
Technical University of Munich 
TUM School of Engineering and Design 

Deep Learning in Synthetic Aperture Radar
Tomographic Inversion 

Kun Qian

Complete reprint of the dissertation approved by the TUM School of Engineering and Design 

of the Technical University of Munich for the award of the 

      Doktor der Ingenieurwissenschaften (Dr.-Ing.) 

Chair:       Prof. Dr. rer. nat. Niklas Boers 

Examiners: 

1. Prof. Dr.-Ing. habil. Xiaoxiang Zhu

2. Prof. Dr.-Ing. Yuanyuan Wang

3. Dr. Gianfranco Fornaro, Ph.D.

The dissertation was submitted to the Technical University of Munich on 28 September 2023 

and accepted by the TUM School of Engineering and Design on 19 December 2023.   





Abstract

Synthetic aperture radar tomography (TomoSAR) is an advanced interferometric SAR
(InSAR) that utilizes stacked SAR images and stands as a powerful technique for 3-D
imaging as well as deformation monitoring. To fully leverage the power of very high
resolution (VHR) SAR data, state-of-the-art TomoSAR algorithms usually resort to com-
pressive sensing (CS)-based sparse reconstruction which enables super-resolution ability
and unprecedentedly high location accuracy. However, the sparse reconstruction cannot
be solved analytically and usually iterative solvers need to be employed, thus making the
CS-based TomoSAR algorithms extremely computationally expensive and not applicable
for large-scale processing.
In recent years, great development of deep learning has been witnessed and extensive

applications of deep learning have been found in numerous remote sensing fields due to its
potent learning capabilities. A well-trained deep neural network can serve as an effective
nonlinear function, thus representing complicated mathematical models including the CS
problem. Motivated by this fact, the intention of this thesis is to explore the potential
of deep learning in efficient and accurate super-resolving TomoSAR inversion. The work
presented in this thesis contributes to the field by mainly addressing the following new
aspects:
A novel deep neural network specifically designed for TomoSAR inversion

called γ-Net is proposed by improving unrolled complex-valued Iterative Shrinkage Thresh-
olding Algorithm (ISTA) network. γ-Net mimics the iterative optimization step in sparse
reconstruction with only 10 to 20 layers. Experiments demonstrate that γ-Net approaches
the Cramér-Rao Lower Bound while improving the computational efficiency by one to two
orders of magnitude comparing to the state-of-the-art CS-based methods and also shows
no degradation in the super-resolution power.
To promote sparsity of the output, shrinkage functions are usually employed in the

deep neural networks. However, this shrinkage process inevitably results in information
loss within the dynamics of the network, diminishing the model performance. To address
this, a recurrent neural network (RNN) equipped with innovative sparse minimal gated
units (SMGUs) is introduced aiming at mitigating the information loss. This novel RNN
design capitalizes on integrating historical data into the optimization process,
ensuring comprehensive information preservation up to the final output, thus improving
the model performance.
Considering that spaceborne datasets are typically acquired in a repeat-pass mode over

different timestamps, sometimes spanning several years, it is essential to account for poten-
tial deformations in object estimations. This includes seasonal shifts from thermal dilation
or linear motions, such as subsidence. The 4-D imaging technique, which factors in mo-
tion history for scatterers, is termed differential TomoSAR (D-TomoSAR). However, the
integration of deep learning-based algorithms into D-TomoSAR inversion faces challenges
due to the extensive high-dimensional weight matrices they require. These matrices often
encompass millions of freely trainable parameters, leading to computational and memory
bottlenecks. To address these challenges, a novel hybrid approach for efficient and
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Abstract

precise D-TomoSAR inversion , called HyperLISTA-ABT is proposed. HyperLISTA-
ABT draws from the learning structure of the unrolled ISTA network, while its weights
are analytically determined based on a minimum coherence criterion, effectively slimming
the model to an ultra-light variant with only three hyperparameters.
All the developed algorithms were tested and validated using both simulated laboratory

data and extensive processing of real spaceborne data.
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Zusammenfassung

Synthetik Apertur Radar Tomographie (TomoSAR) ist eine fortgeschrittene interfer-
ometrische SAR (InSAR) Methode, die gestapelte SAR-Bilder nutzt und als leis-
tungsstarke Technik für die 3-D-Abbildung sowie die Deformationsüberwachung dient.
Um die Leistungsfähigkeit von SAR-Daten mit sehr hoher Auflösung voll auszuschöpfen,
greifen moderne TomoSAR-Algorithmen in der Regel auf Compressive Sensing (CS)
basierende spärliche Rekonstruktion zurück, die eine Super-Auflösung und eine beispiel-
los hohe Lokalisation (also Schätzung der dritten Koordinate “Elevation”) ermöglicht.
Allerdings kann die spärliche Rekonstruktion nicht analytisch gelöst werden, und in der
Regel müssen iterative Lösungsverfahren eingesetzt werden, wodurch die CS-basierten
TomoSAR-Algorithmen extrem rechnerisch kostenintensiv werden und für weiträumig Ve-
rarbeitung nicht anwendbar sind.
In den letzten Jahren wurde eine erhebliche Entwicklung im Bereich des Deep Learn-

ing beobachtet, und zahlreiche Anwendungen des Deep Learning wurden in vielen Fern-
erkundungsbereichen aufgrund seiner leistungsstarken Lernfähigkeiten gefunden. Ein gut
trainiertes tiefes neuronales Netzwerk kann als effektive nichtlineare Funktion dienen und
somit komplizierte mathematische Modelle, einschließlich des CS-Problems, darstellen.
Angeregt durch diese Tatsache, zielt diese Arbeit darauf ab, das Potenzial des Deep Learn-
ing für eine effiziente und präzise Super-Auflösende TomoSAR-Inversion zu erforschen.
Die in dieser Arbeit vorgestellten Beiträge betreffen hauptsächlich die folgenden neuen
Aspekte:
Ein neuartiges tiefes neuronales Netzwerk speziell für die TomoSAR-

Inversion ist vorgeschlagt, das als γ-Net bezeichnet wird und das fortschrittliche kom-
plexwert Iterative Shrinkage Thresholding Algorithm (ISTA) Netzwerk verbessert. γ-Net
simuliert den iterativen Optimierungsschritt in der spärlichen Rekonstruktion mit nur 10
bis 20 Schichten. Experimente zeigen, dass γ-Net sich der Cramér-Rao Lower Bound
(CRLB) nähert und gleichzeitig die Recheneffizienz im Vergleich zu den modernsten CS-
basierten Methoden um 1 bis 2 Größenordnungen steigert und keine Degradation in der
Super-Auflösungskraft zeigt.
Um die Sparsamkeit der Ausgabe zu fördern, werden in den tiefen neuronalen Netzw-

erken normalerweise Schrumpfungsfunktionen verwendet. Dieser Schrumpfungsprozess
führt jedoch unweigerlich zu Informationsverlusten in den Dynamiken des Netzwerks
und beeinträchtigt die Modellleistung. Um dies zu beheben, ein rekurrentes neuronales
Netzwerk (RNN) mit innovativen spärlichen minimalen gesteuerten Einheiten (SMGUs)
eingeführt, das darauf abzielt, den Informationsverlust zu verringern. Dieses neuar-
tige RNN-Design nutzt die Integration von historischen Daten in den Op-
timierungsprozess, um eine umfassende Informationsbewahrung bis zum endgültigen
Ausgang sicherzustellen und somit die Modellleistung zu verbessern.
Da satellitengestützte Datensätze in der Regel im wiederholten Pass-Modus über ver-

schiedene Zeitstempel erfasst werden, manchmal über mehrere Jahre hinweg, ist es
wichtig, mögliche Deformationen bei Objektschätzungen zu berücksichtigen. Dies beinhal-
tet saisonale Verschiebungen durch thermische Ausdehnung oder lineare Bewegungen wie
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Zusammenfassung

Absenkungen. Die 4-D-Abbildungstechnik, die die Deformationsgeschichte von Objekte
berücksichtigt, wird als Differential-TomoSAR (D-TomoSAR) bezeichnet. Die Integra-
tion von Deep-Learning-basierten Algorithmen in die D-TomoSAR Inversion stellt jedoch
aufgrund der umfangreichen hochdimensionalen Gewichtsmatrizen, die sie benötigen, Her-
ausforderungen dar. Diese Matrizen umfassen oft Millionen von frei trainierbaren Param-
etern, was zu rechnerischen und Speicherengpässen führt. Um diesen Herausforderungen
zu begegnen, ein neuartigen hybriden Ansatz für eine effiziente und präzise D-
TomoSAR-Inversion , benannt als HyperLISTA-ABT, ist introduziert. HyperLISTA-
ABT basiert auf der Lernstruktur des aufgerollten ISTA-Netzwerks, wobei seine Gewichte
analytisch auf Basis eines Mindestkohärenzkriteriums bestimmt werden, wodurch das
Modell effektiv auf eine ultraleichte Variante mit nur drei Hyperparametern reduziert
wird.

Alle entwickelten Algorithmen wurden sowohl mit simulierten Labor Daten als auch mit
extensiver Verarbeitung von echten satellitengestützte Daten getestet und validiert.
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1 Introduction

1.1 Motivation

In earth observation, synthetic aperture radar (SAR) is a crucial remote sensing tool that
allows for contact-free retrieval of large-scale information regarding the physical properties
of the earth surface by emitting electromagnetic waves towards the target and recording the
backscattered echoes. As an active sensor, SAR is capable of penetrating clouds, vegetation
canopies, soil, and snow [5] [6]. SAR interferometry (InSAR) uses co-registered SAR stacks
to retrieve the 3-D localization as well as motion information of the scatterering objects.
It plays an indispensable role in earth observation since it is to date the only method that
allows for assessing millimeter-precision ground deformation over a long period on a global
scale.

The launch of new SAR sensors, such as TerraSAR-X/TanDEM-X [7] and COSMO-
Skymed [8] satellites, marked a significant advancement in SAR remote sensing from space.
Beyond their many advantages, including high absolute geometric accuracy, precise orbit
determination, and short revisit times, these SAR sensors offer spatial resolutions of up to
1 meter. However, for these very high-resolution (VHR) SAR data, the inherent elevation
resolution is approximately 50 times poorer than that in range and azimuth. This discrep-
ancy is attributed to the small elevation aperture resulting from the tight orbit tube of
the satellite sensors. To address this extreme anisotropy and fully explore the potential of
VHR SAR data, compressive sensing [9] [10] [11] (CS)-based TomoSAR algorithms have
been proposed, enabling super-resolution in the elevation direction [12] [13] [14] [15] [16].

While CS-based TomoSAR algorithms deliver superior performance, they suffer from a
substantial computational expense. The challenge stems from the inability to analytically
solve sparse reconstruction in CS, necessitating the use of computationally expensive iter-
ative solvers. As a result, the application of CS-based TomoSAR algorithms for large-scale
processing is notably challenging. Hence, the development of both super-resolution and
computationally efficient TomoSAR algorithms continues to be a crucial and compelling
area of research.

1.2 Objective

Deep learning, due to its potent learning capabilities, has experienced swift advancements
and found extensive applications in various remote sensing fields [17], including SAR data
processing [18]. In particular, a deep neural network can serve as an efficient nonlinear
function, adeptly representing complex mathematical models, including those encountered
in CS problems [19]. Inspired by these developments, this thesis aims to investigate compu-
tationally efficient and generic deep learning-based algorithms tailored for super-resolution
TomoSAR processing. Therefore, the main objectives of this thesis can be summarized as
follows:
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1 Introduction

Development of novel neural networks specifically designed for
TomoSAR inversion

Deep neural networks, as conventionally designed, possess an inherent limitation: they
are unable to leverage the sparsity in specific signals, particularly those pertinent to To-
moSAR inversion. This limitation not only hampers their efficiency but also precludes
their applicability in solving TomoSAR inversion. The goal is to develop a novel class
of deep neural networks specifically designed for solving TomoSAR inversion. Such deep
learning-based algorithms should improve the computational efficiency while maintain the
performance in realm of super-resolution power and location accuracy.

Performance improvement by incorporation of historical information
into dynamics of the network.

Deep unfolding [20], as an emerging deep learning technique, allows us design neural
networks by unrolling iterative algorithms. Several unrolled neural networks designed
for TomoSAR inversion, such as the learned iterative shrinkage thresholding algorithm
(LISTA) and its derivatives, utilize shrinkage functions to trim elements of minimal mag-
nitude. However, this shrinkage process inevitably results in information loss within the
dynamics of the network, diminishing the model performance. To address this, we aim to
propose an advance neural network architecture to make use of historic information in the
dynamics of the neural network, thus ensuring comprehensive information preservation up
to the final output.

An ultra-light model for multi-component D-TomoSAR processing.

Deep learning-based algorithms, in their current form, are limited to three-dimensional (3-
D) reconstruction. The extension of deep learning-based algorithms to four-dimensional
(4-D) imaging, i.e., differential TomoSAR (D-TomoSAR) applications, is relatively un-
explored, predominantly due to the high-dimensional weight matrices required by the
network designed for D-TomoSAR inversion. These weight matrices typically contain mil-
lions of freely trainable parameters. Learning such huge number of weights requires an
enormous number of training samples, resulting in a large memory burden and excessive
time consumption. In light of these challenges, our research direction centers on introduc-
ing an ultra-light model offering efficient training. In addition, this model is supposed to
ensure swift and accurate inference.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 gives a brief introduc-
tion to fundamentals of SAR tomography and deep unfolding. An overview of related
algorithms for TomoSAR inversion are introduced and discussed in Chapter 3. Chapter
4 summarizes the main contributions of the attached journal papers from the author. A
reconstruction result using the proposed algorithm over a large area is demonstrated in
Chapter 5. Chapter 6 draws a conclusion of this thesis and discusses some potential further
research directions.
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2 Fundamentals

In this chapter, we begin by offering an overview of repeat-pass SAR tomography, covering
the fundamentals of SAR geometry and the TomoSAR/D-TomoSAR system model. Ad-
ditionally, we introduce the concept of deep unfolding, which involves unrolling iterative
algorithms to design innovative neural networks.

2.1 Overview of repeat-pass SAR tomography

2.1.1 SAR geometry

Synthetic Aperture Radar is an advanced imaging radar technique that utilizes the rela-
tive motion between the antenna and the target to achieve remarkable spatial resolution,
surpassing that of conventional beam-scanning radars. SAR allows for high-resolution re-
mote sensing regardless of the flight altitude and enables wide-area coverage. One of its
notable advantages is the capability to achieve cross-range resolution that is significantly
finer than the beamwidth of the real aperture.

SAR imaging utilizes the motion of the radar antenna to simulate a large “synthetic”
antenna or aperture, enabling the generation of high-resolution images through advanced
signal processing techniques. The SAR geometry encompasses the spatial configuration
of the SAR system, which includes the trajectory of the SAR platform’s flight path, the
orientation of the radar antenna, and the swath width, defining the ground area imaged
by the radar.

The geometry of SAR plays a crucial role in determining the quality of SAR images. The
most commonly used SAR geometry is side-looking, where the radar antenna is oriented
perpendicular to the flight direction. SAR systems can be categorized as either monostatic,
where the radar transmitter and receiver are on the same platform, or bistatic, where
the transmitter and receiver are on separate platforms. For a normal monostatic SAR
system, the native 3-D reference frame of a SAR sensor comprises the azimuth (flight
direction), range (LOS direction), and elevation direction (perpendicular to the azimuth-
range plane), as it is shown in Fig. 2.1. Bistatic SAR offers more flexibility in imaging
scenarios as the geometry configuration can be arbitrary, enabling diverse and specialized
imaging capabilities.
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2 Fundamentals

Figure 2.1: Radar side-looking imaging geometry, source in [1]. The flight direction of the sensor
is commonly referred to as the “along-track” direction or azimuth (x). The line-of-
sight (LOS) direction of the antenna is defined by the elevation angle (θ), often known
as the range or slant range (r). The direction perpendicular to the azimuth-range (x-
r) plane, known as the cross-range direction, is frequently denoted as the elevation (s).
Technically, the third dimension should represent the elevation angle (θ). However,
given the considerable range distance, spanning hundreds of kilometers, it is generally
acceptable to assume a straight line approximation for small angular variations.

SAR mapping involves three distinct directions, each operating on different principles:

• Azimuth: The synthetic aperture principle is employed, leveraging the movement of
the sensor to create a high-resolution image in the azimuth direction.

• Range: This direction is based on radar ranging principles. The transmitter emits
pulses, such as chirps, which are reflected back from objects on the ground. By
measuring the time it takes for the echoes to return to the receiver, objects at
varying distances from the sensor can be resolved, as their echoes exhibit different
two-way travel times.

• Elevation: SAR imaging does not provide direct mapping in the elevation direction.
Consequently, targets located at the same azimuth-range (x-r) coordinates but with
different elevation positions cannot be distinguished from one another.

The conventional two-dimensional backscattering map consists of complex-valued pixels
that encompass both amplitude (brightness) and phase information. Disregarding any
supplementary phase induced by the scattering process, the non-ambiguous phase ϕ of a
pixel with a range distance r and at zero Doppler position x can be written as:

ϕ = −4π

λ
r (2.1)

where λ is the wavelength. The phase ϕ is sensitive to the range (r), because λ is typically
in range of centimeters.
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2.1 Overview of repeat-pass SAR tomography

Figure 2.2: 2-D resolution element, source in [1], i.e. the azimuth reolution ρx and range resolu-
tion ρr, of a SAR image. ρx is determined by the azimuth synthetic aperture length
△x and ρr is determined by chirp bandwidth emitted by the antenna [2]

.

The three-dimensional resolution element of a conventional Synthetic Aperture Radar
(SAR) is depicted in Fig. 2.2. The azimuth resolution, denoted as ρx, of the SAR image is
determined by the length of the azimuth synthetic aperture, referred to as △x ([21] [22]).

ρx =
λr

2∆x
(2.2)

The chirp bandwidth W determines the achievable range resolution ρr ([6]):

ρr =
c

2W
(2.3)

where c is the speed of light.

2.1.2 TomoSAR system model

Conventional SAR imaging projects the 3-D object reflection to the 2-D azimuth-range
(x-r) plane [5]. To achieve higher SAR imaging, advanced interferometric SAR (InSAR)
techniques are usually required [23]. InSAR techniques utilize two or more complex-valued
SAR images acquired from slightly different positions. By leveraging the phase differences
present in the images, geometric information about the imaged objects can be extracted [2]
[24] [25] [26] [27] [28] [29] and digital elevation models (DEMs) [30]. Hence, InSAR provides
us with the ability to access the third dimension, which is elevation s (perpendicular to the
azimuth and range plane). However, when using only two acquisitions, it is not possible
to distinguish between multiple scatterers present within a single resolution unit along the
elevation.
To generate a real 3-D reconstruction, i.e. imaging also in elevation direction [31] [32]

[33] [34] [35] [36], TomoSAR constructs a synthetic elevation aperture by combining a
stack of N complex repeat-pass SAR acquisitions captured at different times and slightly
varied orbit positions (see Fig. 2.3). TomoSAR is occasionally referred to as an extention
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2 Fundamentals

of a multi-scatterer persistent scatterer interferometry (PSI) [37] [38], despite the fact
that PSI primarily relies on the inversion of phase double-differences between neighboring
persistent scatterers.
A single-look complex (SLC) SAR measurement of a certain azimuth-range (x-r) pixel

for the nth acquisition at the aperture position bn can be formulated as the integral of
the echoed signal along the elevation direction, with a linear phase term as the weighting
factor (we focused on 3-D reconstruction and ignore possible deformation here):

gn =

∫

∆s
γ(s) exp (−j2πξns) ds (2.4)

where γ(s) denotes the reflectivity function along the elevation s. ξn = −2bn
λr is the spatial

frequency. Great details about the deviation of the Eq. (2.4) can be found in [33] [34] [36].
Discretizing the continuous reflectivity function along the elevation s within its extent ∆s,
we can approximate the TomoSAR imaging model by replacing the integral in Eq. (2.4)
with a finite sum. Then, the discrete TomoSAR system model is expressed as:

g = Rγ + ε (2.5)

where g = [g1, g2, · · · , gN ]T is the SAR measurement vector and R ∈ CN×L is the steering
matrix with Rnl = exp{−j2πξnsl}. γ = [γ1, γ2, · · · , γL]T is the discrete reflectivity profile
with [s1, s2, · · · , sL] being the the discrete elevation positions.

△ b

x y

z

r

b
Elevation

Aperture 

s
△ s

Reference surface

Figure 2.3: The SAR imaging geometry at a fixed azimuth position. The elevation synthetic
aperture is built up by acquisition from slightly different incidence angles. Flight
direction is orthogonal into the plane.

Now we briefly review some theoretical bounds on the performance of elevation re-
construction. The spread of sensor positions in repeat-pass SAR acquisitions creates an
elevation aperture, denoted as ∆b (see Fig. 2.3). This synthetic elevation aperture plays
a crucial role in determining the Rayleigh resolution, i.e. the width of the elevation point
response function. For a given elevation aperture size ∆b, the Rayleigh resolution is ap-
proximately:

ρs =
λr

2∆b
(2.6)
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2.1 Overview of repeat-pass SAR tomography

For the TerraSAR-X [7] [39] [40] data used in this thesis, the Rayleigh resolution is typically
in range of tens of meters. This value is significantly coarser compared to the azimuth and
range resolutions achieved in the spotlight modes [41], which are typically at the meter or
sub-meter levels.

2.1.3 Differential TomoSAR system model

In the case of space-borne SAR, repeat-pass acquisitions are conducted over a time span
ranging from several weeks to years, depending on the revisit time of the satellite and the
number of stacked images. Consequently, it becomes necessary to consider the long-term
motion of the scattering object during the acquisition period. By incorporating a potential
motion term, the TomoSAR system model Eq. (2.4) can be extended its differential version
[42]:

gn =

∫

∆s
γ(s) exp (−j2π (ξns+ 2d (s, tn) /λ)) ds (2.7)

where gn is the complex-valued SAR acquisition at a certain azimuth-range pixel at time
tn (n = 1, 2, · · · , N). γ(s) denotes the scatterering profile along the elevation direction
with an extent of △s. ξ = 2bn/λr is the elevation frequency proportional to the respective
aperture position bn. d(s, tn) depicts the LOS motion, which is a function of elevation and
time. The LOS motion relative to the master acquisition can be modeled with a linear
combination of M base functions τM (tn)

d (s, tn) =
M∑

m=1

pm(s)τm (tn) (2.8)

where pm(s) is the corresponding motion coefficient to be estimated. The choice of the
base functions τm(tn) depends on the underlying physical motion processes. Great details
about how to choose proper base functions can be found in [43].

Taking multi-component motion into consideration, we generalize Eq. (2.7) as:

gn =

∫
. . .

∫∫
γ(s)δ (p1 − p1(s), . . . , pM − pM (s)) (2.9)

exp (j2π (ξns+ η1,np1 + . . .+ ηM,npM )) dsdp1 . . . dpM

The inversion of the system model with multi-component motion retrieves the elevation
information as well as the the motion history assigned to each elevation position, even
if multiple scatterers are overlaid inside an resolution unit. Therefore, we can acquire a
high-dimensional map of scatterers.
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2 Fundamentals

2.2 Introduction to deep unfolding (algorithm unrolling)

In the past decade, we have witnessed a profound revolution in deep learning in various
fields, including computer vision, speech processing and so on. Significant progress in
neural network research has achieved remarkable performance improvements, notably with
the introduction of AlexNet [44], which demonstrated groundbreaking results.

Modern neural networks typically employ a hierarchical architecture with multiple lay-
ers and a large number of parameters, often numbering in the millions. This design enables
them to learn intricate mappings that are challenging to explicitly design. Their adapt-
ability, especially when provided with sufficient training data, allows deep networks to
overcome model limitations, particularly in scenarios where accurately characterizing the
underlying physical processes is difficult. Another advantage of deep networks is their
efficient inference process. The computation through the network layers during inference
can be executed rapidly, taking advantage of optimized computational platforms. Ad-
ditionally, deep networks often have fewer layers compared to the iterations required in
iterative algorithms. This characteristic makes deep learning methods computationally
advantageous over traditional iterative approaches.

However, it should be noted that the majority of deep learning-based algorithms are
purely data-driven and suffer from lacking interpretability. Usually, general network struc-
tures are applied and complex mappings are learned through end-to-end training. Hence,
it becomes challenging to extract meaningful insights from the model weights, which are
typically high-dimensional, and to understand the individual roles of these learned weights.
In the field of signal processing, interpretability plays a crucial role in conceptual under-
standing and identifying system limitations. Therefore, the lack of interpretability can be
a significant drawback of conventional deep learning-based methods compared to iterative
model-based approaches. In addition to interpretability, generalizability is another issue
that usually arises in deep learning. The practical success of deep learning-based models
is heavily dependent on high-quality training data. In scenarios where there is no suffi-
cient training samples, such as 3-D reconstruction [45] and medical imaging [46] [47], the
performance of deep networks may significantly degrade.

Therefore, it has been constantly pursuing interpretable, generalizable, and high-
performance deep learning-based algorithms in the field of signal processing. Considering
the strong interpretablity and generalizability of iterative model-based methods, an in-
sightful technique called deep unfolding or algorithm unrolling [20] [48] [3] was introduced
to establish connection iterative algorithms and neural networks. As we can see in Fig.
2.4, in the framework of deep unfolding, each iteration of the model-based algorithm is
represented as an intermediate layer in the neural network. By concatenating these layers,
we can build a deep neural network. Passing data through the network is equivalent to
executing a finite number of iterations. Additionally, the fixed system matrices in model-
based algorithms are transferred to the network weights, which can be learned through
end-to-end training using backpropagation.

2.2.1 Power of deep unfolding

Many recent works [49] [50] [51] [52] indicate that unrolled neural networks are effective
in achieving superior performance and high efficiency in many practical domains. Fig. 2.5
offers a comparison of unrolled algorithms, traditional iterative algorithms, and generic
neural networks from the perspective of functional approximation.
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2.2 Introduction to deep unfolding (algorithm unrolling)

Figure 2.4: Illustration of the general idea of deep unfolding, modified according to [3]. Starting
with an abstract iterative algorithm, we map one iteration into a single network layer.
By stacking a finite number of these layers together, we form a deep neural network.
When we feed the data forward through this K-layer network, it is equivalent to
executing K iterations (finite truncation). The parameters θk (k ranging from 0 to
k − 1) are learned by end-to-end training.

Traditional iterative algorithms, though tailored and refined for specific tasks, only cover
a relatively narrow subset of the function space, thereby limiting their representational
capacity. Nevertheless, they can approximate a given target function with a reasonable
degree of accuracy, despite certain performance gaps. More importantly, they tend to
generalize effectively within constrained training scenarios. Within the framework of sta-
tistical learning, iterative algorithms are viewed as models characterized by high bias but
low variance.
In contrast, generic neural networks, with their universal approximation capabilities, are

capable of providing a more accurate approximation of the target function. However, the
high quantity of parameters they possess constitutes a broad subset within the function
space, resulting in an expansive search space during the training phase. This large search
space poses substantial challenges for network training. Moreover, the high dimensionality
of parameters necessitates extensive training samples, creating potential issues with gen-
eralization. As the network size grows, efficiency may also become a concern. In essence,
generic neural networks represent models with high variance but low bias.

Table 2.1: Comparison among iterative algorithms, generic neural networks and unrolled neural
networks.

Technique performance Efficiency Parameterization Interpretability Generalizability

Iterative Algorithms Low Low Low High High
Generic Neural Networks High High High Low Low
Unrolled Neural Networks High High Middle High Middle

Unrolled networks, by augmenting the capacity of iterative algorithms, present a unique
advantage. They can approximate the target function more accurately while still covering
a relatively compact subset within the function space. This results in a reduced search
space, thereby alleviating the demands of the training process and lessening the need
for large-scale training datasets. Since iterative algorithms are meticulously constructed
based on domain-specific knowledge and already provide reasonable approximations to the
target function, enhancing them and training them on real data allows unrolled networks
to frequently achieve highly accurate approximations of target functions. Positioned as
an intermediate between generic networks and iterative algorithms, unrolled networks
generally exhibit relatively low bias and variance simultaneously, presenting a balanced,
effective solution.
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2 Fundamentals

Figure 2.5: The concept of algorithm unrolling can be understood from a functional approxi-
mation perspective, as illustrated by the ellipses representing the scope of functions
that can be approximated by each method category. Iterative algorithms, marked
by their limited representational capacity, often underfit the target function due to
a smaller scope of approximation. Unrolled networks, on the other hand, possess
a broader representational capacity and typically provide a more accurate approx-
imation of the target function. Generic neural networks have the most extensive
representational power, with the capability to approximate a comprehensive scope of
functions. However, their generalization capability in practical scenarios often falls
short of expectations due to overfitting risks and extensive training requirements.
Modified according to [3].

Table 2.1 compares the features of iterative algorithms, generic and unrolled neural
networks. The power and advantages of deep unfolding can be summarized as the following
key factors:

• Domain Knowledge Incorporation: Deep unfolding enables the explicit incorpora-
tion of domain knowledge and prior information into the network architecture. By
mapping algorithm iterations to network layers, the network can effectively capture
the domain-specific problem structures, constraints, and characteristics. This tar-
geted and tailored approach enhances performance, distinguishing it from generic
networks lacking such domain-specific knowledge.

• Parameter efficiency: Unrolled networks typically possess fewer parameters than
generic networks, attributed to the direct integration of algorithm structure and op-
erations into the network layers. Leveraging the inherent problem structure, unrolled
networks achieve comparable or superior performance with a reduced parameter
count, leading to improved computational efficiency.

• Supervised training strategy: Unrolled networks commonly employ paired input-
output training, facilitating end-to-end learning. This training approach allows the
network to learn optimal parameters directly from problem-specific data, resulting in
enhanced performance. The paired input-output training scheme also enables fine-
tuning of the network’s behavior to align with the desired problem-solving objectives.

• Exploiting iterative optimization: Deep unfolding integrates and encapsulates the
iterative steps of model-based algorithms within network layers, effectively merging
the advantages of iterative optimization and deep learning. The iterative nature of
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these algorithms enables the network to iteratively refine its predictions, resulting
in improved performance and convergence.
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3 Related works

This chapter provides an overview of significant methods related to TomoSAR inversion.
The chapter is divided into two parts. Section 3.1 presents a brief discussion on the
limitations of conventional spectral estimation methods and offers a review of the state-
of-the-art TomoSAR algorithm based on compressive sensing. In Section 3.2, several
data-driven TomoSAR algorithms are introduced.

3.1 State of the art in TomoSAR inversion

3.1.1 Limitation of conventional spectral estimators

Referring to the TomoSAR system model Eq. (2.5), the objective of TomoSAR inversion
is to retrieve the reflectivity profile γ for each range-azimuth cell from the complex-valued
SAR acquisitions g. This involves estimating various scattering parameters, including the
number of scatterers, their elevation, reflectivity, and possibly the motion history of the
scatterers when temporal baselines are present.

Due to the fact that TomoSAR utilizes only a small angular diversity, spectral estima-
tion [53] [54], instead of back projection [55] [56] [57], is sufficient for solving TomoSAR
invesion in cases where the range migration resulting from different viewing angles is sig-
nificantly smaller than the range resolution [33] [58]. Hence, numerous spectral estimation
methods were developed and implemented, including beamforming [59] [35], singular value
decomposition (SVD) [34] [58] [36], adaptive beamforming (Capon) [60], multiple signal
classification (MUSIC) [61] [62], M-RELAX [63], non-linear least squares (NLS) [64] so
on.

Generally, different methods can be employed according to the applications. In this
thesis, our main focus is on urban reconstruction and mapping, specifically addressing the
task of resolving discrete scatterers with or without motion in urban areas. To achieve
this, we recommend utilizing single-looking methods as they allow for maintaining the
azimuth-range resolution, which is crucial for obsering the inherent scale of urban infras-
tructures. However, it is important to acknowledge that single-looking methods have their
limitations, including either resolution constraints or high computational costs. Though
methods such as SVD and M-RELAX are computationally efficient, they may fall short in
accurately modeling and interpreting complex urban environments. These methods strug-
gle to distinguish scatterers that are spaced closer than the Rayleigh resolution, which
typically falls within the range of tens of meters for TerraSAR-X data used in this thesis.
Moreover, SVD and M-RELAX are susceptible to the sidelobe problem, leading to inaccu-
rate elevation estimates. On the other hand, NLS is a high-resolution algorithm known for
its excellent performance. However, it necessitates conducting a multi-dimensional search,
which is computationally intensive and impractical for large-scale processing.
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3.1.2 State of the art based on compressive sensing

As investigated in [12], for urban scenarios, the echoed signal in very high-resolution
(VHR) data is primarily composed of the following contributions:

• The dominant signal contributions in VHR SAR data come from strong returns pro-
duced by metallic structures, as well as specular and dihedral or trihedral reflections.
These points, which are also utilized in PSI, can be dense in VHR SAR data.

• Weak echos come from horizontal or vertical rough surfaces, such as roads and
building walls. These scattering responses are typically in smaller extent compared
to the Rayleigh resolution. Consequently, they can be treated as discrete scatterers
in the elevation direction, resembling delta functions.

• Reflections from volumetric scatterers, such as vegetation, contribute to a
continuous-signal background in the elevation direction. However, these scatter-
ers often exhibit temporal decorrelation, meaning that their response varies over
time. As a result, their contribution is considered as noise rather than a coherent
signal.

The layover phenomena in urban areas are primarily caused by the roof, facade, and
ground, resulting in a limited number of scatterers overlaid along the elevation direction
within each resolution unit. To exploit the sparsity of the elevation signal in the object
domain, it is recommended to use compressive sensing (CS)-based sparse reconstruction
algorithms [9] [10] [11]. Although the ideal solution of the reflectivity profile γ can be
obtained by solving Eq. (2.5) with L0 norm minimization, this is a computationally
challenging problem since it is NP-hard. Fortunately, the reflectivity profile γ is sufficiently
sparse, allowing us to approximate the L0 norm minimization using L1 norm minimization.
Therefore, γ can be estimated using L1 norm regularized least squares, i.e. minimizing
the L1-L2 mix norm as follows:

γ̂ = argmin
γ

{
∥g −Rγ∥22 + λ∥γ∥1

}
, (3.1)

where λ (not the wavelength) is a regularization parameter balancing the sparsity and
data-fitting terms.
Solving Eq. (3.1) provides a sparse estimate of γ, but it is susceptible to spike-like

artifacts [65] due to the violation of the restricted isometry property (RIP) and incoherence
properties required by compressive sensing (CS). To mitigate these artifacts, further model
order selection [13] is necessary. Model order selection aims to balance the model fit and
complexity and can be formulated as a penalized likelihood problem, given by:

K̂ = argmin
K
{−2 ln p(g | θ̂(K),K) + 2C(K)} (3.2)

where p(g | θ̂(K) is the likelihood describing the model fit and C(K) penalizes the model
complexity to prevent over-fitting of the data. K indicates the sparsity, i.e. the number
of significant scatterers. The estimate vector of the unknown parameters, such as ampli-
tudes, phases and elevations for the K scatterers, is denoted as θ̂(K). Assuming that the
measurement noise is stationary white Gaussian noise with covariance matrix Cεε = σ−2

ε I,
we can simplify the log-likelihood term as follows:

−2 ln p(g | θ̂(K),K) = σ−2
ε ∥g −Rγ̂∥22 (3.3)
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As for the penalty term, there are many types in the literature, such as Bayesian In-
formation Criterion (BIC) [66], Akaike Information Criterion (AIC) [67] and Minimum
Description Length (MDL). In this thesis, we choose to utilize BIC as the penalty term to
account for the model complexity:

C(K) = 1.5K lnN (3.4)

Accordingly, model order selection can be formulated as solving the following constraint
minimization problem:

K̂ = argmin
K
{σ−2

ε ∥g −Rγ̂∥22 + 3K lnN} (3.5)

The solution to this minimization problem provides a clean estimate of the reflectivity
profile by appropriately estimating the sparsity level K̂.
Once the sparsity level K is determined, we can construct an over-determined mapping

matrix Rs of size N × K̂ by selecting the corresponding columns to the K̂ scatterers
from the original steering matrix R. Then, the final sparse reflectivity profile γs can be
estimated using standard least squares as follows:

γ̂s =
(
RH

s Rs

)−1
RH

s g (3.6)
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3.2 Data-driven algorithms for TomoSAR inversion

CS-based algorithms offer significant advantages in achieving super-resolution in elevation
while preserving the full azimuth-range resolution. These algorithms enable substantial
improvement in elevation estimation accuracy, approaching the Cramér-Rao Lower Bound
(CRLB). Additionally, CS-based methods exhibit robustness against unmodeled phase er-
rors, enhancing their performance and reliability in solving TomoSAR inversion. How-
ever, CS-based TomoSAR algorithms are usually impeded by their high computational
costs since the L1-L2 mix norm minimization in Eq. (3.1) cannot be solved analytically
and computationally expensive iterative solvers are required. Therefore, it renders them
impractical for large-scale processing in real-world scenarios.

In this section, we delve into innovative data-driven algorithms. By leveraging the
inherent patterns and structures present in the TomoSAR data, the data-driven algorithms
are designed to lessen the computational load and enhance the efficiency of processing
large-scale datasets.

3.2.1 CAESAR: Component extraction and selection SAR

Reducing the computational cost of multi-dimensional optimization is often a challenge.
One common strategy to address this issue is by decomposing the optimization problem
into several sub-problems. Each of these sub-problems can then be optimized indepen-
dently. In this vein, an algorithm called CAESAR (Component extrAction and sElection
SAR) was introduced in [68] [69] as a data-driven approach for TomoSAR processing.
CAESAR utilizes principle component analysis (PCA) to separate the contributions from
different scatterers, thereby reducing the computational complexity.
For a K-scatterer profile, the TomoSAR imaging model Eq. (2.5) can be simplified to:

g =
[
r1 r2 · · · rK

]




γ1
γ2
...
γK


+ ε (3.7)

where rk represents the column steering vector that corresponds to the kth scatterer, while
γk is the complex-valued amplitude of the kth scatterer. Given these definitions, we can
express the covariance matrix of the observation g in the following manner:

Cgg = E
{
RγγHRH + εεH

}
(3.8)

= RE
{
γγH

}
RH + E

{
εεH

}
,

where the operation (·)H denotes the conjugate transpose. Under the assumption that
the reflectivity profile γ is uncorrelated, E(γγH) results in a diagonal matrix that rep-
resents the expected intensity of individual scatterers. Consequently, we can express the
covariance matrix of the observation in a simplified form as follows:

Cgg =

K∑

k=1

σ2
krkr

H
k + σ2

εI, (3.9)

where σk denotes the expected intensity of the kth scatterer, while σ2
εI represents the

covariance matrix of the noise. For the sake of generality, we may consider the steering
vectors rk to be normalized.
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3.2 Data-driven algorithms for TomoSAR inversion

CAESAR performs PCA on the observation covariance matrix via eigenvalue decompo-
sition (EVD):

Cgg = UDUH (3.10)

where U and D denote eigenvectors and the diagonal matrix, respectively. Despite the
fact that it is challenging to attribute exact meaning to the eigenvectors, CAESAR ap-
proximates the eigenvectors as the steering vectors to the individual scatterers, assuming
a strong orthogonality condition among all the scatterers. As a result, the steering vector
rk can be estimated by:

rk = Ui ⊙ |Ui|−1 (3.11)

where ⊙ is the elementwise product. After estimating the steering vectors, we can estimate
the elevation of individual scatterers by executing PSI on each steering vector.
However, achieving strong orthogonality among all scatterers is often impractical. The

following are three prevalent factors causing low orthogonality in multi-baseline TomoSAR:

• Insufficient number of stacked SAR acquisitions,

• Close spacing of scatterers, implying that the distance between two scatterers is less
than the Rayleigh resolution,

• severe interference due to similar amplitude and phase among the scatterers.

In conditions of low orthogonality, CAESAR encounters phase bias in the extracted steer-
ing vectors for individual scatterers, leading to a degradation of performance.

3.2.2 Nonlinear blind source separation

In a more general context, the approach of employing PCA to decompose layover scatterers
can be classified as a form of Blind Source Separation (BSS). BSS aims to separate con-
tributions from individual sources without requiring prior knowledge of a mixing matrix.
Recognizing the limitation of CAESAR under low orthogonality conditions, we discuss a
nonlinear BSS algorithm proposed in [4] to mitigate the phase bias in this section.
To enhance orthogonality, a basic approach involves increasing the dimensionality of

the data. However, this strategy is not practical for TomoSAR applications since it is
not feasible to increase the number of stacked SAR images. An alternative proposed by
[4] involves the use of kernel PCA (KPCA). This method artificially increase the data
dimension by projecting the data into a higher-dimensional space using a nonlinear trans-
formation, often referred to as the kernel trick [70]. Subsequently, PCA is carried out in
this transformed higher-dimensional space.
Mathematically, the nonlinear transformation can be expressed as follows:

Ψ : CN → F, c→ Ψ(c), (3.12)

where F is the transformed vector space, which can possess an arbitrary dimension, and
c denotes the columns of the observation covariance matrix Cgg. Let us denote the
transformed covariance matrix in higher dimensional space as Ψc, which can be expressed
as Ψc = [Ψc1 ,Ψc2 , · · · ,ΨcN ]. Subsequently, the execution of PCA essentially involves
finding the EVD of the transformed covariance matrix Ψc. This process can be formally
defined as:

CΨΨ = ΨcΨ
H
c = UΨΨDΨΨU

H
ΨΨ. (3.13)
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To clarify, the EVD on Ψc is evaluated indirectly through the kernel trick, rather than
being computed explicitly. By employing the kernel trick, the higher-dimensional trans-
formed space can be represented by a certain kernel function of the original data space,
i.e.,

κ (ci, cj) = Ψ (ci)
H Ψ(cj) , (3.14)

where κ(·) denotes a kernel function, and ci is the i
th column of the observation covariance

matrix Cgg. Then, a kernel matrix K ∈ CN×N of the transformed data can be defined as:

K = ΨH
c Ψc, (3.15)

where each element of the matrix can be readily calculated using Eq. (3.14). Following
this, the EVD of the kernel matrix can be derived as follows:

KV = VS, (3.16)

where V denotes the eigenvectors and S represents the diagonal matrix of eigenvalues.
When we substitute Eq. (3.15) into Eq. (3.16) and multiply both sides of Eq. (3.16) by
Ψc, we obtain:

ΨcΨ
H
c ΨcV = ΨcVS

⇓
CΨΨ(ΨcV) = (ΨcV)S. (3.17)

This equation implies that ΨcV and S represent the eigenvectors and eigenvalues of the
transformed covariance matrix CΨΨ, respectively. By choosing an appropriate kernel
function, ΨcV should delineate the space spanned by individual scatterers. Great details
about how to choose a kernel function can be found in [4]. Consequently, the data projected
onto these eigenvectors would correspond to the steering vectors. By extracting and
normalizing the first K eigenvectors of the transformed covariance matrix CΨΨ, we can
construct the orthogonal projection basis in the transformed higher-dimensional space, as
follows:

Ξ = ΨcV1∼KS
−1/2
1∼K , (3.18)

where V1∼K and S
−1/2
1∼K denote the first K columns of V and S. The projected data can

be obtained as follows:

Y = ΨH
c Ξ = ΨH

c ΨcV1∼KS
−1/2
1∼K

= KV1∼KS
−1/2
1∼K . (3.19)

After acquiring the projected data Y, the steering vectors of the K scatterers can be
estimated by extracting the phase of the first K columns of Y. Similar to CAESAR,
standard PSI techniques such as the periodogram or integer least square methods are
then utilized to estimate the elevation. It is noteworthy that this extraction process is
conducted iteratively. At each iteration, only the dominant scattering contribution is
extracted, and subsequently, it is demodulated from the observation covariance matrix.
This process continues until no significant scattering is left or when the predefined number
of scatterers is reached. Fig. 3.1 [4] presents the workflow of the nonlinear BSS method.
Like CAESAR, the KPCA method also blindly performs layover separation, eliminating

the need for explicit inversion of the TomoSAR imaging model, thereby logarithmically
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Figure 3.1: The flowchart of the proposed nonlinear BSS algorithm, source in [4].

reducing computational costs. In addition, it demonstrates more robustness and effec-
tively addresses issues arising from low orthogonality. However, its practical application is
somewhat limited, as the algorithm is based on the assumption of a fully-coherent signal
model that does not align well with real-world scenarios. Furthermore, for fully auto-
matic processing, the KPCA method requires the integration of GIS building footprints
or NL-SAR [71], both of which could potentially increase computational costs.

3.2.3 Multi-layer Perceptron

Deep learning, as an emerging data-driven algorithm, has attracted significant interest
among researchers and has been extensively studied in recent years. Its broad applications
span diverse fields, including image processing [72] [73] [74]. Among the various deep
learning models, the Multi-layer Perceptron (MLP), which is a basic neural network model,
has also gained popularity due to its learning capabilities and expressiveness. Its potential
has been recognized in the field of TomoSAR inversion as well. As a prime example,
MLP-based classifiers have been successfully implemented for solving TomoSAR inversion
[75], by transforming TomoSAR inversion into a classification. Specifically, Budillon et
al. [75] reinterpreted each discretized elevation grid as a unique class. This innovative
reconfiguration allowed the elevation estimation to be reformulated as a classification task,
aiming to predict the class of the elevation grid housing the scatterer.

The architecture of a representative MLP model is depicted in Fig. 3.2. This model
comprises three fully connected (FC) layers followed by a softmax layer. Each FC layer
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Figure 3.2: The architecure of MLP.

executes the following operation:

z
(l)
j = f(

K∑

k=1

W
(l)
jk z

(l−1)
jk + b

(l)
k ) (3.20)

where Wl and bl represent the weights and biases to be learned at the current layer. For
l = 1, z0 is assumed as the input g. f(·) stands for the activation function that introduces
non-linearity into the model. The activation function commonly chosen for this operation
is the Rectified Linear Unit (ReLU), which is defined as:

f(x) = max(x, 0) (3.21)

Following the fully connected layers, a layer implementing the softmax function is employed
to predict the output. This layer produces a probability distribution over the set of possible
output classes, making it particularly well-suited for classification tasks. The softmax
function is defined as follows:

σ(P̂)i =
ehi

∑K
k=1 e

hj
(3.22)

where h is the output of the FC layers.
The MLP-based classifier is trained in a supervised manner. For a given ground truth

reflectivity profile γ, the SAR observation g is generated using Eq. (2.5) as the input.
Additionally, for each input g, a label vector P, having the same dimensions as γ, is
assigned. All elements in the label P are set to zero, except for one element, which is
given a unitary value and placed at the position corresponding to the scatterer.
To learn the weights and biases in the fully connected layers, a cost function is mini-

mized. Here, we use the cross-entropy loss function, which is a popular choice for classi-
fication tasks as it measures the performance of a classification model whose output is a
probability value between 0 and 1. It is formally defined as follows:

minimize
Ψ

L(Ψ) = − 1

L

L∑

j

[Pj ln P̂j + (1− Pj) ln
(
1− P̂j

)
] (3.23)

where Ψ denotes the set of all free parameters that need to be learned, encompassing all
weights in the FC layers as well as the biases.
After the MLP-based classifier has been sufficiently trained, the elevation of the scatterer

can be estimated in subsequent inferences. This is accomplished by locating the position
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of the maximum value in the predicted vector P̂. Specifically, the location of the scatterer
corresponds to the index of the maximum value in P̂, i.e., argmax(P̂).
The MLP-based classifier represents an initial attempt to apply deep learning to tackle

the TomoSAR inversion problem. Despite its innovative application, the capabilities of
the MLP-based classifier are limited to the detection of a single scatterer because of the
nature of its problem formulation. Specifically, the MLP-based classifier is not applicable
in realistic 3-D SAR imaging scenarios because it does not have the ability to resolve the
issue of layover separation, a critical challenge in real-world applications. This limitation
significantly hampers the practical utility of the MLP-based classifier, indicating a need for
more sophisticated deep learning methods that can effectively deal with multiple scatterers
in the scene.
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The objectives of this thesis mentioned in Chapter 1 are addressed in the attached peer-
reviewed journal articles. This chapter gives a brief summary of of the attached articles
including the following main contributions:

• Development of a novel end-to-end deep learning-based algorithm for efficient and
accurate super-resolving TomoSAR inversion.

• Development of an innovative gated unit to incorporate historical information so that
information loss caused by sparsity-promoting shrinkage steps can be mitigated.

• Development of a hybrid approach using analytic weight determination for efficient
and accurate multi-component D-TomoSAR processing.

• A large-scale processing that showcases the efficiency and effectiveness of the pro-
posed method in real-world application, highlighting the immense potential of the
developed algorithms in future global urban mapping using TomoSAR.

4.1 γ-Net: A novel deep unfolded neural network for
TomoSAR inversion

In this section, we present γ-Net, a deep learning-based TomoSAR algorithm, notable for
its impressive computational efficiency. To our knowledge, γ-Net is the first algorithm that
solely applies an end-to-end deep neural network principles for super-resolution TomoSAR
inversion. Our rigorous and systematic performance evaluations reveal that γ-Net closely
matches the state-of-the-art in terms of performance under nominal conditions. More im-
pressively, it accomplishes this feat while significantly enhancing computational efficiency
by two to three orders of magnitude. These findings underscore the viability and efficacy
of incorporating deep learning methodologies into super-resolution TomoSAR inversion.
Furthermore, they open new avenues for exploration in the domain of efficient, large-scale,
and real-world TomoSAR imaging applications.

4.1.1 Iterative shrinkage thresholding algorithm for TomoSAR

As discussed in Section 3.1.2, the discrete reflectivity profile γ is assumed to be compress-
ible in urban scenarios. This means that only a few scatterers (usually between 0-4) are
overlaid within the same resolution unit. Consequently, we can estimate γ within the
framework of CS by solving the L1-L2 mixed norm minimization, as referred to in Eq.
(3.1).

The Iterative Shrinkage-Thresholding Algorithm (ISTA) is commonly employed to iter-
atively solve the L1-L2 mixed norm minimization due to its simplicity. By applying ISTA
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to TomoSAR inversion, we can estimate the reflectivity profile γ as follows:

γ̂k = ηcv−st(γ̂
k−1 + βRHbk−1, θk) (4.1)

with bk = g −Rγ̂k,

where γ̂0 = 0, β is the stepsize, ηcv−st is the complex-valued soft-thresholding function
applied to each element of γ̂i, and θ is the threshold in the soft-thresholding function. The
complex-valued soft-thresholding function ηcv−st is defined by

ηcv−st(γ̂
k, θk) =

{
γ̂k

|γ̂k|max(|γ̂k| − θk, 0) |γ̂k| ≠ 0

0 else
. (4.2)

During each iteration of the ISTA process, the estimate undergoes a two-step optimization
process. First, gradient descent is applied, optimizing the estimate by adjusting it in the
direction of steepest descent of the cost function. This iterative adjustment of the estimate
brings it closer to the minimum of the function. Following this, the soft-thresholding func-
tion is applied. This operation sets coefficients whose absolute values are below a certain
threshold to zero, effectively removing elements of the estimate with small magnitude,
thus inducing sparsity in the final estimate.

4.1.2 Network architecture: improved ISTA network built by unfolding
technique

By substituting W1 = βRH and W2 = I − βRHR into Eq. (4.1), we can rewrite Eq.
(4.1) as the following form:

γ̂k = ηcv−st

(
W1g +W2γ̂

k−1, θk
)
, (4.3)

By considering the soft-thresholding function in Eq. (4.3) as an activation function, Eq.
(4.3) intriguingly resembles the structure of a recurrent neural network (RNN). In this
perspective, we can interpret ISTA as an RNN, which is depicted in Fig. 4.1. Inspired

		𝑾!

		𝑾𝟐

+ 		𝜂#$ 𝜸%

Figure 4.1: RNN structure of ISTA by viewing an iteration of ISTA as a layer of the RNN.

by the underlying link between ISTA and RNN, a learning-based model named Learned
ISTA (LISTA) was put forward in [48]. Fig. 4.2 illustrates the learning architecture of a
K -layer LISTA. It unrolls the RNN and truncates it into K iterations, thus leading to a
K -layer side-connected feedforward neural network. The major difference between ISTA
and LISTA lies in how their respective parameters are determined. In LISTA, the weight
matrices Wk

1 , W
k
2 , and the threshold θi in each layer are not predefined. Instead, these

parameters are learned from the training data, enabling the LISTA network to adapt to
the specific characteristics of the data. The loss function for LISTA, evaluated over the
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+ + +…

…

Figure 4.2: Unfolded LISTA architecture. A K -layer LISTA unrolls the RNN and truncates it
into K iterations, thereby creating a side-connected feedforward neural network.

training data {(gi,γi)}Ti=1, is defined as the mean square error (MSE) loss, as described
below.

minimize
Ψ

L(Ψ) =
1

T

T∑

i=1

||γ̂(Ψ,g)− γ||22, (4.4)

where T represents the number of samples within the training dataset, while Ψ =
W1,W2,θ constitutes the set of parameters that the network aims to learn. As demon-
strated in numerous recent studies [48, 49, 50, 51, 52], LISTA has the ability to attain a
comparable estimation accuracy as ISTA, but with two to three orders of magnitude fewer
iterations.
To apply LISTA to the problem of TomoSAR inversion, we extend LISTA to operate

in the complex-valued domain, resulting in the complex-valued LISTA (CV-LISTA) [76].
The architecture of CV-LISTA is identical to that of LISTA, with one key difference: in
CV-LISTA, each neuron possesses two channels, corresponding to the real and imaginary
parts of a complex number. The modifications to Eq. (4.3) are as follows:

γ̃k = ηcv−st

{
W̃k

1 g̃ + W̃k
2 γ̃

k−1, θk
}

(4.5)

where

W̃k
j =

[
Re(Wk

j ) − Im(Wk
j )

Im(Wk
j ) Re(Wk

j )

]
,

g̃ =

[
Re(g)
Im(g)

]
, (4.6)

γ̃ =

[
Re(γ̂)
Im(γ̂)

]

with j = 1, 2 and Re(·) and Im(·) denote the real and imaginary operators, respectively.
In γ-Net [77], we propose several innovative improvements to enhance the performance

of CV-LISTA, primarily in three key aspects.

• We note that the Wk
1 and Wk

2 matrices in the original CV-LISTA formulation are
closely correlated. To reduce the amount of redundant trainable parameters in γ-
Net, we introduce a weight coupling structure, as suggested in [78].

• We apply an acceleration technique, known as support selection, initially developed
for the Least Absolute Shrinkage and Selection Operator (LASSO) method. This
technique accelerates the convergence of γ-Net, significantly improving the speed of
its operation.
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• We replace the conventional soft-thresholding function with a piecewise linear func-
tion. This change addresses an issue in the original CV-LISTA model, where the
traditional soft-thresholding function could lead to information loss, resulting in a
large reconstruction error and a decreased convergence rate.

These novel improvements will be discussed in more detail in the following sections.

Weight coupling

To move away from the pure “black-box” training method for γ-Net, we utilize the de-
pendencies among the trainable weights to simplify the CV-LISTA model. This results in
our proposed γ-Net. According to Chen et al. [78], the weights to be learned in each layer

(Wk
1 ,W

k
2)

K
k=0 asymptotically adhere to the following partial weight coupling structure:

Wk
2 = I−Wk

1R . (4.7)

By employing the partial weight coupling structure, we can simplify the kth layer of γ-Net
to:

γ̃k = ηcv−st{γ̃k−1 + W̃k(g̃ − R̃γ̃k−1), θk} (4.8)

with R̃ =

[
Re(R) − Im(R)
Im(R) Re(R)

]

where (Re(Wk), Im(Wk), θk) are the parameters to be learned in the kth layer, and the
trainable weight Wk is initialized using the system measurement matrix R with Wk =
βRH . The coupled structure contributes to eliminating the number of free parameters to
be trained, thus accelerating the training procedure significantly. Although theoretically,
the condition in equation (4.7) can only be satisfied for very deep layers, comprehensive
simulations as described in [78] show that applying the partial weight coupling structure
to every layer does not negatively impact the empirical performance.

Support selection

Beyond the use of the weight coupling structure, we also introduce a unique thresholding
scheme in γ-Net called support selection, inspired by the “kicking” strategy in linearized
Bregman iteration [79]. This approach involves selecting a certain percentage of entries
with the largest magnitudes at each layer of γ-Net prior to the shrinkage step. These
selected entries are deemed as “true support” and are directly fed into the subsequent layer,
bypassing the shrinkage step. The remaining entries undergo the standard shrinkage step.
Assuming that ρk percentage of entries are trusted in the kth layer, the support selection
can be formally defined as:

ηss
ρk

θk
(γ̃k) =

{
γ̃k k ∈ Sρk(γ̃)
ηcv−st(γ̃

k, θi) k /∈ Sρk(γ̃) , (4.9)

where Sρk(γ) contains the entries with the ρk largest magnitudes. It is worth mentioning
that the percentage ρk is a hyperparameter that requires manual tuning. When we apply
the support selection to γ-Net, then (4.8) is modified as:

γ̃k = ηss
ρk

θk
{γ̃k−1 + W̃k(g̃ − R̃γ̃k−1), θk} (4.10)

26



4.1 γ-Net: A novel deep unfolded neural network for TomoSAR inversion

Simulations in [78] affirm that the incorporation of support selection improves the conver-
gence rate, both theoretically and empirically. Additionally, it contributes to a reduction
in the recovery error, subsequently enhancing the accuracy of estimation.

Piecewise linear thresholding function

The conventional soft-thresholding function simply prunes elements of small magnitude to
zero, which inevitably leads to a loss of potentially significant information. To conserve
as much of this significant information as possible while still executing the shrinkage
step, we replace the soft-thresholding function in γ-Net with the piecewise linear function
ηpwl(γ̃,θ), as defined below:

ηpwl(γ̂) =





θ3γ̂, |γ̂| ≤ θ1

γ̂
|γ̂| [θ4(|γ̂| − θ1) + θ3θ1], θ1 < |γ̂| ≤ θ2

γ̂
|γ̂| [θ5(|γ̂| − θ2) + θ4 (θ2 − θ1) + θ3θ1], |γ̂| > θ2

. (4.11)

Figure 4.3 provides a comparison between the two functions. It can be observed that,
instead of completely pruning elements of small magnitude, the piecewise linear function
merely scales them down. This approach effectively mitigates information loss. However,
it does result in the final output of γ-Net not being strictly sparse. Most elements of the
final output are not driven to absolute zero, but rather to some extremely small values.
Consequently, an additional post-processing step becomes necessary to clear elements with
minute magnitudes when employing the piecewise linear function.
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Figure 4.3: Comparison between the piecewise linear function and soft-thresholding function.
Instead of pruning the elements with small magnitude, the piecewise linear function
just further minifies them, thus possibly avoiding the information loss.

Figure 4.4 presents a comparison of the performance of γ-Net in terms of the normalized
mean square error (NMSE) under two shrinkage functions. It is important to note that
the performance of γ-Net, under different shrinkage functions, was assessed using a set of
noise-free data. This was done to ensure that the results reflect the ideal performance.
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Figure 4.4: Performance of γ-Net using different shrinkage function. The piecewise linear function
conduces to faster convergence and improves the estimation accuracy.

The NMSE is defined as follows:

NMSE =
1

T

∑ ∥γ̂ − γ∥22
∥γ∥22

(4.12)

As evident from the figure, γ-Net, when utilizing the piecewise linear function, attains
a lower NMSE with the same number of layers. This suggests that the piecewise linear
function enhances the accuracy of estimations, or in other terms, it improves the rate
of convergence. Specifically, it can be observed that γ-Net requires approximately only
12 layers to attain convergence when using the piecewise linear function. On the other
hand, it is quite clear that significantly more layers are required when the traditional soft-
thresholding function is employed. This implies that our modification not only enhances
the estimation accuracy but also contributes to improving the computational efficiency.

Algorithm summary

After integrating the aforementioned improvements, we achieve the learning architecture
of γ-Net, as illustrated in Fig. 4.5.

Figure 4.5: Illustration the learning architecture of a K-layer γ-Net. Each block indicates a layer
of γ-Net. SS depicts support selection.

Through γ-Net, a preliminary sparse estimate of the reflectivity profile can be obtained.
However, due to the violation of the Restricted Isometry Property (RIP) and incoherence
[1], outliers exist in the estimated reflectivity profile of γ-Net. Consequently, further
procedures are needed to perform model order selection [58] to precisely suppress the
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Algorithm 1 Summary of TomoSAR processing using γ-Net

Simulate training data
Sampling the elevation extent
Generate steering matrix R with
Rnl = exp (−j2πξnsl), where ξn = −2bn/(λr)
Simulate reflectivity profile γ
Simulate SAR measurements with g = Rγ + ε
Finish the generation of training data {(gi,γi)}Ti=1

Training of γ-Net
Over given training samples {(gi,γi)}Ti=1

minimize
Ψ

L(Ψ) = 1
T

∑T
i=1 ||γ̂(Ψ,g)− γ||22

where Ψ = [Re(W), Im(W),θ]
for each pixel in the image: do

Preliminary estimate via γ-Net:
γ = γ-Net(g)
Model order selection to remove outliers:
P̂ = argmin

P

{
σ−2
ε ||g −Rγ̂∥22 + 1.5P lnN

}

Determine the number of scatterers
Final estimation of their elevation

end for

undesired outliers and estimate the number and location of scatterers, which are typical
steps in TomoSAR.

The proposed super-resolving TomoSAR inversion algorithm combines γ-Net, model
order selection, and re-estimation. The fundamental workflow of the proposed algorithm
is detailed in Algorithm 1. The model order selection is based on the Bayesian Information
Criterion (BIC) [66], a widely recognized statistical tool for model selection and order
estimation. This combination aims to provide an accurate, robust, and efficient approach
to TomoSAR inversion.

4.1.3 Experiment and validation

To demonstrate the effectiveness and efficiency of γ-Net, we conduct a series of experi-
ments utilizing both simulated and real data. The experimental results obtained will offer
valuable insights into the performance and potential advantages of γ-Net in real-world
scenarios.

Simulation

The simulation aimed to evaluate the theoretical performance of the proposed γ-Net with
respect to detection power and localization accuracy.

Initially, we compared γ-Net to SVD-Wiener, a conventional non-superresolving algo-
rithm, in the detection of a single scatterer. As demonstrated in Fig. 4.6, both γ-Net
and SVD-Wiener are capable of detecting the position of the single scatterer. However,
γ-Net reconstructs spectral lines as opposed to a sinc-like point response function, thus
mitigating the sidelobe issue. Further statistical details are provided in Table 4.1. The

29



4 Summary of the work

Cramér–Rao lower bound (CRLB), the estimates mean (µ), and standard deviation (σ)
in Table 4.1 are normalized to the Rayleigh resolution. From the table, it is apparent that
the proposed algorithm can detect almost all single scatterers at various SNRs. Additional
statistics on the mean value µ and standard deviation σ of the estimation error indicate
the high estimation accuracy of the proposed algorithm, with the bias nearing zero and the
standard deviation approaching the CRLB. This demonstrates the superiority of γ-Net in
detecting and accurately localizing single scatterers even in noisy conditions.
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Figure 4.6: Estimated reflectivity profile of simulated data with single scatterer at different SNR.
(a) SNR = 0dB, (b)SNR = 3dB, (c) SNR = 6dB, (d)SNR = 10dB.

In addition, we performed a well-known benchmark TomoSAR test [58] [12] to evaluate
the super-resolution power, in which double scatterers with increasing elevation distance
between the two layovered scatterers were simulated, in order to mimic a facade-ground
interaction. Then, different algorithms were compared in double scatterers detection under
two SNR levels, i.e., SNR∈ {0, 6} dB, which represent typical SNR levels in a high-
resolution spaceborne SAR image. Fig. 4.7 demonstrates some examples of the estimated
reflectivity profile at the normalized elevation distance α = [0.2, 0.5, 1.0].

From Fig. 4.7, it is clear that both γ-Net and SVD-Wiener are capable of distinguishing
the overlaid double scatterers in the non-superresolving case, i.e., the last column, when
α = 1.0. However, compared to SVD-Wiener, γ-Net provides much higher elevation
estimation accuracy. Furthermore, when we bring the double scatterers closer into the
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Table 4.1: Statistics of the estimate of single scatterer using the proposed algorithm. µ and σ
denote the sample mean and the corresponding standard deviation,respectively. The
proposed algorithm is able to detect the single scatterer in nearly all cases with the
standard deviation approaching the CRLB and bias approaching zero.

SNR (dB) effective detection rate CRLB (normalized) σ (normalized) µ (normalized)

0 94.19% 7× 10−2 9× 10−2 9× 10−3

3 96.34% 5× 10−2 6× 10−2 5× 10−3

6 98.81% 3× 10−2 3× 10−2 2× 10−3

10 99.79% 2× 10−2 2× 10−2 6× 10−4
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Figure 4.7: Estimated reflectivity profile of simulated data with overlaid double scatterers. From
top to bottom, SNR = 0, 6 dB. From left to right, the normalized elevation distance
α = 0.2, 0.5, 1.

Rayleigh resolution, SVD-Wiener fails to separate them. In contrast, γ-Net still manages
to detect the double scatterers in most cases, exhibiting its super-resolution power.

Subsequently, we compared γ-Net with the state-of-the-art SL1MMER algorithm [13]
focusing on the effective detection rate, which offers a more intuitive comparison of super-
resolution power. Fig. 4.8 compares the effective detection rate Pd of SL1MMER and
γ−Net for the case N = 25. For each pair of (SNR,α), 0.2 million Monte Carlo trials for
the worst case in TomoSAR inversion, i.e. the double scatterers have the same amplitude
and phase, were simulated. The effective detection rate Pd is presented as a function
of the normalized distance. The red and blue polylines illustrate the results of γ − Net
and SL1MMER, respectively. As we can see from Fig. 4.8, γ − Net has comparable
super-resolution power as SL1MMER.

However, SL1MMER requires approximately 10 CPU hours for processing 0.2 million
Monte Carlo trails, whereas γ-Net takes only a few CPU minutes. Fig. 4.9 provides
an intuitive view of the time consumption of the two methods for TomoSAR processing.
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(a) (b)

Figure 4.8: Detection rate Pd as a function of the normalized elevation distance between the sim-
ulated facade and ground using the proposed algorithm (dashed star) and SL1MMER
(dashed circle) with SNR = 0dB and 6dB, N = 25 and phase difference △ϕ = 0(worst
case) under 0.2 million Monte Carlo trials.

Despite the fact that about 9 hours are required for training the model, this fixed cost of
model training diminishes with the increasing amount of inference data. In contrast, the
time consumption of SL1MMER escalates with the increase in the data volume. In real-
world TomoSAR processing, the number of pixels is usually in the tens or even hundreds
of millions, thus making the application of SL1MMER or other second-order CS-based
methods challenging. The proposed algorithm is able to complete the processing, including
the training procedure, within a matter of hours. This superior computational efficiency
makes large-scale super-resolving TomoSAR processing feasible and practical, which is a
significant advantage of the proposed γ-Net.

In addition, a further simulation was carried out to verify the performance of the pro-
posed γ-Net at limited number of baselines. We simulated data with only 6 baselines
according to a real TanDEM-X images stack we have. The baseline ranges from -565.5m
to 373.2m. Fig. 4.10 compares the performance of the two algorithms at limited number of
measurements. As one can see, in the noisy case, i.e. SNR = 0dB, the two algorithms have
similar performance. However, with the increase of the SNR level, the proposed algorithm
outperforms SL1MMER by a fair margin. To be specific, the proposed algorithm outper-
forms SL1MMER by about 20% effective detection rate in moderate super-resolving cases
at 6dB SNR. At high SNR level, i.e. 10 dB, the proposed algorithm provides 20%-30%
higher effective detection rate even in extremely super-resolving cases, where the double
scatterers are spaced closer than 0.5 ρs.

Real data

In experiment with real data, we worked with a stack of six pairs of TanDEM-X high
resolution staring spotlight images, with each pair acquired in pursuit monostatic mode
[80], with a slant-range resolution of 0.6m and an azimuth resolution of 0.25m. An optical
image of the test site from Google Earth and the SAR mean intensity image are showed
in Fig 4.11. The yellow arrow indicates the range direction. Preprocessing, such as
multiple SAR images co-registration and phase calibration were carried out using the
DLR’s integrated wide area processor (IWAP) [81].
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Figure 4.9: Comparison of time consumption between the proposed algorithm and SL1MMER.
The training time will be affected only by the size of training data and the number
of training epochs we set. The time consumption of SL1MMER escalates with the
increasing number of data, whereas the inference time of the trained γ-Net is neg-
ligible. The proposed algorithm shows great computational efficiency in processing
regular TomoSAR data, which usually contains tens of million pixels

(a) γ-Net (b) SL1MMER

Figure 4.10: Effective detection rate Pd as a function of the normalized elevation distance between
double scatterers simulated with 6 real baselines. The simulated double scatterers
are set to have identical phase and amplitude, i.e. the worst case. For each pair of
(SNR, α), 0.2 million Monte Carlo trials were simulated. (a) the proposed algorithm,
(b) SL1MMER.

Fig. 4.12 demonstrates the reconstruction result of γ-Net. As we can see in Fig. 4.12,
γ-Net is able to detect dense double scatterers, which contribute to significant informa-
tion increment and complete the structure of the individual building. Fig. 4.12(c) and
Fig. 4.12(d) demonstrate the separation of the top and bottom layer of detected double
scatterers. As we can see, most reflections from roof and facade are overlaid at the top of
the building and γ-Net is able to separate these close layover.
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Figure 4.11: Test site. Left: optical image from Google Earth, right: SAR mean intensity image
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Figure 4.12: Reconstructed and color-coded elevation estimated by γ-Net. (a) detected single
scatterer, (b) detected single scatterer + top layer of detected double scatterers,
(c) top layer of detected double scatterers, (d) bottom layer of detected double
scatterers.
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4.2 Complex-valued sparse minimal gate units
(CV-SMGUs): Incorporation of historic information

To promote sparsity, γ-Net employs shrinkage operations to discard elements of lower mag-
nitude. However, this approach can precipitate unavoidable loss of information within the
network dynamics. Specifically, weak echoes originating from poorly reflective scatterers
may be suppressed or even completely annihilated. Consequently, this process can result
in a notable diminishment of the model performance. The challenge, therefore, lies in
devising a method that promotes sparsity while minimally impacting the fidelity of these
weaker signals. In this section, we propose an innovative architecture for recurrent neu-
ral networks (RNNs) that includes Sparse Minimal Gated Units (SMGUs) to address the
issue of information loss. This novel structure takes advantage of the inherent historical
data processing characteristic of RNNs. Through the SMGUs, we introduce a method of
integrating historical information into the optimization process, thereby ensuring compre-
hensive retention and utilization of all pertinent information to the final output.

4.2.1 False detection caused by information loss

As depicted in Fig. 4.5, despite the modifications, γ-Net inherits the learning architecture
with LISTA and thus is susceptible to the same limitations. More specifically, in the γ-Net
architecture, the current layer only uses the information in the output from the previous
layer, resulting in a final output that relies solely on the information from the second last
layer. Due to this design, any crucial information that gets pruned away by shrinkage
steps in the intermediate layers cannot contribute to the final output, leading to possible
significant reconstruction errors. As an example, Fig. 4.13 illustrates an instance from
our experiments where the γ-Net fails to accurately detect the presence of two scatterers.
The loss of pertinent information in the intermediate layers, which cannot be recovered,
likely contributes to this incorrect result.
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Figure 4.13: An example of unsuccessful detection of double scatterers caused by information
loss. γ-Net detects one of the double scatterers with very high localization accuracy
but fails to find the other one.

In Fig. 4.13, a scenario was simulated where two scatterers, assumed to have identical
phase and amplitude, were placed 0.6 Rayleigh resolution units apart - a super-resolution
regime. The SNR level was set at 6dB. As a general observation, the inability to resolve
overlaid double scatterers should produce a reflectivity profile characterized by a single
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dominant amplitude peak located between the true elevation positions of the scatterers.
This behavior is illustrated by the non-superresolving algorithm SVD-Wiener [58], as
shown in Fig. 4.13. In contrast, γ-Net was able to detect one of the scatterers with high
localization accuracy but failed to detect the second one. This anomaly prompted us to
hypothesize that the unsuccessful separation of double scatterers may be attributed to
the information loss induced by the shrinkage steps in γ-Net. Further investigation of the
intermediate layers in γ-Net revealed a gradual diminishment of information pertaining to
the second scatterer after each shrinkage step. By the second last layer, the information
associated with the second scatterer was completely lost. As a result, the final output of
γ-Net, i.e., the estimated γ, was devoid of any information regarding the second scatterer,
leading to its detection error.

4.2.2 Incorporation of historic information

In the realm of optimization, numerous studies have demonstrated and established that the
incorporation of historical information can substantially enhance algorithmic performance
[82] [83] [84]. Building on these pivotal insights, researchers introduced an adaptive ISTA
in [85] that integrates and makes use of historical information through the introduction of
two adaptive momentum vectors, f and i, into each iteration of ISTA. This approach can
be mathematically represented as follows:

c̄k = W2γ̂
k−1 +W1g

ck = fk ⊙ ck−1 + ik ⊙ c̄k (4.13)

γ̂k = ηst

(
ck
)

where ηst indicates the conventional soft-thresholding function. In comparison to ISTA,
which can be equivalently expressed as γ̂k = ηst

(
c̄k
)
using the same notation, the adaptive

ISTA accounts for both current and prior information. More specifically, in the tth iteration
of the adaptive ISTA, the estimate is derived through a linear combination of the historical
information, ck−1, obtained from the previous iteration and the current information, c̄k.
These two sources of information, historical and current, are weighted by the adaptive
momentum vectors fk and ik respectively. As a result, the final estimate generated by the
adaptive ISTA accumulates historical information, each component of which is weighted
differently according to its corresponding fk and ik.

4.2.3 Network architecture

One primary challenge associated with the adaptive ISTA is determining the two mo-
mentum vectors in each adaptive ISTA iteration, namely fk and ik. Currently, there is
no analytical method to determine these vectors. Commonly, they are selected via te-
diously hand-craft tuning, which is not only time-consuming but also cannot guarantee
optimal performance. To resolve this challenge better leverage the power of incorporating
the historical information for solving TomoSAR inversion, we propose a novel gated RNN
structure termed the sparse minimal gated unit (SMGU) based on the valuable works in
[86] [87]. This structure offers two significant improvements. Firstly, it couples the two
momentum vectors into a single gate, thereby simplifying the architecture [88] [89] [90].
Secondly, it parameterizes the gate, allowing its learning from data. This eliminates the
need for time-consuming manual tuning, enhancing the efficiency of the process.
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Figure 4.14: Structure of the proposed SMGU. f indicated the only gate in each SMGU.

Fig. 4.14 illustrates us the learning architecture and the detailed equations for defining
SMGU are given by:

fk = σ{Wk
f2γ̂

k−1 +Wk
f1g}

c̄k = W2(f
k ⊙ γ̂k−1) +W1g

ck = (1− fk)⊙ γ̂k−1 + fk ⊙ c̄k (4.14)

γ̂k = ηdt

(
ck
)

where ηdt is the double hyperbolic tangent function to promote sparsity and defined as:

ηdt(γ̂, s, θ) = s · [tanh(γ̂ + θ) + tanh(γ̂ − θ)] (4.15)

where s and θ denote two trainable parameter. It is noteworthy that the double hyperbolic
tangent function can be regarded as a smooth and continuously differentiable alternative
to the conventional soft-thresholding function, offering two primary advantages. Firstly,
its second derivative sustains for a long span, which helps alleviate the gradient vanishing
problem induced by the cell recurrent connection [91]. Secondly, it can effectively imitate
the soft-thresholding function within the [−θ, θ] interval. This functionality allows for a
more seamless and efficient integration into the network, improving the overall perfor-
mance. Fig. 4.15 demonstrates an example of the double hyperbolic tangent function and
compares it to the soft-thresholding function.

As depicted and formulated in the Sparse Minimal Gated Unit (SMGU), the following
operations are conducted in the kth layer of a gated Recurrent Neural Network (RNN)
constructed with SMGUs. Initially, the forget gate fk is computed. The short-term
response c̄k is then derived by combining the input data g with the “forgotten” portion
of the output from the previous layer, expressed as fk ⊙ γ̂k−1. Subsequently, the new
hiddne state of the current layer, ct, is formulated by combining portions of γ̂k−1 and
the short-term response c̄k, respectively weighted by (1− fk) and fk. In this formulation,
we can see that the SMGU is able to simultaneously execute a two-fold task with only
one forget gate. On the one hand, SMGU allows a compact representation by enabling
the hidden state c(t) to discard irrelevant or redundant information. On the other hand,
SMGU is capable of controlling how much information from the previous layer to take over.
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Figure 4.15: Comparison of double hyperbolic tangent function ηdt(·) and soft-thresholding func-
tion. ηdt(·) effectively imitates the soft-thresholding function within the interval of
[−θ, θ].

Ultimately, the sparse activation function, represented by the double hyperbolic tangent
function, is applied to the current hidden state ct to induce shrinkage and thresholding,
thereby enhancing the sparsity of the output.
The extension of the SMGU into the complex domain can be conducted in a manner

analogous to the one presented in Eq. (4.5), by assuming that each neuron has two
channels representing the real and imaginary parts of a complex number. Moreover, the
complex-valued version of the double hyperbolic tangent function is defined as:

ηcv−dt(γ̂
k, s, θ) =





γ̂k

|γ̂k|s · [tanh(|γ̂|+ θ) + tanh(|γ̂| − θ)], |γ̂i| ≠ 0

0 else

. (4.16)

4.2.4 Experiment and validation

In this section, we present experimental results that highlight the performance enhance-
ments brought by the integration of historical information into our proposed CV-SMGUs,
as compared to γ-Net.

Simulation

The simulation was conducted using a TomoSAR benchmark test [58] [12] at two SNR
levels, i.e., SNR ∈ 0, 6 dB. The aim of this simulation was to examine the super-resolution
power and estimation accuracy by analyzing the effective detection rate. In Fig. 4.16, the
effective detection rate Pd of the proposed CV-SMGUs and γ-Net is compared, which is
presented as a function of the normalized distance α. By comparing the effective detection
rates for the two methods at various α levels, we can gain insights into their respective
super-resolution capabilities and the effectiveness of the proposed CV-SMGUs. The results
of these comparisons are discussed in the subsequent sections. As illustrated in Fig.
4.16, CV-SMGUs demonstrates superior performance compared to γ-Net at both tested
SNR levels. More specifically, CV-SMGUs can achieve an effective detection rate that is
approximately 10-20% higher than it of γ-Net in moderate super-resolution cases when
the SNR is at 6 dB. In the more challenging scenario where the SNR is at 0 dB, which
represents a noisier environment, CV-SMGUs gradually approach an effective detection
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Figure 4.16: Effective detection rate of the proposed algorithm, CV-sc2net and γ-Net as a func-
tion of the normalized elevation distance between the simulated facade and ground
with SNR = 0dB and 6dB under 0.2 million Monte Carlo trials.

rate of about 90% as the normalized distance increases. On the other hand, γ-Net only
reaches a maximum effective detection rate of around 70% under similar conditions. These
results clearly demonstrate the improvement of super-resolution power of CV-SMGUs. By
integrating historic information into the estimation process, CV-SMGUs are able to achieve
higher effective detection rates, even in noisy conditions.

Figure 4.17: Normalized estimated elevation of facade and ground of increasing elevation dis-
tance, with SNR=6dB and N=25. The double scatterers were simulated to have
identical phase and amplitude. The true positions are a horizontal line referring to
the ground and a diagonal line referring to the scatterers at variable elevation. The
green lines depict true positions ± 3 times CRLB of elevation estimates for single
scatterers. Red dots represent samples detected as single scatterers. Blue dots in-
dicate detected overlaid double scatterers.

To better manifest how CV-SMGUs outperform γ-Net, we simulated 2000 samples con-
taining double scatterers with increasing scatterers distance at 6 dB SNR. We made a
scatter plot of their elevation estimates and color coded the points by the detector de-
cision in Fig. 4.17. The x-axis refers to the true normalized elevation distance of the
scatterers. The y-axis shows their normalized elevation estimates. The ideal reconstruc-
tion would be a horizontal and a diagonal straight line, which represent the ground truth
of the simulated ground and facade. The green lines refer to ground truth ±3 times
CRLB of single scatterer elevation estimate. The blue dots indicate the detected double
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scatterers, whereas the red dots represent the samples were detected as single scatterers,
meaning the second scatterer were lost in the network output. Fig. 4.17 clear shows that
(1) γ-Net experiences much more red dots locate within ±3 times CRLB w.r.t the ground
truth, meaning it occasionally can only detect one of the double scatterers but is able to
estimate its elevation with high precision. We ascribe this problem to the information
loss caused by the learning structure of γ-Net. In the contrary, the proposed algorithm
utilizes CV-SMGUs to preserve full information, thus avoiding discarding any significant
information; (2) the proposed algorithm is able to resolve double scatterer at much smaller
scatterers distance. Specifically, the proposed algorithm starts to separate double scatterer
from about 0.15 Rayleigh resolution, whereas γ-Net can only detect double scatterer only
after about 0.3 Rayleigh resolution.

Real data

In the real-world data experiment, we tested our CV-SMGUs model on a stack of SAR
images from the TerraSAR-X high-resolution spotlight images. The stack consists of 50
images, all centered over the city of Las Vegas, specifically focusing on the Paris Hotel. The
TerraSAR-X images offer a slant-range resolution of 0.6 meter and an azimuth resolution
of 1.1 meter. Fig. 4.18 provides a visual representation of our testing site. It includes an
optical image sourced from Google Earth and a SAR mean intensity image that indicates
the distribution and intensity of radar reflections over the test site.

(a) (b)

Figure 4.18: Test site of Paris hotel. (a): optical image from Google Earth, (b): SAR mean
intensity image

The reconstruction results of the test site are demonstrated in Fig. 4.19 and compared
to the results derived by γ-Net. In Fig. 4.19, (a) and (b) illustrate color-coded elevation of
single scatterers detected by both algorithms. (c)-(f) depict the reconstruction of detected
double scatterers of the both algorithm. The double scatterers are separated into the
top and bottom layer according to their elevation estimates and the top and bottom
layers are demonstrated separately. By comparing the reconstruction results of the both
algorithms, we can see that the proposed algorithm detects the double scatterers with a
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Figure 4.19: Reconstructed and color-coded elevation of detected scatterers. From left to right:
Elevation estimates derived by the proposed algorithm and γ-Net, respectively.
From top to bottom: Color-coded elevation of detected single scatterers, top layer
of detected double scatterers and bottom layer of detected double scatterers, respec-
tively.
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higher density, indicating that the proposed algorithm has stronger super-resolution power.
Closer inspection of the reconstruction of double scatterers shows that serious layover
exists on the top of the cross building. Moreover, the elevation estimates of detected
double scatterers indicate that the top layer is mainly caused by reflections from building
roof and building facade, whereas the bottom layer is composed of scatterers on the ground
or lower infrastructures.
To provide a more intuitive comparison of the super-resolution power of both algorithms,

we summarized the scatterers detection of both algorithms in Table 4.2. As it is shown
in Table 4.2, most pixels are detected as 0 scatterers by the two algorithms because the
fountain and many low infrastructures in the test site exhibit no strong scattering, which
can be seen in Fig. 4.18(b). Comparing to γ-Net, the proposed algorithm detected less
single scatterers (33.30%), but more double scatterer. Comparison between the double
scatterers detected by both algorithms shows that the proposed algorithm is able to detect
95.2% of the double scatterers detected by γ-Net. Moreover, it detects 50% more double
scatterers than γ-Net.

Table 4.2: Percentage of scatterers detection for CV-SMGUs and γ-Net.

Algorithm
Percentage of detection as

0 scatterer 1 scatterer 2 scatterers

CV-SMGUs 62.01 % 33.30 % 4.69 %
γ-Net 61.06 % 35.83 % 3.11 %

Further investigation was conducted to inspect the improvement of double scatterer
detection. The histogram of detected double scatterers’ elevation difference from the pro-
posed algorithm and γ-Net is shown in Fig. 4.20. In the non-super-resolution region,
especially when the distance between double scatterers is larger than twice Raleigh res-
olution, the two algorithms have comparable performance of double scatterers detection.
However, in the super-resolution region, the proposed algorithm delivers obviously stronger
resolution ability.
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Figure 4.20: Histogram of the elevation distance between the detected double scatterers from the
proposed algorithm and γ-Net. The proposed algorithm shows significantly more
detection in the super-resolution region.
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4.3 A hybrid approach for multi-component D-TomoSAR
inversion

Deep learning-based TomoSAR algorithms have made impressive success. Nevertheless,
current deep learning-based TomoSAR algorithms are limited to 3-D reconstruction. The
extension of such deep learning-based algorithms differential TomoSAR (D-TomoSAR) ap-
plications, especially for multi-component D-TomoSAR, is mainly obstructed by the need
for training high-dimensional weight matrices. The network designed for D-TomoSAR in-
version typically necessitates millions of freely trainable parameters. The learning process
for such an enormous quantity of weights demands a considerable number of training sam-
ples, leading to a substantial memory load and extensive time consumption. In this section,
we propose a hybrid approach named HyperLISTA-ABT for accurate and efficient multi-
component D-TomoSAR processing. The weights in HyperLISTA-ABT are analytically
determined in adherence to a minimum coherence criterion, which significantly reduces
the model to an ultra-lightweight version equipped with only three hyperparameters. Fur-
thermore, HyperLISTA-ABT improves the global thresholding method by employing an
adaptive blockwise thresholding scheme. This strategy incorporates block-coordinate tech-
niques and implements thresholding within local blocks, enabling the retention of weak
expressions and local features throughout each shrinkage step, thereby enhancing model
performance.

4.3.1 Limitation of deep learning-based algorithms applying to
high-dimensional D-TomoSAR inversion

By employing γ-Net as an illustrative example, we will explain the challenges associated
with implementing deep learning-based algorithms for solving D-TomoSAR inversion. Re-
flecting on the learning architecture of γ-Net, we note that each layer requires the training
of a weight matrix, Wk, of dimension N×L. Here, N is dictated by the number of stacked
SAR acquisitions and is typically fixed within a reasonable range. Conversely, L is gov-
erned by the number of grid cells after discretization.

In 3-D reconstruction scenarios, L usually falls within the hundreds for spaceborne
sensors, given that only elevation needs to be discretized. Thus, the product N × L
remains in the thousands. However, this number increases dramatically in D-TomoSAR
cases when multi-component motion terms, usually linear and periodic motions, are taken
into consideration. The training of the network then becomes conversely a challenge due
to the tremendous amount of free trainable parameters.

For instance, when we consider two motion terms, i.e., linear and seasonal motion, the
value of L will be determined by the product of the discretized grid numbers along each
direction L = Ls × Lv × La, where Ls, Lv, and La indicate the discretization levels for
elevation, linear motion, and seasonal motion, respectively. Even with a conservative dis-
cretization level for TerraSAR-X image stacks—200 for Ls, 50 for Lv, and 50 for La—the
product yields a value of L equal to 0.5 million. This indicates millions of parameters
to be learned for each weight matrix. Such large weight matrices bring two unavoid-
able disadvantages. Firstly, the model requires an enormous number of training samples,
rendering the training procedure highly inefficient. Secondly, training a model of such
magnitude demands a significant volume of GPU memory, a requirement typically unmet
by consumer-level GPUs.
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4.3.2 HyperLISTA-ABT: An ultra-light model

In order to circumvent the onerous model training necessitated by large weight matrices,
an analytical weight optimization strategy has been proposed in [92] [93], which is based on
the principle of coherence minimization. It enables the analytic determination of weights
within an unrolled neural network designed specifically for sparse recovery applications,
such as LISTA and its variants. Accordingly, the weight matrix can be computed in the
following manner:

Ŵ = argmin
W

µ(W,R)

= argmin
W

inf
W∈CN×L

max
i ̸=j

WT
:,iR:,j

s.t. ∀i ∈ {1, . . . , L} : WT
:,iR:,i = 1 (4.17)

This approach effectively alleviates the burden of extensive model training, paving the
way for more efficient computational processes.
The analytic method of weight determination significantly trims the number of trainable

parameters, necessitating the learning of only the stepsize and thresholds. This method-
ology, however, was taken a step further with the proposition of HyperLISTA in [93].
HyperLISTA reconceptualizes the remaining trainable parameters as instance-adaptive
parameters, further condensing them into just three hyperparameters, formulated as fol-
lows:

γk+1 = ηp
k

θk
(γk +WH(g −Rγk) (4.18)

+βk(γk − γk−1))

where

θk = c1
∥∥R+ (Rγk − g)

∥∥
1

(4.19)

βk = c2 ∥γk∥0 (4.20)

pk = c3min

(
log

( ∥R+g∥1
∥R+ (Rγk − g)∥1

)
, L

)
(4.21)

where c1, c2, and c3 indicate the three hyperparameters to be tuned.
While HyperLISTA exhibits exceptional efficiency and performance as demonstrated

in [93], it unfortunately succumbs to the same issue of information loss when applied to
TomoSAR processing, a problem outlined in a previous section. Due to the high level of
parameterization, it becomes impossible to utilize gated units such as those in CV-SMGUs
to address this loss of information. Upon closer examination through experimentation, it
became apparent that this information loss could be traced back to the global thresholding
scheme. This scheme applies the same threshold value uniformly across all entries in the
signal, leading to a situation where a threshold that effectively captures strong spikes
might unintentionally suppress weaker, but nonetheless significant, spikes in the reflectivity
profile.
To cope with the aforementioned issue, we propose HyperLISTA-ABT, which is an im-

provement of the original HyperLISTA by incorporation of an adaptive blockwise thresh-
olding (ABT) scheme that explores a local thresholding strategy. The advantages of
HyperLISTA-ABT is three-fold.
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• It carries out thresholding within each local block, thereby facilitating a more refined
thresholding process, and possibly preserving weak reflections from dark scatterers.
This method allows for better capture of the diverse range of spike magnitudes
encountered in the signal, thereby improving the accuracy and reliability of the
reflectivity profile characterization.

• HyperLISTA-ABT proves to be more efficient since it only updates one block of
variables at a time, rather than updating all variables simultaneously. As a result,
HyperLISTA-ABT is better suited for our large-scale and high-dimensional applica-
tion.

• HyperLISTA-ABT shrinks the block size in a layerwise manner, which contributes
to a better fine-focusing capability.

According to [94] [95], the update rules of HyperLISTA-ABT after applying block coordi-
nate techniques can be written as:

γk+1
ip

= ηθkip
(γk

ip +W T
ip (y −Ripγ

k
ip) (4.22)

+βk
ip(γ

k
ip − γk−1

ip
))

where ip is the index of the updated block. To clarify, in HyperLISTA-ABT, we remove
the support selection scheme and just use the conventional soft-thresholding function. The
threshold θ(k) and the factor β(k) are determined for each block as well:

θkip = c1

∥∥∥R+
ip

(
Ripγ

k
ip − g

)∥∥∥
1

(4.23)

βk
ip = c2

∥∥∥γk
ip

∥∥∥
0

(4.24)

where c1 > 0, c2 > 0, and c3 ∈ (0, 1) are the three hyperparameters. Notably, c3 is a
latent hyperparameter and plays a crucial role in controlling the blocksize despite it not
explicitly appearing in the formula. In our application, we usually initialize the blocksize
according to the grid number within half of the Rayleigh resolution. The block is chosen
with a random variants scheme where ip follows the probability distribution given by:

Pip =
Lip∑J
j=1 Lip

, ip = 1, . . . , J (4.25)

where J is the number of blocks and Lip = ||RT
ip
Rip ||. All the hyperparameters c1, c2,

and c3 can be selected using the grid search method. In grid search, a coarse grid is
first applied to find an interest region, and then this is zoom-in with a fine-grained grid.
The hyperparameters are determined by minimizing the normalized mean square error
(NMSE) over the simulated ground truth.

With the blockwise threshlding scheme, local features and weak expressions can be
possibly retained. This is due to the fact that many elements of the entries are not strictly
driven to zero but to some extremely small value, thus making the output not strictly
sparse. Therefore, a post-processing is usually required to clean the output and make it
sparse. The framework of the proposed HyperLISTA-ABT is summarized in the following
table.
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Algorithm 2 Summary of HyperLISTA-ABT

Generate steering matrix R for given baselines
Analytic weight optimization W according to Eq. (4.17)

Tuning of hyperparameters
Simulate ground truth of reflectivity profile γ [77]
Simulate noise-free SAR acquisitions g = Rγ
Grid search to determine the hyperparameters by
minimizing NMSE over simulated data

Inference
Init: γ(0) = RHg and blocksize B1

for k = 1, 2, · · · ,K do
Determine the number of blocks Jk
based on the blocksize Bk

for ip = 1, 2, · · · , Jk do

γ
(k+1)
ip

= η
θ
(k)
ip

(γ
(k)
ip

+W T
ip (y −Ripγ

(k)
ip

)

+ β
(k)
ip

(γ
(k)
ip
− γ

(k−1)
ip

))

θ
(k)
ip

= c1

∥∥∥R+
ip

(
Ripγ

(k)
ip
− g

)∥∥∥
1

β
(k)
ip

= c2

∥∥∥γ(k)
ip

∥∥∥
0

end for
Update blocksize with Bk+1 = c3 ·Bk

end for
Output clean-up
Model order selection and final estimation

4.3.3 Experiment and validation

In this section, we demonstrate the efficacy and efficiency of the HyperLISTA-ABT al-
gorithm for multi-component D-TomoSAR processing through a series of experiments
conducted on both simulated and real-world data sets.

Simulation

In the simulation, we carried out experiments based on TomoSAR inversion to exhibit the
improvements introduced by HyperLISTA-ABT over the original HyperLISTA [93] and to
compare its performance with existing state-of-the-art compressed sensing (CS)-based and
deep learning-based methods. Since the use of existing deep learning-based algorithms is
not feasible for D-TomoSAR cases, as explained in the previous section, the focus of our
simulation was solely on TomoSAR inversion for 3-D reconstruction.

In the first experiment, we aimed to investigate the performance improvement offered
by HyperLISTA-ABT over the original HyperLISTA by inspecting their effective detection
rates at different amplitude ratios, which is demonstrated in Fig. 4.21.
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Figure 4.21: Effective detection rate of HyperLISTA-ABT and the original HyperLISTA with
respect to the normalized elevation distance at different amplitude ratios. The
overlaid double scatterers were set to have an identical phase and the SNR level was
6dB. HyperLISTA-ABT significantly outperformed HyperLISTA at high amplitude
ratios between the scatterers.

The results demonstrate that HyperLISTA-ABT achieved a significantly higher effective
detection rate than the original HyperLISTA. Both algorithms (in fact, all other methods)
experience performance degradation with respect to an increase in amplitude ratio. This
is attributed to two main factors. Firstly, dark scatterers experience a large bias in their
elevation estimates at high amplitude ratios due to their elevation estimates approaching
the more prominent ones. Consequently, many detections of double scatterers will not be
recognized as effective due to the large elevation estimate bias. Secondly, the energy of dark
scatterers is close to the noise level at high amplitude ratios. This makes it particularly
challenging for HyperLISTA, which employs a global thresholding scheme, to detect the
local features of dark scatterers. Further elaborating, when high-intensity scatterers are
present in the signal, their strong energy can overshadow the low-energy regions where
dark scatterers are located. This overshadowing effect can lead to the suppression or even
annihilation of the weaker expressions associated with the dark scatterers. Consequently,
the presence of these strong intensity scatterers can mask or obscure the signals originating
from the dark scatterers, making their detection and characterization challenging. In
contrast, HyperLISTA-ABT conducts thresholding in each local block, which can allow
retaining local information and, thus, it can detect dark scatterers. This results in a higher
effective detection rate at high amplitude ratios.

In addition, we compared HyperLISTA-ABT with other state-of-the-art TomoSAR al-
gorithms, which are deep learning-based algorithms γ-Net [77] and CV-SMGUs [96], as
well as the traditional CS-based method SL1MMER [13] with second-order optimization.
To highlight the super-resolution ability of these methods, we also involved a conventional
spectral estimator SVD-Wiener [58] as a baseline in the comparison. he comparison results
are demonstrated in Fig. 4.22.

From the comparison results, we can see that all the methods except the conventional
spectral estimator SVD-Wiener showed a great super-resolution power. The proposed
HyperLISTA-ABT delivered almost the same super-resolution ability as γ-Net and ap-
proached the performance of SL1MMER in both scenarios. When focusing solely on the
effective detection rate, it was challenging to proclaim a clear advantage of the proposed
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(a) (b)

Figure 4.22: Detection rate Pd as a function of the normalized elevation distance between the
simulated facade and ground with SNR = 0 dB and 6 dB, N = 25, and phase
difference △ϕ = 0 (worst case) under 0.2 million Monte Carlo trials.

HyperLISTA-ABT method over the existing state-of-the-art approaches. In fact, when
comparing it to CV-SMGUs, we could observe a slight underperformance. However, all
the state-of-the-art methods come with a relatively high computational cost. Both γ-Net
and CV-SMGU require tailored training according to the baseline distribution of the stack.
SL1MMER is a model-based algorithm, thus needs no training, yet requires significantly
computational time for solving the L1-norm minimization.

Table 4.3: Comparison of the number of required training samples and time consumption for
processing 0.2 million Monte Carlo trials with each algorithm. The training time
of HyperLISTA-ABT indicates the combined duration of both the analytic weight
optimization process and the tuning of hyperparameters. It provides a measure of the
overall time required for these essential steps.

Algorithm number of training samples training time inference time total time consumption transferability

CV-SMGUs 4 million ≈ 10 hours ≈ 0.25 h ≈ 10 h low
γ-Net 3 million ≈ 8 hours ≈ 0.2 h ≈ 8 h low
SL1MMER - - ≈ 20 h ≈ 20 h high
HyperLISTA-ABT - ≈ 0.5 hour ≈ 0.25 h ≈ 1 h medium

We tested and recorded the time consumption of different algorithms for processing
the 0.2 million Monte Carlo trials as well as the requirements for training data. The
results are summarized in Table 4.3. To clarify, all inference was conducted using a local
CPU for a fair comparison. As can be seen in Table 4.3, it took about ten hours for
the deep learning-based algorithms to process 0.2 million Monte Carlo trials, which was
predominantly the training time. In addition, a large amount of training samples was
essential as well. For SL1MMER, it took about 20 hours for the processing since the
iterative second-order optimization is computationally expensive. Further inspecting the
table, we can see that HyperLISTA-ABT showed similar efficiency in the inference as the
other deep learning-based algorithms. However, HyperLISTA-ABT required no training
data and it took much less time for the training. In total, HyperLISTA-ABT speeded up
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the processing by about one order of magnitude compared to the other algorithms tested
in the experiment.

Upon evaluating the performance and efficiency, it was observed that HyperLISTA-ABT
achieved comparable performance to existing state-of-the-art methods while significantly
improving the computational efficiency by approximately one order of magnitude. This
is especially advantageous in the multi-component D-TomoSAR case. The application of
the aforementioned deep learning-based algorithms and SL1MMER are very limited in the
D-TomoSAR case due to the need of time-consuming model training and the heavy com-
putational expense. On the contrary, the application of HyperLISTA-ABT can be easily
extended to computationally efficient D-TomoSAR processing. Therefore, HyperLISTA-
ABT is a more applicable approach for the large-scale processing of real data.

Furthermore, HyperLISTA-ABT demonstrates superior transferability compared to
deep learning-based algorithms. Deep learning models are typically trained to fit spe-
cific baseline configurations, such as a fixed number of SAR acquisitions and a specific
baseline distribution. While they may exhibit satisfactory generalizability to small base-
line discrepancies [77] [96], directly applying a trained deep learning model to a new data
stack with a different number of acquisitions or a completely different baseline distribution
is not feasible. In such cases, time-consuming retraining of the model becomes necessary,
resulting in low transferability.

In contrast, HyperLISTA-ABT offers better transferability. Although it requires ana-
lytical optimization of the weight matrix for each new data stack, the efficiency of the
analytical optimization process allows for scalability and improved transferability. This
finding highlights the potential of HyperLISTA-ABT in enabling global urban mapping
using TomoSAR, as it can be effectively applied to diverse data stacks with varying ac-
quisition configurations and baseline distributions.

Bellagio hotel

For the real data experiment, the absence of the ground truth means direct verification
of accuracy is not possible. However, utilizing the same dataset as in [97] provides us
an chance to compare our results with the findings from SL1MMER, thus evaluating the
effectiveness of the proposed HyperLISTA-ABT in real-world scenarios. The datastack was
composed of 29 TerraSAR-X high-resolution spotlight images covering the Bellagio Hotel
in Las Vegas. The slant-range resolution was 0.6m and the azimuth resolution was 1.1m.
The elevation aperture size of about 270m resulted in the inherent elevation resolution ρs
to be about 40m, i.e. approximately 20m resolution in height since the incidence angle here
was 31.8◦. An optical image and the SAR mean intensity image of the test site are shown
in Fig. 4.23. The dataset with fine spatial resolution allows for evaluation on accurately
reconstructing topographies with complex scattering mechanisms. The primary goal here
is to verify whether our method can reproduce or surpass the quality of reconstructions
generated by SL1MMER.

As for the D-TomoSAR system model, a time wrap operation assuming only sinusoidal
seasonal motion was adopted as in [43] because no long-term linear motion was observed
during the acquisition period of the test area. The results depicted in Fig. 4.24 and Fig.
4.25 underline the effectiveness of the proposed HyperLISTA-ABT in processing real-world
TomoSAR data. Several key takeaways can be gathered from the presented results:
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(a) (b)

Figure 4.23: Test site of Bellagio hotel. (a): optical image from Google Earth, (b): SAR mean
intensity image

• Reasonable Elevation Estimation: We can observe a smooth and consistent
gradation in the elevation estimates from the ground to the top of the building in
Fig. 4.24(a), which is indicative of the capability to capture the inherent vertical
structure of urban buildings, thereby ensuring the reasonable 3-D reconstruction.

• Comparable Performance with SL1MMER: The close resemblance between
the results of HyperLISTA-ABT and SL1MMER demonstrates that HyperLISTA-
ABT is able to achieve performance at par compared to SL1MMER, thus establishing
the credibility of HyperLISTA-ABT is real-world TomoSAR processing.

• Layover Separation Ability: Fig. 4.25 delves deeper into one of the most chal-
lenging aspects of TomoSAR processing: the layover effect, particularly prevalent
in urban areas with high-rises. The detection of double scatterers demonstrates the
layover separation ability of HyperLISTA-ABT. As can be seen, the top layer was
mainly caused by signals from the roof and facade of the high rise building while the
bottom layer was caused by signals from the ground structures.

Table 4.4: Percentage of scatterers detection for HyperLISTA-ABT and SL1MMER.

Algorithm
Percentage of detection as

0 scatterer 1 scatterer 2 scatterers

HyperLISTA-ABT 48.48 % 44.09 % 7.43 %
SL1MMER 49.41 % 43.63 % 6.96 %

We also conducted some numerical comparisons of both algorithms. First, we compared
the percentage of pixels detected as zero, one, and two scatterers by both algorithms.
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Figure 4.24: Color-coded reconstruction results of the test site. (a) Elevation estimates using
HyperLISTA-ABT in meters, (b) elevation estimates using SL1MMER in meters,
(c) estimated amplitude of seasonal motion using HyperLISTA-ABT in centimeters,
(d) estimated amplitude of seasonal motion using SL1MMER in centimeters.

Compared to SL1MMER, we found that HyperLISTA-ABT detected more pixels as co-
herent sactterers. This does not necessarily mean that HyperLISTA-ABT had a better
detection ability since there was no ground truth. We believe HyperLISTA-ABT detected
more scatterers because HyperLISTA-ABT tends to maintain weak signals, which could
be reflections of dark scatterers but also outliers caused by noise interference. The false
detection of noise as coherent scatterers causes a speckle-like noise in the reconstruction re-
sult. Model order selection and post-processing techniques like spatial filtering can further
mitigate such outliers.

For further evaluation, we compared the elevation estimates differences of scatterers de-
tected by both algorithms. A histogram of the elevation estimates differences is shown in
Fig. 4.26. It can be observed that most of the elevation estimates differences were within
1 meter. This observation indicates that both algorithms yielded comparable results in
terms of elevation estimation, instilling confidence in their reliability and reasonableness.
Furthermore, this similarity in estimation accuracy suggests that HyperLISTA-ABT per-
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Figure 4.25: Color-coded elevation estimates of the top and bottom layers of detected double
scatterers using HyperLISTA-ABT. (a) Top layer, mostly caused by reflections from
the building roof and facade, (b) bottom layer, mostly caused by reflections from
low infrastructures and the ground.

formed on par with SL1MMER. Moreover, it is worth mentioning that it took more than
three weeks for SL1MMER to finish the D-TomoSAR processing over the test site, whereas
it only took HyperLISTA-ABT several hours to complete the processing, thus highlight-
ing the great superiority of HyperLISTA-ABT in computational efficiency and potential
in global tasks.

Figure 4.26: Histogram of elevation estimates differences between HyperLISTA-ABT and
SL1MMER.
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Muti-component D-TomoSAR processing

In this experiment, we applied HyperLISTA-ABT to TerraSAR-X high-resolution spotlight
data over a large area surrounding the convention center in Las Vegas. The stack was
composed of 29 acquisitions covering a time period from July 2009 to June 2010, during
which the test area was undergoing a pronounced subsidence centered at the convention
center. Therefore, the acquisitions were characterized by a multi-component nonlinear
motion combining linear and thermal-dilation-induced seasonal motion. Fig. 4.27 shows us
an optical image and the SAR mean intensity map. The red box indicates the “epiccenter”
undergoing subsidence around the convention center.

(a) (b)

Figure 4.27: Demonstration of the large test area. (a) Optical image from Google Earth, (b)
SAR mean intensity map in dB. The red box in (b) indicates the area undergoing
subsidence.

Fig. 4.28 illustrates us the reconstructed elevation estimates as well as the estimated
amplitude maps of the two different motions. As we can see from the surface model
generated from the elevation estimates in Fig. 4.28(a), we can capture the shapes of
individual buildings and the surrounding infrastructures, like roads, at a detailed level.
In addition, Fig. 4.28(b) shows that clear deformation caused by seasonal motion can be
observed in the metallic building structures since they were affected by thermal dilation
more seriously compared to surrounding infrastructures. Furthermore, as illustrated in
Fig. 4.28(c), it could be observed that the magnitude of the linear subsidence increased
as the scatterer getting closer to the “epicenter”. These results are consistent with the
fact, thus validating the effectiveness of HyperLISTA-ABT for multi-component nonlinear
motion estimation and giving confidence that HyperLISTA-ABT can be applied in large-
scale D-TomoSAR processing.

A large-scale demonstration

In this experiment, we demonstration the reconstruction result over a large-scale scene
in Munich with the size of 21 km × 10 km using the proposed HyperLISTA-ABT. The
data stack is composed of five co-registered Tandem-X bistatic interferograms, whose most
pertinent parameters are presented in Table 4.5.
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Figure 4.28: Demonstration of color-coded elevation estimates and estimated amplitude of multi-
component motion. (a) Elevation estimates in meters, (b) estimated amplitude of
seasonal motion in centimeters, (c) estimated amplitude of linear motion in cen-
timeters/year.

Table 4.5: Parameters of Tandem-X acquisitions of Munich

Name Value

Distance from the scene center 698 km
Wavelength 3.1 cm
Incidence angle at scene center 50.4◦

Maximal elevation aperture 187.18 m
Number of interferograms 5
Slant range resolution 1.8 m
Azimuth resolution 3.3 m
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Because of the lack of available ground truth, the result derived from the random block
proximal gradient (RBPG) algorithm [98] [99] serves as the benchmark. The RBPG al-
gorithm is currently regarded as the state-of-the-art for efficient and accurate TomoSAR
processing for large-scale areas.
The SAR mean intensity map for the test area is showcased in Fig. 4.29(a). Subsequent

figures, namely Fig. 4.29(b) and Fig. 4.29(c), offer color-coded elevation reconstructions
derived from HyperLISTA-ABT and RBPG, respectively. The black regions within these
reconstructions signify scatterers that are non-coherent. The two regions outlined by red
boxes in Fig. 4.29(a) indicate specific regions of interest for closed view of detailed building
reconstruction, enabling a detailed comparative analysis of building reconstructions by the
two algorithms.
When comparing Fig. 4.29(b) to Fig. 4.29(c), it is evident that both algorithms yield

reconstructions of notable quality. The color-coded elevation maps, generated by both
HyperLISTA-ABT and RBPG, give valuable insights into the elevation features of the
test area. However, upon a more detailed examination, the HyperLISTA-ABT-derived
results exhibit superior completeness. This improved clarity and resolution can be further
observed in Fig. 4.30 and Fig. 4.30.
Moreover, the computational efficiency of HyperLISTA-ABT stands out prominently

even benchmarked against the RBPG, which is already known as an efficient algorithm.
The remarkable difference in processing times — one CPU hour for HyperLISTA-ABT
compared to the more than three CPU hours for RBPG — signifies a two-fold or greater
acceleration in processing speed. The great comuptational efficiency coupled with the
promising reconstruction results demonstrated earlier, underscores the immense poten-
tial of HyperLISTA-ABT, when we anticipate the future of global urban mapping via
TomoSAR.
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Figure 4.29: Visual comparison of color-coded reconstruction results over Munich,Germany.
Scene size: 21 km × 10 km, north = top. The red bounding boxes indicate two
specific regions of interest (ROI) over the area of European bureau of patent and Mu-
nich central station. (a) SAR mean intensity image, (b) color-coded reconstruction
result derived by HyperLISTA-ABT, (c) color-coded reconstruction result derived
by RBPG.
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Figure 4.30: Visual comparison of color-coded reconstruction results of the ROI near Munich
central station. (a) color-coded reconstruction result derived by HyperLISTA-ABT,
(b) color-coded reconstruction result derived by RBPG.

Figure 4.31: Visual comparison of color-coded reconstruction results of the ROI over the area
of European bureau of patent. (a) color-coded reconstruction result derived by
HyperLISTA-ABT, (b) color-coded reconstruction result derived by RBPG.
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5.1 Conclusion

In a summary, this thesis explores and investigates modern deep learning techniques for
the task of efficient and accurate TomoSAR inversion with the potential for practical
applications. It delves deep into challenges, presents innovative solutions, and envisions
a future where deep learning-based TomoSAR inversion is not just a possibility but a
widely accepted norm. With reference to the work presented in this thesis, the following
conclusions can be drawn:

• γ-Net is able to efficiently solve TomoSAR inversion. Compared to CS-based To-
moSAR algorithms, γ-Net improves the computational efficiency by 1 to 2 orders
of magnitude while showing no significant performance degradation with respect to
super-resolution power and location accuracy.

• At limited number of SAR acquisitions, deep learning-based algorithms, e.g. γ-Net,
outperform CS-based algorithms by a fair margin.

• The impressive computational efficiency and elevation reconstruction results
achieved by γ-Net not only validate the concept but also underscore the great poten-
tial of leveraging deep learning-based algorithms in large-scale TomoSAR processing.

• The proposed novel gated unit, sparse minima gated unit (SMGU), effectively incor-
porates historical information into dynamics of the neural network. To be specific,
important information will be automatically accumulated while useless or redundant
information will be forgotten in the dynamic of the network.

• SMGU adeptly addresses information loss caused by the shrinkage operation, ensur-
ing comprehensive information delivery to the network output while simultaneously
promoting output sparsity.

• CV-SMGU, as the extension of SMGU to the complex-valued domain and the first
attempt to bridge gated RNN and TomoSAR inversion, showcases superior perfor-
mance for TomoSAR processing on both laboratory and real-world data, surpassing
the state-of-the-art methods.

• An ultra-light model called HyperLISTA-ABT is proposed to address the gap in
applying deep neural networks to solve multi-component D-TomoSAR processing.

• According to the minimum coherence criteria, the weights in HyperLISTA-ABT can
be determined in an analytical way thus avoiding time-consuming training procedure
and requirement of numerous training samples.

• Laboratory experiments for 3-D reconstruction confirmed the efficiency of
HyperLISTA-ABT in estimation. Moreover, tests on real data over a large area
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demonstrated that HyperLISTA-ABT can reconstruct high-quality 4-D point clouds,
making it an efficient and accurate algorithm for future large-scale or even global
D-TomoSAR processing.

5.2 Outlook

According to the studies of deep learning-based algorithms for TomoSAR inversion pre-
sented in this thesis, a few topics for the future research are outlined in the following:

Deep learning-based gridless approach

Most current TomoSAR algorithms assume that the scatterers are positioned on prede-
fined, discrete elevation grids. However, this discretization might not always align with
the actual physical world, where scatterers can exist at any elevation, unconstrained by
the pre-imposed grid points. This mismatch between the assumed grid and the actual
scatterer location introduces the “off-grid” bias in the elevation estimate. As a gridless
CS approach, atomic norm minimization (ANM) [100] [101] [102] [103] can avoid the “off-
grid” bias but requires enormous computing resources. This is where the transformative
power of deep learning, combined with deep unfolding, could potentially revolutionize the
TomoSAR inversion paradigm. By leveraging the representational capabilities of deep
networks, it might be possible to mimic the precision of gridless approaches like ANM
while significantly reducing the computational overhead.

Deep learning for interferometric phase filtering

As it was comprehensively investigated in [13], the product of the number of SAR acquisi-
tions and SNR determines the quality of TomoSAR reconstruction. However, the number
of SAR acquisitions is limited (3-5) for most cities. Therefore, phase filtering is essential
to improve the SNR level. The state-of-the-art denoising method is based on non-local
means filtering [104] [105] [106], while it suffers from computational expense especially
when dealing with high-resolution SAR data. Considering the strong representational
and computational power of deep learning, it is promising to develop deep leaning-based
methods for interferometric phase filtering. The research focus can be:

• By training models on pairs of noisy and non-local means filtered SAR images, the
network can learn the transformations implicitly performed by the non-local means
filter, thus efficiently mimicking the operation of non-local means filter.

• With the assistance of generative models, such as variational auto-encoder (VAE)
[107], it is possible for us to learn the distribution of real InSAR data in an unsu-
pervised manner. Thereafter, sampling from learned distribution generates new and
filtered interferograms.

Incorporation of spatial context

Similar to CS-based TomoSAR algorithms, current deep learning-based algorithms pro-
cess each range-azimuth resolution cell independently, leading to an isolated 1-D inversion.
While this simplifies the inversion process, it neglects the spatial context and relationships
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5.2 Outlook

between neighboring resolution cells. This limitation often results in loss of weak scatter-
ers and lack of target continuity. Incorporating spatial context into deep learning-based
TomoSAR inversion should improve the performance. By leveraging modern deep learn-
ing techniques that recognize and utilize spatial relationships, such as convolutional and
recurrent layers, as well as attention mechanisms, it is possible to achieve more accurate,
continuous, and interpretable TomoSAR reconstructions.

Deep learning-based TomoSAR in forested areas

Forested regions, characterized by multi-layered vertical structures, result in volumet-
ric scattering mechanisms and make the reflectivity profiles non-sparse. Therefore, CS-
based sparse reconstruction is unfortunately not suitable for solving TomoSAR inversion
in forested areas. It is essential to conduct transformation to represent the continuous
backscattering profile of forest with a set of sparse coefficients after projecting to a certain
orthogonal basis. Modern deep learning techniques can assist in both the transformation
process and the selection of the optimal basis. Networks can be trained to recognize specific
forest structures and adaptively choose or even generate the best basis for projection.
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Abstract— Synthetic aperture radar tomography (TomoSAR)
has been extensively employed in 3-D reconstruction in dense
urban areas using high-resolution SAR acquisitions. Compressive
sensing (CS)-based algorithms are generally considered as the
state-of-the art in super-resolving TomoSAR, in particular in
the single look case. This superior performance comes at the
cost of extra computational burdens, because of the sparse
reconstruction, which cannot be solved analytically, and we
need to employ computationally expensive iterative solvers.
In this article, we propose a novel deep learning-based super-
resolving TomoSAR inversion approach, γ -Net, to tackle this
challenge. γ -Net adopts advanced complex-valued learned itera-
tive shrinkage thresholding algorithm (CV-LISTA) to mimic the
iterative optimization step in sparse reconstruction. Simulations
show the height estimate from a well-trained γ -Net approaches
the Cramér-Rao lower bound (CRLB) while improving the
computational efficiency by one to two orders of magnitude
comparing to the first-order CS-based methods. It also shows
no degradation in the super-resolution power comparing to the
state-of-the-art second-order TomoSAR solvers, which are much
more computationally expensive than the first-order methods.
Specifically, γ -Net reaches more than 90% detection rate in
moderate super-resolving cases at 25 measurements at 6 dB
SNR. Moreover, simulation at limited baselines demonstrates that
the proposed algorithm outperforms the second-order CS-based
method by a fair margin. Test on real TanDEM-X data with just
six interferograms also shows high-quality 3-D reconstruction
with high-density detected double scatterers.

Index Terms— Complex-valued learned iterative shrinkage
thresholding algorithm (LISTA), compressive sensing (CS),
synthetic aperture radar (SAR) tomography (TomoSAR),
super-resolution.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) tomography
(TomoSAR) [1] has been widely employed for large-scale

3-D urban mapping. It utilizes a stack of SAR acquisitions
to reconstruct the reflectivity profile γ along the elevation
direction for every azimuth-range pixel. In urban areas, there
are usually only a few significant scatterers overlaid in a
resolution cell along the elevation direction. Based on this
fact, compressive sensing (CS)-based sparse reconstruction
algorithms [2]–[4] were introduced to TomoSAR inversion
so that we can best unleash the potential of high-resolution
SAR data like TerraSAR-X in urban areas. Budillon et al. [5]
and Zhu and Bamler [6] presented the first simulation of CS
TomoSAR, [6] presented the first real data example and [7]
proved the super-resolution power of CS for TomoSAR
inversion. In recent years, different CS-based methods for
solving TomoSAR inversion have been extensively studied,
such as SL1MMER [8], truncated singular value decomposi-
tion (TSVD)-based CS [9], and alternating direction method
of multipliers (ADMM)-based L1 algorithm [10]. These
CS-based algorithms show superiority in super-resolution
capability as well as elevation estimate accuracy over the
conventional L2 regularization methods. However, CS-based
algorithms usually suffer from high-computational expense
and are more challenging to be extended to large-scale
processing. An efficient approach was proposed in [11] to
address this issue, which is an integration of persistent scatterer
interferometry (PSI) and “SL1MMER.” This approach speeds
up the processing by pre-classifying the pixels and reducing
the percentage of pixels that require SL1MMER for sparse
reconstruction. Nevertheless, it did not boost the TomoSAR
inversion fundamentally. The same authors of Wang et al. [11]
also proposed a data-driven method [12], which is based
on the CAESAR algorithm [13]. It applies kernel principle
component analysis (KPCA) to separate the contribution
of individual scatterers before inversion, thus reducing the
computational cost logarithmically. Although these algorithms
bring a perspective of data-driven approaches in TomoSAR,
they still do not strictly solve the SAR tomographic inversion.
Their super-resolution capability is also not investigated.
Therefore, there has not been a fully data-driven TomoSAR
algorithm to date. Hence, we would like to explore the
potential of modern data science algorithm such as deep
learning, for TomoSAR in this article.

A. Related Work
Recently, deep learning has rapidly developed and been

extensively applied in various fields of remote sensing [14],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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including SAR data processing [15], thanks to its strong
learning power. In particular, a deep neural network can
act as an effective nonlinear function and is capable of
representing many complicated mathematical models includ-
ing the CS problems [16]. Several recent studies [17]–[19]
have documented the application of deep neural networks
in solving sparse reconstruction-related problems in signal
processing and remote sensing, i.e., 3-D millimeter-wave
sparse imaging and 3-D microwave reconstruction. Motivated
by this fact, community started to investigate TomoSAR
inversion algorithms based on deep learning and their appli-
cation since a few years ago. Budillon et al. [20] proposed
a method to utilize neural networks to detect single scatterer
and estimate the corresponding elevation. In [20], TomoSAR
inversion was treated as a typical classification problem to
detect single scatterer with the classes indicating all the
possible discretized positions within the elevation extension
of the illuminated scene. Because of its problem formulation,
this method cannot be employed in true SAR 3-D imaging,
i.e., layover separation. An efficient line spectral estimation
algorithm based on deep neural networks was proposed in [21]
and applied to tackle the TomoSAR inversion. Experiment
results in [21] showed that the method can separate overlaid
scatterers and achieves moderate reconstruction performance,
whereas the super-resolution power of the proposed method
was not systematically analyzed. More recently, a novel super-
resolving TomoSAR imaging framework based on CS and
deep neural networks was proposed in [22]. It employed
CS-based algorithms for preliminary reconstruction and split
the elevation range to several subregions with spatial filters.
Then a group of deep neural networks-based regression models
were trained and applied to each subregion to achieve final
super-resolution reconstruction. This method was shown to
have unprecedented super-resolution capability. However, the
drawback of the proposed algorithm is also obvious. First, the
computational complexity of the proposed method is of same
order of magnitude to other CS-based algorithms, although
the authors increased the sampling distance between two
neighbor discrete grid point. The second drawback is that the
strong super-resolution power is attributed to adequate training
samples, whereas it is arduous to simulate data that imitate
the real scattering scenario of high fidelity. Hence, strong
overfitting to the training data is expected.

B. Contribution of This Article

The aim of this article is to introduce a computationally
efficient and generic TomoSAR algorithm based on deep learn-
ing and provide a systematic analysis of its super-resolution
power. To this end, we propose a deep learning-based
approach to address super-resolving TomoSAR inversion.
We unroll iterative shrinkage thresholding algorithm (ISTA)
as a complex-valued feedforward neural network with side-
connection, named as γ -Net. γ -Net could be trained using
data simulated by spatial baselines of given stacked SAR
acquisitions. Once well-trained, γ -Net can be directly used
for further inference. The main contributions of this article
are listed as follows.

1) We are the first to introduce a deep unfolded
neural network called γ -Net to solve super-resolving
TomoSAR inversion. We improved the conventional
soft-thresholding function by the piecewise linear func-
tion to mitigate the loss of information caused by
the learning architecture. Simulations indicate that the
piecewise linear function contributes to improving the
convergence rate and reducing reconstruction error.

2) We are the first to perform a systematic evaluation of
a deep learning-based TomoSAR inversion algorithm.
We investigated the generalization ability w.r.t. ampli-
tude ratio, phase difference of the interfering scatterers,
super-resolution power, and elevation estimation accu-
racy of the proposed algorithm, i.e., γ -Net. Experiments
demonstrate that γ -Net not only approaches almost the
same performance in nominal condition comparing to
the state of the art but also outperforms the state-of-the-
art at limited number of measurements.

3) We carried out rigorous analysis of algorithm complexity
and proved that γ -Net improves the computational effi-
ciency by one to two orders of magnitude comparing to
first-order CS-based methods and shows no degradation
in super-resolution power, nor in estimation accuracy
comparing to second-order CS-based methods, which
are much more computationally expensive than first-
order methods. Further time consumption comparison
to the second-order CS-based method establishes the
superiority of γ -Net in computational efficiency and
evidences that γ -Net is able to realize large-scale super-
resolving TomoSAR processing, whereas second-order
CS-based solvers can only be applied to small laboratory
samples.

The remainder of the article is outlined as follows:
In Section II, the TomoSAR imaging model and inversion
are briefly introduced. Section III provides an overview on
the formulation of γ -Net. Results of systematic evaluation,
using simulated and real data, are presented and discussed in
Sections IV and V. Finally, the conclusion of this article is
drawn in Section VI.

II. SAR IMAGING MODEL AND PROBLEM FORMULATION

First, we would like to introduce the TomoSAR imag-
ing model (see Fig. 1). For a single SAR acquisition at
aperture position bn, the complex-valued measurement at an
azimuth-range pixel for the nth acquisition is the integral of
the reflected signal along the elevation direction and can be
expressed as follows:

gn =
∫

�s
γ (s) exp(− j2πξns)ds, n = 1, . . . , N (1)

where γ (s) depicts the reflectivity profiles along the elevation
direction. ξn = −2bn/(λr) denotes the elevation frequency.
λ and r refer to the wavelength and the range, respectively.
By discretizing the reflectivity profile along the elevation
direction s, the approximated system model reads

gn ≈ δs ·
L∑

l=1

γ (sl) exp(− j2πξnsl), n = 1, . . . , N (2)
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Fig. 1. SAR imaging geometry. The elevation synthetic aperture is built up
by SAR data acquired from slightly different viewing angles. Flight direction
is orthogonal into the plane.

where L is the number of the discrete elevation indices and
δs = �s/(L − 1) is the sampling distance with �s depicting
the whole extent of the reflectivity profile along the elevation
direction. In the presence of noise ε, the discrete TomoSAR
imaging model can be expressed as follows:

g = Rγ + ε (3)

where g ∈ CN×1 is the complex-valued SAR measurement
vector, R ∈ CN×L is the steering matrix with Rnl =
exp(− j2πξnsl), and γ ∈ CL×1 denotes the discrete reflectivity
profile vector. TomoSAR inversion is aimed at retrieving the
reflectivity profile for each range-azimuth cell, then estimating
the corresponding scattering parameters such as the number of
scatterers and their elevation and reflectivity.

For TomoSAR reconstruction in urban areas, it is shown
in [7] that there are rarely more than a few (0–4) scatterers
overlaid along the elevation direction in each resolution unit,
namely, the reflected signal along the elevation direction is
sufficiently sparse. The ideal sparse solution of γ is obtained
by solving (3) with the L0-norm regularization, which is,
however, a NP-hard problem. For our application, it is shown
in [2]–[4], [7] that the L0-norm minimization can be approx-
imate by the L1-norm minimization, which can be expressed
as follows:

γ̂ = arg min
γ

��g − Rγ �2
2 + λ�γ �1

�
(4)

where λ is a regularization parameter balancing the sparsity
and data-fitting terms. It should be adjusted according to
the noise level as well as the desired sparsity level. The
choice of a proper λ is described in great detail in [23].
The L2–L1 mixed norm minimization (4) is also known as
basis pursuit denoising (BPDN) [23] and can be formulated
as least absolute shrinkage and selection operator (LASSO) in
some condition. Conventional solvers for (4) are either first- or
second-order methods. First-order methods are typically based
on linear approximations, such as ISTA [24] and ADMM [25].
An example for the second-order methods is the primal-dual
interior-point method (PDIPM) [26]. Second-order methods
often suffer from high-computational cost, thus impeding their
application in large-scale processing.

Fig. 2. RNN structure of ISTA by viewing an iteration of ISTA as a layer
of the RNN.

III. TOMOSAR INVERSION VIA γ -NET

A. Background of Complex-Valued ISTA

ISTA [24] is a popular method to solve the L2–L1 mix norm
minimization. Each iteration of ISTA is defined by

γ̂ i = ηst
�
γ̂ i−1 + βRH bi−1, θi

�
(5)

with

bi = g − Rγ̂ i

where γ̂ 0 = 0, β is the stepsize, ηst is the soft-thresholding
function applied to each element of γ̂ i , and θ is the threshold
in the soft-thresholding function. The complex-valued version
of the soft-thresholding function ηst is defined by

ηst
�
γ̂ i , θi

� = e j ·� (γ̂ i)max
���γ̂ i

�� − θi , 0
�

(6)

where j is the imaginary number. In each iteration of ISTA,
the estimate is first optimized via gradient decent and then
the soft-thresholding function is applied to prune the elements
with small magnitude, thus promoting the sparsity of the final
estimate.

B. Complex-Valued LISTA Formulation for TomoSAR

As presented in the review article [27], (5) can be rewritten
as the following form:

γ̂ i = ηst
�
Wi

1g + Wi
2γ̂ i−1, θi

�
(7)

where Wi
1 = βRH and Wi

2 = I − βRHR.
If we regard the soft-thresholding function in (7) as an

activation function, we find that (7) is the basic form of the
i th layer of a recurrent neural network (RNN). Therefore,
ISTA can be viewed as a RNN illustrated in Fig. 2.

Inspired by the connection between ISTA and RNN,
a learning-based model named Learned ISTA (LISTA) was
proposed in [28]. Fig. 3 demonstrates the learning architecture
of a K-layer LISTA, which unrolls the RNN and truncates it
into K iterations, thus leading to a K-layer side-connected
feedforward neural network. The major difference between
ISTA and LISTA is that the weight matrices Wi

1, Wi
2 as well as

the threshold θi in each layer of LISTA are not predetermined.
Those parameters are learned in the LISTA neural network
from training data.

The loss function of LISTA over the training data
{(gi , γ i )}T

i=1 is the mean square error (MSE) loss described
as follows:

minimize
�

L(�) = 1

T

T�

i=1

�γ̂ (�, g) − γ �2
2 (8)
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Fig. 3. Unfolded LISTA architecture. A K-layer LISTA unrolls the RNN and truncates it into K iterations, thus leading to a side-connected feedforward
neural network.

where T denotes the number of samples in the training data
and � = {W1, W2, θ} is the set of free parameters to be
learned. Many recent works [28]–[32] have demonstrated that
LISTA is able to achieve the same estimation accuracy within
two to three order-of-magnitude fewer iterations than the
original ISTA. Moreover, empirical results show that LISTA
has better generalization ability.

However, to apply LISTA to solve TomoSAR inver-
sion, we need to extend LISTA to complex-valued domain.
Complex-valued learned iterative shrinkage thresholding algo-
rithm (CV-LISTA) shares the same learning architecture as
LISTA, except that each neuron in CV-LISTA has two chan-
nels, which refer to the real and imaginary part of a complex
number, respectively. We applied the following adaptions
to (7):

γ̃ i = ηst
��Wi

1g̃ + �Wi
2γ̃ i−1, θi

�
(9)

where

W̃i
j =

[�(
Wi

j

) −�(Wi
j

)

�(Wi
j

) �(
Wi

j

)
]

g̃ =
[�(g)

�(g)

]

γ̃ =
	�(γ̂ )

�(γ̂ )



(10)

with j = 1, 2 and �(·) and �(·) denote the real and imaginary
operators, respectively.

C. γ -Net Formulation for TomoSAR

Through our research and experiments, we discovered a few
drawbacks of CV-LISTA applying to TomoSAR and proposed
several novel improvements in γ -Net. The improvements
are mainly threefold. First, the W1 and W2 matrices in
the aforementioned CV-LISTA are highly correlated. Hence,
as proposed in [33], a weight coupling structure is introduced
to reduce redundant trainable parameters in γ -Net. Second,
we tried to use the acceleration technique, support selection,
which was originally developed for LASSO to boost the
convergence in γ -Net. Last, we replaced the conventional
soft-thresholding function by the piecewise linear function
because the conventional soft-thresholding function causes
information loss, which leads to large reconstruction error and
decreases the convergence rate of the model. We will discuss
the improvements in detail in the following paragraphs.

1) Weight Coupling: Instead of training γ -Net as pure
“black-box” networks, we simplify the CV-LISTA and propose
γ -Net by exploiting the dependency among the trainable
weights. Details can be found in [33] that the weights to be
learned {(WI

1, Wi
2)}K

i=0 in each layer asymptotically satisfy the
following partial weight coupling structure:

Wi
2 = I − Wi

1R. (11)

By employing the partial weight coupling structure, we can
simplify the i th layer of γ -Net to

γ̃ i = ηst
�
γ̃ i−1 + �Wi

�
g̃ − �Rγ̃ i−1

�
, θi

�
(12)

with

R̃ =
[�(R) −�(R)

�(R) �(R)

]

where (�(Wi),�(Wi), θ i) are the parameters to be learned
in the i th layer, and the trainable weight Wi is initialized
using the system measurement matrix R with Wi = βRH .
The coupled structure contributes to eliminating the number
of free parameters to be trained, thus accelerating the training
procedure significantly. Theoretically speaking, (11) can only
be satisfied for deep layers. However, extensive simulations
in [33] demonstrate that the application of the partial weight
coupling structure to every layer will not degrade the theoret-
ical and experimental performance.

2) Support Selection: In addition to the application of the
weight coupling structure, we introduce a special thresholding
scheme in γ -Net, called support selection, which is inspired
by “kickin”’ in linearized Bregman iteration [34]. Meaning,
we will select a certain percentage of entries with largest
magnitude at each layer of γ -Net before the shrinkage step.
Hereafter, the selected part will be trusted as “true suppor”’
and directly fed into the following layer, bypassing the shrink-
age step. The remaining entries will go through the shrinkage
step as usual. Assuming that ρi percentage of entries are
trusted in the i th layer, the support selection can be formally
defined as

ηss
ρi

θi

�
γ̃ i

� =
�

γ̃ i , i ∈ Sρi
(γ̃ )

ηst
�
γ̃ i , θi

�
, i /∈ Sρi

(γ̃ )
(13)

where Sρi
(γ ) contains the entries with the ρi largest mag-

nitudes. It is worth mentioning that the percentage ρi is a
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Fig. 4. Comparison between the piecewise linear function and soft-
thresholding function. Instead of pruning the elements with small magnitude,
the piecewise linear function just further minifies them, thus possibly avoiding
the information loss.

hyperparameter that requires manual tuning. When we apply
the support selection to γ -Net, then (12) is modified as

γ̃ i = ηss
ρi

θi

�
γ̃ i−1 + �Wi

�
g̃ − �Rγ̃ i−1

�
, θi

�
. (14)

Simulation experiments in [33] support that introducing the
support selection on the one hand improves the convergence
rate both theoretically and empirically, on the other hand,
it contributes to reducing the recovery error, thus improving
the estimation accuracy.

3) Piecewise Linear Thresholding Function: The conven-
tional soft-thresholding function simply prunes elements with
small magnitude to zero, which is very likely to result in
information loss. To maintain useful information as much as
possible and execute the shrinkage step in the meanwhile,
we replace the soft-thresholding function by the piecewise
linear function ηpwl(γ̃ , θ) in γ -Net, which is defined as

ηpwl(γ̂ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ3γ̂ , |γ̂ | ≤ θ1

e j ·� γ̂
�
θ4(|γ̂ | − θ1) + θ3θ1

�
, θ1 < |γ̂ | ≤ θ2

e j ·� γ̂
�
θ5(|γ̂ | − θ2)

+ θ4(θ2 − θ1) + θ3θ1
�
, |γ̂ | > θ2.

(15)

To clarify, the symbol j in (15) refers to the imaginary number.
Fig. 4 compares both functions. As can be seen, instead

of pruning elements with small magnitude, the piecewise
linear function only down scale them. Hence, it mitigates
the information loss. However, it leads to the consequence
that the final output of γ -Net being not strictly sparse. Most
elements of the final output are not driven to zero strictly but
to some extremely small values. Therefore, an additional post-
processing step for cleaning the elements with extremely small
magnitude is necessary when we employ the piecewise linear
function.

Fig. 5 compares γ -Net performance in term of the nor-
malized MSE (NMSE) under the two shrinkage functions.

Fig. 5. Performance of γ -Net using different shrinkage function. The
piecewise linear function conduces to faster convergence and improves the
estimation accuracy.

To clarify, the performance of γ -Net with different shrinkage
functions was verified on a set of noise-free data so that the
results reflect the ideal performance. The NMSE is defined as

NMSE = 1

T

� �γ̂ − γ �2
2

�γ �2
2

. (16)

From this figure, it can be seen that γ -Net with the
piecewise linear function achieves lower NMSE at the same
number of layers. In another word, the piecewise linear
function improves the estimation accuracy of γ -Net or the
convergence rate. Specifically, γ -Net with the piecewise linear
function requires only about 12 layers to achieve convergence.
However, it is obvious that much more layers are required
when the conventional soft-thresholding function is employed.

D. Algorithm Summary

To achieve super-resolution ability and high elevation esti-
mation accuracy, it is usually required to sample the elevation
range much denser than the elevation resolution unit, thus ren-
dering the steering matrix R severely overcomplete, reducing
its restricted isometric property (RIP) and increasing its coher-
ence. The violation of RIP and incoherence introduces outliers
to estimates of the reflectivity profile γ̂ [35]. Additionally, out-
liers will be caused by the noise interference as well. Hence,
we need further perform model order selection [36] to suppress
the undesired outliers and estimate the number and location
of scatterers precisely, which are typical steps in TomoSAR.
The proposed super-resolving TomoSAR inversion algorithm
is a combination of γ -Net and model order selection, and
re-estimation. The basic workflow of the proposed algorithm is
show in Algorithm 1. The model order selection is conducted
based on Bayesian information criterion (BIC) [37].

IV. PERFORMANCE EVALUATION

A. Data Simulation and Training

1) Simulation Setup: We simulate the data using a setting
similar to [8]. Specifically, SAR measurements with 25 spatial
baselines are simulated. The spatial baselines are regularly
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Algorithm 1 Summary of the Proposed Algorithm
Simulate training data

Sampling the elevation extent
Generate steering matrix R with
Rnl = exp(− j2πξnsl), where ξn = −2bn/(λr)
Simulate reflectivity profile γ

Simulate SAR measurements with g = Rγ + ε

Finish the generation of training data {(gi , γ i )}T
i=1

Training of γ -Net
Over given training samples {(gi, γ i)}T

i=1
minimize

�
L(�) = 1

T

�T
i=1 ||γ̂ (�, g) − γ ||22

where � = [�(W),�(W), θ]
for each pixel in the image: do

Preliminary estimate via γ -Net:
γ = γ -Net(g)
Model order selection to remove outliers:
P̂ = argmin

P
{σ−2

ε ||g − Rγ̂�2
2 + 1.5 P ln N}

Determine the number of scatterers
Final estimation of their elevation

end for

distributed in the range from −135 to 135 m, thus leading
to a Rayleigh resolution of around 42 m. We simulated
ca. four million training samples, half of which are single
scatterer and the others are overlaid double scatterers. The
simulation details of single and double scatterers are listed
below. We randomized many parameters in the simulation,
to make the simulation more realistic.

1) Single Scatterers: for a single scatterer, the scatterering
coefficient is a complex number γ = A · exp ( jφ),
with the amplitude being deterministic and the scatter-
ing phase following an uniform distribution, i.e., φ ∼
U(0, 2π). To randomize the amplitude in the simulation,
we simulate it with a uniform distribution as well,
i.e., A ∼ U(1, 4), although a real SAR amplitude image
shows more Rayleigh or Gamma distribution. The eleva-
tion of the simulated scatterer is regularly distributed in
the range from 0 to 200 m with 1 m sampling. Once the
location of the scatterer is determined, the echo signal
is simulated at 11 different levels of SNR, which is
regularly distributed between [0, 10 dB].

2) Double Scatterers: For double scatterers, the generation
of the two single scatterers is identical to the previ-
ous step, i.e., for each individual scatterer, the phase
follows an uniform distribution φ ∼ U(0, 2π) and the
amplitude follows an uniform distribution A ∼ U(1, 4),
respectively. As a result, different amplitude ratio and
phase difference of the simulated double scatterers can
be covered. We also vary the elevation distance between
the two single scatterers. The elevation distance varies
from 0.1 until 1.2 Rayleigh resolution, with a regu-
lar sampling of 0.1 Rayleigh resolution. The elevation
of the first scatterer follows an uniform distribution
in the range of 0 to 200 m. To avoid the off-grid
bias, we assume that all scatterers locate on-grid with
1 m sampling.

Fig. 6. γ -Net performance w.r.t. the number of layers. After 12 layers, the
performance improvement of γ -Net is marginal with the increase number of
layers. Instead, the increase of layers leads to heavier computational burden.

2) Training: The training was carried out using Pytorch [38]
and the Adam optimizer [39]. The learning rate was initialized
at 0.0005 and adjusted adaptively during the training. In the
training procedure, we gradually increase the number of the
layers from 3 to 20 to determine an optimal network structure.
We validate the performance of γ -Net with different num-
ber of layers on a validation dataset. The validation dataset
contains 0.2 million noise-free samples simulated using the
same settings mentioned in the simulation setup, so that
we can compare the theoretical performance of γ -Net with
different number of layers. Fig. 6 illustrates the performance
of γ -Net w.r.t. the number of its layers. Closer inspection
of Fig. 6 shows that the NMSE first decreases rapidly and
then starts to converge to a minimum at around twelve layers.
Simultaneously, the increase of the number of layers leads to
heavier computation cost. Therefore, γ -Net employed in this
article contains just twelve layers. On the one hand, γ -Net with
twelve layers is able to guarantee the estimation accuracy; on
the other hand, it maintains the computational efficiency.

B. Single Scatterer Analysis

In addition to the simulated training data, we simulated
four sets of testing data for the single scatterer analysis with
SNR = {0, 3, 6, 10} dB. Each set is composed of 0.2 million
samples. We use the proposed algorithm to detect the single
scatterer and estimate the corresponding elevation. Fig. 7
demonstrates the estimated reflectivity profile using the trained
γ -Net and singular value decomposition (SVD)-Wiener [36]
(a conventional nonsuperresolving algorithm). As we can
see, although both of γ -Net and SVD-Wiener are able to
detect the position of the single scatterer, γ -Net reconstructs
spectral lines instead of sinc-like point response function, thus
mitigating the sidelobe problem. Moreover, from Fig. 7(a)–(d),
we can see that the outliers caused by noise interference exist
in the reflectivity profile estimate of γ -Net. Therefore, further
model order selection step is required.

Table I provides the results after model order selection.
The Cramér–Rao lower bound (CRLB), the estimates mean
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Fig. 7. Estimated reflectivity profile of simulated data with single scatterer at different SNR. (a) SNR = 0 dB. (b) SNR = 3 dB. (c) SNR = 6 dB.
(d) SNR = 10 dB.

TABLE I

STATISTICS OF THE ESTIMATE OF SINGLE SCATTERER USING THE PROPOSED ALGORITHM. μ AND σ DENOTE THE SAMPLE MEAN AND THE
CORRESPONDING STANDARD DEVIATION, RESPECTIVELY. THE PROPOSED ALGORITHM IS ABLE TO DETECT THE SINGLE SCATTERER IN NEARLY

ALL CASES WITH THE STANDARD DEVIATION APPROACHING THE CRLB AND BIAS APPROACHING ZERO

(μ) and standard deviation (σ ) in Table I are normalized to
the Rayleigh resolution. Since the goal of TomoSAR is to
have a good elevation estimate, and also a high detection
rate, we define the term effective detection rate. An effec-
tive detection of single scatterer should satisfy the following
two conditions: 1) only one scatterer is detected and 2)
the estimated elevation should not exceed ±3 times CRLB
w.r.t. the ground truth. It is apparent from this table that the
proposed algorithm is able to detect almost all single scatterer
at different SNRs. Further statistics on mean value μ and
standard deviation σ of the estimation error indicate high
estimation accuracy of the proposed algorithm with the bias
approaching zero and the standard deviation approaching the
CRLB.

C. Double Scatterers Analysis
For the double scatterer analysis, we simulate two-scatterer

mixtures in the experiments and a systematic evaluation was
carried out regarding the distance between simulated double
scatterers, different scatterers amplitude ratio as well as phase
difference between the double scatterers.

1) Performance With Respect to Scatterers Distance:
In this experiment, we performed a well-known TomoSAR
benchmark test [7], [36]. We simulated double scatterers
with increasing elevation distance between the two layovered
scatterers, to mimic a facade–ground interaction. Since we
focus on the super-resolution regime, the elevation distance ds

between the two overlaid scatterers is set to be no larger than
1.2 times of the Rayleigh resolution. Two different scenarios
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Fig. 8. Estimated reflectivity profile of simulated data with overlaid double scatterers. (a) SNR = 0 dB, α = 0.2. (b) SNR = 0 dB, α = 0.5. (c) SNR =
0 dB, α = 1. (d) SNR = 6 dB, α = 0.2. (e) SNR = 6 dB, α = 0.5. (f) SNR = 6 dB, α = 1.

were taken into consideration with SNR ∈ {0, 6} dB, which
represent typical SNR levels in a high-resolution spaceborne
SAR image. Fig. 8 demonstrates some examples of the esti-
mated reflectivity profile at the normalized elevation distance
α = [0.2, 0.5, 1.0]. The normalized distance α is defined as
the ratio of the elevation distance between the double scatterers
and the Rayleigh resolution ρs , formally expressed as

α = ds

ρs
. (17)

From Fig. 8, one can see that both the trained γ -Net and
SVD-Wiener are able to distinguish the overlaid double scat-
terers in the nonsuperresolving case, i.e., last column, when
α = 1.0. But comparing to SVD-Wiener, γ -Net provides much
higher elevation estimation accuracy. Moreover, when we
move the double scatterers closer into the Rayleigh resolution,
SVD-Wiener fails to separate them. In the contrast, γ -Net is
still capable of detecting the double scatterers in most cases,
which exhibits its super-resolution power.

Hereafter, we compare the proposed algorithm with the
state-of-the-art SL1MMER algorithm [8] focusing on the
detection rate and the estimation accuracy. Similar to the single
scatterer case, we use the effective detection rate to fairly
evaluate the detection rate. An effective detection of double
scatterer is defined as.

1) The hypothesis test correctly decides two scatterers for
a double scatterers’ signal.

2) The estimated elevation of both detected double scatter-
ers are within ±3 times CRLB w.r.t. their true elevation.

3) Both elevation estimates are also within ±0.5 ds w.r.t.
their true elevation.

The third criterion is seldom seen in the literature. However,
it is necessary, because in extremely super-resolving cases,

three times CRLB will become much larger than the elevation
distance. Hence, it cannot be used as an accountable measure
for reasonable estimates. ±0.5 ds is a much stricter constraint
in such cases, which will reflect the true performance of the
algorithm.

Fig. 9 compares the effective detection rate Pd of
SL1MMER and the proposed algorithm for the case N = 25.
For each pair of (SNR, α), 0.2 million Monte Carlo trials
for the worst case in TomoSAR inversion, i.e., the double
scatterers have the same amplitude and phase, were simulated.
The effective detection rate Pd is presented as a function of
the normalized distance. The red and blue polylines illus-
trate the results of the proposed algorithm and SL1MMER,
respectively. As we can see from Fig. 9, the proposed algo-
rithm has comparable super-resolution power as SL1MMER.

Fig. 10 demonstrates the elevation estimates of simulated
façade and ground w.r.t. the true normalized elevation dis-
tance. In each subplot of Fig. 10, the two red line segments
represent the true elevation of the simulated facade and
ground, respectively, while the dashed lines show the true
elevation ±1 × CRLB (normalized). Exhaustive details of the
derivation of the CRLB can be found in [8]. The elevation
estimates of simulated facade and ground are plotted with
each dot depicting the sample mean of all estimates at the
given normalized distance and the error bar indicating the
corresponding standard deviation. Points below an effective
detection rate of 10% were not plotted in the figure. As it
is shown in Fig. 10, the proposed algorithm shows higher
elevation estimation accuracy than SL1MMER. To be specific,
at 0 dB SNR, although both the proposed algorithm and
SL1MMER have similar estimate bias, the proposed algorithm
leads to much smaller variance. In high SNR case, the pro-
posed algorithm outperforms SL1MMER in super-resolving
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Fig. 9. Detection rate Pd as a function of the normalized elevation distance between the simulated facade and ground using the proposed algorithm (dashed
star) and SL1MMER (dashed circle) with SNR = 0 and 6 dB, N = 25 and phase difference 
φ = 0 (worst case) under 0.2 million Monte Carlo trials.
Comparison in (a) 0 dB and (b) 6 dB.

Fig. 10. Estimated elevation of simulated facade and ground, (a) SNR = 0 dB with SL1MMER, (b) SNR = 0 dB with the proposed algorithm, (c) SNR = 6 dB
with SL1MMER, and (d) SNR = 6 dB with the proposed algorithm. Each dot has the sample mean of all estimates as its y value and the correspond standard
deviation as error bar. The red line segments represent the true elevation of the simulated facade and ground. The dashed curves denote the true elevation
±1 × CRLB normalized w.r.t. the Rayleigh resolution.

cases w.r.t. the elevation estimation accuracy. As can be seen
that, SL1MMER suffers from much larger elevation estimate
bias as well as the standard deviation.

2) Performance With Respect to Amplitude Ratio: This
simulation sets out to evaluate the performance of the pro-
posed algorithm w.r.t. different amplitude ratio of the dou-
ble scatterers. Fig. 11 illustrates us the effective detection
rate of the proposed algorithm at different amplitude ratio.
As can be seen, the effective detection rate decreases with the
increasing amplitude ratio. Since γ -Net promotes sparsity by
shrinking elements with small magnitude layer by layer. With
the increase of the amplitude ratio between simulated double
scatterers, the darker scatterer becomes less prominent, and
hence easier to be ignored. Therefore, at high amplitude ratio,
the proposed algorithm tends to detect single scatterer with
dominant amplitude. However, from our perspective, it will
not affect the application of the proposed algorithm. In real-
world processing, if one scatterer is much more prominent
than others in a pixel, we can usually judge that this pixel
contains only a single scatterer by viewing others as noise.

Fig. 11. Effective detection rate ρd as a function of amplitude ratio at 6 dB
SNR.

3) Performance With Respect to Phase Difference: We
varied the phase difference between the simulated double
scatterers in this simulation to further verify the generalization
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Fig. 12. Effective detection rate ρd as a function of phase difference 
φ
under the case: N = 25, SNR = 6 dB and α = 0.6.

TABLE II

STATISTICS OF EVALUATION ON FALSE DETECTION

ability of the proposed algorithm. Fig. 12 demonstrates us an
example of the effective detection rate when N = 25 and
SNR = 6 dB, with the normalized distance α = 0.6.
The double scatterers in the simulation are set to have identical
amplitude. As we can see, although the phase difference 
φ
affects the performance, the proposed algorithm is still capable
of providing satisfactory super-resolution power even in the
worst case, where the phase difference 
φ = 0.

D. Analysis of False Detection

In this section, we will provide a quantitative assessment
about false detection. We used the proposed algorithm to detect
0.2 million samples containing 0 scatterer, i.e., pure noise.
As it is shown in Table II, the proposed algorithm is able to
distinguish almost all samples of noise. Less than 5% samples
are falsely detected as single scatterer and only about 0.1%
as double scatterers. The low false alarm attributes to the
powerful model order selection with known noise variance in
the simulation. However, in real-world application, the noise
variance needs to be estimated. Therefore, Table II shows the
upper limit.

E. Performance at Limited Number of Measurements

This simulation was carried out to verify the performance
of the proposed algorithm at limited number of baselines.
We simulated data with only six baselines according to a
real TanDEM-X images stack we have. The baseline ranges
from −565.5 to 373.2 m. Fig. 13 compares the performance
of the two algorithms at limited number of measurements.
As one can see, in the noisy case, i.e., SNR = 0 dB, the

two algorithms have similar performance. However, with the
increase of the SNR level, the proposed algorithm outperforms
SL1MMER by a fair margin. To be specific, the proposed
algorithm outperforms SL1MMER by about 20% effective
detection rate in moderate super-resolving cases at 6 dB
SNR. At high SNR level, i.e., 10 dB, the proposed algorithm
provides 20%–30% higher effective detection rate even in
extremely super-resolving cases, where the double scatterers
are spaced closer than 0.5 ρs .

F. Performance Verification Using Real Data

For a better evaluation of the proposed algorithm,
we worked with a stack of six pairs of TanDEM-X high
resolution staring spotlight images, with each pair acquired
in pursuit monostatic mode, with a slant-range resolution of
0.6 m and an azimuth resolution of 0.25 m. The pairs were
acquired between 2014 and 2015. Table III lists the detailed
baselines. The elevation aperture size of about 940 m results
in about 12 m inherent elevation resolution. Six interferograms
were formed and registered to a single master. Since each inter-
ferogram was acquired in pursuit monostatic mode, the motion
phase is negligible. An optical image of the test site from
Google Earth and the SAR mean intensity image are showed
in Fig. 14. The yellow arrow indicates the range direction. The
atmospheric effects and deformation are ignored since the tem-
poral baselines are negligible. Preprocessing, such as multiple
SAR images coregistration and phase calibration were carried
out using the German Aerospace Center (DLR’s) integrated
wide area processor (IWAP) [40]. Moreover, we manually
selected a coherence point on the ground as reference and set
its elevation as zero.

γ -Net employed for the real data experiment was trained
with data simulated using the real baseline distribution. The
training data contains four million samples generated with
the same strategy mentioned in the simulation setup. After
training, γ -Net can be directly applied in the upcoming
TomoSAR processing on real data.

We use the proposed algorithm to reconstruct the whole test
site and demonstrate the super-resolution power by comparing
to the results derived by SL1MMER. The complete compari-
son of the reconstruction results of the test site is demonstrated
in Figs. 15–17. Fig. 15 depicts only the reconstruction of
single scatterer detected by both algorithms. Fig. 16 demon-
strates the elevation estimates of detected single scatterers
combined with the top layer of detected double scatterers.
Comparing Figs. 15 and 16, we can see that both algorithms
are able to detect dense double scatterers, which contribute to
significant information increment and complete the structure of
individual buildings shown in the test site. For a better view
of the separation of overlaid scatterers, we demonstrate the
top and bottom layer of detected double scatterers separately
in Fig. 17. As we can see, the density of double scatterers
detected by the proposed algorithm and SL1MMER is almost
the same, meaning that both algorithms possess similar or
even the same super-resolution power. However, it is worth
mentioning that the proposed algorithm is more powerful
to separate close layover. At the top the building, most
reflections from roof and facade are overlaid. Comparing to
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Fig. 13. Effective detection rate Pd as a function of the normalized elevation distance between double scatterers simulated with six real baselines. The
simulated double scatterers are set to have identical phase and amplitude, i.e., the worst case. For each pair of (SNR, α), 0.2 million Monte Carlo trials were
simulated. (a) Proposed algorithm. (b) SL1MMER.

Fig. 14. Test site. (Left) Optical image from Google Earth. (Right) SAR mean intensity image.

TABLE III

DETAILED INTRODUCTION OF SPATIAL BASELINES OF THE HIGH-RESOLUTION TANDEM-X STACK

SL1MMER, the proposed algorithm captures more reflection
from the facade. This confirms the finding in Fig. 13 that the
proposed algorithm outperforms SL1MMER at low number of
measurements.

In terms of detection rate, the proposed algorithm is com-
parable to that of SL1MMER. Although there is no ground
truth, we compare the agreement of the double scatterers
detection of the both algorithms (shown in Table IV). For the
whole test site, 38.97% and 37.76% of pixels are detected as
double scatterers by the proposed algorithm and SL1MMER,
respectively. 36.56% of the pixels were detected as double
scatterers by both algorithms. Only 2.4% were only detected

TABLE IV

PERCENTAGE OF SCATTERERS DETECTION FOR THE TWO ALGORITHMS

double scatterers by the proposed algorithm, and only 1.2%
were only detected by SL1MMER.

However, as can be seen in Figs. 15–17, the reconstruc-
tion results derived from both algorithms seem slight noisy.
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Fig. 15. Reconstructed and color-coded elevation of detected single scatterer. (a) Proposed algorithm. (b) SL1MMER algorithm.

Fig. 16. Reconstructed and color-coded elevation of detected single scatterer + top layer of the detected double scatterers. (a) Proposed algorithm.
(b) SL1MMER algorithm.

The noise in Figs. 15–17 attributes to the false alarm of sin-
gle/double scatterers. As we have discussed in Section IV-E,
the model order selection requires the observation’s noise
variance. In simulations, the noise variance is known. Hence,
we can clean almost all outliers and distinguish single and
double scatterers correctly. However, in real-world processing,
the noise variance needs to be estimated, thus the model order
selection cannot clean outliers perfectly and will introduce
noise caused by false alarm of single/double scatterers.

V. DISCUSSION

A. Analysis of Computational Complexity

We assume O(1) to be the computational complexity of
one multiplication. The computational complexity of the pro-
posed algorithm, as well as the original ISTA, is mainly
determined by O(Ks L2), where Ks is the number of layers
or the number of iterations. For the proposed algorithm, Ks

is set as 12. Comparing to the original ISTA, which usually
requires hundreds or even thousands of iteration, the compu-
tational efficiency of the proposed algorithm is two to three
orders of magnitude better. Moreover, other efficient L1 norm

minimization solvers, such as fast iterative shrinkage thresh-
olding algorithm (FISTA) [41], ADMM [25], and randomized
blockwise proximal gradient (RBPG) [42], usually need about
100 iterations to converge and achieve reasonable estimation
accuracy. Comparing to those efficient solvers, the proposed
algorithm is still about one order of magnitude more efficient.

In our experiments, for a single dataset containing 0.2 mil-
lion Monte Carlo trials simulated using the aforementioned
setup, SL1MMER requires about ten CPU hours for the
TomoSAR processing. On the contrary, it takes only a few
CPU minutes when a trained γ -Net is employed, despite the
fact that about 9 h are required for training the model with
a single NVIDIA RTX 2080 GPU. However, the fixed cost
of model training diminishes when we further increase the
amount of the data. Fig. 18 provides us an intuitive view
of the time consumption of the two methods for TomoSAR
processing. As we can see, the training procedure dominates
the time consumption of the proposed algorithm and the
increment of the amount of data will not burden the time
consumption seriously. In the contrast, the time consump-
tion of SL1MMER escalates with the increasing amount of
data, especially when limited measurements are available.
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Fig. 17. Reconstructed and color-coded elevation of detected double scatterers. Top layer detected by the (a) proposed algorithm and (b) SL1MMER. Bottom
layer detected by the (c) proposed algorithm and (d) SL1MMER.

In real-world TomoSAR processing, the number of pixels is
usually tens or even hundreds of million, thus blocking the
application of SL1MMER or other second-order CS-based
methods. The proposed algorithm is able to complete the
processing, including the training procedure, within matters
of hours. The great superiority of the proposed algorithm
in computational efficiency makes large-scale super-resolving
TomoSAR processing feasible and realizable.

In addition, it is worth mentioning that the proposed algo-
rithm maintains the elevation estimation accuracy in the mean-
while. The proposed algorithm employed the neural network
with special structure, which can be trained as a more general
model and is more likely to reach the global minimum and
achieve better results. A detailed investigation about how deep
learning improves the estimation efficiency for TomoSAR
inversion will be executed in our following study.

B. Parameter Selection

1) Step Size in γ -Net: As it is stated in (7), a manual
selected step size is required for the initialization of the train-
able weights in γ -Net. To select the step size, the Lipschitz
constant Ls is required, which is the largest eigenvalue of
RHR. Usually, a proper step size can be taken as (1/Ls). In our
experiments, we fix the step size as (1/2Ls) to guarantee the
convergence of γ -Net.

2) Percentage ρ in the Support Selection: An empirical
formula is introduced in [33] to choose a proper percentage
ρi for the i th layer of γ -Net for the support selection

ρi = max(p · i, pmax) (18)

where p is a positive constant and pmax is the upper bound
of the percentage of the support cardinality. Both p and pmax

can be selected using cross validation. From our experience,
we fix the percentage ρi as 5% for all layers of γ -Net, which
leads to satisfactory performance for our application.

C. Piecewise Linear Function

The learning architecture of γ -Net, where the output of the
current layer is generated only directly from the output of
the previous layer, leads to an error propagation phenomenon.
Specifically, errors in the first few layers of γ -Net will be prop-
agated and further amplified in the following layers. Moreover,
the most serious problem is that once useful information
is discarded in the previous layers, it is no longer possible
for the upcoming layers to utilize the discarded information.
The conventional soft-thresholding function simply prunes
elements, whose magnitude is smaller than the threshold,
to zero, which is very likely to discard information. The
piecewise linear function is a smooth alternative of the soft-
thresholding function. Instead of simply pruning elements with
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Fig. 18. Comparison of time consumption between the proposed algorithm and SL1MMER. (a) On dataset simulated using 25 regularly distributed baselines
at 6 dB. (b) On dataset simulated using six real baselines at 6 dB. The training time will be affected only by the size of training data and the number of
training epochs we set. Different baseline configuration does not affect the training time. On the contrary, the time consumption of SL1MMER is strongly
dependent on the number of baselines. When limited images are available, the time consumption of SL1MMER escalates with the increasing number of data,
whereas the inference time of the trained γ -Net is negligible. The proposed algorithm shows great computational efficiency in processing regular TomoSAR
data, which usually contains tens of million pixels.

small magnitude, the piecewise linear function just further
minifies them to maintain information as much as possible and
execute the shrinkage step in the meanwhile, thus moderating
the information loss caused by the learning architecture and
improving the performance.

D. Limitations of the Proposed Algorithm

1) Training Time: In the training procedure, there are
2 × N L K + 5 × K free trainable parameters. From our
experience, about 2000 epochs are usually required for training
the model, which takes about 9 h when a single NVIDIA
RTX 2080 GPU is employed. Due to the inevitable time
consumption of the training, the proposed algorithm is not rec-
ommended for processing small datasets because it consumes
less time when conventional CS-based methods are used.

Similar to all other deep learning-based models, the train-
ing time could also become a burden when the task is
to process many stacks with distinct baseline distributions.
In our experiments, we simulated training data with the exact
baselines as the test data. Ideally in real data processing,
we shall train a separate model for each stack, which is
very time consuming. However, our models show moderate
tolerance to the baseline discrepancies between the train-
ing and the testing data. This is elaborated in more detail
in Section V-D.2.

2) Baseline Perturbation: The biggest challenge to our
deep learning model is the baseline discrepancies between the
training and the testing data, because the baseline distribution
is rather unique for each SAR interferometric stack. As a
preliminary study, we test the proposed algorithm on testing
data with slight baseline perturbation and find that the slight
perturbation does not degrade the performance significantly.
To be specific, we add random perturbation uniformly dis-
tributed in the range [−10, 10 m], i.e., about 15% of the
baseline standard deviation, to the 25 baselines. Applying

the pretrained γ -Net on the data with baselines perturbation
shows that the effective detection rate decreases only 3% to
5% and the estimation accuracy as well as the bias retain
nearly the same. This shows a good transferability of our
trained model. However, further study is required to guarantee
the performance of the proposed algorithm for large-scale
processing.

3) Application to More Complex Scenarios: When the
proposed algorithm is applied to more complex scenarios,
i.e., more than two scatterers are overlaid in a single resolution
unit, we are not capable of detecting and separating all of
them. We tested the proposed algorithm in the three-scatterer
case and found that the proposed algorithm tends to detect
overlaid triple scatterers as double scatterers locating between
the ground truth. Due to the fact that triple scatterers are
not considered and covered in the training phase, the poor
performance in coping with triple scatterers is explainable.
From our perspective, the solution to this problem can be
twofold. First, we can enrich the training data by introducing
samples containing more scatterers. Second, we can view sam-
ples containing more than two scatterers as out-of-distribution
samples, since in real-world processing only a tiny minority
of pixels contain more than two scatterers. We can then use
Dirichlet prior network (DPN) [43], [44] to detect these out-
of-distribution data and solve it using CS solvers.

4) False Alarm Caused by Model Order Selection: The
proposed algorithm employed -Net to obtain a preliminary
sparse estimate of the reflectivity profile. After that, the
model order selection step is followed to find the best model.
However, the model order selection requires the observation’s
noise variance, which needs to be estimated in real data.
As a result of inaccurate estimation of the noise variance, the
model order selection will introduce noise caused by false
alarm and the final reconstruction results will be affected
accordingly.
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VI. CONCLUSION

In this article, an advanced super-resolution TomoSAR
inversion approach based on deep learning is proposed.
We improved the complex-valued learned ISTA algorithm and
proposed γ -Net by applying weight coupling structure, intro-
ducing support selection and employing the piecewise linear
function instead of soft-thresholding. Experiments show that
the proposed algorithm is capable of solving the L2–L1 mixed
norm minimization efficiently. Rigorous evaluation shows that
the proposed approach is able to deliver competitive perfor-
mance to the state-of-the-art in terms of the super-resolution
capability and elevation estimation accuracy. This article opens
a perspective on super-resolving TomoSAR inversion via deep
learning and shows great potential of applying deep learning
to solve other sparse reconstruction problems. In the future,
we aim to extend the deep learning-based approach to higher
dimensional spectral estimation problems, especially to dif-
ferential TomoSAR reconstruction. Moreover, we will further
exploit the power of deep learning to improve the performance,
e.g., introducing long short-term memory (LSTM) unit to
γ -Net to make use of historic information.
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Abstract— Finding sparse solutions of underdetermined lin-
ear systems commonly requires the solving of L1 regularized
least-squares minimization problem, which is also known as
the basis pursuit denoising (BPDN). They are computationally
expensive since they cannot be solved analytically. An emerging
technique known as deep unrolling provided a good combina-
tion of the descriptive ability of neural networks, explainable,
and computational efficiency for BPDN. Many unrolled neural
networks for BPDN, e.g., learned iterative shrinkage threshold-
ing algorithm and its variants, employ shrinkage functions to
prune elements with small magnitude. Through experiments on
synthetic aperture radar tomography (TomoSAR), we discover
the shrinkage step leads to unavoidable information loss in the
dynamics of networks and degrades the performance of the
model. We propose a recurrent neural network (RNN) with novel
sparse minimal gated units (SMGUs) to solve the information loss
issue. The proposed RNN architecture with SMGUs benefits from
incorporating historical information into optimization and, thus,
effectively preserves full information in the final output. Taking
TomoSAR inversion as an example, extensive simulations demon-
strated that the proposed RNN outperforms the state-of-the-
art deep learning-based algorithm in terms of super-resolution
power and generalization ability. It achieved 10%–20% higher
double-scatterer detection rate and is less sensitive to phase
and amplitude ratio difference between scatterers. Test on real
TerraSAR-X spotlight images also shows the high-quality 3-D
reconstruction of the test site.

Index Terms— Basis pursuit denoising (BPDN), recurrent
neural network (RNN), sparse reconstruction, synthetic aperture
radar tomography (TomoSAR).

I. INTRODUCTION

A. Motivation

SPARSE solutions are ordinarily desired in a multitude
of fields, such as radar imaging, medical imaging, and
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acoustics signal processing. Compressive sensing (CS) theory
tells that the exact solution in the absence of noise is the signal
with the minimum L0-norm while still fulfilling the forward
model. As the L0-norm minimization is NP-hard, this is often
solved by L1-norm minimization. The unconstrained form of
a linear system can be formulated as follows:

min
x

||Ax − b||22 + λ||x ||1 (1)

where A, x, and b are the sensing matrix, the signal to be
retrieved, and the measurements. Solving (1) is an uncon-
strained convex optimization problem, whose objective func-
tion is nondifferentiable. It is also known as basis pursuit
denoising (BPDN) [1]. In the field of remote sensing, sparse
signals are widely expected. Therefore, BPDN is broadly
employed to exploit sparsity prior in various remote sensing
applications, including, but not limited to, pan-sharpening [2],
spectral unmixing [3], microwave imaging [4], and synthetic
aperture radar tomography (TomoSAR) [5]. In this work,
we focus on addressing BPDN in TomoSAR inversion, but
our findings are applicable to general sparse reconstruction
problems in other fields as well.

Generic solvers for BPDN are either first- or second-
order CS-based methods [6], [7], [8]. First-order methods are
typically based on a linear approximation of gradient, e.g., the
iterative shrinkage thresholding algorithm (ISTA) [9], coordi-
nate descent (CD) [10], and alternating direction method of
multipliers (ADMM) [11]. Second-order methods usually have
much better performance than first-order methods. An example
of the second-order method is the prime dual inferior point
method (PDIPM) [12]. It was demonstrated in [5] and [13]
that CS-based methods are able to achieve unprecedented
super-resolution ability and location accuracy compared to
conventional linear algorithm [14], [15]. In spite of the good
performance of CS-based methods, they often suffer from
heavy computational burdens due to their iterative properties
and are hard to extend to practical use.

In the past years, the advent of deep neural networks
has attracted the interest of many researchers and triggered
extensive studies due to their excellent learning and expression
power. Deep neural networks have demonstrated their avail-
ability and advanced the state-of-the-art for many problems.
More recently, an emerging deep learning algorithm coined
deep unfolding [16] was proposed to provide a concrete and
systematic connection between iterative physical model-based
algorithms and deep neural networks. Inspired by this concept,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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various neural networks were proposed to solve BPDN in CS
problems by unrolling iterative CS solvers. The first work
of deep unfolding dates back to learned ISTA (LISTA) [17],
which was designed for solving sparse recovery. LISTA unrolls
ISTA, one of the most popular algorithms, and substan-
tially improves computational efficiency and parameter tuning.
Yang et al. [18] proposed ADMM-CSnet by unrolling the
ADMM algorithm to deep hierarchical network architecture
and applied ADMM-CSnet to magnetic resonance imaging
(MRI) and natural image CS. Results in [18] indicate the favor-
able performance of ADMM-CSnet in high computational
speed. For remote sensing applications, CSR-net [19] was
proposed by combining deep unfolding structures and convolu-
tional neural network modules, and achieved fast and accurate
3-D microwave imaging. In addition, Wei et al. [20] proposed
AF-AMPNet by unrolling approximate message passing with
phase error estimation (AF-AMP) to a deep neural network.
AF-AMPNet was employed in sparse aperture (SA) inverse
SAR (ISAR) imaging and accelerated the imaging process.
Inspired by the encouraging achievements made by deep
unfolding, the TomoSAR community started to design deep
neural networks by unrolling iterative optimization solvers
for solving BPDN in TomoSAR inversion. Gao et al. [21]
unrolled and mapped vector AMP (VAMP) [22] into a neural
network for line spectral estimation and applied it to tackle
TomoSAR inversion. Results in [21] show that L-VAMP
is able to separate overlaid scatterers. γ -Net was proposed
in [23] by tailoring the complex-valued (CV) LISTA network.
γ -Net introduced weight coupling structure [24] and support
selection scheme [24] to each iteration block in LISTA and
improved the conventional soft-thresholding function by the
piecewise linear function. It was demonstrated in [23] that
γ -Net improves the computational efficiency by two to three
orders of magnitude compared to the state-of-the-art second-
order TomoSAR solver SL1MMER [13] while showing no
degradation in super-resolution ability and location accuracy.

However, unrolled neural networks do not consider histori-
cal information in the updating rules. To be exact, the output is
generated exclusively based on the output of its previous layer.
This kind of learning architecture leads to an error propagation
phenomenon, where the error in the first few layers will
be propagated and even amplified in the upcoming layers.
Moreover, when the unrolled neural networks are designed
for sparse reconstruction, shrinkage steps are usually required
to promote sparsity. The shrinkage step utilizes thresholding
functions to prune elements with a small magnitude to zero,
and such pruning causes information loss in the dynamics of
the neural network. Once useful information is discarded in
the previous layers, the upcoming layers have no longer a
chance to utilize the discarded information, thus degrading
the performance of the neural network and sometimes leading
to a large error in the final output.

B. Contribution of This Article

In this article, we aim to address the problem of information
loss caused by shrinkage steps in unrolled neural networks
designed for sparse reconstruction. To this end, we propose
a novel architecture, termed the sparse minimal gated unit

(SMGU), to incorporate historical information into optimiza-
tion so that we can promote sparsity using thresholding func-
tions and preserve full information simultaneously. In addition,
we extend SMGU to the CV domain as CV-SMGU and use it
to build a gated recurrent neural network (RNN) for solving
TomoSAR inversion. The main contribution of this article is
listed in the following.

1) We addressed the problem of information loss in
unrolled neural networks for sparse reconstruction by
a novel gated RNN. The gated RNN is built using
SMGUs, which incorporate historical information into
optimization. The proposed gated RNN is able to pro-
mote sparsity by employing shrinkage thresholding func-
tions. Simultaneously, the pruned information will be
reserved in the cell state of SMGUs; thus, full informa-
tion can be preserved in the dynamics of the network.

2) We extend the SMGU to the CV domain, called
CV-SMGU, and apply the gated RNN built with
CV-SMGUs to solve TomoSAR inversion. To the best
of our knowledge, it is the first attempt to bridge the
gated RNN and TomoSAR inversion. We may provide
novel insights and open a new prospect for future deep
learning-based TomoSAR inversion.

3) We carry out a systematic evaluation to demonstrate that
the proposed gated RNN outperforms the state-of-the-art
deep learning-based TomoSAR algorithm γ -Net in terms
of super-resolution power and generalization ability for
TomoSAR inversion.

The remainder of this article is outlined as follows. The
TomoSAR imaging model and γ -Net is briefly reviewed in
Section II. Section III provides an overview of the formulation
of SMGUs and CV-SMGUs with application to TomoSAR
inversion. Results of systematic evaluation, using simulated
and real data, are presented in Section IV. Section V discussed
the generalization ability w.r.t. baseline discrepancy and ana-
lyzed the model convergence. Finally, the conclusion of this
article is drawn in Section VI.

II. BACKGROUND

A. TomoSAR Imaging Model

In this section, we briefly introduce the TomoSAR imaging
model. Fig. 1 demonstrates the SAR imaging model at a fixed
azimuth position. A stack of CV SAR acquisitions over the
illuminated area is obtained at slightly different orbit positions
(the elevation aperture). The CV measurement gn of the nth
acquisition is the integral of the reflectivity profiles γ (s) along
the elevation direction s. The discrete TomoSAR imaging
model can be written as

g = Rγ + ε (2)

where g ∈ CN×1 is the CV SAR measurement vector and
γ ∈ CL×1 denotes the discrete reflectivity profile uniformly
sampled at elevation position sl (l = 1, 2, . . . , L) along the
elevation direction. N is the number of measurements, and L
is the number of discrete elevation indices. R ∈ CN×L is the
irregularly sampled discrete Fourier transformation mapping
matrix with Rnl = exp(− j2πξnsl), where ξn is the frequency
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Fig. 1. SAR imaging geometry at a fixed azimuth position. The elevation
synthetic aperture is built up by acquisition from slightly different incidence
angles. The flight direction is orthogonal to the plane.

proportional to the perpendicular baseline of the nth acquisi-
tion. The readers can refer to [14] for more details of the SAR
imaging model.

Since the reflectivity profile γ is sufficiently sparse in urban
areas [5], retrieving γ is a sparse reconstruction problem.
Accordingly, γ in the presence of measurement noise ε can
be estimated by BPDN optimization, which is formulated as
follows:

γ̂ = arg min
γ

��g − Rγ �2
2 + λ�γ �1

�
(3)

where λ is a regularization parameter balancing the sparsity
and data-fitting terms. It should be adjusted according to the
noise level and the desired sparsity level. The choice of a
proper λ is described in great detail in [1].

B. Review of γ -Net
As shortly mentioned previously, conventional CS-based

BPDN solvers for (3) are extremely computationally
expensive. To overcome the heavy computational burden and
make super-resolving TomoSAR inversion for large-scale
processing feasible, the authors proposed γ -Net in [23],
which tailors the first unrolling ISTA network, to mimic a
CS-based BPDN solver. To be specific, γ -Net introduces the
weight coupling structure and support selection scheme, and
improves the conventional soft-thresholding function by the
piecewise linear function. Fig. 2 illustrates us the architecture
of the i th layer in γ -Net. SS in γ -Net indicates a special
thresholding scheme called support selection, which will
select ρi percentage of entries with the largest magnitude
and trust them as “true support.” The “true support” will be
directly fed to the next layer, bypassing the shrinkage step.
ηpwl is a novel thresholding function, called piecewise linear
function, to execute shrinkage in the γ -Net. It contributes to
improving the convergence rate and reducing reconstruction
error. More details about γ -Net formulation and the full
model structure can be found in the Appendix.

However, as one can see in Fig. 2, γ -Net inherits the
learning architecture of LISTA despite modifications made by
the authors to improve the performance. Therefore, it can be
imagined that γ -Net will suffer from the same problem as
LISTA. Specifically speaking, in the learning architecture of
γ -Net, the output at the current layer is generated exclusively
from the previous output. As a natural consequence, the
final output can only utilize the information from the second

Fig. 2. Illustration of the ith layer in γ -Net.

Fig. 3. Example of unsuccessful detection of double scatterers caused by
information loss. γ -Net detects one of the double scatterers with very high
localization accuracy but fails to find the other one.

last layer. When useful or important information is pruned
by shrinkage steps in the intermediate layers, the discarded
information is no longer possible to contribute to the final
output. Consequently, a large reconstruction error in the final
output can be expected. Fig. 3 demonstrates an unsuccessful
detection of double scatterers in our experiments. In this
experiment, the double scatterers were assumed to have iden-
tical phase and amplitude and were spaced by 0.6 Rayleigh
resolution, i.e., in a super-resolution regime, and the SNR
level was set as 6 dB. In general, if we cannot resolve the
overlaid double scatterers, the reflectivity profile should have
a dominant amplitude peak between the true elevation position
of the double scatterers, as it is shown by the estimate of
a nonsuper-resolving algorithm SVD-Wiener [14] in Fig. 3.
However, γ -Net was able to detect one of the double scatterers
with very high localization accuracy but failed to find the
other one. From our perspective, it was abnormal, and we
supposed that this unsuccessful double-scatterer separation
should attribute to the information loss caused by shrinkage
steps in γ -Net. Inspecting the intermediate layers in γ -Net,
we discovered that the information of the second scatterer
gradually diminished after each shrinkage step in the inter-
mediate layers. Until the second last layer, the information of
the second scatterer fell out completely. As a result, the final
output of γ -Net, i.e., the estimate of γ , did not contain the
information of the second scatterer. Hence, we cannot detect
the second scatterer.

III. METHODOLOGY

A. Adaptive ISTA and sc2net

In the optimization community, it has been extensively
studied and proved [25], [26], [27] that incorporating historical
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TABLE I

FORMAL DEFINITION OF THE t TH LAYER IN DIFFERENT MODELS AND COMPARISON OF THEIR DIFFERENCE. γ -NET HAS NO GATED EXPRESSION.
SLSTM UNIT INTRODUCES FORGET AND INPUT GATES TO INCORPORATE HISTORICAL INFORMATION. SMGU HAS THE MINIMAL NUMBER

OF GATES WHILE MAINTAINING THE PERFORMANCE COMPARED TO THE SLSTM UNIT. CV-SMGU EXTENDS SMGU TO THE CV
DOMAIN. THE FORGET GATE IS ACTIVATED ON THE MAGNITUDE USING tanh FUNCTION INSTEAD OF THE SIGMOID FUNCTION TO

GUARANTEE THE ACTIVATION VALUE RANGING FROM 0 TO 1

information contributes to improving the algorithm perfor-
mance. Inspired by the high-level ideas from the previous
research, researchers proposed adaptive ISTA in [28] to inte-
grate and make use of historical information by introducing
two adaptive momentum vectors f and i into ISTA in each
iteration, which is formulated as follows:

c̄(t) = W2γ̂
(t−1) + W1g

c(t) = f (t) � c(t−1) + i(t) � c̄(t) (4)

γ̂ (t) = ηst
(
c(t)

)

where ηst indicates the conventional soft-thresholding function
and its CV version reads

ηst
�
γ̂ i , θi

� =

⎧
⎪⎨
⎪⎩

γ̂ i

|γ̂ i |
max

�|γ̂ i | − θi , 0
�
, |γ̂ i | �= 0

0, else.
(5)

Compared to ISTA, whose update rule can be equivalently
expressed as γ̂ (t) = ηst(c̄(t)) using the same notation, the
adaptive ISTA takes not only the current information but
also the previous information into consideration. To be exact,
at the t th iteration of the adaptive ISTA, the estimate is
generated by linear combining the historical information c(t−1)

at the previous iteration and the current information c̄(t) at
the current iteration. The historical information c(t−1) and
the current information c̄(t) are weighted by the adaptive
momentum vectors f (t) and i(t), respectively. By this means, the
final estimate of the adaptive ISTA will accumulate historical
information weighted by different f (t) and i(t) for different
iterations.

However, one problem of the adaptive ISTA is that the
two momentum vectors in each adaptive ISTA iteration are
difficult to determine. So far, there has been no analytical way
to determine the values of the adaptive momentum vectors
f (t) and i(t). Usually, they are selected by tediously handcraft
tuning, which takes a lot of time and cannot guarantee optimal
performance. To address this issue, the authors proposed
sc2net in [28] by recasting the adaptive ISTA as an RNN to
parameterize the two momentum vectors and learn them from
data. The sc2net is built by sparse long short-term memory
(SLSTM) [28] units, as it is demonstrated in Fig. 4. Each
SLSTM unit represents an individual layer of sc2net. At
the t th layer of sc2net, the input gate and the forget gate
correspond to the momentum vectors i(t) and f (t) in each
adaptive ISTA iteration, respectively. Hence, we use the same

Fig. 4. Sc2net and detailed learning architecture of SLSTM unit. Each
SLSTM unit builds an individual layer of sc2net.

notation in SLSTM units to describe the input and forget gates.
The two gates in each SLSTM unit are parameterized with
the input data g and the output γ̂ (t−1) at the previous layer as
follows:

i(t) = σ



W(t)
i2 γ̂ (t−1) + W(t)

i1 g
�

f (t) = σ



W(t)
f 2γ̂

(t−1) + W(t)
f 1g

�
. (6)

To clarify, the SLSTM unit does not have an output gate
like conventional LSTM units. By substituting (6) into (4),
we have the formal definition of the SLSTM unit, as it is listed
in Table I. Wi1, Wi2, W f 1, and W f 2 denote four trainable
weight matrices to determine the input and forget gates in each
SLSTM unit. It is worth mentioning that the weight matrices
W1 and W2 are also learned from data, while they are shared
for all SLSTM units in an individual sc2net. σ(·) indicates
the conventional sigmoid function, which is expressed as

σ(x) = 1

1 + e−x
. (7)

The sparse activation function employed in the SLSTM to pro-
mote sparse codes is the double hyperbolic tangent function,
which is abbreviated as ηdt (·) and defined as follows:

ηdt (γ̂ , s, θ) = s · �tanh(γ̂ + θ) + tanh(γ̂ − θ)



(8)
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Fig. 5. Comparison of the double hyperbolic tangent function ηdt(·) and
the soft-thresholding function. ηdt (·) effectively imitates the soft-thresholding
function within the interval of [−θ, θ ].

where s and θ denote two trainable parameters. It is worth
noting that the double hyperbolic tangent function can be
viewed as a smooth and continuously differentiable alternative
to the conventional soft-thresholding function. Its advantages
are mainly twofold. On the one hand, its second derivative
sustains for a long span, thus contributing to addressing
the gradient vanishing problem caused by the cell recurrent
connection [29]. On the other hand, it is able to effectively
imitate the soft-thresholding function within the interval of
[−θ, θ ]. Fig. 5 demonstrates an example of the double hyper-
bolic tangent function and compares it to the soft-thresholding
function.

To sum up, sc2net inherits the advantage of the adaptive
ISTA, which incorporates historical information into optimiza-
tion. The cell state c(t) in each SLSTM unit of sc2net acts
as an “eye” to supervise the optimization from two aspects.
First, the long-term dependence on the previous outputs can be
captured and maintained. Second, important information will
be automatically accumulated, whereas useless or redundant
information will be forgotten, in the dynamics of sc2net.

However, when we tried to apply sc2net in TomoSAR
inversion, we discovered that a drawback of sc2net impedes
its application. As it is known, a complicated RNN model,
on the one hand, hinders theoretical analysis and empirical
understanding. On the other hand, it also implies that we
have to learn more parameters and tune more components.
As a natural result, more training sequences, which mean
more training time, and (perhaps) larger training datasets are
required. When sc2net is applied to solve TomoSAR inversion,
we need to learn four weight matrices W(t)

f 1, W(t)
f 2, W(t)

i1 , and
W(t)

i2 , which have the dimension L × L, L × N , L × L, and
L × N , respectively, to determine the forget gate f (t) and
the input gate i(t) in each individual SLSTM unit. Moreover,
SAR data are CV. Hence, there weight matrices to be learned
should be CV as well, thus duplicating the number of trainable
components and parameters since two weight matrices need to
be learned simultaneously as the real and imaginary parts of
a CV weight matrix. Through our research and experiments,
we found that such a large amount of high-dimensional weight

matrices to be learned makes the training procedure time-
consuming. More seriously, it is difficult for the model to
converge in the training process.

B. Complex-Valued Sparse Minimal Gated Unit

To address the aforementioned issue and better leverage
the power of incorporating historical information for solving
TomoSAR inversion, it is necessary to reduce the components
and simplify the model architecture. Recently, studies and
evaluations in [30], [31], and [32] demonstrated that the gated
unit contributes to significantly improving the performance of
an RNN compared to that without any gated unit. However,
it does not signify that the more the gates, the better the
performance of an RNN. Based on this fact, the author
proposed an RNN model with only one gate, termed the
minimal gated unit (MGU), and revealed that fewer gated units
reduce the complexity but not necessarily the performance.

Inspired by the valuable works in [33] and [34], we pro-
posed SMGU, as illustrated in Fig. 6, by coupling the input
gate to the forget gate, thus further the simplifying SLSTM
unit. The detailed equations for defining the SMGU are listed
in Table I.

In the t th layer of an RNN with SMGUs, we will first
compute the forget gate f (t). In addition, the short-term
response c̄(t) is generated by combining the input data g
and the “forgotten” portion (f (t) � γ̂ (t−1)) of the output from
the previous layer. Hereafter, the new hidden state ct of the
current layer can be formulated by combining part of γ̂ (t−1)

and the short-term response c̄(t), which are determined by
(1−f (t)) and f (t), respectively. Eventually, the sparse activation
function, i.e., the double hyperbolic function, will be applied
to the current hidden state ct for shrinkage and thresholding
to promote sparsity of the output.

In this formulation, we can see that the SMGU is able to
simultaneously execute a twofold task with only one forget
gate. On the one hand, SMGU allows a compact representation
by enabling the hidden state c(t) to discard irrelevant or
redundant information. On the other hand, SMGU is capable
of controlling how much information from the previous layer
takes over. In addition, comparing the formulation of SMGU
to SLSTM in Table I, we can see that the parameter size
of SMGU is only about half of that of SLSTM since the
weight matrices W1 and W2 are shared for different layers
in a network. The main advantage brought by the significant
elimination of trainable parameters is that we can reduce the
requirement for training data, training time, and architecture
tuning.

In addition to the improvements using SMGU, an extension
of SMGU to the complex domain is required. CV-SMGU
has essentially the same structure as SMGU despite the two
differences. First, each neuron in CV-SMGU has two channels
indicating the real and imaginary parts of a complex number,
respectively. Often, the real and imaginary parts are not
directly activated. Instead, the activation is performed on the
magnitude of the complex number. Hence, it is no longer
appropriate to use the sigmoid function for activation to gener-
ate the forget gate since the magnitude is always greater than
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Fig. 6. Structure of the proposed SMGU. f indicated the only gate in each SMGU.

zero leading to the undesired result being always greater than
0.5 after activation. To tackle this problem, we employed the
“tanh” function instead of sigmoid to guarantee that the value
of the forget gate vector varies from 0 to 1 after activation,
as it is originally designed. By applying the aforementioned
adaptions, we have the formulations of CV-SMGU, as listed
in Table I as well. The symbols W̃∗, g̃, and γ̃ ∗ represent

W̃∗ =
[

Re(W∗) −Im(W∗)
Im(W∗) Re(W∗)

]

g̃ =
[

Re(g)
Im(g)

]

γ̃ ∗ =
�

Re
�
γ̂ ∗�

Im
�
γ̂ ∗�

�

where Re(·) and Im(·) denote the real and imaginary opera-
tors, respectively. ηcv−dt (·) is the CV version of the double
hyperbolic function applied componentwise and expressed as
follows:
ηcv−dt (γ̂ , s, θ)

=

⎧
⎪⎨
⎪⎩

γ̂ i

|γ̂ i |
s · e j ·� (γ̂ )

�
tanh(|γ̂ |+θ) + tanh(|γ̂ | − θ)



, |γ̂ i | �= 0

0, else.

(9)

Table II summarizes and compares the features of different
unrolled RNNs. Through experiments, we found that gated
unrolled RNNs require significantly fewer layers to achieve
comparable or even better performance. Moreover, the SMGU
simplifies the model structure by coupling the two gates,
thus significantly eliminating the number of free trainable
parameters. Even if the CV-SMGU duplicates the number of
parameters for determining the gate, it will not induce a serious
memory burden or computational expense.

IV. PERFORMANCE EVALUATION

A. Simulation Setup and Model Training

In the simulation, we applied the same settings as [23], i.e.,
25 regularly distributed spatial baselines in the range of −135
to 135 m were simulated. The corresponding inherent elevation
resolution, i.e., Rayleigh resolution, amounts to about 42 m.

In the experiment, about four million training samples, half
of which are single scatterer and the others are two-scatterer
mixtures, were simulated to generate the training dataset.
To make the training dataset adequate and the simulation more
realistic, we randomized many parameters, i.e., SNR level,
amplitude, phase, and elevation position of scatterers, when
we simulated the training samples. The simulation details of
single scatterer and double scatterers are listed as follows.

1) Single Scatterer: For single scatterer, the scattering
phase φ is set to follow a uniform distribution, i.e.,
φ ∼ U(−π, π). In addition, the amplitude A of the
scatterer is simulated to be uniformly distributed in the
range of (1, 4). Hereafter, the CV scattering coefficient
γ can be generated by γ = A · exp ( jφ). The elevations
of the simulated scatterers are regularly distributed on a
1-m grid between −20 and 300 m. Once the elevation
is determined, the echo signal g ∈ C25 is generated with
different levels of SNR, which is regularly distributed
between [0 dB, 10 dB] with 11 samples.

2) Double Scatterers: We simulated two single scatterers
inside each resolution unit. The simulation of the two
single scatterers is identical to the previous step. As a
consequence, different amplitude ratios, different scat-
tering phase offsets, and different elevation distances
between the two scatterers are considered.

The model was implemented and trained under the framework
of Pytorch [35]. The employed optimizer was Adam [36].
The learning rate was set to be adaptive according to
the number of training epochs with the initial value
being 0.0001. The loss function over the training data
{(gi , γ i )}T

i=1 is mean square error (mse) loss, which is
defined as follows:

minimize
�

L(�) = 1

T

T�

i=1

||γ̂ (�, gi ) − γ i ||22 (10)

where � denotes the set of all parameters to be learned
from data. To determine the optimal structure of the network,
we validated the performance of the network with different
numbers of CV-SMGUs in terms of normalized mse (NMSE)
on a validation dataset. The validation dataset was composed
of 50 000 noise-free samples simulated using the same settings
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TABLE II

COMPARISON OF DIFFERENT UNROLLED RNNS FOR SPARSE RECONSTRUCTION

introduced in Section III, and the NMSE is defined as follows:

NMSE = 1

T

T�

i=1

�γ̂ i − γ i�2
2

�γ i�2
2

. (11)

As we can see from Table III, the NMSE gradually converges
with increasing the number of SMGUs. Moreover, after six
CV-SMGUs, a further increase in the number of CV-SMGUs
leads to marginal performance improvement. Instead, a heavier
computational burden will be brought about. Therefore, the
network we designed is composed of six CV-SMGUs.

B. Performance Assessment and Comparison to γ -Net

In this section, we carry out experiments to systematically
evaluate the performance of the proposed algorithm in terms
of super-resolution power, estimation accuracy, and general-
ization ability against different amplitude ratios and phase
differences of scatterers.

C. Super-Resolution Power and Estimation Accuracy

The first experiment sets out to study the super-resolution
power and estimation accuracy of the proposed algorithm via
a TomoSAR benchmark test [5], [14]. In the experiment,
we mimicked a facade-ground interaction by simulating
two-scatterer mixtures with increasing elevation distance
between them. The double scatterers were simulated to
have identical phase and amplitude, i.e., the worst case for
TomoSAR processing [13]. The proposed algorithm and γ -Net
were employed to resolve overlaid double scatterers at two
SNR levels, i.e., SNR∈ {0, 6} dB, which represents typical
SNR levels of a high-resolution spaceborne SAR image.
We use the effective detection rate defined in [23] to fairly
evaluate the super-resolution power. An effective detection
should satisfy the following three criteria.

1) The hypothesis test correctly decides two scatterers for
a double-scatterers signal.

2) The estimated elevation of both detected double scatter-
ers are within ±3 times CRLB w.r.t. their true elevation.

3) Both elevation estimates are also within ±0.5 ds w.r.t.
their true elevation.

Here, ds indicates the distance between the double scatterers.
Fig. 7 compares the effective detection rate Pd of the proposed
algorithm and γ -Net. It is presented as a function of the
normalized distance α, which is the ratio of the scatterers’
distance and the Rayleigh resolution α = ds/ρs . For each com-
bination of SNR and α, we simulated 0.2 million Monte Carlo
trials. From Fig. 7, one can see that the proposed algorithm and

Fig. 7. Effective detection rate of the proposed algorithm, CV-sc2net and
γ -Net as a function of the normalized elevation distance between the simulated
facade and ground with SNR = 0 and 6 dB under 0.2 million Monte Carlo
trials.

sc2net with CV-SLSTMs (CV-sc2net) have quite similar per-
formance in terms of effective detection rate. This is the same
as we expected since the CV-SMGU is constructed by simpli-
fying the CV-SLSTM. The purpose of CV-SMGU is to reduce
network components while maintaining performance. The
advantages of the proposed algorithm compared to CV-sc2net
are analyzed and discussed in Section V. When we compare
the proposed algorithm and CV-sc2net to γ -Net, we can see
that both the proposed algorithm and CV-sc2net outperform
γ -Net by a fair margin at both SNR levels. Specifically, they
are able to deliver 10%–20% higher effective detection rate in
moderate super-resolving cases at 6-dB SNR. In the noisy case
at 0-dB SNR, the proposed algorithm and CV-sc2net gradually
approach about 90% effective detection rate with the increase
in the normalized distance, whereas γ -Net reaches only about
70% effective detection rate. The superior performance of
the proposed algorithm and CV-sc2net attributes to that they
overcome the information loss in the dynamics of the network
by incorporating historic data and preserving full information.
As we have mentioned in Section II, the detection of double
scatterers is affected by information loss. We cannot detect the
scatterers whose information is discarded.

To better manifest how the incorporation of historic infor-
mation improves the performance, we simulated 2000 samples
containing double scatterers with increasing scatterers distance
at 6-dB SNR. We made a scatter plot of their elevation
estimates and color-coded the points by the detector decision
in Fig. 8. The x-axis refers to the true normalized elevation
distance of the scatterers. The y-axis shows their normalized
elevation estimates. The ideal reconstruction would be a hori-
zontal and a diagonal straight line, which represents the ground
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TABLE III

PERFORMANCE OF THE NETWORK WITH DIFFERENT NUMBER OF SMGUS. AFTER 6 SMGUS, THE PERFORMANCE IMPROVEMENT IS MARGINAL WITH
INCREASING THE NUMBER OF SMGUS. INSTEAD, THE INCREASE IN SMGUS LEADS TO HEAVIER COMPUTATIONAL BURDEN

Fig. 8. Normalized estimated elevation of facade and ground of increasing elevation distance with SNR = 6 dB and N = 25. The double scatterers were
simulated to have identical phase and amplitude. The true positions are a horizontal line referring to the ground and a diagonal line referring to the scatterers
at variable elevations. The green lines depict true positions ± 3 times CRLB of elevation estimates for single scatterers. Red dots represent samples detected
as single scatterers. Blue dots indicate detected overlaid double scatterers.

truth of the simulated ground and facade. The green lines refer
to ground truth ±3 times CRLB of single scatterer elevation
estimate. The blue dots indicate the detected double scatterers,
whereas the red dots represent that the samples were detected
as single scatterers, meaning that the second scatterer was lost
in the network output. Fig. 8 clear shows the following.

1) γ -Net experiences many more red dots locate within
±3 times CRLB w.r.t. the ground truth, meaning that it
occasionally can only detect one of the double scatterers
but is able to estimate its elevation with high precision.
We ascribe this problem to the information loss caused
by the learning structure of γ -Net. On the contrary,
the proposed algorithm utilizes CV-SMGUs to preserve
full information, thus avoiding discarding any significant
information.

2) The proposed algorithm is able to resolve double scat-
terers at much smaller scatterers’ distances. Specifically,
the proposed algorithm starts to separate double scat-
terers from about 0.15 Rayleigh resolution, whereas
γ -Net can only detect double scatterers only after about
0.3 Rayleigh resolution.

The elevation estimates of the simulated facade and ground
are plotted in Fig. 9 w.r.t. the normalized true elevation
distance. The red horizontal and slant lines indicate the ground
truth of the ground and façade, respectively. The black dashed
curves represent the ground truth ±1× CRLB. The error
bars indicate the standard deviation of the elevation estimates
with the midpoint depicting the mean value of the elevation
estimates at the given normalized true elevation distance.
We discarded the points below an effective detection rate of
5% in the figures. Due to the strict criteria of the effective
detection, both the proposed algorithm and γ -Net provide high
elevation estimation accuracy, especially at 6-dB SNR, where

the bias of the elevation estimates derived by both methods
approaches 0. However, in the extremely noisy case, we can
see that the proposed algorithm is able to estimate the elevation
with a slightly lower bias compared to γ -Net.

D. Performance w.r.t. Amplitude Ratio

In this experiment, we propose to study how the proposed
algorithm performs at different amplitude ratios of double
scatterers. The double scatterers were set to have identical
phases. The SNR level was set as 6 dB. Fig. 10 compares the
effective detection rate of the proposed algorithm and γ -Net
at different amplitude ratios. As can be seen, the effective
detection rate of both algorithms degrades with the increase
in the amplitude ratio. The reason for the degradation of the
effective detection rate is twofold. First, dark scatterers suffer
from larger and larger bias with the increase in the amplitude
ratio since their elevation estimates tend to approach the other
more prominent scatterer. Second, at a high amplitude ratio,
the energy of the second scatterer is closer to the noise level.
In real-world applications, we usually see dark scatterers at a
high amplitude ratio (≥4) as noise. However, by comparing
the two algorithms, we can see from Fig. 10 that the proposed
algorithm performs much better with the increase in the
amplitude ratio than γ -Net despite the fact that the effective
detection rate is seriously affected. From our perspective, the
better performance of the proposed algorithm attributes to that
the estimates derived by the proposed algorithm preserve the
full information; thus, we have a higher chance to retrieve
weak signals of dark scatterers.

E. Performance w.r.t. Phase Difference

As it was investigated in [13], the super-resolution power
depends strongly on the phase difference when double
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Fig. 9. Estimated elevation of simulated facade and ground: (a) SNR = 0 dB with the proposed algorithm, (b) SNR = 0 dB with γ -Net, (c) SNR = 6 dB
with the proposed algorithm, and (d) SNR = 6 dB with γ -Net. Each dot has the sample mean of all estimates as its y value and the correspond standard
deviation as the error bar. The red line segments represent the true elevation of the simulated facade and ground. The dashed curves denote the true
elevation ±1× CRLB normalized w.r.t. the Rayleigh resolution.

Fig. 10. Effective detection rate of the two algorithms w.r.t. the normalized elevation distance at different amplitude ratios.

Fig. 11. Effective detection rate ρd of the two algorithms as a function of
phase difference 	φ under the case: N = 25, SNR = 6 dB, and α = 0.6.

scatterers were spaced within the Rayleigh resolution. To eval-
uate how the proposed algorithm performs w.r.t. phase differ-
ence of double scatterers in super-resolving cases, we vary
the phase difference of simulated double scatterers in this

Fig. 12. Effective baselines of the 50 acquisitions.

experiment and test the effective detection rate. The double
scatterers are simulated with identical amplitude. Fig. 11
illustrates the effective detection rate of the proposed algorithm
and γ -Net for the case when N = 25 and SNR = 6 dB
with α = 0.6. As can be seen, both algorithms have the
worst performance at 	φ = 0 and perform better when 	φ
approaches 180◦. Compared to γ -Net, the proposed algorithm
is less sensitive to the phase difference. When 	φ = 0,
the proposed algorithm delivers about 20% higher effective
detection rate than γ -Net.

F. Practical Demonstration

For the real data experiment, we used the test data stack
over the city of Las Vegas covering Paris Hotel. The stack
is composed of 50 TerraSAR-X high-resolution spotlight
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Fig. 13. Test site. (a) Optical image from Google Earth. (b) SAR mean intensity image.

TABLE IV

SYSTEM PARAMETERS OF THE TERRASAR-X HIGH-RESOLUTION

SPOTLIGHT IMAGE STACK

images with a slant-range resolution of 0.6 m and an azimuth
resolution of 1.1 m, whose spatial baseline distribution is
demonstrated in Fig. 12. In Fig. 13, an optical image from
Google Earth and the SAR mean intensity image of the test
site are demonstrated. The images were acquired between
2008 and 2010. More details of the data stack that we use
are listed in Table IV.

We employed the DLR’s integrated wide area processor
(IWAP) [37] to carry out preprocessing like multiple SAR
images’ coregistration and phase calibration. In addition,
a coherence point on the ground was chosen as a reference.

We used the baselines of the test data stack to simulate
training data. The simulation was conducted in the same way
as introduced in the simulation setup in Section IV-A, and four
million training samples were generated. When the network
was well-trained, the proposed algorithm was directly applied
to reconstruct the elevation of the test site.

The reconstruction results of the test site are demonstrated
in Fig. 14 and compared to the results derived by γ -Net.
Fig. 14(a) and (b) illustrates color-coded elevation of single
scatterers detected by both algorithms. Fig. 14(c)–(f) depicts
the reconstruction of detected double scatterers of both algo-
rithms. The double scatterers are separated into the top and
bottom layers according to their elevation estimates, and the
top and bottom layers are demonstrated separately. By com-
paring the reconstruction results of both algorithms, we can
see that the proposed algorithm detects the double scatterers

TABLE V

PERCENTAGE OF SCATTERERS’ DETECTION FOR THE TWO ALGORITHMS

with a higher density, indicating that the proposed algorithm
has stronger super-resolution power. A closer inspection of the
reconstruction of double scatterers shows that a serious layover
exists on the top of the cross-building. Moreover, the elevation
estimates of detected double scatterers indicate that the top
layer is mainly caused by reflections from the building roof
and building facade, whereas the bottom layer is composed of
scatterers on the ground or lower infrastructures.

To provide a more intuitive comparison of the
super-resolution power of both algorithms, we summarized
the scatterers’ detection of both algorithms in Table V.
As it is shown in Table V, most pixels are detected as zero
scatterers by the two algorithms because the fountain and
many low infrastructures in the test site exhibit no strong
scattering, which can be seen in Fig. 13(b). Compared to
γ -Net, the proposed algorithm detected fewer single scatterers
(33.30%) but more double scatterers. Comparison between
the double scatterers detected by both algorithms shows that
the proposed algorithm is able to detect 95.2% of the double
scatterers detected by γ -Net. Moreover, it detects 50% more
double scatterers than γ -Net.

Further investigation was conducted to inspect the improve-
ment of double-scatterer detection. The histogram of detected
double scatterers’ elevation difference from the proposed
algorithm and γ -Net is shown in Fig. 15. In the nonsuper-
resolution region, especially when the distance between dou-
ble scatterers is larger than twice Raleigh resolution, the
two algorithms have a comparable performance of double
scatterers’ detection. However, in the super-resolution region,
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Fig. 14. Reconstructed and color-coded elevation of detected scatterers. From (Left) to (Right): elevation estimates derived by the proposed algorithm and
γ -Net, respectively. From (Top) to (Bottom): Color-coded elevation of detected single scatterers, the top layer of detected double scatterers, and the bottom
layer of detected double scatterers, respectively. (a) Single scatterer detected by the proposed algorithm. (b) Single scatterer detected by γ -Net. (c) Top layer
of double scatterers detected by the proposed algorithm. (d) Top layer of double scatterers detected by γ -Net. (e) Bottom layer of double scatterers detected
by the proposed algorithm. (f) Bottom layer of double scatterers detected by γ -Net.
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Fig. 15. Histogram of the elevation distance between the detected double
scatterers from the proposed algorithm and γ -Net. The proposed algorithm
shows significantly more detection in the super-resolution region.

the proposed algorithm delivers obviously stronger resolution
ability.

V. DISCUSSION

A. Generalization Ability Against Baselines’ Discrepancy

The effective baseline in an SAR image varies according
to the range and azimuth location. A deep learning model
trained with a fixed set of baselines may have undesired
performance when being applied to the whole image stack,
as baseline discrepancies between training and testing data
may cause data domain shifts. In this experiment, we verify
the generalization ability against baseline discrepancies. The
network with six CV-SMGUs is trained using 25 regularly
distributed baselines as introduced in the simulation setup.
Then, we add random perturbation uniformly distributed in
the range [5 m, 10 m], i.e., about [7%, 14%] of the standard
deviation of the 25 regularly distributed baselines, to the
25 regularly distributed baselines. 100 different baselines’
distributions were generated. For each baseline distribution,
we carry out a Monte Carlo simulation at 6-dB SNR for
each baselines’ distribution with 0.2 million Monte Carlo trials
at each discrete normalized distance. Fig. 16 demonstrates
the effective detection rate of the proposed algorithm when
we apply the pretrained network to the data generated with
baseline perturbations. The red line represents the reference,
i.e., the pretrained network is applied to data simulated with
the same baselines’ distribution. The green line indicates
the average effective detection rate of the 100 Monte Carlo
simulations with the blue error bars depicting the standard
deviation. As one can see, the proposed algorithm shows a
good generalization ability against baselines’ discrepancy with
the effective detection rate decreasing only 5%–8% compared
to the reference. Therefore, we see the proposed algorithm as
a promising tool for large-scale TomoSAR processing since
the biggest baselines’ difference of a typical spaceborne SAR
image will not exceed the perturbation that we simulated.

However, for baselines with large perturbations or even
completely different distributions, the proposed algorithm is
not an estimation efficient method. We carried out an addi-
tional experiment to test the boundary of the generalization

Fig. 16. Effective detection rate as a function of α at different baselines’
distributions. The proposed algorithm shows a good generalization ability
against baselines’ discrepancy with the effective detection rate decreasing only
5%–8%.

Fig. 17. Effective detection rate as a function of α at baselines with
increasing perturbation. First, the effective detection rate decreases slowly
with the increase in the baseline perturbation. When the perturbation is larger
than 15 m, the performance of the proposed algorithm degrades dramatically.

ability by further increasing baseline perturbation. As we can
see in Fig. 17, with the increase in the baseline discrepancy,
the effective detection rate decreases slowly at first. When
the perturbation is larger than 15 m, the performance of the
proposed algorithm degrades dramatically. According to the
test result, it indicates that 15 m might be the boundary for
the proposed algorithm to have reasonable performance for the
baseline setting in this simulation.

When we set out sights on global urban mapping using
TomoSAR, the huge discrepancy between baselines of dif-
ferent data stacks will be a severe challenge. We still need
to explore a more general and also computationally efficient
algorithm.

B. Convergence Analysis

In this section, we propose to investigate the influence
of CV-SGMUs on convergence performance in comparison
with CV-SLSTMs. We use an RNN with six CV-SLSTMs
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Fig. 18. Training loss [dB] versus epochs on simulated data. CV-SMGUs
have faster convergence and lower overall loss.

as a baseline. Fig. 18 compares the objective loss [see
(10)] with increasing training epochs. From Fig. 18, we can
observe that CV-SMGUs contribute to faster convergence.
To be specific, the RNN with CV-SMGUs needs only about
500 epochs to achieve convergence, while the RNN with
CV-SLSTMs requires more than 1000 epochs to converge.
Furthermore, CV-SMGUs lead to slightly lower overall costs
than CV-SLSTMs.

C. Requirement of Training Data

As we have clarified in Section III-B, the CV-SMGU has
only one gate, i.e., the minimum number of gates; thus, it has
fewer trainable parameters and a simpler structure. In this
experiment, we study how this simpler model contributes to
reducing the requirement for training data. We compare two
RNNs with six CV-SMGUs and six CV-SLSTMs, respectively,
in terms of effective detection rate at 6-dB SNR. The distance
between double scatterers was fixed at 0.6 Rayleigh resolution,
and the double scatterers were set to have identical phase and
amplitude. The result is demonstrated in Fig. 19. As can be
seen, the RNN with CV-SMGUs has a better performance
when the two RNNs are trained with the same amount of
training samples. In addition, the RNN with CV-SMGUs
requires obviously fewer training samples to achieve optimal
performance.

VI. CONCLUSION

In this article, we proposed a novel gated RNN-based BPDN
solver for sparse reconstruction. The proposed gated RNN
adopted a novel architecture, termed SMGU, to avoid infor-
mation loss caused by shrinkage by incorporating historical
information into optimization. With the assistance of SMGUs,
we are able to capture and maintain long-term dependence
on information in previous layers. To be specific, important
information will be automatically accumulated, while useless
or redundant information will be forgotten in the dynamic
of the network. Moreover, we extended the SMGU to the
CV domain as CV-SMGU and applied it to solve TomoSAR
inversion. Laboratory and real data experiments demonstrated
that the proposed gated RNN built with CV-SMGUs

Fig. 19. Effective detection rate versus the number of training samples.
The RNN with CV-SMGUs requires less training samples to achieve optimal
performance.

outperforms the state-of-the-art deep learning-based
TomoSAR method γ -Net. The encouraging results open
up a new prospect for SAR tomography using deep learning
and motivate us to further investigate the potential of RNNs
with gated units in practical TomoSAR processing.

APPENDIX

γ -NET FORMULATION

Fig. 20 illustrates a K-layer γ -Net. Each block in Fig. 20
indicates one layer of γ -Net and is formally defined as

γ̃ i = ηss
ρi

θi

�
γ̃ i−1 + W̃i

�
g̃ − R̃γ̃ i−1

�
, θi

�
(12)

where

W̃i =
[

Re
(
Wi

) −Im
(
Wi

)

Im
(
Wi

)
Re

(
Wi

)
]
, R̃ =

[
Re(R) −Im(R)
Im(R) Re(R)

]

g̃ =
�

Re(g)
Im(g)

�
, γ̃ i =

�
Re

�
γ̂ i

�

Im
�
γ̂ i

�
�
.

θ i = [θ1
i , θ2

i , . . . , θ5
i ] denotes the set of parameters to be

learned for the piecewise linear function in the i th layer.
Wi indicates the trainable weight matrix in the i th layer,
and it is initialized using the system steering matrix R with
Wi = βRH . β is the step size. Usually, a proper step size can
be taken as (1/Ls), with Ls being the largest eigenvalue of
RHR. γ̂ i is the output of the i th layer. Re(·) and Im(·) denote
the real and imaginary operators, respectively.

SS in γ -Net indicates a special thresholding scheme called
support selection, which is formally defined as follows:

ηss
ρi

θi

�
γ̃ i

� =
�

γ̃ i i ∈ Sρi
(γ̃ )

ηpwl
�
γ̃ i , θi

�
i /∈ Sρi

(γ̃ ).
(13)

In the i th layer, the support selection will select ρi percentage
of entries with the largest magnitude and trust them as “true
support,” which will be directly fed to the next layer, bypassing
the shrinkage step. The remaining part will go through the
shrinkage step as usual. The shrinkage is executed using the
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Fig. 20. Illustration the learning architecture of a K-layer γ -Net.

piecewise linear function ηpwl , which is a novel shrinkage
thresholding function to promote sparsity while improving
convergence rate and reducing reconstruction error in the
meanwhile and expressed as

ηpwl(γ̂ , θ i)

=

⎧
⎪⎪⎨
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Abstract—Deep neural networks based on unrolled itera-1

tive algorithms have achieved remarkable success in sparse2

reconstruction applications, such as synthetic aperture radar3

(SAR) tomographic inversion (TomoSAR). However, the currently4

available deep learning-based TomoSAR algorithms are limited5

to three-dimensional (3D) reconstruction. The extension of deep6

learning-based algorithms to four-dimensional (4D) imaging, i.e.,7

differential TomoSAR (D-TomoSAR) applications, is impeded8

mainly due to the high-dimensional weight matrices required by9

the network designed for D-TomoSAR inversion, which typically10

contain millions of freely trainable parameters. Learning such11

huge number of weights requires an enormous number of train-12

ing samples, resulting in a large memory burden and excessive13

time consumption. To tackle this issue, we propose an efficient14

and accurate algorithm called HyperLISTA-ABT. The weights in15

HyperLISTA-ABT are determined in an analytical way according16

to a minimum coherence criterion, trimming the model down to17

an ultra-light one with only three hyperparameters. Additionally,18

HyperLISTA-ABT improves the global thresholding by utilizing19

an adaptive blockwise thresholding scheme, which applies block-20

coordinate techniques and conducts thresholding in local blocks,21

so that weak expressions and local features can be retained in the22

shrinkage step layer by layer. Simulations were performed and23

demonstrated the effectiveness of our approach, showing that24

HyperLISTA-ABT achieves superior computational efficiency25

and with no significant performance degradation compared to26

state-of-the-art methods. Real data experiments showed that27

a high-quality 4D point cloud could be reconstructed over a28

large area by the proposed HyperLISTA-ABT with affordable29

computational resources and in a fast time.30

Index Terms—Differential SAR tomography (D-TomoSAR),31

HyperLISTA, sparse recovery, unrolling algorithms.32

I. INTRODUCTION33

Synthetic aperture radar tomography (TomoSAR) has at-34

tracted significant interest due to its capability in 3-D re-35

construction, particularly for urban areas [1] [2] [3] [4].36

Compressive sensing [5] [6] (CS)-based algorithms are usually37
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preferred for solving TomoSAR inversion [7] [8] [9]. However, 38

the heavy computational cost of CS-based methods makes 39

them less applicable for large-scale processing. Among the 40

different methods aiming to tackle this issue, deep neural 41

networks have been employed in speeding up TomoSAR 42

inversion. In the work presented in [10], TomoSAR inversion 43

was approached as a classification problem, and a conventional 44

convolutional neural network (CNN) was employed to solve 45

the problem. However, this approach was limited to the 46

detection of single scatterers, and it did not fully address the 47

challenges of TomoSAR inversion for complex scenes with 48

multiple scatterers and variations in the elevation direction. 49

More recently, thanks to an emerging deep learning technique 50

called deep unfolding [11], the authors proposed γ-Net in [12] 51

for improving the unrolled iterative shrinkage thresholding 52

algorithm (ISTA)-network. It was shown that γ-Net could 53

succeed in accelerating the processing speed by 2-3 order of 54

magnitude while maintaining a comparable super-resolution 55

power and location accuracy compared to second-order CS- 56

solvers. In addition, a gated recurrent structure, dubbed as 57

complex-valued sparse minimal gated units (CV-SMGUs), was 58

proposed in [13] that incorporates historical information into 59

the dynamics of network, thus preserving the full information. 60

As discussed in [13], CV-SMGUs could outperform γ-Net by 61

a fair margin. 62

However, to the best of our knowledge, deep learning- 63

based TomoSAR algorithms are to date still confined to 3- 64

D reconstruction cases. Considering that spaceborne datasets 65

are usually acquired in the repeat-pass mode at different 66

time stamps, often over several years, it is necessary to 67

additionally account for a potential deformation of objects in 68

the estimation, such as seasonal motion caused by thermal 69

dilation or linear motions like subsidence. The 4-D imaging 70

technique taking into account additional deformation parame- 71

ters is known as differential TomoSAR (D-TomoSAR) [1] [14] 72

[15] [16]. 73

The limitation of deep learning-based algorithms in solv- 74

ing D-TomoSAR inversion is mainly attributed to the high- 75

dimensional weight matrices to be learned in the network. For 76

modern deep learning-based algorithms, like γ-Net and CV- 77

SMGUs, the size of the weight matrices is usually related 78

to the discretization level. In D-TomoSAR cases, especially 79

when multi-component motion terms are considered, weight 80

matrices can easily contain over one million free trainable 81

parameters. As a consequence, it would be extremely compu- 82
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tationally inefficient to learn those weights without mentioning1

the enormous number of training samples required. A detailed2

analysis of this issue can be found in Section III.A of the3

present paper.4

To tackle the computational challenges posed by learning5

huge weights, a pioneering solution was introduced in the6

seminal work by Liu et al. [17]. In their research, they pro-7

posed an analytical weight determination method. This method8

was further refined by them and extended into HyperLISTA9

[18]. By employing analytical weight determination, a novel10

perspective emerges for leveraging deep learning-based algo-11

rithms in D-TomoSAR inversion. Specifically, the optimization12

of weights using a data-free approach becomes possible,13

circumventing the need for an extensive number of training14

samples. This innovative approach effectively overcomes the15

limitations that were previously encountered in deep learning-16

based D-TomoSAR inversion.17

However, it is important to note that, similar to LISTA,18

HyperLISTA employs a global thresholding scheme where19

a unified threshold is used to prune all entries. The choice20

of an appropriate threshold is thus crucial. A high threshold21

value may result in the loss of significant information [13],22

such as local features generated by echoed signals from dark23

scatterers. On the other hand, a low threshold value can delay24

convergence and yield a solution that lacks sufficient sparsity.25

A. Contribution of the present study to the field26

To overcome the aforementioned issue in to D-TomoSAR27

inversion, we proposed an ultra-light model, named28

HyperLISTA-ABT, that improves HyperLISTA [18] through29

incorporating an adaptive blockwise thresholding (ABT)30

scheme. Same as HyperLISTA, the proposed HyperLISTA-31

ABT can be viewed as an unrolled ISTA network, whereas32

the weight matrices therein can be determined with analytical33

optimization according to the minimum coherence criterion. A34

system matrix with low mutual coherence implies a recovery35

of high probability, which is the fundamental concept of36

compressive sensing. The adaptive blockwise thresholding37

scheme in HyperLISTA-ABT enables updating the block38

coordinates and conducting a shrinkage in local regions.39

Moreover, the blocksize is adjusted layer by layer for a better40

fine-focusing ability. The main contribution of this paper is41

listed as follows:42

1) We propose the efficient and accurate algorithm43

HyperLISTA-ABT and, to the best of our knowledge,44

are the first to apply deep neural networks to solve D-45

TomoSAR and multi-component D-TomoSAR inversion.46

2) We apply a block-coordinate technique and propose an47

adaptive blockwise thresholding scheme to replace global48

thresholding in most shrinkage thresholding methods.49

Therefore, the local features from a weakly echoed signal50

can be possibly retained.51

3) We carry out a systematic performance evaluation using52

both simulated and real data. The results demonstrate53

that the proposed HyperLISTA-ABT provides competi-54

tive estimation accuracy and superior computational ef-55

ficiency. Large-scale D-TomoSAR processing was con-56

ducted, demonstrated by a 4-D point cloud reconstruction 57

over Las Vegas. 58

II. BACKGROUND 59

A. High-dimensional SAR imaging model for D-TomoSAR 60

△ b

x y

z

r

b
Elevation

Aperture 

s
△ s

Reference surface

Fig. 1: SAR imaging geometry at a fixed azimuth position.
The elevation synthetic aperture is built up by acquisition
from slightly different incidence angles. Flight direction is
orthogonal into the plane.

D-TomoSAR, employs multi-baseline and multi-temporal 61

SAR acquisitions to estimate scatterering profiles. Based on 62

the estimated scatterering profiles, we can reconstruct the 3-D 63

distribution of scatterers along the elevation direction and the 64

motion history assigned to each elevation position [1][15][19]. 65

The following describes the D-TomoSAR imaging model: 66

gn =

∫

∆s

γ(s) exp (−j2π (ξns+ 2d (s, tn) /λ)) ds. (1)

where gn is the complex-valued SAR acquisition at a certain 67

azimuth-range pixel at time tn (n = 1, 2, · · · , N ); γ(s) 68

denotes the scatterering profile along the elevation direction 69

with an extent of △s; ξ = 2bn/λr is the elevation frequency 70

proportional to the respective aperture position bn; d(s, tn) 71

depicts the line-of-sight (LOS) motion, which is a function 72

of elevation and time. The LOS motion relative to the master 73

acquisition can be modeled with a linear combination of M 74

base functions τM (tn) 75

d (s, tn) =

M∑

m=1

pm(s)τm (tn) (2)

where pm(s) is the corresponding motion coefficient to be
estimated. The choice of the base functions τm(tn) depends
on the underlying physical motion processes. Great details
about how to choose proper base functions can be found in
[16]. Taking multi-component motion into consideration, we
generalize Eq. (1) as:

gn =

∫
. . .

∫∫
γ(s)δ (p1 − p1(s), . . . , pM − pM (s)) (3)

exp (j2π (ξns+ η1,np1 + . . .+ ηM,npM )) dsdp1 . . . dpM

The inversion of the system model with multi-component 76

motion retrieves the elevation information as well as the 77



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

the motion history assigned to each elevation position, even1

if multiple scatterers are overlaid inside an resolution unit.2

Therefore, we can acquire a high-dimensional map of the3

scatterers. In the presence of noise ε, the discrete high-4

dimensional D-TomoSAR model can be expressed as:5

g = Rγ + ε (4)

where g ∈ CN×1 is the complex-valued SAR measurement6

vector and R ∈ CN×L is the irregular sampled Fourier7

transformation steering matrix, where N is the number of SAR8

acquisitions and L is the amount of the discretization in the9

signal to be reconstructed.10

As investigated in [7], usually only a few (less than 4)11

scatterers are overlaid inside an individual pixel in urban areas,12

such that γ is sufficiently sparse so that retrieving γ can be13

formulated as a sparse reconstruction problem. Accordingly,14

solving γ in the presence of noise can be formulated as a15

basis pursuit denoising (BPDN) optimization problem, which16

can be expressed as follows:17

γ̂ = argmin
γ

{
∥g −Rγ∥22 + λ∥γ∥1

}
, (5)

where λ is the regularization parameter controlling the data-18

fit terms and the signal sparsity. Great details about how to19

choose a proper value of λ according to the noise level can20

be found in [20].21

B. Review of the deep learning-based TomoSAR algorithms22

and their limitation in solving D-TomoSAR inversion23

Fig. 2: Illustration of an intermediate layer in γ-Net.

In [12] [13], the respective authors proposed two advanced24

deep learning-based algorithms by improving unrolled neural25

networks. Experimental results on both laboratory and real26

data demonstrated their strong super-resolution power and high27

location accuracy. However, their application to date is still28

limited to 3-D reconstruction. Taking γ-Net as an example,29

we will explain the difficulty of applying deep learning-based30

algorithms for solving D-TomoSAR inversion. To start with,31

we briefly go through the basics of the γ-Net architecture. Fig.32

2 illustrates us the structure of an intermediate layer of γ-Net,33

which can be formally defined as follows:34

γ̂k = ηρ
k

θk
{γ̂k−1 +WH

k (g −Rγ̂k−1),θi} (6)

More details about γ-Net can be found in [12].35

As we can see, in each γ-Net layer, a weight matrix Wk36

of the size N ×L needs to be learned. For 3-D reconstruction37

cases, the value of L is only determined by the grids number38

after the discretization of the elevation extent, thus it is39

typically in the range of hundreds for spaceborne sensors 40

and N × L will be in thousands then. However, this number 41

increases exponentially in D-TomoSAR cases when multi- 42

component motion terms, usually linear and periodic motions, 43

are taken into consideration. The training of the network then 44

becomes conversely a challenge due to the tremendous amount 45

of free trainable parameters. For instance, when we consider 46

two motion terms, i.e., linear and seasonal motion, the value 47

of L will be determined by the product of the discretized grid 48

numbers along each direction L = Ls×Lv×La, where Ls, Lv , 49

and La indicate the discretization levels for elevation, linear 50

motion, and seasonal motion, respectively. A very conservative 51

level of discretization in elevation, linear motion, and periodic 52

motion for TerraSAR-X image stacks Ls, Lv , and La would be 53

200, 50, and 50. When multiplied, the value of L will then be 54

0.5 million, meaning that, there will be millions of parameters 55

to be learned in each weight matrix. Such large weight 56

matrices result in two unavoidable downsides. First, the model 57

tends to converge at the ground truth instead of the LASSO 58

minimizer, because the update direction WH(g −Rγ) does 59

not align with the gradient of the l2 term in the LASSO 60

objective RH(g −Rγ). Therefore, we always need to train the 61

model in a supervised way. Consequently, a massive number 62

of training samples are required to train the model with huge 63

weight matrices, thus making the training procedure extremely 64

inefficient. Second, the training of the huge model requires 65

a significant amount of GPU memory, which is usually not 66

feasible with consumer-level GPUs. 67

III. METHODOLOGY 68

A. HyperLISTA with adaptive blockwise thresholding 69

(HyperLISTA-ABT) 70

To circumvent the tedious and troublesome model train-
ing caused by needing to learn huge weight matrices, an
analytical weight optimization method, which is based on
coherence minimization, was proposed in ALISTA [17] to
determine the weights in an unrolled neural network designed
for sparse recovery, such as LISTA. ALISTA combines the
superior empirical performance of fully learned methods and
significantly reduces the number of parameters, leaving only
thresholds and stepsize parameters to be learned. In addition,
an ultra-light model, called HyperLISTA, was proposed in
[18], which further trimmed down the training complexity. In
HyperLISTA, weight matrices can be computed in a similar
way to [17] and the training is reduced to tuning only three
hyperparameters from the data. The following shows us the
formal update rules of HyperLISTA:

γk+1 = ηp
k

θk (γk +WH(g −Rγk) (7)

+βk(γk − γk−1))

where

θk = c1
∥∥R+ (Rγk − g)

∥∥
1

(8)

βk = c2 ∥γk∥0 (9)

pk = c3 min

(
log

( ∥R+g∥1
∥R+ (Rγk − g)∥1

)
, L

)
(10)
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where c1, c2, and c3 indicate the three hyperparameters to1

be tuned. It is possible to learn the hyperparameters via2

backpropagation, albeit this method may be an overkill as it3

involves passing gradients through deep neural network layers4

to learn just three parameters. Less computationally expensive5

methods, such as grid search, could be employed to obtain6

a set of proper hyperparameters. Despite providing a bit less7

accurate estimate, the empirical findings in [18] showed that8

HyperLISTA is robust to perturbations in the values of c1, c2,9

and c3. In grid search, a coarse grid is first applied to find an10

interest region, and then this is zoom-in with a fine-grained11

grid. The hyperparameters are determined by minimizing the12

normalized mean square error (NMSE) over the simulated13

ground truth. The NMSE is defined as:14

NMSE =
1

T

∑ ∥γ̂ − γ∥22
∥γ∥22

(11)

where T denotes the number of samples, and ηp
(k)

θ(k) is the15

soft-thresholding function combined with the support selection16

scheme,17

ηρ
(k)

θ(k)
(γ(k)) =

{
γ(k) i ∈ Sρ(k)

(γ)

ηst(γ
(k), θ(k)) i /∈ Sρ(k)

(γ)
. (12)

Sρ(k)

(γ) contains the entries with the ρ(k) largest magnitudes.
W denotes the optimized weight matrix determined with the
minimum coherence criterion, which is defined as follows:

Ŵ = argmin
W

µ(W,R)

= argmin
W

inf
W∈CN×L

max
i̸=j

WT
:,iR:,j

s.t. ∀i ∈ {1, . . . , L} : WT
:,iR:,i = 1 (13)

Rigorous proof of the convergence and recovery upper and18

lower bound of HyperLISTA can be found in [18]. An efficient19

numerical algorithm to calculate the optimized weights is20

discussed in the Appendix.21

Inspired by the outstanding efficiency and performance22

demonstrated in [18], we consider HyperLISTA should have23

great potential in our high-dimensional D-TomoSAR inver-24

sion. However, through experiments, we discovered a draw-25

back of HyperLISTA when applied to TomoSAR. Similar to26

most thresholding algorithms, HyperLISTA suffers from an27

inherent limitation caused by the global thresholding scheme.28

Precisely, in the signal projection process for identifying the29

presence of a dictionary atom within the signal, the selection30

of an appropriate threshold is of utmost importance. The31

threshold should be chosen carefully to account for both strong32

and weak spikes in the reflectivity profile. By selecting a33

well-suited threshold, the signal projection can distinguish34

between significant spikes and noise, enabling an accurate35

identification of dictionary atoms within the signal. However,36

when utilizing HyperLISTA and other methods that employ37

global thresholding, the task of selecting an optimal threshold38

becomes exceedingly challenging. The use of a global thresh-39

old implies that the same threshold value is applied uniformly40

across all entries in the signal. This approach may lead to41

suboptimal results, as a threshold that effectively captures42

strong spikes might inadvertently suppress weaker but still 43

meaningful spikes in the reflectivity profile. Consequently, we 44

usually need to choose a relatively small c1 to have a small 45

threshold so that we can maintain some small spikes caused 46

by reflection from dark scatterers. Otherwise, the information 47

of dark scatterers would be discarded in the thresholding step 48

layer by layer. However, the use of a small threshold brings 49

about two main problems. First, the convergence would be 50

considerably slow. Second, small thresholds yield solutions 51

that are not sparse enough. 52

To cope with the aforementioned issue and better leverage 53

the power of HyperLISTA in our application, we propose 54

HyperLISTA-ABT, which is an improvement of the origi- 55

nal HyperLISTA by incorporation of an adaptive blockwise 56

thresholding (ABT) scheme that explores a local thresholding 57

strategy. The advantages of HyperLISTA-ABT is three-fold. 58

First, it conducts the thresholding in each local block, thus 59

allowing for a more refined thresholding process and possibly 60

retaining weak expressions of reflections from dark scatterers. 61

Then, it becomes possible to better capture the diverse range 62

of spike magnitudes encountered in the signal, enhancing the 63

accuracy and reliability of the reflectivity profile characteri- 64

zation. Second, HyperLISA-ABT has been shown to be more 65

efficient since it updates only one block of variables at each 66

time instead of updating all the variables together. Therefore, 67

HyperLISTA-ABT has been found to be more appropriate for 68

our large-scale and high-dimensional application. Last but not 69

the least, HyperLISTA-ABT reduces the blocksize layerwise 70

and contributes to a better fine-focusing ability. 71

According to [21] [22], the update rules of HyperLISTA-
ABT after applying block coordinate techniques can be written
as:

γk+1
ip

= ηθk
ip
(γk

ip +W T
ip (y −Ripγ

k
ip) (14)

+βk
ip(γ

k
ip − γk−1

ip
))

where ip is the index of the updated block. To clarify, in
HyperLISTA-ABT, we remove the support selection scheme
and just use the conventional soft-thresholding function. The
threshold θ(k) and the factor β(k) are determined for each
block as well:

θkip = c1

∥∥∥R+
ip

(
Ripγ

k
ip − g

)∥∥∥
1

(15)

βk
ip = c2

∥∥∥γk
ip

∥∥∥
0

(16)

where c1 > 0, c2 > 0, and c3 ∈ (0, 1) are the three 72

hyperparameters. Notably, c3 is a latent hyperparameter and 73

plays a crucial role in controlling the blocksize despite it 74

not explicitly appearing in the formula. In our application, 75

we usually initialize the blocksize according to the grid 76

number within half of the Rayleigh resolution. The block is 77

chosen with a random variants scheme where ip follows the 78

probability distribution given by: 79

Pip =
Lip∑J
j=1 Lip

, ip = 1, . . . , J (17)
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where J is the number of blocks and Lip = ||RT
ip
Rip ||. All1

the hyperparameters c1, c2, and c3 can be selected using the2

same grid search method as in HyperLISTA.3

With the blockwise threshlding scheme, local features and4

weak expressions can be possibly retained. This is due to5

the fact that many elements of the entries are not strictly6

driven to zero but to some extremely small value, thus making7

the output not strictly sparse. Therefore, a post-processing is8

usually required to clean the output and make it sparse. The9

framework of the proposed HyperLISTA-ABT is summarized10

in the following table.

Algorithm 1 Summary of the proposed algorithm

Generate steering matrix R for given baselines
Analytic weight optimization W according to Eq. (13)

Tuning of hyperparameters
Simulate ground truth of reflectivity profile γ [12]
Simulate noise-free SAR acquisitions g = Rγ
Grid search to determine the hyperparameters by
minimizing NMSE over simulated data

Inference
Init: γ(0) = RHg and blocksize B1

for k = 1, 2, · · · ,K do
Determine the number of blocks Jk
based on the blocksize Bk

for ip = 1, 2, · · · , Jk do

γ
(k+1)
ip

= η
θ
(k)
ip

(γ
(k)
ip

+W T
ip (y −Ripγ

(k)
ip

)

+ β
(k)
ip

(γ
(k)
ip
− γ

(k−1)
ip

))

θ
(k)
ip

= c1

∥∥∥R+
ip

(
Ripγ

(k)
ip
− g

)∥∥∥
1

β
(k)
ip

= c2

∥∥∥γ(k)
ip

∥∥∥
0

end for
Update blocksize with Bk+1 = c3 ·Bk

end for
Output clean-up
Model order selection and final estimation

11

IV. SIMULATIONS12

To demonstrate the improvement of the proposed13

HyperLISTA-ABT to the original HyperLISTA and compare14

it to the state-of-the-art CS-based and deep learning-based15

methods, we first conducted experiments based on TomoSAR16

inversion using simulated data. Since existing deep learning-17

based algorithms are not feasible to use with D-TomoSAR18

cases as explained in Section I, we only focused on TomoSAR19

inversion for 3-D reconstruction in the simulation.20

A. Simulation setup21

In the simulation, we conducted a well-known TomoSAR22

benchmark test [1] [7] using the same simulation settings as23

used in [12] [13]. specifically, we simulated an interferometric24

stack containing 25 baselines that are regularly distributed in25

the range of -135m to 135m and a two-scatterer mixture in 26

each resolution cell. We used the effective detection rate, 27

which is able to simultaneously reflect the super resolution 28

power and elevation estimation accuracy, to fairly evaluate the 29

performance. Detailed definition of the effective detection rate 30

can be found in [12] [13]. 31

B. Performance improvement compared to the original Hyper- 32

LISTA 33

The first experiment set out to study the performance 34

improvement of HyperLISTA-ABT compared to the original 35

HyperLISTA. In this experiment, the overlaid double scatterers 36

were simulated to have identical scattering phase varying 37

amplitude ratios. The two algorithms were set to have 15 38

layers, which is a typical number for a LISTA network 39

and its variants. Fig. 3 shows the effective detection rate of 40

HyperLISTA-ABT and the original HyperLISTA as a function 41

of the normalized elevation distance between the simulated 42

double scatterers at 6dB SNR at different amplitude ratios. 43

The results demonstrate that HyperLISTA-ABT achieved a 44

significantly higher effective detection rate than the original 45

HyperLISTA. Both algorithms (in fact, all other methods) ex- 46

perience performance degradation with respect to an increase 47

in amplitude ratio. This is attributed to two main factors. 48

Firstly, dark scatterers experience a large bias in their elevation 49

estimates at high amplitude ratios due to their elevation esti- 50

mates approaching the more prominent ones. Consequently, 51

many detections of double scatterers will not be recognized 52

as effective due to the large elevation estimate bias. Secondly, 53

the energy of dark scatterers is close to the noise level at high 54

amplitude ratios. This makes it particularly challenging for 55

HyperLISTA, which employs a global thresholding scheme, to 56

detect the local features of dark scatterers. Further elaborating, 57

when high-intensity scatterers are present in the signal, their 58

strong energy can overshadow the low-energy regions where 59

dark scatterers are located. This overshadowing effect can 60

lead to the suppression or even annihilation of the weaker 61

expressions associated with the dark scatterers. Consequently, 62

the presence of these strong intensity scatterers can mask 63

or obscure the signals originating from the dark scatterers, 64

making their detection and characterization challenging. In 65

contrast, HyperLISTA-ABT conducts thresholding in each 66

local block, which can allow retaining local information and, 67

thus, it can detect dark scatterers. This results in a higher 68

effective detection rate at high amplitude ratios. 69

C. Comparison with the state-of-the-art algorithms 70

In this section, we compared HyperLISTA-ABT to other 71

state-of-the-art algorithms for further evaluation, which are 72

deep learning-based algorithms γ-Net [12] and CV-SMGUs 73

[13], as well as the traditional CS-based method SL1MMER 74

[23] with second-order optimization. To highlight the super- 75

resolution ability of these methods, we also involved a con- 76

ventional spectral estimator SVD-Wiener [1] as a baseline in 77

the comparison. 78

The comparison was first based on the effective detection 79

rate. Two different scenarios were taken into consideration: 80
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Fig. 3: Effective detection rate of HyperLISTA-ABT and the original HyperLISTA with respect to the normalized elevation
distance at different amplitude ratios. The overlaid double scatterers were set to have an identical phase and the SNR level
was 6dB. HyperLISTA-ABT significantly outperformed HyperLISTA at high amplitude ratios between the scatterers.

SNR ∈ {0, 6}dB, which represents a noisy case, and a regular1

case with a typical SNR level in a high-resolution spaceborne2

SAR image. The comparison results are demonstrated in Fig.3

4. At each discrete normalized elevation distance, 0.2 million4

Monte Carlo trials with an identical phase and amplitude,5

which represents the worst case [23] in TomoSAR inversion,6

were simulated. The deep learning-based algorithms γ-Net7

and CV-SMGUs were built with 12 and 6 hidden layers,8

respectively. The training followed the same training strategy9

introduced in [12] [13] and was carried out using a single10

NVIDIA RTX2080 GPU. For HyperLISTA-ABT, the training11

involved analytical weight optimization and determining the12

hyperparameters via the grid search method. The number of13

iterations in HyperLISTA-ABT was set as 15.14

From the comparison results, we can see that all the15

methods except the conventional spectral estimator SVD-16

Wiener showed a great super-resolution power. The pro-17

posed HyperLISTA-ABT delivered almost the same super-18

resolution ability as γ-Net and approached the performance19

of SL1MMER in both scenarios. When focusing solely on the20

effective detection rate, it was challenging to proclaim a clear21

advantage of the proposed HyperLISTA-ABT method over the22

existing state-of-the-art approaches. In fact, when comparing it23

to CV-SMGUs, we could observe a slight underperformance.24

However, all the state-of-the-art methods come with a rela-25

tively high computational cost. Both γ-Net and CV-SMGU26

require tailored training according to the baseline distribution27

of the stack. SL1MMER is a model-based algorithm, thus28

needs no training, yet requires significantly computational time29

for solving the L1-norm minimization.30

We tested and recorded the time consumption of different31

algorithms for processing the 0.2 million Monte Carlo trials32

as well as the requirements for training data. The results are33

summarized in Table I. To clarify, all inference was conducted34

using a local CPU for a fair comparison. As can be seen in35

Table I, it took about ten hours for the deep learning-based al-36

gorithms to process 0.2 million Monte Carlo trials, which was 37

predominantly the training time. In addition, a large amount of 38

training samples was essential as well. For SL1MMER, it took 39

about 20 hours for the processing since the iterative second- 40

order optimization is computationally expensive. Further in- 41

specting the table, we can see that HyperLISTA-ABT showed 42

similar efficiency in the inference as the other deep learning- 43

based algorithms. However, HyperLISTA-ABT required no 44

training data and it took much less time for the training. In 45

total, HyperLISTA-ABT speeded up the processing by about 46

one order of magnitude compared to the other algorithms 47

tested in the experiment. 48

Upon evaluating the performance and efficiency, it was 49

observed that HyperLISTA-ABT achieved comparable perfor- 50

mance to existing state-of-the-art methods while significantly 51

improving the computational efficiency by approximately 52

one order of magnitude. This is especially advantageous 53

in the multi-component D-TomoSAR case. The application 54

of the aforementioned deep learning-based algorithms and 55

SL1MMER are very limited in the D-TomoSAR case due to 56

the need of time-consuming model training and the heavy 57

computational expense. On the contrary, the application of 58

HyperLISTA-ABT can be easily extended to computationally 59

efficient D-TomoSAR processing. Therefore, HyperLISTA- 60

ABT is a more applicable approach for the large-scale pro- 61

cessing of real data. 62

Furthermore, HyperLISTA-ABT demonstrates superior 63

transferability compared to deep learning-based algorithms. 64

Deep learning models are typically trained to fit specific 65

baseline configurations, such as a fixed number of SAR 66

acquisitions and a specific baseline distribution. While they 67

may exhibit satisfactory generalizability to small baseline 68

discrepancies [12] [13], directly applying a trained deep learn- 69

ing model to a new data stack with a different number of 70

acquisitions or a completely different baseline distribution is 71

not feasible. In such cases, time-consuming retraining of the 72
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(a) (b)

Fig. 4: Detection rate Pd as a function of the normalized elevation distance between the simulated facade and ground with
SNR = 0 dB and 6 dB, N = 25, and phase difference △ϕ = 0 (worst case) under 0.2 million Monte Carlo trials.

TABLE I: Comparison of the number of required training samples and time consumption for processing 0.2 million Monte
Carlo trials with each algorithm. The training time of HyperLISTA-ABT indicates the combined duration of both the analytic
weight optimization process and the tuning of hyperparameters. It provides a measure of the overall time required for these
essential steps.

Algorithm number of training samples training time inference time total time consumption transferability

CV-SMGUs 4 million ≈ 10 hours ≈ 0.25 h ≈ 10 h low
γ-Net 3 million ≈ 8 hours ≈ 0.17 h ≈ 8 h low
SL1MMER - - ≈ 20 h ≈ 20 h high
HyperLISTA-ABT - < 1 hour ≈ 0.25 h ≈ 1 h medium

model becomes necessary, resulting in low transferability.1

In contrast, HyperLISTA-ABT offers better transferability.2

Although it requires analytical optimization of the weight3

matrix for each new data stack, the efficiency of the an-4

alytical optimization process allows for scalability and im-5

proved transferability. This finding highlights the potential of6

HyperLISTA-ABT in enabling global urban mapping using7

TomoSAR, as it can be effectively applied to diverse data8

stacks with varying acquisition configurations and baseline9

distributions.10

V. REAL DATA EXPERIMENT11

A. Bellagio hotel12

In this real data experiment, due to the fact that there was13

no available ground truth, we purposely used the same data14

as in [24] so that we can compare our results to the results15

obtained with SL1MMER. The datastack was composed of16

29 TerraSAR-X high-resolution spotlight images covering the17

Bellagio Hotel in Las Vegas, whose baseline distribution is18

illustrated in Fig. 5. The slant-range resolution was 0.6m and19

the azimuth resolution was 1.1m. The elevation aperture size20

of about 270m resulted in the inherent elevation resolution ρs21

to be about 40m, i.e. approximately 20m resolution in height22

since the incidence angle here was 31.8◦. An optical image23

and the SAR mean intensity image of the test site are shown 24

in Fig. 6

-150 -100 -50 0 50 100 150 200

Fig. 5: Effective baselines of the 29 TerraSAR-X high-
resolution spotlight images.

25

As for the D-TomoSAR system model, a time wrap oper- 26

ation assuming only sinusoidal seasonal motion was adopted 27

as in [16] because no long-term linear motion was observed 28
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during the acquisition period of the test area.1

In Fig. 7, we compare the estimated elevation and amplitude2

of the seasonal motion of the detected single scatterers and the3

top layer of the detected double scatterers. From Fig. 7(a),4

we can see a smooth gradation of the elevation estimates5

from the building bottom top, which suggests a reasonable6

elevation estimation by HyperLISTA-ABT. Moreover, we can7

see that there is no significant difference between the re-8

sults of HyperLISTA-ABT and SL1MMER, implying that9

HyperLISTA-ABT had similar performance to SL1MMER.10

In addition, Fig. 8 shows the layover separation ability of11

HyperLISTA-ABT. As can be seen, the two layers of double12

scatterers were detected and separated by HyperLISTA-ABT.13

The top layer was mainly caused by signals from the roof and14

facade of the high rise building while the bottom layer was15

caused by signals from the ground structures.16

We also conducted some numerical comparisons of both al-17

gorithms. First, we compared the percentage of pixels detected18

as zero, one, and two scatterers by both algorithms. Compared19

to SL1MMER, we found that HyperLISTA-ABT detected20

more pixels as coherent sactterers. This does not necessarily21

mean that HyperLISTA-ABT had a better detection ability22

since there was no ground truth. We believe HyperLISTA-ABT23

detected more scatterers because HyperLISTA-ABT tends to24

maintain weak signals, which could be reflections of dark25

scatterers but also outliers caused by noise interference. The26

false detection of noise as coherent scatterers causes a speckle-27

like noise in the reconstruction result. Model order selection28

and post-processing techniques like spatial filtering can further29

mitigate such outliers.30

For further evaluation, we compared the elevation estimates31

differences of scatterers detected by both algorithms. A his-32

togram of the elevation estimates differences is shown in Fig.33

9. It can be observed that most of the elevation estimates34

differences were within 1 meter. This observation indicates35

that both algorithms yielded comparable results in terms of36

elevation estimation, instilling confidence in their reliability37

and reasonableness. Furthermore, this similarity in estimation38

accuracy suggests that HyperLISTA-ABT performed on par39

with SL1MMER. Moreover, it is worth mentioning that it40

took more than three weeks for SL1MMER to finish the D-41

TomoSAR processing over the test site, whereas it only took42

HyperLISTA-ABT several hours to complete the processing.43

TABLE II: Percentage of scatterers detection for the two
algorithms.

Algorithm Percentage of detection as
0 scatterer 1 scatterer 2 scatterers

HyperLISTA-ABT 48.48 % 44.09 % 7.43 %
SL1MMER 49.41 % 43.63 % 6.96 %

B. Large demonstration44

In this section, we applied HyperLISTA-ABT to TerraSAR-45

X high-resolution spotlight data over a large area surrounding46

the convention center in Las Vegas. The stack was composed47

of 29 acquisitions covering a time period from July 200948

to June 2010, during which the test area was undergoing 49

a pronounced subsidence centered at the convention center. 50

Therefore, the acquisitions were characterized by a multi- 51

component nonlinear motion combining linear and thermal- 52

dilation-induced seasonal motion. Fig. 10 shows us an optical 53

image and the SAR mean intensity map. The red box indicates 54

the ”epiccenter” undergoing subsidence around the convention 55

center. 56

Fig. 11 illustrates us the reconstructed elevation estimates 57

as well as the estimated amplitude maps of the two different 58

motions. As we can see from the surface model generated 59

from the elevation estimates in Fig. 11(a), we can capture 60

the shapes of individual buildings and the surrounding in- 61

frastructures, like roads, at a detailed level. In addition, Fig. 62

11(b) shows that clear deformation caused by seasonal motion 63

can be observed in the metallic building structures since they 64

were affected by thermal dilation more seriously compared 65

to surrounding infrastructures. Furthermore, as illustrated in 66

Fig. 11(c), it could be observed that the magnitude of the 67

linear subsidence increased as the scatterer getting closer to 68

the ”epicenter”. These results are consistent with the fact, 69

thus validating the effectiveness of HyperLISTA-ABT for 70

multi-component nonlinear motion estimation and giving con- 71

fidence that HyperLISTA-ABT can be applied in large-scale 72

D-TomoSAR processing. 73

VI. CONCLUSION 74

This paper proposes HyperLISTA-ABT to address the gap 75

in applying deep neural networks for solving D-TomoSAR in- 76

version. Unlike traditional methods that learn weights directly 77

from data, HyperLISTA-ABT computes the weights with an 78

analytical optimization technique by minimizing generalized 79

mutual coherence. Additionally, HyperLISTA-ABT introduces 80

an adaptive blockwise thresholding scheme that applies block 81

coordinate techniques to accelerate the algorithm. Moreover, 82

it conducts thresholding in local blocks to retain weak ex- 83

pressions of reflection from dark scatterers and consider more 84

local features. Laboratory experiments for 3D reconstruction 85

confirmed the efficiency of HyperLISTA-ABT in estimation. 86

Moreover, tests on real data over a large area demonstrated 87

that HyperLISTA-ABT can reconstruct high-quality 4D point 88

clouds, making it an efficient and accurate algorithm for future 89

large-scale or even global D-TomoSAR processing. 90

APPENDIX 91

A. Efficient algorithm to calculate weight analytically 92

As discussed in [17], it is difficult to solve Eq. (13) 93

directly and Eq. (13) can be reformulated as minimizing the 94

Frobenius norm of WHR over a linear constraint. Defining 95

W = GHGR (G ∈ CN×N is named as the Gram matrix), 96

the minimization of the Frobenius norm reads: 97

min
G

∥∥RHGHGR− I
∥∥2
F
, s.t. diag

(
RHGHGR

)
= 1.

(18)
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(a) (b)

Fig. 6: Test site. (a): optical image from Google Earth, (b): SAR mean intensity image

However, it is hard to handle the constraint in the above1

problem (18). As a solution, a matrix D = GR ∈ CN×L is2

introduced and we use the following method as an alternative:3

min
G,D

∥∥DTD − I
∥∥2
F
+
1

α
∥D−GR∥2F , s.t. diag

(
DTD

)
= 1.

(19)
With a proper α > 0, the solution to Eq. (19) approximates4

Eq. (18) and we obtain the optimized weights accordingly. The5

steps for solving the optimization problem (19) are described6

as follows.7

First, G is fixed and we update D with the projected
gradient descent (PGD):

D ← P
(
D − ζD

(
DHD − I

)
− ζ

α
(D −GR)

)
(20)

where P denotes the projection operator on the constraint8

diag
(
DTD

)
= 1, so that each column of D will be9

normalized; and ζ is the stepsize. Hereafter, we fix D and10

update the minimizer of G with11

G← DR+ (21)

where R+ represents the Moore-Penrose pseudoinverse of the12

steering matrix R. Then, we repeat the procedure until D ≈13

GR. The whole algorithm is summarized in Algorithm 2.14

REFERENCES15

[1] X. Zhu and R. Bamler, “Very high resolution spaceborne SAR tomog-16

raphy in urban environment,” IEEE Transactions on Geoscience and17

Remote Sensing, vol. 48, no. 12, pp. 4296–4308, 2010, 00125.18

[2] D. Reale, G. Fornaro, A. Pauciullo, X. Zhu, and R. Bamler, “Tomo-19

graphic imaging and monitoring of buildings with very high resolution20

SAR data,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 4,21

pp. 661–665, 2011.22

[3] X. X. Zhu and M. Shahzad, “Facade reconstruction using multiview23

spaceborne tomosar point clouds,” IEEE Transactions on Geoscience24

and Remote Sensing, vol. 52, no. 6, pp. 3541–3552, 2014.25

Algorithm 2 Efficient algorithm for analytical weight opti-
mization

Input: the steering matrix R
Init: D = R, G = I, ζ = α = 0.1
for iter= 1, 2, · · · until convergence do

update D with (20)
update G with (21)
Compute f1 =

∥∥DHD − I
∥∥2
F

Compute f2 =
∥∥(GR)HGA− I

∥∥2
F

if two consecutive f1s are close enough then
ζ = 0.1ζ
α = 0.1α
if f1 and f2 are close enough then

break
end

end
end
Output: W = GHGR

[4] G. Fornaro, F. Lombardini, A. Pauciullo, D. Reale, and F. Viviani, 26

“Tomographic processing of interferometric SAR data: Developments, 27

applications, and future research perspectives,” IEEE Signal Processing 28

Magazine, vol. 31, no. 4, pp. 41–50, 2014. 29

[5] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa- 30

tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006. 31

[6] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag- 32

azine, vol. 24, no. 4, pp. 118–121, 2007. 33

[7] X. Zhu and R. Bamler, “Tomographic SAR inversion by l1 -norm 34

regularization—the compressive sensing approach,” IEEE Transactions 35

on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3839–3846, 36

2010. 37

[8] Y. Shi, X. X. Zhu, W. Yin, and R. Bamler, “A fast and accurate 38

basis pursuit denoising algorithm with application to super-resolving 39

tomographic SAR,” IEEE Transactions on Geoscience and Remote 40

Sensing, vol. 56, no. 10, pp. 6148–6158, 10 2018. 41

[9] X. X. Zhu, N. Ge, and M. Shahzad, “Joint sparsity in SAR tomog- 42

raphy for urban mapping,” IEEE Journal of Selected Topics in Signal 43

Processing, vol. 9, no. 8, pp. 1498–1509, 2015. 44



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 7: Color-coded reconstruction results of the test site. (a) Elevation estimates using HyperLISTA-ABT in meters, (b) elevation
estimates using SL1MMER in meters, (c) estimated amplitude of seasonal motion using HyperLISTA-ABT in centimeters, (d)
estimated amplitude of seasonal motion using SL1MMER in centimeters.

[10] A. Budillon, A. C. Johnsy, G. Schirinzi, and S. Vitale, “SAR tomography1

based on deep learning,” in IGARSS 2019 - 2019 IEEE International2

Geoscience and Remote Sensing Symposium, 2019, pp. 3625–3628.3

[11] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding:4

Model-based inspiration of novel deep architectures,” 2014. [Online].5

Available: https://arxiv.org/abs/1409.25746

[12] K. Qian, Y. Wang, Y. Shi, and X. X. Zhu, “γ-net: Superresolving7

SAR tomographic inversion via deep learning,” IEEE Transactions on8

Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.9

[13] K. Qian, Y. Wang, P. Jung, Y. Shi, and X. X. Zhu, “Basis pursuit10

denoising via recurrent neural network applied to super-resolving SAR11

tomography,” IEEE Transactions on Geoscience and Remote Sensing,12

vol. 60, pp. 1–15, 2022.13

[14] G. Fornaro, D. Reale, and F. Serafino, “Four-dimensional SAR imaging14

for height estimation and monitoring of single and double scatterers,”15

IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1,16

pp. 224–237, 2009.17

[15] F. Lombardini, “Differential tomography: a new framework for SAR18

interferometry,” IEEE Transactions on Geoscience and Remote Sensing, 19

vol. 43, no. 1, pp. 37–44, 2005. 20

[16] X. X. Zhu and R. Bamler, “Let’s do the time warp: Multicomponent 21

nonlinear motion estimation in differential SAR tomography,” IEEE 22

Geoscience and Remote Sensing Letters, vol. 8, no. 4, pp. 735–739, 23

2011. 24

[17] J. Liu, X. Chen, Z. Wang, and W. Yin, “ALISTA: Analytic 25

weights are as good as learned weights in LISTA,” in International 26

Conference on Learning Representations, 2019. [Online]. Available: 27

https://openreview.net/forum?id=B1lnzn0ctQ 28

[18] X. Chen, J. Liu, Z. Wang, and W. Yin, “Hyperparameter tuning is all 29

you need for LISTA,” in Advances in Neural Information Processing 30

Systems, 2021. 31

[19] G. Fornaro, D. Reale, and F. Serafino, “Four-dimensional SAR imaging 32

for height estimation and monitoring of single and double scatterers,” 33

IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1, 34

pp. 224–237, 2009. 35

[20] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition 36



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 8: Color-coded elevation estimates of the top and bottom layers of detected double scatterers using HyperLISTA-ABT.
(a) Top layer, mostly caused by reflections from the building roof and facade, (b) bottom layer, mostly caused by reflections
from low infrastructures and the ground.

Fig. 9: Histogram of elevation estimates differences between
HyperLISTA-ABT and SL1MMER.

by basis pursuit,” SIAM Rev., vol. 43, no. 1, p. 129–159, Jan. 2001.1

[21] Y. Xu and W. Yin, “Block stochastic gradient iteration for convex and2

nonconvex optimization,” SIAM Journal on Optimization, vol. 25, no. 3,3

pp. 1686–1716, 2015.4

[22] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin, “Coordinate-friendly struc-5

tures, algorithms and applications,” Annals of Mathematical Sciences6

and Applications, vol. 1, no. 1, pp. 57–119, 2016.7

[23] X. Zhu and R. Bamler, “Super-resolution power and robustness of8

compressive sensing for spectral estimation with application to space-9

borne tomographic sar,” IEEE Transactions on Geoscience and Remote10

Sensing, vol. 50, no. 1, pp. 247–258, 2012.11

[24] X. X. Zhu and R. Bamler, “Demonstration of super-resolution for12

tomographic SAR imaging in urban environment,” IEEE Transactions13

on Geoscience and Remote Sensing, vol. 50, no. 8, pp. 3150–3157, 2012.14

Kun Qian received double B.Sc. degree in Re- 15

mote Sensing and Information Engineering from 16

Wuhan University, Wuhan, China and Aerospace En- 17

gineering and Geodesy from University of Stuttgart, 18

Stuttgart, Germany, respectively, in 2016, and M.Sc. 19

degree in Aerospace Engineering and Geodesy from 20

University of Stuttgart, Stuttgart, Germany in 2018. 21

He is pursuing the Ph.D. degree with Data Science in 22

Earth Observation, Technical Unversity of Munich, 23

Munich, Germany. His research focus includes data- 24

driven methods, deep unfolding algorithms and their 25

application in multi-baseline SAR tomography. 26

Yuanyuan Wang (S’08–M’15) received the B.Eng. 27

degree (Hons.) in Electrical Engineering from The 28

Hong Kong Polytechnic University, Hong Kong, 29

China in 2008, and the M.Sc. and Dr.-Ing. degree 30

from the Technical University of Munich, Munich, 31

Germany, in 2010 and 2015, respectively. In June 32

and July 2014, he was a Guest Scientist with the 33

Institute of Visual Computing, ETH Zürich, Zürich, 34
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(a) (b)

Fig. 10: Demonstration of the large test area. (a) Optical image from Google Earth, (b) SAR mean intensity map in dB. The
red box in (b) indicates the area undergoing subsidence.

Fig. 11: Demonstration of color-coded elevation estimates and estimated amplitude of multi-component motion. (a) Elevation
estimates in meters, (b) estimated amplitude of seasonal motion in centimeters, (c) estimated amplitude of linear motion in
centimeters/year.
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