + τSF 25% , (τlift(0) = 45% and τlift(0.5) = 35 %)

τlower(τSF) :=
�

1−τSF

�

45% + τSF 25% . (τlower(0) = 45% and τlower(0.5) = 35 %)

(6.5)

The special choice τSF = 1 represents a border case where the horizontal and vertical motion
are completely decoupled (0→ 25%: lift foot, 25→ 75%: horizontal shift, 75→ 100 %: put the
foot down). In combination with the terrain-based contact planner presented in Section 5.5, this
would indeed guarantee collision-free swing foot motion. However, in favor of a smoother gait
with lower EE accelerations, we instead use τSF = 0.5 as a compromise for the collision-aware
case. Nevertheless, since the swing foot timing factor is a component of the QPWT container
(cf. Table 5.2), the user is free to choose an arbitrary τSF ∈ [0, 1].

Position – Roll-Off Compensation Since we describe the foot motion with respect to the TCP
frame which is located in the center of the toe segment’s contact surface (cf. Figure 4.7), a non-
zero foot rotation around the local y-axis (as it is used to implement the aforementioned roll-off
motion) would possibly lead to a penetration of the ground. For this reason, we compute a com-
pensation vector∆SFrSF(t) which can be applied to the TCP position SFrSF(t). The compensation
vector is derived from simple geometric considerations where we assume straight walking, i. e.,
single-axis foot rotation around the local y-axis, such that the foot motion is restricted to the
sagittal plane. In particular, we demand that the “critical” point on the foot (front of toe segment
or rear of heel segment) is at the same 2D position as it would be for zero foot rotation:

�

SFaSF, ϕSF

�

(t) := axAng(SFsSF(t)) , (evaluate swing foot orientation as axis-angle pair)

ϕSF,y(t) := SFaSF,y(t)ϕSF(t) , (extract angle describing rotation around local y-axis)

∆SFrSF(t) := lTCP,dist(t)
�

1− cos
�

ϕSF,y(t)
�

, 0, sin
�

ϕSF,y(t)
��T
∈ R3 .

(6.6)

Here, lTCP,dist(t) denotes the lever arm, i. e., the (signed) distance of the critical point from
the foot’s TCP, which switches between two (constant) values depending on the current tilting
angle. Although the restriction to the sagittal plane may introduce some error in certain cases,
the presented scheme is still exact for (straight) climbing ramps: all calculations in Equation 6.6
are performed in the SF FoR which is parallel to the (potentially inclined) ground. Note that the
compensation vector not only contains a component in local z-direction to avoid penetration,
but also a component in local x-direction which is meant to avoid slippage due to foot rotation.

A natural approach for exact compensation of the foot’s roll-off motion would be to add
∆SFrSF(t) to SFrSF(t) for every time step sample. However, since the lever arm lTCP,dist(t) is
subject to abrupt changes, this would result in an only C0-continuous SFrSF(t). In order to keep
the trajectory smooth, a non-exact approach is chosen where the compensation vector is applied
only to the (interior) control-points of the horizontal and vertical swing foot motion, i. e., at

tlag := tbeg +τlag tpha,dur , tlift := tbeg +τlift tpha,dur , (6.7)

tlead := tend −τlead tpha,dur , tlower := tend −τlower tpha,dur . (6.8)

6.7 Foot Motion Planner 160

Position – Trajectory For generating SFrSF(t), we handle the horizontal and vertical compo-
nents SFrSF,xy(t) and SFrSF,z(t) individually (see also Footnote 80). As mentioned earlier, the
motion of these components is split into three consecutive segments. For each segment, we de-
scribe the corresponding chunk of SFrSF,xy(t) and SFrSF,z(t) through a quintic polynomial which
has zero velocity and acceleration at the beginning and end of the segment. The polynomials
are further specified through the control-points

SFrSF,xy(tbeg) := SFrSF,beg,xy , SFrSF,z(tbeg) := SFrSF,beg,z ,

SFrSF,xy(tlag) := SFrSF,beg,xy +∆SFrSF,xy(tlag) , SFrSF,z(tlift) := SFrSF,z,max ,

SFrSF,xy(tlead) := SFrSF,end,xy +∆SFrSF,xy(tlead) , SFrSF,z(tlower) := SFrSF,z,max ,

SFrSF,xy(tend) := SFrSF,end,xy , SFrSF,z(tend) := SFrSF,end,z

(6.9)

where SFrSF,z,max denotes the maximum vertical position of the swing foot which is given by

SFrSF,z,max := max
�

SFrSF,beg,z , SFrSF,end,z

�

(max. swing foot height at begin/end pose)

+max
�

∆SFrSF,z(tlift), ∆SFrSF,z(tlower)
�

(max. roll-off compensation height)

+hstep . (default step height (3cm) or custom step height provided by transition)

(6.10)

The step height hstep is only included in Equation 6.10 if the swing foot makes contact at tbeg
and tend. Thus, no clearance is added in situations where it is not necessary (e. g. for balancing
on a single foot as special action). The resulting C2-continuous position trajectory SFrSF(t) is
presented in Figure 6.7 for both timing parametrizations (regular and collision-aware).

A B C D

rRF(t)
W x

z

tbeg tlifttlower tend

WrSF,beg,x |z

WrSF,z,max

tlead

WrSF,end,z

WrSF,end,x

WrSF,x

WrSF,z

A B

Regular Timing
(τSF = 0, level ground)

tbeg tlift tlower tend

WrSF,beg,x |z

WrSF,z,max

tlag tlead

WrSF,end,z

WrSF,end,x

WrSF,x

WrSF,z

C D

Collision-Aware Timing
(τSF = 0.5, step up/down/over)

Figure 6.7: Normalized swing foot position trajectory WrSF(t) (here: SF = RF) for the regular (left) and collision-
aware (right) timing parametrization as used for walking on level ground and stepping up/down/over, respectively.
The horizontal and vertical components consist of three consecutive quintic polynomial segments each. Note that
τlag(τSF = 0) = 0% (cf. Equation 6.5), thus, the first segment of the horizontal component vanishes for regular

timing. The trajectory is C2-continuous and has zero velocity and acceleration at all control-points (indicated by dots).

6.8 Toe Motion Planner 161

Discussion and Outlook The presented approach for generating foot motion is rather prag-
matic. Despite its simplicity (e. g. when compared to optimization based approaches), it has
proven to be effective for numerous maneuvers tested within real-world experiments. Although
it is based on the previous trajectory generation system by BUSCHMANN, the proposed foot mo-
tion planner comes with several extensions which significantly increase the capabilities of the
robot. Examples are the formulation of sSF(t) as a QBSpline leading to a natural multi-axis
rotation, the support for stepping on inclined ground enabling the robot to climb ramps, and
the introduction of the swing foot timing factor τSF which allows to blend between different
trajectory shapes. Note that these extensions were developed after the publication of [3], thus,
they have not been discussed therein.

A drawback of the current implementation is that collisions with the ground are not checked
explicitly. However, in case an environment model is available, the local terrain information
could be used to adapt the trajectories accordingly. Note that for autonomous walking the step
height hstep is already adjusted to the terrain. A further step would be to find a minimum τSF
which still leads to a collision-free motion. This is left to future investigations.

6.8 Toe Motion Planner

Subsequent to planning the 6D motion of the feet, the toe joint trajectories qzfr|l(t) are generated.
As numerous real-world experiments with LOLA have shown, active toe joints can significantly
improve walking performance for fast walking (large steps) and for stepping up or down [8,
101]. Especially stepping down represents a challenging maneuver for which the contact plan-
ner automatically chooses to make tiptoe contact in order to avoid kinematic limits (see Step
9 in the foothold refinement subroutine of the post-processor). The generation of qzfr|l(t) is
performed on sequence-level where we iterate over all motion phases and – depending on the
situation – take the preceding or subsequent load switch phase into account. Certainly, if the
considered foot is not subject to motion, the corresponding qzfr|l(t) is kept constant.

Without Tiptoe Contact For each considered motion phase, we first check if the swing foot
is supposed to make tiptoe contact at the beginning or the end of the governing transition. If
neither is the case, a planning approach based on the previous trajectory generation system by
BUSCHMANN is used. In particular, we first compute the stride length in x- and z-direction of the
stance foot FoR:

lstr,x := SFrSF,end,x − SFrSF,beg,x and lstr,z := SFrSF,end,z − SFrSF,beg,z . (6.11)

Based on lstr,x , we distinguish between the case of walking forward (lstr,x ≥ 0) and walking back-
ward (lstr,x < 0). The toe joint trajectory is designed to extend over two phases: the currently
investigated motion phase and either the preceding (for walking forward) or subsequent (for
walking backward) load switch phase. The related time interval is given by [tbeg, tend] which
(in general) does not correspond to the boundaries of the motion phase’s governing transition.
Within this time interval, the trajectory qzfr|l(t) is formulated as a piecewise quintic polynomial
spline consisting of two segments. The three control-points which split the trajectory into the
two segments are chosen to qzfr|l(tbeg) = 0, qzfr|l(tmax) = qzfr|l,max, and qzfr|l(tend) = 0 where we use

tmax := tbeg + 0.45
�

tend − tbeg

�

, (proportion driven by customizable WPG parameter) (6.12)

qzfr|l,max :=







π

18

�

�lstr,x
�

�− l12

0.8 m− l12
if
�

�lstr,x
�

�≥ 2 l12 ,

0 else
︸ ︷︷ ︸

large steps

+

�

3 lstr,z rad/m if lstr,z > 0 ,

0 else
︸ ︷︷ ︸

stepping up

. (6.13)

6.9 Hand Motion Planner 162

Here, qzfr|l,max denotes the maximum toe joint angle which is reached at tmax (45 % of the entire
trajectory). The first term depends on the stride length lstr,x (relative to the foot length l12, cf.
Table 4.4) and effectively reduces the knee joint velocity for large steps [101]. The second term
has been introduced by the author of this thesis and helps to avoid kinematic limits of the leg
in the case of stepping up. As mentioned earlier, stepping down is already considered through
setting a corresponding tiptoe contact. Depending on the side of the foot, the sign of qzfr|l,max is
flipped. Moreover, qzfr|l,max is bounded by the limits of the joint. Figure 6.8 shows the resulting
toe joint trajectory qzfr|l(t) for the case of walking forward and backward.

tbeg tmax tend

0

qzfr|l,max

q z
fr|

l(
t)

Load Switch Motion

Walking Forward

tbeg tmax tend

0

qzfr|l,max

q z
fr|

l(
t)

Motion Load Switch

Walking Backward

Figure 6.8: Normalized toe joint trajectory qzfr|l(t) for walking forward (left) and backward (right) when no tiptoe
contact is involved. The trajectory consists of two quintic polynomials with zero velocity and acceleration at all three
control-points (indicated by dots). Depending on the walking direction, the trajectory extends to the preceding (walking
forward) or subsequent (walking backward) load switch phase.

Note that due to the non-zero toe joint angle in the load switch phase, the contact area
changes from the entire foot sole to the toe segment only. However, for the walking patterns
considered within this thesis, it is still guaranteed that the planned ZMP remains within the SA.

With Tiptoe Contact If the swing foot is supposed to make tiptoe contact at the beginning
and/or end of the governing transition, a much simpler toe joint trajectory is planned. In partic-
ular, we formulate qzfr|l(t) as a single quintic polynomial with zero velocity and acceleration at
its boundaries. In contrast to before, the trajectory covers only the currently investigated motion
phase. The polynomial connects the desired toe joint angle at the beginning and end where we
use a fixed target angle of 15◦ in case the foot is in tiptoe contact and 0◦ otherwise, i. e., for full
or partial contact. Note that LOLA’s capability of making explicit tiptoe contacts has been intro-
duced within the context of the multi-contact revision. Same as for the heuristics given in the
Equations 6.12 and 6.13, the presented parametrization has been derived empirically through
numerous simulations and real-world experiments.

6.9 Hand Motion Planner

In stage nine of the planning pipeline, the trajectories SFrh(t) (with h ∈ {RH, LH}) describing the
position of the TCP frames of the hands are generated. Same as for the feet, planning the hand
motion is performed on phase-level. In particular, we focus on the motion phases where the
corresponding hand is subject to task-space motion. Note that in case the hand is assigned to the
null-space throughout the entire phase, the corresponding task-space trajectory stored within
the motion plan will not have any influence on the finally executed motion of the robot. Thus,
in order to avoid unnecessary computations, the hand motion planner simply uses a constant

SFrh(t) in this case (same as for load switch phases). In contrast to the foot motion, we do
not distinguish between horizontal and vertical components, but instead handle the x-, y-, and
z-component of the trajectory in the exact same way.

6.9 Hand Motion Planner 163

Control-Points and Default Hand Position The shape of SFrh(t) is determined by a set of
either two, three, or four control-points: {SFrh,beg, SFrh,open, SFrh,clo, SFrh,end} with SFrh,beg and

SFrh,end as the mandatory boundary control-points and SFrh,open and SFrh,clo as the optional inte-
rior control-points (cf. Figure 6.10). The boundary control-points describe the position of the
hand at the beginning tbeg and end tend of the phase. They are derived from SFrh stored in the
corresponding robot pose of the governing transition. For special, non-gaited actions, these posi-
tions are typically hard-coded. An example is the multi-contact scenario for testing disturbance
rejection shown in [20 @t=48s]. For action types describing gaited motion (fixed sequence,
teleoperated, and autonomous walking), SFrh in the transition’s end pose is set to the custom
location specified in the corresponding QPWT, see Table 5.2. In case no custom location is spec-
ified, a default position is computed from the footholds and the related mean foot TCP frame
MF. In order to realize a counter-swinging arm motion81, we specify the default hand position
relative to the foot on the same (y-component) and the opposite (x- and z-component) side:

MFrRH,def :=
�

MFrLF,x +∆x , MFrRF,y −∆y , MFrLF,z +∆z
�T ∈ R3 , (6.14)

MFrLH,def :=
�

MFrRF,x +∆x , MFrLF,y +∆y , MFrRF,z +∆z
�T ∈ R3 . (6.15)

The shifts ∆x = 0.22 m, ∆y = 0.2025 m, and ∆z = 0.97 m are derived from the static idle pose
specified in Section 4.5.2. The resulting default hand poses are illustrated in Figure 6.9 left.

MF y

z

Default Hand Positions

x

Interior Control-Points

W

y

z

xrRF

rLF
rRH,def

rLH,def

∆
x

∆
x

(−)∆y

∆y

∆z

∆z

M
F
r RF,

x

M
F
r LF

,x

MF rRF,y

MF rLF,y

MF rRF,z

MF rLF,z

rh,beg

rh,end

nbeg
nend

rh,open

rh,clo

lclolopen

hopen(.
. .)

hclo
(. . .)

Figure 6.9: Derivation of default hand positions from the foot poses (left) and strategy for computing interior control-
points in the case of contact at the beginning and end of the phase (right). The default hand positions are adopted from
the static idle pose and realize a counter-swinging arm motion. The position of the interior control-points is primarily
determined by the normal of the corresponding contact surface (indicated by orange discs).

In contrast to SFrh,beg and SFrh,end, the interior control-points are optional. In particular,

SFrh,open is only enabled if the hand is in contact at the beginning of the phase (contact opens
at tbeg + ϵ). Similarly, SFrh,clo is only active in case the hand is supposed to make contact at
tend (contact closes at tend− ϵ). The primary objective of the interior control-points is to prevent
undesired contacts (alias “collisions”) during motion, i. e., within tbeg < t < tend. For this reason,
their position is characterized by a shift along the normal of the contact surface:

SFrh,open = SFrh,beg + hopen

�

SFrh,end − SFrh,beg

�

+ lopen nbeg , (6.16)

SFrh,clo = SFrh,end − hclo

�

SFrh,end − SFrh,beg

�

+ lclo nend (6.17)

In case the hand is supposed to make contact, a non-zero (desired) external contact force SFFh,ext

is available (as part of the external wrench SFWh
h,ext stored within the corresponding robot pose

of the governing transition, cf. Table 5.1). Thus, we can simply extract the contact surface’s
normal from the contact force through nbeg|end = norm(Fh,ext,beg|end). The clearance, i. e., the
magnitude of the shift in normal direction, is chosen to lopen = lclo = 7cm. In order to shape

81Note that a counter-swinging arm motion allows to reduce the angular momentum around the vertical axis which
is induced by the swing leg motion. Besides certain fully-actuated humanoid robots, this strategy is typically also
followed by passive-dynamic walkers such as the ones proposed by COLLINS et al. [119].

https://youtu.be/gUNZ0AmLiWU?t=48s

6.9 Hand Motion Planner 164

the path of SFrh(t) as a smooth arc, we further shift the internal control-points along the vector
connecting SFrh,beg and SFrh,end where we choose the proportions hopen = hclo = 1/3. Figure 6.9
(right) visualizes the proposed strategy for placing the interior control-points.

Trajectory The trajectory SFrh(t) is formulated as a smooth quintic spline (C4-continuous, see
Algorithm G.1) which passes through the presented control-points and has zero velocity and
acceleration at its boundaries. Depending on the contact state at the beginning and end of
the phase, this results in a chain of either one, two, or three interconnected segments, see
Figure 6.10. While the boundary control-points are linked to tbeg and tend, we choose the
proportions τopen = τclo = 1/3 such that

topen := tbeg +τopen tpha,dur , tclo := tend −τclo tpha,dur (6.18)

define the timing of the optional interior control-points. In case of contact at the beginning
and end of the considered motion phase, this leads to a uniform partitioning into the three
sub-phases open, move, and close as shown in Figure 6.10 (bottom left).

W x

y

A→ B C→ D E→ F G→ H

rLH(t)

tbeg tend

Wrh,beg,y

Wrh,end,y

W
r h

,y
(t
)

moveA B
Contact at begin/end: No/No

tbeg tclo tend

Wrh,beg,y
Wrh,clo,y

Wrh,end,y

closemoveC D
Contact at begin/end: No/Yes

tbeg topen tclo tend

Wrh,beg,y

Wrh,open,y
Wrh,clo,y

Wrh,end,y

open move closeE F
Contact at begin/end: Yes/Yes

tbeg topen tend

Wrh,beg,y

Wrh,open,y

Wrh,end,y

open moveG H
Contact at begin/end: Yes/No

Figure 6.10: Normalized hand motion trajectory Wrh(t) describing the position of the TCP frame. The four plots
show all possible cases based on the contact state at the beginning tbeg and end tend of the phase. The trajectory is

described by a smooth (C4-continuous) quintic spline passing through either two, three, or four control-points (indicated
by dots) depending on the particular contact case. The velocity and acceleration are set to zero at the boundary
control-points while they are (in general) non-zero at the interior control-points. For a 3D visualization of the planned
hand trajectory, see the video [18 @t=5m2s].

https://youtu.be/mGlsc_revMc?t=5m2s

6.10 Head Orientation Planner 165

Discussion and Outlook The proposed method for generating SFrh(t) appears to be rather
simple. Nevertheless, by using the presented parametrization, the resulting hand motion has
proven to be effective for all multi-contact scenarios considered within this thesis. Still, the
used approach for avoiding (unintended) collisions based on the surface normal only works for
rather primitive objects such as planar walls or tables. A reasonable future extension would be
to optimize the parameters lopen, lclo, hopen, hclo, τopen, and τclo on the basis of the environment
model. This would enable interactions with more complex objects while still using a parameter-
ized (hence computational efficient) formulation. However, this extension would not be capable
of avoiding collisions with other parts of the arm (e. g. the elbow) since only the position of the
hand is known within our task-space based planning framework.

6.10 Head Orientation Planner

In stage ten of the planning pipeline, the rotation of the head, i. e., the trajectory SFsVTCP(t) de-
scribing the orientation of the VTCP frame, is generated. For simplicity, we use the same proce-
dure as for planning the upper body rotation SFsUB(t) (cf. Section 6.6). The control-quaternions

SFsVTCP – which are again extracted from the corresponding begin and end pose of the govern-
ing transition – are indeed the only difference. Note that within a robot pose (cf. Table 5.1), we
formulate the head’s orientation as a quaternion. In contrast, we directly use the joint angles
qvp and qvt within QPWTs which allows a more intuitive specification within (human readable)
input files. In order to obtain SFsVTCP from qvp and qvt, we use the relationship

SFsVTCP(SFsUB, qvp, qvt) := SFsUB ⊗
ax/ang
quat(ez , qvp)⊗

ax/ang
quat(ey , −qvt) . (6.19)

Note that the task-space vector x and the task-space velocity vector v (cf. Table 4.1) describe
the head’s rotation through qvp, qvt and q̇vp, q̇vt, respectively. Thus, samples of the quaternion
trajectory SFsVTCP(t) have to be converted before they are transmitted to the SIK module. This
task is assigned to the Stream Processor which will be described in Section 6.16.

6.11 Task-Space Selection Factor Planner

Subsequent to generating the position and orientation trajectories for the EEs, the motion gen-
erator plans the task-space selection factors ξh(t) (with h ∈ {RH, LH}) which blend the hands
between the task- and null-space. Note that the actual blending is realized by the SIK mod-
ule and has already been described in Section 4.6. The generation of ξh(t) is performed on
phase-level. Changes are only allowed within motion phases in which the corresponding hand
is subject to task-space motion (similar to the hand motion planner). We formulate ξh(t) as
a chain of three consecutive quintic polynomials with zero first- and second-order derivatives
at the boundaries of each segment resulting in a C2-continuous signal, see Figure 6.11 (top).
The control-points are set to ξh(tbeg) = ξh(tlag) = ξh,beg and ξh(tlead) = ξh(tend) = ξh,end where
ξh,beg|end are provided by the corresponding begin and end pose of the governing transition (cf.
Table 5.1). With the relationship

tlag := tbeg +τlag tpha,dur and tlead := tend −τlead tpha,dur , (6.20)

we implement a timing similar to the horizontal foot motion (cf. Figure 6.7). In case of fading
from null- to task-space (ξh: 0 → 1), we use the proportions τlag = 0 and τlead = 0.1. For
blending from task- to null-space (ξh: 1 → 0), we use the parametrization τlag = 0.1 and

6.12 Load Factor Planner 166

τlead = 0.5. Same as for the other timing parameters of the WPG, these values have been chosen
empirically based on numerous conducted simulations and real-world experiments.

The proposed scheme is applied for both hands, i. e., ξRH(t) and ξLH(t), individually. Note
that the resulting task-space selection vector ξ = [ξRH, ξLH]

T ∈ R2 does not only affect the
finally executed motion of the hands (Figure 6.11, center), but also the mass distribution of the
five-mass model (Figure 6.11, bottom) as described in Section 4.5.2.

tbeg tend

0

1

tlag tlead

ξ
h
(t
)

Blending from Null- to Task-Space

tbeg tend

0

1

tlag tlead

ξ
h
(t
)

Blending from Task- to Null-Space

tbeg tend

−0.2

−0.1

0

0.1
tlag tlead

∆Wrh,x /m
∆Wrh,y /m
∆Wrh,z /m

tbeg tend

0

0.2

0.4

0.6
tlag tlead

∆Wrh,x /m
∆Wrh,y /m
∆Wrh,z /m

tbeg tend

tlag tlead

mh
mtM

h
m

mh,beg

mt,beg

mt,end

mh,end

tbeg tend

tlag tlead

mh
mtM

h
m

mt,beg

mh,beg

mh,end

mt,end

Figure 6.11: Blending the TCP position of the hand h ∈ {RH, LH} from null- to task-space (left) and from task- to
null-space (right). Top: task-space selection factor ξh(t) as C2-continuous signal consisting of three interconnected
quintic polynomials. The first- and second-order derivatives are zero at all control-points (indicated by dots). Center:
difference vector∆Wrh(t) between the planned (output of WPG) and executed (estimation according to Section 4.5.3)
hand motion for the scenario shown in Figure 6.10 (the plots on the left side are related to the section A→ B). Bottom:
normalized hand and torso masses within the five-mass model according to Equation 4.2. Note that the total mass
remains constant (cf. Equation 4.3).

6.12 Load Factor Planner

In the next stage of the planning pipeline, the load factor signal γe(t) is generated for each
EE e ∈ {RF, LF, RH, LH}. As already explained in Footnote 57 and Section 4.6, γe(t) describes
the (planned) contact transitions for the particular EE e which is used by the SIK module in
order to detect early- or late-contact situations and blend between position- and force-control
accordingly. The compound γ= [γRF, γLF, γRH, γLH]

T ∈ R4 is called load vector [401, p. 51].

6.12 Load Factor Planner 167

The load factors are planned on sequence-level and are (almost) independently of each other.
Indeed, apart from γe ∈ [0, 1], the only constraint imposed by the SIK module is γRF + γLF = 1
which implies that there has to be at least one foot in contact (no flight phases). For switching
the load factor of an EE, we make use of the load switch phases (hence their name). In par-
ticular, we iterate over all load switch phases of the given sequence and generate two control-
points γe(tbeg) = γe,beg and γe(tend) = γe,end for each. In order to obtain a C2-continuous signal
representing a smooth contact transition, we connect consecutive control-points by a quintic
polynomial with zero first- and second-order derivatives at its boundaries. Moreover, we extend
the curve to the preceding and subsequent motion phase if possible. In particular, we use

tbeg := tpha,beg −
7

16
tpha,dur and tend := tpha,end +

7
16

tpha,dur . (6.21)

The special fraction of the load switch phase duration tpha,dur = tpha,end − tpha,beg represents a
symmetric offset which ensures that γ̇e(tpha,beg + tpha,dur/2), i. e., the “tangent” at the center of
the load switch phase, forms the linear connection from γe,beg at tpha,beg to γe,end at tpha,end, see
Figure 6.12 left. In other words, the polynomial is designed to smooth-out the “corners” of a
virtual, piecewise linear signal. In case there is no preceding or subsequent motion phase, we
simply use tbeg = tpha,beg or tend = tpha,end instead. Furthermore, the load factor planner imple-
ments the necessary logic to avoid duplicate control-points or overlapping polynomial segments
(e. g. in case a very short motion phase lies between two long load switch phases).

tbeg tpha,beg tpha,end tend

0

1

γRF
γLF

γRF + γLF

Motion Load Switch Motion

Load Factor
(stance foot switch in biped walking)

tbeg tpha,beg tpha,end tend

−50

0
WFLH,ext,y /N

Motion Load Switch Motion

External Wrench
(hand support, e. g. Figure 6.10 snapshot D)

Figure 6.12: Planned load factors of the feet for switching the stance in biped walking (left) and planned external
wrench (here: lateral force component) for an exemplary multi-contact scenario (right). The signals are formulated as
a quintic polynomial which covers the entire load switch phase and extends to the preceding and subsequent motion
phase. For best visual presentation, only the first/last 25 % of the motion phases are shown. At the control-points
(indicated by dots), the first- and second-order derivatives are zero. The tangents of the signals at the center of the
load switch phase are plotted as dashed lines.

The boundary values γe,beg and γe,end are derived from the robot pose at the beginning of
the corresponding transition. In case the EE is in contact, we check if it is subject to task-space
motion in the preceding motion phase. If it is, we set γe,beg = 0. Otherwise (or if there is no
preceding motion phase), we use γe,beg = 1. Similarly, we determine if the EE is subject to task-
space motion in the subsequent motion phase and set γe,end = 0 if it is or γe,end = 1 if it is not
(or if there is no subsequent motion phase). In case the EE is not in contact, γe,beg = γe,end = 0 is
used. In order to satisfy the aforementioned constraint on the load factors of the feet, we check
if γRF,beg = γLF,beg = 1 (e. g. static standing). If this is the case, we simply change the factors to
γRF,beg = γLF,beg = 1/2. The same applies to γRF,end and γLF,end. Note that the transition planner
presented in Section 5.4 guarantees that at least one foot is in contact with the ground such that
the invalid cases γRF,beg = γLF,beg = 0 and γRF,end = γLF,end = 0 do not occur.

6.13 External Wrench Planner 168

6.13 External Wrench Planner

Since the application of an external (multi-contact) wrench is closely related to the contact state
at the corresponding hand h ∈ {RH, LH}, it seems reasonable to design SFWh

h,ext(t) similar to
the load factor γh(t). Indeed, the signal for the external wrench is generated in the exact same
way, however, with 0 ∈ R6 and SFWh

h,ext (extracted from the robot pose at the beginning of
the corresponding transition, cf. Table 5.1) instead of 0 and 1 as possible control-point values.
Apart from this, the timing and logic (checking for contact of the hand and if it is subject to
task-space motion in the preceding/subsequent motion phase) is identical. Figure 6.12 (right)
presents the resulting signal for an exemplary scenario similar to the one shown in Figure 6.10
(load switch phase starting at snapshot D or equivalently F). While planning the external wrench
signals similar to the load factors has shown to be effective in both, simulation and real-world
experiments, one might consider to switch to a more sophisticated approach in future (e. g.
taking the surface properties and the expected deformation of the object/arm into account).

6.14 Reduced Model Torso (RMT) Planner

Since the ZMP, upper body orientation, and EE trajectories are set, we can finally generate

Wrt(t) which describes the motion of the RMT, i. e., the five-mass model’s “virtual” torso mass
mt (cf. Figure 4.7). In the following two sections, the vertical and horizontal components are
investigated separately. While planning Wrt,z(t) involves the simplified kinematic model of the
leg in order to maintain kinematic feasibility, the generation of Wrt,x |y(t) is primarily based on
the five-mass model to accomplish dynamic feasibility. As already mentioned in Section 4.5.4,
the computation of Wrt,z(t) depends on Wrt,x |y(t) and vice versa. In order to resolve this mutual
dependency, the subroutines for generating vertical and horizontal RMT motion are embedded
within an iteration featuring two cycles, see Figure 6.13. The first cycle delivers an initial
solution which is used in the second cycle to compute the final RMT trajectory.

W rt,z (t)
ξ(t), Wh

h,ext(t)
rZMP(t), sUB(t), re(t)W rSF-CoM,zrZMP(t), sUB(t), re(t)

sUB(t), r f (t), s f (t), qzfr|l(t)ξ(t), Wh
h,ext(t)

Vertical RMT Horizontal RMT

Reduced Model Torso (RMT) Planner

Motion Plan

Vertical RMT Horizontal RMT
Section 6.14.1 Section 6.14.2 Section 6.14.1 Section 6.14.2

first cycle second cycle

• without model
• piecewise quintic

• five-mass model
W rt,z (t) W rt,z (t)W rt,x |y (t)

• time step: 0.2 s
• 2D leg kinematics
• smooth quint. spl.

• five-mass model
• time step: 0.1 s

W rSF-CoM,z
(from Table 5.1) (final result) (final result)

W rt,x |y (t)

Figure 6.13: Overview of the RMT Planner generating the vertical and horizontal components of Wrt(t) through
dedicated subroutines which are embedded within an iteration to resolve their mutual dependency. The first cycle
creates an initial guess which is then refined in the second cycle. The motion plan provides the input data such as
ZMP, upper body orientation, and EE trajectories. Moreover, it stores the final RMT trajectory such that it is available
to the subsequent stages in the planning pipeline.

6.14.1 Vertical RMT Planner

Within both cycles of the iteration, the vertical RMT component Wrt,z(t) is planned on sequence-
level. In particular, we generate a sequence of control-points which are chosen such that a

6.14 Reduced Model Torso (RMT) Planner 169

certain “desired” CoM height is tracked. The desired CoM height has already been determined
by the transition planner which stored the corresponding value within the robot poses (see the
component WrSF-CoM,z in Table 5.1). Note that for gaited action types, WrSF-CoM,z includes an
(optional) automatic CoM lowering based on the step length as described in Section 5.4. In
order to obtain the desired RMT height, we make use of the five-mass model:

Wrt,z,des :=
1
mt

�

m
�

WrSF,z +WrSF-CoM,z

�

−m f

�

WrRF,z +WrLF,z

�

−mRH WrRH,z −mLH WrLH,z

�

(6.22)

where the positions of the EEs and the task-space selection vector (defines the mass distribu-
tion, cf. Equation 4.2) are extracted from the corresponding robot pose. Indeed, the vertical
RMT planner uses the five-mass model only to derive the desired RMT height from the (more
intuitive) WrSF-CoM,z. Besides, this submodule does not involve any kind of dynamics.

First Cycle Within the first cycle of the vertical RMT planner, no knowledge on the horizontal
RMT motion is available. Since this prevents us from evaluating kinematic limits based on our
simplified leg model, we choose a rather simple approach instead where we generate Wrt,z(t)
solely based on the desired RMT height. In particular, we create a control-point for every robot
pose, i. e., at the beginning/end of each transition in the motion plan. Through Equation 6.22,
we obtain the corresponding Wrt,z,des. Consecutive control-points are then connected through
a quintic polynomial with zero velocity and acceleration at its boundaries which ensures C2-
continuity. Note that since we specified the desired CoM height relative to the vertical position
of the current stance foot (WrSF-CoM,z = WrCoM,z − WrSF,z), even the initial solution for Wrt,z(t)
is capable of handling ground height changes (such as in climbing stairs) properly. However,
kinematic limits are not considered at all. The resulting initial solution for Wrt,z(t) is shown in
Figure 6.14 (dashed lines). Indeed, the initial solution is not feasible in the depicted scenario,
i. e., the robot falls due to hitting the kinematic limits of the knee joint. This motivates the
refinement of Wrt,z(t) through a more sophisticated algorithm in the second cycle.

Second Cycle Within the second cycle of the vertical RMT planner, a (preliminary) solution
for the horizontal component Wrt,x |y(t) is available. From the previous stages of the planning
pipeline, we further have access to the upper body orientation, the 6D poses of the feet (TCP
frames), and the toe joint angles. Considering our planar model describing the leg kinemat-
ics, we can use this information to find the yet unknown (joint-space) angles ϕhf, ϕkf, and ϕsf
(highlighted in orange in Figure 4.7) for a given RMT height. For this purpose, we project all
3D quantities to an approximation of the current sagittal plane which is defined by the x-axis
of the current upper body frame UB and the z-axis of the world frame W. Note that this also
includes a projection of the toe joint angles. While one can easily derive an analytic solution to
this inverse kinematics problem (see HILDEBRANDT et al. [8]), it is much more difficult to find an
analytic expression for the lower/upper bound of Wrt,z which respects the individual joint limits
for ϕhf, ϕkf, and ϕsf. For the sake of simplicity, an iterative algorithm was preferred instead to
determine the vertical RMT boundaries. In a first attempt, several gradient-based optimization
methods have been tested. Due to strong nonlinearities, these algorithms became easily stuck in
local optima so that a sampling-based approach based on the equations provided in Appendix E
was used in the end to find the global optima. Here we exploit the fact that ϕhf and ϕkf are
implicitly given through ϕsf (see Equations E.3 and E.4), hence, only ϕsf has to be sampled
which is of moderate cost. After evaluating the minimum and maximum RMT heights for both
legs separately, they are combined to the “total” lower/upper bound respecting the kinematic
limits of both legs simultaneously. The resulting combined boundaries for traversing a platform
are shown in Figure 6.14 for two cases. Case I describes a walking pattern where every step is
subject to full contact and the robot does not adapt its toe joint motion to the ground height
change (disabled second term in Equation 6.13). This leads to tight bounds for stepping up and

6.14 Reduced Model Torso (RMT) Planner 170

fir
st

w
al

l

se
co

nd
w

al
l

fir
st

w
al

l

se
co

nd
w

al
l

A B
W x

z

C D E F G H
I J K L

Case I: Without Toes Case II: With Toes

0 1 2 3 4 5 6 7 8 9
1

1.1

1.2

1.3

t / s

lower/upper boundary
1st cycle solution (desired)

2nd cycle solution (final)

T1 T2

A
T3

B
T4

C
T5 T6

D
T7

E
T8

F
T9

in between
control-points

limitation of
acceleration overlapping

boundaries

C
as

e
I:

W
it

ho
u

t
To

es

W
r t

,z
(t
)/

m

0 1 2 3 4 5 6 7 8 9
1

1.1

1.2

1.3

t / s

lower/upper boundary
1st cycle solution (desired)

2nd cycle solution (final)

T1 T2

G
T3

H
T4

I
T5 T6

J
T7

K
T8

L
T9

C
as

e
II

:W
it

h
To

es

W
r t

,z
(t
)/

m

Figure 6.14: Vertical component of the RMT trajectory Wrt(t) for a multi-contact scenario similar to [20 @t=1m40s]
(stepping up and down platform of 12.5 cm height). The plots show Wrt,z(t) for a walking pattern without using toes
(Case I; hits predicted kinematic limits) and with using toes (Case II; partial contact at snapshot H and tiptoe contact at
snapshot K). The lower/upper boundary is derived from the simplified leg kinematics model shown in Figure 4.7. The
time axis is partitioned to highlight the transitions T1 to T9 of the sequence. The 1st cycle solution represents a chain
of quintic polynomials (one for each transition) with zero velocity and acceleration at the segment’s boundaries. The
2nd cycle solution is described by a C4-continuous quintic spline with uniformly distributed control-points (∆t ≈ 0.1 s)
and zero velocity and acceleration at the beginning and end of the sequence.

even overlapping limits for stepping down the platform. In Case II, partial contact is made for
stepping up while tiptoe contact is triggered for stepping down (as it would be planned by the
autonomous contact planner presented in Section 5.5). In combination with the adaptive toe
joint trajectory (enabled second term in Equation 6.13), this clearly enlarges the feasible domain

https://youtu.be/gUNZ0AmLiWU?t=1m40s

6.14 Reduced Model Torso (RMT) Planner 171

of Wrt,z and eliminates overlaps entirely.
In contrast to the first cycle, the control-points of the final trajectory Wrt,z(t) are distributed

uniformly across the entire sequence using a constant time step size of ∆t ≈ 0.1 s. For each time
step, the corresponding control-point is chosen to track the desired RMT height from the first
cycle. In particular, we implement a first-order low-pass filter82 which takes the series of desired
vertical RMT positions (sampled at the time steps) as input. The output of the filter is projected
to the kinematically feasible domain where we apply an additional (constant) safety margin
of 5 mm to the combined lower/upper bound of the RMT height. Note that for challenging
maneuvers, the boundaries might overlap (cf. Case I at t = 6.6 s in Figure 6.14). Although
overlapping boundaries indicate that the planned motion is not feasible in theory, it might still
be executable in practice. This is because the proposed kinematic model of the leg is conservative
in neglecting several DoF (especially the joint ba). In case of an overlap, the control-point is set
to the mean value of the minimum and maximum RMT height which is meant to minimizes the
distance to the “real” limits. Since vertical RMT boundaries are evaluated and checked only at
the control-points, it is possible that kinematic limits are hit in between (cf. Case I at t = 2.6 s in
Figure 6.14). Because the chosen time step size ∆t is small, (theoretically) infeasible sections of

Wrt,z(t) are short and thus neglected. As a post-processing step, the control-points are modified
such that the vertical acceleration of the RMT is limited to

�

�

W r̈t,z(t)
�

� ≤ g/2. For rapid changes
of the projected RMT height (cf. Case I at t = 2.9 s in Figure 6.14), this prevents the robot from
loosing contact with the ground (W r̈CoM,z(t) < g). The resulting sequence of control-points is
finally interpolated by a C4-continuous quintic spline (see Algorithm G.1) with zero velocity and
acceleration at the beginning and end.

Discussion Although the simplified model of the leg is almost identical to the previous one
proposed by HILDEBRANDT et al. in [8], the vertical RMT planner presented within this the-
sis uses different approaches for both, evaluating the kinematic limits and using them to plan
a feasible trajectory Wrt,z(t). Based on the solution of NISHIWAKI and KAGAMI in [325], the
method presented in [8] assumes for example a fully stretched leg, i. e., ϕkf = 0 for estimating
the maximum RMT height, which is not exact in general. In contrast, the vertical RMT planner
proposed within this thesis evaluates the full kinematic chain of the simplified leg model taking
the (preliminary) solution of the horizontal component Wrt,x |y(t) into account. Moreover, mov-
ing from the (comparatively expensive) optimization suggested in [8] to a simple “projection”
to the boundaries (in combination with low-pass filtering of the desired height and limitation
of the vertical acceleration) not only reduces the computational cost significantly, but also leads
to a smoother trajectory in “unproblematic” regions (compare for example Transition 4 and 5
in Figure 6.14 with the corresponding section of Figure 10 in [8]). The video [23 @t=2m34s]
gives a qualitative comparison of the previous solution (from [8]) and the new approach as
presented by SEIWALD et al. in [3]. The most recognizable difference is the reduced arm motion
(non multi-contact scenario) which indicates that it is easier for the SIK module to track the
planned CoM trajectory (less null-space action is required). From a quantitative point of view,
the maximum upper body inclination error could be reduced by more than 40 % while the kine-
matic reserves, i. e., the minimum distance to the joint limits, could be increased by 54 % for the
knee joint kfr|l and by 222 % for the ankle joint sfr|l (see [3] for details). Note that [3] described a
preliminary version of the WPG which does not include all extensions presented within this the-
sis. Since the main difference lies in the usage of the toes, the vertical RMT trajectory from [3] is
(roughly) equivalent to Case I in Figure 6.14. With the most recent extensions proposed in this
thesis, the overall robustness and stability as well as the kinematic reserves during challenging
maneuvers have been further improved (see Case II in Figure 6.14).

82The amplification and time constant of the filter are chosen to one and 25 % of the duration of the very last
transition in the sequence (typically 0.8 s/4= 0.2 s), respectively. This ensures that the output of the filter comes very
close to the target value at the end of the sequence, i. e., at the static idle pose.

https://youtu.be/piQm_oTYXIc?t=2m34s

6.14 Reduced Model Torso (RMT) Planner 172

6.14.2 Horizontal RMT Planner

The proposed method for generating Wrt,x |y(t) represents an extension of the spline collocation
method of BUSCHMANN et al. [98] which was previously used on LOLA. Note that the method of
BUSCHMANN et al. itself represents an application of the generic collocation method for solving
two-point BVPs with PP functions originally introduced by RUSSELL and SHAMPINE in [362].

The main strategy of the horizontal RMT planner is to combine the EoM of the five-mass
model (see Figure 4.7 and Appendix F) with the relations between the ZMP and the contact
wrench of the foot-ground interface (see Section 4.5.4) to obtain a decoupled pair of second-
order linear ODEs describing the motion of Wrt,x(t) and Wrt,y(t) separately. In combination with
a set of two-point BCs reflecting the current and target state of the robot (up to the accelera-
tion level – hence over-determined), this leads to a decoupled pair of second-order linear BVPs.
Since the BVPs are over-determined, an exact solution does not exist for inconsistent BCs (which
represents the regular case in our application). However, we can still try to find a “reasonable”
approximation through spline collocation. In particular, we approximate the solution by a spline
which satisfies the underlying ODE at a user-defined set of so-called collocation sites while si-
multaneously fulfilling the BCs (see Figure G.2). The particular spline collocation method used
in the following has been previously published by SEIWALD and RIXEN in the article [2] which
has been integrated into this dissertation in Appendix G. The resulting collocation algorithm is
summarized in Algorithm G.2. Note that the source code of the reference implementation which
was used to create the results presented in this thesis has been published as part83 of Broccoli.

For generating the horizontal RMT components Wrt,x |y(t), the same algorithm is executed
within both cycles of the iteration shown in Figure 6.13. The only difference is the time step
size ∆t determining the distance between collocation sites which is set to ∆t ≈ 0.2 s for the first
cycle and ∆t ≈ 0.1 s for the second cycle. Doubling the time step size for the first cycle leads to a
significant speedup while still providing a sufficiently accurate initial solution to be used by the
second cycle of the vertical RMT planner. Furthermore, the proposed horizontal RMT planner
allows to choose between two collocation variants (cf. Algorithm G.2):

Cubic Spline Collocation: similar (but not exactly the same) to the previous method by
BUSCHMANN et al. [98]. Requires two virtual control-points in order to satisfy BCs up to
the second-order time derivatives. The resulting spline is C2-continuous.

Quintic Spline Collocation: extension developed by the author of this thesis which was
used to produce the results presented in this document. Satisfies the full set of BCs by
construction (no virtual control-points needed). The resulting spline is C4-continuous.

While both methods are capable of generating a dynamically feasible horizontal RMT motion,
the author of this thesis highly recommends to use the quintic variant since it makes the incor-
poration of BCs easier. Furthermore, it is more efficient since it achieves a higher approximation
quality (measured by the residual of the ODE) for a certain given time budget (cf. Figure G.9).

Problem Formulation In order to setup the decoupled pair of second-order linear BVPs de-
scribing the horizontal RMT motion Wrt,x |y(t), we use the relation between the ZMP and the
contact wrench in the foot-ground interface (cf. Equation 4.9)

WT f ,cont =





WT f ,cont,x

WT f ,cont,y

WT f ,cont,z



=





WrZMP,y WF f ,cont,z −WrZMP,z WF f ,cont,y

WrZMP,z WF f ,cont,x −WrZMP,x WF f ,cont,z

WTZMP,z +WrZMP,x WF f ,cont,y −WrZMP,y WF f ,cont,x



 , (6.23)

83See the classes Cubic|QuinticSplineCollocator of the module ode of Broccoli.

6.14 Reduced Model Torso (RMT) Planner 173

the EoM of the five-mass model related to the change of linear momentum (cf. Equation F.3)

WFf ,cont = mt W r̈t+ ṁt W ṙt+WC1 =





WF f ,cont,x

WF f ,cont,y

WF f ,cont,z



=





mt W r̈t,x + ṁt W ṙt,x +WC1,x
mt W r̈t,y + ṁt W ṙt,y +WC1,y
mt W r̈t,z + ṁt W ṙt,z +WC1,z



 , and (6.24)

the EoM of the five-mass model related to the change of angular momentum (cf. Equation F.5)

WT f ,cont = mt Wrt ×
�

W r̈t −Wg
�

+ ṁt Wrt ×W ṙt +WC2 ,




WT f ,cont,x

WT f ,cont,y

WT f ,cont,z



=





mt Wrt,y

�

W r̈t,z + g
�

−mt Wrt,z W r̈t,y + ṁt Wrt,y W ṙt,z − ṁt Wrt,z W ṙt,y +WC2,x

mt Wrt,z W r̈t,x −mt Wrt,x

�

W r̈t,z + g
�

+ ṁt Wrt,z W ṙt,x − ṁt Wrt,x W ṙt,z +WC2,y
mt Wrt,x W r̈t,y −mt Wrt,y W r̈t,x + ṁt Wrt,x W ṙt,y − ṁt Wrt,y W ṙt,x +WC2,z



 .

(6.25)

Note that C1, C2 ∈ R
3 are auxiliary vectors defined in the Equations F.3 and F.6 which repre-

sent compounds of known quantities (e. g. EE dynamics, upper body rotation, gravitation, etc.).
Moreover, C1 and C2 contain the (known) external wrenches Wh

h,ext(t) such that multi-contact
effects are properly incorporated, see Appendix F for details. Inserting WF f ,cont,x and WF f ,cont,z
from Equation 6.24 and WT f ,cont,y from Equation 6.25 into Equation 6.23 (second row) gives

0=WrZMP,z

WFf ,cont,x
︷ ︸︸ ︷

�

mt W r̈t,x + ṁt W ṙt,x +WC1,x

�

−WrZMP,x

WFf ,cont,z
︷ ︸︸ ︷

�

mt W r̈t,z + ṁt W ṙt,z +WC1,z

�

−mt Wrt,z W r̈t,x +mt Wrt,x

�

W r̈t,z + g
�

− ṁt Wrt,z W ṙt,x + ṁt Wrt,x W ṙt,z −WC2,y .

Rearrangement of the terms leads to the second-order linear time-variant ODE describing the
RMT motion in x-direction of the world frame

αx(t)W r̈t,x(t) + βx(t)W ṙt,x(t) + γx(t)Wrt,x(t) = τx(t) (6.26)

where the time-dependent (but known) coefficients and right-hand side are given by

αx(t) := mt

�

WrZMP,z −Wrt,z

�

,

βx(t) := ṁt

�

WrZMP,z −Wrt,z

�

,

γx(t) := mt

�

W r̈t,z + g
�

+ ṁt W ṙt,z ,

τx(t) := WC2,y −WrZMP,zWC1,x +WrZMP,x

�

mt W r̈t,z + ṁt W ṙt,z +WC1,z

�

.

(6.27)

For deriving the y-component, we follow the same scheme: inserting WF f ,cont,y and WF f ,cont,z
from Equation 6.24 and WT f ,cont,x from Equation 6.25 into Equation 6.23 (first row) gives

0=WrZMP,y

WFf ,cont,z
︷ ︸︸ ︷

�

mt W r̈t,z + ṁt W ṙt,z +WC1,z

�

−WrZMP,z

WFf ,cont,y
︷ ︸︸ ︷

�

mt W r̈t,y + ṁt W ṙt,y +WC1,y

�

−mt Wrt,y

�

W r̈t,z + g
�

+mt Wrt,z W r̈t,y − ṁt Wrt,y W ṙt,z + ṁt Wrt,z W ṙt,y −WC2,x .

Rearrangement of the terms leads to the second-order linear time-variant ODE describing the
RMT motion in y-direction of the world frame

αy(t)W r̈t,y(t) + βy(t)W ṙt,y(t) + γy(t)Wrt,y(t) = τy(t) (6.28)

where the time-dependent (but known) coefficients and right-hand side are given by

αy(t) := mt

�

Wrt,z −WrZMP,z

�

= −αx(t) ,

βy(t) := ṁt

�

Wrt,z −WrZMP,z

�

= −βx(t) ,

γy(t) := −mt

�

W r̈t,z + g
�

− ṁt W ṙt,z = −γx(t) ,

τy(t) := WC2,x +WrZMP,z WC1,y −WrZMP,y

�

mt W r̈t,z + ṁt W ṙt,z +WC1,z

�

.

(6.29)

6.14 Reduced Model Torso (RMT) Planner 174

Note that the pair of ODEs is indeed decoupled, i. e., Equations 6.26 and 6.28 are independent
of each other. In order to complete the definition of the BVPs, we need to specify the BCs. Since
the horizontal RMT motion is planned on sequence-level, the BCs are related to the begin pose
of the very first and the end pose of the very last transition in the currently investigated motion
plan sequence. Since every (new) sequence starts and ends with the robot being in the static idle
pose defined in Section 4.5.2, we can use the expressions from Appendix F (and in particular
Equation F.14) to explicitly compute the corresponding Wrt,x and Wrt,y while W ṙt,x |y = W r̈t,x |y = 0
(static case) such that the splines match their ODEs at the boundaries. Without external contact
wrenches at the hands, this means that the horizontal position of the CoM and ZMP coincide
(cf. Equation F.16). In the case of dynamic replanning, the planning horizon does not start in
the static idle pose but rather in an arbitrary in-motion configuration. In this case, we simply
obtain the BCs (Wrt,x |y , W ṙt,x |y , and W r̈t,x |y) at the start by evaluating the already planned RMT
trajectory at the end of the last unchanged transition.

Considerations on Continuity Same as for most other signals sent to the SIK module, we
require the CoM (and hence RMT) trajectory to be C2-continuous. With regard to C2-continuity
of Wrt,x |y(t), this means that W r̈t,x and W r̈t,y must be C0-continuous, i. e., in Equations 6.26
and 6.28 all ratios βx |y/αx |y , γx |y/αx |y , and τx |y/αx |y must be C0-continuous. Note that 1/x
is only C∞-continuous for x ̸= 0, thus, we require mt ̸= 0 (guaranteed by parametrization of
five-mass model) and Wrt,z ̸= WrZMP,z (guaranteed by upright walking, i. e., Wrt,z > WrZMP,z) such
that αx |y ̸= 0 and therefore 1/αx |y is C0-continuous if αx |y is C0-continuous. From demanding
C0-continuity of αx |y , βx |y , γx |y , and τx |y , we can derive the following constraints:

• re(t) and Wrt,z(t) need to be C2-continuous,
• ξ(t) needs to be C1-continuous, and
• rZMP(t), ω̇UB(t), and Wh

h,ext(t) need to be C0-continuous.

Although the current implementation of the motion generator easily satisfies these requirements,
they still have to be kept in mind whenever modifications of the WPG are to be made in future.
Also note that these considerations are related to the “real” (exact) solution of the ODEs. In
contrast, our spline collocation algorithm will always, i. e., independent of the continuity of
the input signals, return C2 (cubic) or C4 (quintic) continuous approximations. However, these
approximations may become arbitrarily bad in case the aforementioned constraints are violated.

Spline Collocation The BVPs specified through Equations 6.26 to 6.29 are finally solved by
spline collocation as described in Appendix G (cf. Algorithm G.2). Note that the Equations 6.26
and 6.28 already show the structure that is expected by our spline collocation algorithm (cf.
Equation G.1) such that the coefficients αx |y , βx |y , γx |y , and the right hand side τx |y can be
directly inserted without further transformations. The resulting horizontal RMT trajectory is
shown in Figure 6.15 (top) for the same scenario as in Figure 6.14 (Case II).

In order to benchmark quintic against cubic spline collocation, we compare their approxima-
tion quality. However, since the BVPs are overdetermined and have inconsistent BCs, an exact
solution does not exist. Consequently, it is not possible to compute the “error” relative to a ref-
erence solution. However, we can still quantify the violation of the underlying ODEs (the BCs
are satisfied in both cases). For this purpose, we introduce the residuals Rx(t) and R y(t)

Rx |y(t) := αx |y(t)W r̈t,x |y(t) + βx |y(t)W ṙt,x |y(t) + γx |y(t)Wrt,x |y(t)−τx |y(t) ∈ R (6.30)

and their Root Mean Square (RMS)

RMS(Rx |y) :=

√

√

√

√

1
tend − tbeg

∫ tend

tbeg

�

Rx |y(t)
�2

dt ∈ R . (6.31)

6.14 Reduced Model Torso (RMT) Planner 175

W x

y

A B

rZMP(t)

platform

rRMT(t) (quintic)
rCoM(t) (quintic)

0 1 2 3 4 5 6 7 8 9
−40

−20

0

20

40

t / s

CRx /Nm (cubic)

QRx /Nm (quintic)

T1 T2 T3 T4 T5 T6 T7 T8 T9

A B

3.6 3.8 4 4.2 4.4 4.6 4.8 5

−20

−10

0

10

20

t / s

CRx /Nm (cubic)

QRx /Nm (quintic)

Transition 4 Transition 5A B

Figure 6.15: Generation of horizontal components of the RMT trajectory Wrt(t) for a multi-contact scenario similar to
[20 @t=1m40s] (identical to Case II of Figure 6.14). Top: top-down view showing the ZMP (“input”), RMT (“output”),
and CoM (subsequent stage) trajectories. The RMT and CoM trajectories are plotted for the case of quintic spline
collocation. The corresponding trajectories obtained by cubic spline collocation are very similar and therefore not
explicitly plotted. Center: residuals CRx(t) (cubic) and QRx(t) (quintic) over the entire sequence. The time axis is
partitioned to highlight the transitions T1 to T9 of the sequence. Bottom: enlarged plot of the same residuals for
the time span between snapshot A and B (equivalent to snapshots I and J in Figure 6.14). The vertical grid lines
highlight the time step size used during collocation (second cycle: ∆t ≈ 0.1 s). Note that the residuals become zero
at the collocation sites (black dots). The residuals are only shown for the x -direction, i. e., with regard to collocation of

Wrt,x(t). The corresponding residuals in y-direction are omitted since they show similar characteristics.

https://youtu.be/gUNZ0AmLiWU?t=1m40s

6.15 Center of Mass (CoM) Planner 176

For the considered example scenario, the residual Rx(t) is plotted in Figure 6.15 center. The
left hand subscripts C and Q indicate the corresponding collocation method. Below, a further
plot provides a better view of the residuals for the particular time span between snapshot A and
B. For the same distribution of collocation sites, the quintic variant allows to reduce RMS(Rx)
by 52 % and RMS(R y) by 40 % in this time span. For both collocation variants, the residuals
are rather high in the vicinity of the spline’s boundaries which can be attributed to the (forced)
satisfaction of the BCs. However, Rx |y(t) become zero at the beginning and end of the spline
since we specified the BCs such that they satisfy the underlying ODEs (static idle pose).

Parallelization Since the presented BVPs are decoupled, the horizontal RMT planner can be
parallelized by triggering the collocation algorithm for the x- and y-component in two separated
threads. However, the WPG proposed in this thesis goes even a step further: since the same dis-
tribution of collocation sites is used for Wrt,x(t) and Wrt,y(t), a significant amount of code of the
collocation algorithm needs to be run only once (see Figure G.3 right). In particular, this applies
to solving the involved (block-)tridiagonal Linear System of Equations (LSE) and computing the
spline gradients. The remaining substeps of the algorithm, i. e., solving the (dense) collocation
LSE and converting the result to a corresponding trajectory, are run in parallel (Thread 6 in
Figure 4.11 and an additionally spawned thread with the same real-time priority). While the
described strategy may seem simple, special care is necessary during implementation such that
the overhead introduced by synchronization and additional context switches does not defeat the
performance gain through parallel execution.

Discussion The horizontal RMT planner combines most of the signals created in the previous
stages of the planning pipeline (ZMP, upper body and EE motion, external contact wrenches,
etc.) with the five-mass model to generate a dynamically feasible motion. A notable advantage
of the proposed method is that there are no restrictions to the shape of rZMP(t) or Wrt,z(t) (apart
from the aforementioned requirements with regard to continuity). In contrast to the previous
approach by BUSCHMANN et al. [98, 100], the new planner is based on a five-mass model which
features hand masses, a dynamic mass distribution, rotational inertia of the upper body, and
external contact wrenches to incorporate multi-contact effects. Moreover, the use of quintic
instead of cubic spline collocation removes the necessity of manually tuned parameters84 and
simultaneously improves the approximation quality.

Currently, the collocation sites are uniformly distributed over the entire planning horizon. In
Appendix G.2.5 it is shown, that this choice is optimal with regard to numerical stability of the
involved (block-)tridiagonal LSE (minimum pivotal growth). However, it might be beneficial
to switch from smoothest spline collocation to orthogonal spline collocation which means to
sacrifice higher-order continuity (C4-continuity is not required by our application) and instead
use more collocation sites e. g. placed at the Gaussian points of each segment (see also the brief
literature review on spline collocation given in Appendix G.1).

6.15 Center of Mass (CoM) Planner

The CoM trajectory rCoM(t) is finally derived from the masses me(t) and mt(t) and their corre-
sponding positions re(t) and rt(t). An explicit formula accounting for the dynamic mass distri-
bution is given in Equation F.8. Note that both, the masses and their positions, are described by
polynomial functions of degree 5, thus, their product is given by a polynomial function of degree

84In order to satisfy the full set of BCs during cubic spline collocation, BUSCHMANN et al. proposed in [98] to
introduce virtual control-points (similar to how it is done in Appendix G.2.8) and additionally modify the right hand
side of the ODEs by manually tuned trapezoidal shape functions.

6.16 Evaluation and Stream Processor 177

10. However, in order to simplify the implementation, we formulate the planned CoM trajectory
as a spline of piecewise quintic polynomial segments. For each control-point (or collocation
site) of the input trajectories, we create a corresponding control-point in the CoM trajectory at
which Equation F.8 is evaluated to obtain the “exact” CoM position rCoM, velocity ṙCoM, and
acceleration r̈CoM according to the five-mass model. Each pair of consecutive control-points is
then connected by a quintic polynomial which is uniquely defined by rCoM, ṙCoM, and r̈CoM at its
boundaries. The resulting CoM trajectory is C2-continuous and approximates the “exact” solu-
tion from Equation F.8 very well: for the scenario shown in Figure 6.15, the maximum errors in
position, velocity, and acceleration are identified as 1.2µm, 50µm/s, and 4 mm/s2, respectively.

6.16 Evaluation and Stream Processor

The CoM planner represents the very last stage of the planning pipeline. Once it finishes, the
motion plan holding the analytic description of the primary WPG signals is complete. In order
to extract the current sample, i. e., the snapshot of the plan which corresponds to the current
point in time, we have to evaluate these analytic expressions. Thanks to the efficient implemen-
tation of polynomial and quaternion trajectories in Broccoli, the total runtime of creating a plan
snapshot is less than 14 µs (applies to all scenarios considered within this thesis). Note that this
includes the evaluation of 66 polynomial (degree 5) and 6 quaternion (QBSpline) trajectories
up to the second-order time derivatives (includes signals for experimental purposes).

The continuous stream of plan snapshots is passed to the Stream Processor which performs
certain post-processing steps for each sample. Most importantly, it computes the task-space
vector x and the task-space velocity vector v as specified in Table 4.1. Most quantities can
be directly extracted from the plan snapshot and may only require a FoR transformation. An
exception are the pan and tilt angles defining the orientation of the head (frame VTCP)

rotMat
�

SF s̄UB ⊗ SFsVTCP

�

= UBAVTCP

�

qvp, qvt

�

= Az

�

qvp

�

Ay

�

−qvt

�

(cf. Equation A.2) (6.32)

for which we can find

qvp = atan2
�

eT
y UBAVTCP ex , eT

x UBAVTCP ex

�

and qvt = asin
�

eT
z UBAVTCP ex

�

. (6.33)

The joint velocities q̇vp and q̇vt which are required for v can be easily derived by applying the
chain rule. Once x and v have been computed, they are embedded into the data container
specified in Table 4.5 which represents the input to the SIK module. Besides the task-space
selection vector ξ, the load vector γ, and the external (multi-contact) wrenches WWh

h,ext which
are directly extracted from the plan snapshot, the container also includes the total (feet and
hands) contact wrench WCoM

cont := [FT
cont, TT

cont]
T acting on the robot at the CoM which is given by

Fcont = Ff ,cont +
∑

h

ξh Fh,ext , (6.34)

Tcont = T f ,cont − rCoM × Ff ,cont +
∑

h

ξh

�

Th,ext +
�

rh − rCoM

�

× Fh,ext

�

(6.35)

where Ff ,cont and T f ,cont are obtained from Equations F.3 and F.5, respectively. The finished data
container is then transmitted to the SIK module (see Figure 4.11).

6.17 Results and Discussion

Within this chapter, LOLA’s new motion generation system for planning multi-contact locomo-
tion has been presented. While the generation of most trajectories is based on geometrically

6.17 Results and Discussion 178

or empirically motivated heuristics, the core component – the RMT planner – uses a more so-
phisticated approach based on a simplified representation of the robot to guarantee kinematic
and dynamic feasibility of the generated task-space motion. For the whole motion generator, a
strong focus has been set on efficiency of the involved algorithms such that it meets the hard
real-time requirements of our application. The following paragraphs discuss kinematic and dy-
namic feasibility as well as runtime characteristics in more detail.

Kinematic and Dynamic Feasibility While the reduced models of the robot may seem to be
rather coarse, they have proven to approximate the characteristic behavior of the robot during
biped gait (including multi-contact scenarios) quite well. This is confirmed by the fact that
in case of a “valid” motion plan, i. e., if all parameters of the planning pipeline remain within
their designated limits and no warnings are emitted (e. g. due to overlapping boundaries of the
vertical RMT position), the planned motion can be successfully executed within simulation and
experiments in most cases. Indeed, the most common error source in real-world experiments
are misplaced contacts due to an imprecise environment model (low accuracy of CV system) or
an outdated localization (slippage in foot-ground interface).

With regard to kinematic feasibility, we currently only consider the lower body of the robot.
Although the reachability of contact points for the hands is already (roughly) checked by the
contact planner, it should be considered to integrate an explicit kinematic model of the arm
as a potential future extension of the WPG. In particular, a prediction of the joint veloci-
ties/accelerations seems to be useful, since these are currently prone to hit their corresponding
limits in certain multi-contact scenarios (primarily affects the joints afr|l and arr|l).

Dynamic feasibility is indirectly checked through combining the multi-body dynamics of the
five-mass model with the ZMP concept. Considering external contact wrenches in the EoM
allows to properly account for complex dynamic effects in multi-contact scenarios. With the
proposed strategy for motion generation, additional hand support primarily affects the hori-
zontal RMT (and hence CoM) position. This becomes clearly visible in multi-contact balancing
scenarios such as those shown in the video [18 @t=6m5s]. An important assumption of the pre-
sented multi-contact planning approach is that the contact force controller of the SIK module is
capable of tracking the reference trajectories for the external wrenches. While this holds true
for (quasi-static) balancing scenarios, the tracking error becomes much worse for short periods
of contact. In fact, for walking at very high speeds, additional hand support tends to degrade
the overall robustness in real-world experiments.

Runtime Analysis The new motion generation system not only extends the capabilities of
LOLA, but also comes with a significantly reduced execution time (≈ −90 %, [3]). Due to the
rather coarse modeling of the robot, the proposed pipeline is also significantly faster than other
recent motion generation systems capable of planning multi-contact locomotion (see for exam-
ple KUMAGAI et al. [262]). In Table 6.1, a detailed runtime analysis of the motion generator is
presented. Note that the plan evaluation and stream processor (cf. Section 6.16) are executed
within the main WPG loop (Thread 5, cf. Figure 4.11), thus, their runtimes are presented sepa-
rately (last two rows in table). As described in Footnote 72, all runtimes are measured within a
single-threaded simulation. Consequently, parallel execution of the horizontal RMT planner as
described in Section 6.14.2 is disabled. Thus, execution on the real-hardware benefits from an
additional acceleration (performance gain depends on the duration of the planning horizon).

Besides the overall efficiency, another important property of the proposed motion generator
is the quite deterministic runtime since no large-scale recursions or optimizations are involved.
This makes the planning time predictable (mainly depends on the total count of transitions)
which is in particular relevant for dynamic replanning. Finally, it has to be highlighted that in
case of fully-autonomous locomotion, the total runtime of the motion generator is almost neg-
ligible when compared to the contact planner (see Table 6.1). However, for semi-autonomous

https://youtu.be/mGlsc_revMc?t=6m5s

6.17 Results and Discussion 179

Table 6.1: Runtime analysis of the motion generation pipeline (cf. Figure 4.11) for multiple example scenarios. The
scenario Right Table is omitted since its runtime profile is almost identical to the scenario Right Wall. The individual
stages of the motion generation pipeline are sorted in the order of their execution and grouped according to Fig-
ure 4.10. From top to bottom: general parameters describing the scenario; phase planner (cf. Section 6.3); SA/ZMP
planning (orange, cf. Sections 6.4 and 6.5); UB/EE planning (green, Sections 6.6 to 6.13); RMT planner (yellow, Sec-
tion 6.14); CoM planner (cf. Section 6.15); overall results (blue) of the contact planning and motion generation (bold)
process; plan evaluation and stream processor (cf. Section 6.16). Runtimes are determined following to procedure
described in Footnote 72.

Parameter

Scenario
Pl

at
fo

rm
[1

8
@

t=
5m

51
s]

R
ig

ht
W

al
l

[1
8

@
t=

6m
46

s]

C
or

ri
do

r
[1

8
@

t=
7m

31
s]

O
bs

ta
cl

es
[1

8
@

t=
7m

54
s]

R
am

ps
[1

8
@

t=
8m

27
s]

St
ai

rs
–

Fu
ll

[1
8

@
t=

8m
53

s]

St
ai

rs
–

Pa
rt

ia
l

[1
8

@
t=

9m
20

s]

Tr
ap

[1
8

@
t=

9m
49

s]

transition count 12 9 10 22 13 13 13 26
involves multi-contact yes yes yes no no no no no
phase planner/µs 22.6 18.7 20.1 36.6 23.9 23.8 25.4 41.3
SA planner/µs 24.3 20.3 20.6 43.5 26.4 26.7 28.4 48.3
ZMP-xy planner/µs 40.7 33.3 36.4 76.4 41.1 43.8 45.2 84.7
ZMP-z planner/µs 3.5 3.0 3.1 5.4 3.5 3.4 3.7 5.4
∑

SA/ZMP planner/µs 68.6 56.6 60.1 125.2 71.0 73.9 77.3 138.3
UB orientation/µs 7.9 6.9 6.8 12.4 7.0 7.3 8.1 13.4
foot motion/µs 66.3 55.9 59.5 106.1 66.0 67.7 69.9 118.1
toe motion/µs 16.8 14.8 16.3 26.8 16.4 16.8 17.0 28.2
hand motion/µs 22.6 19.9 23.3 33.3 20.4 20.0 20.6 38.5
head orientation/µs 10.3 9.8 10.1 18.6 10.9 10.9 11.0 21.5
task-sp. sel. factor/µs 16.1 12.6 14.4 27.3 16.2 16.1 16.0 31.5
load factor/µs 23.9 19.1 20.5 40.7 24.5 24.5 27.3 49.1
external wrench/µs 103.4 76.0 85.6 200.1 110.9 110.7 136.7 239.4
∑

UB/EE planner/µs 267.1 215.0 236.5 465.4 272.3 274.0 306.6 539.6
RMT-z 1st cycle/µs 12.5 9.6 10.6 21.0 13.1 13.0 13.8 21.1
RMT-xy 1st cycle/µs 496.7 310.4 348.0 948.9 488.0 570.1 630.6 1,127.1
RMT-z 2nd cycle/µs 582.2 417.9 444.6 845.0 578.7 625.3 606.3 923.2
RMT-xy 2nd cycle/µs 1,408.3 781.3 898.1 3,270.1 1,443.5 1,670.4 1,810.4 4,033.1
∑

RMT planner/µs 2,499.7 1,519.2 1,701.4 5,084.8 2,523.4 2,878.9 3,061.1 6,104.5
CoM planner/µs 120.0 86.1 94.9 178.4 115.5 121.0 119.5 200.5
contact planner/ms 639.0 1,337.0 985.0 733.3 1,044.9 517.6 7,225.8 974.0
motion generator/ms 3.0 1.9 2.1 5.9 3.0 3.4 3.6 7.0
total runtime/ s 0.642 1.339 0.987 0.739 1.048 0.521 7.229 0.981
executed motion/ s 12.3 8.7 9.5 18.7 12.3 13.5 13.1 21.1
plan evaluation/µs 11.7 11.3 11.4 12.8 11.7 11.7 11.7 13.2
stream processor/µs 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

locomotion scenarios such as teleoperated walking, the total runtime of the WPG is primarily
determined by the motion generator. Thus, a low runtime of the motion generator allows a high
update rate for dynamic replanning which in turn reduces the delay between a change in the
user-input (e. g. data stream from joystick) and the robot’s reaction.

https://youtu.be/mGlsc_revMc?t=5m51s
https://youtu.be/mGlsc_revMc?t=6m46s
https://youtu.be/mGlsc_revMc?t=7m31s
https://youtu.be/mGlsc_revMc?t=7m54s
https://youtu.be/mGlsc_revMc?t=8m27s
https://youtu.be/mGlsc_revMc?t=8m53s
https://youtu.be/mGlsc_revMc?t=9m20s
https://youtu.be/mGlsc_revMc?t=9m49s

Chapter 7

Software – Part D: Ecosystem
Parts of this chapter have already
been published in [15, 16].

This chapter describes the software ecosystem which is used for developing, testing, and analyz-
ing components of LOLA’s locomotion system. While the fundamental framework was primarily
set up by BUSCHMANN [100] (partially adopted from the work of LÖFFLER [289] for JOHNNIE),
numerous extensions and modifications have been made by the following researchers working
on this project (cf. Section 2.7) so that the current software ecosystem has to be seen as joint
achievement. The chapter starts in Section 7.1 with a brief overview. This is followed in the
Sections 7.2 to 7.6 by a more detailed presentation of the particular components to which the
author of this thesis made noteworthy contributions. Section 7.7 concludes the current status of
the ecosystem and gives suggestions for future extensions.

7.1 Overview

The main components of the software ecosystem and their connections to the real-time loco-
motion system have already been introduced in Section 4.1 (see in particular Figure 4.1 right).
Except for the Vicon Tracker [426] (third-party software), all remaining applications, i. e., the
Simulation (see Section 7.4), the Visualization (see Section 7.5), and the UI alias Control Panel
(see Section 7.6), are executed on the operator PC running the GPOS Ubuntu. Note that for sim-
ulations, the entire locomotion system is executed within the dedicated (sequential) simulation
application running on the operator PC. Since the WPG, SIK, and HWL module almost85 exclu-
sively use system calls which are defined in the POSIX standard, they can be executed on the
RTOS QNX Neutrino and Linux-based GPOSs without substantial adaptions to the source code.
As a drawback of this hybrid approach, several high-level libraries – in particular related to the
field of robotics – are only available for Linux and thus, can not be (directly) used in the WPG,
SIK, or HWL module. However, with recent versions of QNX Neutrino, the count of supported
libraries increased.

Programming Languages For performance reasons, the simulation framework and the control
panel are implemented – same as for the WPG, SIK, and HWL module – in C++. Since the
analysis is predominantly performed in the aftermath of simulations and experiments, data
visualization is not considered to be time-critical. Therefore, the corresponding tools are written
in Python which significantly accelerates the integration of new functionality and the adaption
to changes in the locomotion framework (e. g. updated format of log files). Finally, source
code running on distributed hardware such as the auxiliary controllers interfacing the FTSs and
contact switches in the feet (see Figure H.4) is written in plain C.

85An exception are specialized functionalities of the platforms such as setting the real-time priority or CPU affinity
of a thread or measuring time with a high-precision clock (see for example the class PlatformHelper in the module
core of Broccoli).

180

7.1 Overview 181

Software Projects Almost the entire source code of the LOLA project is contained within the
following three software repositories (each of which version controlled through git [186]):

am2b: represents the main codebase covering the source code which is explicitly writ-
ten for the humanoid robot LOLA. Closed source with ≈ 280,000 lines of code (≈ 65%
contributed by the author of this thesis).

Broccoli: generic C++ library for robotics applications (not restricted to the particular
use case of humanoid robots). Open source [15] with ≈ 100,000 lines of code (≈ 67%
contributed by the author of this thesis). See Section 7.2 for details.

am2b-vision-interface: C++ library implementing the interface between the WPG module
of LOLA and an (external) CV system. Open source [16] with ≈ 6,000 lines of code (100 %
contributed by the author of this thesis). See Section 7.3 for details.

For counting the lines of code, comment lines are included while empty lines are excluded.
Additional to these three repositories, there exist multiple rather small software projects which
contain the source code to be executed on distributed / external hardware (e. g. auxiliary con-
trollers, test benches, etc.). The build system is based on CMake [206] and uses Clang [407] to
compile source code for the Linux target and qcc/q++ [83] to cross-compile for the QNX Neutrino
target. FELIX SYGULLA further added a Continuous Integration pipeline with automatic tests, test
coverage reports, and code-style checks.

Third-Party Libraries The real-time locomotion system of LOLA uses the following third-party
libraries (compatible with QNX Neutrino): Eigen [182] (linear algebra), zlib [165] (compres-
sion), cpptoml [167] (TOML parsing), and EC-Master [48] (EtherCAT master stack). The com-
ponents of the software ecosystem which are executed only on Linux additionally make use of:
the Qt Framework [408] (graphical UI), the Simple DirectMedia Layer (SDL) [265] (joystick and
game controller input), and the Vicon Datastream SDK [426] (interface to the Vicon Tracker
application). Among these third-party libraries, Eigen is used most frequently. It replaces the
previous in-house development matvec [388] by SORGE et al., which does not support modern
vectorization techniques and suffers from the lack of maintenance. While the majority of source
code has already been ported to Eigen, some legacy code – mainly related to the multi-body sim-
ulation – still uses matvec. However, the author of this thesis strongly recommends to replace
matvec by Eigen entirely in the near future.

Runtime Optimization In order to satisfy the hard real-time requirements of our application,
each code section is optimized for minimum runtime. Apart from avoiding unnecessary calcu-
lations (e. g. by reusing intermediate results), another important measure is to allocate memory
statically whenever possible. In case dynamic memory allocation can not be avoided (e. g. for
very large chunks of memory), allocation is triggered within an initialization routine directly
after startup of the system. Examples are the allocation of internal acceleration buffers of the
contact planner as described in Section 5.5.2 and the initialization of the pool allocator for stor-
ing node data of the A⋆ open list as described in Section 5.5.3. Note that in addition to the
generally higher costs of dynamic memory allocation, reservation of very large (continuous)
memory chunks may cause the OS to trigger defragmentation of the RAM which can drastically
degrade the overall system performance affecting also processes of higher real-time priority. Be-
sides dynamic memory allocation, also copying of large data structures is avoided whenever
possible. An example is the environment model created by the environment model manager,
which is passed to the planning context and handed over to the contact planner through cheap
pointer swaps. Finally, whenever calculations can be vectorized, corresponding Eigen data types
are used. Vectorization on the hardware by using instruction sets such as SSE4.2, AVX2|512,
and FMA is automatically handled by Eigen for corresponding data types.

7.2 The Open-Source Library Broccoli 182

Thread Priority and CPU Affinity In addition to optimizing the source code, also the real-
time priority is carefully set for each individual thread (cf. Figures 4.1 and 4.11). Unfortunately,
even an RTOS such as QNX Neutrino can not provide full control over the execution on the
underlying hardware. As an example, low-priority threads processing large amounts of data
(e. g. operations on the environment model, logging, etc.) continuously flood the CPU cache
which in turn can drastically slow down higher-priority threads due to recurring cache misses.
Depending on the particular CPU model and how the (multi-level) caches are shared among its
individual cores, performance issues related to bad caching behavior may be circumvented by
“pinning” critical threads to certain CPU cores. In order to resolve caching issues in the real-
time locomotion system of LOLA, Thread 1 (HWL timing) is pinned to the CPU core “0” (avoids
switching cores). Moreover, Thread 5 (WPG main cycle) and Thread 6 (WPG planner) are both
pinned to the CPU core “1” (both threads access the rather large motion plan data structure).

Testing In order to detect and fix errors in the source code, classical debugging is used together
with an automatic static code analysis with Clang and – as the circumstances require – a dynamic
memory analysis with Valgrind [422]. For performing automatic tests within the continuous
integration pipeline, the GoogleTest [173] framework is used. While the majority of source code
in Broccoli and am2b-vision-interface is covered by comprehensive unit tests, only selected classes
of am2b are tested individually. Instead, the functionality of the entire locomotion framework
is automatically checked through high-level system tests which trigger numerous simulation
scenarios (such as those presented within this thesis) and check the resulting behavior of the
robot (e. g. falling). The range of test cases extends from simple (static) standing to complex
multi-contact locomotion scenarios.

Documentation The main concept, structure, and workflow of the locomotion framework and
its algorithms are documented through the numerous scientific publications and dissertations
linked to the LOLA project (cf. Section 2.7). Within Chapter 4, a comprehensive overview of
the current status of the framework (summarizing the remains of previous works) has been
given. In addition, also the implementation is documented. For this purpose, the source code is
extensively annotated with specially formatted comments which are parsed by the tool Doxygen
[424] to generate a comprehensive documentation.

7.2 The Open-Source Library Broccoli

In order to simplify the exchange of source code between the various robotics projects at the
Chair of Applied Mechanics, TUM, SEIWALD and SYGULLA created the free and open-source library
Beautiful Robot C++ Code Library (Broccoli) [15]. Broccoli is a generic C++ header-only library
which provides useful classes and algorithms for robotic applications and has strong focus on
real-time performance and portability to RTOSs. Although some parts originate from the LOLA

project, it is not restricted to the special case of humanoid robots. Note that Broccoli is not an
entire middleware such as ROS [330], but can be understood as an independent toolkit. To
provide a high level of reusability, strong efforts have been made regarding code style, testing,
and documentation. Moreover, multiple example applications demonstrate the usage of more
complex components. Broccoli depends on the third-party libraries Eigen, zlib, and SDL, however,
these dependencies are not mandatory (missing dependencies disable certain functionalities).
The following paragraphs give a brief overview of the individual modules of the library. The
discussion is limited to the contributions made by the author of this thesis. For a description
of the functionality implemented by FELIX SYGULLA, the interested reader is referred to his
dissertation [401, p. 137ff]. A full documentation of the entire library is given through the
online API reference (see https://am.pages.gitlab.lrz.de/broccoli/).

https://am.pages.gitlab.lrz.de/broccoli/

7.2 The Open-Source Library Broccoli 183

Analysis The module analysis provides an efficient, parallelized tool for analyzing the task-
space of a robot which is described as a serial kinematic chain (without loops). Within this
thesis, the class TaskSpaceEvaluator has been used to determine and analyze the workspace
of the previous and new arm design of LOLA with respect to certain local and global metrics.
Details on the workflow of this tool have already been given in Section 3.3.

Core The module core represents a collection of fundamental utility functions. Examples are
a precise (absolute) time representation with nanosecond resolution, common string processing,
and mathematical operations such as computing factorials, binomial/multinomial coefficients,
FAÀ DI BRUNO and generalized LEIBNIZ tuples (each with internal lookup tables for accelera-
tion) as well as efficient solvers for (block-)tridiagonal LSEs. The module core also contains
numerous utility functions contributed by FELIX SYGULLA.

Curve Efficient evaluation and interpolation methods for analytically described polynomial
and quaternion trajectories – as they are used by the motion generator, cf. Section 6.2 – are
implemented in the module curve. While the class abstracting polynomials supports arbitrary
degrees, interpolation of two-point boundary values is currently implemented only up to the
degree five. With regard to quaternion interpolation, Broccoli supports the types LERP, NLERP,
SLERP, QBézier, SQUAD, and QBSpline as described in Appendix B.3. The module distinguishes
between a curve (e. g. a single polynomial), a spline (chain of consecutive curves with cus-
tom proportions), and a trajectory (combination of a single- or multi-dimensional spline and
a custom duration). For polynomial splines, the library supports C2-continuous cubic (given
second-order derivatives at boundaries) and C4-continuous quintic (given first- and second-order
derivatives at boundaries) interpolation as described in Algorithm G.1.

Geometry Algorithms which are related to two- and three-dimensional geometry are collected
in the module geometry. In particular, this module features

• an abstraction of cylindrical, spherical, and barycentric CoSys as well as DH parameters,

• utility functions related to spatial rotation and quaternions (cf. Appendices B.1 and B.2),

• an abstraction of 2D and 3D triangles with efficient point/ray distance and intersection
tests (adapted from MÖLLER and TRUMBORE [309]) as well as linear interpolation of per-
vertex attributes using barycentric coordinates,

• an abstraction of 2D polygons with algorithms for computing the perimeter, (signed) area,
centroid, convex hull (using GRAHAM’s scan [121, p. 1030ff]), and point/ray/polygon to
polygon intersections,

• an abstraction of indexed 3D triangle meshes with custom per-vertex normals and colors
as well as custom per-triangle materials (e. g. used for surface models, cf. Section 4.5.1),

• efficient methods for creating indexed 3D triangle meshes representing primitives such
as planes, boxes, “icospheres” (icosahedron with customizable subdivision), and cones
as well as (slices/sectors of) circles, cylinders, and spheres – each of which with exact
(analytical) per-vertex normals,

• efficient methods for extruding 2D outlines along 3D paths (e. g. for visualizing trajectories
in a 3D animation as a solid path),

• creation of a volumetric SDF from a given 3D triangle mesh (adapted from BAERENTZEN

and AANAES [72]) and conversely creation of an indexed 3D triangle mesh representing
the surface of a volumetric density grid (as extension of the Marching Cubes algorithm of
LORENSEN and CLINE [293], cf. Footnote 39), and

• a library for efficient distance evaluation using SSVs as described in Appendix C.

7.3 The Open-Source Vision Interface 184

IO This module provides functionality related to Input/Output (IO) operations such as human-
machine interfaces (console output for RTOSs and game controller input using SDL [265]),
common filesystem operations, buffered logging for RTOSs, and reading/writing of 2D raster
data (PNM format [347]) and 3D triangle mesh and point cloud data (PLY format [416]) in
their respective text- and binary-formats. Moreover, the module io provides utility functions for
serialization of complex data structures as well as compression of data streams (using Deflate
from zlib [165]) on which the enhanced network socket described in Section 4.1 is based.

Memory The module memory extends the C++ standard library by data containers which are
specifically designed for real-time systems and efficient thread-safe access in parallel work-
flows. Examples are the classes SmartVector, which combines the benefits of std::array
(static allocation) and std::vector (dynamic size), and CircularBuffer which represents
a thread-safe input/output buffer storing arbitrary objects. With MultiVector, a container
for n-dimensional arrays is provided. It is used by the class MultiLevelGrid which abstracts
(dense) n-dimensional grids with multiple levels (e. g. binary tree, quadtree, octree, etc.). Fi-
nally, this module implements an implicit D-ary heap (cf. Footnote 65) with integrated pool
allocator which is used as data container for the open list of the contact planner’s A⋆ search (see
Section 5.5.3).

ODE The module ode is split into two submodules: one for (time) integration and one for
collocation of ODEs. The former is mainly used by the multi-body simulation of LOLA and has
been created by FELIX SYGULLA. The latter represents a reference implementation for the cubic
and quintic spline collocation algorithm presented in Appendix G (cf. Algorithm G.2) and has
been contributed by the author of this thesis.

Parallel This module gathers helper classes related to efficient multi-threading. An example is
the class BackgroundWorker which abstracts POSIX threads and features thread-safe getter and
setter functions for custom members, automatic runtime measurements, and high-performance
synchronization through condition variables. With the class SynchronizedWorkerPool, syn-
chronized execution of a pool of background workers can be managed in a convenient way (e. g.
used for parallel evaluation of large SSV scenes).

7.3 The Open-Source Vision Interface

In Section 4.4, the interface between the WPG module and the CV system has been described in
detail (see in particular the Tables 4.2 and 4.3). Since the source code of the CV system is part of
an external repository managed by the Chair for Computer Aided Medical Procedures & Augmented
Reality, TUM, it was decided to realize the implementation of the WPG/CV interface through
an individual, shared software project. This resulted in the free and open-source C++ library
am2b-vision-interface [16], which itself depends on Broccoli and the (also free and open-source)
third-party library cpptoml [167]. For am2b-vision-interface, special focus was set on a detailed
and clear documentation to ensure an unambiguous interface specification and avoid errors due
to miscommunication. Moreover, through the strict separation of the real-time locomotion and
visual perception system, it is possible to switch between different external CV systems without
modifications to LOLA’s codebase.

7.4 Simulation 185

7.4 Simulation

In preparation of using new algorithms or parameters of the locomotion system in real-world ex-
periments, they are extensively tested and analyzed within simulation. For this purpose, LOLA’s
software ecosystem provides a comprehensive simulation framework which is triggered by call-
ing a dedicated simulation application. In order to specify the particular scenario to simulate, a
TOML based configuration file is passed to the application. The configuration file defines meta
parameters such as the path to the scene description file (see following paragraph), the initial
6D pose of the robot within this scene (typically drop-off from 2 cm above the ground), and the
time after which the simulation is stopped. Moreover, it provides a list of timed signals which
can simulate any kind of user-input. Typically, this includes signals to start/stop walking by
triggering corresponding WPG actions (cf. Section 5.2). Since the majority of parameters of the
locomotion system can be controlled by corresponding signals, parameter studies can be setup
and run very efficiently without the need of recompiling the source code. Based on the pro-
vided configuration, the framework simulates the execution of all components of the real-time
locomotion system, most importantly the WPG, SIK, and HWL module. In order to guaran-
tee reproducibility of the simulation results, the locomotion framework is executed sequentially
(parallel execution is currently only tested on the target platform).

The reaction of the hardware (joint and floating-base motion, sensor data, etc.) is computed
by an integrated multi-body simulation which has been specifically developed and optimized
for the robot LOLA. The multi-body simulation provides two modes of execution: reduced and
full. In the reduced mode, an idealized drive system with perfect tracking of the target joint
angles and velocities is assumed. In contrast, the full mode incorporates an explicit simulation
of the drive system (PPI cascade of the commercial servo controllers and motor/gear dynamics,
cf. [100, p. 31ff]). Additionally, the full mode also considers noise and quantization of sensor
signals from the IMU and FTSs. Time integration is performed with the forward EULER method
where the step size is chosen to 100 µs for the reduced and 10 µs for the full mode. Depending on
the complexity of the scene, the reduced simulation typically takes between 0.6 (only floor) and
1.1 (with platform/walls) times of the simulated period (measured on operator PC according to
Footnote 72). Thus, it has “real-time” performance. The full simulation is typically 9 to 10 times
slower than the reduced simulation.

The simulation framework of LOLA was originally developed by BUSCHMANN and SCHWIEN-
BACHER. While the just given overview only briefly summarizes the main workflow, an in-depth
description is given in the dissertations of its main creators, see [100, 372]. Over the past
years, the simulation framework received multiple modifications. Notable changes were made
by FELIX SYGULLA who refactored the high-level interface, integrated a new solver structure, and
improved the joint controller and sensor models (see [401, p. 141f] for details). Apart from this,
also the author of this thesis refactored and extended numerous components of the simulation
framework. The most important modifications are summarized in the following paragraphs.

Scene Description In addition to the aforementioned TOML file for specifying meta param-
eters, the simulation parses another configuration file describing the scene, i. e., the (virtual)
environment of the robot. Due to new requirements related to the multi-contact revision of
LOLA (especially with regard to simulation of the CV system), the specification and implemen-
tation of the virtual environment has been redesigned from scratch. For consistency, the new
scene description file also uses the TOML format. It mainly contains a list of environmental ob-
jects, each of which described through a 6D pose (relative to the world frame of the multi-body
simulation), a parameter specifying the geometry, and certain flags, e. g. to indicate if the object
should be considered for contact detection or if it should be visible in the visualization. The ge-
ometry is either loaded from an external PLY file or synthetically generated using the geometry
module of Broccoli. Currently supported primitives are: rectangle, circle, box, cylinder, cone,

7.4 Simulation 186

sphere, and icosphere. A special case is given by the geometry type “Plane”, which describes the
(infinite) x-y-plane of the object’s local CoSy where the positive z-axis indicates the “outside” of
the object. All other geometry types are transformed into a corresponding (finite) triangle mesh
which can be further customized through optional parameters specifying the scaling (in local
object space) and color. An exemplary scene description file and the resulting virtual environ-
ment are shown in Figure 7.1. The following paragraphs describe how the virtual environment
is used within the multi-body simulation and the simulation of the CV system.

W
y

z

x

“Platform”

“Table”

Initial Pose

Scene Description File (exemplary)
1 [Objects]
2 [Objects.Floor]
3 PositionXYZ = [0.0, 0.0, 0.0]
4 OrientationWXYZ = [1.0, 0.0, 0.0, 0.0]
5 Geometry = "Plane"← infinite extension
6 ContactEnabled = true
7 Visible = false← hidden in visualization

8 [Objects.Platform]
9 PositionXYZ = [0.5, 0.7, 0.05]

10 OrientationWXYZ = [1.0, 0.0, 0.0, 0.0]
11 Geometry = "Box"← synthetic
12 ContactEnabled = true
13 Visible = true
14 ScalingXYZ = [1.0, 0.6, 0.1]← size
15 Color = [160, 115, 80, 255]← RGBA

16 [Objects.Table]
17 PositionXYZ = [0.5, -0.7, 0.0]
18 OrientationWXYZ = [1.0, 0.0, 0.0, 0.0]
19 Geometry = "table.ply"← external file
20 ContactEnabled = true
21 Visible = true

Figure 7.1: Exemplary TOML based scene description file (left) and resulting virtual environment used by the simula-
tion framework of LOLA (right). The object “Floor” is represented by a plane with infinite extension and is not shown
(coincides with the x -y-plane of the world frame W). The remaining objects are represented by finite triangle meshes
which are either synthetically generated (object “Platform”) or loaded from an external PLY file (object “Table”).

Multi-Body Simulation Within the multi-body simulation of LOLA, only contacts between the
robot and the environment are considered. Since the environment is assumed to be static, inter-
actions between environmental objects are not simulated. Instead of using the complex86 CAD
model of LOLA for detecting collisions, we only allow a limited set of user-defined contact points
to interact with the environment (see Figure 7.2 left). In particular, we place a contact point
at each corner of the four contact pads of the feet. Moreover, 20 contact points are uniformly
distributed over the spherical surface of each hand. Note that a more accurate (and likely also
more efficient) representation of the hands through spherical contact surfaces would require
extensive modifications to the multi-body simulation’s legacy code. Since the approximation by
a finite set of point contacts turned out to be sufficient for our application, this extension is left
for a future revision of the simulation framework.

Each contact point of the robot is individually tested for collision with the virtual environ-
ment which in turn is represented by a set of planes and triangle meshes. In particular, we
compute the signed distance to each object and pick the one with the minimum absolute dis-
tance (closest surface). The sign of the distance indicates if the contact is open (positive) or
closed (otherwise). While computing the distance of a point to a plane is straightforward, test-
ing against an arbitrary triangle mesh is much more complex – in particular with regard to

86The tessellation of LOLA’s CAD model used to create high-quality renderings has more than 18 million triangles.
Even the much less detailed version used for real-time visualization has approximately 4 million triangles.

7.4 Simulation 187

determining if the point lies “inside” or “outside” the not necessarily closed mesh (see Figure 7.2
right). We tackle this issue by adapting the method proposed by BAERENTZEN and AANAES in
[72]. In particular, we iterate over all triangles of the mesh to find the set of triangles which
have minimum absolute distance to the investigated point and share the same “closest point”
(e. g. a shared vertex or edge). If the set contains more than one triangle, we use the local
angle weighted pseudonormal (at the closest point) according to THÜRRNER and WÜTHRICH

[410] to distinguish between interior and exterior space. If the set contains only one triangle,
the “regular” triangle normal is used. Although this approach is rather simple, it delivers cor-
rect results for arbitrary triangle meshes with “reasonable” geometry (e. g. no self-intersections,
etc.). Compared to the previous implementation by BUSCHMANN, the new method is more
robust and handles also (rare) special configurations properly. In case of closed contact, the
interaction force is finally determined using a KELVIN-VOIGT (parallel spring-damper) element
which is combined with COULOMB friction (see [100, p. 21ff] for details). While the described
contact detection algorithm has been contributed by the author of this thesis, the actual contact
model (i. e. the computation of the interaction force) dates back to the original implementation
by BUSCHMANN which, however, has been recently refactored by SYGULLA [401, p. 142].

Contact Point Placement Signed Distance Evaluation
(attached to segments) (between contact point and virtual environment)

Plane:

outside

Mesh: (concave)

nP

inside outside inside

n A

n
B

nϕ

Mesh: (convex)

outside inside

n
A

n B

nϕ

16×
16× 20×

Figure 7.2: Contact detection within the multi-body simulation of LOLA. Left: placement of discrete contact points on
the feet (16 × 2) and hands (20 × 2) of the robot (red spheres). Right: evaluation of the signed distance (dashed
lines) between a contact point (colored dots) and the virtual environment which is represented by planes and triangle
meshes (black contours). For testing against planes, the plane normal nP is used to determine the sign of the
distance. For testing against triangle meshes, either the per-triangle normal nA|B or the angle weighted pseudonormal
nϕ from [410] is used (depends on location of closest point on mesh).

Since the computational cost of contact detection is proportional to the complexity of the
scene (triangle count), the simulation can be significantly accelerated by using rather coarse ap-
proximations of the original geometry. As an example, replacing the table shown in Figure 7.1
by its bounding box results in the exact same motion of the robot (assuming only contact of the
hand with the top surface). At the same time, the count of evaluated triangles is significantly
reduced from more than 1,500 to only 12. However, in certain cases the provided geometry
has to be considered in full detail (e. g. for simulating walking on bumpy terrain). In order to
accelerate contact detection for large meshes counting more than 100 triangles, the correspond-
ing object is augmented by a volumetric occupancy grid which is automatically generated at the
beginning of the simulation. Each cell of the grid stores references to intersecting and close-by
triangles (derived from the triangle’s bounding box). During contact detection, the occupancy
grid is used as lookup table to find relevant triangles efficiently.

Simulation of the CV System The simulation framework of LOLA integrates most components
of the real-time locomotion system such as the WPG, SIK, and HWL module. However, this cur-
rently does not include the visual perception system since it does not provide a corresponding

7.4 Simulation 188

execution mode87. Unfortunately, this prevents closed-loop simulations of autonomous locomo-
tion scenarios where the WPG requires knowledge of the robot’s surroundings. As a workaround,
the author of this thesis implemented two alternative solutions.

The first solution is to load perception data from a series of files each storing a correspond-
ing VisionToControlContainer (cf. Table 4.3) which has been previously recorded during a
real-world experiment. For this purpose, a corresponding WPG signal has been defined which
can be triggered at any time during the simulation (in the same way as virtual user-input sig-
nals). Within the context of LOLA’s multi-contact revision, this approach was mainly used to test
the behavior and performance of the new contact planner for realistic input data from the CV
system. Since this method relies on data collected within real-world experiments, it is restricted
to scenarios which can be realized in LOLA’s laboratory.

The second solution is to synthesize one or more VisionToControlContainer from a static
scene description as presented above. Instead of simulating the entire perception pipeline, we
directly generate an environment model which is similar to what would be provided by the CV
system in a real experiment. For this purpose, we extend the scene description file from Fig-
ure 7.1 (left) by additional per-object parameters which allows us to customize the conversion
of environmental objects to corresponding surface and volume models as well as contributions
to the terrain as specified in Section 4.5.1.

Within the proposed scene specification, the geometry of an object is described through a
triangle mesh88. In case this mesh has been created through tessellation of a parametric model
designed within a CAD system, it typically does not show the same characteristics as meshes
generated by a point cloud / surfel based CV system. Most importantly, the triangles of a mesh
derived from a CAD model are in general strongly distorted, especially within curved surface
patches. In contrast, triangles derived from a voxel-based intermediate format are limited in
size (voxel dimensions) and have a much more uniform topology. Thus, instead of directly
using the provided geometry of the object as its surface model in the environment model, we
pre-process the mesh first. In particular, we

• compute a volumetric SDF from the input mesh using Broccoli89 (method adapted from
BAERENTZEN and AANAES [72] – same as for collision detection, cf. Figure 7.2 right),

• simulate errors of the visual perception system by applying Gaussian noise to each distance
value stored in the SDF, and

• convert the SDF to a triangle mesh using the Marching Cubes implementation of Broccoli90

(adapted from LORENSEN and CLINE [293], cf. Footnote 39).

The operation is performed in local object space and is customizable through a user-defined per-
object voxel size (default: 5 cm) and standard deviation (default: 4 mm) specifying the applied
noise. While the input geometry can be an arbitrary compound of (non-intersecting) triangles,
the resulting mesh is indexed (provides proper topology information) and has per-vertex nor-
mals which are derived from the local density gradient. Note that neither the input nor the out-
put mesh have to be closed. For interpolating colors from the original mesh, different methods
are available (see implementation for details). In accordance with similar operators provided
by common 3D modeling software, we refer to this (optional) pre-processing step as remeshing
(see also the method CGMeshFactory::remesh from the module geometry in Broccoli). Cur-

87Note that this would require the simulation of the onboard cameras, i. e., the creation of synthetic image streams
from the scene description and the simulated motion of the robot. Although a functional solution has not been
integrated yet, a pre-study has been conducted at the Chair of Applied Mechanics in which the characteristic output
of an Asus Xtion Pro Live sensor is simulated (see Appendix J for details).

88Currently, the simulation of the CV system does not support objects of type “Plane” (infinite dimension). In order
to consider such objects for the synthesis of the environment model (e. g. for computing the contribution of the floor
to the terrain), they are simply replaced by a corresponding “Rectangle” (finite dimension).

89See the method CGMeshFactory::createVolumeSignedDistanceField from the module geometry.
90See the method CGMeshFactory::createVolumeMarchingCubes from the module geometry.

7.4 Simulation 189

rently, the proposed remeshing operator does not consider custom (per-vertex) visual perception
confidence values so that a uniform value of cvis = 1 is used instead. However, a correspond-
ing extension to interpolate custom per-vertex confidence values would be straightforward. In
particular, one could use the same method as for the color interpolation.

Besides the surface model, we also have to assign a volume model to each environmental ob-
ject. For this purpose, the simulation framework allows to manually specify a corresponding SSV
segment within the TOML based scene description file (preferred method). In case no related
information has been provided by the user, an SSV segment is automatically generated based
on the object’s bounding box in local object space. Depending on the relative proportions of the
bounding box dimensions, the segment either consists of a single point- or line-SSV element, or
a pair of triangle-SSV elements (representing a rectangular shape). While this approach delivers
satisfying results for primitive objects such as spheres or boxes, it is not suitable for approximat-
ing the volume of more complex geometries. Exemplary surface and volume models obtained
through the proposed remeshing and (manual) SSV specification are shown in Figure 7.3.

CAD Model Surface Model Volume Model
(tessellated) (manually specified)without noise with noise

Figure 7.3: Synthesis of an object’s surface and volume model from the scene description. From left to right: tessel-
lated CAD model representing the input mesh; surface model obtained through remeshing (without and with applied
noise); manually specified SSV segment representing the object’s volume. The triangle meshes are rendered without
colors and in wireframe mode to highlight the topology.

Once the object database of the environment model is complete, it is left to synthesize the
terrain. For this purpose, we merge all surface models into a single triangle mesh. The mesh is
then rasterized where we use the x-y-plane of the vision world frame as the projection plane.
Each “pixel” represents a terrain cell on the lowest level of the octree which stores the corre-
sponding height and confidence value derived from the triangle mesh. Note that this process
passes the artificial noise introduced by the remeshing operator also to the terrain. Similar to
the rasterization of the solution spline during contact planning (cf. Section 5.5.4), we perform
spatial anti-aliasing through supersampling (uniform 4× 4 pattern). Apart from projecting ob-
jects to the ground, we further define a WPG signal which allows us to initialize a circular area
around the current position of the robot. The height of the related cells is determined by the
vertical position of the robot while the confidence is set to the maximum and fades out at the
boundaries (see [18 @t=1m33s] for an animated visualization). The same signal is also used at
the beginning of real-world experiments (terrain underneath robot is not visible to the cameras).

https://youtu.be/mGlsc_revMc?t=1m33s

7.5 Visualization 190

7.5 Visualization

In order to evaluate, debug, and optimize the locomotion framework of LOLA, the numerous
log files generated during simulations and experiments are analyzed. Due to the high overall
complexity of the system, the raw amount of data – which is additionally written in different file
formats91 – can be overwhelming. To efficiently manage and post-process this data, several tools
have been developed within the LOLA project. An example is the Python tool Logplot which uses
the Qt Framework [408] to provide a convenient graphical UI for browsing signals from column-
based log files, see Figure 7.4. After selecting the desired signals, they are plotted using the free
and open-source tool gnuplot [436]. Originally created by BUSCHMANN [100, p. 120ff], Logplot
received a substantial redesign and refactoring by the author of this thesis.

Figure 7.4: Graphical UI of the Python tool Logplot (uses Qt Framework [408]).

While a quantitative inspection of individual signals is well suited for an in-depth analysis, it
is much more intuitive and efficient to verify the qualitative behavior (e. g. the overall motion of
the robot) through a 3D visualization. Furthermore, certain types of data can not be expressed
as continuous signals (e. g. the discrete contact sequence created by the contact planner) and are
best checked through visual inspection. For this purpose, BUSCHMANN and SCHWIENBACHER de-
veloped a dedicated 3D viewer application (see [100, p. 120ff] and [372, p. 114ff] for details).
Over the years, this application received numerous modifications by different contributors, how-
ever, without explicit refactoring or maintenance of its kernel. At the beginning of the author’s
work on LOLA, the source code related to the viewer application was somewhat abandoned.
Even worse, due to the custom low-level legacy code which is not compatible with modern GPU
drivers, the functionality of the application was severely limited. For this reasons, the author of
this thesis decided to create an entirely new 3D visualization tool which is referred to as Blender
Viewer. Instead of writing custom low-level code for interfacing the GPU, the new viewer is
based on the free and open-source software Blender [85]. Blender is a popular 3D graphics suite

91Depending on the type of data, log files are either written in a column-based (e. g. continuous signals), XML-
based (e. g. motion plan), TOML-based (e. g. environment model, SSVs), PLY-based (e. g. point clouds, triangle
meshes), or PNM-based (e. g. terrain, intermediate results of contact planner) format.

7.5 Visualization 191

which is predominantly used for modeling, animating, and rendering complex scenes consisting
of triangle-based geometries. Moreover, it provides a powerful Python interface for developing
add-ons which allows to control (and thus automate) almost all parts of the software. The new
3D visualization tool of LOLA is designed as such an add-on and allows rapid implementation
of new functionality in Python (e. g. parsing new or changed log file structures) while using the
highly efficient internal C++ routines of Blender for data-intensive operations, low-level commu-
nication with the GPU, and high-quality rendering using the integrated physically-based path
tracing engine. The add-on provides extensive functionality (≈ 33,000 lines of Python code) for
visualizing different types of log data obtained from simulations and experiments. The follow-
ing paragraphs give only a brief overview of its main modules. An exemplary screenshot of the
interactive UI is shown in Figure 7.5.

Figure 7.5: Visualization of a multi-contact simulation scenario using the Blender Viewer – a custom Python add-
on developed for Blender [85]. The add-on smoothly integrates into the default graphical UI (custom panels “Scene”,
“Database”, “Render”, etc. on right side). The Blender Viewer was used to create the numerous renderings presented
within this document. The most important capabilities of this tool are indirectly demonstrated through the video [18].

Scene and Render The module Scene provides functionality related to the setup of the 3D
scene. This includes timing information used for animation and playback, the generation of the
“floor” (grid) and the head-up display, as well as camera parameters. The panel Render collects
the most frequently used Blender internal settings for rendering and the output format.

Database In order to visualize complex parametric CAD models in the viewer (e. g. the seg-
ments of the robot), they first have to be tessellated within the CAD system and subsequently
exported to a triangle-based mesh format. The Blender Viewer provides a (standalone) Python
script which is capable of parsing such meshes (supports different input file formats) and con-
verting them into corresponding Blender meshes using Blender’s internal triangle mesh and ma-
terial representation. This significantly accelerates the time required for loading complex models
from the file system (which is handled by the Database module).

https://youtu.be/mGlsc_revMc

7.6 Control Panel 192

Lola The module Lola allows to create one or more (independent) instances of the robot. It
loads the kinematic topology from a TOML file and automatically generates a Blender internal
representation using parent-child relations between frames for prismatic/revolute joints and
armatures for parallel kinematics (e. g. ankle joint actuation). The corresponding panel provides
a UI for manual DoF control and displaying the schematic, the CAD model, the joint-/task-space
SSV model, and the executed 3D trajectories for all segment/EE frames of the topology. In case
log data is loaded from a simulation, this module additionally allows to visualize the contact
forces in the feet/hands (red arrows in Figure 7.5) and the (shortest) connection between joint-
space SSV segments computed within the IK for collision avoidance.

Planner Elements of the WPG’s motion plan data structure (cf. Section 5.2) can be visualized
with the module Planner. It is capable of displaying the discrete contact sequence, SA polygons,
and the planned task-space trajectories (position of EEs, ZMP, RMT, and CoM). For debugging
purposes, it also allows to navigate the tree structure of the motion plan starting from the
selection of the desired plan version (plan changes over time) down to individual EE poses
within the begin/end pose of a transition (allows to show/hide individual elements).

Virtual Environment and Environment Model For displaying the robot’s environment, the
Blender Viewer provides the two modules Virtual Environment and Environment Model.
The former is responsible for the visualization of the virtual environment as specified in the
scene description file and used by the multi-body simulation (cf. Figure 7.1). The latter visual-
izes the pre-processed environment model, i. e., the output of the Environment Model Manager,
consisting of terrain patches and objects represented by their surface and volume models (cf.
Figure 4.4 right). While the Virtual Environment is only available in combination with sim-
ulation data, the Environment Model module also allows to load logged data from real-world
experiments and thus, can be used to inspect the output of the CV system.

Motion Capture By using the optical tracking system of LOLA’s laboratory, it is possible to
record the actual 3D motion of the robot within real-world experiments. For this purpose, re-
flective markers are attached to certain segments (typically the feet/hands, torso, and head).
The module Motion Capture allows to load logged tracking data and visualize the correspond-
ing 3D trajectories e. g. for comparison with the planned motion.

3D Model Import/Export and SSV Editor As a comprehensive 3D graphics suite, Blender has
native support for numerous 3D mesh file formats. The proposed add-on extends this function-
ality by custom import and export methods for legacy mesh formats (e. g. the one used by our
CAD system [125]) as well as customized mesh specifications (e. g. including per-vertex sur-
face confidence values). Moreover, it provides optional post-processing operators for visualizing
point cloud data. Finally, the Blender Viewer contains the module SSV Editor, which allows in-
teractive design of SSV elements (similar to the original SSV modeling tool by SCHWIENBACHER

[372, p. 114ff]). The initial implementation of the SSV Editor was created by the student
assistant REINHOLD POSCHER and has been revised by the author of this thesis.

7.6 Control Panel

For controlling and monitoring the robot during real-world experiments, BUSCHMANN created
the application Control Panel [100, p. 120ff]. Its main purpose is to provide a clear graphical UI
which displays the current state of the system (e. g. sensor/actuator data, internal state of mod-
ules, etc.) and enables the human operator to select and trigger signals from an extensive signal

7.7 Conclusions and Suggestions 193

database. This reaches from triggering high-level commands to setting low-level control param-
eters. Within the context of the multi-contact revision, the author of this thesis refactored large
parts of the Control Panel. New features are (among others) a condensed UI tab for controlling
the most frequently used functions of the WPG, SIK, and HWL modules (see Figure 7.6) and a
(preliminary) interface to the autonomous safety frame (see Appendix J). Moreover, the Control
Panel acts as communication hub for distributing the pre-processed data stream of the external
motion capture system. Finally, the joystick / game controller interface has been reimplemented
to extend its functionality and to maintain compatibility with modern hardware.

Figure 7.6: Exemplary screenshot of the Control Panel – the main graphical UI for conducting and monitoring real-
world experiments with the humanoid robot LOLA (uses Qt Framework [408]). The main functionality of the application
is grouped into eight individual tabs. The currently active tab, “Robot Control”, contains the most frequently used UI
elements related to the WPG, SIK, and HWL module.

7.7 Conclusions and Suggestions

Within the context of the multi-contact revision, large parts of LOLA’s source code have been
refactored and modernized. For an academic research project where time and manpower are
very limited resources, the quality of code – in particular with respect to style, testing, and
documentation – is surely exceptional. As a result, the current software is very reliable which
in turn allows to conduct experiments and test new methods in a very efficient way. Moreover,
the export of general-purpose code to the libraries Broccoli and am2b-vision-interface makes it
available also for other robotics projects.

With regard to the software ecosystem, there is certainly room for improvement. An exam-
ple is the reimplementation of the multi-body simulation, e. g. to complete the transition from
matvec to Eigen as mentioned earlier. A full redesign of the multi-body simulation would further
allow to introduce new features such as support for more complex contact geometries, dynamic
environments (e. g. moving obstacles), or simulation of flexible components (e. g. for analyzing
structural dynamics). Moreover, integrating functionality for synthesizing input streams from
CV sensors would allow to simulate the visual perception pipeline and thus, enable much more
realistic closed-loop simulations of autonomous locomotion scenarios.

Chapter 8

Validation – Testing LOLA’s New Capabilities

In the previous chapters, a detailed description of the realized modifications for making LOLA

capable of multi-contact locomotion has been given. This included quantitative analyses of
performance metrics such as dexterity, structural strength, motor power, and modal dynamics
from the hardware perspective as well as solution quality and computational efficiency from the
software perspective. Within this chapter, the overall system performance is evaluated from a
qualitative point of view. In particular, the new capabilities of the robot are validated, i. e., tested
against the original project goals as described in Chapter 1. For this purpose, various locomotion
scenarios are investigated within simulation (see Section 8.1) and real-world experiments (see
Section 8.2).

8.1 Simulation

In contrast to real-world experiments which underlie certain physical constraints imposed by the
robot and its laboratory, (almost) arbitrary locomotion scenarios can be tested within simulation.
Moreover, simulations allow to demonstrate the full potential of the new WPG by assuming ideal
boundary conditions such as a perfect visual perception system. In the following, we focus on
the autonomous locomotion scenarios presented in the video [18]. Snapshots of selected
scenarios are shown in the Figures 8.1 and 8.2. Each of the scenarios tests and demonstrates a
certain new or enhanced skill of the robot. Note that the same parametrization of the WPG is
used for all scenarios which highlights its versatility and universality.

Multi-Contact The primary goal of the project was to make the humanoid robot LOLA capable
of autonomous multi-contact locomotion. In accordance with the target scenarios shown in
Figure 1.1, corresponding simulation scenarios have been setup for testing additional support
with one hand (horizontal force: “Right Wall”; vertical force: “Right Table”) and both hands
simultaneously (cf. “Corridor”). Note that the shape of an environmental object considered for
hand contact neither has to be flat (indeed concave geometries are preferred – see Section 5.5.2)
nor needs to have a horizontal or vertical surface normal (e. g. handrail in Figure 1.1).

The simulations demonstrate that the proposed contact planner is capable of planning a suit-
able contact sequence based on the provided environment model. Depending on the particular
parametrization (e. g. weights in cost specification of A⋆), the robot simultaneously searches for
the shortest and “safest” path (e. g. close to objects suitable for hand support). The motion gen-
erator connects the discrete states by a task-space motion which takes the dynamic effects of the
planned multi-contact interaction forces into account (see the video [18 @t=6m5s] for a visual
demonstration of the effects on the CoM position).

Collision Avoidance The previous navigation system by HILDEBRANDT et al. modeled the envi-
ronment through a set of objects represented by SSVs [13]. The contact planner proposed within
this thesis additionally makes use of an explicit terrain representation in the form of a height

194

https://youtu.be/mGlsc_revMc
https://youtu.be/mGlsc_revMc?t=6m5s

8.1 Simulation 195

Right Wall Right Table[18 @t=6m46s] [18 @t=7m8s]

Corridor Obstacles[18 @t=7m31s] [18 @t=7m54s]

Ramps Stairs – Full[18 @t=8m27s] [18 @t=8m53s]

Stairs – Partial Trap[18 @t=9m20s] [18 @t=9m49s]

Runtime WPG: 1.339 s
Executed motion: 8.7 s

Runtime WPG: 0.890 s
Executed motion: 8.7 s

Runtime WPG: 0.987 s
Executed motion: 9.5 s

Runtime WPG: 0.739 s
Executed motion: 18.7 s

Runtime WPG: 1.048 s
Executed motion: 12.3 s

Runtime WPG: 0.521 s
Executed motion: 13.5 s

Runtime WPG: 7.229 s
Executed motion: 13.1 s

Runtime WPG: 0.981 s
Executed motion: 21.1 s

Figure 8.1: Selection of simulation scenarios demonstrating new and enhanced locomotion skills of LOLA. For each
scenario, the autonomously planned discrete contact sequence (green/blue rectangles and spheres), EE motion
(green/blue trajectories), and CoM motion (gray trajectory) are shown. The visual perception pipeline is not part
of the simulation. Instead, the environment model is synthetically generated as described in Section 7.4.

map. This makes collision avoidance by traversing or bypassing obstacles (cf. “Obstacles”) much
more general since it is capable of dealing with geometries of arbitrary shape. While the ter-
rain information is mainly used to avoid undesired collisions of the lower body, the new contact
planner predominantly uses SSV distance evaluations for avoiding collisions of the upper body.

https://youtu.be/mGlsc_revMc?t=6m46s
https://youtu.be/mGlsc_revMc?t=7m8s
https://youtu.be/mGlsc_revMc?t=7m31s
https://youtu.be/mGlsc_revMc?t=7m54s
https://youtu.be/mGlsc_revMc?t=8m27s
https://youtu.be/mGlsc_revMc?t=8m53s
https://youtu.be/mGlsc_revMc?t=9m20s
https://youtu.be/mGlsc_revMc?t=9m49s

8.1 Simulation 196

Foothold Placement Apart from an improved collision avoidance, using an explicit terrain rep-
resentation further allows native support for non horizontal ground (cf. “Ramps”) and varying
ground heights (cf. “Stairs – Full / Partial”). Since ramps, platforms, or stairs are not modeled
explicitly but are instead represented by a cluster of terrain cells, they may have an arbitrary
shape. Furthermore, the new WPG distinguishes between (planned) full, partial, and tiptoe foot
contacts. While partial contacts allow more complex solutions by extending the search space,
tiptoe contacts are mainly used to maintain kinematic feasibility during challenging maneuvers.

Hierarchical Search In order to achieve real-time performance, the new contact planner
makes use of different levels of detail (coarse-to-fine planning). This significantly accelerates
the search and avoids unnecessary exploration of irrelevant states for disadvantageous con-
figurations of the environment (cf. “Trap”). Note that also the previous navigation system by
HILDEBRANDT et al. used a hierarchical approach for acceleration [13]. Apart from being more
general, the new solution proposed within this thesis is much less dependent on the complexity
of the scene which leads to a significantly reduced variance in the total execution time. Besides
an increased overall efficiency, this also makes the duration of the contact planning process
much more predictable.

Combination of Skills While the scenarios presented so far mainly focus on one particular
problem, the new skills of the robot certainly can be performed simultaneously. As an example,
Figure 8.2 shows the generated motion plan for a combined scenario featuring multi-contact
interaction, stepping up and down a platform, and explicit tiptoe contact. The entire motion
plan is generated autonomously solely based on the provided environment model and goal pose.

Figure 8.2: Exemplary simulation scenario demonstrating the combination of multiple new and enhanced locomotion
skills (cf. [18 @t=5m51s]). The visualization shows the autonomously planned discrete contact sequence (green/blue
rectangles and spheres), SAs without and with safety margins (yellow/orange polygons), ZMP motion (red trajectory),
EE motion (green/blue trajectories), RMT motion (yellow trajectory), and CoM motion (gray trajectory). The total
runtime of the WPG for generating the motion plan is 0.642 s in this particular scenario (executed motion: 12.3 s).

https://youtu.be/mGlsc_revMc?t=5m51s

8.2 Real-World Experiments 197

Dynamic Replanning For the purpose of dynamic replanning (cf. [18 @t=10m28s]), each
individual stage of the WPG’s planning pipeline is capable of performing its operations either
on an entirely new or an already existing motion plan. Even if the motion plan is already in
execution, it is always guaranteed that valid task-space motion data is available which finally
brings the robot to a safe resting pose. With total runtimes of around 1 s for fully-autonomous
locomotion, the proposed WPG is capable of reacting to changes in the environment within
a reasonable time. In semi-autonomous mode (e. g. teleoperated walking), the planning time
drops to less than 10 ms which leads to an almost immediate response to changes of any kind.

8.2 Real-World Experiments

While the simulation scenarios discussed in the previous section have demonstrated the au-
tonomous planning skills of the proposed WPG, it is left to verify if the new hardware configu-
ration of the robot, i. e., LOLA v1.1, is capable of performing such motions. The following para-
graphs focus on experiments which reveal the real-world performance of the new hardware and
simultaneously demonstrate the effectiveness of the reduced models and methods introduced by
the proposed planning pipeline. Note that the WPG uses the exact same parametrization within
real-world experiments as in simulations. Thus, no manual tweaking is necessary. Same as for
the presented simulations, the results shown in the following could only be achieved through the
combination with the new SIK module contributed by FELIX SYGULLA. Indeed, walking without
any sensor feedback, i. e., letting SIK pass-through the planned trajectories directly to the HWL,
makes the robot fall after very few steps – even without hand contacts.

Hardware Revision Since the modifications to the hardware have been extensive, it first had
to be checked if the robot kept its original stabilization and walking capabilities. A selection of
initial tests which verify this are shown in the video [21]. In order to test and optimize the
stabilization performance for the new multi-contact skills, several balancing experiments have
been conducted. An exemplary scenario is shown in Figure 8.3 left, for which a significantly
increased robustness against external disturbances is observed when compared to the same
motion without hand support. For evaluating the dynamic behavior under more realistic walking
conditions, numerous experiments similar to the simulation scenarios from Section 8.1 have
been conducted (see Figure 8.3 right).

As the numerous successful experiments confirm, the new hardware fits our target applica-
tion very well. With regard to the new arms of LOLA, the proposed four DoF design turns out to
be a suitable compromise between dexterity (considering only pushing interactions) and mass
(allowing fast arm motion). Moreover, as already predicted by the EMA (cf. Section 3.8), the
new torso design leads to a clearly visible reduction of the structural oscillations in the upper
body. With regard to multi-contact locomotion, this has a positive effect on the accuracy of
establishing hand contacts.

Kinematic and Dynamic Feasibility While the new hardware has proven its capabilities with
respect to multi-contact locomotion, it is left to verify if the WPG’s concepts for maintaining
kinematic and dynamic feasibility indeed lead to a stable real-world execution. For this purpose,
a more challenging experiment similar to the simulation scenario “Platform” (cf. Figure 8.2) has
been conducted. Exemplary snapshots of the experiment are shown in Figure 8.4. Although
not strictly necessary from a kinematic or dynamic point of view, we force the robot to make a
partial contact during stepping up which demonstrates that such contacts are realizable in real-
world experiments. The tiptoe contact during stepping down increases the kinematic reserves
(see also Figure 6.14) while the additional hand support helps to stabilize the robot within SS
phases where the stance foot is in partial / tiptoe contact.

https://youtu.be/mGlsc_revMc?t=10m28s
https://youtu.be/JCYmq6u0EEc

8.2 Real-World Experiments 198

Figure 8.3: Evaluation of the multi-contact performance of the new hardware of LOLA. Left: walking in place with
random pushes by a human (cf. [20 @t=35s]). Right: exemplary locomotion experiment similar to the simulation
scenario “Right Wall” from Figure 8.1 (cf. [20 @t=1m17s]). The experiments have been performed in semi-autonomous
mode (manually set contact sequence).

Figure 8.4: Experimental validation of combining multiple new and enhanced locomotion skills (similar to the simula-
tion scenario shown in Figure 8.2). The robot is commanded to step up (with partial contact and hand support) and
down (with tiptoe contact and hand support) a platform of 12.5 cm height (cf. [20 @t=1m40s]). Exemplary snapshots
of the experiment are shown in top-down view (first row) and side view (second row). The experiment has been per-
formed in semi-autonomous mode (manually set contact sequence).

Robustness Since the experiments presented so far can also be performed in “regular” biped
mode, additional hand contacts only have an assisting role for increasing overall robustness.
However, in very challenging scenarios – e. g. in case of strong disturbances – hand support can
become essential. Figure 8.5 shows two such scenarios where the robot is commanded to pass
through a corridor while walking on an uneven wooden terrain (left) and stepping on a rolling
board (right). The experiment is conducted in semi-autonomous mode, i. e., no input from the
CV system is used. Instead, the discrete contact sequence specifying the placement of the feet

https://youtu.be/gUNZ0AmLiWU?t=35s
https://youtu.be/gUNZ0AmLiWU?t=1m17s
https://youtu.be/gUNZ0AmLiWU?t=1m40s

8.2 Real-World Experiments 199

and hands is manually set. For placing the footholds, level ground is assumed, i. e., neither the
wooden terrain nor the rolling board are known to the robot. Although it has been shown that
the wooden terrain can be traversed in regular biped mode, additional hand support significantly
increases the rate of success from 2/3 (see [401, p. 155ff]) to almost 100 %. The experiment
shown on the right side of Figure 8.5 represents a scenario which is only feasible in multi-
contact mode. In the authors personal experience, this particular scenario is even challenging
for healthy human beings knowing about the disturbance.

Figure 8.5: Exemplary scenarios demonstrating the importance of hand support in case of strong disturbances. Left:
walking on an uneven wooden terrain (cf. [20 @t=10s]). Right: stepping on a rolling board (cf. [20 @t=23s]). The
experiments have been performed in semi-autonomous mode (manually set contact sequence). Both, the wooden
terrain and the rolling board are not known to the robot and thus, represent unexpected disturbances.

Vision Guided Locomotion While the full potential of the proposed contact planner has al-
ready been demonstrated within simulations, it still has to be verified if similar results can
be obtained in real-world experiments, i. e., using actual input data from the CV system. Fig-
ure 8.6 shows snapshots of experiments which evaluate the real-world performance for fully-
autonomous locomotion. For the complete footage of the experiments, see the video [17].
Although the basic functionality of the closed-loop system could be confirmed, the overall per-
formance is rather poor. This is mainly due to the low accuracy of the used low-cost depth
sensor which causes significant distortions in the scene reconstruction (see Section 3.8 for
details). In particular, we observe large absolute displacements in the surface models (up
to 7 cm) and a bumpy reconstruction of the flat ground (height differences in terrain up to
4 cm). With industrial-grade high-end perception hardware, the real-world performance for
fully-autonomous locomotion is expected to improve.

Locomotion Speed For regular biped locomotion, BUSCHMANN et al. reported a maximum
walking speed of 3.34 km/h (step length lx = 0.65 m and step duration ttra,dur = 0.7 s) [101]. In
order to evaluate the dynamic capabilities of LOLA v1.1, similar tests have been conducted with
the new hardware. Despite the slight increase in total mass, a new speed record of 3.38 km/h
(step length lx = 0.63 m and step duration ttra,dur = 0.67 s) could be achieved. While this does
not represent a noteworthy improvement over the previous system, it clearly shows that the
revision of the upper body did not degrade the biped walking performance of LOLA.

https://youtu.be/gUNZ0AmLiWU?t=10s
https://youtu.be/gUNZ0AmLiWU?t=23s
https://youtu.be/ovG2Rz9-1p8

8.2 Real-World Experiments 200

Figure 8.6: Experimental validation of fully-autonomous (“vision guided”) locomotion. Left: single handed support
against a wall (cf. [17 @t=15s]). Right: double handed support within a corridor (cf. [17 @t=1m32s]). The correspond-
ing environment models provided by the CV system are shown in Figure 4.4. The resulting motion plan is visualized
as an overlay to the real footage.

To the author’s best knowledge, the current speed limit of the robot can not be traced back
to a specific system component. Instead, the upper bound is characterized by a combination of
disturbances (e. g. slipping, early / late contact events) which can not be compensated entirely
by the stabilization system anymore and, hence, accumulate with every footstep. At some point,
these disturbances get large enough such that the system fails (e. g. due to actuators exceeding
their limits). In order to make more profound statements on the exact reasons for the current
speed limit (and how it could be surpassed with a potential successor of LOLA), this topic has to
be investigated in much more detail which, however, was not in the scope of this thesis.

For experiments involving multi-contact situations, a maximum speed of 1.8 km/h was used.
Note that this value does not represent an upper bound, but rather an optimum with regard
to overall stability and robustness. While multi-contact locomotion is also possible for higher
walking speeds, hand contacts with short duration tend to act more like a disturbance rather
than providing additional support. Furthermore, the velocity limits of the joints in the arms are
more likely to be hit for higher locomotion speeds.

https://youtu.be/ovG2Rz9-1p8?t=15s
https://youtu.be/ovG2Rz9-1p8?t=1m32s

Chapter 9

Closure

Within this chapter, the presented work is concluded. In Section 9.1, the main contents of this
thesis are condensed into a brief summary. Section 9.2 highlights the author’s contributions to
the field of humanoid robotics in general and the multi-contact locomotion project of LOLA in
particular. Concluding thoughts and recommendations for future work are given in the Sec-
tions 9.3 and 9.4, respectively.

9.1 Summary

The main motivation for this work was to render the locomotion capabilities of legged robots
more versatile and robust. In particular, this thesis focused on additional hand support during
(gaited) biped walking alias dynamic multi-contact locomotion. While the majority of the pre-
sented results are applicable to humanoid robots in general, this thesis is closely related to the
particular research platform LOLA. In order to enable multi-contact locomotion for this robot,
extensive modifications to the hard- and software had to be made. While a corresponding visual
perception (CV) system and low-level control (SIK) module have been contributed by WU et al.
[446, 448] and SYGULLA [401, p. 130ff], respectively, the author of the present thesis redesigned
the upper body hardware and developed a new contact planning and motion generation system.

Since the original upper body hardware was not made for multi-contact locomotion, it had to
be redesigned from scratch. In order to withstand the increased loads caused the by additional
hand support, LOLA’s torso has been significantly strengthened. This also allowed to resolve
issues of the previous design related to structural oscillations which decreased the performance
of the low-level controller. Besides the torso, also the arms received a substantial upgrade. This
includes a new 4 DoF kinematic topology which has been optimized for our target application
under consideration of certain local and global metrics. The new hands are equipped with com-
mercial six-axis FTSs surrounded by a spherical contact surface which allows force-controlled
pushing interactions with the environment.

LOLA’s real-time locomotion framework has a hierarchical structure consisting of a planning
(WPG), control (SIK), and interface (HWL) module. This thesis focused on the planning layer
which had been redesigned from the ground up in order to add native support for multi-contact
locomotion. The software architecture of the new WPG module features a modular design
with clear interfaces which encapsulates complexity and drastically improves maintainability
and extensibility for subsequent researchers working with this platform. Moreover, considerable
effort has been made to allow a highly efficient parallelized execution while respecting strict
constraints such as the limited onboard computing power.

The primary goal of this thesis was to achieve autonomous locomotion, i. e., based on an
environment model provided by a corresponding CV system (which itself is not in the focus of
this work), the robot should find an “optimal” path towards a user-defined goal on its own.
For this purpose, a novel contact planner has been developed which is capable of generating
a feasible contact sequence – even for the complex multi-contact case – in real-time (typically

201

9.2 Author’s Contributions and Innovation 202

around 1 s total runtime). In order to achieve this performance, a coarse initial solution is
computed which is used to accelerate a subsequent fine-grained search. Apart from introducing
multi-contact planning for LOLA, the new contact planner also extends the robot’s “regular”
biped walking skills by following a more generic modeling and planning approach.

For connecting the discrete states of the contact sequence through smooth task-space trajec-
tories, a new motion generation pipeline has been introduced. The main workflow is adopted
from the original real-time trajectory generation system by BUSCHMANN [100, p. 55ff]. In order
to maintain dynamic feasibility, a novel five-mass model approximating the multi-body dynamics
of the robot is used. Based on a geometrically generated reference ZMP trajectory, this model is
used to compute a corresponding CoM motion through quintic spline collocation – an extension
of the original cubic spline collocation method by BUSCHMANN et al. [98]. Kinematic feasibility
during challenging maneuvers is maintained through a simplified kinematic model of the leg
(represents extension of the previous approach by HILDEBRANDT et al. [8]).

Within the context of LOLA’s multi-contact revision, also the software ecosystem has been
refactored and extended. In particular, the author of this thesis contributed to the simulation
framework (synthesis of environment model and contact detection in multi-body simulation)
and visualization tools. The latter includes an interactive 3D viewer based on Blender.

9.2 Author’s Contributions and Innovation

While the previous section summarized the main contents of this document (which describes
also work by other researchers), this section is dedicated to highlight the most important contri-
butions and innovations of the author of this dissertation.

Hardware Design – Upper Body Core contributions of the author with regard to the revision
of LOLA’s upper body hardware include

• the overall concept and strategy for realizing an upper body specifically designed for multi-
contact locomotion which combines versatility, robustness, and low mass,

• the mechanical design of a robust and extensible torso minimizing structural oscillations
for unfavorable mode shapes (excludes certain non-critical parts such as covers and mount-
ing brackets for electrical components, cf. Section 3.5),

• the mechanical design of robotic arms capable of making unilateral contact with the envi-
ronment based on the optimal kinematic topology identified by NEUBURGER [28] (excludes
joint actuators for which the original modular drive design by LOHMEIER [291, p. 96ff] is
used instead), and

• an efficient, parallelized open-source tool for computing and analyzing the workspace of
a series kinematic chain with respect to certain local and global metrics.

Software Design – WPG Module In order to allow motions which involve multi-contact in-
teractions, the planning layer of LOLA’s locomotion framework has been redesigned from the
ground up. The entire WPG module has been created by the author of this thesis. It features

• a modular architecture which encapsulates complexity and integrates extensive error and
plausibility checks (with corresponding fallback strategies) – together leading to an un-
precedented reliability within real-world experiments,

• an effective clustering of computational workloads according to their real-time priority
and distribution among distinct threads in order to satisfy the hard real-time requirements
of the system while planning highly complex (and computational expensive) motions, and

9.2 Author’s Contributions and Innovation 203

• an efficient formulation of planned (task-space) motion in the form of a hierarchical tree
structure allowing to describe a variety of gaited and non-gaited motion patterns which
can be modified online, i. e., during its execution (dynamic replanning).

Contact Planning Furthermore, the author developed a novel contact planning system which
takes perception data from an arbitrary (yet compatible) CV system, assembles a corresponding
environment model, and generates a discrete contact sequence towards a custom user-defined
goal. In particular, this includes

• an open-source specification and implementation of the interface between an external CV
system and the WPG module which has a strong focus on real-time performance,

• an application-oriented environment model formulation featuring a dynamic map size,
multiple-levels of detail, and an automatic pre-evaluation of potential hand contact posi-
tions (multi-contact) based on local shape information of environmental objects,

• the introduction of QPWTs as an intuitive specification of almost arbitrary gaited loco-
motion patterns which supports non-horizontal ground, multi-contact configurations, and
customization of the (task-space) motion in between discrete states,

• a strategy for efficient collision checks and multi-contact proximity tests based on SSVs
(see Appendix C for details on the revision of the SSV library),

• a novel hierarchical contact planning pipeline featuring two subsequent graph searches
(coarse-to-fine planning) which are coupled through a 2D map storing local metrics ob-
tained from the first level (rasterization) used to accelerate the second level,

• a highly efficient graph search based on a custom implementation of the A⋆ algorithm,
custom data containers which are optimized for RTOSs, and various pre-computed (but
scenario independent) acceleration buffers, and

• rather simple yet effective optimization schemes to compute the final foot / hand contact
poses based on local shape information obtained from the environment model.

Motion Generation On the basis of LOLA’s original real-time trajectory generation system de-
signed by BUSCHMANN [100, p. 55ff], the author of the present thesis developed a new motion
generator from the ground up. It features

• a sequential planning pipeline realized as a chain of consecutive sub-modules – each of
which responsible of generating a certain component of the motion plan,

• a generalization of the concept of SS and DS phases known from biped walking to load
switch and motion phases which allow the description of gaited multi-contact locomotion
with synchronized foot and hand motion,

• generation of C2-continuous and natural (i. e. quaternion based) multi-axis rotations based
on QBSplines driven by polynomial parameter splines (cf. Appendix B),

• a highly efficient open-source implementation of analytical polynomial and quaternion
trajectories for describing translation and rotation in three-dimensional space,

• a ZMP planner with deterministic runtime generating horizontal and vertical reference
trajectories solely based on geometric considerations,

• a foot and toe motion planner which adapts to local terrain information (e. g. for stepping
up/down or traversing obstacles) and automatically establishes roll-off motion (heel-strike
and toe-lift-off),

• heuristics based yet effective methods for planning hand motion and corresponding inter-
action forces within multi-contact situations,

9.3 Conclusions 204

• a strategy for blending the hands between null- and task-space (actual blending through
smooth bilinear interpolation of parallel calculated IK solutions is realized within the SIK
module contributed by FELIX SYGULLA – cf. Section 4.6),

• an effective method for maintaining kinematic feasibility based on a simplified model of
the leg (extends the method of HILDEBRANDT et al. [8]), and

• an effective method for maintaining dynamic feasibility based on a novel five-mass model
(extends three-mass model of BUSCHMANN et al. [98]) used to formulate an overdeter-
mined BVP which is solved through a new quintic spline collocation algorithm (extends
cubic spline collocation of BUSCHMANN et al. [98]).

Ecosystem Apart from the planning layer of the real-time locomotion system, the author of
this thesis also made considerable contributions to the software ecosystem of the LOLA project.
Most prominently, this includes

• extensions to the existing simulation framework by a more robust contact detection al-
gorithm (multi-body simulation) and a (rather coarse) simulation of the CV system by
synthesizing a corresponding environment model from a given scene description and

• useful tools for visualization such as a powerful interactive 3D viewer based on Blender.

Beyond that, large parts of the source code contributed by the author of this thesis have been
published through the free and open-source C++ libraries Broccoli and am2b-vision-interface.

9.3 Conclusions

The main objective of this work was to enhance the versatility and robustness of biped locomo-
tion for humanoid robots by making use of additional hand supports. In contrast to related work
which is mostly restricted to quasi-static motions, a primary goal was to achieve (relatively) high
velocities. To reduce the complexity of this problem, this thesis focused on gaited locomotion
which preserves the main characteristics of biped walking. While this certainly represents some
kind of restriction, still a large variety of motion patterns can be displayed. Another goal of this
work was to achieve a high level of autonomy, i. e., the robot plans its motion autonomously
solely based on knowledge of its surroundings and a user-specified goal position. In order to
react to changes in the environment or user input within a reasonable amount of time, the total
planning time should be kept in the range of the duration of one or two foot steps.

With the proposed modifications to the hard- and software of LOLA, all our original goals
have been achieved. This is best demonstrated by the numerous published videos which have
been referred to within this thesis. Apart from the videos of simulations and real-world experi-
ments which verify the basic functionality, also the robustness and reliability of the proposed lo-
comotion framework has been demonstrated, e. g. through the live experiment presented within
the context of the 2020 IEEE-RAS International Conference on Humanoid Robots (July 19-21,
2021) which showcased LOLA’s new multi-contact locomotion skills.

In the author’s opinion, the reasons for this success are two-fold. First, the thorough design
of LOLA’s lower body hardware has been continued also for the new upper body. This includes
an uncompromising lightweight design and strong efforts to find an optimal solution for our
particular target application. With the recent multi-contact upgrade, LOLA’s hardware is (at
least) on a par with the currently best academic and commercial electrically driven humanoid
robots. The second reason for the success is attributed to the hierarchical architecture of the
locomotion framework which separates higher level planning based on rather coarse models
living within an idealized world and lower level stabilization compensating the errors of these
models and rejecting any kind of disturbances. In comparison to holistic frameworks which use

9.4 Outlook 205

a very detailed model of the robot and its environment on the planning level, the hierarchical
approach seems to lead to a higher overall robustness within real-world execution. Moreover, it
allows to drastically reduce computational cost which makes real-time planning feasible.

Compared to other electrically driven, fully-actuated, and life-sized humanoids, LOLA’s multi-
contact locomotion capabilities are surely at the cutting edge – probably even leading current
technology. This has been confirmed by national and international media through dedicated
press reports (see [27] and the IEEE Spectrum article [26]). The most prominent features are
the (relatively) high locomotion speed, the robustness even under large disturbances, and the
fact that fully autonomous multi-contact planning runs onboard and in real-time. However,
compared to the versatility, speed, and robustness of human locomotion, we still observe an
enormous gap. Although the electromechanical hardware of LOLA still leaves room for improve-
ment, the author believes that currently the most severe bottlenecks with regards to autonomous
multi-contact locomotion lie in the area of visual perception and scene reconstruction.

9.4 Outlook

Considering the given time and manpower, the scope of the multi-contact revision of LOLA was
remarkable. Despite the overall success of the project, the presented solution has to be seen as
“first shot” which is far from being optimal. Accordingly, there are countless things which can
be improved. The following paragraphs present a selection of recommended future extensions.

Visual Perception Since the low accuracy of the environment model is currently the main
bottleneck within autonomous walking experiments, it is highly recommended to upgrade the
visual perception system. For this purpose, one might replace the currently used low-cost cam-
eras by more potent industrial-grade products. Furthermore, it should be considered to use
multiple sensors attached to different segments of the robot (e. g. the knees) which would ex-
tend the field of view and simultaneously increase perception accuracy (shorter distances and
data fusion for overlapping fields of view). Additionally, the generation of the height map from
the surfel reconstruction is suboptimal (bumpy reconstruction of flat ground). Thus, a more
application-oriented solution, e. g. by fitting a plane into the point-cloud cluster representing
the floor, should be considered in future.

Mechanical Structures Through the multi-contact revision, the stiffness of LOLA’s upper body
has been significantly increased. However, in order to reduce undesired structural vibrations,
one should also try to increase (structural) damping. For this purpose, it is suggested to identify
critical parts of the current hardware configuration and optimize them with regards to their
damping properties, e. g. by experimenting with compound materials or 3D (metal) printing
technology. Bio-inspired designs currently seem to be the most promising approach. The gained
insights could then be used as guidance for designing a potential successor of LOLA.

Hand Design Due to its simplicity, the current design of the arms allows rather dynamic mo-
tions. However, with the presented hand design, only unilateral interactions with the envi-
ronment are possible. To remove this restriction, a rather simple mechanism – e. g. involving a
single DoF gripper – could be used. Depending on its particular realization, this extension would
possibly also require to add additional joints to the arm (e. g. 6 DoF topology). Unfortunately,
this inevitably leads to an increase of mass effectively degrading the dynamic performance dur-
ing multi-contact locomotion. Thus, one might try to find a compromise between dexterity and
mass / inertia. Note that a fully articulated hand would further allow to investigate complex
manipulation which, however, has not been in the scope of the LOLA project so far.

9.4 Outlook 206

Torque Control For the actuators of the new upper body we reused the original modular joint
drives by LOHMEIER [291, p. 96ff]. Consequently, also the new arms do not feature dedicated
sensors for joint torque feedback. However, in order to benchmark position- against torque-
control (and potential hybrid schemes), the robot would need to integrate torque sensors. Since
this would require extensive changes to the hardware of LOLA, the author of thesis recommends
to realize this idea with a potential successor platform instead.

Full (Hardware) Autonomy Within the context of this thesis, fully-autonomous locomotion
describes the automatic generation and execution of a motion plan solely based on the provided
environment model and without any additional user-input (except for specifying the desired
goal position). However, for “real” autonomy of a humanoid robot, also the hardware needs
to be autonomous, i. e., “detached”. For LOLA, this means that the high-level communication
between the human operator and the robot has to be realized through a wireless technology.
Since high-level signals are typically not time-critical (a delay of few milliseconds is not notice-
able by humans anyway), an off-the-shelf solution seems to be sufficient. Furthermore, also an
onboard power supply (e. g. in the form of a sufficiently dimensioned battery pack) is required.
An entirely untethered operation further requires to detach the robot from its safety harness.
Certainly, this demands a much more robust hardware which is able to survive falls.

In the author’s personal opinion, an onboard power supply is a reasonable extension for
a future revision of LOLA since it affects the total weight and mass distribution which in turn
changes the dynamic properties of the system. In contrast, wireless high-level communication
is not expected to affect the performance of the robot in any way. Similarly, the safety harness
represents only a minimal mechanical disturbance while drastically lowering the risk of damage
during the test of new methods or very challenging maneuvers. While an entirely untethered
operation makes sense with regard to the development of a commercial product, it seems to
have more disadvantages than advantages for an academic research prototype.

Distributed Computation Except for the CV system which is executed on a separate board,
the entire locomotion framework of LOLA runs on the same PC. Although an RTOS is used which
allows to prioritize individual threads, lightweight low-level tasks still share common resources
(CPU cache, RAM, etc.) with heavyweight high-level tasks. Since the current setup is reaching
its limits with regard to the hard real-time constraints, the author recommends to distribute the
computational workload to different boards. As a first step, it seems advantageous to execute
the computational expensive contact planning pipeline on the vision PC.

Contact Planning The (multi-)contact planner presented in Chapter 5 is the most recent and
consequently least mature component of the locomotion framework. In Section 5.6, concrete
suggestions for future improvements and extensions have been presented.

Optimize Parameters Due to its complexity, the real-time locomotion framework of LOLA

depends on a large amount of customizable parameters. Certainly, this holds also true for the
new WPG module. Since the currently used parameter set has been determined by manual
tuning, it has to be seen as a first “working” configuration which definitively can be optimized
through dedicated parameter studies.

Appendix A

Notation

For mathematical formulations, this document adopts the notation of the Chair of Applied Me-
chanics, TUM, which is in large parts equivalent to the common conventions in the field of
robotics. This section gives a brief summary of the most important definitions. Although quater-
nions are introduced in Appendix B, some formulations are presented already in this section to
show their equivalence to rotation matrices with regard to notation.

Scalars, Vectors, and Matrices Scalars are represented by regular (non-bold) lower or upper
case letters such as a or A. In contrast, a bold letter denotes either an one-dimensional array
such as a vector or quaternion (typically lower case, e. g. a) or a multi-dimensional array such
as a matrix (typically upper case, e. g. A). For vectors and matrices, the dimension is either
explicitly defined upon first appearance, or it is implicitly given through the context. If not
specified otherwise, vectors are column vectors.

Coordinate Systems (CoSys) and Frames of Reference (FoR) All considered CoSys alias
frames are defined to be Cartesian and right-handed. Some quantities such as positions and
orientations may be described in a certain CoSy acting as FoR. The corresponding FoR is denoted
by a left hand subscript, e. g. X rP which denotes the position of the point P described in the
frame X . Similarly, the rotation matrix X AY or equivalently the (unit) quaternion X sY denote the
orientation of the frame Y described in the frame X . A special notation is used for wrenches and
the mass moment of inertia tensor, for which (additional to the FoR) a reference point has to be
specified. This is done by a right hand superscript, e. g. X W P which denotes a wrench acting at
the point P or XΘ

P which denotes a mass moment of inertia tensor with respect to the point P
(both described in the frame X).

Positions and Translations In general, positions are specified as vectors starting from the
origin of the corresponding FoR, i. e., X rP denotes the vector from the origin of the frame X to
the point P described in the frame X . In order to write the relative (difference) vector between
two points, a second right hand subscript is added, e. g. X rP-Q := X rQ − X rP which denotes the
vector from the point P to the point Q described in the frame X . Indeed, this notation implies the
equivalence X rP = X rX -P = X rP − X rX where the first variant is preferred for brevity (X rX = 0).
A relative position can be understood as a translation, e. g. X rQ = X rP + X rP-Q represents a
translation of the point P by X rP-Q resulting in the point Q.

Orientations and Rotations An orientation describes the alignment (as current state) of one
CoSy with respect to another CoSy. A rotation typically denotes the action to get from one
orientation to the other. Same as with positions and translations, the mathematical description
of orientations and rotations is equivalent. As an example,

X rP = X AY Y rP = vec
�

X sY ⊗
real/vec
quat

�

0, Y rP

�

⊗ X s̄Y

�

= rotMat
�

X sY

�

︸ ︷︷ ︸

X AY

Y rP (for rX -Y = 0) (A.1)

207

A Notation 208

represents a (pure) rotation of the point P originally described in the frame Y (Y rP) by the
orientation of the frame Y (X AY or equivalently X sY) such that it is finally described in the
frame X (X rP). Here, we assumed that X and Y have the same origin, i. e., that rX -Y = 0
holds (no translation). Note that rotations can be chained, i. e., X AZ = X AY Y AZ or equivalently

X sZ = X sY ⊗ Y sZ . This unveils the handiness of the chosen notation with left and right subscripts
allowing quick feasibility checks.

Elementary Rotation Matrices The symbol Ax |y|z, i. e., a rotation matrix lacking a left sub-
script, is used to denote an elementary rotation matrix either around the x-, y-, or z-axis. In
particular, we define

Ax(ϕ) :=





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



 , Ay(ϕ) :=





cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ



 , Az(ϕ) :=





cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1



 .

(A.2)

Transforms A combination of rotation and translation can be used to move from one CoSy to
the other. For the position of a point P, we can change the FoR from the frame Y to X by

X rP = X rY + X AY Y rP or

�

X rP
1

�

= X HY

�

Y rP
1

�

with X HY :=

�

X AY X rY
0 1

�

, (A.3)

where X HY denotes the homogeneous transform from the frame Y to the frame X . Same as for
rotation matrices, homogeneous transforms can be chained, i. e., X HZ = X HY Y HZ . However,
while X A−1

Y = X AT
Y = Y AX holds, the inverse of a homogeneous transform is given by

X H−1
Y = Y HX =

�

X AT
Y −X AT

Y X rY
0 1

�

such that

�

Y rP
1

�

= Y HX

�

X rP
1

�

. (A.4)

Time Derivatives Derivatives with respect to time are indicated by a single or double dot above
the symbol while higher order derivatives are denoted by a right hand superscript enclosed
within brackets. Thus, ẋ = dx/dt denotes the first, ẍ = d2 x/dt2 the second, and x (3) = d3 x/dt3

the third time derivative of x . If not specified otherwise, time derivatives of FoR-dependent
quantities such as positions and orientations are defined to be absolute, i. e., with respect to an
inertial (non-moving but probably jumping) FoR.

Partial Derivatives The partial derivative of a (column) vector with respect to another (col-
umn) vector follows the common definition of a Jacobian matrix. Most prominently, this applies
to the task-space jacobian J(q) given by

J(q) :=
�

∂ ẋ (q)
∂ q̇

�

=













∂ ẋ1(q)
∂ q̇1

· · ·
∂ ẋ1(q)
∂ q̇n

...
. . .

...
∂ ẋp(q)

∂ q̇1
· · ·

∂ ẋp(q)

∂ q̇n













∈ Rp×n . (A.5)

Appendix B

Quaternion Calculus and Interpolation of Rotations
using Quaternions

This section gives an introduction to the fundamentals of quaternions and presents a selection
of interpolation methods. Within the context of this thesis, quaternions are used to describe
spatial rotation, thus, a strong focus is put on unit quaternions. The contents of this section
are gathered from various sources, most importantly [88, 115, 123, 155, 248–250, 310, 378],
which are recommended references discussing the corresponding topics in much more detail.

B.1 Fundamentals

Quaternions have been first described by HAMILTON in 1843 [187]. They can be understood as
an extension of the concept of complex numbers featuring three instead of one imaginary axis.
As a tribute to their discoverer, the set of quaternions is typically denoted by H. A quaternion is
defined as the expression [310, p. 3f]

s = sw + sx i+ sy j+ sz k ∈H with i2 = j2 = k2 = i j k= −1
︸ ︷︷ ︸

Hamiltonian rule

and sw, sx , sy , sz ∈ R . (B.1)

Here, i, j, and k denote the so-called basic quaternions alias imaginary axes, for which addition-
ally the relations

i j= k= −j i and j k= i= −k j and k i= j= −i k (pairwise anticommutativity) (B.2)

hold [310, p. 4]. The coefficients sw, sx , sy , and sz represent real-valued scalars, where sw takes
a special role and is called real or alternatively scalar component of the quaternion. The three
remaining components are typically called the vector part [310, p. 4]. To extract these parts
from a given quaternion s ∈H, we define the operators

real(sw+ sx i+ sy j+ sz k) := sw ∈ R and vec(sw+ sx i+ sy j+ sz k) := [sx , sy , sz]
T ∈ R3 . (B.3)

Conversely, we define an operator to construct a quaternion from these parts

s =
real/vec
quat(sw, [sx , sy , sz]

T) := sw + sx i+ sy j+ sz k ∈H . (B.4)

Arithmetic Operations The addition and subtraction of two quaternions s1 and s2 is simply
performed component-wise [310, p. 5], i. e.,

s1 + s2 :=
�

s1,w + s2,w

�

+
�

s1,x + s2,x

�

i+
�

s1,y + s2,y

�

j+
�

s1,z + s2,z

�

k ∈H ,

s1 − s2 :=
�

s1,w − s2,w

�

+
�

s1,x − s2,x

�

i+
�

s1,y − s2,y

�

j+
�

s1,z − s2,z

�

k ∈H .
(B.5)

209

B.1 Fundamentals 210

For multiplication, we differentiate between three cases. The first case is a multiplication of a
quaternion s ∈H with a real-valued scalar α ∈ R. Same as for addition and subtraction, this is a
commutative, component-wise operation [310, p. 5]:

α s = s α :=
�

α sw

�

+
�

α sx

�

i+
�

α sy

�

j+
�

α sz

�

k ∈H . (B.6)

The second case represents the multiplication of two quaternions, typically referred to as quater-
nion multiplication or HAMILTON product, for which we use the special symbol ⊗. This operation
is not commutative, i. e., in general s1 ⊗ s2 ̸= s2 ⊗ s1 holds. The HAMILTON product of two
quaternions s1, s2 ∈H is defined as [310, p. 5]

s1 ⊗ s2 :=
�

s1,w s2,w − s1,x s2,x − s1,y s2,y − s1,z s2,z

�

+
�

s1,w s2,x + s1,x s2,w + s1,y s2,z − s1,z s2,y

�

i

+
�

s1,w s2,y − s1,x s2,z + s1,y s2,w + s1,z s2,x

�

j

+
�

s1,w s2,z + s1,x s2,y − s1,y s2,x + s1,z s2,w

�

k ∈H .

(B.7)

As third case, we introduce the dot product (alias Euclidean inner product) for which we use the
special symbol ⊙. The dot product of two quaternions s1, s2 ∈H is defined by [310, p. 13f]

s1 ⊙ s2 = s2 ⊙ s1 := s1,w s2,w + s1,x s2,x + s1,y s2,y + s1,z s2,z ∈ R (B.8)

and is commutative. The notation with s1 ⊗ s2 and s1 ⊙ s2 for the HAMILTON and dot product of
two quaternions is chosen such that the reader can easily distinct between these two operations.
In contrast, related work (e. g. [310]) typically uses s1 s2 and s1 · s2, which (in the author’s
personal opinion) is less explicit and may let the reader forget to pay attention to the non-
commutativity of the HAMILTON product.

Modulus, Unit Quaternions, and Identities The modulus alias absolute value of a quaternion
is given by the Euclidean length of its representation as R4 vector [310, p. 10f], i. e.,

|s |=
�

�

�sw + sx i+ sy j+ sz k
�

�

� :=
Ç

s2
w + s2

x + s2
y + s2

z ∈ R . (B.9)

A quaternion s with modulus |s | = 1 is called unit quaternion. Within this thesis, the set of unit
quaternions is denoted with H1, i. e.,

H1 := {s ∈H | |s |= 1} . (B.10)

A special unit quaternion is the multiplicative identity quaternion 1H [310, p. 7f] given by

1H := 1+ 0 i+ 0 j+ 0k ∈H
�

sw = 1, sx = sy = sz = 0
�

(B.11)

for which the important property 1H ⊗ s = s ⊗ 1H = s holds for an arbitrary s ∈ H. The additive
identity quaternion 0H [310, p. 7f] (alias zero quaternion) is given by

0H := 0+ 0 i+ 0 j+ 0k ∈H
�

sw = sx = sy = sz = 0
�

(B.12)

which represents the neutral element of addition, i. e., s+0H = 0H+ s = s for an arbitrary s ∈H.

Normalization In order to obtain a unit quaternion from an arbitrary (non-zero) quaternion,
a normalization operation (in [310, p. 23] called quaternion sign) is defined. Similar to the
normalization of a vector in Rn, this is done by

norm(s) :=
s
|s |
∈H1 for s ∈H \ 0H . (B.13)

B.1 Fundamentals 211

Conjugate and Inverse The quaternion s̄ given by

s̄ := sw − sx i− sy j− sz k ∈H with s = sw + sx i+ sy j+ sz k ∈H (B.14)

is called conjugate quaternion of s [310, p. 9f]. Together with the modulus |s |, the conjugate s̄
can be used to obtain the multiplicative inverse s−1 [310, p. 10f] defined as

s−1 :=
s̄

|s |2
∈H for s ∈H \ 0H (B.15)

for which s−1 ⊗ s = s ⊗ s−1 = 1H holds for an arbitrary s ∈ H \ 0H. For unit quaternions the
inverse is equivalent to the conjugate, i. e., s−1 = s̄ if s ∈ H1. Finally, the additive inverse of a
quaternion s is given by −s , such that s + (−s) = 0H holds for an arbitrary s ∈H.

Exponential and Logarithm For an arbitrary quaternion s ∈H with corresponding vector part
v := vec(s) ∈ R3, the quaternion natural exponential function is given by [310, p. 88ff]

es = exp(s) :=
∞
∑

i=0

s i

i!
=







esw
real/vec
quat

�

cos(∥v∥), sin(∥v∥) v
∥v∥

�

∈H if ∥v∥ ≥ ϵ ,
real/vec
quat

�

esw , v
�

∈H else
(B.16)

where the second case represents a fallback to avoid division by (almost) zero using the relation
limx→0 sin(x)/x = 1. Its inverse operation, the quaternion natural logarithm function is given by

ln(s) :=















real/vec
quat

�

ln(|s |), atan2
�

∥v∥, sw

� v
∥v∥

�

∈H if ∥v∥ ≥ ϵ ,
real/vec
quat

�

ln(|s |), v
sw

�

1− ∥v∥
2

3 s2
w

��

∈H if ∥v∥< ϵ ∧ sw > ϵ ,

undefined else

(B.17)

where the first case ∥v∥ ≥ ϵ denotes its basic definition [310, p. 92f] and the second case
∥v∥ < ϵ ∧ sw > ϵ represents a fallback to avoid division by (almost) zero using a TAYLOR series
expansion of the arctangent (up to the second term) as suggested in [385, p. 11]. Note that sim-
ilar to ln(0), also ln(0H) is not defined (third case). Moreover, following its original definition,
exp(s1) = s2 has infinitely many solutions s1 = ln(s2) for s2 ∈ H \ 0H. Indeed, for an exact defi-
nition, we would have to add the term 2πn with n ∈ Z to the result of atan2 in Equation B.17,
see [310, p. 92f] for details. Within the scope of this thesis, we use the special case n = 0 such
that we can use the definition given in Equation B.17.

Power The quaternion power function s
s2
1 with s1, s2 ∈H is defined by [310, p. 97f]

s
s2
1 := exp

�

ln
�

s1

�

⊗ s2

�

∈H for s1 ∈H \ 0H . (B.18)

We obtain a similar expression for the power function sα with s ∈ H and α ∈ R by inserting
s2 = α+ 0 i+ 0 j+ 0k= α1H into Equation B.18:

sα := exp(α ln(s)) ∈H for s ∈H \ 0H . (B.19)

If the exponent is a positive integer n ∈ N0, it is also possible to use

sn :=
n
∏

i=1

s =







1H if n= 0 ,
s if n= 1 ,
s ⊗ . . .⊗ s else

(B.20)

instead. Certainly, for high values of n, Equation B.19 will be more efficient than the repeated
multiplication in Equation B.20.

B.2 Spatial Rotation 212

B.2 Spatial Rotation

There are numerous ways of describing orientations and rotations in three-dimensional space.
Prominent examples are rotation matrices, the set of EULER (proper EULER and TAIT-BRYAN) an-
gle parametrizations, the axis-angle representation, rotation vectors, and quaternions. Unfortu-
nately, many concepts and relations known from the space R3 do not have a direct or equivalent
counterpart in SO(3), which often makes the handling of spatial rotations difficult. Indeed, no
“superior” representation solving all difficulties is known. Instead, each of the mentioned de-
scriptions has its individual advantages and disadvantages such that the representation should
be selected with respect to the particular application. For the WPG module of LOLA, quaternions
have been selected as the primary formulation while other parametrizations are used only in
special cases. This section introduces the description of spatial rotations with quaternions and
provides some useful formulas for converting them to other formulations.

Quaternions Orientations in three-dimensional space can be described by the subset of unit
quaternions H1 ⊆H. Following the notation introduced in Appendix A, the quaternion X sY ∈H

1

denotes the orientation of the frame Y described in the frame X . This can be used to rotate a
point P through

X rP = vec
�

X sY ⊗
real/vec
quat

�

0, Y rP

�

⊗ X s̄Y

�

(for rX -Y = 0) (B.21)

which is equivalent to a change of the FoR from Y to X assuming pure rotation without trans-
lation. In contrast to minimal92 representations such as EULER angles, quaternions are free of
singularities, thus, they avoid the common problem of gimbal lock (loss of DoF).

Same as with rotation matrices, a simple multiplication of quaternions is sufficient to de-
scribe a chained rotation, i. e., X sZ = X sY ⊗ Y sZ . Since the HAMILTON product involves only 28
operations (16 multiplications and 12 additions) while the multiplication of two rotation ma-
trices accounts for 45 operations (27 multiplications and 18 additions), chaining rotations is
more efficient using quaternions. Moreover, a convenient property of unit quaternions is that
their inverse is equal to their conjugate, such that X sY = Y s−1

X = Y s̄X holds. Thus, computing
the inverse alias conjugate is extremely efficient and boils down to flipping the sign of three
coefficients while, in theory, the transposition of a rotation matrix requires 9 operations.

Another notable property of quaternions in the context of spatial rotation is that X sY and
its additive inverse −X sY describe the same orientation. Replacing X sY with −X sY and X s̄Y with
−X s̄Y in Equation B.21 gives an immediate proof. This property originates from the fact that any
orientation can be represented as a single-axis rotation either by a positive angle ϕ1 ∈ [0, 2π[,
or its equivalent negative angle ϕ2 = ϕ1 − 2π ∈ [−2π, 0[. Or, more generally formulated
considering multiple revolutions, by any ϕ1 + 2πn with n ∈ Z. Indeed, quaternions do not
(directly) allow to describe rotation by multiple revolutions, i. e., the information about the
count of revolutions is lost once we convert to a quaternion. However, by flipping the sign of a
quaternion we can reverse the “direction of movement” (still leads to the same final orientation).

For considering motion, the computation of the angular velocity and acceleration from the
corresponding X sY , X ṡY , and X s̈Y is quite simple and efficient, especially when compared to other
parametrizations. In particular, the angular velocity XωY and the angular acceleration X ω̇Y of
the frame Y described in the frame X are given by [115]

XωY := 2vec
�

X ṡY ⊗ X s̄Y

�

= −2vec
�

X sY ⊗ X
˙̄sY

�

(B.22)

92A minimum of three parameters is necessary to describe an arbitrary orientation in three-dimensional space.
Obviously, a unit quaternion s ∈ H1 features four parameters sw, sx , sy , and sz , which, however, are constrained by
the requirement s2

w + s2
x + s2

y + s2
z = 1.

B.2 Spatial Rotation 213

and

X ω̇Y :=2vec
�

X s̈Y ⊗ X s̄Y + X ṡY ⊗ X
˙̄sY

�

= −2vec
�

X sY ⊗ X
¨̄sY + X ṡY ⊗ X

˙̄sY

�

=2vec
�

X s̈Y ⊗ X s̄Y −
�

X ṡY ⊗ X s̄Y

�2�
= −2vec

�

X sY ⊗ X
¨̄sY −

�

X ṡY ⊗ X s̄Y

�2� (B.23)

where we used the relation ṡ ⊗ s̄ = −s ⊗ ˙̄s for an arbitrary s ∈ H1 and ṡ ∈ H (obtained from
deriving s⊗ s̄ = 1H with respect to time resulting in ṡ⊗ s̄+ s⊗ ˙̄s = 0H). Note that the second row
in Equation B.23 involves the product X ṡY ⊗X s̄Y which already appeared in Equation B.22. Thus,
simultaneous evaluation of both, XωY and X ω̇Y , can be implemented very efficiently. Finally, it
has to be highlighted that although X sY is a unit quaternion, this does not hold true for its time
derivatives. As a consequence, in general X ṡ−1

Y ̸= X
˙̄sY (and X s̈−1

Y ̸= X
¨̄sY , etc.) holds.

Rotation Matrices In order to convert the unit quaternion X sY ∈ H
1 into a corresponding

rotation matrix X AY ∈ R
3×3, we define the operator [310, p.40ff]

X AY = rotMat(X sY) :=





1− 2
�

y2 + z2� 2 (x y −w z) 2 (w y + x z)
2 (wz + x y) 1− 2

�

x2 + z2� 2 (y z −w x)
2 (x z −w y) 2 (w x + y z) 1− 2

�

x2 + y2�



 ∈ R3×3 (B.24)

where we used the abbreviations w := X sY,w, x := X sY,x , y := X sY,y , and z := X sY,z for brevity.
From Equation B.24, it is also possible to define an inverse operation, i. e., the construction of a
quaternion from a given rotation matrix. However, this requires special attention to avoid nu-
merical issues, especially if the provided matrix is not orthogonal due to numerical errors. This
unveils another issue of rotation matrices in the context of chained transformations: while the
re-orthogonalization of rotation matrices is rather expensive, the normalization of a quaternion
by Equation B.13 is relatively cheap (same as normalizing an R4 vector). Indeed, the WPG mod-
ule of LOLA re-normalizes orientations represented as quaternions at meaningful places (e. g.
after extensive transformations). Moreover, the conversion of quaternions to rotation matrices
always represents the very last step, while the inverse operation is avoided completely.

Within the WPG module of LOLA, rotation matrices are mainly used to rotate vectors in R3

such as positions and velocities. This is motivated by the high efficiency of multiplying a 3× 3
matrix with a three-dimensional vector involving only 15 operations (9 multiplications and 6
additions) which is less than what is required with Equation B.21. In many cases, multiple
vectors have to be rotated by the same X sY such that it is more efficient to convert X sY to X AY
first and perform the actual rotation of the vectors with X AY .

Axis-Angle Representation There is a close relationship between the formulation of orienta-
tions by unit quaternions and the axis-angle representation. In particular, the construction of a
unit quaternion from an axis-angle pair (a, ϕ) is given by [310, p. 42ff]:

s =
ax/ang
quat(a, ϕ) := cos

�ϕ

2

�

+
�

ax i+ ay j+ az k
�

sin
�ϕ

2

�

∈H1

=
real/vec
quat

�

cos
�ϕ

2

�

, sin
�ϕ

2

�

a
�

∈H1
(B.25)

where a = [ax , ay , az]
T ∈ R3 with ∥a∥ = 1 represents the (normalized) axis and ϕ ∈ R denotes

the angle (positive according to the right hand rule). The periodicity of the involved sine and
cosine highlights at which point the information about multiple revolutions gets lost within this
conversion. Note that this operator is not to be mistaken with the constructor from the real and
vector part defined in Equation B.4, which also takes a three-dimensional vector and scalar as
argument but in the opposite order.

B.2 Spatial Rotation 214

For the inverse operation, i. e., computing the axis-angle pair (a, ϕ) from a given unit quater-
nion s ∈H1 with corresponding vector part v := vec(s) ∈ R3, one can easily find

axAng(s) := (a, ϕ) with

�

a = v
∥v∥ , ϕ = 2atan2

�

∥v∥, sw

�

if ∥v∥ ≥ ϵ ,
a = [1, 0, 0]T , ϕ = 0 else

(B.26)

where ∥a∥ = 1 and ϕ ∈ [0, 2π] due to ∥v∥ ≥ 0. The second case represents a fallback to avoid
division by (almost) zero which occurs for the identity rotation with s = ±1H. The combination
of a rotation axis and a scalar angle is probably the most intuitive and human understandable
way of describing the relative orientation between two CoSys. Thus, within the WPG module
of LOLA, this representation is mainly used for constructing quaternions, i. e., to take a user-
specified (a, ϕ) and convert it to a corresponding quaternion using Equation B.25.

EULER Angles The axis-angle representation may also be used to convert an arbitrary EULER

angle parametrization into a corresponding quaternion. For this, the three elementary (single-
axis) rotations of the chosen EULER convention are written as axis-angle pairs (e. g. (ex , ϕx),
(ey , ϕy), and (ez , ϕz)) and individually converted to corresponding quaternions using Equa-
tion B.25. The three resulting quaternions are then multiplied using the HAMILTON product,
which finally leads to the overall quaternion describing the multi-axis rotation. For an efficient
implementation, one can exploit the special structure of ex , ey , and ez. The inverse operation,
i. e., computing EULER angles from the corresponding quaternion, is slightly more involved and
differs depending on the order of elementary rotations. Within the WPG module of LOLA, EULER

angles are used for the definition of Step Parameters, see Appendix D.

Rotation Vectors A rotation vector ϑ is just another form of the axis-angle representation
(a, ϕ), where the angle is encoded as length of the vector describing the axis, i. e., ϑ := ϕ a ∈ R3

with ∥ϑ∥= ϕ. Thus, for constructing a unit quaternion from a corresponding rotation vector we
can use the axis-angle representation as intermediate step. Indeed, it can be easily shown that
this is equivalent to the operator

X sY =
rot-vec
quat(XϑY) := exp

�

real/vec
quat

�

0, XϑY

2

��

∈H1 (B.27)

where we reuse the quaternion natural exponential function from Equation B.16 which is ro-
bust against the case of XϑY → 0, i. e., an (almost) identity rotation. The inverse operation of
constructing a rotation vector from a unit quaternion is given by

XϑY = rotVec(X sY) := 2vec
�

ln
�

X sY

��

∈ R3 for X sY ∈H
1 (B.28)

where we reuse the quaternion natural logarithm function from Equation B.17 which is robust
against the case of X sY →±1H, i. e., an (almost) identity rotation.

The representation of orientations as rotation vectors is used within the task-space formu-
lation of LOLA, see Section 4.3. Indeed, they simplify the modification of trajectories within
the SIK module. In contrast, the WPG module relies on the axis-angle representation whenever
an intuitive formulation is required while rotation vectors are only computed in the very last
post-processing step to create the task-space vector x .

Minimum Rotation In some situations it is required to determine the minimum rotation to get
from one orientation to the other. Again, the axis-angle representation comes in handy since it
explicitly specifies the desired axis (alias “direction”) and angle (alias “distance”). If we consider
a frame Y with orientation X sY ∈H

1 and a frame Z with orientation X sZ ∈H
1 (both described in

an arbitrary frame X), then the orientation of the frame Z described in the frame Y is given by

B.3 Interpolation 215

Y sZ = X s̄Y ⊗X sZ . Through (a, ϕ) = axAng(Y sZ), it is possible to determine the rotation axis a and
the angle ϕ. In case Y sZ ,w < 0, it follows that π < ϕ ≤ 2π (cf. Equation B.26), which means that
the pair (a, ϕ) does not represent the minimum rotation (with respect to the rotation angle).
However, we can simply use

ϕmin :=

�

ϕ if ϕ ≤ π ,
ϕ − 2π else with ϕ ∈ [0, 2π] and ϕmin ∈]−π, π] (B.29)

such that the pair (a, ϕmin) or equivalently the dual pair (−a, −ϕmin) describes the minimum
rotation between the frame Y and the frame Z .

It can be easily verified that instead of subtracting 2π, it is also possible to flip the sign of one
of the input quaternions X sY or X sZ such that axAng(−Y sZ) directly gives us the minimum rota-
tion. This property will be exploited during the interpolation of rotations (see Appendix B.3),
where the user specifies a sequence of keyframe quaternions, which should be traversed using
the minimum rotation between two keyframes. Indeed, the sign of one of the input quaternions
only has to be flipped in case of Y sZ ,w < 0 which implies ϕ > π (cf. Equation B.26). Note that
we can efficiently compute Y sZ ,w through the dot product of the input quaternions

Y sZ ,w = real
�

Y sZ

�

= real
�

X s̄Y ⊗ X sZ

�

= X sY ⊙ X sZ= cos
�ϕ

2

�

. (B.30)

Thus, we can avoid computing the HAMILTON product Y sZ = X s̄Y ⊗ X sZ (28 operations) by using
the much more efficient dot product X sY ⊙ X sZ (7 operations) instead.

B.3 Interpolation

In the following, selected quaternion-based methods for interpolating a user-defined sequence
of keyframe orientations are introduced. Compared to R3, interpolation in SO(3) turns out to
be much more complex. While translations are combined in R3 through addition, rotations are
chained in SO(3) through (non-commutative) multiplication. As a consequence, linear relation-
ships in R3 often become non-linear when transferred to SO(3). This makes the development of
advanced interpolation methods (e. g. enforcing smoothness) difficult, cf. [249].

A rather simple approach for interpolating spatial rotation is to use EULER angles and to
interpolate its three parameters using well-known techniques from R, e. g. linear interpolation
by ϕ(η) = ϕ(0) + η (ϕ(1) − ϕ(0)) with η ∈ [0, 1]. However, the resulting motion between
keyframes strongly depends on the chosen EULER angle convention, i. e., the order of elementary
rotations. Additionally, given a certain angular velocity, the rate of change of the EULER angles
grows without limitation in the vicinity of singularities. In contrast, quaternions are immune
to gimbal lock and allow to interpolate multi-axis rotation between keyframes in a “natural”
manner, which makes the resulting motion behave more like a human would expect it to be. The
high computational efficiency and numerical stability of quaternions are additional arguments
which motivate their use for interpolating rotations in the WPG module of LOLA.

Source Code An efficient implementation of the presented interpolation methods has been
published by the author of this thesis as part93 of the free and open-source library Broccoli [15]
(see Section 7.2). A special focus was set on efficiency and real-time performance. For interpola-
tion methods where an analytic formulation of the derivative is known, the library implements it
up to the highest possible order. Furthermore, the Broccoli implementation provides methods to
efficiently evaluate the current orientation, angular velocity, and angular acceleration through a
single function call, which automatically re-uses intermediate results for highest performance.

93See the module curve of Broccoli.

B.3 Interpolation 216

The library distinguishes between
• quaternion curves interpolating two (or more) keyframe quaternions,
• quaternion splines as a concatenation of consecutive quaternion curves, and
• quaternion trajectories combining a quaternion spline (H1) with a parameter spline (R) for

advanced speed control (see Appendix B.3.8).

Pre-Processing of Keyframe Quaternions The primary input of all interpolation methods is a
user-defined sequence of n> 1 keyframe quaternions {si} with si ∈H

1 and i = 1, . . . , n. The very
first (i = 1) and last (i = n) keyframe typically specify the orientation at the start and end of the
motion while the interior keyframes (1 < i < n) represent through-quaternions or alternatively
control-quaternions similar to through-points and control-points known from interpolation in R.
Since we are interested in a minimum rotation between keyframes (alias “shortest path”), we
have to make sure that the sequence of keyframe quaternions is specified accordingly. For this
purpose, we use the findings from Appendix B.2 to check each pair of consecutive keyframes
(si , si+1) and flip the sign of the second quaternion if necessary. In particular, we execute Algo-
rithm B.1 as a pre-processing step (applied for all presented interpolation methods).

Algorithm B.1: Pre-processing of keyframe quaternions to ensure minimum rotation between keyframes. Note that
the unit quaternion s and its additive inverse −s describe the same orientation (see Appendix B.2 and Equation B.21).

Input: Sequence of n> 1 keyframe quaternions {spre,i} with spre,i ∈H
1 and i = 1, . . . , n

Output: Sequence of n keyframe quaternions {snew,i} with snew,i ⊙ snew,i+1 ≥ 0

begin
{snew,i} ← {spre,i} // initialize keyframe sequence

for i = 1 to n− 1 do
if snew,i ⊙ snew,i+1 < 0 then // test for minimum rotation according to Equation B.30

snew,i+1←−snew,i+1 // flip sign to obtain minimum rotation

end
end

end

In contrast to formulations which directly encode angles (e. g. EULER angles, the axis-angle
representation, or rotation vectors), quaternions and rotation matrices do not allow to describe
multiple revolutions. In some cases this can be beneficial, especially when one is only interested
in the final orientation rather than the transition. Within the context of this thesis, quaternions
are used to describe the orientation of task-space CoSys such as the UB frame or the VTCP
frame, which typically do not undergo full revolutions – at least not within a single DS or SS
phase. However, for applications where multiple revolutions are possible (imagine an airplane
performing multiple loopings), this restriction can be easily lifted by inserting a sufficient count
of intermediate keyframes.

Exemplary Keyframe Sequence For demonstration purposes, we define the following exem-
plary sequence of n= 7 keyframe quaternions:

s1 := 1 +0 i +0 j +0k , (start with identity rotation)

s2 :=
p

3/4 +0 i +0.5 j +0k , (ϕy = 60◦)

s3 :=
p

3/8 +
p

1/8 i +
p

1/8 j −
p

3/8k , (first ϕz = −90◦, then ϕy = 60◦)

s4 := 0 +0.5 i +0 j −
p

3/4k , (first ϕz = −180◦, then ϕy = 60◦)

s5 := −
p

3/8 +
p

1/8 i −
p

1/8 j −
p

3/8k , (first ϕz = −270◦, then ϕy = 60◦)

s6 := −
p

3/4 +0 i −0.5 j +0k , (first ϕz = −360◦, then ϕy = 60◦)
s7 := −1 +0 i +0 j +0k . (return to starting orientation)

(B.31)

B.3 Interpolation 217

B.3.1 Linear Interpolation (LERP)

The simplest way of interpolating two quaternions is to linearly interpolate the components
sw, sx , sy , and sz. We name this method Linear Interpolation (LERP) (also called straight line
in-betweening by SHOEMAKE [378]). In particular, we define the operator

s(η) = LERP(s1, s2, η) := (1−η) s1 +η s2 ∈H with η ∈ [0, 1] . (B.32)

The i-th derivative of LERP is given by

∂ i s(η)

∂ ηi =

�

s2 − s1 if i = 1 ,
0H if i > 1

. (B.33)

While being simple and efficient, LERP has several drawbacks which makes it inappropriate for
many use cases. Most importantly, even if s1 and s2 are unit quaternions, the resulting s(η) is
not (only for η= 0 and η= 1). Moreover, a quaternion spline chaining multiple interconnected
LERP segments is only C0-continuous at most, see Figure B.1.

t1 t2 t3 t4 t5 t6 t7

-1

0

1

s(
t)

sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)
ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)

ω̇x
ω̇y
ω̇z
0

Figure B.1: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 using a quaternion spline consisting of
six consecutive LERP segments (uniform segmentation). Each LERP segment connects two keyframes. The plots
show the components of s , ṡ ,ω, and ω̇ over the spline interpolation parameter t alias “time” (linear mapping between
t and η). For computing ω and ω̇, we assume s−1 ≈ s̄ although s(t) is not a unit quaternion (only at t = t i).

B.3.2 Normalized Linear Interpolation (NLERP)

In order to obtain a unit quaternion, a straight forward extension of LERP is to normalize the
result after interpolation. This method is known as Normalized Linear Interpolation (NLERP) and
is given by

s(η) = NLERP(s1, s2, η) := norm
�

LERP
�

s1, s2, η
��

∈H1 with η ∈ [0, 1] . (B.34)

Compared to other interpolation methods NLERP is still very fast. However, the normalization
makes it difficult to find an analytic formulation of the i-th derivative. For this reason, derivatives
of NLERP are computed numerically in Broccoli. Same as for LERP, a quaternion spline chaining
multiple interconnected NLERP segments is C0-continuous at most, see Figure B.2.

B.3 Interpolation 218

t1 t2 t3 t4 t5 t6 t7

-1

0

1
s(

t)
sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)

ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)

ω̇x
ω̇y
ω̇z
0

Figure B.2: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 using a quaternion spline consisting
of six consecutive NLERP segments (uniform segmentation). Each NLERP segment connects two keyframes. The
plots show the components of s , ṡ , ω, and ω̇ over the spline interpolation parameter t alias “time” (linear mapping
between t and η). Note that the angular velocity ω is not constant between keyframes.

B.3.3 Spherical Linear Interpolation (SLERP)

A more elegant interpolation method is Spherical Linear Interpolation (SLERP) alias great circle
arc in-betweening originally introduced by SHOEMAKE in [378]. It follows the same path on the
unit sphere as LERP and NLERP, but simultaneously guarantees constant angular velocity and a
normalized output quaternion [123]. For s1, s2 ∈H

1 and η ∈ [0, 1] it is given by

s(η) = SLERP(s1, s2, η) :=s1 ⊗
�

s−1
1 ⊗ s2

�η ∈H1 , (original def. by SHOEMAKE [378])

=
�

s1 ⊗ s−1
2

�1−η ⊗ s2 ∈H
1 , (equiv. shown by DAM et al. [123, p. 42f])

=
�

s2 ⊗ s−1
1

�η ⊗ s1 ∈H
1 , (equiv. shown by DAM et al. [123, p. 42f])

=s2 ⊗
�

s−1
2 ⊗ s1

�1−η ∈H1 . (equiv. shown by DAM et al. [123, p. 42f])

(B.35)

Alternatively, it can be computed through [378]

s(η) = SLERP(s1, s2, η) :=







sin((1−η)ϑ)
sin(ϑ)

s1 +
sin(ηϑ)
sin(ϑ)

s2 if 1−
�

�s1 ⊙ s2

�

�≥ ϵ ,

NLERP
�

s1, s2, η
�

else
(B.36)

with

cos(ϑ) := s1 ⊙ s2 = cos
�ϕ

2

�

from Equation B.30 . (B.37)

Typically, Equation B.35 is used for analysis while Equation B.36 represents an efficient imple-
mentation. Note that the second case in Equation B.36 represents a fallback to avoid division
by (almost) zero which occurs if s1 and s2 describe (almost) the same orientation (small rota-
tions with sin(ϑ) → 0). A major advantage of SLERP is that it provides rather simple analytic
derivatives [123, p. 45f]

∂ i s(η)

∂ ηi = SLERP(s1, s2, η)⊗ ln
�

s−1
1 ⊗ s2

�i
for i ≥ 1 , (B.38)

B.3 Interpolation 219

where intermediate results can be efficiently recycled for evaluating the curve and its derivatives
at the same time. As with LERP and NLERP, a quaternion spline chaining multiple intercon-
nected SLERP segments is C0-continuous at most, see Figure B.3.

t1 t2 t3 t4 t5 t6 t7

-1

0

1

s(
t)

sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)

ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)

ω̇x
ω̇y
ω̇z
0

Figure B.3: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 using a quaternion spline consisting
of six consecutive SLERP segments (uniform segmentation). Each SLERP segment connects two keyframes. The
plots show the components of s , ṡ , ω, and ω̇ over the spline interpolation parameter t alias “time” (linear mapping
between t and η). Note that the angular velocity ω is constant between keyframes but may jump at t i .

Angular Velocity In order to obtain an analytic expression for the angular velocity ω, we use
the third row of Equation B.35 together with the rule ∂ sη3 /∂ η = sη3 ⊗ ln(s3) for the auxiliary
(constant) unit quaternion s3 := s2 ⊗ s−1

1 ∈H1 [123, p. 23] to obtain

s(η) = sη3 ⊗ s1 and ṡ(η) =
∂ s(η)
∂ η

dη
dt
=

1
a

sη3 ⊗ ln
�

s3

�

⊗ s1 , (B.39)

where we assumed a linear mapping between the interpolation parameter η and the time t
given by t := aη+ b such that η̇ = 1/a. By inserting s(η) and ṡ(η) into Equation B.22 (second
form) and using the abbreviation s4(η) := sη3 , we obtain

ω= −2vec
�

s ⊗ ˙̄s
�

= −
2
a

vec
�

s4 ⊗ s1 ⊗ s̄1
︸ ︷︷ ︸

1H

⊗ ln
�

s3

�

︸ ︷︷ ︸

−ln(s3)

⊗s̄4

�

. (B.40)

By exploiting the relationships s1 ⊗ s̄1 = 1H (since s1 ∈ H
1) and ln(s3) = −ln(s3) (since s3 ∈ H

1

such that real(ln(s3)) = 0, cf. Equation B.17), we obtain

ω=
2
a

vec
�

s4 ⊗ ln
�

s3

�

⊗ s̄4

�

. (B.41)

Since the angular velocity is constant [123], this relation has to hold for all η ∈ [0, 1], thus, also
for the special case η= 0 such that s4(η= 0) = s0

3 = 1H and consequently

ω=
2
a

vec
�

ln
�

s3

��

=
2
a

vec
�

ln
�

s2 ⊗ s−1
1

��

. (B.42)

B.3 Interpolation 220

Minimum Rotation It has to be highlighted that SLERP only produces a minimum rotation
alias “shortest path”, if s1 ⊙ s2 ≥ 0 holds, cf. Appendix B.2. Indeed, various implementations
of SLERP (e. g. the one of Eigen [182]) use the dot product to check if the sign of the second
quaternion has to be flipped and automatically return the minimum rotation. Unfortunately,
flipping the sign depending on an if-else statement can lead to discontinuities in more advanced
interpolation schemes which build on top of SLERP such as QBézier and SQUAD (see below).
Thus, we use a custom implementation of SLERP strictly following Equation B.36, i. e., with-
out branching to obtain the minimum rotation (see method quaternionSLERP in the module
geometry of Broccoli).

B.3.4 Quaternion BÉZIER (QBézier) Curve

In order to achieve C1-continuity for a quaternion spline, SHOEMAKE introduced in [378] the
so-called Quaternion BÉZIER (QBézier) curve as an equivalent to (cubic) BÉZIER curves known
from Rn. In contrast to the aforementioned interpolation methods, a QBézier curve is specified
by four quaternions s1, s2, s3, s4 ∈ H

1 where s1 and s4 specify the orientation at the start and
end of the curve and s2 and s3 represent interior control-quaternions which are not passed
through in general. For evaluating a QBézier curve, the DE CASTELJAU algorithm [155, p. 43ff]
is formulated for H1 (replacing linear interpolation with SLERP). In particular, we compute

sA,1(η) := SLERP
�

s1, s2, η
�

, sA,2(η) := SLERP
�

s2, s3, η
�

, sA,3(η) := SLERP
�

s3, s4, η
�

,

sB,1(η) := SLERP
�

sA,1(η), sA,2(η), η
�

, sB,2(η) := SLERP
�

sA,2(η), sA,3(η), η
�

,

s(η) = QBézier(s1, s2, s3, s4, η) := SLERP
�

sB,1(η), sB,2(η), η
�

∈H1 ,

(B.43)

with η ∈ [0, 1]. The first, second, and third row of Equation B.43 represent the first, second,
and third iteration of the DE CASTELJAU algorithm. Since a QBézier curve represents a chain of
six SLERP operations, deriving an analytic formulation of the i-th derivative would be possible
but very tedious. Thus, in Broccoli, the numeric derivative is used for QBézier curves instead.

C1-Continuity Without further action, a quaternion spline consisting of consecutive QBézier
curves will be only C0-continuous (if s1 and s4 are set to the corresponding keyframe quater-
nions). However, it is possible to place the interior control-quaternions s2 and s3 in a way such
that the quaternion spline becomes C1-continuous. This is achieved by enforcing equality of the
first-order derivatives at the interconnection between two spline segments, see SHOEMAKE [378]
(original formulation) and KIM et al. [250] (proper derivation) for details.

A C1-continuous QBézier spline interpolating n keyframe quaternions {si} with i = 1, . . . , n
can be generated as follows. For each of the n− 1 pairs of input keyframe quaternions (si , si+1),
we define a corresponding QBézier curve given by QBézier(si , si,a, si,b, si+1, η). Note that the
first and last quaternion of the QBézier curve are already defined by the keyframe quaternions
si and si+1, thus, it is only left to compute the interior control-quaternions si,a and si,b. In a first
run, we compute si,a for each of the n− 1 segments by

si,a :=

�

s1 if i = 1 , (enforce zero velocity at start)

norm
�

2
�

si−1 ⊙ si

�

si − si−1 + si+1

�

else .
(B.44)

In a second run, we compute si,b for each segment by

si,b :=

¨

exp
�

hi
hi+1

ln
�

si+1,a ⊗ s−1
i+1

�

�−1
⊗ si+1 if i < n− 1 ,

sn else . (enforce zero velocity at end)
(B.45)

B.3 Interpolation 221

Here, hi and hi+1 denote the proportions of the segment i and i + 1 within the spline (alias
“duration”). For a uniform segmentation hi = hi+1, the first line in Equation B.45 simplifies to

si,b =
�

si+1,a ⊗ s−1
i+1

�−1 ⊗ si+1 = SLERP
�

si+1, si+1,a,−1
�

if i < n− 1 , (B.46)

which shows that the second control-quaternion si,b is obtained by “mirroring” (extrapolation
by SLERP with η = −1) the first control-quaternion of the following segment si+1,a at the joint
keyframe si+1 of both segments (same “tangents”).

If the interior control-quaternions are chosen according to the Equations B.44 and B.45, then
the resulting quaternion spline passes through all keyframe quaternions, is C1-continuous, and
has zero angular velocity at the start and end of the spline, see Figure B.4.

t1 t2 t3 t4 t5 t6 t7

-1

0

1

s(
t)

sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)

ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)

ω̇x
ω̇y
ω̇z
0

Figure B.4: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 using a quaternion spline consisting of
six consecutive QBézier segments (uniform segmentation). Each QBézier segment connects two keyframes where
the interior control-quaternions are chosen to establish C1-continuity. The plots show the components of s , ṡ , ω, and
ω̇ over the spline interpolation parameter t alias “time” (linear mapping between t and η).

B.3.5 Spherical Quadrangle (SQUAD) Curve

Based on the quadrangle curve of BÖHM [88, p. 209f] (a cubic lying on a hyperbolic paraboloid),
SHOEMAKE furthermore introduced the so-called Spherical Quadrangle (SQUAD) curve. Unfortu-
nately, the original source is not available anymore, however, one can use the excellent works of
DAM et al. [123] (revisited introduction and analysis of SQUAD) and KIM et al. [250] (focus on
derivatives) as references instead. Same as for QBézier curves, a SQUAD curve is parameterized
by four quaternions s1, s2, s3, s4 ∈ H

1. Again, s1 and s4 specify the orientation at the start and
end of the curve while s2 and s3 represent interior control-quaternions which are not passed
through in general. The evaluation of a SQUAD curve involves three SLERP operations:

sA,1(η) := SLERP
�

s1, s4, η
�

, sA,2(η) := SLERP
�

s2, s3, η
�

,

s(η) = SQUAD(s1, s2, s3, s4, η) := SLERP
�

sA,1(η), sA,2(η), 2η (1−η)
�

∈H1 ,
(B.47)

with η ∈ [0, 1]. Same as for QBézier, deriving an analytic formulation of the i-th derivative of
SQUAD is complex such that the numeric derivative is used in Broccoli instead.

B.3 Interpolation 222

C1-Continuity Again, the interior control-quaternions can be used to achieve C1-continuity for
a quaternion spline consisting of SQUAD segments, see DAM et al. [123] for details. In particular,
a C1-continuous SQUAD spline interpolating n keyframe quaternions {si} with i = 1, . . . , n is
generated by defining a SQUAD curve given by SQUAD(si , si,a, si,b, si+1, η) for each of the n− 1
pairs of input keyframe quaternions (si , si+1). The first and last quaternion of the SQUAD curve
are defined by the keyframe quaternions si and si+1, such that we only need to compute the
interior control-quaternions si,a and si,b. For each of the n− 1 segments we compute

si,a :=







s1 if i = 1 ,

si ⊗ exp

�

−
hi−1 ln

�

s−1
i ⊗ si+1

�

+ hi ln
�

s−1
i ⊗ si−1

�

2
�

hi−1 + hi

�

�

else
(B.48)

and

si,b :=







si+1 ⊗ exp

�

−
hi ln

�

s−1
i+1 ⊗ si+2

�

+ hi+1 ln
�

s−1
i+1 ⊗ si

�

2
�

hi + hi+1

�

�

if i < n− 1 ,

sn else .

(B.49)

Here, hi−1, hi and hi+1 denote the proportions of the segment i−1, i, and i+1 within the spline
(alias “duration”). The resulting quaternion spline passes through all keyframe quaternions and
is C1-continuous, however, it does not have zero angular velocity at the start and end of the
spline, see Figure B.5. Compared to a QBézier spline, a SQUAD spline is much less “bumpy”
with lower accelerations but also non-zero velocity at the start and end. Moreover, SQUAD is
more efficient since it only involves three instead of six chained SLERP operations.

t1 t2 t3 t4 t5 t6 t7

-1

0

1

s(
t)

sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)

ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)

ω̇x
ω̇y
ω̇z
0

Figure B.5: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 using a quaternion spline consisting
of six consecutive SQUAD segments (uniform segmentation). Each SQUAD segment connects two keyframes where
the interior control-quaternions are chosen to establish C1-continuity. The plots show the components of s , ṡ , ω, and
ω̇ over the spline interpolation parameter t alias “time” (linear mapping between t and η).

B.3.6 Quaternion B-Spline (QBSpline) Curve

The interpolation methods presented so far generate quaternion splines which either provide
simple analytic derivatives but are only C0-continuous (SLERP), or are C1-continuous but have

B.3 Interpolation 223

complex derivatives (QBézier and SQUAD). However, in robotics we are typically interested in a
quaternion spline which is continuous up to a high order (e. g. C2 for continuous joint torques)
and provides simple analytic derivatives (e. g. to efficiently evaluate angular velocity and accel-
eration). An interpolation method which fulfills these requirements has been introduced by KIM

et al. in [248]. In particular, they formulate a k-th order Basis Spline (B-Spline) [129, p. 87ff]
curve for quaternions – in the following called Quaternion B-Spline (QBSpline) curve – and trans-
fer important properties such as continuity and local control from Euclidean space to H1. Most
importantly, a k-th order QBSpline curve is Ck−2-continuous, (optionally) interpolates the very
first and last keyframe quaternion, and provides analytic derivatives which can be evaluated
with reasonable effort.

B-Spline Curve in Euclidean Space As a preparation to formulating the QBSpline curve in
H1, we briefly recall the fundamentals of a B-spline curve in Euclidean space Rx (with x ∈ N1).
For details, the book of DE BOOR [129] is recommended.

As a first step, one has to select the desired degree p ≥ 0 respectively order k = p + 1 > 0
of the B-spline curve which is equivalent to the degree and order of a polynomial spline with
monomial basis (affects smoothness). Furthermore, we assume a given set of m ≥ k control-
points {r1, . . . , rm} with ri ∈ R

x . Finally, the user has to declare a sequence of n = m+ k non-
decreasing knots τ := {τ1, . . . , τn} with τi ∈ R and τi ≤ τi+1, which specify the segmentation of
the B-spline curve. The resulting k-th order B-spline curve r (η) is then given by

r (η) :=
m
∑

i=1

Bi,k,τ(η) ri with η ∈ [τk, τm+1[, (B.50)

which represents a weighted sum over Bi, j,τ(η) ∈ R as the i-th normalized B-spline of order j for
the knot sequence τ defined by the recurrence relation

Bi, j=1,τ(η) :=

�

1 if τi ≤ η < τi+1 ,
0 else ,

Bi, j>1,τ(η) :=

�

η−τi

τi+ j−1 −τi

�

Bi, j−1,τ(η) +

�

τi+ j −η

τi+ j −τi+1

�

Bi+1, j−1,τ(η) ,
(B.51)

with i = 1, . . . , m and j = 1, . . . , k. Since the control-points ri are constant, the d-th order
derivative of the B-spline curve r (η) is fully specified by the d-th order derivative of Bi, j,τ(η)
given by [129, p. 115ff]

∂ d Bi, j≤d,τ(η)

∂ ηd
= 0 ,

∂ d Bi, j>d,τ(η)

∂ ηd
=

�

j − 1
τi+ j−1 −τi

�

∂ d−1Bi, j−1,τ(η)

∂ ηd−1
−
�

j − 1
τi+ j −τi+1

�

∂ d−1Bi+1, j−1,τ(η)

∂ ηd−1
.

(B.52)

Knot Sequence The knot sequence τ := {τ1, . . . , τn} can be chosen arbitrarily as long as
τi ≤ τi+1 holds (continuity of the B-spline curve may degrade for τi = τi+1). Within the context
of this thesis, we focus on a special type of knot sequences:

• clamped: the first and last k knots are “clamped”, i. e., τ1 = · · ·= τk and τn−k+1 = · · ·= τn,
such that the B-spline curve r (η) interpolates the first and last control-point r1 and rm,

• uniform: the remaining “interior” knots {τk+1, . . . , τn−k} are distributed equally within the
interval]τk, τn−k+1[to obtain a uniform segmentation,

• normalized: the knot sequence is scaled to the range [0, 1], i. e., τ1 = 0 and τn = 1, which
yields best numerical stability and simplifies the range of the interpolation parameter in
Equation B.50 to η ∈ [0, 1[(similar to other interpolation methods presented so far).

B.3 Interpolation 224

By using a clamped, uniform, and normalized knot sequence, the user only has to specify the
desired order k and m control-points {ri}. Note that the count of control-points m has to fulfill
m≥ k. For this reason, one might choose to replicate the first and last control-point.

Cumulative B-Spline Basis For the purpose of formulating the QBSpline curve, KIM et al. first
introduced the so-called cumulative B-spline given by [248]

B̃i,k,τ(η) :=
m
∑

c=i

Bc,k,τ(η) ∈ R with Bc,k,τ(η) from Equation B.51 and i = 1, . . . , m . (B.53)

Written as a vector, the cumulative B-spline basis has the form
�

B̃1,k,τ(η), . . . , B̃m,k,τ(η)
�T
=
�

1, . . . , 1
︸ ︷︷ ︸

f1-elem.

, ∗, . . . , ∗
︸ ︷︷ ︸

f2-elem.

, 0, . . . , 0
︸ ︷︷ ︸

f3-elem.

�T ∈ Rm (B.54)

where ∗ represent placeholders for real-valued scalars within the interval [0, 1] and f1, f2, and
f3 are the element counts of the corresponding blocks of 1’s, ∗’s, and 0’s respectively. The d-th
derivative of the cumulative B-spline is simply given by

∂ d B̃i,k,τ(η)

∂ ηd
=

m
∑

c=i

∂ d Bc,k,τ(η)

∂ ηd
with

∂ d Bc,k,τ(η)

∂ ηd
from Equation B.52 and i = 1, . . . , m (B.55)

which has the form
�

∂ d B̃1,k,τ(η)

∂ ηd
, . . . ,

∂ d B̃m,k,τ(η)

∂ ηd

�T

=
�

0, . . . , 0
︸ ︷︷ ︸

f1-elem.

, ⋆, . . . , ⋆
︸ ︷︷ ︸

f2-elem.

, 0, . . . , 0
︸ ︷︷ ︸

f3-elem.

�T ∈ Rm (B.56)

with ⋆ representing placeholders for unbounded real-valued scalars.

Quaternion B-Spline (QBSpline) Curve Given a set of m≥ k control-quaternions {s1, . . . , sm}
with si ∈ H

1 and a sequence of n = m+ k non-decreasing knots τ := {τ1, . . . , τn} with τi ∈ R
and τi ≤ τi+1, the k-th order QBSpline curve s(η) is given by [248]

s(η) = QBSpline(k, {si}, τ, η) := s
B̃1,k,τ(η)
1 ⊗

m
∏

i=2

exp
�

ln
�

s−1
i−1 ⊗ si

�

B̃i,k,τ(η)
�

︸ ︷︷ ︸

(s−1
i−1⊗si)

B̃i,k,τ(η)

∈H1 (B.57)

with η ∈ [τk, τm+1[. Note that quaternions are chained in
∏

through the HAMILTON product.
If we define the virtual control-quaternion s0 := 1H (si for i = 0) and further introduce the
constant auxiliary quaternion Ωi := ln

�

s−1
i−1 ⊗ si

�

∈H, the definition of the QBSpline curve can be
rewritten in the shorter form

s(η) =
m
∏

i=1

exp
�

Ωi B̃i,k,τ(η)
�

with η ∈ [τk, τm+1[. (B.58)

Comparing Equation B.58 with Equation B.50 shows the similarity between a B-spline curve in
Euclidean space and H1: weighted addition in Euclidean space becomes weighted multiplication
in H1. Indeed, a QBSpline curve can be seen as a blended sequence of SLERP operations.

Evaluating the entire product in Equation B.58 would be expensive for large counts of
control-quaternions (alias “long” curves). Fortunately, similar to its Euclidean equivalent, a
QBSpline curve has local control, i. e., the “value” of the curve depends only on a finite set of
close-by control-quaternions (specified by the order k of the curve). This becomes clear from the

B.3 Interpolation 225

special structure of the cumulative B-spline basis (cf. Equation B.54), which can be exploited to
formulate the QBSpline curve in a much more efficient way:

s(η) = s f1
⊗

f1+ f2
∏

i= f1+1

exp
�

Ωi B̃i,k,τ(η)
�

= s f1
⊗

f2
∏

i=1

Γ i+ f1
(η) with Γ i(η) := exp

�

Ωi B̃i,k,τ(η)
�

. (B.59)

In this new form, the product involves only f2 factors where f2 is limited by the order k of the
curve. Thus, the computational cost of evaluating a QBSpline curve is (almost) independent
of the count of control-quaternions. Note that the integers f1 and f2 depend on η and can be
efficiently determined in parallel to evaluating the cumulative B-spline basis.94

We can find the d-th order derivative of a QBSpline curve by applying the general LEIBNIZ

rule (generalized form for more than two factors)

∂ d s(η)

∂ ηd
= s f1

⊗
∑

TL





�

d
L1, L2, . . . , L f2

�

·
f2
∏

i=1

∂ LiΓ i+ f1
(η)

∂ ηLi



 (B.60)

where the multinomial coefficient is given by
�

d
L1, L2, . . . , L f2

�

=
d!

L1! L2! . . . L f2
!

(B.61)

and TL is the set of generalized LEIBNIZ tuples, i. e., the set of all f2-tuples (L1, . . . , L f2
) of non-

negative integers which satisfy L1+ · · ·+ L f2
= d. The d-th order derivative of the auxiliary term

Γ i(η) is obtained by applying the formula of FAÀ DI BRUNO

∂ dΓ i(η)

∂ ηd
=
∑

TF





�

d!
F1! F2! . . . Fd !

�

·

Γ i(η)⊗
F1+···+Fd
∏

j=1

Ωi

!

·
d
∏

j=1

�

1
j!

∂ j B̃i,k,τ(η)

∂ η j

�F j



 (B.62)

where TF is the set of FAÀ DI BRUNO tuples, i. e., the set of all d-tuples (F1, . . . , Fd) of non-
negative integers which satisfy F1+2 F2+· · ·+d Fd = d. Note that the derivatives of the cumulative
B-spline B̃i,k,τ have already been given in Equation B.55.

Indeed, computing the general LEIBNIZ tuples TL and FAÀ DI BRUNO tuples TF for every eval-
uation of the derivative of s(η) would be very expensive. However, one can simply implement a
lookup table for these tuples (up to a certain maximum order of derivative d) similar to a typical
implementation of the factorial.95 Consequently, although Equation B.60 looks rather complex,
the d-th order derivative of a QBSpline curve can be implemented efficiently. Note that the
implementation of the QBSpline curve in Broccoli is quite efficient while still covering the most
general case. In contrast, a specialization for a certain type (e. g. a special order k) would allow
further optimizations.

Spline and Interpolation In contrast to the other interpolation methods mentioned so far,
the QBSpline curve allows a custom count of control-quaternions and thus, already describes a
spline by itself. If we choose a clamped, uniform, and normalized knot sequence τ, then the
generated k-th order QBSpline curve will be Ck−2-continuous and interpolates the very first and
last keyframe quaternion, see Figure B.6. Similar to a B-spline in Euclidean space, it will get
close to the interior keyframe quaternions, but it will not interpolate them (in general). From
B-splines in Euclidean space it is known [129], that one can compute a set of control-points such

94See the method CumulativeBSplineBasisSample::evaluate from the module curve of Broccoli for details.
95See the methods math::faaDiBrunoTuples, math::generalLeibnizTuples, and math::factorial from

the module core of Broccoli.

B.3 Interpolation 226

that the curve interpolates a given set of keyframes. This typically involves the solution of a LSE.
In [249], KIM et al. propose an equivalent method to compute the control-quaternions of a 4-th
order QBSpline curve for interpolating a given set of keyframe quaternions. Unfortunately, the
linear relations from Euclidean space become non-linear in H1 such that an iterative scheme is
required. Furthermore, the relative rotation between two consecutive keyframe quaternions has
an upper bound in order to guarantee convergence. Since the interpolation algorithm presented
in [249] is not used within the WPG module of LOLA, it has not been implemented in Broccoli
(yet). However, it should be considered for future investigations.

t1 t2 t3 t4 t5 t6 t7

-1

0

1

s(
t)

sw
sx
sy
sz

t1 t2 t3 t4 t5 t6 t7

ω
(t
)

ωx
ωy
ωz
0

t1 t2 t3 t4 t5 t6 t7

ṡ(
t)

ṡw
ṡx
ṡy
ṡz
0

t1 t2 t3 t4 t5 t6 t7

ω̇
(t
)̇
ωx
ω̇y
ω̇z
0

Figure B.6: Interpolation of keyframe sequence {(si , t i)} from Equation B.31 (m = 7) using a quaternion spline
consisting of a single 4-th order (k = 4) QBSpline curve with a clamped, uniform, and normalized knot sequence
τ = {0, 0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1, 1} (n = m + k = 11). The plots show the components of s , ṡ , ω, and ω̇ over
the spline interpolation parameter t alias “time” (linear mapping between t and η). The curve is C2-continuous and
interpolates the very first and last keyframe quaternion s1 and s7 but not the interior keyframe quaternions s2 to s6.

B.3.7 Comparison

A comparison of the CoSy motions resulting from the aforementioned interpolation methods
is shown in Figure B.7. In addition, Table B.1 summarizes the main properties of the pre-
sented methods. For comparing the computational cost of evaluating a corresponding quater-
nion spline, the runtime time of evaluating a single sample of the given example trajectory
(shown in Figure B.7) is given. The runtimes are averaged over 1,000 full trajectory evaluations
(each with ∆t = 0.001). Apart from the computation of the current orientation s(t), also evalu-
ating the first- and second-order derivatives ṡ(t) and s̈(t) (triggered through the same function
call to allow reuse of intermediate results) are measured. The runtime analysis was performed
on a single core of an AMD Ryzen 7 1700X@3.4 GHz CPU running Ubuntu 18.04 64bit.

Indeed, there are numerous methods for interpolating spatial rotation with quaternions
which have not been mentioned here. The presented methods introduce only a small but popu-
lar subset of algorithms. Within the WPG module of LOLA, mainly the SLERP and QBSpline (of
order k = 4) curves are used.

B.3 Interpolation 227

Table B.1: Overview of the main properties of the presented quaternion interpolation methods. The given timing infor-
mation describes the average execution time of evaluating a single sample (s(t), ṡ(t), and s̈(t)) of a corresponding
quaternion spline using the Broccoli implementation. Note that the restriction to a special type of QBSpline (e. g. fixed
order k and count of control-quaternions m) would allow further source-code optimizations.

Property LERP NLERP SLERP QBézier SQUAD QBSpline
complexity (implementation) ◦ ◦ • •• •• •••
continuity of corresp. spline C0 C0 C0 ≤ C1 ≤ C1 ≤ Ck−2

simple analytic derivatives yes no yes no no yes
runtime/µs (s(t)) 0.11 0.13 0.21 0.70 0.39 2.63
runtime/µs (s(t), ṡ(t)) 0.17 0.45 0.40 2.31 1.27 6.63
runtime/µs (s(t), ṡ(t), s̈(t)) 0.23 0.91 0.45 4.38 2.55 12.10

LERP, NLERP, SLERP QBézier SQUAD QBSpline

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Figure B.7: Resulting CoSy motion for interpolating the keyframe sequence {(si , t i)} from Equation B.31 using the
presented quaternion interpolation methods. From left to right: LERP, NLERP, and SLERP (same path but different
traversal speed – C0-continuous); QBézier and SQUAD (C1-continuous); 4-th order QBSpline with clamped, uniform,
and normalized knot sequence (C2-continuous). The colored lines visualize the path of the tip of the x -axis (orange),
the y-axis (green), and the z-axis (blue).

B.3.8 Advanced Speed Control

Additional to continuity within a quaternion spline, one is typically also interested in a zero
velocity and acceleration at the start and end. This ensures a smooth acceleration and decel-
eration at the beginning and end of a motion (e. g. a footstep). For this purpose, the Broccoli
implementation introduces the concept of a quaternion trajectory which combines a quaternion
spline s(η) ∈H1 (“shape”) with a so-called parameter spline η(t) ∈ R (“timing”). The evaluation
of a quaternion trajectory simply represents the chained operation s(η(t)). For obtaining the
d-th order time derivative, we apply the formula of FAÀ DI BRUNO (generalized chain rule)

dd s(η(t))

dtd
=
∑

TF





�

d!
F1! F2! . . . Fd !

�

·
�

∂ x s(η)
∂ ηx

�

·
d
∏

j=1

�

1
j!

dj η(t)

dt j

�F j



 with x := F1+· · ·+Fd (B.63)

where TF is the set of FAÀ DI BRUNO tuples, i. e., the set of all d-tuples (F1, . . . , Fd) of non-
negative integers which satisfy F1 + 2 F2 + · · ·+ d Fd = d (again obtained from lookup table).

Through an appropriate choice of η(t), it is possible to control the traversal speed of the
quaternion spline such that the velocity and acceleration at the start and end zero-out (e. g. by
using a quintic polynomial with zero velocity and acceleration at its boundaries). Note that it is
also possible to generate a C2-continuous SLERP-, QBézier-, or SQUAD-based trajectory if η(t)
is formulated as a chain of piecewise quintic polynomials with zero velocity and acceleration at
the interconnection of segments (requires a full stop at each keyframe).

Appendix C

Swept Sphere Volumes (SSVs)

Computing the shortest connection between two 3D objects is a common mathematical prob-
lem. In the field of robotics, such distance evaluations are in particular relevant for avoiding
collisions. Note that one has to differentiate between testing for intersection and evaluating
the minimum distance. While the former is typically used for collision detection (e. g. within a
physics simulation), the latter is suitable for collision avoidance (e. g. by formulating a corre-
sponding repelling cost gradient). Depending on the geometric representation of the object’s
shape, the calculations can be fast but coarse (e. g. using bounding boxes) or accurate but slow
(e. g. using full CAD models). For getting “sufficient” accuracy within a reasonable amount
of time, one may approximate the object’s shape by geometric primitives for which numerous
solutions have been proposed. Such shape models reach from simple boxes, spheres, and cylin-
ders [328] to complex compounds such as Sphere-Torus-Patches Bounding Volumes [78, 148]. A
typical common property of these shape models is convexity.

The locomotion system of LOLA makes use of Swept Sphere Volumes (SSVs) which are con-
structed by sweeping the center of a sphere over a certain base geometry, see Figure C.1. Orig-
inally, LARSEN et al. introduced SSVs for a rectangular base [267]. As one of the first adopters,
SUGIURA et al. used point- and line-SSVs in [398] to realize self-collision avoidance on a hu-
manoid robot. This motivated SCHWIENBACHER et al. to introduce SSVs also for LOLA [371].
Indeed, SCHWIENBACHER is the main author of the original SSV implementation of LOLA which
he described in detail in [372, p. 89ff]. Recently, this implementation has been replaced by a
modern SSV library developed by POSCHER, which is documented in his bachelor’s thesis [30].
Same as with the original implementation by SCHWIENBACHER, the new library provides effi-
cient algorithms for computing the distance between SSVs with a point, line, or triangle as base
geometry. Notable improvements are the correct handling of (rare) special cases and using Eigen
as backend for linear algebra. Moreover, it could be shown that the new library is slightly faster
than the previous implementation [30] – at least on modern hardware.

Point-SSV Line-SSV Triangle-SSV

x

y

z

x

y

z

x

y

z

r r
r

r
1

r
1

r
2

r
1

r
2

r3

Figure C.1: SSV Elements constructed by sweeping the center of a sphere over the corresponding base geometry.
From left to right: point-SSV, line-SSV, and triangle-SSV element. An SSV element is fully defined by its vertices {ri}
(described in local CoSy of SSV segment) and its radius r > 0. Illustration based on [372, p. 93f].

228

C Swept Sphere Volumes (SSVs) 229

Evaluating the minimum distance between two SSV Elements (point / line / triangle) boils
down to computing the shortest connection between the corresponding base geometries. While
this is trivial in the case of two point-SSVs, many special cases have to be considered for more
complex pairings such as two triangle-SSVs. Implementation details for all possible element
combinations are given in [372, p. 94ff], however, [30, p. 20ff] should be preferred since it
contains some fixes and extensions. Finally, the distance between two SSV elements is simply
given by the length of the vector connecting the closest points on the respective base geometries
subtracted by the corresponding element radii. As a consequence, the minimum distance may
become negative which indicates penetration. For the purpose of acceleration, various auxiliary
variables can be pre-computed for each SSV element (e. g. edges, normals, etc.).

In order to describe objects with complex shape, SSV elements can be grouped to a rigid
compound forming a so-called SSV Segment, see Figure C.2 left. For computing the minimum
distance between two SSV segments, each element of the first segment has to be tested against
all elements of the second segment. In many cases, one is only interested in the exact distance if
it is below a certain threshold (e. g. for skipping obstacles which are far apart). For this reason,
each SSV segment additionally maintains its own axis-aligned bounding box. The box allows
a rapid computation of a lower and upper bound for the distance between two segments. In
combination with the aforementioned threshold, this can be used to avoid unnecessary SSV
evaluations. On an even higher level, SSV segments are organized within an SSV Scene, see
Figure C.2 right. The scene allows to specify an explicit list of segment pairs to evaluate, which
drastically reduces overall runtime in case only certain combinations are of interest.

SSV Segment SSV Scene

not evaluated pair
(bounding boxes too far apart)

evaluated pair

distance thresholdse
gm

en
t

1

se
gm

en
t

2 se
gm

en
t

4

se
gm

en
t

3
bo

un
din

g bo
x

W

W
r

seg

Figure C.2: Construction of an SSV Segment as rigid compound of SSV elements (left) and organization of SSV
segments within an SSV Scene (right). For each segment, the proposed library automatically maintains an axis-
aligned bounding box which is used for acceleration in case a distance threshold is specified. Instead of testing a
segment against all other segments within the scene, the user can specify a list of segment pairs to evaluate.

The source code of POSCHER has been refactored and integrated into the open-source library
Broccoli [15] (see the module geometry) by the author of this dissertation. Moreover, the author
has made several extensions to the work of POSCHER, most notably

• acceleration by axis-aligned bounding boxes as explained above and
• (optional) parallel evaluation of SSV scenes by a dedicated thread pool with automatic

load balancing (estimates evaluation costs based on the SSV segment complexity).

Note that the source code published in Broccoli is fully documented, extensively tested through
numerous unit tests checking all possible element pairings and configurations, and comes with
an example application to encourage other roboticists in using the library. The current imple-
mentation is designed for scenes of moderate complexity (element count). A useful future ex-
tension would be to (optionally) organize SSV segments in a tree structure (such as a Bounding
Volume Hierarchy (BVH) as proposed by LARSEN et al. [267]) to handle also very large scenes.

Appendix D

Step Parameters

The Step Parameters represent the first six components of a QPWT (cf. Table 5.2) and describe
the relative transform between the previous stance foot TCP frame (WrSF,pre, WASF,pre) linked to
the Begin Pose of a Transition and the next stance foot TCP frame (WrSF,next, WASF,next) linked
to the End Pose of a Transition. The specification used within this thesis builds on top of the
step parameter formulation for a “standard circular path” by BUSCHMANN [100, p. 59ff].96 To
allow a specification of the full 6D pose of the next stance foot, we extend the step parameters
of BUSCHMANN by a step length in vertical direction (along Wez) and a horizontal foot rotation
(around local x- and y-axis). In particular, foot orientations are described using CARDAN angles
alias yaw-pitch-roll or z-y-x EULER angles – a special form of TAIT-BRYAN angles:

WASF,pre := Az(αzp)Ay(αyp)Ax(αx p) , WASF,next := Az(αzn)Ay(αyn)Ax(αxn) (D.1)

where Ax |y|z denote the elementary rotation matrices around the x-, y-, and z-axis as defined in
Equation A.2 and αx |y|z,p|n are the corresponding EULER angles (using p := pre and n := next for
brevity). As a preparation, we further define the auxiliary CoSys

Wzp ...world frame rotated around Wez to align with previous stance foot: WAWzp
:= Az(αzp)

Wzn ...world frame rotated around Wez to align with next stance foot: WAWzn
:= Az(αzn)

Finally, the step parameters lx |y|z and ϕx |y|z are defined as (cf. Figure 4.6 in [100, p. 60])

lx ...step length in sagittal plane (equivalent to Lx in [100, p. 60])
represents (signed) “arc length” in W, Wzp, and Wzn FoR (relative to previous stance)

l y ...step length in lateral plane (equivalent to L y in [100, p. 60])
represents lateral shift in Wzn FoR (relative to previous stance)

lz ...step length in vertical direction (extension of [100, p. 60])
represents vertical shift in W, Wzp, and Wzn FoR (relative to previous stance)

ϕx ...step angle around (positive) “local” x-axis (extension of [100, p. 60])
ϕx := αxn (independent of previous stance)

ϕy ...step angle around (positive) “local” y-axis (extension of [100, p. 60])
ϕy := αyn (independent of previous stance)

ϕz ...step angle around (positive) vertical axis (equivalent to ϕstep in [100, p. 60])
ϕz := αzn −αzp (relative to previous stance)

To summarize, the next stance foot’s position WrSF,next and orientation WASF,next depend on the
position of the previous stance foot WrSF,pre, the rotation of the previous stance foot around

96Note that we only consider the “basic” calculation from Equations 4.1 and 4.2 [100, p. 61] (rotation around
foot TCP) but not the modification from Equation 4.3 [100, p. 61] (rotation around foot centroid). Although the
latter would lead to a “more natural looking rotation about the center of the foot” [100, p. 61], it would make
step parameter specification by the user (e. g. from input files) less intuitive and more error-prone. This holds true
especially for partial contact situations, where the centroid of the contact area is different from the one during full
support. Thus, we stick to the TCP as reference point for each foot. Note that this choice only has an effect on
teleoperated walking and fixed sequence walking (input file) (cf. Section 5.2) since for all other actions, the WPG
computes the 6D foot poses directly and may use the step parameters only as exchange format (without loss of
information).

230

D Step Parameters 231

the vertical axis αzp, and the step parameters lx |y|z and ϕx |y|z but not on the rotation of the
previous stance foot around the horizontal axes αx p and αyp. Making the next stance foot pose
independent of αx p and αyp simplifies the specification of contact sequences for uneven and
inclined terrain (e. g. for stepping on ramps).

Next Stance from Step Parameters This paragraph describes how the next stance foot pose

WrSF,next and WASF,next is computed from WrSF,pre, αzp, lx |y|z, and ϕx |y|z. The position of the next
stance foot TCP frame described in the world FoR is obtained from the vector chain

WrSF,next = WrSF,pre +WAWzp Wzp
rSF,pre-SF,next (D.2)

with Wzp
rSF,pre-SF,next as the relative vector from the previous to the next stance TCP described in

the auxiliary FoR Wzp (with WAWzp
= Az(αzp)). The relative vector is given by

Wzp
rSF,pre-SF,next = Wzp

rSF,next −Wzp
rSF,pre =







sinϕz

�

lx
ϕz
− l y −w

�

lx
ϕz
+w− cosϕz

�

lx
ϕz
− l y −w

�

lz






. (D.3)

Here w denotes the (signed) half of the lateral foot separation (cf. idle pose in Section 4.5.2),
which is given by

w :=

�

+0.1375m if the previous stance is the right foot ,
−0.1375m else . (D.4)

See also Figure 4.6 in [100, p. 60] for a visualization of these geometrical considerations. Same
as in [100, p. 61], we use a TAYLOR series expansion for the case

�

�ϕz

�

�< 0.1 rad:

Wzp
rSF,pre-SF,next ≈





lx −
�

l y +w
�

ϕz −
1
6 lx ϕ

2
z

2 w+ l y +
1
2 lx ϕz −

�

l y +w
�

ϕ2
z

lz



 (D.5)

The orientation of the next stance foot TCP frame described in the world FoR is given by

WASF,next =





cαyn cαzn sαxn sαyn cαzn − cαxn sαzn cαxn sαyn cαzn + sαxn sαzn
cαyn sαzn sαxn sαyn sαzn + cαxn cαzn cαxn sαyn sαzn − sαxn cαzn
−sαyn sαxn cαyn cαxn cαyn



 (D.6)

where we used c and s as abbreviations for cos and sin, respectively.

Step Parameters from Next Stance In order to automatically generate a QPWT, e. g. as addi-
tional output of the contact planner for autonomous locomotion (cf. Section 5.5), it is necessary
to compute the step parameters lx |y|z and ϕx |y|z from the previous and next stance foot pose,
i. e., WrSF,pre, WASF,pre, WrSF,next, and WASF,next. First, we compute αx p, αyp, αzp and αxn, αyn, αzn
from the rotation matrices WASF,pre and WASF,next with [122, p. 43]

αyi = atan2
�

−WASF,i,31,
Ç

WA2
SF,i,11 +WA2

SF,i,21

�

, (D.7)

αx i = atan2

�

WASF,i,32

cosαyi
,

WASF,i,33

cosαyi

�

, (D.8)

αzi = atan2

�

WASF,i,21

cosαyi
,

WASF,i,11

cosαyi

�

(D.9)

D Step Parameters 232

for i ∈ {p = pre, n = next}. Note that a singularity, i. e., αyi ∈ {−
π
2 , π2 } and thus, cosαyi = 0

would mean that the corresponding foot points down- or upwards which is not reasonable for
biped walking anyways. We obtain the rotational step parameters through

ϕx = αxn, ϕy = αyn, ϕz = αzn −αzp. (D.10)

For deriving the translational step parameters, we first compute

Wzp
rSF,pre-SF,next =





rx
ry
rz



= WAT
Wzp

�

WrSF,next −WrSF,pre

�

= AT
z (αzp)

�

WrSF,next −WrSF,pre

�

(D.11)

where we introduced rx , ry , and rz as abbreviations for the components of the relative vector.
From Equation D.3, we directly obtain lz = rz. Moreover, we get





sinϕz
ϕz

− sinϕz

1
ϕz
− cosϕz

ϕz
cosϕz





�

lx
l y

�

=

�

rx + sinϕz w
ry −w

�

1+ cosϕz

�

�

︸ ︷︷ ︸

=:b1

(D.12)

which we can easily solve for lx and l y by

�

lx
l y

�

=
ϕz

sinϕz

�

cosϕz sinϕz
cosϕz
ϕz
− 1
ϕz

sinϕz
ϕz

�

b1 =
1

sinϕz

�

ϕz cosϕz ϕz sinϕz
cosϕz − 1 sinϕz

�

b1 . (D.13)

To guarantee that the solution exists, we constrain
�

�ϕz

�

� ∈ [0.1 rad, π[. Note that hitting the
second boundary

�

�ϕz

�

�= π would mean that the feet point in opposite directions which does not
make sense for regular walking patterns and is not kinematically feasible for the robot anyways.
Same as before, we formulate a special solution for the case

�

�ϕz

�

� < 0.1 rad. In particular, we
recall Equation D.5 and find

�

1− 1
6ϕ

2
z −ϕz

1
2ϕz 1−ϕ2

z

��

lx
l y

�

≈
�

rx +ϕz w
ry − 2 w+wϕ2

z

�

︸ ︷︷ ︸

=:b2

(D.14)

which we can easily solve for lx and l y by

�

lx
l y

�

≈
1

�

1− 2
3 ϕ

2
z +

1
6 ϕ

4
z

�

�

1−ϕ2
z ϕz

−1
2ϕz 1− 1

6ϕ
2
z

�

b2 . (D.15)

Since
�

�ϕz

�

� < 0.1 rad, the denominator 1− 2
3 ϕ

2
z +

1
6 ϕ

4
z lies within the interval [0.99335, 1], thus,

the solution is guaranteed to exist.

Appendix E

Simplified Leg Kinematics

In order to reason about kinematic feasibility, the vertical RMT planner uses the simplified
leg kinematics model presented in Figure 4.7. In particular, we are interested in the min-
imum and maximum vertical RMT position such that the limits of the (joint-space) angles
ϕhf ∈ [−86.3◦, 39◦], ϕkf ∈ [0.6◦, 114.5◦], and ϕsf ∈ [−43◦, 38.8◦] (highlighted in orange in Fig-
ure 4.7) are respected. The presented intervals have been derived from the physical limits
specified in Table H.1 to which a safety margin of 5◦ has been added.

Since the kinematic model is planar, we project all 3D quantities to the sagittal plane. For
this purpose, we introduce the auxiliary CoSys “S” which is generated by rotating the world
frame around Wez such that the x-axis of the upper body frame UB lies in the x-z-plane of S.
Within this auxiliary FoR, we assemble the kinematic chain from the position of the TCP frame
of the currently investigated foot Sr f to the position of the RMT Srt:

Srt,x(ϕkf, ϕsf) = Sr f ,x + l1 sϕ f − l2 cϕ f − l3 cα+ l4 sα
︸ ︷︷ ︸

=:Srsf,x

+l5 sβ − l6 sγ+ l7 sϕUB , (E.1)

Srt,z(ϕkf, ϕsf) = Sr f ,z + l1 cϕ f + l2 sϕ f + l3 sα+ l4 cα+ l5 cβ + l6 cγ+ l7 cϕUB , (E.2)

where α := ϕ f −ϕzf, β := α−ϕsf, and γ := ϕkf−β denote auxiliary angles which help to shorten
expressions. Moreover, we used c and s as abbreviations for cos and sin, respectively. Note that

• Srt,x is known from the first cycle of the horizontal RMT planner (cf. Section 6.14.2),
• Sr f ,x |z, ϕ f , and ϕzf are known from the foot/toe motion planner (cf. Sections 6.7 and 6.8),
• ϕUB is known from the upper body orientation planner (cf. Section 6.6), and
• the lengths {li} are parameterized according to Table 4.4.

The three angles ϕhf, ϕkf, and ϕsf represent the input parameters for computing Srt,z which,
however, are not independent of each other. In particular, we find

ϕhf(ϕkf, ϕsf) = β −ϕkf −ϕUB = ϕ f −ϕzf −ϕsf −ϕkf −ϕUB (E.3)

which is used to check violation of the corresponding joint limits (although ϕhf does not explicitly
occur in Equations E.1 and E.2). Using Equation E.1, we can express ϕkf as a function of ϕsf:

ϕkf(ϕsf) = β(ϕsf) + asin
�

χ(ϕsf)
�

with χ(ϕsf) := Srsf,x − Srt,x

l6
+

l5
l6

sβ(ϕsf) +
l7
l6

sϕUB (E.4)

and Srsf,x from Equation E.1 (describes the x-position of the ankle flexion joint). In the special
case |χ(ϕsf)|> 1, there exists no ϕkf such that we can reach the horizontal RMT position Srt,x . By
inserting Equation E.4 into Equation E.2 we obtain Srt,z(ϕsf) such that we only have to sample
the angle ϕsf in order to find the vertical RMT boundaries as described in Section 6.14.1.

233

Appendix F

Dynamics of the Five-Mass Model

In order to reason about dynamic feasibility, the horizontal RMT planner approximates the multi-
body dynamics of the robot through the five-mass model presented in Figure 4.7. This section is
dedicated to the derivation and analysis of the EoM of this model. The most important quantities
of the five-mass model are

• mt(t), UBΘ
t
t = const. (cf. Equation 4.4), rt(t), and sUB(t) as the mass, mass moment of

inertia tensor, position, and orientation of the virtual torso segment,

• m f = const. and r f (t) as the mass and position of the foot f ∈ {RF, LF},

• WW
f ,cont = [F

T
f ,cont, TT

f ,cont]
T as the combined contact wrench of the right and left foot acting

on the robot (cf. Equations 4.5 and 4.6),

• mh(t), rh(t), and Wh
h,ext(t) = [F

T
h,ext, TT

h,ext]
T as the mass, position, and external (multi-

contact) wrench of the hand h ∈ {RH, LH}, and

• rCoM(t) as the position of the CoM.

All masses are subject to the gravitational acceleration vector Wg = [0, 0, −g]T. As already
explained in Section 4.5.2, the total mass m of the robot is constant (cf. Equation 4.3) such that
there is no mass transport over the system’s boundaries. However, the masses mt(t) and mh(t)
depend on the task-space selection factors ξh(t) (cf. Equation 4.2), therefore, we also have to
consider their n-th order time derivatives (with n> 0)

mh(t) := ξh(t)Mh m , ṁh(t) = ξ̇h(t)Mh m , m(n)h (t) = ξ
(n)
h (t)Mh m ,

mt(t) := m−
∑

e

me(t) , ṁt(t) = −
∑

h

ṁh(t) , m(n)t (t) = −
∑

h

m(n)h (t) .
(F.1)

where e ∈ {RF, LF, RH, LH}. Within the context of the horizontal RMT planner, all quantities
except for the horizontal RMT position Wrt,x |y(t), the foot-ground contact wrench WW

f ,cont, and
the position of the CoM rCoM(t) are known. For time-dependent quantities, we have access to
analytic time derivatives of arbitrary order (all previously planned trajectories are of polynomial
or QBSpline type). Note that this also holds for the upper body orientation sUB(t), i. e., we can
easily derive the angular velocity ωUB (cf. Equation B.22) and the angular acceleration ω̇UB (cf.
Equation B.23) from the corresponding quaternion representations ṡUB(t) and s̈UB(t). In the
following, all time derivatives of FoR-dependent quantities are defined to be absolute, i. e., with
respect to an inertial FoR such as the world frame W.

Change of Linear Momentum Since there is no mass transport over the system’s boundaries,
the change of the five-mass model’s total linear momentum Wp ∈ R3 observed in the inertial
world FoR (left hand subscripts omitted in the following for brevity) is given by (Principle of
Linear Momentum, see [179, p. 185ff])

dp
dt
=
∑

i

Fi with p = mt ṙt +
∑

e

me ṙe and
∑

i

Fi = m g + Ff ,cont +
∑

h

ξh Fh,ext . (F.2)

234

F Dynamics of the Five-Mass Model 235

Note that we multiplied the external (multi-contact) force Fh,ext with the corresponding task-
space selection factor ξh. This is motivated by the fact that rh, i. e., the point of action of Fh,ext
and Th,ext, is only known if the corresponding hand resides in the task-space (ξh = 1). Thus, in
case the hand is assigned to the null-space (ξh = 0), we avoid erroneous contributions to the
EoM (rh occurs in contribution to the angular momentum). However, the task-space selection
factor planner (cf. Section 6.11) and the external wrench planner (cf. Section 6.13) use a tim-
ing parametrization such that ξh is (almost always) equal to one whenever the corresponding
external (multi-contact) wrench is non-zero. From Equation F.2 we obtain

Ff ,cont = mt r̈t + ṁt ṙt +C1 with C1 :=
∑

e

�

me r̈e + ṁe ṙe

�

−
∑

h

�

ξh Fh,ext

�

−m g (F.3)

where C1 ∈ R
3 represents an auxiliary variable consisting entirely of known quantities.

Change of Angular Momentum Since there is no mass transport over the system’s boundaries,
the change of the five-mass model’s total angular momentum WLW ∈ R3 observed and measured
in the inertial world FoR W (left hand subscript; omitted in the following for brevity) using the
origin of the world FoR W (right hand superscript) as reference point is given by (Principle of
Angular Momentum, see [179, p. 185ff])

dLW

dt
=
∑

i

Ti with LW = mt rt × ṙt +Θ
t
tωUB +

∑

e

me re × ṙe ,

∑

i

Ti = mt rt × g +
∑

e

�

me re × g
�

+ T f ,cont +
∑

h

ξh

�

rh × Fh,ext + Th,ext

�

.
(F.4)

Similar to before, this can be reformulated to

T f ,cont = mt rt ×
�

r̈t − g
�

+ ṁt rt × ṙt +C2 (F.5)

where C2 ∈ R
3 denotes an auxiliary variable consisting entirely of known quantities:

C2 :=
d
�

Θt
tωUB

�

dt
+
∑

e

�

me re ×
�

r̈e − g
�

+ ṁe re × ṙe

�

−
∑

h

ξh

�

rh × Fh,ext + Th,ext

�

(F.6)

with the change of angular momentum originating from the mass moment of inertia tensor of
the virtual torso given by (see [179, p. 191])

d
�

Θt
tωUB

�

dt
=ωUB ×

�

Θt
tωUB

�

+Θt
t ω̇UB . (F.7)

Center of Mass (CoM) Dynamics The position of the CoM rCoM, its (absolute) velocity ṙCoM,
and its n-th order (absolute) time derivative r (n)CoM are given by

rCoM :=
1
m



mt rt +
∑

f

m f r f +
∑

h

mh rh



 ,

ṙCoM =
1
m



ṁt rt +mt ṙt +
∑

f

m f ṙ f +
∑

h

�

ṁh rh +mh ṙh

�



 ,

r (n)CoM =
1
m





n
∑

k=0

�

n
k

�

m(k)t r (n−k)
t +

∑

f

m f r (n)f +
∑

h

n
∑

k=0

�

n
k

�

m(k)h r (n−k)
h



 .

(F.8)

F Dynamics of the Five-Mass Model 236

Reduced Model Torso (RMT) Dynamics The position of the RMT rt, its (absolute) velocity
ṙt, and its n-th order (absolute) time derivative r (n)t are given by

rt =
1
mt



m rCoM −
∑

f

m f r f −
∑

h

mh rh



 ,

ṙt =
1
mt



m ṙCoM − ṁt rt −
∑

f

m f ṙ f −
∑

h

�

ṁh rh +mh ṙh

�



 ,

r (n)t =
1
mt



m r (n)CoM −
n
∑

k=1

�

n
k

�

m(k)t r (n−k)
t −

∑

f

m f r (n)f −
∑

h

n
∑

k=0

�

n
k

�

m(k)h r (n−k)
h



 .

(F.9)

Note that due to the time dependency of mt(t), the n-th order derivative r (n)t depends on all
lower-order derivatives r (d)t with d < n.

Static Case If we consider all time derivatives to be zero, the contact wrench of the foot-ground
interface simplifies to

Ff ,cont = FZMP = −
∑

h

�

ξh Fh,ext

�

−m g , (F.10)

T f ,cont = TZMP + rZMP × FZMP = −m rCoM × g −
∑

h

ξh

�

rh × Fh,ext + Th,ext

�

. (F.11)

This can be reformulated to

mt rt × g =

�

m rZMP −
∑

e

me re

�

× g +
∑

h

ξh

��

rZMP − rh

�

× Fh,ext − Th,ext

�

︸ ︷︷ ︸

=:C3

−TZMP (F.12)

where C3 ∈ R
3 denotes an auxiliary variable consisting entirely of known quantities. For the

individual components along the x-, y-, and z-axis of the world frame W, we obtain

mt





Wrt,x

Wrt,y

Wrt,z



×





0
0
−g



=





WC3,x

WC3,y

WC3,z



−





0
0

WTZMP,z



 ⇒





−Wrt,y mt g

Wrt,x mt g
0



=





WC3,x

WC3,y

WC3,z −WTZMP,z



 (F.13)

which allows us to explicitly compute Wrt,x , Wrt,y , and WTZMP,z for the static case through

Wrt,x =
WC3,y

mt g
and Wrt,y = −

WC3,x

mt g
and WTZMP,z = WC3,z . (F.14)

Static Case Without External Contact Wrenches If we additionally assume that there are no
external (multi-contact) wrenches acting on the robot, i. e., if we insert Fh,ext = Th,ext = 0 into
Equations F.10 and F.11, we find

TZMP = m
�

rZMP − rCoM

�

× g ⇒





0
0

WTZMP,z



= m





WrZMP,x −WrCoM,x

WrZMP,y −WrCoM,y

WrZMP,z −WrCoM,z



×





0
0
−g



 (F.15)

and thus

WrCoM,x = WrZMP,x and WrCoM,y = WrZMP,y and WTZMP,z = 0 (F.16)

which shows that the horizontal positions of the CoM and the ZMP coincide in this case.

Appendix G

Cubic and Quintic Spline Interpolation and
Collocation

This appendix has already
been published in [2].

This appendix integrates the article Fast Approximation of Over-Determined Second-Order Linear
Boundary Value Problems by Cubic and Quintic Spline Collocation [2] by SEIWALD and RIXEN

which was published on June 25, 2020 in the journal MDPI Robotics. The article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (https://creativecommons.org/licenses/by/4.0/). While the algorithms described in the
article are very generic and not restricted to the field of robotics, they represent core elements of
the motion generator presented in Chapter 6. Since the article contains essential contributions of
the author which were made within the context of the work on this dissertation, it was decided
to integrate the article in the form of an appendix into this document. The following represents
an almost exact replication of [2] where only slight modifications were made to highlight the
connections to the contents of this thesis. Moreover, text passages carrying information already
provided in other parts of this document have been shortened. However, the main contents
(equations, algorithms, findings, etc.) are identical to [2].

Abstract We present an efficient and generic algorithm for approximating second-order linear
BVPs through spline collocation. In contrast to the majority of other approaches, our algorithm
is designed for over-determined problems. These typically occur in control theory, where a sys-
tem, e. g. a robot, should be transferred from a certain initial state to a desired target state while
respecting characteristic system dynamics. Our method uses polynomials of maximum degree
three/five as base functions and generates a cubic/quintic spline, which is C2/C4-continuous
and satisfies the underlying ODE at user-defined collocation sites. Moreover, the approximation
is forced to fulfill an over-determined set of two-point BCs, which are specified by the given
control problem. The algorithm is suitable for time-critical applications, where accuracy only
plays a secondary role. For consistent BCs, we experimentally validate convergence towards the
analytic solution, while for inconsistent BCs our algorithm is still able to find a “reasonable”
approximation. However, to avoid divergence, collocation sites have to be appropriately chosen.
The proposed scheme is evaluated experimentally through comparison with the analytical solu-
tion of a simple test system. Furthermore, a fully documented C++ implementation with unit
tests as example applications is provided.

G.1 Introduction

In almost every field of natural science and engineering we face differential equations, which
are typically used for modeling dynamical systems. Especially in engineering, the more specific
case of BVPs is very prominent. In other words, one often searches for the behavior of the
investigated system between some kind of fixed, i. e., known, spatial or temporal boundaries.
One can try to derive the analytical solution to the problem, however, for complex systems this

237

https://creativecommons.org/licenses/by/4.0/

G.1 Introduction 238

can be difficult or even impossible. In such cases, it can be sufficient to approximate the solution
for which a variety of techniques exists.

Methods based on finite differences approximate the derivatives by difference quotients to
obtain a system of equations which depends only on the primal function. This allows a solution
to be found by formulating a linear system of (algebraic) equations representing the transformed
system at certain grid points. In contrast, shooting methods aim at the iterative solution of an
equivalent Initial Value Problem (IVP), which is typically easier to handle than the original BVP.
While for single shooting the IVP is evaluated over the complete time interval, multiple shooting
considers a partitioned time domain. Another technique is given by the finite element approach,
which is mainly used for Partial Differential Equations (PDEs) as they occur, for example, in
structural-, thermo-, and fluid dynamics. Typically finite element methods are based on a weak
formulation of the residual and on splitting the considered domain into elements on which the
local base functions for approximating the solution are defined. Although designed for PDEs,
they can be applied to the simpler case of ODEs, which are the focus of this contribution (see
for example LEE et al. [273]). A variety of other techniques exist. However, these three groups
appear to be used the most in the field of engineering.

In the following, we approximate the solution through spline collocation using PP trial func-
tions, which is a well-known technique to solve BVPs, see, for example, AHLBERG et al. [53,
p.52], DE BOOR and SWARTZ [127], and AHLBERG and ITO [54]. Over the past decades, var-
ious algorithms emerged, which can be classified into two types. The first type, also known
as smoothest spline collocation (or just spline collocation as in CHRISTARA and NG [116]), aims
at matching the differential equation at one collocation site per spline segment, which is typ-
ically a knot or the mid-point of the segment, while simultaneously forcing the spline to have
maximum smoothness, i. e., highest possible continuity [116]. The second type, in [116] called
Gaussian collocation, removes the constraints on higher order continuity and instead uses more
collocation sites, which are typically chosen to be the Gaussian points of each segment. This
class, which is also called orthogonal spline collocation (see BIALECKI and FAIRWEATHER [80]),
originates from DE BOOR and SWARTZ [127] and aims at maximizing the order of convergence.
In order to also provide a competitive convergence for the first type of methods, special variants
for quadratic and quintic spline collocation have been proposed by HOUSTIS et al. in [212] and
by IRODOTOU-ELLINA and HOUSTIS in [220], respectively. Optimal methods for quadratic and
cubic splines on non-uniform grids, i. e., for an inhomogeneous segmentation of the spline, have
been presented by CHRISTARA and NG in [116].

Note that in addition to general purpose codes, such as Colsys (Fortran) for non-linear mixed-
order systems of multi-point boundary value ODEs introduced by ASCHER in [63], highly special-
ized algorithms, which aim at obtaining the best possible approximation for certain use cases,
have also been published. Recent examples are methods for integro-differential equations (e. g.
ZHANG et al. [454]) or fractional differential equations (e. g. AKRAM and TARIQ [57]), which
occur in certain material models exhibiting memory effects. Along with ODEs, various kinds of
(multi-variable) PDEs have been investigated. See BIALECKI and FAIRWEATHER [80] for a survey
on corresponding Gaussian collocation methods. Note that, for PDEs, the time domain is typi-
cally discretized using finite differences, e. g., by the Crank-Nicholson approach as used in [80],
or the second-order backward difference used by ZHANG et al. in [454], while spline collocation
is used for approximating the spacial variables. Lastly, methods for Differential Algebraic Equa-
tions (DAEs) have also been developed, e. g., the Colsys extension Coldae by ASCHER and SPITERI

[65] for semi-explicit DAEs of index 2 and fully implicit DAEs of index 1.
In our opinion, despite the variety of techniques, there is still a lack of simple methods

prioritizing execution time over approximation quality, which is essential for time critical control
applications. The aim of this contribution is to provide an algorithm satisfying these needs
while focusing on the special case of second-order linear ODEs, which are very common for
dynamic systems. Moreover, we focus on over-determined BVPs, i. e., where more BCs are given

G.1 Introduction 239

than necessary. This may at first seem to be a restriction of our algorithm since it needs more
information than other implementations, however, it allows us to also consider inconsistent
BVPs, i. e., the case where no exact solution to the problem exists.

Relations to this Thesis It might appear strange to search for an approximation of something
that actually does not exist. However, we face exactly this situation during motion generation
for our humanoid robot LOLA. In particular, we use a simplified model of the robot’s multi-
body dynamics, cf. Figure 4.7 right, to plan the (horizontal) motion of the RMT over a certain
time horizon. The planned RMT motion resembles the dynamics of the model, which can be
formulated as second-order linear ODE (cf. Section 6.14.2), and is constrained to certain values
on position-, velocity-, and acceleration-level at the boundaries of the planning horizon. This
leads to an over-determined BVP of the type investigated in this contribution. The BCs at the
beginning reflect the current state of the robot while the BCs at the end represent the target
state, e. g. the static idle pose at the end of the sequence. For a seamless motion of the robot it
is crucial to guarantee the satisfaction of the BCs, i. e., a perfect match of the boundary states.
In contrast, it is sufficient to approximate the dynamics of the underlying ODE since it is derived
from a simplified model which is an approximation in itself. This is the key idea behind the
formulation of an over-determined BVP, which may thus not have a proper “real” solution. To
the author’s knowledge, all comparable algorithms assume that a solution of the BVP exists,
while most of them also require it to be unique and “sufficiently” smooth. In the following, we
do not further restrict ourselves to the special application of motion generation for LOLA. Since
the proposed algorithm is generic, we derive it in the most general way since it may be useful
also for different applications in robotics.

Additional Remarks Our method can be seen as smoothest spline collocation, i. e., it belongs
to the “first” type as classified above. We do not apply special techniques to increase the order
of convergence, but instead adhere to its basic form. This leads to a much simpler derivation
and implementation. In addition, it makes the algorithm faster by sacrificing approximation
quality. This complies with the needs of our target application as explained in the previous
paragraph. We emphasize that our focus lies on simplicity, robustness, and efficiency. Thus we
will not search for a mathematical formulation of the convergence order. Instead, the algorithm
is evaluated mainly through experiments, where runtime performance is our primary concern.

As stated before, there exist numerous methods for solving linear BVPs or spline interpo-
lation/collocation in general. For most approaches, solving a large-sparse or small-dense LSE
represents the main workload. To overcome this bottleneck, parallelized algorithms have been
developed, which typically exploit the special structure of the involved matrices, e. g. the scheme
proposed by WRIGHT in [445] for staircase matrix structures. Although we aim at efficiency, we
do not consider explicit parallelization as acceleration technique. This is because our algorithm
is designed for embedded systems which typically feature only few physical CPU cores running
also other time-critical tasks. Moreover, the use of general purpose GPUs, e. g. through Cuda or
OpenCL, is often not feasible since the CPU-GPU interface lacks capabilities for hard real-time re-
quirements. Finally, dedicated to our target application, we only consider (comparatively) small
problems with runtimes ≈ 1ms. For such systems the performance boost obtained through
parallelization is likely to be canceled out by the synchronization overhead. Nevertheless, our
algorithm may also be used for large scale problems. In this case an “off the shelf” parallel solver
for dense LSEs may be used, cf. MAGOULÉS et al. [297, p. 105ff]. However, one should keep in
mind that by using an iterative scheme execution time is not deterministic anymore, and, even
worse, the solver might not converge. As an alternative, there exists an efficient way for the
parallel solution of decoupled, multi-dimensional BVPs, which takes advantage of intermediate
results, see Appendix G.3 for details.

G.2 Materials and Methods 240

G.2 Materials and Methods

In the following, two versions of our algorithm are presented: one using a cubic spline and
the other using a quintic spline for approximating the BVP. As the derivations and resulting
algorithms are similar, we show the connecting links by presenting both methods in parallel.
The version based on cubic splines is naturally simpler, although, using quintic splines leads to
a smoother approximation. Indeed, it is C4- instead of C2-continuous, which can be preferable
for some use cases. Moreover, quintic splines allow us to directly preset first and second-order
derivatives at both boundaries, which otherwise requires the introduction of virtual control-
points and in turn can lead to poor results, as discussed in Appendix G.4. Although deriving
the proposed collocation algorithm for quintic splines is more advanced than its cubic counter-
part, overall performance is superior, because the same approximation quality can be obtained
with less collocation sites and hence with less computational effort as shown in Appendix G.4.
However, this requires the underlying ODE to be sufficiently smooth. Note that, in contrast to
our intention, most other investigations choose quintic splines for approximating fourth-order
ODEs, e. g., in [57, 220, 419, 454] (similar to choosing cubic splines for second-order ODEs).

We highlight that the proposed method is not only inspired by, but is also heavily based on the
interpolation and collocation algorithms presented by MUND et al. in [312] and BUSCHMANN et
al. in [98] (based itself on RUSSELL and SHAMPINE [362]), respectively. The main contribution of
this article is the combination, extension, and runtime optimization of those methods. Moreover,
we provide a detailed and self-contained derivation together with a fully documented open-
source C++ reference implementation. Having a background in mechanical engineering, the
author’s intention is to present a simple and self-contained derivation of the proposed algorithm,
which can be easily understood, implemented, and extended by readers also lacking a dedicated
mathematical background.

G.2.1 Problem Statement

Consider the second-order linear time-variant ODE

α(t) F̈(t) + β(t) Ḟ(t) + γ(t) F(t) = τ(t) for t ∈
�

t0, tn

�

(G.1)

where Ḟ(t) and F̈(t) denote the first and second derivative of the unknown function F(t) with
respect to time t, i. e.,

Ḟ(t) =
dF(t)

dt
and F̈(t) =

d2 F(t)

dt2 . (G.2)

Note that t does not have to represent time. However, this synonym is used in the following
due to the typical appearance of Equation G.1 in dynamical systems. The coefficients α, β , γ,
and the right-hand side τ are arbitrary, in general nonlinear, but known functions of t. Let the
system from Equation G.1 be constrained by the BCs

F(t0) = F0 , Ḟ(t0) = Ḟ0 , F̈(t0) = F̈0 ,

F(tn) = Fn , Ḟ(tn) = Ḟn , F̈(tn) = F̈n ,
(G.3)

where t0 and tn define the considered time interval t ∈ [t0, tn] and F0, Ḟ0, F̈0, Fn, Ḟn, F̈n are user-
defined constants. Then the system from Equation G.1 together with the BCs from Equation G.3
represent the second-order linear two-point BVP for which an approximation is to be found.
Note that Equation G.3 considers Dirichlet, Neumann, and second-order BCs independently of
each other. In contrast, various other algorithms assume Robin BCs, i. e., a linear combination

G.2 Materials and Methods 241

of Dirichlet and Neumann BCs, which is not equivalent to our approach. Due to Equation G.3,
the BVP is over-determined and the existence of a solution F(t) depends on the consistency of
the BCs with the ODE.

In the following, we investigate the approximation of F(t) through spline collocation, i. e.,
we generate a spline y(t) which satisfies the underlying ODE from Equation G.1 at a user-
defined set of distinct collocation sites {tk}, numbered in increasing order, which lie within the
considered interval (t0, tn), i. e.,

α(tk) ÿ(tk) + β(tk) ẏ(tk) + γ(tk) y(tk) = τ(tk) for t0 < tk < tk+1 < tn . (G.4)

Moreover, y(t) is forced to fulfill the BCs specified in Equation G.3 at t0 and tn, i. e.,

y(t0) = y0 = F0 , ẏ(t0) = ẏ0 = Ḟ0 , ÿ(t0) = ÿ0 = F̈0 ,

y(tn) = yn = Fn , ẏ(tn) = ẏn = Ḟn , ÿ(tn) = ÿn = F̈n .
(G.5)

Here we use y(t) to denote the approximating spline while the exact solution is represented
by F(t). For clarity, we also use different denominations for {tk} and {yk} by using the terms
collocation sites and collocation points, respectively. While {tk} are user-defined parameters, {yk}
describe the solution to be found.

Since the proposed collocation algorithm is strongly related to the interpolation of cubic and
quintic splines, which may not be common to some readers, spline interpolation is recapitulated
in Appendix G.2.3. Then, the proposed collocation method is derived in Appendix G.2.7. More-
over, we reuse core elements of the interpolation algorithm during collocation, thus, we cannot
omit its derivation.

G.2.2 Spline Parametrization

Before diving into the derivation of algorithms, one first has to decide which spline represen-
tation to use. In the literature, formulations such as B-Splines are common, since they feature
inherent continuity and local control, which typically leads to banded systems [64]. In general,
B-Splines do not pass through their control-points, which seems to make interpolation difficult
at first sight, however, efficient algorithms for interpolation and collocation exist, see, for exam-
ple, DE BOOR [129, p. 171ff, 243ff]. In [64], ASCHER et al. have shown that B-Splines might not
be as stable and efficient as other representations, namely monomial and Hermite type bases,
especially when it comes to implementation. In particular, monomial bases have been recom-
mended due to their superior condition, and thus lower roundoff errors. For all three forms,
B-Spline, Hermite type, and monomial, the core operation during Gaussian collocation is typi-
cally the solution of an Almost Block Diagonal (ABD) LSE [80, 129]. A generic solver for these
type of systems is Solveblok [128] by DE BOOR and WEISS, while the special structure occur-
ring for monomial bases is exploited by Abdpack introduced by MAJAESS et al. in [298] which
features increased speed and lower memory consumption. Unfortunately, for smoothest spline
collocation as presented in the following, the corresponding collocation matrix is dense, thus,
we cannot apply these algorithms. However, when compared to Gaussian collocation, the count
of collocation sites and thus the dimension of the corresponding LSE is much smaller, which can
lead to comparable performance.

Despite the popularity of B-Splines, we use the PP form [129, p. 69], which describes the
spline through the coefficients of interconnected, but independently defined, polynomial seg-
ments. We use a special type of monomial bases, namely the canonical form of the polynomials,
which may not be as efficient as the choice in [64], however, it makes our algorithm much sim-
pler. By using this formulation, continuity between the spline segments needs to be explicitly
established. The evaluation of the resulting spline, however, boils down to the evaluation of a

G.2 Materials and Methods 242

single polynomial belonging to the corresponding segment, which is in general much quicker
than evaluating the equivalent B-Spline form97. This is essential for time-critical applications,
where the resulting spline has to be evaluated as quickly as possible. Note that we are free to
construct the spline in B-Spline formulation and convert it to the corresponding PP form in a
post-processing step, see [129, p. 101]. However, this introduces an additional (expensive) step
which we try to avoid since, in our case, not only the evaluation but also the construction of the
spline is time critical.

Let the spline y(t) be defined as

y(t) = si(ηi(t)) for t0 ≤ t i ≤ t < t i+1 ≤ tn with i = 0, . . . , n− 1 , (G.6)

where si represents the i-th of the n > 1 spline segments parameterized by the normalized
interpolation parameter ηi. We call t ∈ [t0, tn] and ηi ∈ [0, 1] the global and local interpolation
parameters, respectively, for which we choose the linear mapping

ηi(t) =
1
hi

t −
t i

hi
=
�

t − t i

�

gi (G.7)

with hi > 0 as the duration of the i-th segment hi = t i+1 − t i and its reciprocal gi = 1/hi.
The partitioning of the spline into n segments is visualized in Figure G.1. In the following,
we predominantly derive expressions in local segment space, i. e., with respect to ηi, since this
makes the notation clearer, especially in Appendix G.2.7. Note that, in contrast to some other
approaches, we do not require homogeneous partitioning, thus, the segmentation can be chosen
arbitrarily as long as spline knots do not coincide. However, in Appendix G.2.3, we show that
for best numerical stability uniform partitioning should be used.

s0

si+1si

sn−1

ηi ηi+1

y0
ẏ0
ÿ0
t0

yn
ẏn
ÿn
tn

yi
t i

yi+2
t i+2

yi+1
t i+1

0
0

s
1 , ..., s

i−1 s i+
2
, ..

., s n−
2

Figure G.1: Segmentation and parametrization of the investigated spline y(t). The spline consists of n intercon-
nected segments, which share the interior knots with their neighbors. Each segment is described through the local
interpolation parameter ηi ∈ [0, 1].

In the case of cubic splines (left subscript C), each segment Csi represents a polynomial of
degree three,

Csi(ηi) = Cai η
3
i + C bi η

2
i + Cci ηi + Cdi with i = 0, . . . , n− 1 (G.8)

where Cai, C bi, Cci, and Cdi are its constant coefficients. The first two derivatives of Csi(ηi(t))

97The evaluation of B-Splines of degree p with the well-known DE BOOR’s algorithm [126] takes O(p2) + O(p)
operations [89]. There are optimized versions of it as proposed by LEE in [271] and BÖHM in [89], however, these
are numerically less stable [272]. In contrast, evaluating a polynomial of degree p with the method of HORNER and
GILBERT [208, p. 308ff] takes only 2 p, i. e., O(p), operations [197, p. 94].

G.2 Materials and Methods 243

with respect to t are obtained by applying the chain rule:

Cṡi(ηi) =
�dCsi

dt

�

=

�

∂ Csi

∂ ηi

�

�dηi

dt

�

=
3
hi

Cai η
2
i +

2
hi

C bi ηi +
1
hi

Cci , (G.9)

Cs̈i(ηi) =

�

d2
Csi

dt2

�

=

�

∂ 2
Csi

∂ η2
i

�

�dηi

dt

�2

+

�

∂ Csi

∂ ηi

��

d2ηi

dt2

�

︸ ︷︷ ︸

=0

=
6

h2
i

Cai ηi +
2

h2
i

C bi . (G.10)

For quintic splines (left subscript Q), each segment Qsi represents a polynomial of degree five,

Qsi(ηi) = Qai η
5
i + Q bi η

4
i + Qci η

3
i + Qdi η

2
i + Qei ηi + Q fi with i = 0, . . . , n− 1 (G.11)

where Qai, Q bi, Qci, Qdi, Qei, and Q fi are its constant coefficients. As in the cubic case, we obtain
the first four derivatives of Qsi(ηi(t)) with respect to t through the chain rule:

Qṡi(ηi) =

�

dQsi

dt

�

=
5
hi

Qai η
4
i +

4
hi

Q bi η
3
i +

3
hi

Qci η
2
i +

2
hi

Qdi ηi +
1
hi

Qei , (G.12)

Qs̈i(ηi) =

�

d2
Qsi

dt2

�

=
20

h2
i

Qai η
3
i +

12

h2
i

Q bi η
2
i +

6

h2
i

Qci ηi +
2

h2
i

Qdi , (G.13)

Qs(3)i (ηi) =

�

d3
Qsi

dt3

�

=
60

h3
i

Qai η
2
i +

24

h3
i

Q bi ηi +
6

h3
i

Qci , (G.14)

Qs(4)i (ηi) =

�

d4
Qsi

dt4

�

=
120

h4
i

Qai ηi +
24

h4
i

Q bi . (G.15)

G.2.3 Spline Interpolation: Preliminaries

In the following, we recall how a given set of n+ 1 data points {(t i , yi)} with i = 0, . . . , n can
be interpolated with a C2 or C4 smooth cubic or quintic spline, respectively. The derivation
explicitly uses the PP form of the spline and leads to the same algorithm as presented by MUND

et al. in [312], except for slight modifications in notation. Note that [312] only deals with
quintic splines. However, the method for cubic segments presented in this thesis is a simplified
version of the same scheme. Moreover, the derivation is investigated in more detail than it is in
[312]. Readers not interested in these details are referred to Algorithm G.1 which summarizes
the results of this section. In contrast to [312], we only consider the case of predefined first- and
second-order derivatives at the boundaries of the quintic spline, i. e., we assume ẏ0, ÿ0, ẏn, and
ÿn to be given (as indicated in Figure G.1). For the cubic counterpart, we lose two degrees of
freedom, allowing us to predefine only two constraints out of { ẏ0, ÿ0, ẏn, ÿn}. For the remainder
of this section, we restrict ourselves to the case of predefined second-order time derivatives ÿ0
and ÿn as this allows an efficient algorithm similar to the one presented for quintic splines.
Note that this choice includes the common case of natural cubic splines, i. e., ÿ0 = ÿn = 0. For
cubic splines, we postpone the enforcement of the remaining boundary conditions, i. e., ẏ0 and
ẏn, to the end of Appendix G.2.7. In the following, we only consider distinct and ascending
interpolation sites, i. e., t0 ≤ t i < t i+1 ≤ tn for i = 0, . . . , n− 1.

G.2 Materials and Methods 244

G.2.4 Cubic Spline Interpolation: Derivation

Since our goal is a spline which passes through the given data points {(t i , yi)}, we enforce the
interpolation constraints

Csi(ηi)
�

�

�

ηi=0

!
= yi for i = 0, . . . , n− 1 , (n equations)

Csi(ηi)
�

�

�

ηi=1

!
= yi+1 for i = 0, . . . , n− 1 . (n equations)

(G.16)

Furthermore, we aim at C2-continuity, thus, we further require that

Cṡi(ηi)
�

�

�

ηi=1

!
= Cṡi+1(ηi+1)

�

�

�

ηi+1=0
= ẏi+1 for i = 0, . . . , n− 2 , (n− 1 equations)

Cs̈i(ηi)
�

�

�

ηi=1

!
= Cs̈i+1(ηi+1)

�

�

�

ηi+1=0
= ÿi+1 for i = 0, . . . , n− 2 . (n− 1 equations)

(G.17)

Inserting Equations G.8 and G.10 into Equation G.16 and in the second row of Equation G.17
allows us to reformulate the spline coefficients as

Cai = −1
6 ÿi h2

i +1
6 ÿi+1 h2

i ,

C bi = +1
2 ÿi h2

i ,

Cci = −yi +yi+1 −1
3 ÿi h2

i −1
6 ÿi+1 h2

i ,

Cdi = +yi ,

(G.18)

where ÿi for i = 1, . . . , n − 1 are the n − 1 unknowns which have to be computed using the
remaining n − 1 equations given by the first row of Equation G.17. For this purpose, we ex-
pand the first row of Equation G.17 with Equation G.9 and insert Cai, C bi, Cci and Cci+1 from
Equation G.18 to obtain

hi−1 ÿi−1 + 2
�

hi−1 + hi

�

ÿi + hi ÿi+1 =
6
hi

�

yi+1 − yi

�

−
6

hi−1

�

yi − yi−1

�

, (G.19)

which holds for i = 1, . . . , n − 1. This equation can be considered as defining intermediate
unknowns ÿi and can be written as LSE of the form

CA CX = CB (G.20)

with CA ∈ R(n−1)×(n−1) and CX , CB ∈ Rn−1 given by

CA=























CD1 CU1 0

C L2 CD2 CU2
.

C Li CDi CUi
.

C Ln−2 CDn−2 CUn−2
0 C Ln−1 CDn−1























, CX =























CX1

CX2
...

CX i
...

CXn−2

CXn−1























, CB =























CB1

CB2
...

CBi
...

CBn−2

CBn−1























(G.21)

and their elements

CDi = 2
�

hi−1 + hi

�

, CX i = ÿi for i = 1, . . . , n− 1 , (G.22)

CUi = hi , C Li+1 = CUi for i = 1, . . . , n− 2 , (G.23)

CBi =
6
hi

�

yi+1 − yi

�

−
6

hi−1

�

yi − yi−1

�

+ CΛi for i = 1, . . . , n− 1 , (G.24)

G.2 Materials and Methods 245

CΛi =























−h0 ÿ0 − hn−1 ÿn for n= 2 , (≡ −C L1 CX0 − CUn−1 CXn)

−h0 ÿ0 for n> 2∧ i = 1 , (≡ −C L1 CX0)

−hn−1 ÿn for n> 2∧ i = n− 1 , (≡ −CUn−1 CXn)

0 else

. (G.25)

Herein C Li, CDi, and CUi ∈ R represent the lower diagonal, diagonal, and upper diagonal ele-
ments of CA, respectively. Note that CA only depends on the choice of {t i}, thus, it can be reused
in case we need to perform further interpolations with the same segmentation {t i}. While CA
represents the interpolation sites {t i}, the interpolation points {yi} are encoded in CB. The ad-
ditional term CΛi incorporates the BCs such that we can write the system in the neat form of
Equation G.21. From the solution CX we can directly obtain the unknowns ÿi which in turn can
be used together with the data points {(t i , yi)} and BCs to compute the segment coefficients
given in Equation G.18 such that the spline y(t) is fully defined. Note that CA is symmetric, i. e.,

CA= CAT, however, we do not make use of this property.
Although one can compute CX from Equation G.20 using an arbitrary solver for linear systems

of equations, there is a more efficient way for doing so: since CA is tridiagonal, we can solve
Equation G.20 with the THOMAS algorithm [352, p. 93ff], [221, p. 55ff]. Derived from an LU
decomposition of CA, one performs a recursive forward elimination

CHi :=















CU1

CD1
for i = 1 ,

CUi

CDi − C Li CHi−1
for i = 2, . . . , n− 2

, (G.26)

CPi :=















CB1

CD1
for i = 1 ,

CBi − C Li CPi−1

CDi − C Li CHi−1
for i = 2, . . . , n− 1

(G.27)

followed by a backward substitution

CX i =

¨

CPn−1 for i = n− 1 ,

CPi − CHi CX i+1 for i = n− 2, n− 3, . . . , 1
. (G.28)

Computing CX out of CA and CB thus boils down to 5 n − 9 operations98 in total [221, p. 57].
Since CA is symmetric and positive definite, one may think of using an algorithm based on
CHOLESKY factorization instead of LU decomposition, as this has proven to be approximately
twice as efficient where applicable. However, this rule of thumb seems to be no longer valid for
the special case of tridiagonal matrices: the CHOLESKY factorization T = L D−1

L LT in MEURANT

[305], where the computation of the lower diagonal matrix L exploits the special structure and
the diagonal matrix DL is used to avoid evaluating expensive square roots, leads to 7 n − 10
operations in total.

Numerical Stability The THOMAS algorithm is guaranteed to be numerically stable if CA is
diagonally dominant, i. e., if

�

�

CDi

�

�=
�

�2
�

hi−1 + hi

��

�>
�

�

C Li

�

�+
�

�

CUi

�

�=
�

�hi−1

�

�+
�

�hi

�

� for i = 1, . . . , n− 1 (G.29)

98Note that in contrast to ISAACSON and KELLER [221] where A∈ Rn×n in our case CA ∈ R(n−1)×(n−1), thus, n changes
to n− 1 for computing the count of operations.

G.2 Materials and Methods 246

holds [352, p. 94], whereas for i = 1 and i = n−1 we use C L1 = 0 and CUn−1 = 0, respectively. As
is easily verified with Equation G.29, this holds true for any choice of hi−1 > 0 and hi > 0 (i. e.,
for distinct and ascending interpolation sites), thus, the presented method is always stable.

G.2.5 Quintic Spline Interpolation: Derivation

As previously mentioned, the following is a detailed version of the derivation given by MUND et
al. in [312]. Just as in the cubic case, our task is to pass through the given data points {(t i , yi)},
thus we enforce the interpolation constraints

Qsi(ηi)
�

�

�

ηi=0

!
= yi for i = 0, . . . , n− 1 , (n equations)

Qsi(ηi)
�

�

�

ηi=1

!
= yi+1 for i = 0, . . . , n− 1 . (n equations)

(G.30)

We use the additional degrees of freedom to enforce not only C2-, but instead C4- continuity with

Qṡi(ηi)
�

�

�

ηi=1

!
= Qṡi+1(ηi+1)

�

�

�

ηi+1=0
= ẏi+1 for i = 0, . . . , n− 2 , (n− 1 equations)

Qs̈i(ηi)
�

�

�

ηi=1

!
= Qs̈i+1(ηi+1)

�

�

�

ηi+1=0
= ÿi+1 for i = 0, . . . , n− 2 , (n− 1 equations)

Qs(3)i (ηi)
�

�

�

ηi=1

!
= Qs(3)i+1(ηi+1)

�

�

�

ηi+1=0
= y(3)i+1 for i = 0, . . . , n− 2 , (n− 1 equations)

Qs(4)i (ηi)
�

�

�

ηi=1

!
= Qs(4)i+1(ηi+1)

�

�

�

ηi+1=0
= y(4)i+1 for i = 0, . . . , n− 2 . (n− 1 equations)

(G.31)

Inserting Equations G.11 to G.13 into Equation G.30 and into the first two rows of Equation G.31
allows us to reformulate the spline coefficients to

Qai = −6 yi +6 yi+1 −3 ẏi hi −3 ẏi+1 hi −1
2 ÿi h2

i +1
2 ÿi+1 h2

i ,

Q bi = +15 yi −15 yi+1 +8 ẏi hi +7 ẏi+1 hi +3
2 ÿi h2

i − ÿi+1 h2
i ,

Qci = −10 yi +10 yi+1 −6 ẏi hi −4 ẏi+1 hi −3
2 ÿi h2

i +1
2 ÿi+1 h2

i ,

Qdi = +1
2 ÿi h2

i ,

Qei = + ẏi hi ,

Q fi = +yi ,

(G.32)

where ẏi and ÿi for i = 1, . . . , n− 1 are the 2 (n− 1) unknowns which we still have to determine
using the remaining 2 (n−1) equations given by the last two rows of Equation G.31. In particular,
we expand the fourth row of Equation G.31 with Equation G.15 and insert Qai, Q bi, and Q bi+1
from Equation G.32 to obtain

− 56 g3
i−1 ẏi−1 − 8 g2

i−1 ÿi−1 − 64 ẏi (g
3
i−1 + g3

i) + 12 ÿi(g
2
i−1 − g2

i)− 56 g3
i ẏi+1 + 8 g2

i ÿi+1 =

= −120 g4
i (yi+1 − yi)− 120 g4

i−1 (yi − yi−1) .
(G.33)

In the same manner, we expand the third row of Equation G.31 with Equation G.14 and insert

Qai, Q bi, Qci and Qci+1 from Equation G.32 which leads to

− 8 g2
i−1 ẏi−1 − gi−1 ÿi−1 − 12 ẏi (g

2
i−1 − g2

i) + 3 ÿi(gi−1 + gi) + 8 g2
i ẏi+1 − gi ÿi+1 =

= 20 g3
i (yi+1 − yi)− 20 g3

i−1 (yi − yi−1) .
(G.34)

G.2 Materials and Methods 247

Equations G.33 and G.34 hold for i = 1, . . . , n− 1 which allows casting them in the form of

QA QX = QB (G.35)

with QA ∈ R2(n−1)×2(n−1) and QX , QB ∈ R2(n−1) given by

QA=























QD1 QU1 0

QL2 QD2 QU2
.

QLi QDi QUi
.

QLn−2 QDn−2 QUn−2
0 QLn−1 QDn−1























, QX =























QX1

QX2
...

QXi
...

QXn−2

QXn−1























, QB =























QB1

QB2
...

QBi
...

QBn−2

QBn−1























(G.36)

and their block components

QDi =

�

64 (g3
i−1 + g3

i) 12κ (g2
i−1 − g2

i) gi

12κ (g2
i−1 − g2

i) gi 3κ2 (gi−1 + gi) g2
i

�

, QXi =

�

− ẏi

1
κ gi

ÿi

�

for i = 1, . . . , n− 1 , (G.37)

QUi =

�

56 g3
i 8κ g2

i gi+1

−8κ g3
i −κ2 g2

i gi+1

�

, QLi+1 = QUT
i for i = 1, . . . , n− 2 , (G.38)

QBi =

�

−120 g4
i (yi+1 − yi)− 120 g4

i−1 (yi − yi−1)

20κ g4
i (yi+1 − yi)− 20κ g3

i−1 gi (yi − yi−1)

�

+ QΛi for i = 1, . . . , n− 1 , (G.39)

QΛi =



































































�

56 g3
0 ẏ0 + 8 g2

0 ÿ0 + 56 g3
n−1 ẏn − 8 g2

n−1 ÿn

8κ g2
0 g1 ẏ0 + κ g0 g1 ÿ0 − 8κ g3

n−1 ẏn + κ g2
n−1 ÿn

�

for n= 2
(≡ −QL1 QX0 − QUn−1 QXn)

,

�

56 g3
0 ẏ0 + 8 g2

0 ÿ0

8κ g2
0 g1 ẏ0 + κ g0 g1 ÿ0

�

for n> 2∧ i = 1
(≡ −QL1 QX0)

,

�

56 g3
n−1 ẏn − 8 g2

n−1 ÿn

−8κ g3
n−1 ẏn + κ g2

n−1 ÿn

�

for n> 2∧ i = n− 1
(≡ −QUn−1 QXn)

,

0 ∈ R2×2 else

. (G.40)

Just as in the cubic case, QLi, QDi, and QUi ∈ R
2×2 represent the lower diagonal, diagonal, and

upper diagonal blocks of QA, respectively. As suggested by MUND et al. in [312], the additional
parameter κ in the Equations G.37 and G.40 is chosen as

κ=

√

√64
3

. (G.41)

From an analytical point of view, κ has no influence on the solution QX (at least if κ ̸= 0).
However, it improves numerical stability which will be verified later.

As for the cubic spline QA is symmetric and only depends on the choice of {t i}, while the
interpolation points {yi} are contained in QB. As before, the additional term QΛi incorporates
the BCs such that we can write the system in the form of Equation G.36. In contrast to the cubic

G.2 Materials and Methods 248

case, the solution QX represents not only ÿi, but also ẏi, which is now additionally required to
compute the segment coefficients from Equation G.32.

Since QA is block-tridiagonal, we can again solve Equation G.35 efficiently with the general-
ization of the THOMAS algorithm to block-tridiagonal matrices [221, p. 58ff]. Based on an LU
decomposition of QA, we first run a recursive forward elimination

QHi :=







QD−1
1 QU1 for i = 1 ,

�

QDi − QLi QHi−1

�−1
QUi for i = 2, . . . , n− 2

, (G.42)

QPi :=







QD−1
1 QB1 for i = 1 ,

�

QDi − QLi QHi−1

�−1 �

QBi − QLi QPi−1

�

for i = 2, . . . , n− 1
(G.43)

followed by a backward substitution

QXi =

¨

QPn−1 for i = n− 1 ,

QPi − QHi QXi+1 for i = n− 2, n− 3, . . . , 1
. (G.44)

Computing QX out of QA and QB requires at a maximum 36 n − 60 operations99 in total [221,
p. 60]. For this upper bound, explicit computation of the inverse of QD1 and (QDi − QLi QHi−1)
by Gaussian elimination is assumed, which in practice should be avoided by solving a 2 × 2
LSE instead [221]. Thus, a corresponding implementation can be expected to require even less
operations.

Numerical Stability The presented scheme for solving block-tridiagonal systems is a special
form of block-Gaussian elimination without pivoting and is guaranteed to be numerically stable
if QA is block-diagonally dominant, i. e., if

Γi :=

QD−1
i

�

QLi

+

QUi

�

≤ 1 for i = 1, . . . , n− 1 (G.45)

holds for an arbitrary matrix norm ∥ · ∥ (see VARAH [425]). Note that for i = 1 and i = n− 1 we
set QL1 = 0 and QUn−1 = 0, respectively. In order to verify Equation G.45 for QDi, QLi, and QUi
as specified in Equations G.37 and G.38, we assume a constant ratio ω = gi/gi−1 = gi+1/gi to
obtain

QDi = g3
i





64
�

1
ω3 + 1

�

12κ
�

1
ω2 − 1

�

12κ
�

1
ω2 − 1

�

3κ2 � 1
ω + 1

�





︸ ︷︷ ︸

=:QD̂i(ω)

, QLi = g3
i





56 1
ω3 −8κ 1

ω3

8κ 1
ω2 −κ2 1

ω2





︸ ︷︷ ︸

=:Q L̂i(ω)

, QUi = g3
i

�

56 8κω

−8κ −κ2ω

�

︸ ︷︷ ︸

=:QÛi(ω)

and further

Γi(ω) =

QD−1
i (ω)

�

QLi(ω)

+

QUi(ω)

�

=

QD̂−1
i (ω)

�

QL̂i(ω)

+

QÛi(ω)

�

(G.46)

which shows that Γi does not depend on gi for a constant ratio ω. It can be easily verified
through numerical evaluation of Equation G.46 that a homogeneous partitioning of the spline,
i. e., ω = 1, results in the lowest value for Γi. Using the spectral matrix norm and the special
choice of κ given in Equation G.41 leads to

Γi(ω= 1)≈ 1.24≰ 1 for i = 2, . . . , n− 2 . (G.47)

99Again, ISAACSON and KELLER [221] use A∈ R2 n×2 n while in our case QA ∈ R2(n−1)×2(n−1) holds, thus, n changes to
n− 1 for computing the count of operations.

G.2 Materials and Methods 249

Unfortunately, the condition from Equation G.45 is violated, even for the ideal case of a homo-
geneously partitioned spline. However, Equation G.45 represents a sufficient but not necessary
condition for numerical stability, thus, we can still use Γi as a measure for the pivotal growth
(see VARAH [425]) which should be minimized. In doing so, we can conclude that for best nu-
merical stability one should use a “reasonable” ratio ω which is close to 1. Note that the special
choice of κ in Equation G.41 has been suggested by MUND et al. in [312] to minimize Γi and
thus optimize numerical stability. This intention becomes clear when observing that

QD̂−1
i (ω= 1)

2 =
Ç

λmax

�

QD̂−T
i (ω= 1)QD̂−1

i (ω= 1)
�

=











1

6κ2 >
1

128
for κ2 <

64
3

,

1
128

for κ2 ≥
64
3

where λmax(. . .) denotes the maximum eigenvalue of a given matrix. Since both

QL̂i(ω)

2

and

QÛi(ω)

2, increase with growing |κ|, the optimum from Equation G.41 is chosen. This
finding can be easily verified through numerical investigation. Note that numerical stability
only depends on |κ|, thus, one could also choose the negative form κ= −

p

64/3.

G.2.6 Algorithm for Cubic/Quintic Spline Interpolation

Since the presented derivation is rather lengthy, the key steps for interpolating cubic/quintic
splines following the proposed method are summarized in Algorithm G.1.

Algorithm G.1: Cubic/Quintic Spline Interpolation. See the class PolynomialSpline of the module curve of
Broccoli for a reference implementation.

Input: Interpolation parameters consisting of

• n+ 1 distinct and ascending interpolation sites {t i},
• their corresponding data values {yi},
• BCs { ÿ0, ÿn} (cubic) or { ẏ0, ÿ0, ẏn, ÿn} (quintic) at t0 and tn

where i = 0, . . . , n and n> 1.

Output: Cubic/quintic spline combining n interconnected segments in PP form, which

• interpolates the given data values at all spline knots {t0, . . . , tn},
• is C2 (cubic) or C4 (quintic) continuous at interior spline knots {t1, . . . , tn−1},
• satisfies the BCs.

begin
Cubic: Setup C Li, CDi, CUi, and CBi from (G.22), (G.23), (G.24), and (G.25).
Quintic: Setup QLi, QDi, QUi, and QBi from (G.37), (G.38), (G.39), and (G.40).

Cubic: Compute CX i using the scheme given in (G.26), (G.27), and (G.28).
Quintic: Compute QXi using the scheme given in (G.42), (G.43), and (G.44).

Cubic: Extract ÿi from CX i and compute the segment coefficients Cai, C bi, Cci, and

Cdi using (G.18).
Quintic: Extract ẏi, ÿi from QXi and compute the segment coefficients Qai, Q bi, Qci,

Qdi, Qei, and Q fi using (G.32).
end

For details on convergence order and approximation error of quintic spline interpolation, the
interested reader is referred to [312] where these issues have been experimentally investigated
for various examples.

G.2 Materials and Methods 250

G.2.7 Spline Collocation: Derivation

The following is based on the collocation algorithm presented by BUSCHMANN in [98, 100].
However, we extend the method from cubic to quintic splines. Moreover, we do not use natural
splines, but instead integrate the BCs directly into the scheme. Lastly, in contrast to [98, 100],
we do not need to modify the right-hand side of Equation G.1, thus, leading to a “true” collo-
cation of the ODE for all collocation sites, which are chosen to be the interior spline knots. As
runtime performance is of the highest priority for our application, we choose smoothest spline
collocation. This minimizes the count of (expensive) collocation sites, thus, reduces the count of
equations to solve, and instead uses the available degrees of freedom to force C2 (cubic spline) or
C4 (quintic spline) continuity. Moreover, in our application, y(t) is used as input for controlling
the motion of a robot, thus, a smooth y(t) is equivalent to small changes in joint accelerations,
i. e., motor jerks, which in turn improves overall stability during locomotion.

As stated in Appendix G.2.1, we require the approximation y(t) to fulfill the underlying
ODE at certain collocation sites {tk}, see Equation G.4, while simultaneously satisfying the BCs
as specified in Equation G.5. Note that we use the index k instead of i to highlight that our
new task consists in collocating the ODE at the interior knots, i. e., k = 1, . . . , n − 1 rather
than the previously investigated interpolation at all knots, i. e., i = 0, . . . , n. Furthermore, it
should be pointed out that although Equation G.4 holds, this does not imply that y(tk) = F(tk),
ẏ(tk) = Ḟ(tk), or ÿ(tk) = F̈(tk). In other words, y(t) will not coincide with the real solution F(t)
at the collocation sites {tk}. However, it will behave similarly at these spots (meaning that they
will satisfy the same Equation G.1), which is illustrated in Figure G.2.

s0

sk+1sk

sn−1

y0
ẏ0
ÿ0
t0

yn
ẏn
ÿn
tn

yk
tk

yk+2
tk+2

yk+1
tk+1

F(t)

Figure G.2: The computed spline y(t) (black) approximating the real solution F(t) (green). The approximation
satisfies the underlying ODE at the specified collocation sites {tk} (blue), and fulfills the BCs at t0 and tn (orange),
but does not necessarily coincide at the collocation points.

As first step, we introduce the auxiliary variables λ, ξ, and r which are defined as

Cλ :=
�

y1, . . . , yn−1

�T
, Cξ :=

�

ÿ1, . . . , ÿn−1

�T
, Cr :=

�

y0, ÿ0, yn, ÿn

�T
,

Qλ :=
�

y1, . . . , yn−1

�T
, Qξ :=

�

ẏ1, ÿ1, . . . , ẏn−1, ÿn−1

�T
, Qr :=

�

y0, ẏ0, ÿ0, yn, ẏn, ÿn

�T
,

(G.48)

where Cλ, Cξ, Cr and Qλ, Qξ, Qr are the corresponding counterparts for the case of cubic and
quintic splines, respectively. While λ represents the (yet unknown) collocation points {yk}, ξ
contains their corresponding first (and second) order time derivatives, which can be seen as
“internal” unknowns, as they will be implicitly defined through an embedded spline interpola-
tion. Lastly, r depicts the BCs, where we lack ẏ0 and ẏn in the case of cubic splines as has been
previously explained. From Equations G.18, G.32 and G.48 we observe that the spline segments
si are linear with respect to λ, ξ, and r , i. e.,

si(ηi) =
�

∂ si(ηi)
∂ λ

�

︸ ︷︷ ︸

known

λ+

�

∂ si(ηi)
∂ ξ

�

︸ ︷︷ ︸

known

ξ+
�

∂ si(ηi)
∂ r

�

r
︸ ︷︷ ︸

known

for i = 0, . . . , n− 1 (G.49)

G.2 Materials and Methods 251

holds. The gradients are fully defined by the spline partitioning {t i}, which is assumed to be
known. Thus, the construction of the spline y(t) is equivalent to the search for a corresponding
λ and ξ. Note that to obtain Equation G.49, we used Equations G.18 and G.32, which in turn
were derived from fulfilling the interpolation condition together with enforcing continuity of
the second time derivative (cubic spline), or first and second time derivative (quintic spline) at
the interior knots. In order to accomplish full C2- and C4-continuity, we further make use of
A X = B from Equations G.20 and G.35, which represents continuity of the first time derivative
(cubic spline) or third and fourth time derivative (quintic spline), respectively. In particular, we
observe from Equations G.24, G.25, G.39 and G.40, that B is linear with respect to λ and r , thus

A X = B =
�

∂ B
∂ λ

�

︸ ︷︷ ︸

known

λ+
�

∂ B
∂ r

�

r
︸ ︷︷ ︸

known

(G.50)

holds, where the gradients again depend only on the known partitioning {t i}. We further observe
that, according to the definitions in Equations G.22, G.37 and G.48, we can write the mapping

X = Sξ with CS := 1 and QS := diag
�

QS1, . . . , QSn−1

�

where QSi := diag
�

−1, 1
κ gi

�

(G.51)

with 1 being the identity matrix of appropriate size. Since A and S do not depend on the yet
unknown λ or ξ and are assumed to be non-singular, it is clear from Equation G.50 that not only
B, but also X and thus ξ are linear with respect to λ and r . Hence, one can write

X =
�

∂ X
∂ λ

�

λ+
�

∂ X
∂ r

�

r and ξ=
�

∂ ξ

∂ λ

�

λ+
�

∂ ξ

∂ r

�

r . (G.52)

Note that A and QS only depend on the known {t i}, which allows us to safely differentiate
Equation G.50 with respect to λ and r to obtain

A
�

∂ X
∂ λ

�

︸ ︷︷ ︸

S
�

∂ ξ

∂ λ

�

=
�

∂ B
∂ λ

�

︸ ︷︷ ︸

known

and A
�

∂ X
∂ r

�

︸ ︷︷ ︸

S
�

∂ ξ

∂ r

�

=
�

∂ B
∂ r

�

︸ ︷︷ ︸

known

. (G.53)

which we can use to compute the yet unknown gradients in Equation G.52. Note that this
can be done very efficiently due to the (block-)tridiagonal form of A. Since S is diagonal, this
property also holds for the product AS. However, for best numerical stability, one should solve
for the gradients of X first and use the mapping from Equation G.51 to obtain the gradients of
ξ afterwards, which is of negligible cost since S, and thus also S−1, is diagonal. The right-hand
sides necessary to solve Equation G.53 only depend on {t i} and are derived in Appendix G.6.
Lastly, we insert ξ from Equation G.52 into Equation G.49 and obtain

si(ηi) =

�

�

∂ si(ηi)
∂ λ

�

+

�

∂ si(ηi)
∂ ξ

�

�

∂ ξ

∂ λ

�

�

λ+

�

�

∂ si(ηi)
∂ r

�

+

�

∂ si(ηi)
∂ ξ

�

�

∂ ξ

∂ r

�

�

r (G.54)

or equivalently

si(ηi) =∇λsi(ηi)λ+∇r si(ηi) r (G.55)

with the known spline gradients

∇λsi(ηi) :=

�

�

∂ si(ηi)
∂ λ

�

+

�

∂ si(ηi)
∂ ξ

�

�

∂ ξ

∂ λ

�

�

, ∇r si(ηi) :=

�

�

∂ si(ηi)
∂ r

�

+

�

∂ si(ηi)
∂ ξ

�

�

∂ ξ

∂ r

�

�

.

(G.56)

G.2 Materials and Methods 252

We can obtain the corresponding expressions for the first and second time derivatives by follow-
ing the exact same scheme. In particular, we get

ṡi(ηi) =∇λṡi(ηi)λ+∇r ṡi(ηi) r , s̈i(ηi) =∇λs̈i(ηi)λ+∇r s̈i(ηi) r (G.57)

with

∇λṡi(ηi) :=

�

�

∂ ṡi(ηi)
∂ λ

�

+

�

∂ ṡi(ηi)
∂ ξ

�

�

∂ ξ

∂ λ

�

�

, ∇r ṡi(ηi) :=

�

�

∂ ṡi(ηi)
∂ r

�

+

�

∂ ṡi(ηi)
∂ ξ

�

�

∂ ξ

∂ r

�

�

,

(G.58)

∇λs̈i(ηi) :=

�

�

∂ s̈i(ηi)
∂ λ

�

+

�

∂ s̈i(ηi)
∂ ξ

�

�

∂ ξ

∂ λ

�

�

, ∇r s̈i(ηi) :=

�

�

∂ s̈i(ηi)
∂ r

�

+

�

∂ s̈i(ηi)
∂ ξ

�

�

∂ ξ

∂ r

�

�

.

(G.59)

Although computing the spline gradients can be done very efficiently, their mathematical repre-
sentation is rather lengthy. A formulation of the gradients, which is ready for implementation,
is given in Appendix G.6. Lastly, we fulfill the dynamics of the ODE by inserting Equations G.55
and G.57 into Equation G.4, which leads to

α(tk) s̈k(ηk = 0) + β(tk) ṡk(ηk = 0) + γ(tk) sk(ηk = 0) = τ(tk) (G.60)

for t0 < tk < tn and tk < tk+1 with k = 1, . . . , n− 1. This can be formulated as LSE

Acollλ= Bcoll (G.61)

with

Acoll =















Acoll,1
...

Acoll,k
...

Acoll,n−1















∈ R(n−1)×(n−1) , Bcoll =















Bcoll,1
...

Bcoll,k
...

Bcoll,n−1















∈ R(n−1) (G.62)

where the k-th row of Acoll and Bcoll corresponds to the collocation site tk and is given by

Acoll,k = α(tk)∇λs̈k(0) + β(tk)∇λṡk(0) + γ(tk)∇λsk(0) ∈ R1×(n−1) , (G.63)

Bcoll,k = τ(tk)−
�

α(tk)∇r s̈k(0) + β(tk)∇r ṡk(0) + γ(tk)∇r sk(0)
�

r ∈ R . (G.64)

Note that we choose a partitioning of the spline such that the collocation sites coincide with the
starting (“left”) knot of each segment, i. e., ηk = 0, (see Figure G.2). This allows us to skip the
computation of certain spline gradients100, which simplifies the implementation and improves
the overall performance. Solving Equation G.61 for λ represents the key operation (i. e., the
bottleneck for large n) of the proposed collocation method, since Acoll is in general dense while
all other operations are either simple explicit expressions or linear systems in (block-)tridiagonal
form, which can be solved efficiently. This justifies our strategy to minimize the count of collo-
cation points and instead force high order continuity.

As soon as λ has been obtained, we can compute ξ directly from Equation G.52, since the
gradients of ξ with respect to λ and r are already available as by-products of computing λ,
see Equation G.53. From λ, ξ, and r the segment coefficients can finally be computed using
Equation G.18 or Equation G.32.

100Since the underlying ODE is of order two, only gradients of the last three coefficients, i. e., C bi , Cci , Cdi (cubic) or
Qdi , Qei , Q fi (quintic), have to be computed. For details see Appendix G.6.

G.3 Implementation 253

G.2.8 Satisfying First Order Boundary Conditions for Cubic Splines

The presented method for cubic spline collocation respects y0, ÿ0, yn, and ÿn as BCs. However,
our task was to fulfill all BCs given in Equation G.5, which seems at first to be only possi-
ble with quintic spline collocation. Also satisfying the first-order BCs, i. e., ẏ0 and ẏn, can be
achieved with moderate effort. For that purpose we insert two auxiliary knots, the so-called
virtual control-points tvirt,1 and tvirt,2, which give us the necessary degrees of freedom to in-
troduce additional constraints. The term “virtual” highlights that these points are not used as
collocation sites. Both, tvirt,1 and tvirt,2, have to lie within the specified start- and endtime and
must not coincide with the collocation sites. This way, the spline remains properly partitioned.
For simplicity, we place the virtual control-points at the centers of the (originally) first and last
segments, i. e.,

tvirt,1 :=
torig,0 + torig,1

2
and tvirt,2 :=

torig,n−1 + torig,n

2
. (G.65)

Obviously, inserting two knots leads to a different segmentation of the spline, i. e., n → n + 2,
however, the boundaries and collocation sites remain unchanged. If we adapt the indexing such
that t1 := tvirt,1 and tn−1 := tvirt,2, all findings derived so far are also valid for this case. The
only difference is that we do not force y(t) to fulfill the underlying ODE at t1 and tn−1 anymore.
Instead, we satisfy the BCs ẏ0 and ẏn by replacing the first and last row of Acoll and Bcoll with

Acoll,1 =∇λṡ0

�

η0 = 0
�

, Bcoll,1 = ẏ0 −∇r ṡ0

�

η0 = 0
�

r ,

Acoll,n−1 =∇λṡn−1

�

ηn−1 = 1
�

, Bcoll,n−1 = ẏn −∇r ṡn−1

�

ηn−1 = 1
�

r .
(G.66)

In this way, the resulting cubic spline fulfills all BCs given in Equation G.5, satisfies the under-
lying ODE at the specified collocation sites, and is C2-continuous at the interior spline knots
(which includes tvirt,1 and tvirt,2).

Note that in Equation G.66, we evaluate the last spline segment at ηn−1 = 1, thus, skipping
certain spline gradients is not a possibility anymore. However, the additional computational cost
is negligible when compared to solving Equation G.61.

G.2.9 Algorithm for Cubic/Quintic Spline Collocation

We summarize our findings in Algorithm G.2. Note that, for the case of cubic splines, the
modification necessary to satisfy first-order BCs is already integrated.

G.3 Implementation

Algorithms G.1 and G.2 provide detailed descriptions of the presented interpolation and collo-
cation methods which can be used as a reference during implementation. However, the author
of this thesis also published a fully documented C++ implementation as part101 of Broccoli.
Aside from basic matrix and vector operations, the Broccoli implementation uses Eigen to solve
dense linear systems of equations such as A−1

coll Bcoll in Equation G.61, but also QD−1
1 (·) and

(QDi − QLi QHi−1)
−1(·) in Equations G.42 and G.43. In particular, we use a Householder rank-

revealing QR decomposition with column-pivoting (in particular ColPivHouseholderQR from
Eigen) since it provides the best trade-off between speed, accuracy, and robustness for our use

101See the class PolynomialSpline of the module curve of Broccoli for cubic/quintic spline interpolation and the
classes Cubic|QuinticSplineCollocator of the module ode of Broccoli for cubic/quintic spline collocation.

G.3 Implementation 254

Algorithm G.2: Cubic/Quintic Spline Collocation. See the classes Cubic|QuinticSplineCollocator of the
module ode of Broccoli for a reference implementation.

Input: Collocation parameters consisting of

• starttime t0 and endtime tn with t0 < tn defining the boundaries of the spline,
• n− 1 distinct and ascending collocation sites {tk} with t0 < tk < tn,
• coefficients α(tk), β(tk), γ(tk), and right-hand side τ(tk) of the underlying ODE at

the collocation sites,
• BCs {y0, ẏ0, ÿ0, yn, ẏn, ÿn} at t0 and tn

where k = 1, . . . , n− 1 and n> 1.

Output: Cubic/quintic spline, consisting of n= norig + 2 (cubic) or n= norig (quintic)
interconnected segments in PP form, which

• satisfies the underlying ODE from Equation G.1 at the given collocation sites,
• is C2 (cubic) or C4 (quintic) continuous at interior spline knots,
• satisfies the BCs.

begin
Cubic: Compute virtual control-points using (G.65) and remap indices n→ n+ 2.

Cubic: Setup C Li, CDi, and CUi from (G.22) and (G.23).
Setup

�

∂ CBi/∂ Cλ
�

and
�

∂ CBi/∂ Cr
�

from (G.71).
Quintic: Setup QLi, QDi, and QUi from (G.37) and (G.38).

Setup
�

∂ QBi/∂ Qλ
�

and
�

∂ QBi/∂ Qr
�

from (G.72) and (G.73).

Solve (G.53) for (∂ X/∂ λ) and (∂ X/∂ r) through the recursive scheme given in
(G.26), (G.27), and (G.28) (cubic) or (G.42), (G.43), and (G.44) (quintic) while
using (∂ B/∂ λ), and (∂ B/∂ r) instead of B as right-hand sides.
Note that the recursive scheme allows block-wise operations on the right-hand side, i. e., computing all
columns of (∂ X/∂ λ) and (∂ X/∂ r) in parallel. For quintic splines this can be done very efficiently through
LU decomposition of

�

QDi − QLi QHi−1

�

.

Compute
�

∂ ξ/∂ λ
�

and
�

∂ ξ/∂ r
�

from S−1 (∂ X/∂ λ) and S−1 (∂ X/∂ r).

Compute the spline gradients ∇λsk(0), ∇λṡk(0), ∇λs̈k(0), ∇r sk(0), ∇r ṡk(0), and
∇r s̈k(0) from (G.56), (G.58), (G.59), and Appendix G.6 for all collocation sites. In
the cubic case, additionally compute the spline gradients ∇λṡ0(0), ∇r ṡ0(0),
∇λṡn−1(1), and ∇r ṡn−1(1).

Assemble Acoll and Bcoll using (G.62), (G.63), (G.64) (and (G.66) in cubic case) and
solve (G.61) for λ.

Compute ξ from (G.52).

Cubic: Extract yi from Cλ and ÿi from Cξ and compute the segment coefficients Cai,

C bi, Cci, and Cdi using (G.18).
Quintic: Extract yi from Qλ and ẏi, ÿi from Qξ and compute the segment coefficients

Qai, Q bi, Qci, Qdi, Qei, and Q fi using (G.32).
end

case. Note that for large scale systems, solving A−1
coll Bcoll turns out to be the bottleneck. Thus,

in this case one might choose a parallel solver (for example PartialPivLU from Eigen with
OpenMP [329] enabled) for Equation G.61 instead.

The basic structure of the source code related to the classes CubicSplineCollocator and
QuinticSplineCollocator is illustrated in Figure G.3 left. Both classes are derived from the

G.4 Results 255

abstract base class SplineCollocatorBase, which declares the interface for data in-/output
and the main processing operators. In order to trigger Algorithm G.2 for a given input dataset,
a simple call of process() is sufficient. For a more fine-grained control, process() is split
up into publicly available subroutines (names starting with “substep_”). Note that providing
public access to the subroutines not only allows detailed runtime measurements by the user, but
also enables an efficient parallel solution for decoupled, multi-dimensional BVPs, see Figure G.3
right. For this, we exploit that large parts of Algorithm G.2 only depend on the spline segmen-
tation, i. e., the collocation sites, (green box). In contrast, the remaining subroutines require
explicit information about the investigated BVP (blue box). If all dimensions of the BVP, e. g.
the x- and y-component of LOLA’s RMT motion, share the same spline segmentation, subrou-
tines covered by the green box in Figure G.3 have to be called only once. Subsequently, the
used instance of Cubic|QuinticSplineCollocator (holding intermediate results) is copied
such that the remaining subroutines, covered by the blue box in Figure G.3, can be run in par-
allel. Note that this includes solving A−1

coll Bcoll (substep_solveCollocationLSE()), which is
the bottleneck for large-scale systems.

SplineCollocatorBase

CubicSplineCollocator

QuinticSplineCollocator

+ process()

+ substep_checkInput()

+ substep_addVirtualControlPoints()

+ substep_setupBlockTridiagonalSystem()

+ substep_solveBlockTridiagonalSystem()

+ substep_computeSplineGradients()

+ substep_assembleCollocationLSE()

+ substep_solveCollocationLSE()

+ substep_convertToTrajectory()

{abstract} substep_checkInput()

substep_addVirtualControlPoints()

substep_computeSplineGradients()

substep_setupBlockTridiagonalSystem()

substep_solveBlockTridiagonalSystem()

substep_assembleCollocationLSE()

substep_solveCollocationLSE()

substep_convertToTrajectory()

ru
n

on
ce

ru
n

in
pa

ra
lle

l

copy collocator

Figure G.3: Design of the classes Cubic|QuinticSplineCollocator in Broccoli. Left: class inheritance and
segmentation of process() into subroutines. Right: proposed strategy for efficient parallelization in the case of a
decoupled, multi-dimensional BVP. Note that the first and last subroutine (highlighted in gray) are optional and perform
a validity check of the given input parameters and convert the final result into a corresponding curve::Trajectory
data structure for convenient evaluation of the generated polynomial spline, respectively.

G.4 Results

In order to evaluate the proposed collocation method and its variants, a simple mass-spring-
damper system is considered, see Figure G.4 left. For the sake of simplicity, we do not consider
external excitation, i. e., τ(t) := 0. The corresponding ODE (see Equation G.1) describing the
system dynamics simplifies to

α F̈(t) + β Ḟ(t) + γ F(t) = 0 (G.67)

where α, β , and γ are constants representing the mass and (linear) damping/stiffness coeffi-
cients of the system, respectively.

G.4 Results 256

γ

β

F(t)

α
τ(t) = 0

0 1 2 3 4 5

−0.5

0

0.5

1

t

F
(t
)

underdamped
overdamped

critically damped

Figure G.4: Left: mass-spring-damper system used for validation. Right: analytical solution for the underdamped
case (α= 1, β = 1, γ= 10), the overdamped case (α= 1, β = 10, γ= 10) and the critically damped case (α= 1,
β = 10, γ= 25). The solution is plotted for the initial conditions F0 = 1 and Ḟ0 = 0.

Using textbook mathematics, we can find the analytical solution given by

F(t) =























































eσ1 t

�

F0 cos(σ2 t) +

�

Ḟ0 − F0σ1

σ2

�

sin(σ2 t)

�

for
β2

4α2 −
γ

α
< 0

(underdamped)
,

�

Ḟ0 − F0

�

σ1 −σ2

�

2σ2

�

e(σ1+σ2) t +

�

F0

�

σ1 +σ2

�

− Ḟ0

2σ2

�

e(σ1−σ2) t for
β2

4α2 −
γ

α
> 0

(overdamped)
,

eσ1 t�F0 +
�

Ḟ0 − F0σ1

�

t
� for

β2

4α2 −
γ

α
= 0

(critically damped)

where we used the initial conditions F(t0 = 0) = F0 and Ḟ(t0 = 0) = Ḟ0, and the abbreviations

σ1 := −
β

2α
and σ2 :=

√

√

√

�

�

�

�

β2

4α2 −
γ

α

�

�

�

�

. (G.68)

The characteristic shape of each branch of the analytical solution is visualized in Figure G.4
(right) for the parametrization α = 1, β = 1, γ = 10 in the underdamped case, α = 1, β = 10,
γ = 10 in the overdamped case, and α = 1, β = 10, γ = 25 in the critically damped case. For
the remainder of this section we will adhere to this parametrization. Moreover, we assume the
initial conditions to be given with F0 = 1, Ḟ0 = 0. Note that by choosing σ1 < 0, we obtain
asymptotically stable behavior. As we never constrained the underlying ODE to be stable, our
algorithm can also be used to approximate instable systems. Since tests with β = −1 showed
results comparable to the underdamped case (with β = 1), we omit an explicit discussion of
this case for brevity. Although Equation G.67 describes a very simple system, the proposed
algorithm has also be applied to the (much more complex) horizontal RMT planner of LOLA,
see Section 6.14.2. However, the properties and characteristics of the proposed method can be
better investigated and explained by means of a less complex test system.

Convergence for Consistent and Inconsistent Boundary Conditions As already mentioned,
we focus on over-determined BVPs. Thus, we consider two cases for evaluating our algorithm.
For the first analysis, we use the initial conditions y0 = F0 = 1, ẏ0 = Ḟ0 = 0 and correspondingly
ÿ0 = F̈0 = −γ/α, see Equation G.67, together with the analytical solution to compute the BCs
yn = Fn, ẏn = Ḟn, and ÿn = F̈n at tn = 5. In this way, the BCs are guaranteed to be consistent
because they belong to the same analytic solution F(t). In the second case, we keep the initial
BCs unchanged, but force yn = ẏn = ÿn = 0 for tn = 5 which deviates from the previous solution

G.4 Results 257

Fn, Ḟn, and F̈n, especially in the underdamped case, as can be clearly seen in Figure G.4 right.
Thus, the second analysis handles inconsistent BCs.

In the following, we only focus on the underdamped and overdamped case, since the crit-
ically damped case can be seen as a special form of these with σ2 → 0. By evaluating both
cases, we aim at covering oscillating and non-oscillating dynamics. Moreover, we run tests for
different counts of collocation sites102 ν :=

�

�{tk}
�

�, where we use a uniform segmentation of the
spline, i. e., hi = hi+1∀ i. Note that an inhomogeneous partitioning hi ̸= hi+1 is evaluated per
default in the unit tests provided with Broccoli. The approximation of the BVP by spline colloca-
tion with consistent BCs and ν = 1, . . . , 100 is depicted in Figure G.5. Note that for cubic spline
collocation without virtual control-points, the BCs ẏ0 and ẏn are violated (see Appendix G.2.7).

cubic spline collocation cubic spline collocation quintic spline collocation
(without virtual control-points) (with virtual control-points)

u
n

de
rd

am
pe

d
y(

t)
,

F
(t
)

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

ov
er

da
m

pe
d

y(
t)

,
F
(t
)

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

0 1 2 3 4 5

−1

0

1

2

t

ν= 1
· · ·

νmax = 100
analytical

Figure G.5: Consistent BCs: convergence of the approximation y(t) (blue and green) towards the analytical solution
F(t) (black, dashed) for ν = 1, . . . , 9, 30, 50, 70, 100. The top row belongs to the underdamped case while the
bottom row represents the overdamped case. From left to right: approximation with cubic spline without virtual
control-points (left), cubic spline with virtual control-points (center) and quintic spline (right). The corresponding best
approximation νmax is drawn in bold blue.

For the case of consistent BCs, we observe that the approximation y(t) indeed converges for
increasing ν to the analytical solution F(t). From a qualitative point of view, the convergence
order using a quintic spline (right column of Figure G.5) is clearly higher than the corresponding
cubic counterparts (left and center columns of Figure G.5). In order to compare convergence
using a quantitative measure, we use the Root Mean Square (RMS) of the approximation error

102For cubic and quintic spline collocation without virtual control-points ν= n−2 holds. In contrast, ν= n−4 holds
for cubic spline collocation with virtual control-points.

G.4 Results 258

e(t) and of the residual R(t), defined as

RMS(e) :=

√

√

√ 1
tn − t0

∫ tn

t0

[e(t)]2 dt with e(t) := F(t)− y(t) , (G.69)

RMS(R) :=

√

√

√ 1
tn − t0

∫ tn

t0

[R(t)]2 dt with R(t) := α ÿ(t) + β ẏ(t) + γ y(t) −τ
︸︷︷︸

=0

. (G.70)

For numerical evaluation of Equation G.69 and Equation G.70, we discretize the embedded
integral using a time step size of ∆t = 0.01 for which we obtain the results presented in Fig-
ure G.6 left. Since we stop the test series at νmax = 100, we find the optimum for all variants
to be at νopt = νmax. However, due to convergence, we expect the theoretical optimum to be
at νopt → ∞. We observe that also from a quantitative point of view, quintic spline colloca-
tion clearly outperforms the cubic variants for the same ν. Furthermore, forcing first-order BCs
through virtual control-points of the cubic spline seems to have a negative influence, especially
for increasing ν. The influence of virtual control-points on the residual is visualized in Figure G.7
where peaks in R(t) occur at these spots. Note that without virtual control-points, the first-order
boundary conditions at t0 = 0 and tn = 5 are missed. Thus, in contrast to the collocation sites,
the residual does not drop to zero at the boundaries. By comparing the left and right plot of
Figure G.7, we observe that R(t) behaves similarly for consistent and inconsistent BCs.

RMS(e) and RMS(R) for RMS(R) for
consistent BCs inconsistent BCs

0 20 40 60 80 100
10−7

10−5

10−3

10−1

101

ν

RMS(CRfree) (underdamped)

RMS(CRvirt) (underdamped)

RMS(QR) (underdamped)

RMS(CRfree) (overdamped)

RMS(CRvirt) (overdamped)

RMS(QR) (overdamped)

RMS(Cefree) (underdamped)

RMS(Cevirt) (underdamped)

RMS(Qe) (underdamped)

RMS(Cefree) (overdamped)

RMS(Cevirt) (overdamped)

RMS(Qe) (overdamped)

0 10 20 30 40

100

101

ν

Figure G.6: Root Mean Square (RMS) of error e(t) and residual R(t) as defined in Equations G.69 and G.70. The left
subscript differs between cubic C and quintic Q spline collocation. Moreover, for cubic spline collocation, we identify
the variants without virtual control-points (i. e., free first-order boundaries ẏ0, ẏn) and with virtual control-points by the
right subscript free and virt, respectively. The left plot belongs to the case of consistent BCs while the right one was
obtained using inconsistent BCs. Note that for inconsistent BCs an analytic solution does not exist, thus, the error
e(t) is not defined and we consider only the residual R(t).

For consistent BCs, we can state that, at least for the investigated test system, the proposed
algorithm leads to an approximation which converges to the real solution where the “speed” of
convergence depends on the chosen variant of Algorithm G.2. For inconsistent BCs, however,
our analysis draws a different picture: while we can find an optimal count of collocation sites
νopt for each variant and test case, the approximation diverges for ν→∞, see Figure G.6 right
and Figure G.8. Note that this was expected since we are attempting to find an approximation
of a solution which does not actually exist. For small ν, we still find a “reasonable” y(t) where
the spline is still able to smooth out the wrong BCs. However, as we refine the segmentation of
the spline, it gets harder to compensate the error, which in turn leads to undesired oscillations of
y(t). Note that although we call this behavior divergence, our collocation algorithm still satisfies

G.4 Results 259

Residual R(t) for Residual R(t) for
consistent BCs inconsistent BCs

0 1 2 3 4 5

−5

0

5

t

CRfree(t)

CRvirt(t)

QR(t)

0 1 2 3 4 5

−5

0

5

t

CRfree(t)

CRvirt(t)

QR(t)

Figure G.7: Residual R(t) as defined in Equation G.70 for consistent (left) and inconsistent (right) BCs in the un-
derdamped case. For best presentation, the count of collocation sites is chosen as ν = 4 such that the collocation
sites (black dots) are given by {tk}= {1, 2, 3, 4}. For cubic spline collocation, the left subscript C and for the quintic
counterpart Q is used. Moreover, the right subscripts free and virt are used to differentiate between the variants without
and with virtual control-points, respectively. The virtual control-points are highlighted with circles.

cubic spline collocation cubic spline collocation quintic spline collocation
(without virtual control-points) (with virtual control-points)

u
n

de
rd

am
pe

d
y(

t)
,

F
(t
)

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 9
· · ·

ν= 20
reference

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 11
· · ·

ν= 20
reference

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 5
· · ·

ν= 20
reference

ov
er

da
m

pe
d

y(
t)

,
F
(t
)

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 8
· · ·

ν= 20
reference

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 6
· · ·

ν= 20
reference

0 1 2 3 4 5

−1

0

1

2

3

t

ν= 1
· · ·

νopt = 5
· · ·

ν= 20
reference

Figure G.8: Inconsistent BCs: approximation y(t) (blue, green, and orange) and reference system F(t) (black,
dashed) for ν = 1, . . . , 4, νopt, 13, 15, 17, 20. The top row belongs to the underdamped case while the bottom row
represents the overdamped case. From left to right: approximation with cubic spline (no virtual control-points, left),
cubic spline (with virtual control-points, center) and quintic spline (right). The corresponding best approximation νopt
is drawn in bold blue. Diverging approximations for ν > νopt are colored orange.

all constraints that we defined: using a given partitioning, it fulfills the BCs and satisfies the
underlying ODE at the given collocation sites. Thus, the divergence is not a fault of the proposed

G.4 Results 260

algorithm, but rather is due to the non-existence of the solution F(t). Moreover, the sensitivity
to undesired oscillations depends heavily on the underlying BVP: for our target application of
planning horizontal RMT motion (cf. Section 6.14.2), we did not observe any oscillations up to
ν= 104. The critical value for ν is expected to be even higher. However, we could not determine
it due to memory limitations of our test system.

In order to avoid undesired oscillations, an optimal ν has to be chosen, which seems to be
difficult at the first sight, since in practice we do not know the analytical solution, and thus
cannot evaluate e(t). However, one can use the residual R(t) as measure for the approximation
error and use this to formulate a governing optimization for finding νopt. Moreover, one can also
use a non-uniform segmentation to give specific sections more weight. Such adaptive techniques
for automatic mesh refinement have also been developed for other collocation methods, see, for
example, CHRISTARA and NG [117]. However, for our application it is sufficient to choose hi
once (fixed), thus, we withhold this idea for future investigations.

Runtime Analysis In the following, we present measurements, which have been made by us-
ing the implementation given in Broccoli with the version primo (v1.0.0). We used an AMD Ryzen
7 1700X 8x (16x) @3.4 GHz CPU with 32 GiB DDR4 RAM @2.133 GHz as hardware backend and
Ubuntu 18.04.2 LTS 64bit (Linux kernel 4.15.0-51) together with Clang (version 6.0.0-1) on op-
timization level 3 as software basis. Although our algorithm is sequential, we run different test
cases on four physical cores of the CPU in parallel. For all tests, SMT of the CPU was disabled.
For runtime evaluation, we take 1,000 samples for every code section in Algorithm G.2 and
choose the minimum execution time as reference to minimize the risk of wrong measurements
due to high system load and context switching effects.

In Figure G.9 (left), we present runtime measurements for all three variants of our algorithm.
We restrict our analysis to the case of an underdamped parametrization and consistent BCs
since we expect comparable results for the other test cases103. We observe that quintic spline
collocation is more expensive than the cubic counterparts for the same ν, which complies with
theory since the (block-)tridiagonal system for quintic splines is twice the size of the tridiagonal
system for cubic splines. However, for increasing ν, the gap becomes smaller since solving
the collocation equations, where Acoll is of the same dimension for cubic and quintic splines,
becomes the bottleneck, see Figure G.10. Note that there is only a small difference in runtime
between cubic spline collocation with and without virtual control-points. This also complies with
theory, since the only difference is two additional spline knots, which increases the dimension
of Acoll by two. Lastly, the small ripples in Figure G.9 (left) are due to vectorization and SIMD
optimizations handled by Eigen and the compiler, which give slightly better performance if the
dimension of arrays in memory are a multiple of two.

Comparing runtimes for the same ν might not be a meaningful basis for choosing a method.
Instead, one is typically interested in getting the best approximation in the shortest time. For
this purpose, the RMS of the residual R(t) is plotted over runtime in Figure G.9 (right). As can
be seen, quintic spline collocation significantly outperforms both other variants. Moreover, bad
convergence of cubic spline collocation with virtual control-points is also visible in this com-
parison. In addition to measuring total runtime, we also performed a detailed analysis on the
relative cost of each code section of Algorithm G.2 during quintic spline collocation. Figure G.10
demonstrates that in the vicinity of ν≈ 160, evaluating the block-tridiagonal systems to enforce
BCs and continuity, and solving Acollλ = Bcoll for actual collocation share approximately the
same portion of total runtime. With increasing ν, solving for λ becomes more relevant since the
corresponding system is dense while the block-tridiagonal LSE can be solved efficiently using
the recursive scheme discussed in Appendix G.2.3.

103Since our algorithm has a deterministic runtime which only depends on the chosen variant (cubic/quintic,
with/without virtual control-points) and ν, there is no reason why it should be faster or slower with another
parametrization.

G.5 Discussion 261

0 20 40 60 80 100
0

200

400

600

800

0

2

4

6

8

10

ν

ru
nt

im
e

T
/

µs

co
nd

it
io

n
C

of
A

co
ll
/

10
4CTfree

CTvirt

QT

CTfree

CTvirt

QT

CCfree

CCvirt

QC

0 100 200 300 400 500

10−3

10−2

10−1

100

101

runtime T /µs

R
M

S(
R)

RMS(CRfree)
RMS(CRvirt)
RMS(QR)

Figure G.9: Left: (minimum) runtime T and condition C of Acoll for running Algorithm G.2 over count of collocation
sites ν. Right: RMS of residual R(t) as defined in Equation G.70 over (minimum) runtime T . The left subscript C and
Q belong to the cubic or quintic spline version of the algorithm, respectively. Moreover, the right subscript indicates
if cubic spline collocation was performed without (free) or with (virt) virtual control-points. All measurements were
performed using the underdamped parametrization and consistent BCs.

0 50 100 150 200 250 300
0

20

40

60

ν

ru
nt

im
e
/

% setup block-tridiagonal LSEs
solve block-tridiagonal LSEs

compute spline gradients
assemble Acoll and Bcoll

solve Acoll λ= Bcoll

Figure G.10: Runtime (percentile) of relevant steps of Algorithm G.2 relative to total runtime for quintic spline col-
location. Code sections with negligible execution time are not plotted and also not accounted for total runtime. The
measurements were obtained by using an extended time horizon tn = 50 and the parametrization α = 1, β = 0.1,
γ= 10 (underdamped) to allow a better representation of high counts of collocation sites of up to ν= 300.

Lastly, we want to point out that the condition of Acoll gets worse for an increasing count of
collocation sites ν, see Figure G.9 left. Thus, there might be an upper limit of ν for the proposed
algorithm.

G.5 Discussion

As shown in the previous section, the presented algorithm performs well if the BCs are consistent
and fully known. Even in the case of inconsistent BCs, we still obtain a reasonable approxima-
tion as long as we carefully pick the collocation sites. However, if we exceed the optimum,
undesired oscillations may occur, which is an indicator for putting too much emphasis on satis-
fying the underlying ODE while simultaneously trying to compensate the “broken” BCs. In order
to automatically determine an optimal partitioning of the spline, a higher level optimization
may be applied, which may be the focus of further investigations.

G.6 Attachment: Spline Gradients 262

Obviously, if the investigated BVP is well-posed, i. e., if it is not over-determined, other tech-
niques should be preferred over our approach. However, for applications where the enforcement
of certain BCs is more important than approximating the underlying dynamics, the proposed
method seems to be a valid approach. Moreover, we want to emphasize that no variable recur-
sion or iteration is involved. This makes execution time predictable, which is especially relevant
for real-time applications such as in our use case.

Comparing different variants of our algorithm showed that collocation using a quintic spline
is in general superior to using the somewhat simpler cubic splines. Note that although its deriva-
tion is more involved, the final implementation is of approximately the same complexity, since
virtual control points have to be introduced in the cubic case. At this point, we also want to
emphasize that, based on the results of our study, we do not recommend to use cubic spline
collocation with virtual control points. Although the full set of BCs is satisfied, the additional
knots seem to significantly downgrade convergence. However, other choices of tvirt,1 and tvirt,2
may lead to different results.

Within this contribution, we only considered second-order BVPs. An extension to ODEs
of higher order seems to be straightforward, since only the collocation equations, see Equa-
tions G.63 and G.64 have to be extended by the corresponding gradients while the overall di-
mension of Acoll and Bcoll stays the same. Moreover, our approach may be applied to nonlinear
systems as well, by using the common approach of linearization and embedding the scheme into
a NEWTON iteration.

Lastly, we want to highlight that our focus lies on runtime efficiency. However, for embedded
systems especially, memory consumption may also be a limiting factor. Although we expect our
algorithm to have similar requirements when compared to other techniques, we have not looked
into this issue so far.

G.6 Attachment: Spline Gradients

In the following, explicit expressions for the spline gradients used in Equations G.56, G.58
and G.59 are given. Note that the gradients differ depending on the type of the underlying
spline (cubic/quintic).

Cubic Spline Gradients From Equations G.8 to G.10, we obtain for each Cρ ∈ {Cλ, Cξ, Cr}
and each segment Csi with i = 0, . . . , n− 1

�

∂ Csi(ηi)
∂ Cρ

�

=

�

∂ Cai

∂ Cρ

�

η3
i +

�

∂ C bi

∂ Cρ

�

η2
i +

�

∂ Cci

∂ Cρ

�

ηi +

�

∂ Cdi

∂ Cρ

�

,

�

∂ Cṡi(ηi)
∂ Cρ

�

=
3
hi

�

∂ Cai

∂ Cρ

�

η2
i +

2
hi

�

∂ C bi

∂ Cρ

�

ηi +
1
hi

�

∂ Cci

∂ Cρ

�

,

�

∂ Cs̈i(ηi)
∂ Cρ

�

=
6

h2
i

�

∂ Cai

∂ Cρ

�

ηi +
2

h2
i

�

∂ C bi

∂ Cρ

�

.

Moreover, by using the indices u = 1, . . . , n− 1, v = 1, . . . , n− 1, and w = 1, . . . , 4 to specify the
elements of

Cλ= [Cλ1, . . . , Cλu, . . . , Cλn−1]
T = [y1, . . . , yu, . . . , yn−1]

T

Cξ= [Cξ1, . . . , Cξv , . . . , Cξn−1]
T = [ÿ1, . . . , ÿv , . . . , ÿn−1]

T

Cr = [Cr1, . . . , Crw, . . . , Cr4]
T = [y0, ÿ0, yn, ÿn]

T

G.6 Attachment: Spline Gradients 263

we obtain

�

∂ Cai

∂ Cλ

�

= 0 ,

�

∂ C bi

∂ Cλ

�

= 0 ,

�

∂ Cci

∂ Cλu

�

=







−1 for u= i ,

1 for u= i + 1 ,

0 else

�

∂ Cdi

∂ Cλu

�

=

�

1 for u= i ,

0 else
,

�

∂ Cai

∂ Cξv

�

=











−h2
i

6 for v = i ,
h2

i
6 for v = i + 1 ,

0 else

,

�

∂ Cci

∂ Cξv

�

=











−h2
i

3 for v = i ,

−h2
i

6 for v = i + 1 ,

0 else
�

∂ C bi

∂ Cξv

�

=

¨

h2
i

2 for v = i ,

0 else
,

�

∂ Cdi

∂ Cξ

�

= 0 ,

�

∂ Cai

∂ Crw

�

=











−h2
i

6 for i = 0∧w= 2 ,
h2

i
6 for i = n− 1∧w= 4 ,

0 else

,

�

∂ Cci

∂ Crw

�

=































−1 for i = 0∧w= 1 ,

−h2
i

3 for i = 0∧w= 2 ,

1 for i = n− 1∧w= 3 ,

−h2
i

6 for i = n− 1∧w= 4 ,

0 else

,

�

∂ C bi

∂ Crw

�

=

¨

h2
i

2 for i = 0∧w= 2 ,

0 else
,

�

∂ Cdi

∂ Crw

�

=

�

1 for i = 0∧w= 1 ,

0 else
,

which can easily be derived from Equation G.18 and the definition of Cλ, Cξ, and Cr . Note that
for ηi = 0, the computation of

�

∂ Cai

∂ Cλ

�

,

�

∂ Cai

∂ Cξ

�

, and

�

∂ Cai

∂ Cr

�

can be skipped entirely since up to the second time derivative of the gradients of si(ηi = 0) these
terms are multiplied with zero and have no effect anyway. In order to solve Equation G.53, we
have to further compute the corresponding right-hand sides which are given by

�

∂ CBi

∂ Cλu

�

=



















6
hi−1

for u= i − 1 ,

− 6
hi
− 6

hi−1
for u= i ,

6
hi

for u= i + 1 ,

0 else

,

�

∂ CBi

∂ Crw

�

=



























6
hi−1

for i = 1∧w= 1 ,

−hi−1 for i = 1∧w= 2 ,
6
hi

for i = n− 1∧w= 3 ,

−hi for i = n− 1∧w= 4 ,

0 else

(G.71)

for i = 1, . . . , n− 1, where we used Equations G.24 and G.25 and the definition of Cλ and Cr .

Quintic Spline Gradients From Equations G.11 to G.13, we obtain for each Qρ ∈ {Qλ, Qξ, Qr}
and each segment Qsi with i = 0, . . . , n− 1

�

∂ Qsi(ηi)

∂ Qρ

�

=

�

∂ Qai

∂ Qρ

�

η5
i +

�

∂ Q bi

∂ Qρ

�

η4
i +

�

∂ Qci

∂ Qρ

�

η3
i +

�

∂ Qdi

∂ Qρ

�

η2
i +

�

∂ Qei

∂ Qρ

�

ηi +

�

∂ Q fi

∂ Qρ

�

,

�

∂ Qṡi(ηi)

∂ Qρ

�

=
5
hi

�

∂ Qai

∂ Qρ

�

η4
i +

4
hi

�

∂ Q bi

∂ Qρ

�

η3
i +

3
hi

�

∂ Qci

∂ Qρ

�

η2
i +

2
hi

�

∂ Qdi

∂ Qρ

�

ηi +
1
hi

�

∂ Qei

∂ Qρ

�

,

�

∂ Qs̈i(ηi)

∂ Qρ

�

=
20

h2
i

�

∂ Qai

∂ Qρ

�

η3
i +

12

h2
i

�

∂ Q bi

∂ Qρ

�

η2
i +

6

h2
i

�

∂ Qci

∂ Qρ

�

ηi +
2

h2
i

�

∂ Qdi

∂ Qρ

�

.

G.6 Attachment: Spline Gradients 264

Moreover, by using the indices u = 1, . . . , n− 1, v = 1, . . . , 2(n− 1), and w = 1, . . . , 4 to specify
the elements of

Qλ= [Qλ1, . . . , Qλu, . . . , Qλn−1]
T = [y1, . . . , yu, . . . , yn−1]

T

Qξ= [Qξ1, . . . , Qξv , . . . , Qξ2(n−1)]
T = [ẏ1, ÿ1, . . . , ẏ(v+1)/2, ÿv/2, . . . , ẏn−1, ÿn−1]

T

Qr = [Qr1, . . . , Qrw, . . . , Qr6]
T = [y0, ẏ0, ÿ0, yn, ẏn, ÿn]

T

we obtain

�

∂ Qai

∂ Qλu

�

=







−6 for u= i ,

6 for u= i + 1 ,

0 else
,

�

∂ Qdi

∂ Qλ

�

= 0 ,

�

∂ Q bi

∂ Qλu

�

=







15 for u= i ,

−15 for u= i + 1 ,

0 else
,

�

∂ Qei

∂ Qλ

�

= 0 ,

�

∂ Qci

∂ Qλu

�

=







−10 for u= i ,

10 for u= i + 1 ,

0 else
,

�

∂ Q fi

∂ Qλu

�

=

�

1 for u= i ,

0 else
,

�

∂ Qai

∂ Qξv

�

=































−3 hi for v = 2 i − 1 ,

−h2
i

2 for v = 2 i ,

−3 hi for v = 2 i + 1 ,
h2

i
2 for v = 2 i + 2 ,

0 else

,

�

∂ Qdi

∂ Qξv

�

=

¨

h2
i

2 for v = 2 i ,

0 else
,

�

∂ Q bi

∂ Qξv

�

=



























8 hi for v = 2 i − 1 ,
3 h2

i
2 for v = 2 i ,

7 hi for v = 2 i + 1 ,

−h2
i for v = 2 i + 2 ,

0 else

,

�

∂ Qei

∂ Qξv

�

=

�

hi for v = 2 i − 1 ,

0 else
,

�

∂ Qci

∂ Qξv

�

=































−6 hi for v = 2 i − 1 ,

−3 h2
i

2 for v = 2 i ,

−4 hi for v = 2 i + 1 ,
h2

i
2 for v = 2 i + 2 ,

0 else

,

�

∂ Q fi

∂ Qξ

�

= 0 ,

�

∂ Qai

∂ Qrw

�

=















































−6 for i = 0∧w= 1 ,

−3 hi for i = 0∧w= 2 ,

−h2
i

2 for i = 0∧w= 3 ,

6 for i = n− 1∧w= 4 ,

−3 hi for i = n− 1∧w= 5 ,
h2

i
2 for i = n− 1∧w= 6 ,

0 else

,

�

∂ Qdi

∂ Qrw

�

=

¨

h2
i

2 for i = 0∧w= 3 ,

0 else
,

G.6 Attachment: Spline Gradients 265

�

∂ Q bi

∂ Qrw

�

=















































15 for i = 0∧w= 1 ,

8 hi for i = 0∧w= 2 ,
3 h2

i
2 for i = 0∧w= 3 ,

−15 for i = n− 1∧w= 4 ,

7 hi for i = n− 1∧w= 5 ,

−h2
i for i = n− 1∧w= 6 ,

0 else

,

�

∂ Qei

∂ Qrw

�

=

�

hi for i = 0∧w= 2 ,

0 else
,

�

∂ Qci

∂ Qrw

�

=















































−10 for i = 0∧w= 1 ,

−6 hi for i = 0∧w= 2 ,

−3 h2
i

2 for i = 0∧w= 3 ,

10 for i = n− 1∧w= 4 ,

−4 hi for i = n− 1∧w= 5 ,
h2

i
2 for i = n− 1∧w= 6 ,

0 else

,

�

∂ Q fi

∂ Qrw

�

=

�

1 for i = 0∧w= 1 ,

0 else
,

which can easily be derived from Equation G.32 and the definition of Qλ, Qξ, and Qr . Note that
for ηi = 0 the computation of

�

∂ Qai

∂ Qλ

�

,

�

∂ Qai

∂ Qξ

�

,

�

∂ Qai

∂ Qr

�

,

�

∂ Q bi

∂ Qλ

�

,

�

∂ Q bi

∂ Qξ

�

,

�

∂ Q bi

∂ Qr

�

,

�

∂ Qci

∂ Qλ

�

,

�

∂ Qci

∂ Qξ

�

,

�

∂ Qci

∂ Qr

�

,

can be skipped entirely since up to the second time derivative of the gradients of si(ηi = 0) these
terms are multiplied with zero and have no effect anyway. In order to solve Equation G.53, we
further have to compute the corresponding right-hand sides, which are given by

�

∂ QBi

∂ Qλu

�

=























�

120 g4
i−1

20κ g3
i−1 gi

�

for u= i − 1 ,

�

−120 g4
i

20κ g4
i

�

for u= i + 1 ,

�

120
�

g4
i − g4

i−1

�

−20κ gi

�

g3
i + g3

i−1

�

�

for u= i , 0 else

, (G.72)

�

∂ QBi

∂ Qrw

�

=























































�

120 g4
i−1

20κ g3
i−1 gi

�

for i = 1∧w= 1 ,

�

−120 g4
i

20κ g4
i

�

for i = n− 1∧w= 4 ,

�

56 g3
i−1

8κ g2
i−1 gi

�

for i = 1∧w= 2 ,

�

56 g3
i

−8κ g3
i

�

for i = n− 1∧w= 5 ,

�

8 g2
i−1

κ gi−1 gi

�

for i = 1∧w= 3 ,

�

−8 g2
i

κ g2
i

�

for i = n− 1∧w= 6 ,

0 else
(G.73)

for i = 1, . . . , n− 1, where we used Equations G.39 and G.40 and the definition of Qλ and Qr .

Appendix H

Hardware Details

This section gives a brief summary of the main mechanical and electrical specifications of the
humanoid robot LOLA v1.1, i. e., the hardware configuration after the upgrade of the upper body.

H.1 Mechanical Specifications

Table H.1: Mechanical parameters of the segments of LOLA v1.1. From left to right: corresponding DoF with mechan-
ical joint limits (rotation around positive z-axis of segment frame); segment (seg) codename; parent (par) codename;
mass m; rotation matrix from segment frame to parent frame parAseg (with c := cos(10◦) and s := sin(10◦)); position
of segment frame origin described in parent frame parrseg; CoM of segment described in segment frame segrCoM; mass
moment of inertia tensor of segment with respect to origin of segment frame described in segment frame segΘ

seg
seg .

DoF seg par m/kg parAseg parrseg /m segrCoM /m segΘ
seg
seg /kgm2

q1, . . . , q6
(see Footnote 52)

torso – 14.836 – –




+6.485e−2
+2.268e−1
−2.652e−3









+1.030e+0 −2.659e−1 +4.404e−3
−2.659e−1 +2.729e−1 +9.269e−3
+4.404e−3 +9.269e−3 +1.100e+0





q7
[−19.4◦ , 19.4◦]

br torso 1.530




1 0 0
0 0 1
0 −1 0









+0.000e+0
−2.000e−3
+0.000e+0









+1.509e−2
−4.169e−6
−4.730e−2









+5.405e−3 +1.541e−6 +1.135e−3
+1.541e−6 +7.053e−3 +1.384e−6
+1.135e−3 +1.384e−6 +2.994e−3





q8
[−15.1◦ , 14.7◦]

ba br 6.080




0 0 −1
0 1 0
1 0 0









+5.800e−2
+0.000e+0
−5.100e−2









+1.420e−2
−9.972e−6
−5.154e−2









+7.532e−2 +2.277e−5 +5.529e−3
+2.277e−5 +3.866e−2 +7.155e−5
+5.529e−3 +7.155e−5 +5.288e−2





q9
[−26.1◦ , 24.7◦]

hrr ba 1.840




0 −s c
0 c s
−1 0 0









−1.423e−1
−1.230e−1
−5.000e−2









−7.551e−2
−2.764e−5
+4.554e−2









+1.051e−2 −1.011e−5 +5.909e−4
−1.011e−5 +2.968e−2 +3.878e−7
+5.909e−4 +3.878e−7 +2.078e−2





q10
[−34.5◦ , 40.4◦]

har hrr 2.813




0 0 1
0 1 0
−1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









+9.694e−6
+8.072e−3
−9.212e−3









+8.421e−3 −2.941e−6 +5.015e−7
−2.941e−6 +7.415e−3 +3.105e−5
+5.015e−7 +3.105e−5 +5.116e−3





q11
[−92◦ , 44.9◦]

hfr har 6.498




0 1 0
0 0 1
1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









−5.270e−3
+1.957e−1
−4.418e−3









+3.437e−1 +5.185e−3 +2.749e−5
+5.185e−3 +2.847e−2 −1.089e−3
+2.749e−5 −1.089e−3 +3.423e−1





q12
[−4.5◦ , 120◦]

kfr hfr 3.309




1 0 0
0 1 0
0 0 1









+0.000e+0
+4.400e−1
+0.000e+0









−1.259e−3
+1.336e−1
+3.192e−5









+1.152e−1 +3.931e−3 +6.464e−6
+3.931e−3 +6.247e−3 −4.682e−5
+6.464e−6 −4.682e−5 +1.145e−1





q13
[−23.5◦ , 23.9◦]

sar kfr 0.141




0 0 1
1 0 0
0 1 0









+0.000e+0
+4.300e−1
+0.000e+0









−8.113e−7
+5.777e−3
−6.145e−3









+1.617e−4 −3.625e−9 −1.099e−8
−3.625e−9 +9.129e−5 +0.000e+0
−1.099e−8 +0.000e+0 +7.697e−5





q14
[−49◦ , 43.8◦]

sfr sar 1.777




0 1 0
0 0 1
1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









+1.375e−3
+5.846e−2
−3.099e−3









+1.221e−2 +6.201e−5 −3.424e−4
+6.201e−5 +1.039e−2 +4.707e−6
−3.424e−4 +4.707e−6 +1.460e−2





q15
[−49.5◦ , 14.3◦]

zfr sfr 0.862




1 0 0
0 1 0
0 0 1









+1.301e−1
+6.050e−2
+0.000e+0









+1.218e−2
+1.236e−2
−1.483e−2









+2.466e−3 −2.749e−4 +1.421e−4
−2.749e−4 +2.608e−3 +3.023e−4
+1.421e−4 +3.023e−4 +1.091e−3





q16
[−24.3◦ , 25.7◦]

hrl ba 1.840




0 −s c
0 −c −s
1 0 0









−1.423e−1
+1.230e−1
−5.000e−2









+7.551e−2
+2.764e−5
+4.554e−2









+1.051e−2 −1.011e−5 −5.909e−4
−1.011e−5 +2.968e−2 −3.878e−7
−5.909e−4 −3.878e−7 +2.078e−2





q17
[−31.3◦ , 38.1◦]

hal hrl 2.813




0 0 1
0 1 0
−1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









−1.059e−5
+8.072e−3
+9.212e−3









+8.421e−3 +3.085e−6 +5.015e−7
+3.085e−6 +7.415e−3 −3.116e−5
+5.015e−7 −3.116e−5 +5.116e−3





q18
[−44◦ , 91.3◦]

hfl hal 6.412




0 1 0
0 0 1
1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









+5.503e−3
+1.950e−1
−4.558e−3









+3.376e−1 −5.452e−3 −4.350e−5
−5.452e−3 +2.813e−2 −1.034e−3
−4.350e−5 −1.034e−3 +3.363e−1





q19
[−119.5◦ , 4.4◦]

kfl hfl 3.309




1 0 0
0 1 0
0 0 1









+0.000e+0
+4.400e−1
+0.000e+0









+2.574e−3
+1.335e−1
+1.646e−4









+1.149e−1 −5.552e−3 −3.654e−5
−5.552e−3 +6.775e−3 −1.967e−4
−3.654e−5 −1.967e−4 +1.147e−1





continued on next page...

266

H.1 Mechanical Specifications 267

Table H.1: Continuation (see previous page).

DoF seg par m/kg parAseg parrseg /m segrCoM /m segΘ
seg
seg /kgm2

q20
[−23◦ , 24.5◦]

sal kfl 0.141




0 0 1
1 0 0
0 1 0









+0.000e+0
+4.300e−1
+0.000e+0









−8.113e−7
−5.777e−3
+6.145e−3









+1.617e−4 +3.625e−9 +1.099e−8
+3.625e−9 +9.129e−5 +0.000e+0
+1.099e−8 +0.000e+0 +7.697e−5





q21
[−44◦ , 48◦]

sfl sal 1.777




0 1 0
0 0 1
1 0 0









+0.000e+0
+0.000e+0
+0.000e+0









−1.362e−3
+5.846e−2
−2.883e−3









+1.221e−2 −6.204e−5 +3.411e−4
−6.204e−5 +1.039e−2 −2.225e−5
+3.411e−4 −2.225e−5 +1.460e−2





q22
[−15.8◦ , 48.8◦]

zfl sfl 0.873




1 0 0
0 1 0
0 0 1









−1.301e−1
+6.050e−2
+0.000e+0









−1.229e−2
+1.259e−2
+2.485e−3









+2.481e−3 +2.812e−4 +1.436e−4
+2.812e−4 +2.629e−3 −2.999e−4
+1.436e−4 −2.999e−4 +1.109e−3





q23
[−∞,∞]

afr torso 1.046




1 0 0
0 −1 0
0 0 −1









+1.080e−1
+2.870e−1
+1.590e−1









−1.795e−2
−3.691e−4
−4.267e−2









+3.917e−3 −3.251e−5 −1.218e−3
−3.251e−5 +4.700e−3 −2.528e−5
−1.218e−3 −2.528e−5 +1.557e−3





q24
[−180◦ , 0◦]

aar afr 1.278




0 0 1
0 1 0
−1 0 0









+0.000e+0
+0.000e+0
−6.400e−2









+3.185e−4
+1.211e−1
+1.353e−3









+2.512e−2 −3.884e−5 +9.593e−7
−3.884e−5 +1.582e−3 +6.484e−6
+9.593e−7 +6.484e−6 +2.486e−2





q25
[−∞,∞]

arr aar 1.345




1 0 0
0 0 −1
0 1 0









+0.000e+0
+0.000e+0
+0.000e+0









+1.540e−2
−3.702e−3
−3.169e−1









+1.451e−1 +9.875e−5 +7.322e−3
+9.875e−5 +1.459e−1 −1.597e−3
+7.322e−3 −1.597e−3 +1.944e−3





q26
[−158◦ , 24◦]

efr arr 1.305




0 0 −1
1 0 0
0 −1 0









+0.000e+0
+0.000e+0
−3.830e−1









−1.962e−4
+2.182e−1
−3.542e−2









+9.251e−2 +3.504e−5 −4.370e−6
+3.504e−5 +3.602e−3 +1.402e−2
−4.370e−6 +1.402e−2 +8.973e−2





q27
[−∞,∞]

afl torso 1.046




−1 0 0
0 −1 0
0 0 1









+1.080e−1
+2.870e−1
−1.590e−1









+1.795e−2
−3.491e−4
−4.259e−2









+3.907e−3 +3.141e−5 +1.210e−3
+3.141e−5 +4.690e−3 −2.280e−5
+1.210e−3 −2.280e−5 +1.557e−3





q28
[−180◦ , 0◦]

aal afl 1.278




0 0 1
0 1 0
−1 0 0









+0.000e+0
+0.000e+0
−6.400e−2









+4.121e−4
+1.211e−1
−1.368e−3









+2.512e−2 −6.053e−5 +9.593e−7
−6.053e−5 +1.582e−3 −1.191e−5
+9.593e−7 −1.191e−5 +2.486e−2





q29
[−∞,∞]

arl aal 1.345




1 0 0
0 0 −1
0 1 0









+0.000e+0
+0.000e+0
+0.000e+0









+1.540e−2
+3.667e−3
−3.170e−1









+1.452e−1 −9.555e−5 +7.331e−3
−9.555e−5 +1.460e−1 +1.587e−3
+7.331e−3 +1.587e−3 +1.944e−3





q30
[−24◦ , 158◦]

efl arl 1.305




0 0 −1
1 0 0
0 −1 0









+0.000e+0
+0.000e+0
−3.830e−1









+1.935e−4
+2.182e−1
−3.542e−2









+9.251e−2 −3.504e−5 +4.064e−6
−3.504e−5 +3.602e−3 +1.402e−2
+4.064e−6 +1.402e−2 +8.973e−2





q31
[−113◦ , 113◦]

vp torso 0.242




1 0 0
0 0 1
0 −1 0









+1.550e−1
+5.155e−1
+0.000e+0









+1.175e−4
+1.140e−4
−3.463e−2









+3.937e−4 −1.262e−5 +7.440e−6
−1.262e−5 +4.438e−4 +1.262e−5
+7.440e−6 +1.262e−5 +1.448e−4





q32
[−51◦ , 11◦]

vt vp 0.270




1 0 0
0 0 −1
0 1 0









+0.000e+0
+0.000e+0
+0.000e+0









+9.498e−3
+3.322e−2
−4.455e−4









+6.124e−4 −1.218e−4 −5.040e−6
−1.218e−4 +2.266e−4 −8.505e−7
−5.040e−6 −8.505e−7 +5.125e−4





1.
76

3
m

0.
34

5
m

1.877 m 0.376 m

0.
38

3
m

0.
95

7
m

1.
51

1
m

0.637 m

0.547 m
0.426 m

Figure H.1: Main dimensions of LOLA v1.1. Note that the height of the CoM depends on the actual pose of the robot
and is given exemplary for the depicted configuration with hanging arms (blue).

H.2 Electrical Specifications 268

Table H.2: Relative pose of special CoSys of LOLA v1.1. From left to right: CoSy name; parent (par) codename;
rotation matrix from CoSy to parent frame parACoSy; position of CoSy origin described in parent frame parrCoSy; textual
description of the pose.

CoSy par parACoSy parrCoSy /m Description

Right Foot TCP
(frame “RF”)

zfr





1 0 0
0 0 −1
0 1 0









+1.450e−2
+4.800e−2
+0.000e+0





Origin: centroid of contact surface of toe segment
Orientation: x =walking direction; z =upwards

Left Foot TCP
(frame “LF”)

zfl





−1 0 0
0 0 −1
0 −1 0









−1.450e−2
+4.800e−2
+0.000e+0





Origin: centroid of contact surface of toe segment
Orientation: x =walking direction; z =upwards

Right Hand TCP
(frame “RH”)

efr





0 0 1
1 0 0
0 1 0









+0.000e+0
+3.450e−1
−5.055e−2





Origin: center of sphere representing contact surface
Orientation: x =extends lower arm; y =left

Left Hand TCP
(frame “LH”)

efl





0 0 −1
1 0 0
0 −1 0









+0.000e+0
+3.450e−1
−5.055e−2





Origin: center of sphere representing contact surface
Orientation: x =extends lower arm; y =left

Vision TCP
(frame “VTCP”)

vt





1 0 0
0 0 1
0 −1 0









+3.000e−2
+4.850e−2
+0.000e+0





Origin: mean of optical centers of vision sensors
Orientation: x =walking direction; z =upwards

Torso IMU
(frame “IMU”)

torso





1 0 0
0 0 1
0 −1 0









+3.210e−2
+1.742e−1
+1.700e−3





Origin: mean origin of accelerometers/gyroscopes
Orientation: x =walking direction; z =upwards

H.2 Electrical Specifications

arl

afl

aal

efl

Torso
Junction

Motor Circuit 80 V Auxiliary Circuit 24 V
Terminal

Pelvis
Junction

arr

afr

aar

efr

hfl hfr

hal

hrl

har

hrrbr ba

Left Knee
Junction

Right Knee
Junction

4 mm2

2.5 mm2

2.5 mm2

2.5 mm2
1.5 mm2

2.5 mm2
2.5 mm2
1.5 mm2

2.5 mm2

2.5 mm2

2.5 mm2

4 mm2

1.5 mm2 1.5 mm2

1.
5

m
m

2

1.5 mm2 1.5 mm2

4
m

m
2

4
m

m
2

1.
5

m
m

2

kfl kfr

1.
5

m
m

2

1.
5

m
m

2

sfl / sal zfl zfr

1.5 mm2 1.5 mm2 1.5 mm2 1.5 mm2

(inner / outer motor)
sfr / sar

(inner / outer motor)

Torso
Junction A

Torso
Junction B

Terminal

4 mm2

Pelvis
Junction

Primary IMU Onboard PCs

1.5 mm2

24 V Switch

1.5 mm2

1.5 mm2

Left Knee
Junction

Right Knee
Junction

kfl kfr

0.
5

m
m

2

0.
5

m
m

2

sfl / sal zfl zfr

0.5 mm2 0.5 mm2 0.5 mm2

(inner / outer servo)
sfr / sar

(inner / outer servo)

0.5 mm2

1.5 mm2 1.5 mm2
har hrr

ba

halhrl

br

0.
5

m
m

2

0.
5

m
m

2

0.
5

m
m

2

0.
5

m
m

2

hfl hfr

1.
5

m
m

2

0.5 mm2 0.5 mm2

aal

afl

arl

aar

afr

arr

efrefl

0.5 mm2

vp vt
servo

0.5 mm2

0.5 mm2

0.5 mm2

0.5 mm2

0.5 mm2 0.5 mm2

0.5 mm2 0.5 mm2

0.5 mm2 0.5 mm2

motormotor servo

0.
5

m
m

2

1.
5

m
m

2

1.
5

m
m

2

0.
5

m
m

2

Figure H.2: Power distribution system of LOLA v1.1. The 80 V input line supplies power to all motors except for vp
and vt. The 24 V input line feeds two auxiliary circuits separated by an externally triggered electronic switch. Not
visualized are the numerous small DC converters providing 5 V and 3.3 V to sensors and integrated circuits typically
located directly on the corresponding PCB.

H.2 Electrical Specifications 269

“Vision” PC On/Off

“Vision” PC Reset

“Control” PC Reset

“Control” PC On/Off

24 V 80 V Emergency Stop

Auxiliary Line (trigger for 24 V switch etc.)Ethernet

EthernetEtherCAT

Ethernet

Safety

Handle

Safety

Handle

Harness Harness

Figure H.3: Main connection terminal of LOLA v1.1 providing an interface for the external power supply (80 V and
24 V) and communication with the laboratory infrastructure (high-level signals and monitoring/logging). The emer-
gency stop interrupts the 80 V input line feeding the motors (except vp and vt).

Laboratory Infrastructure Onboard Communication

LOLA Switch
Ethernet @1 Gbit/s

•monitoring
•logging
•teleoperation

•debugging
•testing

Simulation

Operator PC

Control Panel (UI)

•source code
•cross-compiling
•deployment

Development

•validation
•rendering

Visualization

Tracking PC
Intel Xeon E3-1240@3.5 GHz

Operator
(Human)

16 GiB RAM
Ubuntu 20.04 64bit GPOS

AMD Ryzen 9 5950X@3.5 GHz
128 GiB RAM























Tracking Switch
Ethernet @1 Gbit/s

Windows 10 64bit GPOS

Vicon Tracker [426]

Track. Camera 1-6
Vicon Vero v2.2@100 Hz

Control PC
Intel Core i7-8700@3.2 GHz
32 GiB RAM
QNX Neutrino 7.0 64bit RTOS

WPG, SIK, HWL

Vision PC
Intel Core i7-8700@3.2 GHz
32 GiB RAM, Nvidia Quadro P2000
Ubuntu 20.04 64bit GPOS

CV

Tracking
Camera

RGB-D
Sensor

U
SB

U
SB

Terminal

Gateway
Primary IMU

EtherCAT @4 kHz
CAN @1 Mbit/s

EtherCATEthernet

Ethernet

Ethernet Ethernet Ethernet

Ethernet

Left Arm
Joint Servo 4

Left Hand
FTS

Left Arm
Joint Servo 1

EtherCAT

EtherCAT

EtherCAT

200 Hz sampling

Aux. Controller
1 kHz sampling

CAN

Junction

2×

8×2×

EtherCAT

EtherCAT

EtherCAT

EtherCAT

Right Arm
Joint Servo 4

Right Hand
FTS

Right Arm
Joint Servo 1

EtherCAT

Head / Leg
Joint Servo 18

Head / Leg
Joint Servo 1

CAN

EtherCAT

Contact
SwitchesFoot FTS

SPI GPIO

EtherCAT

Custom

Figure H.4: Communication system of LOLA v1.1 and its connection to the “external” laboratory infrastructure. The
entire locomotion system of the robot, i. e., CV, WPG, SIK, and HWL, is executed onboard. The communication with
the laboratory infrastructure is used only for receiving high-level signals (e. g. start/stop, walking speed, direction, goal,
etc.) and data transmission for monitoring and logging. The data of the external motion capture (“tracking”) system is
only used for post-experimental (offline) analysis and is not used by the locomotion system of LOLA.

H.3 Calibration 270

H.3 Calibration

For kinematic calibration, MARKUS SCHWIENBACHER designed a special jig to bring the robot
into a well-defined pose, see [291, p. 124f]. Once the robot is attached to this fixture, the joint
angles measured by the link-side absolute encoders are saved, which represent constant offsets
to the “zero” position of each DoF. The offsets are used after startup to get the robot’s current
joint-space configuration. This makes “homing”, i. e., moving each DoF into one of its limits,
unnecessary. An exception are the DoF vp and vt, which do not feature an absolute encoder.
Since self-collisions are not possible for these two DoF, an automatic homing is triggered at
every startup which neither represents a dangerous maneuver nor requires much time.

Due to the revision of the upper body, the original calibration jig did not fit the hardware
anymore. Instead of modifying the existing fixture, it was decided to create a new system, which

• simplifies the calibration process (previously the attachment of the robot was tedious),
• allows joint calibration with LOLA in horizontal position (the robot’s weight fixes it to the

jig – tension belts are used to secure it against detaching from the frame),
• allows IMU calibration with LOLA in vertical position (calibrating the main IMU in a hori-

zontal pose is problematic due to the deformation of the wire rope isolators), and
• simultaneously represents a robust fixture for transport (e. g. inside a wooden box).

The new fixture was designed in large parts by the student assistants DANIEL PÖLZLEITNER and
REINHOLD POSCHER. It basically consists of interconnected (standardized) aluminum profiles,
see Figure H.5. The actual interface to the robot is realized by milled structures integrating high-
precision bushings. These represent counterparts to calibration bolts permanently attached to
the robot. For highest accuracy, the holes for the bushings and all surfaces meant to get in
contact with the robot were manufactured after the fixture was assembled (all-in-one). This
required processing on a large-scale CNC milling machine through an external contractor.

34 kg

Jig: Bushing (12×)

Foot Plate

Robot: Bolt (12×)

1
2

3
4

Vertical Calibration

Manipulation

Horizontal Calibration

Transport

1 DoF
(lockable)

transport box

1

2

3

4

102 kg

Figure H.5: New calibration jig of LOLA v1.1 used for kinematic calibration and as fixture for transportation. The
wheels allow handling by a single person. The movable foot plate is meant for additional support during transport.

Appendix I

Co-authored Publications

I.1 Scientific Publications

[1] Seiwald, P., Wu, S.-C., Sygulla, F., Berninger, T. F. C., Staufenberg, N.-S., Sattler, M. F.,
Neuburger, N., Rixen, D., and Tombari, F. “LOLA v1.1 – An Upgrade in Hardware and
Software Design for Dynamic Multi-Contact Locomotion”. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). Munich, Germany, July 2021, pp. 9–16.
DOI: 10.1109/HUMANOIDS47582.2021.9555790.

[2] Seiwald, P. and Rixen, D. “Fast Approximation of Over-Determined Second-Order Linear
Boundary Value Problems by Cubic and Quintic Spline Collocation”. In: Robotics 9.2
(June 2020). DOI: 10.3390/robotics9020048.

[3] Seiwald, P., Sygulla, F., Staufenberg, N.-S., and Rixen, D. “Quintic Spline Collocation
for Real-Time Biped Walking-Pattern Generation with variable Torso Height”. In: IEEE-
RAS International Conference on Humanoid Robots (Humanoids). Toronto, Canada, Oct.
2019, pp. 56–63. DOI: 10.1109/Humanoids43949.2019.9035076.

[4] Seiwald, P., Leyerer, A., Sygulla, F., and Rixen, D. “Parameter Optimization of a Reduced
Model for Multi-Contact Locomotion of Humanoid Robots”. In: Proceedings in Applied
Mathematics and Mechanics 18.1 (Dec. 2018), pp. 1–2. DOI: 10.1002/pamm.201800138.

[5] Berninger, T. F. C., Seiwald, P., Sygulla, F., and Rixen, D. J. “Evaluating the Mechani-
cal Redesign of a Biped Walking Robot Using Experimental Modal Analysis”. In: Topics
in Modal Analysis & Testing, Volume 8. Ed. by Dilworth, B. J. and Mains, M. Springer
International Publishing, 2022, pp. 45–52. DOI: 10.1007/978-3-030-75996-4_6.

[6] Wahrmann, D., Hildebrandt, A.-C., Bates, T., Wittmann, R., Sygulla, F., Seiwald, P., and
Rixen, D. “Vision-Based 3D Modeling of Unknown Dynamic Environments for Real-Time
Humanoid Navigation”. In: International Journal of Humanoid Robotics 16.1 (2019).
DOI: 10.1142/S0219843619500026.

[7] Gienger, M., Ruiken, D., Bates, T., Regaieg, M., Meißner, M., Kober, J., Seiwald, P.,
and Hildebrandt, A.-C. “Human-Robot Cooperative Object Manipulation with Con-
tact Changes”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Madrid, Spain, Oct. 2018, pp. 1354–1360. DOI: 10.1109/IROS.2018.8594140.

[8] Hildebrandt, A.-C., Ritt, K., Wahrmann, D., Wittmann, R., Sygulla, F., Seiwald, P., Rixen,
D., and Buschmann, T. “Torso height optimization for bipedal locomotion”. In: Interna-
tional Journal of Advanced Robotic Systems 15.5 (Oct. 2018), pp. 1–11. DOI: 10.1177/
1729881418804442.

[9] Hildebrandt, A.-C., Schwerd, S., Wittmann, R., Wahrmann, D., Sygulla, F., Seiwald, P.,
Rixen, D., and Buschmann, T. “Kinematic Optimization for Bipedal Robots: A Framework
for Real-Time Collision Avoidance”. In: Autonomous Robots (Aug. 2018). DOI: 10.1007/
s10514-018-9789-3.

271

https://doi.org/10.1109/HUMANOIDS47582.2021.9555790
https://doi.org/10.3390/robotics9020048
https://doi.org/10.1109/Humanoids43949.2019.9035076
https://doi.org/10.1002/pamm.201800138
https://doi.org/10.1007/978-3-030-75996-4_6
https://doi.org/10.1142/S0219843619500026
https://doi.org/10.1109/IROS.2018.8594140
https://doi.org/10.1177/1729881418804442
https://doi.org/10.1177/1729881418804442
https://doi.org/10.1007/s10514-018-9789-3
https://doi.org/10.1007/s10514-018-9789-3

I.2 Published Software 272

[10] Sygulla, F., Wittmann, R., Seiwald, P., Berninger, T., Hildebrandt, A.-C., Wahrmann,
D., and Rixen, D. “An EtherCAT-Based Real-Time Control System Architecture for Hu-
manoid Robots”. In: IEEE International Conference on Automation Science and Engineer-
ing (CASE). Munich, Germany, Aug. 2018, pp. 483–490. DOI: 10.1109/COASE.2018.
8560532.

[11] Wahrmann, D., Wu, Y., Sygulla, F., Hildebrandt, A.-C., Wittmann, R., Seiwald, P.,
and Rixen, D. “Time-variable, event-based walking control for biped robots”. In: In-
ternational Journal of Advanced Robotic Systems 15.2 (Apr. 2018). DOI: 10 . 1177 /
1729881418768918.

[12] Sygulla, F., Wittmann, R., Seiwald, P., Hildebrandt, A.-C., Wahrmann, D., and Rixen,
D. “Hybrid Position/Force Control for Biped Robot Stabilization with Integrated Cen-
ter of Mass Dynamics”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Birmingham, UK, Nov. 2017, pp. 742–748. DOI: 10.1109/HUMANOIDS.2017.
8246955.

[13] Hildebrandt, A.-C., Klischat, M., Wahrmann, D., Wittmann, R., Sygulla, F., Seiwald, P.,
Rixen, D., and Buschmann, T. “Real-Time Path Planning in Unknown Environments for
Bipedal Robots”. In: IEEE Robotics and Automation Letters 2.4 (Oct. 2017), pp. 1856–
1863. DOI: 10.1109/LRA.2017.2712650.

[14] Wahrmann, D., Knopp, T., Wittmann, R., Hildebrandt, A.-C., Sygulla, F., Seiwald, P.,
Rixen, D., and Buschmann, T. “Modifying the Estimated Ground Height to Mitigate Er-
ror Effects on Bipedal Robot Walking”. In: IEEE International Conference on Advanced
Intelligent Mechatronics (AIM). Munich, Germany, July 2017, pp. 1471–1476. DOI: 10.
1109/AIM.2017.8014226.

I.2 Published Software

Each of the following entries redirects to a “static” (permanently archived at the TUM, see the
field DOI) and “dynamic” (code repository, see the field URL) version of the dataset.

[15] Seiwald, P. and Sygulla, F. broccoli: Beautiful Robot C++ Code Library. Release v3.1.0.
2022. DOI: 10.14459/2022mp1686390.001. URL: https://gitlab.lrz.de/AM/broccoli
(visited on 03/02/2022).

[16] Seiwald, P. am2b-vision-interface: Interface between a Computer Vision System and the
Walking Pattern Generation System of the Humanoid Robot LOLA. Release v2.5.0. 2022.
DOI: 10.14459/2021mp1686394.001. URL: https://gitlab.lrz.de/AM/lola/am2b-vision-
interface (visited on 03/02/2022).

I.3 Published Videos

Each of the following entries redirects to a “static” (permanently archived at the TUM, see the
field DOI) and “dynamic” (YouTube link, see the field URL) version of the dataset.

[17] Seiwald, P. and Wu, S.-C. Humanoid Robot LOLA - Vision Guided Autonomous Multi-
Contact Locomotion. Chair of Applied Mechanics, Technical University of Munich.
Jan. 31, 2022. DOI: 10.14459/2022mp1686386. URL: https://youtu.be/ovG2Rz9-1p8
(visited on 02/01/2022).

https://doi.org/10.1109/COASE.2018.8560532
https://doi.org/10.1109/COASE.2018.8560532
https://doi.org/10.1177/1729881418768918
https://doi.org/10.1177/1729881418768918
https://doi.org/10.1109/HUMANOIDS.2017.8246955
https://doi.org/10.1109/HUMANOIDS.2017.8246955
https://doi.org/10.1109/LRA.2017.2712650
https://doi.org/10.1109/AIM.2017.8014226
https://doi.org/10.1109/AIM.2017.8014226
https://doi.org/10.14459/2022mp1686390.001
https://gitlab.lrz.de/AM/broccoli
https://doi.org/10.14459/2021mp1686394.001
https://gitlab.lrz.de/AM/lola/am2b-vision-interface
https://gitlab.lrz.de/AM/lola/am2b-vision-interface
https://doi.org/10.14459/2022mp1686386
https://youtu.be/ovG2Rz9-1p8

I.4 Press Reports (Indirect Publications) 273

[18] Seiwald, P. Humanoid Robot LOLA - Walking Pattern Generation for Autonomous Multi-
Contact Locomotion. Chair of Applied Mechanics, Technical University of Munich.
Jan. 31, 2022. DOI: 10.14459/2022mp1686396. URL: https://youtu.be/mGlsc_revMc
(visited on 02/01/2022).

[19] Seiwald, P., Wu, S.-C., Sygulla, F., Berninger, T. F. C., Staufenberg, N.-S., Sattler, M. F.,
Neuburger, N., Rixen, D., and Tombari, F. LOLA v1.1 - An Upgrade in Hardware and Soft-
ware Design for Dynamic Multi-Contact Locomotion. Chair of Applied Mechanics, Techni-
cal University of Munich. July 20, 2021. DOI: 10.14459/2022mp1686398. URL: https:
//youtu.be/T0CiZQbd9H0 (visited on 02/01/2022).

[20] Seiwald, P. and Sygulla, F. Humanoid Robot LOLA - Dynamic Multi-Contact Locomo-
tion. Chair of Applied Mechanics, Technical University of Munich. Mar. 16, 2021. DOI:
10 . 14459 / 2021mp1686400. URL: https : / / youtu . be / gUNZ0AmLiWU (visited on
02/01/2022).

[21] Seiwald, P. and Sygulla, F. Humanoid Robot LOLA v1.1 - Validation of Hardware Upgrade
- Initial Tests. Chair of Applied Mechanics, Technical University of Munich. Dec. 18,
2020. DOI: 10.14459/2020mp1686402. URL: https://youtu.be/JCYmq6u0EEc (visited
on 02/01/2022).

[22] Seiwald, P. et al. Humanoid Robot LOLA v1.1 - Hardware Upgrade for Multi-Contact
Locomotion. Chair of Applied Mechanics, Technical University of Munich. Oct. 26, 2020.
DOI: 10.14459/2020mp1686404. URL: https://youtu.be/mpDqMFppT68 (visited on
02/01/2022).

[23] Seiwald, P., Sygulla, F., Staufenberg, N.-S., and Rixen, D. Smooth Real-Time Walking-
Pattern Generation for Humanoid Robot LOLA. Chair of Applied Mechanics, Technical
University of Munich. July 3, 2019. DOI: 10.14459/2019mp1686406. URL: https://
youtu.be/piQm_oTYXIc (visited on 02/01/2022).

[24] Seiwald, P., Sygulla, F., et al. The Humanoid Robot Lola walks Outside. Chair of Ap-
plied Mechanics, Technical University of Munich. May 24, 2019. DOI: 10 . 14459 /
2019mp1686407. URL: https://youtu.be/cNkQT2SUegE (visited on 02/01/2022).

[25] Buschmann, T., Wahrmann, D., Hildebrandt, A.-C., Wittmann, R., Seiwald, P., et al.
Overview Humanoid Robot LOLA 2018. Chair of Applied Mechanics, Technical University
of Munich. Apr. 15, 2019. DOI: 10.14459/2019mp1686408. URL: https://youtu.be/
EctICoMPyS4 (visited on 02/01/2022).

I.4 Press Reports (Indirect Publications)

The following press reports summarize core achievements of the multi-contact project and bring
them closer to the general public. These reports have been created on the basis of direct and
indirect (conference presentation) communication with the author of this thesis.

[26] Ackerman, E. IEEE Spectrum: Bipedal Robots Are Learning To Move With Arms as Well as
Legs. Apr. 1, 2021. URL: https://spectrum.ieee.org/bipedal- robot- learning- to-move-
arms-legs (visited on 05/09/2022).

[27] Marsiske, H.-A. Humanoids: Wie Roboter Arme und Hände zum Laufen nutzen. July 20,
2021. URL: https://www.heise.de/news/Humanoids-Wie-Roboter-Arme-und-Haende-
zum-Laufen-nutzen-6143268.html (visited on 08/16/2022).

https://doi.org/10.14459/2022mp1686396
https://youtu.be/mGlsc_revMc
https://doi.org/10.14459/2022mp1686398
https://youtu.be/T0CiZQbd9H0
https://youtu.be/T0CiZQbd9H0
https://doi.org/10.14459/2021mp1686400
https://youtu.be/gUNZ0AmLiWU
https://doi.org/10.14459/2020mp1686402
https://youtu.be/JCYmq6u0EEc
https://doi.org/10.14459/2020mp1686404
https://youtu.be/mpDqMFppT68
https://doi.org/10.14459/2019mp1686406
https://youtu.be/piQm_oTYXIc
https://youtu.be/piQm_oTYXIc
https://doi.org/10.14459/2019mp1686407
https://doi.org/10.14459/2019mp1686407
https://youtu.be/cNkQT2SUegE
https://doi.org/10.14459/2019mp1686408
https://youtu.be/EctICoMPyS4
https://youtu.be/EctICoMPyS4
https://spectrum.ieee.org/bipedal-robot-learning-to-move-arms-legs
https://spectrum.ieee.org/bipedal-robot-learning-to-move-arms-legs
https://www.heise.de/news/Humanoids-Wie-Roboter-Arme-und-Haende-zum-Laufen-nutzen-6143268.html
https://www.heise.de/news/Humanoids-Wie-Roboter-Arme-und-Haende-zum-Laufen-nutzen-6143268.html

Appendix J

Supervised Student Theses

Some results of this dissertation have been obtained in collaboration with students assistants.
This appendix explicitly lists student theses which have been conducted under the supervision
of the author of this dissertation. In addition to a citation in the corresponding chapter, a
brief summary is given in the following to highlight the links. Note that some works cannot be
assigned to a specific chapter of this document, thus, they have not been cited yet. The following
list is sorted by descending relevance for this dissertation.

Kinematic Structure Optimization In [28], NEUBURGER developed a generic framework for
optimizing kinematic structures. One use case was the optimization of LOLA’s new arm topology,
see Section 3.3. This dissertation uses the computed optimum topology and certain concepts
from workspace evaluation to perform the high-resolution analysis shown in Figure 3.6.

[28] Neuburger, N. “Kinematic Structure Optimization for Humanoid Robots”. Master’s the-
sis. Garching, Germany: Chair of Applied Mechanics, Technical University of Munich,
2019. URL: https://mediatum.ub.tum.de/1523789.

Parametrization of the Five-Mass Model In [29], LEYERER performed a parameter optimiza-
tion to find the ideal mass distribution of the five-mass model. This dissertation uses the op-
timum foot and hand masses (as proportions of the total mass) computed by LEYERER. See
Section 4.5.2 for details and [4] for a summary of [29].

[29] Leyerer, A. “Optimierung und Validierung Reduzierter Dynamikmodelle für Humanoide
Roboter”. Term paper. Garching, Germany: Chair of Applied Mechanics, Technical Uni-
versity of Munich, 2017.

SSV Library In [30], POSCHER realized a modern implementation of the SSV library originally
developed by SCHWIENBACHER et al. [371]. The work of POSCHER has been refactored, ex-
tended, and integrated into Broccoli [15] by the author of this dissertation. The SSV library is
used for efficient collision and proximity tests. See Appendix C for details.

[30] Poscher, R. “Effiziente Abstandsberechnungen mit Swept-Sphere Volumen für Echtzeit
Kollisionsvermeidung in der Robotik”. Bachelor’s thesis. Garching, Germany: Chair of
Applied Mechanics, Technical University of Munich, 2020. URL: https://mediatum.ub.
tum.de/1580089.

Multi-Level Contact Planning The real-time contact planner presented in Chapter 5 is realized
through a hierarchical graph search on multiple levels of detail. An early feasibility study on
using a multi-level graph search for contact planning has been conducted in [31] by HÖRMANN.
The work of HÖRMANN is based on another pre-study by MOHAMED REGAIEG as part of an
internship which was supervised jointly by the author of this dissertation and MICHAEL GIENGER.
Subsequent investigations by GIENGER et al. also led to the publication [7].

[31] Hörmann, B. “Multi-Level Contact Planning for Humanoid Robots”. Bachelor’s thesis.
Garching, Germany: Chair of Applied Mechanics, Technical University of Munich, 2019.

274

https://mediatum.ub.tum.de/1523789
https://mediatum.ub.tum.de/1580089
https://mediatum.ub.tum.de/1580089

J Supervised Student Theses 275

Contact Surface Evaluation and Hand Motion In preparation of developing a WPG capable
of multi-contact locomotion, two pre-studies have been conduced. In the first study, RODRÍGUEZ

[32] developed methods to evaluate a surface (represented by a triangle mesh) for potential
hand contacts. The second study by RODER [33] investigated optimal hand trajectories to es-
tablish hand support during locomotion. Both, [32] and [33], represent early feasibility studies
which did not make it into the final WPG of LOLA, however, they helped in its development.

[32] Rodríguez, I. “Search and Evaluation of Optimal Support Areas for Humanoid Robots”.
Interdisciplinary project. Garching, Germany: Chair of Applied Mechanics, Technical
University of Munich, 2017.

[33] Roder, S. “Planung optimaler Armtrajektorien für Humanoide Roboter”. Master’s thesis.
Garching, Germany: Chair of Applied Mechanics, Technical University of Munich, 2017.

Simulation of Vision Sensor In [34], BECKERT developed a simulation of the Asus Xtion Pro
Live sensor previously used by LOLA. It takes a 3D model of the scene as input and computes the
corresponding RGB-D image as it would be delivered by the camera in a real experiment. For a
realistic emulation, the software mimics the characteristic noise of the sensor by custom OpenGL
shaders. Due to the lack of time, the work of BECKERT has not been used in this dissertation.
However, it may be used in future to improve the synthesis of the environment model (see
Section 7.4) in particular through consideration of view occlusion.

[34] Beckert, D. “Simulation of a Computer Vision System for Humanoid Robots”. Interdis-
ciplinary project. Garching, Germany: Chair of Applied Mechanics, Technical University
of Munich, 2018.

SLAM for LOLA The work of DIEMER [35] represents an early pre-study investigating the ap-
plication of existing SLAM algorithms on LOLA. The main objective was a feasibility analysis for
improving the localization of the robot by compensating drift due to slippage. This task is now
taken over by the new CV system developed by WU et al. (see Section 4.4).

[35] Diemer, A. “Evaluation of SLAM Algorithms on the Robot LOLA”. Interdisciplinary
project. Garching, Germany: Chair of Applied Mechanics, Technical University of Mu-
nich, 2018.

Autonomous Safety Frame Independent of the multi-contact revision of the robot, the author
of this dissertation also supervised the upgrade of LOLA’s safety frame for autonomous operation
(safety harness automatically following the robot). The new hardware of the lab equipment was
designed, realized, and initially tested by SCHLEIBINGER [36]. Subsequently, CHBALY [37] and
ERJIAGE [38] worked on the software for low-level and high-level control, respectively.

[36] Schleibinger, M. “Development and Realization of an Autonomous Safety Frame for Hu-
manoid Robots”. Term paper. Garching, Germany: Chair of Applied Mechanics, Technical
University of Munich, 2017.

[37] Chbaly, K. “Autonomous Safety Frame for Humanoid Robots: Low-Level Control and
Initial Operation”. Interdisciplinary project. Garching, Germany: Chair of Applied Me-
chanics, Technical University of Munich, 2019.

[38] Erjiage, G. “Autonomous Safety Frame for Humanoid Robots: High-level Control and
Human Machine Interface”. Interdisciplinary project. Garching, Germany: Chair of Ap-
plied Mechanics, Technical University of Munich, 2019.

Appendix K

Bibliography

[39] Ackerman, E. IEEE Spectrum: Boston Dynamics’ AlphaDog Quadruped Robot Prototype on
Video. Sept. 30, 2011. URL: https://spectrum.ieee.org/boston- dynamics- alphadog-
prototype-on-video (visited on 03/02/2022).

[40] Ackerman, E. IEEE Spectrum: Boston Dynamics’ Cheetah Robot Now Faster than Fastest
Human. Sept. 5, 2012. URL: https ://spectrum. ieee .org/boston- dynamics - cheetah-
robot-now-faster-than-fastest-human (visited on 03/02/2022).

[41] Ackerman, E. IEEE Spectrum: Whoa: Boston Dynamics Announces New WildCat Quad-
ruped Robot. Oct. 4, 2013. URL: https://spectrum.ieee.org/whoa-boston-dynamics-
announces-new-wildcat-quadruped (visited on 03/02/2022).

[42] Ackerman, E. IEEE Spectrum: Agility Robotics Introduces Cassie, a Dynamic and Tal-
ented Robot Delivery Ostrich. Feb. 9, 2017. URL: https ://spectrum. ieee .org/agility -
robotics- introduces-cassie-a-dynamic-and-talented-robot-delivery-ostrich (visited on
03/02/2022).

[43] Ackerman, E. IEEE Spectrum: Toyota Gets Back Into Humanoid Robots With New T-HR3.
Nov. 22, 2017. URL: https://spectrum.ieee.org/toyota-gets-back-into-humanoid-robots-
with-new-thr3 (visited on 03/02/2022).

[44] Ackerman, E. IEEE Spectrum: ANYbotics Introduces Sleek New ANYmal C Quadruped.
Aug. 22, 2019. URL: https : / / spectrum . ieee . org / anybotics - introduces - sleek - new -
anymal-c-quadruped (visited on 03/02/2022).

[45] Ackerman, E. IEEE Spectrum: Agility Robotics Unveils Upgraded Digit Walking Robot.
Oct. 14, 2019. URL: https://spectrum.ieee.org/agility- robotics-digit-v2-biped-robot
(visited on 03/02/2022).

[46] Ackerman, E. IEEE Spectrum: How Boston Dynamics Taught Its Robots to Dance. Jan. 7,
2021. URL: https://spectrum.ieee.org/how- boston- dynamics- taught- its- robots- to-
dance (visited on 03/15/2022).

[47] Ackerman, E. IEEE Spectrum: Unitree’s Go1 Robot Dog Looks Pretty Great, Costs Just USD
$2700. June 9, 2021. URL: https://spectrum.ieee.org/unitrees-go1-robot-dog-looks-
pretty-great-costs-just-usd-2700 (visited on 03/02/2022).

[48] Acontis Technologies. EtherCAT Master Stack Software Development Kit. URL: https://
www.acontis.com/de/ethercat-master.html (visited on 08/18/2022).

[49] Adamy, J. Nichtlineare Systeme und Regelungen. 2nd ed. Berlin Heidelberg: Springer,
2014. DOI: 10.1007/978-3-642-45013-6.

[50] Advantech Co., Ltd. AIMB-276 - 8th/9th Gen Intel Core i7/i5/i3 (Coffee Lake) Mini-ITX.
URL: https://www.advantech.com/products/68ccaea2-9ff5-4f85-97f2-3d11244b0a08/
aimb-276/mod_30c35540-bf71-499b-b37e-b024e9f33357 (visited on 08/05/2022).

[51] Agility Robotics. IEEE Robots: Cassie. 2016. URL: https://robots.ieee.org/robots/cassie
(visited on 03/02/2022).

276

https://spectrum.ieee.org/boston-dynamics-alphadog-prototype-on-video
https://spectrum.ieee.org/boston-dynamics-alphadog-prototype-on-video
https://spectrum.ieee.org/boston-dynamics-cheetah-robot-now-faster-than-fastest-human
https://spectrum.ieee.org/boston-dynamics-cheetah-robot-now-faster-than-fastest-human
https://spectrum.ieee.org/whoa-boston-dynamics-announces-new-wildcat-quadruped
https://spectrum.ieee.org/whoa-boston-dynamics-announces-new-wildcat-quadruped
https://spectrum.ieee.org/agility-robotics-introduces-cassie-a-dynamic-and-talented-robot-delivery-ostrich
https://spectrum.ieee.org/agility-robotics-introduces-cassie-a-dynamic-and-talented-robot-delivery-ostrich
https://spectrum.ieee.org/toyota-gets-back-into-humanoid-robots-with-new-thr3
https://spectrum.ieee.org/toyota-gets-back-into-humanoid-robots-with-new-thr3
https://spectrum.ieee.org/anybotics-introduces-sleek-new-anymal-c-quadruped
https://spectrum.ieee.org/anybotics-introduces-sleek-new-anymal-c-quadruped
https://spectrum.ieee.org/agility-robotics-digit-v2-biped-robot
https://spectrum.ieee.org/how-boston-dynamics-taught-its-robots-to-dance
https://spectrum.ieee.org/how-boston-dynamics-taught-its-robots-to-dance
https://spectrum.ieee.org/unitrees-go1-robot-dog-looks-pretty-great-costs-just-usd-2700
https://spectrum.ieee.org/unitrees-go1-robot-dog-looks-pretty-great-costs-just-usd-2700
https://www.acontis.com/de/ethercat-master.html
https://www.acontis.com/de/ethercat-master.html
https://doi.org/10.1007/978-3-642-45013-6
https://www.advantech.com/products/68ccaea2-9ff5-4f85-97f2-3d11244b0a08/aimb-276/mod_30c35540-bf71-499b-b37e-b024e9f33357
https://www.advantech.com/products/68ccaea2-9ff5-4f85-97f2-3d11244b0a08/aimb-276/mod_30c35540-bf71-499b-b37e-b024e9f33357
https://robots.ieee.org/robots/cassie

K Bibliography 277

[52] Agility Robotics. IEEE Robots: Digit. 2019. URL: https://robots.ieee.org/robots/digit
(visited on 03/02/2022).

[53] Ahlberg, J. H., Nilson, E. N., and Walsh, J. L. The Theory of Splines and Their Applications.
Mathematics in Science and Engineering. New York, London: Academic Press, 1967.
ISBN: 978-0-080-95545-2.

[54] Ahlberg, J. and Ito, T. “A Collocation Method for Two-Point Boundary Value Problems”.
In: Mathematics of Computation 29.131 (1975), pp. 761–776. DOI: 10.1090/S0025-
5718-1975-0375785-7.

[55] AIST and Kawada Industries. IEEE Robots: HRP-2. 2002. URL: https://robots.ieee.org/
robots/hrp2 (visited on 03/02/2022).

[56] AIST. IEEE Robots: HRP-5P. 2018. URL: https://robots.ieee.org/robots/hrp5p (visited on
03/02/2022).

[57] Akram, G. and Tariq, H. “Quintic spline collocation method for fractional boundary value
problems”. In: Journal of the Association of Arab Universities for Basic and Applied Sciences
23.1 (2017), pp. 57–65. DOI: 10.1016/j.jaubas.2016.03.003.

[58] Albers, A., Brudniok, S., Ottnad, J., Sauter, C., and Sedchaicharn, K. “Upper Body of a
new Humanoid Robot - the Design of ARMAR III”. In: IEEE-RAS International Conference
on Humanoid Robots (Humanoids). Genova, Italy, Dec. 2006, pp. 308–313. DOI: 10 .
1109/ICHR.2006.321289.

[59] An, S. and Lee, D. “Prioritized Inverse Kinematics with Multiple Task Definitions”. In:
IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA, May
2015, pp. 1423–1430. DOI: 10.1109/ICRA.2015.7139376.

[60] Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., and Yoon, W.-K. “RT-Middleware: Dis-
tributed Component Middleware for RT (Robot Technology)”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Edmonton, AB, Canada, Aug. 2005,
pp. 3933–3938. DOI: 10.1109/IROS.2005.1545521.

[61] Asano, Y., Kozuki, T., Ookubo, S., Kawasaki, K., Shirai, T., Kimura, K., Okada, K., and
Inaba, M. “A Sensor-driver Integrated Muscle Module with High-Tension Measurability
and Flexibility for Tendon-Driven Robots”. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Hamburg, Germany, Sept. 2015, pp. 5960–5965.
DOI: 10.1109/IROS.2015.7354225.

[62] Asano, Y. et al. “Human Mimetic Musculoskeletal Humanoid Kengoro toward Real
World Physically Interactive Actions”. In: IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). Cancun, Mexico, Nov. 2016, pp. 876–883. DOI: 10.1109/
HUMANOIDS.2016.7803376.

[63] Ascher, U. “Solving Boundary-Value Problems with a Spline-Collocation Code”. In: Jour-
nal of Comp. Physics 34.3 (1980), pp. 401–413. DOI: 10.1016/0021-9991(80)90097-2.

[64] Ascher, U., Pruess, S., and Russell, R. D. “On Spline Basis Selection for Solving Differen-
tial Equations”. In: SIAM Journal on Numerical Analysis 20.1 (1983), pp. 121–142. DOI:
10.1137/0720009.

[65] Ascher, U. and Spiteri, R. “Collocation Software for Boundary Value Differential-
Algebraic Equations”. In: SIAM Journal on Scientific Computing 15 (Dec. 1995). DOI:
10.1137/0915056.

[66] Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., and Dill-
mann, R. “ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control”.
In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Genova, Italy,
Dec. 2006, pp. 169–175. DOI: 10.1109/ICHR.2006.321380.

https://robots.ieee.org/robots/digit
https://doi.org/10.1090/S0025-5718-1975-0375785-7
https://doi.org/10.1090/S0025-5718-1975-0375785-7
https://robots.ieee.org/robots/hrp2
https://robots.ieee.org/robots/hrp2
https://robots.ieee.org/robots/hrp5p
https://doi.org/10.1016/j.jaubas.2016.03.003
https://doi.org/10.1109/ICHR.2006.321289
https://doi.org/10.1109/ICHR.2006.321289
https://doi.org/10.1109/ICRA.2015.7139376
https://doi.org/10.1109/IROS.2005.1545521
https://doi.org/10.1109/IROS.2015.7354225
https://doi.org/10.1109/HUMANOIDS.2016.7803376
https://doi.org/10.1109/HUMANOIDS.2016.7803376
https://doi.org/10.1016/0021-9991(80)90097-2
https://doi.org/10.1137/0720009
https://doi.org/10.1137/0915056
https://doi.org/10.1109/ICHR.2006.321380

K Bibliography 278

[67] Asfour, T., Schill, J., Peters, H., Klas, C., Bücker, J., Sander, C., Schulz, S., Kargov, A.,
Werner, T., and Bartenbach, V. “ARMAR-4: A 63 DOF Torque Controlled Humanoid
Robot”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). At-
lanta, USA, Oct. 2013, pp. 390–396. DOI: 10.1109/HUMANOIDS.2013.7030004.

[68] Asfour, T., Waechter, M., Kaul, L., Rader, S., Weiner, P., Ottenhaus, S., Grimm, R., Zhou,
Y., Grotz, M., and Paus, F. “ARMAR-6: A High-Performance Humanoid for Human-Robot
Collaboration in Real-World Scenarios”. In: IEEE Robotics Automation Magazine 26.4
(2019), pp. 108–121. DOI: 10.1109/MRA.2019.2941246.

[69] ASUS. Multimedia - Xtion PRO LIVE. Apr. 4, 2015. URL: https://web.archive.org/web/
20150404000121/http://www.asus.com/Multimedia/Xtion_PRO_LIVE/ (visited on
05/23/2022).

[70] Atkeson, C. G. et al. “No Falls, No Resets: Reliable Humanoid Behavior in the DARPA
Robotics Challenge”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Seoul, Korea, Nov. 2015, pp. 623–630. DOI: 10.1109/HUMANOIDS.2015.
7363436.

[71] Audren, H. and Kheddar, A. “3-D Robust Stability Polyhedron in Multicontact”. In: IEEE
Transactions on Robotics 34.2 (2018), pp. 388–403. DOI: 10.1109/TRO.2017.2786683.

[72] Baerentzen, J. A. and Aanaes, H. “Signed Distance Computation Using the Angle
Weighted Pseudonormal”. In: IEEE Transactions on Visualization and Computer Graph-
ics 11.3 (2005), pp. 243–253. DOI: 10.1109/TVCG.2005.49.

[73] Bagheri, M., Ajoudani, A., Lee, J., Caldwell, D. G., and Tsagarakis, N. G. “Kinematic
Analysis and Design Considerations for Optimal Base Frame Arrangement of Humanoid
Shoulders”. In: IEEE International Conference on Robotics and Automation (ICRA). Seat-
tle, Washington, May 2015, pp. 2710–2715. DOI: 10.1109/ICRA.2015.7139566.

[74] Barabanov, M. “A Linux-based Real-Time Operating System”. Master’s thesis. Socorro,
New Mexico, USA: New Mexico Institute of Mining and Technology, 1997.

[75] Berninger, T. F. C., Sygulla, F., Fuderer, S., and Rixen, D. J. “Experimental Analysis of
Structural Vibration Problems of a Biped Walking Robot”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). Paris, France, May 2020. DOI: 10.1109/
ICRA40945.2020.9197282.

[76] Besl, P. J. and McKay, N. D. “A Method for Registration of 3-D Shapes”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–256. DOI:
10.1109/34.121791.

[77] Beckhoff Automation. Ethernet for Control Automation Technology (EtherCAT). URL:
https://www.ethercat.org (visited on 03/11/2022).

[78] Benallegue, M., Escande, A., Miossec, S., and Kheddar, A. “Fast C1 Proximity Queries
Using Support Mapping of Sphere-Torus-Patches Bounding Volumes”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Kobe, Japan, May 2009, pp. 483–
488. DOI: 10.1109/ROBOT.2009.5152722.

[79] Bessonnet, G., Chessé, S., and Sardain, P. “Optimal Gait Synthesis of a Seven-Link Planar
Biped”. In: The International Journal of Robotics Research 23.10-11 (2004), pp. 1059–
1073. DOI: 10.1177/0278364904047393.

[80] Bialecki, B. and Fairweather, G. “Orthogonal spline collocation methods for partial differ-
ential equations”. In: Journal of Computational and Applied Mathematics 128.1 (2001),
pp. 55–82. DOI: 10.1016/S0377-0427(00)00509-4.

https://doi.org/10.1109/HUMANOIDS.2013.7030004
https://doi.org/10.1109/MRA.2019.2941246
https://web.archive.org/web/20150404000121/http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
https://web.archive.org/web/20150404000121/http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
https://doi.org/10.1109/HUMANOIDS.2015.7363436
https://doi.org/10.1109/HUMANOIDS.2015.7363436
https://doi.org/10.1109/TRO.2017.2786683
https://doi.org/10.1109/TVCG.2005.49
https://doi.org/10.1109/ICRA.2015.7139566
https://doi.org/10.1109/ICRA40945.2020.9197282
https://doi.org/10.1109/ICRA40945.2020.9197282
https://doi.org/10.1109/34.121791
https://www.ethercat.org
https://doi.org/10.1109/ROBOT.2009.5152722
https://doi.org/10.1177/0278364904047393
https://doi.org/10.1016/S0377-0427(00)00509-4

K Bibliography 279

[81] Bjelonic, M., Grandia, R., Harley, O., Galliard, C., Zimmermann, S., and Hutter, M.
“Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague,
Czech Republic, Sept. 2021, pp. 8388–8395. DOI: 10.1109/IROS51168.2021.9636371.

[82] Bjelonic, M. et al. Complex motion decomposition: combining offline motion libraries with
online MPC. Robotic Systems Lab, ETH Zürich. Oct. 4, 2021. URL: https://youtu.be/
39rRhTqcQc0 (visited on 03/04/2022).

[83] BlackBerry. QNX Neutrino RTOS. URL: https : / / blackberry. qnx . com / en / products /
foundation-software/qnx-rtos (visited on 03/17/2022).

[84] Bledt, G., Powell, M. J., Katz, B., Di Carlo, J., Wensing, P. M., and Kim, S. “MIT Cheetah
3: Design and Control of a Robust, Dynamic Quadruped Robot”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, Oct. 2018,
pp. 2245–2252. DOI: 10.1109/IROS.2018.8593885.

[85] Blender Foundation. Home of the Blender project – Free and Open 3D Creation Software.
Release v2.93.7. URL: https://www.blender.org (visited on 07/07/2022).

[86] Blickhan, R. “The spring-mass model for running and hopping”. In: Journal of Biome-
chanics 22.11 (1989), pp. 1217–1227. DOI: 10.1016/0021-9290(89)90224-8.

[87] Bloesch, M., Omari, S., Hutter, M., and Siegwart, R. “Robust Visual Inertial Odometry
Using a Direct EKF-Based Approach”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Hamburg, Germany, Sept. 2015, pp. 298–304. DOI: 10 .
1109/IROS.2015.7353389.

[88] Böhm, W. “On Cubics: A Survey”. In: Computer Graphics and Image Processing 19.3
(1982), pp. 201–226. DOI: 10.1016/0146-664X(82)90009-0.

[89] Böhm, W. “Efficient Evaluation of Splines”. In: Computing 33.2 (1984), pp. 171–177.
DOI: 10.1007/BF02240188.

[90] Boston Dynamics. Legacy Robots. URL: https://www.bostondynamics.com/legacy (vis-
ited on 03/02/2022).

[91] Boston Dynamics. IEEE Robots: Atlas. 2016. URL: https : / / robots . ieee . org / robots /
atlas2016 (visited on 03/02/2022).

[92] Boston Dynamics. IEEE Robots: Spot. 2016. URL: https : / / robots . ieee . org / robots /
spotmini (visited on 03/02/2022).

[93] Bourke, P. Polygonising a scalar field (Marching Cubes). May 1994. URL: http : / /
paulbourke.net/geometry/polygonise/ (visited on 07/20/2022).

[94] Bouyarmane, K., Caron, S., Escande, A., and Kheddar, A. “Multi-contact Motion Planning
and Control”. In: Humanoid Robotics: A Reference. Ed. by Goswami, A. and Vadakkepat,
P. Dordrecht: Springer Netherlands, 2019, pp. 1763–1804. DOI: 10.1007/978-94-007-
6046-2_32.

[95] Bretl, T. and Lall, S. “Testing Static Equilibrium for Legged Robots”. In: IEEE Transactions
on Robotics 24.4 (Aug. 2008), pp. 794–807. DOI: 10.1109/TRO.2008.2001360.

[96] Brossette, S., Vaillant, J., Keith, F., Escande, A., and Kheddar, A. “Point-Cloud Multi-
Contact Planning for Humanoids: Preliminary Results”. In: IEEE Conference on Robotics,
Automation and Mechatronics (RAM). Nov. 2013, pp. 19–24. DOI: 10.1109/RAM.2013.
6758553.

[97] Buschmann, T., Lohmeier, S., Ulbrich, H., and Pfeiffer, F. “Optimization Based Gait Pat-
tern Generation for a Biped Robot”. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). Dec. 2005, pp. 98–103. DOI: 10.1109/ICHR.2005.1573552.

https://doi.org/10.1109/IROS51168.2021.9636371
https://youtu.be/39rRhTqcQc0
https://youtu.be/39rRhTqcQc0
https://blackberry.qnx.com/en/products/foundation-software/qnx-rtos
https://blackberry.qnx.com/en/products/foundation-software/qnx-rtos
https://doi.org/10.1109/IROS.2018.8593885
https://www.blender.org
https://doi.org/10.1016/0021-9290(89)90224-8
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1016/0146-664X(82)90009-0
https://doi.org/10.1007/BF02240188
https://www.bostondynamics.com/legacy
https://robots.ieee.org/robots/atlas2016
https://robots.ieee.org/robots/atlas2016
https://robots.ieee.org/robots/spotmini
https://robots.ieee.org/robots/spotmini
http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/geometry/polygonise/
https://doi.org/10.1007/978-94-007-6046-2_32
https://doi.org/10.1007/978-94-007-6046-2_32
https://doi.org/10.1109/TRO.2008.2001360
https://doi.org/10.1109/RAM.2013.6758553
https://doi.org/10.1109/RAM.2013.6758553
https://doi.org/10.1109/ICHR.2005.1573552

K Bibliography 280

[98] Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., and Pfeiffer, F. “A Collocation
Method for Real-Time Walking Pattern Generation”. In: IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids). Pittsburgh, USA, Nov. 2007, pp. 1–6. DOI:
10.1109/ICHR.2007.4813841.

[99] Buschmann, T., Lohmeier, S., Schwienbacher, M., Favot, V., Ulbrich, H., von Hun-
delshausen, F., Rohe, G., and Wuensche, H.-J. “Walking in Unknown Environments –
a Step Towards More Autonomy”. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). Nashville, TN, USA, Dec. 2010, pp. 237–244. DOI: 10.1109/ICHR.
2010.5686338.

[100] Buschmann, T. “Simulation and Control of Biped Walking Robots”. Dissertation. Ger-
many: Technical University of Munich, 2010. URL: http : / / nbn - resolving . de / urn /
resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6.

[101] Buschmann, T., Favot, V., Lohmeier, S., Schwienbacher, M., and Ulbrich, H. “Experi-
ments in Fast Biped Walking”. In: IEEE International Conference on Mechatronics. Istan-
bul, Turkey, Apr. 2011, pp. 863–868. DOI: 10.1109/ICMECH.2011.5971235.

[102] Buschmann, T., Ewald, A., Ulbrich, H., and Büschges, A. “Event-Based Walking Control –
From Neurobiology to Biped Robots”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vilamoura-Algarve, Portugal, Oct. 2012, pp. 1793–1800.
DOI: 10.1109/IROS.2012.6385783.

[103] Buschmann, T., Wittmann, R., Schwienbacher, M., and Ulbrich, H. “A Method for Real-
Time Kineto-Dynamic Trajectory Generation”. In: IEEE-RAS International Conference on
Humanoid Robots (Humanoids). Osaka, Japan, Nov. 2012, pp. 190–197. DOI: 10.1109/
HUMANOIDS.2012.6651519.

[104] Buschmann, T. “Dynamics and Control of Redundant Robots”. Habilitation. Germany:
Technical University of Munich, 2014. URL: http://nbn-resolving.de/urn/resolver.pl?
urn:nbn:de:bvb:91-diss-20150605-1254716-1-0.

[105] Buttelmann, M. and Lohmann, B. “Optimization with Genetic Algorithms and an Appli-
cation for Model Reduction”. In: at – Automatisierungstechnik 52.4 (2004), pp. 151–163.
DOI: doi:10.1524/auto.52.4.151.29416.

[106] Cafolla, D. and Ceccarelli, M. “An Experimental Validation of a Novel Humanoid Torso”.
In: Robotics and Autonomous Systems 91 (2017), pp. 299–313. DOI: 10.1016/j.robot.
2017.02.005.

[107] CAN in Automation (CiA). Controller Area Network (CAN). URL: https://www.can-cia.org
(visited on 03/11/2022).

[108] Caron, S., Pham, Q.-C., and Nakamura, Y. “Leveraging Cone Double Description for
Multi-contact Stability of Humanoids with Applications to Statics and Dynamics”. In:
Robotics: Science and System. July 2015. DOI: 10.15607/RSS.2015.XI.028.

[109] Caron, S. and Kheddar, A. “Multi-contact Walking Pattern Generation based on Model
Preview Control of 3D COM Accelerations”. In: IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). Cancun, Mexico, Nov. 2016, pp. 550–557. DOI: 10.1109/
HUMANOIDS.2016.7803329.

[110] Caron, S., Pham, Q.-C., and Nakamura, Y. “ZMP Support Areas for Multicontact Mo-
bility Under Frictional Constraints”. In: IEEE Transactions on Robotics 33.1 (Feb. 2017),
pp. 67–80. DOI: 10.1109/TRO.2016.2623338.

[111] Carpentier, J., Tonneau, S., Naveau, M., Stasse, O., and Mansard, N. “A Versatile and Effi-
cient Pattern Generator for Generalized Legged Locomotion”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). Stockholm, Sweden, May 2016, pp. 3555–
3561. DOI: 10.1109/ICRA.2016.7487538.

https://doi.org/10.1109/ICHR.2007.4813841
https://doi.org/10.1109/ICHR.2010.5686338
https://doi.org/10.1109/ICHR.2010.5686338
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6
https://doi.org/10.1109/ICMECH.2011.5971235
https://doi.org/10.1109/IROS.2012.6385783
https://doi.org/10.1109/HUMANOIDS.2012.6651519
https://doi.org/10.1109/HUMANOIDS.2012.6651519
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150605-1254716-1-0
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150605-1254716-1-0
https://doi.org/doi:10.1524/auto.52.4.151.29416
https://doi.org/10.1016/j.robot.2017.02.005
https://doi.org/10.1016/j.robot.2017.02.005
https://www.can-cia.org
https://doi.org/10.15607/RSS.2015.XI.028
https://doi.org/10.1109/HUMANOIDS.2016.7803329
https://doi.org/10.1109/HUMANOIDS.2016.7803329
https://doi.org/10.1109/TRO.2016.2623338
https://doi.org/10.1109/ICRA.2016.7487538

K Bibliography 281

[112] Catmull, E. and Clark, J. “Recursively generated B-spline surfaces on arbitrary topologi-
cal meshes”. In: Computer-Aided Design 10.6 (1978), pp. 350–355. DOI: 10.1016/0010-
4485(78)90110-0.

[113] Chair of Applied Mechanics, Technical University of Munich. IEEE Robots: Lola. 2010.
URL: https://robots.ieee.org/robots/lola (visited on 08/05/2022).

[114] Chestnutt, J. “Navigation Planning for Legged Robots”. Dissertation. Pennsylvania, USA:
Carnegie Mellon University, 2007.

[115] Chou, J. C. K. “Quaternion Kinematic and Dynamic Differential Equations”. In: IEEE
Transactions on Robotics and Automation 8.1 (1992), pp. 53–64. DOI: 10 .1109/70 .
127239.

[116] Christara, C. C. and Ng, K. S. “Optimal Quadratic and Cubic Spline Collocation on
Nonuniform Partitions”. In: Computing 76.3 (Nov. 2005), pp. 227–257. DOI: 10.1007/
s00607-005-0140-4.

[117] Christara, C. C. and Ng, K. S. “Adaptive Techniques for Spline Collocation”. In: Comput-
ing 76.3 (Jan. 2006), pp. 259–277. DOI: 10.1007/s00607-005-0141-3.

[118] Chung, S.-Y. and Khatib, O. “Contact-Consistent Elastic Strips for Multi-Contact Locomo-
tion Planning of Humanoid Robots”. In: IEEE International Conference on Robotics and
Automation (ICRA). Seattle, WA, USA, May 2015, pp. 6289–6294. DOI: 10.1109/ICRA.
2015.7140082.

[119] Collins, S. H., Wisse, M., and Ruina, A. “A Three-Dimensional Passive-Dynamic Walking
Robot with Two Legs and Knees”. In: The International Journal of Robotics Research 20.7
(2001), pp. 607–615. DOI: 10.1177/02783640122067561.

[120] Collins, S., Ruina, A., Tedrake, R., and Wisse, M. “Efficient Bipedal Robots Based on
Passive-Dynamic Walkers”. In: Science 307.5712 (2005), pp. 1082–1085. DOI: 10.1126/
science.1107799.

[121] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms.
3rd ed. Cambridge, Massachusetts: The MIT Press, 2009. ISBN: 978-0-262-03384-8.

[122] Craig, J. J. Introduction to Robotics: Mechanics and Control. 3rd ed. Pearson, 2005. ISBN:
9780201543612.

[123] Dam, E. B., Koch, M., and Lillholm, M. Quaternions, Interpolation and Animation.
Tech. rep. DIKU-TR-98/5. Department of Computer Science, University of Copenhagen,
1998. URL: http : / / web . mit . edu / 2 . 998 / www /QuaternionReport1 . pdf (visited on
08/28/2022).

[124] Defense Advanced Research Projects Agency (DARPA). DARPA Robotics Challenge (DRC).
May 7, 2015. URL: https ://web.archive .org/web/20150507154516/http://www.
darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_Challenge.aspx (visited on
03/02/2022).

[125] Dassault Systèmes. Catia – Design Engineering. Version 5-6 Release 2015. URL: https:
//www.3ds.com/products-services/catia/ (visited on 08/03/2022).

[126] de Boor, C. “On calculating with B-splines”. In: Journal of Approximation Theory 6.1
(1972), pp. 50–62. DOI: 10.1016/0021-9045(72)90080-9.

[127] de Boor, C. and Swartz, B. “Collocation at Gaussian Points”. In: SIAM Journal on Numer-
ical Analysis 10.4 (Sept. 1973), pp. 582–606. DOI: 10.1137/0710052.

[128] de Boor, C. and Weiss, R. “SOLVEBLOK: A Package for Solving Almost Block Diago-
nal Linear Systems”. In: ACM Transactions on Mathematical Software 6.1 (Mar. 1980),
pp. 80–87. DOI: 10.1145/355873.355880.

https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1016/0010-4485(78)90110-0
https://robots.ieee.org/robots/lola
https://doi.org/10.1109/70.127239
https://doi.org/10.1109/70.127239
https://doi.org/10.1007/s00607-005-0140-4
https://doi.org/10.1007/s00607-005-0140-4
https://doi.org/10.1007/s00607-005-0141-3
https://doi.org/10.1109/ICRA.2015.7140082
https://doi.org/10.1109/ICRA.2015.7140082
https://doi.org/10.1177/02783640122067561
https://doi.org/10.1126/science.1107799
https://doi.org/10.1126/science.1107799
http://web.mit.edu/2.998/www/QuaternionReport1.pdf
https://web.archive.org/web/20150507154516/http://www.darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_Challenge.aspx
https://web.archive.org/web/20150507154516/http://www.darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_Challenge.aspx
https://www.3ds.com/products-services/catia/
https://www.3ds.com/products-services/catia/
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1137/0710052
https://doi.org/10.1145/355873.355880

K Bibliography 282

[129] de Boor, C. A Practical Guide to Splines. New York: Springer, 2001. ISBN: 978-
0387953663.

[130] Deits, R. and Tedrake, R. “Footstep Planning on Uneven Terrain with Mixed-Integer
Convex Optimization”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Madrid, Spain, Nov. 2014, pp. 279–286. DOI: 10.1109/HUMANOIDS.2014.
7041373.

[131] Denk, J. and Schmidt, G. “Synthesis of Walking Primitive Databases for Biped Robots in
3D-Environments”. In: IEEE International Conference on Robotics and Automation (ICRA).
Taipei, Taiwan, Sept. 2003, pp. 1343–1349. DOI: 10.1109/ROBOT.2003.1241778.

[132] Department of Defense, United States of America. Design Criteria Standard Human En-
gineering (MIL-STD-1472G). 2012. ISBN: 9781478264071.

[133] DFKI Robotics Innovation Center. IEEE Robots: Charlie. 2012. URL: https://robots.ieee.
org/robots/istruct (visited on 03/04/2022).

[134] Diftler, M. et al. “Robonaut 2 – The First Humanoid Robot in Space”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). Shanghai, China, May 2011,
pp. 2178–2183. DOI: 10.1109/ICRA.2011.5979830.

[135] Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs”. In: Numerische
Mathematik 1.1 (1959), pp. 269–271. DOI: 10.1007/BF01386390.

[136] DLR. IEEE Robots: Rollin’ Justin. 2008. URL: https://robots.ieee.org/robots/justin (vis-
ited on 03/03/2022).

[137] DLR. IEEE Robots: Toro. 2013. URL: https://robots. ieee.org/robots/toro (visited on
03/02/2022).

[138] Domingos, P. “A Few Useful Things to Know about Machine Learning”. In: Communica-
tions of the ACM 55.10 (Oct. 2012), pp. 78–87. DOI: 10.1145/2347736.2347755.

[139] Ebendt, R. and Drechsler, R. “Weighted A* search – unifying view and application”. In:
Artificial Intelligence 173.14 (2009), pp. 1310–1342. DOI: 10.1016/j.artint.2009.06.004.

[140] Elmo Motion Control Ltd. Servo Motor Drives – Elmo Motion Control Technology & Sys-
tems. URL: https://www.elmomc.com/servo-drives/ (visited on 07/05/2022).

[141] Englsberger, J., Ott, C., Roa, M. A., Albu-Schäffer, A., and Hirzinger, G. “Bipedal walking
control based on Capture Point dynamics”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). San Francisco, CA, USA, Sept. 2011, pp. 4420–
4427. DOI: 10.1109/IROS.2011.6094435.

[142] Englsberger, J., Ott, C., and Albu-Schäffer, A. “Three-dimensional bipedal walking con-
trol using Divergent Component of Motion”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Tokyo, Japan, Nov. 2013, pp. 2600–2607. DOI:
10.1109/IROS.2013.6696723.

[143] Englsberger, J. et al. “Overview of the torque-controlled humanoid robot TORO”. In:
IEEE-RAS International Conference on Humanoid Robots (Humanoids). Madrid, Spain,
Nov. 2014, pp. 916–923. DOI: 10.1109/HUMANOIDS.2014.7041473.

[144] Englsberger, J., Ott, C., and Albu-Schäffer, A. “Three-Dimensional Bipedal Walking Con-
trol Based on Divergent Component of Motion”. In: IEEE Transactions on Robotics 31.2
(Apr. 2015), pp. 355–368. DOI: 10.1109/TRO.2015.2405592.

[145] Englsberger, J., Mesesan, G., and Ott, C. “Smooth trajectory generation and push-
recovery based on Divergent Component of Motion”. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada, Nov. 2017,
pp. 4560–4567. DOI: 10.1109/IROS.2017.8206324.

https://doi.org/10.1109/HUMANOIDS.2014.7041373
https://doi.org/10.1109/HUMANOIDS.2014.7041373
https://doi.org/10.1109/ROBOT.2003.1241778
https://robots.ieee.org/robots/istruct
https://robots.ieee.org/robots/istruct
https://doi.org/10.1109/ICRA.2011.5979830
https://doi.org/10.1007/BF01386390
https://robots.ieee.org/robots/justin
https://robots.ieee.org/robots/toro
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1016/j.artint.2009.06.004
https://www.elmomc.com/servo-drives/
https://doi.org/10.1109/IROS.2011.6094435
https://doi.org/10.1109/IROS.2013.6696723
https://doi.org/10.1109/HUMANOIDS.2014.7041473
https://doi.org/10.1109/TRO.2015.2405592
https://doi.org/10.1109/IROS.2017.8206324

K Bibliography 283

[146] Enidine. Compact Wire Rope - Miniature Vibration Isolators. URL: https://www.enidine.
com/en-US/Products/CWRMain/ (visited on 07/28/2022).

[147] Escande, A., Kheddar, A., and Miossec, S. “Planning support contact-points for humanoid
robots and experiments on HRP-2”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Beijing, China, Oct. 2006, pp. 2974–2979. DOI: 10.1109/
IROS.2006.282154.

[148] Escande, A., Miossec, S., and Kheddar, A. “Continuous gradient proximity distance for
humanoids free-collision optimized-postures”. In: IEEE-RAS International Conference on
Humanoid Robots (Humanoids). Pittsburgh, PA, USA, Nov. 2007, pp. 188–195. DOI: 10.
1109/ICHR.2007.4813867.

[149] Escande, A., Kheddar, A., Moissec, S., and Garsault, S. “Planning Support Contact-Points
for Acyclic Motions and Experiments on HRP-2”. In: 11th International Symposium on
Experimental Robotics. Athens, Greece, July 2008, pp. 293–302. DOI: 10.1007/978-3-
642-00196-3_35.

[150] Escande, A. and Kheddar, A. “Contact Planning for Acyclic Motion with Task Constraints
and Experiment on HRP-2 Humanoid”. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). St. Louis, MO, USA, Oct. 2009, pp. 416–417. DOI:
10.1109/IROS.2009.5353971.

[151] Escande, A., Kheddar, A., and Miossec, S. “Planning contact points for humanoid robots”.
In: Robotics and Autonomous Systems 61.5 (May 2013), pp. 428–442. DOI: 10.1016/j.
robot.2013.01.008.

[152] ESD Electronics GmbH. CAN-EtherCAT Gateway. URL: https://esd.eu/en/products/can-
ethercat (visited on 07/28/2022).

[153] Ewald, A. “Improving the Versatility of Humanoid Walking Machines”. Dissertation. Ger-
many: Technical University of Munich, 2014. ISBN: 978-3-8439-1953-1.

[154] Fankhauser, P., Bjelonic, M., Bellicoso, C. D., Miki, T., and Hutter, M. “Robust Rough-
Terrain Locomotion with a Quadrupedal Robot”. In: IEEE International Conference on
Robotics and Automation (ICRA). Brisbane, QLD, Australia, May 2018, pp. 1–8. DOI:
10.1109/ICRA.2018.8460731.

[155] Farin, G. Curves and Surfaces for CAGD: A Practical Guide. 5th ed. Morgan Kaufmann
Publishers, 2002. ISBN: 1-55860-737-4.

[156] Favot, V., Buschmann, T., Schwienbacher, M., Ewald, A., and Ulbrich, H. “The Sensor-
Controller Network of the Humanoid Robot LOLA”. In: IEEE-RAS International Confer-
ence on Humanoid Robots (Humanoids). Osaka, Japan, Nov. 2012, pp. 805–810. DOI:
10.1109/HUMANOIDS.2012.6651612.

[157] Favot, V. “Hierarchical Joint Control of Humanoid Robots”. Dissertation. Germany: Tech-
nical University of Munich, 2016. URL: http://nbn-resolving.de/urn/resolver.pl?urn:
nbn:de:bvb:91-diss-20161206-1294180-1-9.

[158] Fayyad-Kazan, H., Perneel, L., and Timmerman, M. “Linux PREEMPT-RT vs. Commercial
RTOSs: How Big is the Performance Gap?” In: GSTF Journal on Computing 3.1 (2013).

[159] Fredman, M. L. and Tarjan, R. E. “Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms”. In: Journal of the Association for Computing Machinery 34.3
(July 1987), pp. 596–615. DOI: 10.1145/28869.28874.

[160] Freeman, P. and Hart, D. “A Science of Design for Software-Intensive Systems”. In: Com-
munications of the ACM 47.8 (Aug. 2004), pp. 19–21. DOI: 10.1145/1012037.1012054.

https://www.enidine.com/en-US/Products/CWRMain/
https://www.enidine.com/en-US/Products/CWRMain/
https://doi.org/10.1109/IROS.2006.282154
https://doi.org/10.1109/IROS.2006.282154
https://doi.org/10.1109/ICHR.2007.4813867
https://doi.org/10.1109/ICHR.2007.4813867
https://doi.org/10.1007/978-3-642-00196-3_35
https://doi.org/10.1007/978-3-642-00196-3_35
https://doi.org/10.1109/IROS.2009.5353971
https://doi.org/10.1016/j.robot.2013.01.008
https://doi.org/10.1016/j.robot.2013.01.008
https://esd.eu/en/products/can-ethercat
https://esd.eu/en/products/can-ethercat
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/HUMANOIDS.2012.6651612
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20161206-1294180-1-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20161206-1294180-1-9
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/1012037.1012054

K Bibliography 284

[161] Fuchs, M. et al. “Rollin’ Justin - Design considerations and realization of a mobile plat-
form for a humanoid upper body”. In: IEEE International Conference on Robotics and
Automation (ICRA). Kobe, Japan, May 2009, pp. 4131–4137. DOI: 10.1109/ROBOT.
2009.5152464.

[162] Fujita, M. “AIBO: Toward the Era of Digital Creatures”. In: The International Journal of
Robotics Research 20.10 (2001), pp. 781–794. DOI: 10.1177/02783640122068092.

[163] Fujita, M., Kuroki, Y., Ishida, T., and Doi, T. T. “A Small Humanoid Robot SDR-4X for
Entertainment Applications”. In: IEEE/ASME International Conference on Advanced Intel-
ligent Mechatronics (AIM). Kobe, Japan, July 2003, pp. 938–943. DOI: 10.1109/AIM.
2003.1225468.

[164] Fukuda, K. and Prodon, A. “Double Description Method Revisited”. In: Combinatorics
and Computer Science. Ed. by Deza, M., Euler, R., and Manoussakis, I. Berlin, Heidelberg:
Springer, 1996, pp. 91–111. DOI: 10.1007/3-540-61576-8_77.

[165] Gailly, J.-l., Adler, M., et al. zlib. URL: http://zlib.net/ (visited on 08/18/2022).

[166] Gamkrelidze, R. V. “Discovery of the Maximum Principle”. In: Journal of Dynamical and
Control Systems 5.4 (1999), pp. 437–451. DOI: 10.1023/A:1021783020548.

[167] Geigle, C. et al. cpptoml. Release v0.1.1. 2018. URL: https ://github.com/skystrife/
cpptoml (visited on 08/26/2022).

[168] Geyer, H. and Saranli, U. “Gait Based on the Spring-Loaded Inverted Pendulum”. In:
Humanoid Robotics: A Reference. Ed. by Goswami, A. and Vadakkepat, P. Dordrecht:
Springer Netherlands, 2018, pp. 1–25. DOI: 10.1007/978-94-007-7194-9_43-1.

[169] Gienger, M., Löffler, K., and Pfeiffer, F. “Towards the Design of a Biped Jogging Robot”.
In: IEEE International Conference on Robotics and Automation (ICRA). Vol. 4. Seoul, Ko-
rea, May 2001, pp. 4140–4145. DOI: 10.1109/ROBOT.2001.933265.

[170] Gienger, M. “Entwurf und Realisierung einer zweibeinigen Laufmaschine”. Dissertation.
Germany: Technical University of Munich, 2004.

[171] Giraud-Esclasse, K., Fernbach, P., Buondonno, G., Mastalli, C., and Stasse, O. “Motion
Planning with Multi-Contact and Visual Servoing on Humanoid Robots”. In: IEEE/SICE
International Symposium on System Integration (SII). Honolulu, HI, USA, Jan. 2020,
pp. 156–163. DOI: 10.1109/SII46433.2020.9026291.

[172] Goldbeck, C., Kaul, L., Vahrenkamp, N., Worgotter, F., Asfour, T., and Braun, J.-M.
“Two Ways of Walking: Contrasting a Reflexive Neuro-Controller and a LIP-Based ZMP-
Controller on the Humanoid Robot ARMAR-4”. In: IEEE-RAS International Conference
on Humanoid Robots (Humanoids). Cancun, Mexiko, Nov. 2016, pp. 966–972. DOI: 10.
1109/HUMANOIDS.2016.7803389.

[173] Google. GoogleTest – Google’s C++ test framework. URL: https://github.com/google/
googletest (visited on 02/17/2023).

[174] Goswami, A. “Foot rotation indicator (FRI) point: A new gait planning tool to evaluate
postural stability of biped robots”. In: IEEE International Conference on Robotics and
Automation (ICRA). Detroit, MI, USA, May 1999, pp. 47–52. DOI: 10.1109/ROBOT.
1999.769929.

[175] Goswami, A. and Kallem, V. “Rate of change of angular momentum and balance main-
tenance of biped robots”. In: IEEE International Conference on Robotics and Automation
(ICRA). New Orleans, LA, USA, Apr. 2004, pp. 3785–3790. DOI: 10.1109/ROBOT.2004.
1308858.

https://doi.org/10.1109/ROBOT.2009.5152464
https://doi.org/10.1109/ROBOT.2009.5152464
https://doi.org/10.1177/02783640122068092
https://doi.org/10.1109/AIM.2003.1225468
https://doi.org/10.1109/AIM.2003.1225468
https://doi.org/10.1007/3-540-61576-8_77
http://zlib.net/
https://doi.org/10.1023/A:1021783020548
https://github.com/skystrife/cpptoml
https://github.com/skystrife/cpptoml
https://doi.org/10.1007/978-94-007-7194-9_43-1
https://doi.org/10.1109/ROBOT.2001.933265
https://doi.org/10.1109/SII46433.2020.9026291
https://doi.org/10.1109/HUMANOIDS.2016.7803389
https://doi.org/10.1109/HUMANOIDS.2016.7803389
https://github.com/google/googletest
https://github.com/google/googletest
https://doi.org/10.1109/ROBOT.1999.769929
https://doi.org/10.1109/ROBOT.1999.769929
https://doi.org/10.1109/ROBOT.2004.1308858
https://doi.org/10.1109/ROBOT.2004.1308858

K Bibliography 285

[176] Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B.,
Serre, J., and Maisonnier, B. “Mechatronic design of NAO humanoid”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Kobe, Japan, May 2009, pp. 769–
774. DOI: 10.1109/ROBOT.2009.5152516.

[177] Grebenstein, M. et al. “The DLR Hand Arm System”. In: IEEE International Conference
on Robotics and Automation (ICRA). Shanghai, China, May 2011, pp. 3175–3182. DOI:
10.1109/ICRA.2011.5980371.

[178] Griffin, R. J., Wiedebach, G., McCrory, S., Bertrand, S., Lee, I., and Pratt, J. “Footstep
Planning for Autonomous Walking Over Rough Terrain”. In: IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids). Toronto, ON, Canada, Oct. 2019, pp. 9–16.
DOI: 10.1109/Humanoids43949.2019.9035046.

[179] Gross, D., Hauger, W., Schröder, J., Wall, W. A., and Govindjee, S. Engineering Mechanics
3 – Dynamics. 2nd ed. Berlin Heidelberg: Springer, 2014. DOI: 10.1007/978-3-642-
53712-7.

[180] Gross, D., Hauger, W., Schröder, J., Wall, W. A., and Bonet, J. Engineering Mechanics 2 –
Mechanics of Materials. 2nd ed. Berlin Heidelberg: Springer, 2018. DOI: 10.1007/978-
3-662-56272-7.

[181] Grotz, M., Habra, T., Ronsse, R., and Asfour, T. “Autonomous View Selection and Gaze
Stabilization for Humanoid Robots”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vancouver, BC, Canada, Sept. 2017, pp. 1427–1434. DOI:
10.1109/IROS.2017.8205944.

[182] Guennebaud, G., Jacob, B., et al. Eigen. Release v3.4.0. 2021. URL: https : / / eigen .
tuxfamily.org (visited on 03/02/2022).

[183] Guizzo, E. and Ackerman, E. IEEE Spectrum: Boston Dynamics Officially Unveils Its Wheel-
Leg Robot: “Best of Both Worlds”. Feb. 27, 2017. URL: https://spectrum.ieee.org/boston-
dynamics-handle-robot (visited on 03/03/2022).

[184] Guizzo, E. IEEE Spectrum: Boston Dynamics’ Spot Robot Dog Goes on Sale. Sept. 24, 2019.
URL: https://spectrum.ieee.org/boston-dynamics-spot-robot-dog-goes-on-sale (visited
on 03/02/2022).

[185] Hall, B. C. Lie Groups, Lie Algebras, and Representations. Ed. by Axler, S. and Ribet, K.
2nd ed. Springer, 2015. DOI: 10.1007/978-3-319-13467-3.

[186] Hamano, J., Pearce, S., and Torvalds, L. git – free and open source distributed version
control system. URL: https://git-scm.com/ (visited on 02/17/2023).

[187] Hamilton, S. W. R. “On quaternions; or on a new system of imaginaries in algebra”.
In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25
(1844), pp. 10–13. DOI: 10.1080/14786444408644923.

[188] Hansen, N. “The CMA Evolution Strategy: A Comparing Review”. In: Towards a New
Evolutionary Computation: Advances in the Estimation of Distribution Algorithms. Ed. by
Lozano, J. A., Larrañaga, P., Inza, I., and Bengoetxea, E. Berlin, Heidelberg: Springer,
2006, pp. 75–102. DOI: 10.1007/3-540-32494-1_4.

[189] Harmonic Drive LLC. Harmonic Drive High Precision Gear. URL: https : / / www .
harmonicdrive.net (visited on 06/29/2022).

[190] Hart, P. E., Nilsson, N. J., and Raphael, B. “A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics
4.2 (July 1968), pp. 100–107. DOI: 10.1109/TSSC.1968.300136.

[191] Hartenberg, R. S. and Denavit, J. Kinematic Synthesis of Linkages. Ed. by Drake, R. M.
and Kline, S. J. New York: McGraw-Hill, 1964.

https://doi.org/10.1109/ROBOT.2009.5152516
https://doi.org/10.1109/ICRA.2011.5980371
https://doi.org/10.1109/Humanoids43949.2019.9035046
https://doi.org/10.1007/978-3-642-53712-7
https://doi.org/10.1007/978-3-642-53712-7
https://doi.org/10.1007/978-3-662-56272-7
https://doi.org/10.1007/978-3-662-56272-7
https://doi.org/10.1109/IROS.2017.8205944
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org
https://spectrum.ieee.org/boston-dynamics-handle-robot
https://spectrum.ieee.org/boston-dynamics-handle-robot
https://spectrum.ieee.org/boston-dynamics-spot-robot-dog-goes-on-sale
https://doi.org/10.1007/978-3-319-13467-3
https://git-scm.com/
https://doi.org/10.1080/14786444408644923
https://doi.org/10.1007/3-540-32494-1_4
https://www.harmonicdrive.net
https://www.harmonicdrive.net
https://doi.org/10.1109/TSSC.1968.300136

K Bibliography 286

[192] Hauser, K., Bretl, T., and Latombe, J.-C. “Non-Gaited Humanoid Locomotion Planning”.
In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Tsukuba,
Japan, Dec. 2005, pp. 7–12. DOI: 10.1109/ICHR.2005.1573537.

[193] Henze, B., Werner, A., Roa, M. A., Garofalo, G., Englsberger, J., and Ott, C. “Control
applications of TORO – A Torque controlled humanoid robot”. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). Madrid, Spain, Nov. 2014, p. 841. DOI:
10.1109/HUMANOIDS.2014.7041461.

[194] Heo, J.-W., Lee, I.-H., and Oh, J.-H. “Development of Humanoid Robots in HUBO Lab-
oratory, KAIST”. In: Journal of the Robotics Society of Japan 30.4 (2012), pp. 367–371.
DOI: 10.7210/jrsj.30.367.

[195] Hereid, A., Cousineau, E. A., Hubicki, C. M., and Ames, A. D. “3D Dynamic Walking
with Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing
Hybrid Zero Dynamics”. In: IEEE International Conference on Robotics and Automation
(ICRA). Stockholm, Sweden, May 2016, pp. 1447–1454. DOI: 10 .1109/ICRA.2016.
7487279.

[196] Herron, R., Cuzzi, J., and Hugg, J. Mass Distribution of the Human Body using Biostere-
ometrics. Tech. rep. June 1976. URL: https://archive.org/details/DTIC_ADA029402
(visited on 06/17/2022).

[197] Higham, N. J. Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2002. ISBN: 0898715210.

[198] Hildebrandt, A.-C., Wittmann, R., Wahrmann, D., Ewald, A., and Buschmann, T. “Real-
Time 3D Collision Avoidance for Biped Robots”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Chicago, USA, Sept. 2014, pp. 4184–4190. DOI:
10.1109/IROS.2014.6943152.

[199] Hildebrandt, A.-C., Wahrmann, D., Wittmann, R., Rixen, D., and Buschmann, T. “Real-
Time Pattern Generation Among Obstacles for Biped Robots”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, Sept. 2015,
pp. 2780–2786. DOI: 10.1109/IROS.2015.7353759.

[200] Hildebrandt, A.-C., Demmeler, M., Wittmann, R., Wahrmann, D., Sygulla, F., Rixen, D.,
and Buschmann, T. “Real-Time Predictive Kinematic Evaluation and Optimization for
Biped Robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Daejeon, Korea, Oct. 2016, pp. 5789–5796. DOI: 10.1109/IROS.2016.7759852.

[201] Hildebrandt, A.-C. “Autonomous Robots in Unknown and Dynamic Scenarios. Biped
Navigation, Real-Time Motion Generation and Collision Avoidance”. Dissertation. Ger-
many: Technical University of Munich, 2018. URL: http : / / nbn - resolving . de / urn /
resolver.pl?urn:nbn:de:bvb:91-diss-20181019-1441767-1-4.

[202] Hildebrandt, A.-C., Wittmann, R., Sygulla, F., Wahrmann, D., Rixen, D., and Buschmann,
T. “Versatile and robust bipedal walking in unknown environments: real-time colli-
sion avoidance and disturbance rejection”. In: Autonomous Robots (Feb. 2019). DOI:
10.1007/s10514-019-09838-3.

[203] Hill, S. C., Jelemensky, J., and Heene, M. R. “Queued serial peripheral interface for use
in a data processing system”. US patent 4816996. Mar. 28, 1989.

[204] Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K.,
and Morisawa, M. “A Universal Stability Criterion of the Foot Contact of Legged Robots
- Adios ZMP”. In: IEEE International Conference on Robotics and Automation (ICRA). Or-
lando, FL, USA, May 2006, pp. 1976–1983. DOI: 10.1109/ROBOT.2006.1641995.

https://doi.org/10.1109/ICHR.2005.1573537
https://doi.org/10.1109/HUMANOIDS.2014.7041461
https://doi.org/10.7210/jrsj.30.367
https://doi.org/10.1109/ICRA.2016.7487279
https://doi.org/10.1109/ICRA.2016.7487279
https://archive.org/details/DTIC_ADA029402
https://doi.org/10.1109/IROS.2014.6943152
https://doi.org/10.1109/IROS.2015.7353759
https://doi.org/10.1109/IROS.2016.7759852
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20181019-1441767-1-4
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20181019-1441767-1-4
https://doi.org/10.1007/s10514-019-09838-3
https://doi.org/10.1109/ROBOT.2006.1641995

K Bibliography 287

[205] Hirzinger, G., Sporer, N., Albu-Schaffer, A., Hahnle, M., Krenn, R., Pascucci, A., and
Schedl, M. “DLR’s torque-controlled light weight robot III – are we reaching the tech-
nological limits now?” In: IEEE International Conference on Robotics and Automation
(ICRA). Washington, DC, USA, May 2002, pp. 1710–1716. DOI: 10.1109/ROBOT.2002.
1014788.

[206] Hoffman, B., Martin, K., King, B., Cole, D., Neundorf, A., and Stimpson, C. CMake –
Cross-Platform Make. URL: https://cmake.org/ (visited on 02/17/2023).

[207] Honda. IEEE Robots: Asimo. 2000. URL: https://robots.ieee.org/robots/asimo (visited
on 03/02/2022).

[208] Horner, W. G. and Gilbert, D. “A new method of solving numerical equations of all
orders, by continuous approximation”. In: Philosophical Transactions of the Royal Society
of London. London, 1819, pp. 308–335.

[209] Hornung, A. and Bennewitz, M. “Adaptive Level-of-Detail Planning for Efficient Hu-
manoid Navigation”. In: IEEE International Conference on Robotics and Automation
(ICRA). Saint Paul, MN, USA, May 2012, pp. 997–1002. DOI: 10.1109/ICRA.2012.
6224898.

[210] Hornung, A., Dornbush, A., Likhachev, M., and Bennewitz, M. “Anytime Search-Based
Footstep Planning with Suboptimality Bounds”. In: IEEE-RAS International Conference on
Humanoid Robots (Humanoids). Osaka, Japan, Nov. 2012, pp. 674–679. DOI: 10.1109/
HUMANOIDS.2012.6651592.

[211] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. “OctoMap: an
efficient probabilistic 3D mapping framework based on octrees”. In: Autonomous Robots
34.3 (2013), pp. 189–206. DOI: 10.1007/s10514-012-9321-0.

[212] Houstis, E. N., Christara, C. C., and Rice, J. R. “Quadratic-Spline Collocation Methods for
Two-Point Boundary Value Problems”. In: International Journal for Numerical Methods
in Engineering 26.4 (1988), pp. 935–952. DOI: 10.1002/nme.1620260412.

[213] Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., and Hurst, J.
“ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot”.
In: The International Journal of Robotics Research 35.12 (2016), pp. 1497–1521. DOI:
10.1177/0278364916648388.

[214] Hutter, M. and Gehring, C. proNEu Documentation - Derivation of Analytical Kinematics
& Dynamics. Tech. rep. Autonomous Systems Lab, ETH Zürich, 2012. URL: https ://
bitbucket.org/leggedrobotics/proneu/src/master/documentation/manual/proNEu_
documentation.pdf (visited on 03/15/2022).

[215] Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., and Siegwart, R.
“STARLETH. A compliant quadrupedal robot for fast, efficient, and versatile locomo-
tion”. In: International Conference on Climbing and Walking Robot (CLAWAR). Zürich:
Autonomous Systems Lab, ETH Zürich, 2012. DOI: 10.3929/ethz-a-010034688.

[216] Hutter, M. et al. “ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon,
South Korea, Oct. 2016, pp. 38–44. DOI: 10.1109/IROS.2016.7758092.

[217] iMAR Navigation. iVRU-FC/iVRU-FQ: Inertial Measurement System with integrated GNSS
and Odometer Interface. URL: https : / / www. imar - navigation . de / en / products / by -
product-names/item/ivru- fc- ivru- fq- inertial-measurement- system-with- integrated-
gnss-and-odometer-interface (visited on 05/23/2022).

[218] Intel RealSense. Depth Camera D435. URL: https://www.intelrealsense.com/depth-
camera-d435 (visited on 03/14/2022).

https://doi.org/10.1109/ROBOT.2002.1014788
https://doi.org/10.1109/ROBOT.2002.1014788
https://cmake.org/
https://robots.ieee.org/robots/asimo
https://doi.org/10.1109/ICRA.2012.6224898
https://doi.org/10.1109/ICRA.2012.6224898
https://doi.org/10.1109/HUMANOIDS.2012.6651592
https://doi.org/10.1109/HUMANOIDS.2012.6651592
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1002/nme.1620260412
https://doi.org/10.1177/0278364916648388
https://bitbucket.org/leggedrobotics/proneu/src/master/documentation/manual/proNEu_documentation.pdf
https://bitbucket.org/leggedrobotics/proneu/src/master/documentation/manual/proNEu_documentation.pdf
https://bitbucket.org/leggedrobotics/proneu/src/master/documentation/manual/proNEu_documentation.pdf
https://doi.org/10.3929/ethz-a-010034688
https://doi.org/10.1109/IROS.2016.7758092
https://www.imar-navigation.de/en/products/by-product-names/item/ivru-fc-ivru-fq-inertial-measurement-system-with-integrated-gnss-and-odometer-interface
https://www.imar-navigation.de/en/products/by-product-names/item/ivru-fc-ivru-fq-inertial-measurement-system-with-integrated-gnss-and-odometer-interface
https://www.imar-navigation.de/en/products/by-product-names/item/ivru-fc-ivru-fq-inertial-measurement-system-with-integrated-gnss-and-odometer-interface
https://www.intelrealsense.com/depth-camera-d435
https://www.intelrealsense.com/depth-camera-d435

K Bibliography 288

[219] Intel RealSense. Tracking Camera T265. URL: https://www.intelrealsense.com/tracking-
camera-t265 (visited on 03/14/2022).

[220] Irodotou-Ellina, M. and Houstis, E. N. “An O(h6) Quintic Spline Collocation Method for
Fourth Order Two-Point Boundary Value Problems”. In: BIT Numerical Mathematics 28.2
(June 1988), pp. 288–301. DOI: 10.1007/BF01934092.

[221] Isaacson, E. and Keller, H. B. Analysis of Numerical Methods. New York: Dover Publica-
tions, Inc., 1966. ISBN: 0-486-68029-0.

[222] Josefsson, S. The Base16, Base32, and Base64 Data Encodings. Tech. rep. RFC 4648.
Request for Comments, RFC Editor, 2006. DOI: 10.17487/RFC4648.

[223] Jung, T., Lim, J., Bae, H., Lee, K. K., Joe, H.-M., and Oh, J.-H. “Development of the
Humanoid Disaster Response Platform DRC-HUBO+”. In: IEEE Transactions on Robotics
34.1 (2018), pp. 1–17. DOI: 10.1109/TRO.2017.2776287.

[224] Kaiser, P., Vahrenkamp, N., Schültje, F., Borràs, J., and Asfour, T. “Extraction of Whole-
Body Affordances for Loco-Manipulation Tasks”. In: International Journal of Humanoid
Robotics 12.3 (2015). DOI: 10.1142/S0219843615500310.

[225] Kaiser, P., Aksoy, E. E., Grotz, M., and Asfour, T. “Towards a Hierarchy of Loco-
Manipulation Affordances”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Daejeon, Korea, Oct. 2016, pp. 2839–2846. DOI: 10.1109/IROS.
2016.7759440.

[226] Kaiser, P., Kanoulas, D., Grotz, M., Muratore, L., Rocchi, A., Hoffman, E. M., Tsagarakis,
N. G., and Asfour, T. “An Affordance-Based Pilot Interface for High-Level Control of Hu-
manoid Robots in Supervised Autonomy”. In: IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). Cancun, Mexico, Nov. 2016, pp. 621–628. DOI: 10.1109/
HUMANOIDS.2016.7803339.

[227] Kaiser, P., Mandery, C., Boltres, A., and Asfour, T. “Affordance-Based Multi-Contact
Whole-Body Pose Sequence Planning for Humanoid Robots in Unknown Environments”.
In: IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia,
May 2018, pp. 3114–3121. DOI: 10.1109/ICRA.2018.8461087.

[228] KAIST. IEEE Robots: Hubo 2. 2009. URL: https://robots.ieee.org/robots/hubo (visited
on 03/02/2022).

[229] KAIST and Rainbow Robotics. IEEE Robots: DRC-Hubo+. 2015. URL: https://robots.ieee.
org/robots/drchubo (visited on 03/04/2022).

[230] Kajita, S. and Tani, K. “Study of Dynamic Biped Locomotion on Rugged Terrain – Deriva-
tion and Application of the Linear Inverted Pendulum Mode”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). Sacramento, California, Apr. 1991, pp. 1405–
1411. DOI: 10.1109/ROBOT.1991.131811.

[231] Kajita, S. and Tani, K. “Experimental Study of Biped Dynamic Walking in the Linear
Inverted Pendulum Mode”. In: IEEE International Conference on Robotics and Automation
(ICRA). Vol. 3. Nagoya, Japan, May 1995, pp. 2885–2891. DOI: 10.1109/ROBOT.1995.
525693.

[232] Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. “The 3D Linear In-
verted Pendulum Mode: A simple modeling for a biped walking pattern generation”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Maui,
Hawaii, USA, Oct. 2001, pp. 239–246. DOI: 10.1109/IROS.2001.973365.

[233] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H.
“Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point”. In:
IEEE International Conference on Robotics and Automation (ICRA). Taipei, Taiwan, Sept.
2003, pp. 1620–1626. DOI: 10.1109/ROBOT.2003.1241826.

https://www.intelrealsense.com/tracking-camera-t265
https://www.intelrealsense.com/tracking-camera-t265
https://doi.org/10.1007/BF01934092
https://doi.org/10.17487/RFC4648
https://doi.org/10.1109/TRO.2017.2776287
https://doi.org/10.1142/S0219843615500310
https://doi.org/10.1109/IROS.2016.7759440
https://doi.org/10.1109/IROS.2016.7759440
https://doi.org/10.1109/HUMANOIDS.2016.7803339
https://doi.org/10.1109/HUMANOIDS.2016.7803339
https://doi.org/10.1109/ICRA.2018.8461087
https://robots.ieee.org/robots/hubo
https://robots.ieee.org/robots/drchubo
https://robots.ieee.org/robots/drchubo
https://doi.org/10.1109/ROBOT.1991.131811
https://doi.org/10.1109/ROBOT.1995.525693
https://doi.org/10.1109/ROBOT.1995.525693
https://doi.org/10.1109/IROS.2001.973365
https://doi.org/10.1109/ROBOT.2003.1241826

K Bibliography 289

[234] Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F.,
and Yokoi, K. “Biped Walking Stabilization Based on Linear Inverted Pendulum Track-
ing”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Taipei, Taiwan, Oct. 2010, pp. 4489–4496. DOI: 10.1109/IROS.2010.5651082.

[235] Kálmán, R. E. “A New Approach to Linear Filtering and Prediction Problems”. In: ASME
Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. DOI: 10.1115/1.3662552.

[236] Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K.,
and Isozumi, T. “Humanoid Robot HRP-2”. In: IEEE International Conference on Robotics
and Automation (ICRA). New Orleans, LA, USA, Apr. 2004, pp. 1083–1090. DOI: 10.
1109/ROBOT.2004.1307969.

[237] Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., and Akachi, K. “Humanoid Robot
HRP-3”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Nice, France, Sept. 2008, pp. 2471–2478. DOI: 10.1109/IROS.2008.4650604.

[238] Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., and Kajita, S. “Cyber-
netic Human HRP-4C”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Paris, France, Dec. 2009, pp. 7–14. DOI: 10.1109/ICHR.2009.5379537.

[239] Kaneko, K., Kanehiro, F., Morisawa, M., Akachi, K., Miyamori, G., Hayashi, A., and
Kanehira, N. “Humanoid Robot HRP-4 - Humanoid Robotics Platform with Lightweight
and Slim Body”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). San Francisco, CA, USA, Sept. 2011, pp. 4400–4407. DOI: 10.1109/IROS.2011.
6094465.

[240] Kaneko, K., Morisawa, M., Kajita, S., Nakaoka, S., Sakaguchi, T., Cisneros, R., and Kane-
hiro, F. “Humanoid Robot HRP-2Kai – Improvement of HRP-2 Towards Disaster Response
Tasks”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Seoul,
Korea, Nov. 2015, pp. 132–139. DOI: 10.1109/HUMANOIDS.2015.7363526.

[241] Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., and
Kanehiro, F. “Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot With
High-Power and Wide-Range Joints”. In: IEEE Robotics and Automation Letters 4.2
(2019), pp. 1431–1438. DOI: 10.1109/LRA.2019.2896465.

[242] Kapoor, C., Cetin, M., and Tesar, D. “Performance Based Redundancy Resolution With
Multiple Criteria”. In: International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference. Atlanta, Georgia, USA, Sept. 1998.
DOI: 10.1115/DETC98/MECH-5864.

[243] Karkowski, P. and Bennewitz, M. “Real-Time Footstep Planning Using a Geometric Ap-
proach”. In: IEEE International Conference on Robotics and Automation (ICRA). Stock-
holm, Sweden, May 2016, pp. 1782–1787. DOI: 10.1109/ICRA.2016.7487323.

[244] Karkowski, P., Oßwald, S., and Bennewitz, M. “Real-Time Footstep Planning in 3D En-
vironments”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids).
Cancun, Mexico, Nov. 2016, pp. 69–74. DOI: 10.1109/HUMANOIDS.2016.7803256.

[245] Kato, I. “[Development of the Biped Robot WABOT-1]”. In: [Biomechanisms Japan] 2
(1973). Translated from Japanese using https://translate.google.com, pp. 173–174.
DOI: 10.3951/biomechanisms.2.173.

[246] Kennedy, J. and Eberhart, R. “Particle Swarm Optimization”. In: International Conference
on Neural Networks (ICNN). Perth, WA, Australia, Nov. 1995, pp. 1942–1948. DOI: 10.
1109/ICNN.1995.488968.

[247] Kim, J.-O. and Khosla, P. K. “Dexterity Measures for Design and Control of Manipu-
lators”. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS).
Osaka, Japan, Nov. 1991, pp. 758–763. DOI: 10.1109/IROS.1991.174572.

https://doi.org/10.1109/IROS.2010.5651082
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/ROBOT.2004.1307969
https://doi.org/10.1109/ROBOT.2004.1307969
https://doi.org/10.1109/IROS.2008.4650604
https://doi.org/10.1109/ICHR.2009.5379537
https://doi.org/10.1109/IROS.2011.6094465
https://doi.org/10.1109/IROS.2011.6094465
https://doi.org/10.1109/HUMANOIDS.2015.7363526
https://doi.org/10.1109/LRA.2019.2896465
https://doi.org/10.1115/DETC98/MECH-5864
https://doi.org/10.1109/ICRA.2016.7487323
https://doi.org/10.1109/HUMANOIDS.2016.7803256
https://translate.google.com
https://doi.org/10.3951/biomechanisms.2.173
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/IROS.1991.174572

K Bibliography 290

[248] Kim, M.-J., Kim, M.-S., and Shin, S. Y. “A General Construction Scheme for Unit Quater-
nion Curves with Simple High Order Derivatives”. In: Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’95. New York,
NY, USA: ACM, 1995, pp. 369–376. DOI: 10.1145/218380.218486.

[249] Kim, M.-J., Kim, M.-S., and Shin, S. Y. “A C2-continuous B-spline Quaternion Curve
Interpolating a Given Sequence of Solid Orientations”. In: Proceedings Computer Anima-
tion’95. Geneva, Switzerland, Apr. 1995, pp. 72–81. DOI: 10.1109/CA.1995.393545.

[250] Kim, M.-J., Kim, M.-S., and Shin, S. Y. “A Compact Differential Formula for the First
Derivative of a Unit Quaternion Curve”. In: The Journal of Visualization and Computer
Animation 7.1 (1996), pp. 43–57. DOI: 10.1002/(SICI)1099-1778(199601)7:1<43::
AID-VIS136>3.0.CO;2-T.

[251] Kimura, K. and Murase, Y. “The Industrialization of Humanoid Robot HOAP Series”. In:
Journal of the Robotics Society of Japan 22.1 (2004). Translated from Japanese using
https://translate.google.com, pp. 10–12. DOI: 10.7210/jrsj.22.10.

[252] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by Simulated Annealing”.
In: Science 220.4598 (1983), pp. 671–680. DOI: 10.1126/science.220.4598.671.

[253] KIT. IEEE Robots: Armar. 2017. URL: https://robots.ieee.org/robots/armar (visited on
03/03/2022).

[254] Klopčar, N. and Lenarčič, J. “Kinematic Model for Determination of Human Arm Reach-
able Workspace”. In: Meccanica 40 (2005), pp. 203–219. DOI: 10.1007/s11012-005-
3067-0.

[255] Kojima, K. et al. “Development of Life-sized High-Power Humanoid Robot JAXON
for Real-World Use”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Seoul, Korea, Nov. 2015, pp. 838–843. DOI: 10.1109/HUMANOIDS.2015.
7363459.

[256] Kucuk, S. and Bingul, Z. “Robot Workspace Optimization Based on a Novel Local and
Global Performance Indices”. In: IEEE International Symposium on Industrial Electron-
ics (ISIE). Dubrovnik, Croatia, June 2005, pp. 1593–1598. DOI: 10.1109/ISIE.2005.
1529170.

[257] Kühn, D., Schilling, M., Stark, T., Zenzes, M., and Kirchner, F. “System Design and
Testing of the Hominid Robot Charlie”. In: Journal of Field Robotics 34.4 (July 2016),
pp. 666–703. DOI: 10.1002/rob.21662.

[258] Kühn, D., Dettmann, A., and Kirchner, F. “Analysis of Using an Active Artificial Spine in
a Quadruped Robot”. In: International Conference on Control, Automation and Robotics
(ICCAR). Auckland, New Zealand, Apr. 2018, pp. 37–42. DOI: 10.1109/ICCAR.2018.
8384641.

[259] Kuffner, J. J. and LaValle, S. M. “RRT-Connect: An Efficient Approach to Single-Query
Path Planning”. In: IEEE International Conference on Robotics and Automation (ICRA).
San Francisco, CA, USA, Apr. 2000, pp. 995–1001. DOI: 10.1109/ROBOT.2000.844730.

[260] Kuindersma, S. The Art and Engineering Behind a Humanoid Dance Routine. Within work-
shop Can we build Baymax? at IEEE-RAS International Conference on Humanoid Robots
(Humanoids). Munich, Germany, July 2021.

[261] Kumagai, I., Morisawa, M., Nakaoka, S., and Kanehiro, F. “Efficient Locomotion Planning
for a Humanoid Robot with Whole-Body Collision Avoidance Guided by Footsteps and
Centroidal Sway Motion”. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids). Beijing, China, Nov. 2018, pp. 251–256. DOI: 10.1109/HUMANOIDS.
2018.8624927.

https://doi.org/10.1145/218380.218486
https://doi.org/10.1109/CA.1995.393545
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T
https://translate.google.com
https://doi.org/10.7210/jrsj.22.10
https://doi.org/10.1126/science.220.4598.671
https://robots.ieee.org/robots/armar
https://doi.org/10.1007/s11012-005-3067-0
https://doi.org/10.1007/s11012-005-3067-0
https://doi.org/10.1109/HUMANOIDS.2015.7363459
https://doi.org/10.1109/HUMANOIDS.2015.7363459
https://doi.org/10.1109/ISIE.2005.1529170
https://doi.org/10.1109/ISIE.2005.1529170
https://doi.org/10.1002/rob.21662
https://doi.org/10.1109/ICCAR.2018.8384641
https://doi.org/10.1109/ICCAR.2018.8384641
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/HUMANOIDS.2018.8624927
https://doi.org/10.1109/HUMANOIDS.2018.8624927

K Bibliography 291

[262] Kumagai, I., Morisawa, M., Benallegue, M., and Kanehiro, F. “Bipedal Locomotion Plan-
ning for a Humanoid Robot Supported by Arm Contacts Based on Geometrical Feasibil-
ity”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Toronto,
ON, Canada, Oct. 2019, pp. 132–139. DOI: 10.1109/Humanoids43949.2019.9035072.

[263] Kumar, A. and Waldron, K. J. “The Workspaces of a Mechanical Manipulator”. In: Journal
of Mechanical Design 103.3 (July 1981), pp. 665–672. DOI: 10.1115/1.3254968.

[264] Lack, J., Powell, M. J., and Ames, A. D. “Planar Multi-Contact Bipedal Walking Using
Hybrid Zero Dynamics”. In: IEEE International Conference on Robotics and Automation
(ICRA). Hong Kong, China, May 2014, pp. 2582–2588. DOI: 10 . 1109 / ICRA . 2014 .
6907229.

[265] Lantinga, S. et al. Simple DirectMedia Layer (SDL). URL: https://www.libsdl.org/ (visited
on 08/26/2022).

[266] Larkin, D. H., Sen, S., and Tarjan, R. E. “A Back-to-Basics Empirical Study of Priority
Queues”. In: 2014 Proceedings of the Meeting on Algorithm Engineering and Experiments
(ALENEX), pp. 61–72. DOI: 10.1137/1.9781611973198.7.

[267] Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. “Fast Distance Queries with Rect-
angular Swept Sphere Volumes”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). San Francisco, CA, USA, Apr. 2000, pp. 3719–3726. DOI: 10.1109/
ROBOT.2000.845311.

[268] Lasguignes, T., Maroger, I., Fallon, M., Ramezani, M., Marchionni, L., Stasse, O.,
Mansard, N., and Watier, B. “ICP Localization and Walking Experiments on a TALOS
Humanoid Robot”. In: International Conference on Advanced Robotics (ICAR). Ljubljana,
Slovenia, Dec. 2021, pp. 800–805. DOI: 10.1109/ICAR53236.2021.9659474.

[269] LaValle, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech. rep.
Iowa, USA: Computer Science Dept., Iowa State University, Oct. 1998. URL: http://msl.
cs.uiuc.edu/~lavalle/papers/Lav98c.pdf (visited on 03/21/2022).

[270] LaValle, S. M. and Kuffner, J. J. “Randomized Kinodynamic Planning”. In: The In-
ternational Journal of Robotics Research 20.5 (2001), pp. 378–400. DOI: 10 . 1177 /
02783640122067453.

[271] Lee, E. T. Y. “A Simplified B-Spline Computation Routine”. In: Computing 29.4 (1982),
pp. 365–371. DOI: 10.1007/BF02246763.

[272] Lee, E. T. Y. “Comments on Some B-Spline Algorithms”. In: Computing 36.3 (1986),
pp. 229–238. DOI: 10.1007/BF02240069.

[273] Lee, J.-F., Lee, R., and Cangellaris, A. “Time-Domain Finite-Element Methods”. In: IEEE
Transactions on Antennas and Propagation 45.3 (Mar. 1997), pp. 430–442. DOI: 10.1109/
8.558658.

[274] Lee, S.-H. and Goswami, A. “Reaction Mass Pendulum (RMP): An explicit model for
centroidal angular momentum of humanoid robots”. In: IEEE International Conference
on Robotics and Automation (ICRA). Rome, Italy, Apr. 2007, pp. 4667–4672. DOI: 10.
1109/ROBOT.2007.364198.

[275] Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. “Learning quadrupedal
locomotion over challenging terrain”. In: Science Robotics 5.47 (2020), eabc5986. DOI:
10.1126/scirobotics.abc5986.

[276] Lenarčič, J., Stanič, U. J., and Oblak, P. “Some Kinematic Considerations for the Design
of Robot Manipulators”. In: Robotics and Computer-Integrated Manufacturing 5.2 (1989),
pp. 235–241. DOI: 10.1016/0736-5845(89)90069-0.

https://doi.org/10.1109/Humanoids43949.2019.9035072
https://doi.org/10.1115/1.3254968
https://doi.org/10.1109/ICRA.2014.6907229
https://doi.org/10.1109/ICRA.2014.6907229
https://www.libsdl.org/
https://doi.org/10.1137/1.9781611973198.7
https://doi.org/10.1109/ROBOT.2000.845311
https://doi.org/10.1109/ROBOT.2000.845311
https://doi.org/10.1109/ICAR53236.2021.9659474
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1007/BF02246763
https://doi.org/10.1007/BF02240069
https://doi.org/10.1109/8.558658
https://doi.org/10.1109/8.558658
https://doi.org/10.1109/ROBOT.2007.364198
https://doi.org/10.1109/ROBOT.2007.364198
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1016/0736-5845(89)90069-0

K Bibliography 292

[277] Lenarčič, J. and Umek, A. “Simple Model of Human Arm Reachable Workspace”. In: IEEE
Transactions on Systems, Man, and Cybernetics 24.8 (Aug. 1994), pp. 1239–1246. DOI:
10.1109/21.299704.

[278] Lenarčič, J. and Klopčar, N. “Positional kinematics of humanoid arms”. In: Robotica 24.1
(Oct. 2006), pp. 105–112. DOI: 10.1017/S0263574705001906.

[279] Lengagne, S., Mathieu, P., Kheddar, A., and Yoshida, E. “Generation of Dynamic Multi-
Contact Motions: 2D case studies”. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). Nashville, TN, USA, Dec. 2010, pp. 14–20. DOI: 10.1109/ICHR.
2010.5686836.

[280] Lengagne, S., Vaillant, J., Yoshida, E., and Kheddar, A. “Generation of whole-body opti-
mal dynamic multi-contact motions”. In: The International Journal of Robotics Research
32.9–10 (2013), pp. 1104–1119. DOI: 10.1177/0278364913478990.

[281] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. “Keyframe-based
visual-inertial odometry using nonlinear optimization”. In: The International Journal of
Robotics Research 34.3 (2015), pp. 314–334. DOI: 10.1177/0278364914554813.

[282] Li, S.-F. and Cheng, C.-Y. “Particle swarm optimization with fitness adjustment parame-
ters”. In: Computers & Industrial Engineering 113 (2017), pp. 831–841. DOI: 10.1016/j.
cie.2017.06.006.

[283] Liégeois, A. “Automatic Supervisory Control of the Configuration and Behaviour of
Multibody Mechanisms”. In: IEEE Transactions on Systems, Man, and Cybernetics 7.12
(Dec. 1977), pp. 868–871. DOI: 10.1109/TSMC.1977.4309644.

[284] Likhachev, M., Gordon, G., and Thrun, S. “ARA⋆: Anytime A⋆ with Provable Bounds
on Sub-Optimality”. In: Neural Information Processing Systems (NeurIPS). Dec. 2003,
pp. 767–774.

[285] Likhachev, M. and Stentz, A. “R⋆ Search”. In: AAAI 23rd National Conference on Artificial
Intelligence. Chicago, Illinois, July 2008, pp. 344–350.

[286] Lin, Y.-C. and Berenson, D. “Using Previous Experience for Humanoid Navigation Plan-
ning”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Cancun,
Mexico, Nov. 2016, pp. 794–801. DOI: 10.1109/HUMANOIDS.2016.7803364.

[287] Lin, Y.-C., Righetti, L., and Berenson, D. “Robust Humanoid Contact Planning With
Learned Zero- and One-Step Capturability Prediction”. In: IEEE Robotics and Automa-
tion Letters 5.2 (2020), pp. 2451–2458. DOI: 10.1109/LRA.2020.2972825.

[288] Löffler, K., Gienger, M., Pfeiffer, F., and Ulbrich, H. “Sensors and Control Concept of a
Biped Robot”. In: IEEE Transactions on Industrial Electronics 51.5 (Oct. 2004), pp. 972–
980. DOI: 10.1109/TIE.2004.834948.

[289] Löffler, K. “Dynamik und Regelung einer zweibeinigen Laufmaschine”. Dissertation. Ger-
many: Technical University of Munich, 2005.

[290] Lohmeier, S., Löffler, K., Gienger, M., Ulbrich, H., and Pfeiffer, F. “Computer System and
Control of Biped "Johnnie"”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). Vol. 4. New Orleans, LA, USA, Apr. 2004, pp. 4222–4227. DOI: 10.1109/
ROBOT.2004.1308939.

[291] Lohmeier, S. “Design and Realization of a Humanoid Robot for Fast and Autonomous
Bipedal Locomotion”. Dissertation. Germany: Technical University of Munich, 2010.
URL: http://nbn- resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101126-
980754-1-4.

[292] Lorch, O. “Beiträge zur visuellen Führung zweibeiniger Laufroboter in einem strukturi-
erten Szenario”. Dissertation. Germany: Technical University of Munich, 2003.

https://doi.org/10.1109/21.299704
https://doi.org/10.1017/S0263574705001906
https://doi.org/10.1109/ICHR.2010.5686836
https://doi.org/10.1109/ICHR.2010.5686836
https://doi.org/10.1177/0278364913478990
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1016/j.cie.2017.06.006
https://doi.org/10.1016/j.cie.2017.06.006
https://doi.org/10.1109/TSMC.1977.4309644
https://doi.org/10.1109/HUMANOIDS.2016.7803364
https://doi.org/10.1109/LRA.2020.2972825
https://doi.org/10.1109/TIE.2004.834948
https://doi.org/10.1109/ROBOT.2004.1308939
https://doi.org/10.1109/ROBOT.2004.1308939
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101126-980754-1-4
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101126-980754-1-4

K Bibliography 293

[293] Lorensen, W. E. and Cline, H. E. “Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm”. In: Computer Graphics 21.4 (July 1987), pp. 163–169.

[294] Lunze, J. Regelungstechnik 1. 11th ed. Berlin Heidelberg: Springer, 2016. DOI: 10.1007/
978-3-662-52678-1.

[295] Luo, R. C., Lee, K. C., and Spalanzani, A. “Humanoid Robot Walking Pattern Generation
Based on Five-Mass with Angular Momentum Model”. In: IEEE International Sympo-
sium on Industrial Electronics (ISIE). June 2016, pp. 375–380. DOI: 10.1109/ISIE.2016.
7744919.

[296] Ma, O. and Angeles, J. “Optimum Architecture Design of Platform Manipulators”. In:
Fifth International Conference on Advanced Robotics – Robots in Unstructured Environ-
ments. Pisa, Italy, June 1991, pp. 1130–1135. DOI: 10.1109/ICAR.1991.240404.

[297] Magoulés, F., Roux, F.-X., and Houzeaux, G. Parallel Scientific Computing. John Wiley &
Sons, Ltd, 2015. DOI: 10.1002/9781118761687.

[298] Majaess, F., Keast, P., and Fairweather, G. “Packages for solving almost block diagonal
linear systems arising in spline collocation at Gaussian points with monomial basis func-
tions”. In: Scientific Software Systems. Ed. by Mason, J. C. and Cox, M. G. Dordrecht:
Springer Netherlands, 1990, pp. 47–58. DOI: 10.1007/978-94-009-0841-3_3.

[299] Mansard, N., Khatib, O., and Kheddar, A. “A Unified Approach to Integrate Unilateral
Constraints in the Stack of Tasks”. In: IEEE Transactions on Robotics 25.3 (June 2009),
pp. 670–685. DOI: 10.1109/TRO.2009.2020345.

[300] Mason, S., Rotella, N., Schaal, S., and Righetti, L. “An MPC Walking Framework With
External Contact Forces”. In: IEEE International Conference on Robotics and Automation
(ICRA). Brisbane, Australia, May 2018, pp. 1785–1790. DOI: 10 . 1109 / ICRA . 2018 .
8461236.

[301] Maus, H.-M., Lipfert, S., Gross, M., Rummel, J., and Seyfarth, A. “Upright human gait did
not provide a major mechanical challenge for our ancestors”. In: Nature Communications
1.70 (Sept. 2010). DOI: 10.1038/ncomms1073.

[302] Maximo, M. R. O. A., Ribeiro, C. H. C., and Afonso, R. J. M. “Mixed-Integer Program-
ming for Automatic Walking Step Duration”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Daejeon, South Korea, Oct. 2016, pp. 5399–5404.
DOI: 10.1109/IROS.2016.7759794.

[303] Mayne, D. “A Second-order Gradient Method for Determining Optimal Trajectories
of Non-linear Discrete-time Systems”. In: International Journal of Control 3.1 (1966),
pp. 85–95. DOI: 10.1080/00207176608921369.

[304] McGeer, T. “Passive Dynamic Walking”. In: The International Journal of Robotics Research
9.2 (1990), pp. 62–82. DOI: 10.1177/027836499000900206.

[305] Meurant, G. “A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal
Matrices”. In: SIAM Journal on Matrix Analysis and Applications 13.3 (1992), pp. 707–
728. DOI: 10.1137/0613045.

[306] Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. “Discrete Differential-Geometry
Operators for Triangulated 2-Manifolds”. In: Visualization and Mathematics III. Ed. by
Hege, H.-C. and Polthier, K. Berlin, Heidelberg: Springer, 2003, pp. 35–57. DOI: 10.
1007/978-3-662-05105-4_2.

[307] Mittendorfer, P. and Cheng, G. “Humanoid Multimodal Tactile-Sensing Modules”. In:
IEEE Transactions on Robotics 27.3 (2011), pp. 401–410. DOI: 10 .1109/TRO.2011 .
2106330.

https://doi.org/10.1007/978-3-662-52678-1
https://doi.org/10.1007/978-3-662-52678-1
https://doi.org/10.1109/ISIE.2016.7744919
https://doi.org/10.1109/ISIE.2016.7744919
https://doi.org/10.1109/ICAR.1991.240404
https://doi.org/10.1002/9781118761687
https://doi.org/10.1007/978-94-009-0841-3_3
https://doi.org/10.1109/TRO.2009.2020345
https://doi.org/10.1109/ICRA.2018.8461236
https://doi.org/10.1109/ICRA.2018.8461236
https://doi.org/10.1038/ncomms1073
https://doi.org/10.1109/IROS.2016.7759794
https://doi.org/10.1080/00207176608921369
https://doi.org/10.1177/027836499000900206
https://doi.org/10.1137/0613045
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1109/TRO.2011.2106330
https://doi.org/10.1109/TRO.2011.2106330

K Bibliography 294

[308] Mizuuchi, I., Nakanishi, Y., Sodeyama, Y., Namiki, Y., Nishino, T., Muramatsu, N., Urata,
J., Hongo, K., Yoshikai, T., and Inaba, M. “An Advanced Musculoskeletal Humanoid
Kojiro”. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Pitts-
burgh, PA, USA, Nov. 2007, pp. 294–299. DOI: 10.1109/ICHR.2007.4813883.

[309] Möller, T. and Trumbore, B. “Fast, Minimum Storage Ray-Triangle Intersection”. In: Jour-
nal of Graphics Tools 2.1 (1997), pp. 21–28. DOI: 10.1080/10867651.1997.10487468.

[310] Morais, J. P., Georgiev, S., and Sprößig, W. Real Quaternionic Calculus Handbook. 1st ed.
Birkhäuser Basel, 2014. DOI: 10.1007/978-3-0348-0622-0.

[311] Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. “The Double Description
Method”. In: Contributions to the Theory of Games. Ed. by Kuhn, H. W. and Tucker, A. W.
Vol. 2. Princeton University Press, 1953, pp. 51–73.

[312] Mund, E. H., Hallet, P., and Hennart, J. P. “An algorithm for the interpolation of func-
tions using quintic splines”. In: Journal of Computational and Applied Mathematics 1.4
(1975), pp. 279–288. DOI: 10.1016/0771-050X(75)90020-0.

[313] Murooka, M., Kumagai, I., Morisawa, M., Kanehiro, F., and Kheddar, A. “Humanoid
Loco-Manipulation Planning Based on Graph Search and Reachability Maps”. In: IEEE
Robotics and Automation Letters 6.2 (2021), pp. 1840–1847. DOI: 10.1109/LRA.2021.
3060728.

[314] Murooka, M., Chappellet, K., Tanguy, A., Benallegue, M., Kumagai, I., Morisawa, M.,
Kanehiro, F., and Kheddar, A. “Humanoid Loco-Manipulations Pattern Generation and
Stabilization Control”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5597–
5604. DOI: 10.1109/LRA.2021.3077858.

[315] Murphy, M. P., Saunders, A., Moreira, C., Rizzi, A. A., and Raibert, M. “The LittleDog
robot”. In: The International Journal of Robotics Research 30.2 (2011), pp. 145–149.
DOI: 10.1177/0278364910387457.

[316] Nagarajan, U. and Yamane, K. “Automatic Task-specific Model Reduction for Humanoid
Robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Tokyo, Japan, Nov. 2013, pp. 2578–2585. DOI: 10.1109/IROS.2013.6696720.

[317] Nagasaka, K., Inoue, H., and Inaba, M. “Dynamic Walking Pattern Generation for a Hu-
manoid Robot Based on Optimal Gradient Method”. In: IEEE International Conference
on Systems, Man, and Cybernetics (ICSMC). Tokyo, Japan, Oct. 1999, pp. 908–913. DOI:
10.1109/ICSMC.1999.816673.

[318] Nakamura, Y., Hanafusa, H., and Yoshikawa, T. “Task-Priority Based Redundancy Con-
trol of Robot Manipulators”. In: The International Journal of Robotics Research 6.2
(1987), pp. 3–15. DOI: 10.1177/027836498700600201.

[319] Nakamura, Y. Advanced Robotics: Redundancy and Optimization. Boston, MA, USA:
Addison-Wesley Publishing Company, Inc., 1991. ISBN: 978-0-201-15198-5.

[320] NASA, United States of America. Man-Systems Integration Standards (NASA-STD-3000
Volume I). July 1995. URL: https : / / msis . jsc . nasa . gov / Volume1 . htm (visited on
06/17/2022).

[321] Nelson, G., Saunders, A., and Playter, R. “The PETMAN and Atlas Robots at Boston
Dynamics”. In: Humanoid Robotics: A Reference. Ed. by Goswami, A. and Vadakkepat, P.
Dordrecht: Springer Netherlands, 2019, pp. 169–186. DOI: 10.1007/978-94-007-6046-
2_15.

[322] Nguyen, N. T. Model-Reference Adaptive Control. 1st ed. Cham, Switzerland: Springer
International, 2018. DOI: 10.1007/978-3-319-56393-0.

https://doi.org/10.1109/ICHR.2007.4813883
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1007/978-3-0348-0622-0
https://doi.org/10.1016/0771-050X(75)90020-0
https://doi.org/10.1109/LRA.2021.3060728
https://doi.org/10.1109/LRA.2021.3060728
https://doi.org/10.1109/LRA.2021.3077858
https://doi.org/10.1177/0278364910387457
https://doi.org/10.1109/IROS.2013.6696720
https://doi.org/10.1109/ICSMC.1999.816673
https://doi.org/10.1177/027836498700600201
https://msis.jsc.nasa.gov/Volume1.htm
https://doi.org/10.1007/978-94-007-6046-2_15
https://doi.org/10.1007/978-94-007-6046-2_15
https://doi.org/10.1007/978-3-319-56393-0

K Bibliography 295

[323] Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., and Inoue, H. “Online Generation of
Humanoid Walking Motion based on a Fast Generation Method of Motion Pattern that
Follows Desired ZMP”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vol. 3. EPFL, Lausanne, Switzerland, Oct. 2002, pp. 2684–2689. DOI:
10.1109/IRDS.2002.1041675.

[324] Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., and Inoue, H. “The experimental hu-
manoid robot H7: a research platform for autonomous behaviour”. In: Philosophical
Transactions of the Royal Society A 365.1850 (2007), pp. 79–107. DOI: 10.1098/rsta.
2006.1921.

[325] Nishiwaki, K. and Kagami, S. “Online Design of Torso Height Trajectories for Walking
Patterns that takes Future Kinematic Limits into Consideration”. In: IEEE International
Conference on Robotics and Automation (ICRA). May 2011, pp. 2029–2034. DOI: 10 .
1109/ICRA.2011.5979922.

[326] Nishiwaki, K., Chestnutt, J., and Kagami, S. “Autonomous navigation of a humanoid
robot over unknown rough terrain using a laser range sensor”. In: The Interna-
tional Journal of Robotics Research 31.11 (2012), pp. 1251–1262. DOI: 10 . 1177 /
0278364912455720.

[327] Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-o., and Takan-
ishi, A. “Development of a New Humanoid Robot WABIAN-2”. In: IEEE International
Conference on Robotics and Automation (ICRA). Orlando, FL, USA, May 2006, pp. 76–81.
DOI: 10.1109/ROBOT.2006.1641164.

[328] Okada, K., Inaba, M., and Inoue, H. “Walking Navigation System of Humanoid Robot
using Stereo Vision based Floor Recognition and Path Planning with Multi-Layered Body
Image”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Las Vegas, NV, USA, Oct. 2003, pp. 2155–2160. DOI: 10.1109/IROS.2003.1249190.

[329] OpenMP Architecture Review Board. Open Multi-Processing (OpenMP). URL: https://
www.openmp.org/ (visited on 02/06/2023).

[330] Open Source Robotics Foundation. ROS: Robot Operating System. URL: https://www.ros.
org (visited on 03/17/2022).

[331] Ott, C. et al. “A Humanoid Two-Arm System for Dexterous Manipulation”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). Genova, Italy, Dec. 2006,
pp. 276–283. DOI: 10.1109/ICHR.2006.321397.

[332] PAL Robotics. IEEE Robots: Reem-C. 2013. URL: https://robots.ieee.org/robots/reemc
(visited on 03/02/2022).

[333] PAL Robotics. IEEE Robots: Talos. 2017. URL: https://robots.ieee.org/robots/talos (vis-
ited on 03/02/2022).

[334] Pandey, A. K. and Gelin, R. “A Mass-Produced Sociable Humanoid Robot: Pepper: The
First Machine of Its Kind”. In: IEEE Robotics & Automation Magazine 25.3 (2018), pp. 40–
48. DOI: 10.1109/MRA.2018.2833157.

[335] Pang, J.-S. and Trinkle, J. “Stability Characterizations of Rigid Body Contact Problems
with Coulomb Friction”. In: ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik 80.10 (2000), pp. 643–663. DOI:
10.1002/1521-4001(200010)80:10<643::AID-ZAMM643>3.0.CO;2-E.

[336] Park, J. and Kim, K. “Biped Robot Walking Using Gravity-Compensated Inverted Pendu-
lum Mode and Computed Torque Control”. In: IEEE International Conference on Robotics
and Automation (ICRA). Leuven, Belgium, May 1998, pp. 3528–3533. DOI: 10.1109/
ROBOT.1998.680985.

https://doi.org/10.1109/IRDS.2002.1041675
https://doi.org/10.1098/rsta.2006.1921
https://doi.org/10.1098/rsta.2006.1921
https://doi.org/10.1109/ICRA.2011.5979922
https://doi.org/10.1109/ICRA.2011.5979922
https://doi.org/10.1177/0278364912455720
https://doi.org/10.1177/0278364912455720
https://doi.org/10.1109/ROBOT.2006.1641164
https://doi.org/10.1109/IROS.2003.1249190
https://www.openmp.org/
https://www.openmp.org/
https://www.ros.org
https://www.ros.org
https://doi.org/10.1109/ICHR.2006.321397
https://robots.ieee.org/robots/reemc
https://robots.ieee.org/robots/talos
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1002/1521-4001(200010)80:10<643::AID-ZAMM643>3.0.CO;2-E
https://doi.org/10.1109/ROBOT.1998.680985
https://doi.org/10.1109/ROBOT.1998.680985

K Bibliography 296

[337] Park, H.-W. and Kim, S. “The MIT Cheetah, an Electrically-Powered Quadrupedal Robot
for High-speed Running”. In: Journal of the Robotics Society of Japan 32.4 (2014),
pp. 323–328. DOI: 10.7210/jrsj.32.323.

[338] Park, H.-W., Wensing, P., and Kim, S. “High-speed bounding with the MIT Cheetah 2:
Control design and experiments”. In: The International Journal of Robotics Research 36.2
(2017), pp. 167–192. DOI: 10.1177/0278364917694244.

[339] Park, J., Delgado, R., and Choi, B. W. “Real-Time Characteristics of ROS 2.0 in Multiagent
Robot Systems: An Empirical Study”. In: IEEE Access 8 (Aug. 2020). DOI: 10 .1109/
ACCESS.2020.3018122.

[340] Parker Hannifin Corporation. Motion Control Systems. URL: https://www.parkermotion.
com (visited on 07/25/2022).

[341] Patel, S. and Sobh, T. “Manipulator Performance Measures - A Comprehensive Literature
Survey”. In: Journal of Intelligent & Robotic Systems 77.3 (2015), pp. 547–570. DOI:
10.1007/s10846-014-0024-y.

[342] Pfeiffer, F., Eltze, J., and Weidemann, H.-J. “The TUM-Walking Machine”. In: Intelligent
Automation & Soft Computing 1.3 (1995), pp. 307–323.

[343] Pfeiffer, F., Löffler, K., and Gienger, M. “The Concept of Jogging JOHNNIE”. In: IEEE
International Conference on Robotics and Automation (ICRA). Washington, DC, May 2002,
pp. 3129–3135. DOI: 10.1109/ROBOT.2002.1013708.

[344] Pfeiffer, F. “The TUM walking machines”. In: Philosophical Transactions of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering Sciences 365.1850 (Nov. 2007),
pp. 109–131. DOI: 10.1098/rsta.2006.1922.

[345] Plasti Dip Europe GmbH. Performix Plasti Dip Flüssiggummi. URL: https ://plastidip -
eu.com/produkte/fluessiggummi/ (visited on 07/27/2022).

[346] Popovic, M. B., Goswami, A., and Herr, H. “Ground Reference Points in Legged Lo-
comotion: Definitions, Biological Trajectories and Control Implications”. In: The Inter-
national Journal of Robotics Research 24.12 (2005), pp. 1013–1032. DOI: 10 .1177/
0278364905058363.

[347] Poskanzer, J. Portable Anymap Format (PNM). 1988. URL: http://netpbm.sourceforge.
net/ (visited on 09/27/2022).

[348] Pratt, G. A. and Williamson, M. M. “Series Elastic Actuators”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Pittsburgh, PA, USA, Aug. 1995,
pp. 399–406. DOI: 10.1109/IROS.1995.525827.

[349] Pratt, J., Carff, J., Drakunov, S., and Goswami, A. “Capture Point: A Step toward Hu-
manoid Push Recovery”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Genova, Italy, Dec. 2006, pp. 200–207. DOI: 10.1109/ICHR.2006.321385.

[350] Pratt, J. E. et al. “The Yobotics-IHMC Lower Body Humanoid Robot”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). St. Louis, MO, USA, Oct.
2009, pp. 410–411. DOI: 10.1109/IROS.2009.5354430.

[351] Preston-Werner, T., Gedam, P., et al. TOML: Tom’s Obvious Minimal Language. Release
v0.5.0. 2018. URL: https://toml.io/ (visited on 09/27/2022).

[352] Quarteroni, A., Sacco, R., and Saler, F. Numerical Mathematics. 2nd ed. Berlin Heidel-
berg: Springer, 2007. DOI: 10.1007/b98885.

[353] Rader, S., Kaul, L., Fischbach, H., Vahrenkamp, N., and Asfour, T. “Design of a High-
Performance Humanoid Dual Arm System with Inner Shoulder Joints”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). Cancun, Mexico, Nov. 2016,
pp. 523–529. DOI: 10.1109/HUMANOIDS.2016.7803325.

https://doi.org/10.7210/jrsj.32.323
https://doi.org/10.1177/0278364917694244
https://doi.org/10.1109/ACCESS.2020.3018122
https://doi.org/10.1109/ACCESS.2020.3018122
https://www.parkermotion.com
https://www.parkermotion.com
https://doi.org/10.1007/s10846-014-0024-y
https://doi.org/10.1109/ROBOT.2002.1013708
https://doi.org/10.1098/rsta.2006.1922
https://plastidip-eu.com/produkte/fluessiggummi/
https://plastidip-eu.com/produkte/fluessiggummi/
https://doi.org/10.1177/0278364905058363
https://doi.org/10.1177/0278364905058363
http://netpbm.sourceforge.net/
http://netpbm.sourceforge.net/
https://doi.org/10.1109/IROS.1995.525827
https://doi.org/10.1109/ICHR.2006.321385
https://doi.org/10.1109/IROS.2009.5354430
https://toml.io/
https://doi.org/10.1007/b98885
https://doi.org/10.1109/HUMANOIDS.2016.7803325

K Bibliography 297

[354] Radford, N. A. et al. “Valkyrie: NASA’s First Bipedal Humanoid Robot”. In: Journal of
Field Robotics 32.3 (2015), pp. 397–419. DOI: 10.1002/rob.21560.

[355] Raibert, M. H. Legged Robots That Balance. Cambridge, MA, USA: The MIT Press, 1986.
ISBN: 0-262-18117-7.

[356] Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al. “BigDog, the Rough-Terrain
Quadruped Robot”. In: Proceedings of the 17th IFAC World Congress 41.2 (July 2008),
pp. 10822–10825. DOI: 10.3182/20080706-5-KR-1001.01833.

[357] Ralph, P. and Wand, Y. “A Proposal for a Formal Definition of the Design Concept”. In:
Design Requirements Engineering: A Ten-Year Perspective. Ed. by Lyytinen, K., Loucopou-
los, P., Mylopoulos, J., and Robinson, B. Berlin, Heidelberg: Springer, 2009, pp. 103–
136. DOI: 10.1007/978-3-540-92966-6_6.

[358] Ramuzat, N., Buondonno, G., Boria, S., and Stasse, O. “Comparison of Position and
Torque Whole-Body Control Schemes on the Humanoid Robot TALOS”. In: International
Conference on Advanced Robotics (ICAR). Ljubljana, Slovenia, Dec. 2021, pp. 785–792.
DOI: 10.1109/ICAR53236.2021.9659380.

[359] Reghenzani, F., Massari, G., and Fornaciari, W. “The Real-Time Linux Kernel: A Sur-
vey on PREEMPT_RT”. In: ACM Computing Surveys 52.1 (Feb. 2019). DOI: 10.1145/
3297714.

[360] Rohe, G., von Hundelshausen, F., and Wuensche, H.-J. “Sichtgeführte Tentakelnaviga-
tion für humanoide Roboter”. In: Tagungsband 1. Interdisziplinärer Workshop Kognitive
Systeme: Mensch, Teams, Systeme und Automaten. Duisburg, Germany, Sept. 2011.

[361] Roser, M., Ritchie, H., and Ortiz-Ospina, E. “World Population Growth”. In: Our World
in Data (2013). URL: https://ourworldindata.org/world-population-growth (visited on
03/02/2022).

[362] Russell, R. D. and Shampine, L. F. “A Collocation Method for Boundary Value Problems”.
In: Numerische Mathematik 19.1 (1972), pp. 1–28. DOI: 10.1007/BF01395926.

[363] Rusu, R. B. and Cousins, S. “3D is here: Point Cloud Library (PCL)”. In: IEEE International
Conference on Robotics and Automation (ICRA). Shanghai, China, May 2011, pp. 1–4.
DOI: 10.1109/ICRA.2011.5980567.

[364] Sabe, K., Fukuchi, M., Gutmann, J.-S., Ohashi, T., Kawamoto, K., and Yoshigahara, T.
“Obstacle Avoidance and Path Planning for Humanoid Robots using Stereo Vision”. In:
IEEE International Conference on Robotics and Automation (ICRA). New Orleans, LA, USA,
Apr. 2004, pp. 592–597. DOI: 10.1109/ROBOT.2004.1307213.

[365] Saff, E. B. and Kuijlaars, A. B. J. “Distributing Many Points on a Sphere”. In: The Mathe-
matical Intelligencer 19.1 (Dec. 1977), pp. 5–11. DOI: 10.1007/BF03024331.

[366] Saida, T., Yokokohji, Y., and Yoshikawa, T. “FSW (Feasible Solution of Wrench) for Multi-
legged Robots”. In: IEEE International Conference on Robotics and Automation (ICRA).
Taipei, Taiwan, Sept. 2003, pp. 3815–3820. DOI: 10.1109/ROBOT.2003.1242182.

[367] Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., and Fujimura, K.
“The intelligent ASIMO: System overview and integration”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). EPFL, Lausanne, Switzerland, Oct.
2002, pp. 2478–2483. DOI: 10.1109/IRDS.2002.1041641.

[368] Schöps, T., Sattler, T., and Pollefeys, M. “SurfelMeshing: Online Surfel-Based Mesh Re-
construction”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 42.10
(2020), pp. 2494–2507. DOI: 10.1109/TPAMI.2019.2947048.

[369] Schunk GmbH & Co. KG. FTE-AXIA80-DUAL SI-200-8/SI-500-20. URL: https://schunk.
com/de_en/gripping-systems/product/53291-1324514-fte-axia80-dual-si-200-8-si-
500-20/ (visited on 07/26/2022).

https://doi.org/10.1002/rob.21560
https://doi.org/10.3182/20080706-5-KR-1001.01833
https://doi.org/10.1007/978-3-540-92966-6_6
https://doi.org/10.1109/ICAR53236.2021.9659380
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714
https://ourworldindata.org/world-population-growth
https://doi.org/10.1007/BF01395926
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/ROBOT.2004.1307213
https://doi.org/10.1007/BF03024331
https://doi.org/10.1109/ROBOT.2003.1242182
https://doi.org/10.1109/IRDS.2002.1041641
https://doi.org/10.1109/TPAMI.2019.2947048
https://schunk.com/de_en/gripping-systems/product/53291-1324514-fte-axia80-dual-si-200-8-si-500-20/
https://schunk.com/de_en/gripping-systems/product/53291-1324514-fte-axia80-dual-si-200-8-si-500-20/
https://schunk.com/de_en/gripping-systems/product/53291-1324514-fte-axia80-dual-si-200-8-si-500-20/

K Bibliography 298

[370] Schwienbacher, M. “Entwicklung eines Kraft-Momentensensors für einen humanoiden
Roboter”. Diploma thesis. Garching, Germany: Chair of Applied Mechanics, Technical
University of Munich, 2007.

[371] Schwienbacher, M., Buschmann, T., Lohmeier, S., Favot, V., and Ulbrich, H. “Self-
Collision Avoidance and Angular Momentum Compensation for a Biped Humanoid
Robot”. In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China, May 2011, pp. 581–586. DOI: 10.1109/ICRA.2011.5980350.

[372] Schwienbacher, M. “Efficient Algorithms for Biped Robots – Simulation, Collision Avoid-
ance and Angular Momentum Tracking”. Dissertation. Germany: Technical University of
Munich, 2013. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20140623-1175522-0-6.

[373] Scona, R., Nobili, S., Petillot, Y. R., and Fallon, M. “Direct Visual SLAM Fusing Propri-
oception for a Humanoid Robot”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vancouver, BC, Canada, Sept. 2017, pp. 1419–1426. DOI:
10.1109/IROS.2017.8205943.

[374] Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., and Caldwell,
D. G. “Design of HyQ – a hydraulically and electrically actuated quadruped robot”. In:
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Con-
trol Engineering 225.6 (2011), pp. 831–849. DOI: 10.1177/0959651811402275.

[375] Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y., and Cald-
well, D. G. “Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot
HyQ2Max”. In: IEEE/ASME Transactions on Mechatronics 22.2 (2017), pp. 635–646. DOI:
10.1109/TMECH.2016.2616284.

[376] Semini, C. et al. “Brief introduction to the quadruped robot HyQReal”. In: Italian Confer-
ence on Robotics and Intelligent Machines (I-RIM). Rome, Italy, Oct. 2019, pp. 1–2. DOI:
10.5281/zenodo.4782613.

[377] Sercos International. Serial Realtime Communication System (Sercos). URL: https://www.
sercos.org (visited on 03/11/2022).

[378] Shoemake, K. “Animating Rotation with Quaternion Curves”. In: SIGGRAPH Computer
Graphics 19.3 (July 1985), pp. 245–254. DOI: 10.1145/325165.325242.

[379] Siciliano, B. and Slotine, J.-J. E. “A General Framework for Managing Multiple Tasks
in Highly Redundant Robotic Systems”. In: IEEE International Conference on Advanced
Robotics (ICAR). Pisa, Italy, June 1991, pp. 1211–1216. DOI: 10 .1109/ ICAR .1991 .
240390.

[380] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. Robotics: Modelling, Planning and
Control. Springer London, 2009. DOI: 10.1007/978-1-84628-642-1.

[381] Siekmann, J., Green, K., Warila, J., Fern, A., and Hurst, J. “Blind Bipedal Stair Traversal
via Sim-to-Real Reinforcement Learning”. In: Robotics: Science and Systems. July 2021.
URL: http://www.roboticsproceedings.org/rss17/p061.pdf (visited on 03/02/2022).

[382] Sodeyama, Y., Mizuuchi, I., Yoshikai, T., Nakanishi, Y., and Inaba, M. “A Shoulder Struc-
ture of Muscle-Driven Humanoid with Shoulder Blades”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada, Aug. 2005,
pp. 4028–4033. DOI: 10.1109/IROS.2005.1545123.

[383] SoftBank / Aldebaran Robotics. IEEE Robots: Nao. 2008. URL: https://robots.ieee.org/
robots/nao (visited on 03/02/2022).

[384] Softbank / Aldebaran Robotics. IEEE Robots: Pepper. 2014. URL: https://robots.ieee.org/
robots/pepper (visited on 03/03/2022).

https://doi.org/10.1109/ICRA.2011.5980350
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140623-1175522-0-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140623-1175522-0-6
https://doi.org/10.1109/IROS.2017.8205943
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1109/TMECH.2016.2616284
https://doi.org/10.5281/zenodo.4782613
https://www.sercos.org
https://www.sercos.org
https://doi.org/10.1145/325165.325242
https://doi.org/10.1109/ICAR.1991.240390
https://doi.org/10.1109/ICAR.1991.240390
https://doi.org/10.1007/978-1-84628-642-1
http://www.roboticsproceedings.org/rss17/p061.pdf
https://doi.org/10.1109/IROS.2005.1545123
https://robots.ieee.org/robots/nao
https://robots.ieee.org/robots/nao
https://robots.ieee.org/robots/pepper
https://robots.ieee.org/robots/pepper

K Bibliography 299

[385] Solà, J. “Quaternion kinematics for the error-state Kalman filter”. In: arXiv (Nov. 2017).
DOI: 10.48550/ARXIV.1711.02508.

[386] Sony. IEEE Robots: Aibo. 2018. URL: https://robots.ieee.org/robots/aibo2018 (visited
on 03/02/2022).

[387] Sony. IEEE Robots: Qrio. 2003. URL: https://robots.ieee.org/robots/qrio (visited on
03/02/2022).

[388] Sorge, K., Rossmann, T., Weidemann, H.-J., Funk, K., and Buschmann, T. matvec. Chair
of Applied Mechanics, Technical University of Munich. 2009.

[389] Stasse, O., Verrelst, B., Vanderborght, B., and Yokoi, K. “Strategies for Humanoid Robots
to Dynamically Walk Over Large Obstacles”. In: IEEE Transactions on Robotics 25.4 (Aug.
2009), pp. 960–967. DOI: 10.1109/TRO.2009.2020354.

[390] Stasse, O. et al. “TALOS: A new humanoid research platform targeted for industrial
applications”. In: IEEE-RAS International Conference on Humanoid Robotics (Humanoids).
Birmingham, UK, 2017, pp. 689–695. DOI: 10.1109/HUMANOIDS.2017.8246947.

[391] Staufenberg, N.-S., Vielemeyer, J., Müller, R., Renjewski, D., and Rixen, D. J. “Virtual
Pivot Point Analysis of the Humanoid Robot Lola”. In: Dynamic Walking. 2019.

[392] Stephens, B. “Integral Control of Humanoid Balance”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). San Diego, CA, USA, Oct. 2007, pp. 4020–
4027. DOI: 10.1109/IROS.2007.4399407.

[393] Stephens, B. and Atkeson, C. “Modeling and Control of Periodic Humanoid Balance
using the Linear Biped Model”. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). Paris, France, Dec. 2009, pp. 379–384. DOI: 10.1109/ICHR.2009.
5379605.

[394] Stephens, B. J. “State Estimation for Force-Controlled Humanoid Balance using Simple
Models in the Presence of Modeling Error”. In: IEEE International Conference on Robotics
and Automation (ICRA). Shanghai, China, May 2011, pp. 3994–3999. DOI: 10.1109/
ICRA.2011.5980358.

[395] Stereolabs Inc. ZED 2i – Industrial AI Stereo Camera. URL: https://www.stereolabs.com/
zed-2i/ (visited on 08/09/2022).

[396] Sterr, S. “Entwicklung einer taktilen Fußsohle für humanoide Roboter”. Bachelor’s the-
sis. Garching, Germany: Chair of Applied Mechanics, Technical University of Munich,
2020.

[397] Stewart, D. “A Platform with Six Degrees of Freedom”. In: Proceedings of the Institution
of Mechanical Engineers 180.1 (1965), pp. 371–386. DOI: 10.1243/PIME_PROC_1965_
180_029_02.

[398] Sugiura, H., Gienger, M., Janssen, H., and Goerick, C. “Real-Time Collision Avoidance
with Whole Body Motion Control for Humanoid Robots”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). San Diego, CA, USA, Oct. 2007,
pp. 2053–2058. DOI: 10.1109/IROS.2007.4399062.

[399] Sygulla, F., Ellensohn, F., Hildebrandt, A.-C., Wahrmann, D., and Rixen, D. “A Flexible
and Low-Cost Tactile Sensor for Robotic Applications”. In: IEEE International Conference
on Advanced Intelligent Mechatronics (AIM). Munich, Germany, July 2017, pp. 58–63.
DOI: 10.1109/AIM.2017.8013995.

[400] Sygulla, F. and Rixen, D. “A force-control scheme for biped robots to walk over uneven
terrain including partial footholds”. In: International Journal of Advanced Robotic Systems
17.1 (2020). DOI: 10.1177/1729881419897472.

https://doi.org/10.48550/ARXIV.1711.02508
https://robots.ieee.org/robots/aibo2018
https://robots.ieee.org/robots/qrio
https://doi.org/10.1109/TRO.2009.2020354
https://doi.org/10.1109/HUMANOIDS.2017.8246947
https://doi.org/10.1109/IROS.2007.4399407
https://doi.org/10.1109/ICHR.2009.5379605
https://doi.org/10.1109/ICHR.2009.5379605
https://doi.org/10.1109/ICRA.2011.5980358
https://doi.org/10.1109/ICRA.2011.5980358
https://www.stereolabs.com/zed-2i/
https://www.stereolabs.com/zed-2i/
https://doi.org/10.1243/PIME_PROC_1965_180_029_02
https://doi.org/10.1243/PIME_PROC_1965_180_029_02
https://doi.org/10.1109/IROS.2007.4399062
https://doi.org/10.1109/AIM.2017.8013995
https://doi.org/10.1177/1729881419897472

K Bibliography 300

[401] Sygulla, F. “Dynamic Robot Walking on Unknown Terrain – Stabilization and Multi-
Contact Control of Biped Robots in Uncertain Environments”. Dissertation. Germany:
Technical University of Munich, 2022. URL: http://nbn-resolving.de/urn/resolver.pl?
urn:nbn:de:bvb:91-diss-20220112-1614716-1-9.

[402] Tajima, R., Honda, D., and Suga, K. “Fast Running Experiments Involving a Humanoid
Robot”. In: IEEE International Conference on Robotics and Automation (ICRA). Kobe,
Japan, May 2009, pp. 1571–1576. DOI: 10.1109/ROBOT.2009.5152404.

[403] Takanishi, A., Lim, H.-o., Tsuda, M., and Kato, I. “Realization of dynamic biped walking
stabilized by trunk motion on a sagittally uneven surface”. In: IEEE International Work-
shop on Intelligent Robots and Systems (IROS). Ibaraki, Japan, July 1990, pp. 323–330.
DOI: 10.1109/IROS.1990.262408.

[404] Takenaka, T., Matsumoto, T., and Yoshiike, T. “Real Time Motion Generation and Con-
trol for Biped Robot -1st Report: Walking Gait Pattern Generation-”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). St. Louis, MO, USA, Oct.
2009, pp. 1084–1091. DOI: 10.1109/IROS.2009.5354662.

[405] Takenaka, T., Matsumoto, T., Yoshiike, T., and Shirokura, S. “Real Time Motion Gener-
ation and Control for Biped Robot -2nd Report: Running Gait Pattern Generation-”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). St. Louis,
MO, USA, Oct. 2009, pp. 1092–1099. DOI: 10.1109/IROS.2009.5354654.

[406] Tanguy, A., Gergondet, P., Comport, A. I., and Kheddar, A. “Closed-loop RGB-D SLAM
Multi-Contact Control for Humanoid Robots”. In: IEEE/SICE International Symposium on
System Integration (SII). Sapporo, Japan, Dec. 2016, pp. 51–57. DOI: 10.1109/SII.2016.
7843974.

[407] The LLVM Team. Clang C Language Family Frontend for LLVM. URL: https://clang.llvm.
org/ (visited on 02/17/2023).

[408] The Qt Company. Qt – Cross-platform Software Design and Development Tools. URL: https:
//www.qt.io/ (visited on 02/17/2023).

[409] Thomas, G. C. and Sentis, L. “Towards Computationally Efficient Planning of Dynamic
Multi-Contact Locomotion”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Daejeon, Korea, Oct. 2016, pp. 3879–3886. DOI: 10.1109/IROS.
2016.7759571.

[410] Thürrner, G. and Wüthrich, C. A. “Computing Vertex Normals from Polygonal Facets”.
In: Journal of Graphics Tools 3.1 (1998), pp. 43–46. DOI: 10.1080/10867651.1998.
10487487.

[411] Tondu, B., Ippolito, S., Guiochet, J., and Daidié, A. “A Seven-degrees-of-freedom
Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots”. In: The In-
ternational Journal of Robotics Research 24.4 (2005), pp. 257–274. DOI: 10 . 1177 /
0278364905052437.

[412] Tonneau, S., Del Prete, A., Pettré, J., Park, C., Manocha, D., and Mansard, N. “An Ef-
ficient Acyclic Contact Planner for Multiped Robots”. In: IEEE Transactions on Robotics
34.3 (2018), pp. 586–601. DOI: 10.1109/TRO.2018.2819658.

[413] Tsagarakis, N. G., Morfey, S., Medrano Cerda, G., Zhibin, L., and Caldwell, D. G. “Compli-
ant Humanoid COMAN: Optimal joint stiffness tuning for modal frequency control”. In:
IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany,
May 2013, pp. 673–678. DOI: 10.1109/ICRA.2013.6630645.

[414] Tsagarakis, N. G. et al. “WALK-MAN: A High-Performance Humanoid Platform for Re-
alistic Environments”. In: Journal of Field Robotics 34.7 (2017), pp. 1225–1259. DOI:
10.1002/rob.21702.

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20220112-1614716-1-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20220112-1614716-1-9
https://doi.org/10.1109/ROBOT.2009.5152404
https://doi.org/10.1109/IROS.1990.262408
https://doi.org/10.1109/IROS.2009.5354662
https://doi.org/10.1109/IROS.2009.5354654
https://doi.org/10.1109/SII.2016.7843974
https://doi.org/10.1109/SII.2016.7843974
https://clang.llvm.org/
https://clang.llvm.org/
https://www.qt.io/
https://www.qt.io/
https://doi.org/10.1109/IROS.2016.7759571
https://doi.org/10.1109/IROS.2016.7759571
https://doi.org/10.1080/10867651.1998.10487487
https://doi.org/10.1080/10867651.1998.10487487
https://doi.org/10.1177/0278364905052437
https://doi.org/10.1177/0278364905052437
https://doi.org/10.1109/TRO.2018.2819658
https://doi.org/10.1109/ICRA.2013.6630645
https://doi.org/10.1002/rob.21702

K Bibliography 301

[415] Tucker, V. A. “The Energetic Cost of Moving About”. In: American Scientist 63.4 (1975),
pp. 413–419.

[416] Turk, G. The PLY Polygon File Format. Tech. rep. Stanford University, USA, 1994. URL:
http://gamma.cs.unc.edu/POWERPLANT/papers/ply.pdf (visited on 09/27/2022).

[417] Ulbrich, H., Buschmann, T., and Lohmeier, S. “Development of the Humanoid Robot
LOLA”. In: Modern Practice in Stress and Vibration Analysis VI. Vol. 5. Applied Mechanics
and Materials. Trans Tech Publications, Oct. 2006, pp. 529–540. DOI: 10.4028/www.
scientific.net/AMM.5-6.529.

[418] Unitree Robotics. Go1. URL: https : / / www. unitree . com / products / go1 (visited on
03/02/2022).

[419] Usmani, R. A. “Smooth spline approximations for the solution of a boundary value prob-
lem with engineering applications”. In: Journal of Computational and Applied Mathemat-
ics 6.2 (1980), pp. 93–98. DOI: 10.1016/0771-050X(80)90002-9.

[420] Vahrenkamp, N., Asfour, T., and Dillmann, R. “Robot Placement based on Reachability
Inversion”. In: IEEE International Conference on Robotics and Automation (ICRA). Karl-
sruhe, Germany, May 2013, pp. 1970–1975. DOI: 10.1109/ICRA.2013.6630839.

[421] Vahrenkamp, N. and Asfour, T. “Representing the robot’s workspace through constrained
manipulability analysis”. In: Autonomous Robots 38.1 (Jan. 2015), pp. 17–30. DOI: 10.
1007/s10514-014-9394-z.

[422] Valgrind Developers. Valgrind. URL: https://valgrind.org/ (visited on 02/17/2023).

[423] van den Berg, J., Shah, R., Huang, A., and Goldberg, K. “ANA⋆: Anytime Nonparametric
A⋆”. In: AAAI: Annual Conference. 2011.

[424] van Heesch, D. Doxygen – Generate Documentation from Source Code. URL: https://www.
doxygen.nl/ (visited on 02/17/2023).

[425] Varah, J. M. “On the Solution of Block-Tridiagonal Systems Arising from Certain Finite-
Difference Equations”. In: Mathematics of Computation 26.120 (1972), pp. 859–868.
DOI: 10.2307/2005868.

[426] Vicon Motion Systems Limited. Vicon – Award Winning Motion Capture Systems. URL:
https://www.vicon.com/ (visited on 05/20/2022).

[427] Vukobratović, M. and Stepanenko, J. “On The Stability of Anthropomorphic Systems”.
In: Mathematical Biosciences 15.1 (1972), pp. 1–37. DOI: 10 . 1016 / 0025 - 5564(72)
90061-2.

[428] Vukobratović, M. and Borovac, B. “Zero-Moment Point – Thirty Five Years of its Life”.
In: International Journal of Humanoid Robotics 1.1 (Mar. 2004), pp. 157–173. DOI: 10.
1142/S0219843604000083.

[429] Wahrmann, D., Hildebrandt, A.-C., Wittmann, R., Sygulla, F., Rixen, D., and Buschmann,
T. “Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped Robots”.
In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Banff,
Canada, July 2016, pp. 38–45. DOI: 10.1109/AIM.2016.7576740.

[430] Wahrmann, D. “Autonomous Robot Walking in Unknown Scenarios. Perception, Model-
ing and Robustness in Dynamic Environments”. Dissertation. Germany: Technical Uni-
versity of Munich, 2018. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:
91-diss-20181015-1395259-1-9.

[431] Wang, S. and Hauser, K. “Realization of a Real-time Optimal Control Strategy to Stabilize
a Falling Humanoid Robot with Hand Contact”. In: IEEE International Conference on
Robotics and Automation (ICRA). Brisbane, Australia, May 2018, pp. 3092–3098. DOI:
10.1109/ICRA.2018.8460500.

http://gamma.cs.unc.edu/POWERPLANT/papers/ply.pdf
https://doi.org/10.4028/www.scientific.net/AMM.5-6.529
https://doi.org/10.4028/www.scientific.net/AMM.5-6.529
https://www.unitree.com/products/go1
https://doi.org/10.1016/0771-050X(80)90002-9
https://doi.org/10.1109/ICRA.2013.6630839
https://doi.org/10.1007/s10514-014-9394-z
https://doi.org/10.1007/s10514-014-9394-z
https://valgrind.org/
https://www.doxygen.nl/
https://www.doxygen.nl/
https://doi.org/10.2307/2005868
https://www.vicon.com/
https://doi.org/10.1016/0025-5564(72)90061-2
https://doi.org/10.1016/0025-5564(72)90061-2
https://doi.org/10.1142/S0219843604000083
https://doi.org/10.1142/S0219843604000083
https://doi.org/10.1109/AIM.2016.7576740
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20181015-1395259-1-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20181015-1395259-1-9
https://doi.org/10.1109/ICRA.2018.8460500

K Bibliography 302

[432] Werner, A., Henze, B., Rodriguez, D. A., Gabaret, J., Porges, O., and Roa, M. A. “Multi-
Contact Planning and Control for a Torque-Controlled Humanoid Robot”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea, Oct.
2016, pp. 5708–5715. DOI: 10.1109/IROS.2016.7759840.

[433] Westervelt, E., Grizzle, J., and Koditschek, D. “Hybrid Zero Dynamics of Planar Biped
Walkers”. In: IEEE Transactions on Automatic Control 48.1 (2003), pp. 42–56. DOI: 10.
1109/TAC.2002.806653.

[434] Whitney, D. E. “Resolved Motion Rate Control of Manipulators and Human Prostheses”.
In: IEEE Transactions on Man-Machine Systems 10.2 (June 1969), pp. 47–53. DOI: 10.
1109/TMMS.1969.299896.

[435] Williams, J. W. J. “Algorithm 232: Heapsort”. In: Communications of the ACM 7.6 (1964),
pp. 347–348. DOI: 10.1145/512274.512284.

[436] Williams, T. and Kelley, C. gnuplot. URL: https://gnuplot.sourceforge.net/ (visited on
02/28/2023).

[437] Wind River Systems. VxWorks RTOS. URL: https : / / www. windriver. com / products /
vxworks (visited on 03/17/2022).

[438] Winter, D. A. Biomechanics and Motor Control of Human Movement. 4th ed. John Wiley
& Sons, Inc., 2009. DOI: 10.1002/9780470549148.

[439] Wittmann, R., Hildebrandt, A.-C., Ewald, A., and Buschmann, T. “An Estimation Model
for Footstep Modifications of Biped Robots”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Chicago, IL, USA, Sept. 2014, pp. 2572–2578.
DOI: 10.1109/IROS.2014.6942913.

[440] Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Rixen, D., and Buschmann, T. “State
Estimation for Biped Robots Using Multibody Dynamics”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, Sept. 2015,
pp. 2166–2172. DOI: 10.1109/IROS.2015.7353667.

[441] Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Rixen, D., and Buschmann, T. “Real-
Time Nonlinear Model Predictive Footstep Optimization for Biped Robots”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). Seoul, South Korea, Nov.
2015, pp. 711–717. DOI: 10.1109/HUMANOIDS.2015.7363432.

[442] Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Sygulla, F., Rixen, D., and Buschmann,
T. “Model-Based Predictive Bipedal Walking Stabilization”. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). Cancun, Mexico, Nov. 2016, pp. 718–
724. DOI: 10.1109/HUMANOIDS.2016.7803353.

[443] Wittmann, R. “Robust Walking Robots in Unknown Environments. Dynamic Models,
State Estimation and Real-Time Trajectory Optimization”. Dissertation. Germany: Tech-
nical University of Munich, 2017. URL: http://nbn-resolving.de/urn/resolver.pl?urn:
nbn:de:bvb:91-diss-20171023-1352929-1-6.

[444] Wolpert, D. H. “The Lack of A Priori Distinctions Between Learning Algorithms”. In:
Neural Computation 8.7 (Oct. 1996), pp. 1341–1390. DOI: 10.1162/neco.1996.8.7.
1341.

[445] Wright, S. J. “Stable Parallel Algorithms for Two-Point Boundary Value Problems”. In:
SIAM Journal on Scientific and Statistical Computing 13.3 (1992), pp. 742–764. DOI:
10.1137/0913044.

[446] Wu, S.-C., Tateno, K., Navab, N., and Tombari, F. “SCFusion: Real-time Incremental
Scene Reconstruction with Semantic Completion”. In: IEEE International Conference on
3D Vision (3DV). 2020, pp. 801–810. DOI: 10.1109/3DV50981.2020.00090.

https://doi.org/10.1109/IROS.2016.7759840
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1109/TMMS.1969.299896
https://doi.org/10.1109/TMMS.1969.299896
https://doi.org/10.1145/512274.512284
https://gnuplot.sourceforge.net/
https://www.windriver.com/products/vxworks
https://www.windriver.com/products/vxworks
https://doi.org/10.1002/9780470549148
https://doi.org/10.1109/IROS.2014.6942913
https://doi.org/10.1109/IROS.2015.7353667
https://doi.org/10.1109/HUMANOIDS.2015.7363432
https://doi.org/10.1109/HUMANOIDS.2016.7803353
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20171023-1352929-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20171023-1352929-1-6
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1137/0913044
https://doi.org/10.1109/3DV50981.2020.00090

K Bibliography 303

[447] Wu, S.-C., Tateno, K., Navab, N., and Tombari, F. SCFusion: Semantic Completion Fusion.
2020. URL: https://github.com/ShunChengWu/SCFusion (visited on 03/02/2022).

[448] Wu, S.-C., Wald, J., Tateno, K., Navab, N., and Tombari, F. “SceneGraphFusion: Incre-
mental 3D Scene Graph Prediction from RGB-D Sequences”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2021, pp. 7511–7521. DOI: 10.1109/
CVPR46437.2021.00743.

[449] Wu, S.-C., Wald, J., Tateno, K., Navab, N., and Tombari, F. SGFusion: Scene Graph Fu-
sion. 2020. URL: https ://github.com/ShunChengWu/SceneGraphFusion (visited on
03/02/2022).

[450] Xinjilefu, X., Feng, S., and Atkeson, C. G. “Dynamic State Estimation using Quadratic
Programming”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Chicago, IL, USA, Sept. 2014, pp. 989–994. DOI: 10.1109/IROS.2014.6942679.

[451] Yoshiike, T., Kuroda, M., Ujino, R., Kanemoto, Y., Kaneko, H., Higuchi, H., Komura, S.,
Iwasaki, S., Asatani, M., and Koshiishi, T. “The Experimental Humanoid Robot E2-DR:
A Design for Inspection and Disaster Response in Industrial Environments”. In: IEEE
Robotics & Automation Magazine 26.4 (2019), pp. 46–58. DOI: 10.1109/MRA.2019.
2941241.

[452] Yoshikawa, T. “Manipulability of Robotic Mechanisms”. In: The International Journal of
Robotics Research 4.2 (1985), pp. 3–9. DOI: 10.1177/027836498500400201.

[453] Zacharias, F., Borst, C., Wolf, S., and Hirzinger, G. “The capability map: a tool to analyze
robot arm workspaces”. In: International Journal of Humanoid Robotics 10.4 (2013).
DOI: 10.1142/S021984361350031X.

[454] Zhang, H., Han, X., and Yang, X. “Quintic B-spline collocation method for fourth order
partial integro-differential equations with a weakly singular kernel”. In: Applied Mathe-
matics and Computation 219.12 (2013), pp. 6565–6575. DOI: 10.1016/j.amc.2013.01.
012.

[455] Zhao, Y. and Sentis, L. “A Three Dimensional Foot Placement Planner for Locomotion in
Very Rough Terrains”. In: IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). Osaka, Japan, Nov. 2012, pp. 726–733. DOI: 10.1109/HUMANOIDS.2012.
6651600.

https://github.com/ShunChengWu/SCFusion
https://doi.org/10.1109/CVPR46437.2021.00743
https://doi.org/10.1109/CVPR46437.2021.00743
https://github.com/ShunChengWu/SceneGraphFusion
https://doi.org/10.1109/IROS.2014.6942679
https://doi.org/10.1109/MRA.2019.2941241
https://doi.org/10.1109/MRA.2019.2941241
https://doi.org/10.1177/027836498500400201
https://doi.org/10.1142/S021984361350031X
https://doi.org/10.1016/j.amc.2013.01.012
https://doi.org/10.1016/j.amc.2013.01.012
https://doi.org/10.1109/HUMANOIDS.2012.6651600
https://doi.org/10.1109/HUMANOIDS.2012.6651600

	Title Page
	Abstract
	Acknowledgment
	Contents
	Glossary
	1 Introduction
	1.1 Problem Statement
	1.2 Author's Contributions: Overview
	1.3 Outline

	2 Fundamentals and State of the Art
	2.1 System Overview and Hardware Design
	2.2 Software Design
	2.3 Contact Planning
	2.4 Motion Generation
	2.5 Computer Vision (CV)
	2.6 Stabilization
	2.7 The Humanoid Robots Johnnie and Lola
	2.8 Summary

	3 Hardware – A New Upper Body for Lola
	3.1 Preliminaries
	3.2 Starting Point
	3.3 Kinematic Optimization of Arm Topology
	3.4 Actuation and Sensing
	3.5 Mechanical Design
	3.6 Electrical Design
	3.7 Realization: Manufacturing, Assembly, and Initial Operation
	3.8 Results and Discussion

	4 Software – Part A: Locomotion Framework
	4.1 Overview
	4.2 Coordinate Systems (CoSys)
	4.3 Task-Space Definition
	4.4 Excursus: Computer Vision (CV)
	4.5 Walking Pattern Generation (WPG)
	4.5.1 Environment Model
	4.5.2 Reduced Kinematic and Dynamic Model
	4.5.3 State Estimation
	4.5.4 Solution Strategy
	4.5.5 Planning Pipeline

	4.6 Excursus: Stabilization and Inverse Kinematics (SIK)
	4.7 Excursus: Hardware Layer (HWL)
	4.8 Results and Discussion

	5 Software – Part B: Contact Planning
	5.1 Preliminaries
	5.2 Motion Plan: Higher Level Structure
	5.3 Quasi-Planar Walking Transition (QPWT)
	5.4 Transition Planner
	5.5 Autonomous Locomotion
	5.5.1 Discretization
	5.5.2 Pre-Processing
	5.5.3 A* Algorithm
	5.5.4 Hierarchical Graph Search
	5.5.5 Post-Processing

	5.6 Results and Discussion

	6 Software – Part C: Motion Generation
	6.1 Preliminaries
	6.2 Motion Plan: Lower Level Structure
	6.3 Phase Planner
	6.4 Support Area (SA) Planner
	6.5 Zero-Moment Point (ZMP) Planner
	6.6 Upper Body Orientation Planner
	6.7 Foot Motion Planner
	6.8 Toe Motion Planner
	6.9 Hand Motion Planner
	6.10 Head Orientation Planner
	6.11 Task-Space Selection Factor Planner
	6.12 Load Factor Planner
	6.13 External Wrench Planner
	6.14 Reduced Model Torso (RMT) Planner
	6.14.1 Vertical RMT Planner
	6.14.2 Horizontal RMT Planner

	6.15 Center of Mass (CoM) Planner
	6.16 Evaluation and Stream Processor
	6.17 Results and Discussion

	7 Software – Part D: Ecosystem
	7.1 Overview
	7.2 The Open-Source Library Broccoli
	7.3 The Open-Source Vision Interface
	7.4 Simulation
	7.5 Visualization
	7.6 Control Panel
	7.7 Conclusions and Suggestions

	8 Validation – Testing Lola's New Capabilities
	8.1 Simulation
	8.2 Real-World Experiments

	9 Closure
	9.1 Summary
	9.2 Author's Contributions and Innovation
	9.3 Conclusions
	9.4 Outlook

	A Notation
	B Quaternion Calculus and Interpolation of Rotations using Quaternions
	B.1 Fundamentals
	B.2 Spatial Rotation
	B.3 Interpolation
	B.3.1 Linear Interpolation (LERP)
	B.3.2 Normalized Linear Interpolation (NLERP)
	B.3.3 Spherical Linear Interpolation (SLERP)
	B.3.4 Quaternion Bézier (QBézier) Curve
	B.3.5 Spherical Quadrangle (SQUAD) Curve
	B.3.6 Quaternion B-Spline (QBSpline) Curve
	B.3.7 Comparison
	B.3.8 Advanced Speed Control

	C Swept Sphere Volumes (SSVs)
	D Step Parameters
	E Simplified Leg Kinematics
	F Dynamics of the Five-Mass Model
	G Cubic and Quintic Spline Interpolation and Collocation
	G.1 Introduction
	G.2 Materials and Methods
	G.2.1 Problem Statement
	G.2.2 Spline Parametrization
	G.2.3 Spline Interpolation: Preliminaries
	G.2.4 Cubic Spline Interpolation: Derivation
	G.2.5 Quintic Spline Interpolation: Derivation
	G.2.6 Algorithm for Cubic/Quintic Spline Interpolation
	G.2.7 Spline Collocation: Derivation
	G.2.8 Satisfying First Order Boundary Conditions for Cubic Splines
	G.2.9 Algorithm for Cubic/Quintic Spline Collocation

	G.3 Implementation
	G.4 Results
	G.5 Discussion
	G.6 Attachment: Spline Gradients

	H Hardware Details
	H.1 Mechanical Specifications
	H.2 Electrical Specifications
	H.3 Calibration

	I Co-authored Publications
	I.1 Scientific Publications
	I.2 Published Software
	I.3 Published Videos
	I.4 Press Reports (Indirect Publications)

	J Supervised Student Theses
	K Bibliography

