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Abstract: Multispectral imaging using Unmanned Aerial Vehicles (UAVs) has changed the pace of
precision agriculture. Actual evapotranspiration (ETa) from the very high spatial resolution of UAV
images over agricultural fields can help farmers increase their production at the lowest possible
cost. ETa estimation using UAVs requires a full package of sensors capturing the visible/infrared
and thermal portions of the spectrum. Therefore, this study focused on a multi-sensor data fusion
approach for ETa estimation (MSDF-ET) independent of thermal sensors. The method was based on
sharpening the Landsat 8 pixels to UAV spatial resolution by considering the relationship between
reference ETa fraction (ETrf) and a Vegetation Index (VI). Four Landsat 8 images were processed
to calculate ETa of three UAV images over three almond fields. Two flights coincided with the
overpasses and one was in between two consecutive Landsat 8 images. ETrf was chosen instead of
ETa to interpolate the Landsat 8-derived ETrf images to obtain an ETrf image on the UAV flight. ETrf
was defined as the ratio of ETa to grass reference evapotranspiration (ETr), and the VIs tested in this
study included the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index
(SAVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and Land
Surface Water Index (LSWI). NDVI performed better under the study conditions. The MSDF-ET-
derived ETa showed strong correlations against measured ETa, UAV- and Landsat 8-based METRIC
ETa. Also, visual comparison of the MSDF-ET ETa maps was indicative of a promising performance
of the method. In sum, the resulting ETa had a higher spatial resolution compared with thermal-based
ETa without the need for the Albedo and hot/cold pixels selection procedure. However, wet soils
were poorly detected, and in cases of continuous cloudy Landsat pixels the long interval between
the images may cause biases in ETa estimation from the MSDF-ET method. Generally, the MSDF-ET
method reduces the need for very high resolution thermal information from the ground, and the
calculations can be conducted on a moderate-performance computer system because the main image
processing is applied on Landsat images with coarser spatial resolutions.

Keywords: actual evapotranspiration; multi-sensor data fusion; Landsat 8; unmanned aerial vehicle;
vegetation indices

1. Introduction

The world population is projected to reach 9.7 billion by 2050 [1]. Satisfying the food
demand of such a population is a big challenge. FAO estimated that food production
needs to double by 2050, which would require a massive amount of water. The challenge
is that water is already scarce and agriculture alone accounts for more than 70% of total
freshwater withdrawals [2]. Therefore, there is an urgent need to produce more food with
less water, which can only be achieved by improving water use efficiency in the largest
water consuming sector.

Current remote sensing technologies provide an opportunity to monitor water con-
sumption over large areas in a cost-effective way. They offer an important decision support
tool with lots of potential for growers and stakeholders.
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Improved sensors onboard Unmanned Aerial Vehicles (UAVs) and remote sensing
methods have given us the ability to observe fields with detail and capture stress and
evapotranspiration (ET) at the plant level [3]. Very high spatial resolution maps are
essential for food optimization, crop production, irrigation, and fertilization management
in precision agriculture [4], and the relatively lower spatial resolution of satellite images
are not capable of accurately accounting for spatial heterogeneity in topography, soils, and
vegetation [5].

Several satellite-based remote sensing approaches have been developed for mapping
actual ET (ETa) over agricultural areas. The main one-source energy balance algorithms
include Surface Energy Balance Algorithm for Land (SEBAL) [6], Surface Energy Budget
System (SEBS) [7], and Mapping Evapotranspiration at High Resolution with Internalized
Calibration (METRIC) [8,9]. One of the most prominent stages of calculating ETa from
one-source algorithms is identifying anchor pixels. Very high spatial resolution images
commonly lack pixels superimposed over well-watered vegetation as the cold pixel due
to the limited areas covered by cameras onboard UAVs [10]. Ramírez-Cuesta et al. [10]
made an effort to identify anchor pixels based on the relationship between land surface
temperatures (LSTs) derived from Landsat and UAV images.

The two-source algorithm [11] was developed to estimate heat transfer for soil and
vegetation separately, excluding the need for anchor pixels selection. Several studies show
the successful implementation of the two-source algorithm based on very high spatial
resolution imagery [3,12,13]. Some researchers have made use of different techniques
for enhancing ETa estimates of UAV images. Torres-Rua et al. [14] took deep learning
techniques into account for ETa estimation using a two-source algorithm based on thermal
information obtained from a UAV. Aboutalebi et al. [15] incorporated point cloud products
derived from UAV images into remote-sensing-based ETa estimation models and improved
their results. Zipper et al. [16] developed the High Resolution Mapping EvapoTranspiration
(HERMET), specifically designed for UAV images, by separating vegetation and soil.
However, all of these are in critical need of thermal information from the surface obtained
using cameras onboard UAVs.

Removing thermal cameras from UAVs can reduce the devices’ cost, but ETa calcula-
tion would be more challenging. Several studies have demonstrated that satellite-derived
potential ET and ETa can be estimated without the use of thermal bands by taking into
account the FAO Penman-Monteith equation and different crop coefficient estimation
methods [17–19]. The Simple Algorithm For Evapotranspiration Retrieving (SAFER) was
developed specifically in case of ETa, coupling remote sensing parameters calculated using
multispectral bands and agrometeorological data for ETa calculation [20]. Data fusion
methods can also be beneficial for high resolution ETa mapping with shorter intervals
between images. There have been several data fusion methods for sharpening thermal im-
ages such as TsHARP [21], SADFAT [22], and TS2uRF [23]. Several studies have focused on
LST and ETa sharpening for enhanced resolution ETa calculation [4,24,25], but needless to
say all of these focused on high- and moderate-resolution satellites equipped with thermal
bands. Nevertheless, there are widely used operating satellites and UAVs which lack the
ability to capture images in the thermal portions of the spectrum. Hence, some researchers
have taken advantage of data fusion methods based on the relationship between Moderate
Resolution Imaging Spectroradiometer (MODIS) LST product and Vegetation Indices (Vis)
in order to eliminate the need for thermal bands when calculating potential ET using
Landsat 8 and Sentinel-2 [26,27]. Xue et al. [28] proposed a modified data mining sharpener
approach to estimate a 30-m high temporal resolution LST by fusing ECOSTRESS/VIIRS
data with harmonized Landsat and Sentinel-2 surface reflectance data. Also, a few studies
have focused on combining Sentinel-2 (multispectral) and Sentinel-3 (thermal) images by
making use of data fusion for ETa estimation [29,30]. However, the combination of satellite
and UAV data through data fusion approaches for ETa estimation still remains untouched.

The relationships between ETa and VIs are strong [31,32] and have proved to be a great
tool for estimating satellite-based ETa [33,34]. The Normalized Difference Vegetation Index
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(NDVI) [35] is the most commonly used VI, and has been further improved as the Soil
Adjusted Vegetation Index (SAVI) [36] and Enhanced Vegetation Index [37] to remove the
effects of soil background and atmosphere, respectively. Also, since the Shortwave Infrared
(SWIR) portion of the spectrum can relate surface moisture to optical reflectance [38], two
water indices, namely, the Normalized Difference Water Index (NDWI) and Land Surface
Water Index (LSWI) [39,40], have been used for detecting moisture variability of surface. It
is speculated that these indices may be beneficial for monitoring surface ETa rates.

The objective of this study was to exclude thermal camera requirements for UAV-
based ETa mapping using the modified TsHARP algorithm specifically designed for ETa
sharpening, herein referred to as the multi-sensor data fusion approach for ET estimation
(MSDF-ET). To achieve this goal, a UAV equipped with multispectral and thermal cameras
and Landsat 8 images were used in consideration of the following steps: (1) perform Land-
sat 8-based ETa calculation using the METRIC algorithm and subsequently the reference
ET fraction (ETrf); (2) find a linear regression equation based on the relationship between
different VIs and ETrf at the Landsat 8 resolution; (3) build a Bias image for each Landsat
8 overpass; (4) apply the algorithm to UAV images and calculate the ETrf at a very high
spatial resolution; (5) visually and statistically evaluate the results against ground observed,
UAV-, and Landsat 8-based METRIC ETa.

2. Materials and Methods
2.1. Study Area

The study was conducted in Corning, Northern California, U.S.A. (Figure 1). The
climate in Northern California is Mediterranean with long hot summers and mild winters.
The long-term (10 years) variations of grass reference evapotranspiration (ETr) in the area
(from GRIDMET [41], available on Google Earth Engine) showed that ETr changes between
0.9 and 9.7 mm·day–1 (Figure 2). In 2018, three ET flux towers were installed in three
adjacent young almond orchards of different ages (1st (Field 1), 2nd (Field 2), and 3rd leaf
(Field 3)) irrigated with micro-sprinklers systems.

2.2. Datasets
2.2.1. Field Data

Three similar Eddy Covariance (EC) towers were installed in each almond field
(Figure 1) located at 39◦57′8.7′ ′N and 122◦7′49.2′ ′W (Field 1), 39◦57′0.5′ ′N and 122◦7′59′ ′W
(Field 2), and 39◦ 56′57.9′ ′N and 122◦ 7′26.8′ ′W (Field 3). Each ET flux tower consisted of: a
three-dimensional, sonic anemometer (Model 81000 VRE, R.M. Young Company, Traverse
City, MI, USA) oriented in the prevailing wind direction; a net radiometer (NR-LITE,
Campbell Scientific, Logan, UT, USA); and soil heat flux plates at 5 cm depth (HFT3.1,
REBS, Bellevue, WA, USA). Auxiliary data include air temperature and relative humidity,
soil water content, and soil thermocouples at 5 cm depth, and a tipping rain gauge. Each
orchard had enough fetch to accurately estimate ET using each flux tower. Sensible heat
flux (H) was quantified using the eddy covariance method from data collected using a 3D
sonic anemometer and fine-wire thermocouples at a sampling frequency of 10 Hz. Soil
heat flux (G) was measured using three soil heat flux plates and soil thermocouples, and
adjusted for moisture content using three capacitance sensors (ECH2O EC5) on the top
5 cm depth. ETa was calculated as the residual of the energy balance equation (λET = Rn −
G − H) and averaged over 30 min.

The flux footprint of the towers were predicted based on Kljun et al. [42] using the
online data processing (http://footprint.kljun.net/, accessed on 5 June 2021). Accordingly,
pixels within the footprint area were used to optimally compare the EC data against
remotely sensed ETa.

http://footprint.kljun.net/
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Figure 2. Ten-year daily average grass reference evapotranspiration (ETr) variations (from 2011 until
2020).

2.2.2. Remotely Sensed Data

Satellite: Four Landsat 8 surface reflectance products were pre-processed in Google
Earth Engine (Table 1). Cloud cover and water bodies were removed using the quality
band provided for the surface reflectance product. Landsat 8 contains 11 bands, 7 of
which are commonly used for agricultural purposes (Table 2) and cover visible (VIS), near
infrared (NIR), and SWIR portions. An area was clipped from the images so that it mostly
represented agricultural fields and was big enough to contain more than 60,000 pixels for
extracting the LST-VI relationship, while also being small enough not to capture heights
where temperature drops drastically. Image processing was conducted using MATLAB.

Table 1. Date of data collection.

Date\Type of Data Landsat 8 UAV Hourly
Meteorological

EC Data over
the Three Fields

27 June 2019 • •
1 July 2019 • • •
6 July 2019 • •

24 September 2019 • • • •
9 August 2020 • • • •

Table 2. Landsat 8 (OLI/TIRS) and UAV (Micasense Altum) band specifications.

Platform (Sensor) Band Number Band Name Central (nm) Band Width (nm)

Landsat 8 Band 1 Coastal aerosol 440 20
(OLI/TIRS) Band 2 Blue 480 60

Band 3 Green 560 60
Band 4 Red 655 30
Band 5 NIR 865 30
Band 6 SWIR 1 1610 80
Band 7 SWIR 2 2200 180
Band 8 Panchromatic 590 180
Band 9 Cirrus 1370 20

Band 10 TIRS 1 10,895 590
Band 11 TIRS 2 12,005 1010

UAV Band 1 Blue 475 32
(Micasense Altum) Band 2 Green 560 27

Band 3 Red 668 14
Band 4 NIR 842 57
Band 5 Red Edge 717 12
Band 6 Thermal 11,000 6000
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UAV: Three flights (Table 1) were conducted over the three almond fields using a
quadcopter (DJI Matrice 210) equipped with a high resolution multispectral and thermal
sensor (Micasense Altum) and an RGB camera (Zenmus X4S). Raw images were pre-
processed in Agisoft Metashape software. The images were ortho-rectified and layerstacked
to achieve single TIFF files containing Blue, Green, Red, Red-edge, Infra-Red and thermal
bands (Table 2). Subsequently, further processes were done in ENVI 5.3.

Comparison: Landsat 8 and UAV images covered almost the same portions over
VIS/NIR, with small differences in bandwidths. Their spatial resolution differed signifi-
cantly, with 30 m fixed for Landsat 8 compared to 2.65 and 3.23 cm for UAV, depending on
flight altitude (Table 3). To achieve an orthomosaic of good quality, images were captured
with 90% overlap. A calibrated reflectance panel was used before and after each flight to
convert raw pixel values into reflectance. UAV images were acquired between 11:00 AM
and 1:30 P.M (Table 3) to reduce the shading effect and to match as much as possible
LandSat passage (around 11:38 am in local time).

Table 3. Acquisition time in Pacific Standard Time (PST), flight height above ground level and spatial
resolution of the UAV campaigns at the three almond sites.

Acquisition Time (PST) Flight
Altitude (m)

Ground Sampling
Distance (cm)Date Field 1 Field 2 Field 3

1 July 2019 11:21 12:00 12:59 60 2.65
24 September 2019 12:15 12:40 13:20 60 2.65

9 August 2020 11:16 11:38 12:30 70 3.23

2.2.3. Meteorological Data

The California Department of Water Resources (DWR) manages over 145 automated
weather station in California under the California Irrigation Management Information
System (CIMIS) program. CIMIS is a joint program between DWR and the University of
California, Davis, assisting researchers utilize meteorological data to precisely manage
California’s water resources and crop water use.

The meteorological data used in the algorithms were obtained from the Gerber South
station (Station id: 222) situated at 40◦1′48′ ′N and 122◦9′36′ ′N, comprising solar radiation
(Rs), vapor pressure, air temperature (Ta), relative humidity, dew point, and wind speed.
The hourly data were obtained specifically for the date of Landsat 8 overpasses and UAV
flights and 10 years of daily data for ET0 calculation.

The five-year annual precipitation was 416.1 mm; however, 2019, where two of our
flights were conducted, was a wet year with 650.9 mm precipitation. The 2019–2020 time
series of daily precipitation is shown in Figure 3.
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2.3. Mapping EvapoTranspiration at High Resolution with Internalized Calibration (METRIC)

The METRIC model was developed by Allen et al. [8] and validated in Allen et al. [9].
METRIC has proven to demonstrate promising accuracy calculating Landsat [43–47] and
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UAV [10,46] images. For this reason ETa from remotely sensed data were chosen to be
calculated using this model in this study.

The ETa calculation process was almost the same for both Landsat 8 and UAV images,
with the slight differences pointed out during the model description in the current section.
Both sets of data required hot and cold pixel identification in order to establish a relationship
between LST and the difference between Ta and LST (dT0 for iteratively finding the
corresponding coefficients, “a” and “b” (dT = aLST + b) by considering the stability
conditions of the atmosphere. The energy required for ETa (λET) was obtained as the
residual of the energy balance equation:

λET = Rn − G − H (1)

where Rn was calculated by determining the shortwave and longwave radiation intercept-
ing the ground and reflected and emitted from the ground:

Rn = (1 − α)Rs + RL↓ − RL↑ − (1 − ε0) RL↓ (2)

where Rs is the incoming shortwave radiation assuming clear sky conditions; RL↓ and
RL↑ are the incoming and outgoing longwave radiations, respectively, as the function of
air temperature and LST to the fourth power (the Stefan–Boltzman law); ε0 is the surface
emissivity, described in terms of vegetation cover; and α is the surface albedo, which had
different calculation procedures for satellite (Equation (3) [48]) and UAV (Equation (4) [49])
images:

α = ∑ (ωb × $b) (3){
α = 0.526(VIS)+0.474(NIR), NDVI < 0.25

α = 0.526(VIS)+0.362(NIR)+0.112[0.5(NIR)], NDVI ≥ 0.25
(4)

whereωb is the weight of each band in the Landsat 8 spectral range; $b is the reflectance
of each band; VIS is the reflectance corresponding to the visible bands, and NIR is the
reflectance of the Near Infrared band of the UAV. An NDVI greater equal than 0.25 was
considered vegetation and lower than 0.25 bare soil.

G was calculated based on the empirical formulation presented in [50]:

G = Rn

(
LST− 273.16

α

)
·
[
0.0032α+ 0.0062α2

]
·(1− 0.978NDVI4

)
(5)

H was iteratively identified using the stability conditions of the pixels under both
Landsat 8 and UAV conditions. The heat gradient was determined by the heat transfer
formula of Newton’s law divided by the aerodynamic resistance (rah).

H = $aCp
dT
rah

(6)

rah =
1

Ku∗
[ln
(

z
zoh

)
−ψh(z)+ψh(zoh)

]
(7)

u∗ =
Ku200

ln
(

200
z0m

)
−ψm(200)

(8)

where $a is the air density; Cp is the specific heat of vaporization; rah s the aerodynamic
resistance; K is the Von Karman’s constant (0.41); u* is the friction velocity; z is the reference
height (2 m above the ground); zoh is the roughness length for heat flux (0.1 m); ψm and
ψh are the stability corrections for momentum and heat transport, respectively; u200 is the
wind speed at a height where the surface does not affect the wind function (200 m above
the ground); and z0m is the roughness length for momentum flux.

The Equation (1) output was instantaneous λET (W·m−2) converted to ETa,inst (mm·h−1).
Hence, in order to achieve daily ETa (ETa,daily (mm·day−1)), the following approach was taken:
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ETrf =
ETa,inst

ETr,inst
(9)

ETa,daily= ETrf × ETr,daily (10)

where ETr,inst and ETr,daily are the hourly and daily reference evapotranspiration, respec-
tively, calculated from the FAO Penman-Monteith equation [51], and ETrf is the reference
ET fraction.

2.4. Modified TsHARP Method: The Multi-Sensor Data Fusion Model for Actual
Evapotranspiration Estimation (MSDF-ET)

The TsHARP method was originally developed to sharpen the MODIS LST products to
the Landsat resolution based on the relationship between LST and VIs [21]. This has proven
to be a reliable method for downscaling thermal information [52], focusing on sharpening
the instantaneous LST; however, [53] pioneered the use of daytime and nighttime LST of
the MODIS onboard both Terra and Aqua for downscaling the 24-h LST to the Landsat
resolution in order to calculate potential ET. In this study, the same concept was adapted
to directly enhance the resolution of Landsat 8-based ETa to acquire very high resolution
maps of crop water use.

One of the prominent factors affecting the magnitude of ETa is, undeniably, the
density of vegetation covering the ground. Therefore, it is presumed that a strong linear
relationship exists between ETa and VIs calculated from the VIS-IR bands of Landsat
8. However, considering that it would not always be possible to acquire UAV images
coinciding with the Landsat 8 overpass, and ETa is not transferable from one day to
another, ETrf was employed for linear interpolation between two consecutive Landsat
8 overpasses to acquire an image coinciding with the UAV flight [54]. Since ETrf gives
specific information of each pixel, and relative changes in weather are identified from ETr
(and ETa changes proportionally to ETr [54]), this approach was taken into account for ETa
interpolation in order to achieve its monthly variations [43].

The MSDF-ET method consisted of the following steps (Figure 4):
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1. Different VIs (Table 4) were calculated from different bands of Landsat 8 including
NDVI, SAVI, EVI, NDWI, and LSWI. The reason for selecting these VIs was mainly due
to the emanations from the different bands used in their formulation (Blue, Red, NIR,
SWIR1, and SWIR2), as well as the soil correction coefficient used in SAVI, because
the study area was an orchard exposing a high soil surface area, and atmospheric
correction in EVI.

Table 4. Vegetation indices formulations.

Abbreviation Full Name Formula

NDVI Normalized Difference Vegetation Index
$NIR∗−$Red
$NIR+$Red

SAVI Soil Adjusted Vegetation Index
1.5($ NIR−$Red)
$NIR+$Red+0.5

EVI Enhanced Vegetation Index
2.5($ NIR−$Red)

$NIR+6$Red+7.5$Blue+1

NDWI Normalized Difference Water Index
$NIR−$SWIR_1610 nm
$NIR+$SWIR_1610 nm

LSWI Land Surface Water Index $NIR−$SWIR_2200 nm
$NIR+$SWIR_2200 nm

* $ is the reflectance in each band.

2. To find the most suitable VI for the method, the ETrf-VI relationships were investigated
before proceeding with the MSDF-ET application on ETrf estimation.

3. The most suitable VI was selected and a linear relationship was established for each
Landsat 8 overpass to find the slope (a) and intercept of the equation (b):

ETrfLC08= a×VILC08+b (11)

where ETrfLC08 is the ETrf calculated from the METRIC algorithm using the Landsat
8 multispectral/thermal bands, and VILC08 is the most suitable VI calculated from
Landsat 8 multispectral bands.

4. Once “a” and “b” were found, a Bias image for each overpass was constructed to
suppress the effects of non-vegetation phenomena on the ETrf variations:

ETrfLC08, unc = a×VILC08+b (12)

Bias = ETrfLC08−ETrfLC08,unc (13)

where ETrfLC08,unc is the uncorrected ETrf calculated from “a” and “b”, which were
obtained from step 3 (Equation (11)) and Bias is the image containing the effects of
non-vegetation objects covering the ground.

5. Having calculated the Bias image, an uncorrected ETrf was calculated using the
multispectral bands of the UAV images (ETrfUAV,unc):

ETrfUAV,unc= a×VIUAV+b (14)

6. In the end, the Bias image was resampled and applied to ETrfUAV,unc to achieve the
true ETrf of the UAV images without the help of UAV-based thermal bands:

ETrfUAV, MSDF-ET = Bias + ETrfUAV,unc (15)

2.5. Model Evaluation

The model was evaluated in four steps:

1. Directly evaluating the results with the ETa measured using the three EC towers
installed in the almond fields.

2. A pixel-by-pixel evaluation of the model against ETa calculated from the METRIC
model using the UAV images.
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3. A pixel-by-pixel evaluation of the model against ETa calculated from the METRIC
model using the Landsat 8 images.

4. Visual interpretation of the ETa maps.

2.6. Statistical Analysis

The statistical parameters consisted of the coefficient of determination (R2) showing
the correlation between parameters and the Root Mean Squared Error (RMSE) indicative of
the dispersion of the points from the 1:1 line.

R2= 1− RSS
TSS

(16)

RMSE =

√√√√∑n
i=1 (P j − Oj

)2

n
(17)

where RSS is the sum of squares of residuals, TSS is the total sum of squares, Pj is the
predicted value, Oj is the observed value and n is the number of data.

3. Results
3.1. METRIC-Based ETa

3.1.1. Against the Measured Data

METRIC was applied to both satellite and UAV (multispectral/thermal) images. The
results were evaluated against EC data (Figure 5). In this section, we made an effort to
discuss the reasons behind the errors that occurred in both UAV and Landsat 8 results.
The differences in R2 values were not significant (R2 = 0.74 for Landsat 8 and R2 = 0.77 for
UAV images); however, the dispersion of the points from the 1:1 line in UAV images were
greater than the Landsat 8 results (RMSE = 1.23 mm/day for UAV against RMSE = 0.81
mm/day for Landsat 8). Mean error (ME) for the Landsat 8 and UAV ETrf were −0.36 and
−0.97, respectively, which is indicative of a more severe underestimation in the UAV results.
Generally, the underestimation in UAV-based ETa METRIC may have mainly resulted from
the lack of a well-watered cold pixel in the UAV’s field of view. By choosing a cold pixel
being under conditions, we were in fact considering the maximum ETa at a rate lower than
its true value; therefore, ETa, which is linearly changing between 0 and maximum ETa,
was subsequently underestimated, which was the reason for the higher RMSE value in the
UAV results. Hence, Landsat 8 results showed a lower error compared with the UAV. The
Landsat 8 data point distribution in the scatter plot was rooted in several sources such as:
bigger coverage of the Landsat 8 pixels in terms of the EC tower coverage, atmospheric
correction not being 100 percent precise, a small error in the geometric correction of the
images, among others. Since the UAV images were more accurate regarding the capture
of surface reflectance and spatial accuracy, the points were more in correlation with the
trend line. However, two points (highlighted by a red rectangle in Figure 5) diverged
from the other data. These points were those in Field 3 (3rd leaf), with the highest ground
cover fraction, where shadows covered the ground considerably. Since the UAV-based
ETa METRIC was calculated after removing the shadows over bare soil, the ground cover
fraction in this field increased; therefore, it caused ETa to rise more than expected. The
shadow effects were only significant on 24 September 2019, and 9 August 2020, which is
why ETa on the 1 July 2019 was not influenced by the shadow removal procedure.
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3.1.2. Correlation with the VIs

Before jumping straight to ETa calculation, the relationship between ETrf and each
VI were comprehensively discussed. Four Landsat 8 overpass dates used in this study
(Table 1) were considered in the evaluation process (Figure 6). The water bodies were
removed from the images, hence the oversaturated points (red elliptical figures) were those
pixels that captured irrigated areas, as well as a few ponding surfaces such as pools and
swamps. Precipitation in the first half of 2019 was considerably higher than the five-year
average (569.5 mm (Figure 3) against 257 mm), which was logically accounted for by the
greater amount of moisture content stored in the soil; therefore, this may have been one of
the reasons for an increase in ETrf in 2019 and in particular on the 27 June 2019.

Outliers caused by oversaturated bare soil pixels (red figures), which accounted for
evaporation rather than transpiration, were observed in the VIs computed from the Red
and NIR bands, including NDVI, SAVI, and EVI. Such indices have shown to be better
correlated with crop transpiration compared with evaporation from the soil, but needless
to say that separating transpiration from evaporation from ETrf would not be feasible
over a regional scale. Also, the negative values of ETrf commonly occurred under water-
stressed bare soil conditions where H was overestimated. These pixels were converted to 0,
indicating very low evaporation from the soil. On the other hand, in optical remote sensing,
the shortwave infrared (SWIR) portion of the spectrum is the most sensitive to moisture
changes in the surface [55], which is why LSWI and NDWI showed more promising
correlation against ETrf variability. While oversaturated pixels possessed ETrf > 0.7, they
had low values of NDVI, SAVI, and EVI; however, NDWI and LSWI remained high in
values over such pixels. Therefore, R2 in the ETrf-NDWI and ETrf-LSWI relationship was
frequently higher than ETrf-NDVI, ETrf-SAVI, and ETrf-EVI in all the Landsat 8 overpasses.

Nevertheless, sensors onboard UAVs commonly lack the ability to capture the SWIR
portion of the spectrum, and Micasense Altum was not exceptional. Hence, it would not
be possible to benefit from the ETrf-NDWI and ETrf-LSWI relationship under the circum-
stances of this study; however, the next best VI was NDVI, showing a linear relationship
with the average R2 of 0.72. Cihlar et al. [31] found an R2 of about 0.6 between ETa and
NDVI. In this study, due to the better correlation, NDVI was selected for further calcula-
tions. All in all, UAVs containing SWIR bands are recommended for determining water
indices such as NDWI and LSWI.
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3.2. MSDF-ET Evaluation
3.2.1. Against Measured ETa

ETa calculated using the MSDF-ET method against EC data was investigated and the
results were promising (Figure 7). R2 was not higher than the METRIC method (0.68 against
0.77); however, the ETa variability was strongly aligned with the measured data. RMSE
was slightly lower than the METRIC-based ETa, representative of the lesser dispersion of
the points. Generally, the results showed that the method can be relied upon.
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3.2.2. Against UAV METRIC ETa

The MSDF-ET method was also evaluated against the METRIC algorithm obtained
using UAV thermal/multispectral images. ETrf of 9 August 2020 are illustrated as sample
correlations over the three fields of almond (Figure 8). First, ETrf from the MSDF-ET was
upscaled, then each pixel was evaluated against its corresponding pixel in the METRIC-
based ETrf image. The correlations were relatively strong (R2 of 0.62, 0.65, and 0.67 for
Field 1, 2, and 3, respectively) with promising RMSE values (0.14, 0.13, and 0.15 for Field 1,
2, and 3, respectively).
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4. Discussion
4.1. UAV- and Landsat 8-Based NDVI Comparison

NDVI calculated from UAV and Landsat 8 were both averaged over each field. First,
the noData pixels on the edges were removed and an inside area of interest was chosen to
clip the images. Then, a simple aerial average of the NDVI was computed for both UAV
and Landsat 8 and d against each other (Figure 9). UAV and Landsat had very similar
NDVIs except for the 24th of September 2019 at Field 2 and Field 3. This discrepancy
resulted from the fact that the irrigation system was running on both fields, making the
wetting patterns clearly visible, especially on young orchards where most of the ground
is exposed. Another reason is related to the extended shadowed area on both orchards
created by the slight difference between UAV flights and Landsat overpass time (11:40 PST)
(Table 3). In the ETa evaluation from MSDF-ET (Figure 7), the differences were suppressed
using the Bias image (Step 4 equation 13). Generally, further studies need to be conducted
to investigate the precise sources of discrepancies in UAV and Landsat 8 vegetation indices,
especially on partly covered fields.
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4.2. Differences in Spatial Resolution (UAV vs. Landsat 8)

An increase in pixel size limited to less than twice the smallest row spacing over an
orchard does not affect ETa accuracy [3]; however, it may impede its use for precision
agriculture, such as detecting diseases on a single tree, irrigation system malfunctioning,
over-irrigation or water stress at a microscale, ponding locations, and so on. Figure 6 shows
the difference in Landsat 8 and UAV spatial resolution on the 1st of July 2019 corresponding
to the Field 1, where shadow was at its lowest. In the UAV image (Figure 10a), each tree
could be precisely visualized, and the well-grown trees were easily distinguishable. On the
other hand, the Landsat 8 orchard illustration (Figure 10b) where all the pixels were mixed,
containing different ground covers, was only limited to an estimation of well-grown and
-watered areas, with the size of 30 × 30 m2. Also, the range of ETa was lower over the field
in the Landsat 8 image compared with the UAV due to the mixture of objects (soil and
vegetation) in each pixel.
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Field 1 on 1 July 2019.

4.3. Visual Interpretation (MSDF-ET vs. METRIC UAV)

By visually analyzing the output ETa from both METRIC and MSDF-ET methods
(Figure 11), it was recognized that the model could properly distinguish the spatial differ-
ences in ETa and was suitable for ETa mapping over the almond orchard. Due to higher
spatial resolution of the MSDF-ET method, the field was mapped with more details. The
canopy covers and the spaces between rows and trees were more distinguishable. Even the
ETa over a single tree showed more details.
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4.4. Soil Moisture Detection (MSDF-ET vs. METRIC UAV)

The performance of the MSDF-ET and METRIC methods were visually investigated
for detecting soil moisture and subsequently irrigated areas over soil at the UAV scale
(Figure 12). The UAV flight over Field 2 on 1 July 2019 was captured during an irrigation
event. The northern part of the field received excessive water that caused runoff causing
extra water discharged to the road between the fields (red rectangle in Figure 12a). Irrigated
water can be clearly distinguished in the true color image, and the METRIC method also
presented significantly higher values of ETrf over the saturated soil (light blue pixels in
the METRIC image, Figure 12b). However, the MSDF-ET method was not able to properly
detect the wetted soil (Figure 12c), which was a disadvantage to this method. Also, both
approaches were successful in distinguishing the weeds between rows, but with more
details in the MSDF-ET image due to higher spatial resolution.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 24 
 

 

 

 

 

Figure 12. (a) True Color, (b) METRIC- and (c) MSDF-ET-based ETrf over an excessive irrigated area in Field 2, on 1 July 451 

2019. The red rectangle in the true color image highlights leakage water from the irrigation system. 452 

a

b

) 

c) 
Figure 12. Cont.



Remote Sens. 2021, 13, 2315 18 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 24 
 

 

 

 

 

Figure 12. (a) True Color, (b) METRIC- and (c) MSDF-ET-based ETrf over an excessive irrigated area in Field 2, on 1 July 451 

2019. The red rectangle in the true color image highlights leakage water from the irrigation system. 452 

a

b

) 

c) 

Figure 12. (a) True Color, (b) METRIC- and (c) MSDF-ET-based ETrf over an excessive irrigated area in Field 2, on 1 July
2019. The red rectangle in the true color image highlights leakage water from the irrigation system.

4.5. Shadow Effects (MSDF-ET vs. METRIC UAV)

Shadows may cause bias in ETa obtained from high spatial resolution imagery [56].
The UAV flight on 24 September 2019 was captured in the afternoon, which caused several
shadowy pixels over the three fields. The Field 2 true color (Figure 13a), NDVI (Figure 13b),
ETa from MSDF-ET (Figure 13c), LST (Figure 13d), and ETa from METRIC (Figure 13e)
images are shown as samples of which shadows were visually distinguished. The pixels
superimposed over shadows resulted in lesser values of LST. The lower the LST, the
weaker the longwave radiation emitted from the ground based on the Stefan–Boltzman law.
Therefore, the Rn and subsequently ETa of the shadowy pixels (blue pixels in Figure 13e)
rose above the ETa compared with the pixels over vegetation, which was unusual. In
these cases, we were obliged to remove the shadows in order to calculate ETa with better
reliability, which still inevitably forced biases, however small, in the ETa maps. However,
NDVI was only slightly affected by shadow, so subsequent MSDF-ET-based ETa was
calculated even over shadowy pixels. Zhang et al. [57] tested the effects of shadow on
different vegetation indices calculated using a hyperspectral spectroradiometer and found
that NDVI was the least affected index. Therefore, the use of NDVI in the MSDF-ET method
was beneficial for attenuating the effects of shadow on ETa calculation.
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4.6. Advantages and Disadvantages of the MSDF-ET Method

Advantages:

1. The foremost advantage was the higher spatial resolution of the resulting ETa maps.
2. The thermal image was excluded, which may result in a less expensive device for ETa

mapping.
3. Albedo calculation procedure using UAV images was removed, as these images

usually suffer from the lack of bands covering the shortwave infrared portion of the
spectrum, inevitably causing errors in ETa maps.

4. Finding a well-watered vegetation or a fully dry surface in the limited UAV’s field of
view has been always challenging, and the MSDF-ET method removed the need for
hot and cold pixel selection.

5. Due to METRIC-based ETa calculations applied to Landsat 8 images, the process was
not heavy and could be executed on a low-performance laptop.

6. Instead of sharpening LST to the UAV resolution, which was not transferable from
one date to another, ETrf was used to omit this limitation and apply the MSDF-ET
method to UAV images not captured in the Landsat 8 overpasses.
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Disadvantages:

1. The wet soils could not be clearly distinguished compared with the METRIC method.
2. In cases of cloudy Landsat images, the interval between two consecutive Landsat

overpasses is increased, and subsequently the accuracy decreases (however the launch
of Landsat 9 would immensely reduce the risk).

5. Conclusions

This study focused on a new method for calculating ETa from UAV multispectral
images without the use of thermal information from the surface. The method was a
modified version of the TsHARP algorithm, which sharpens the MODIS LST product to
Landsat resolution; however, Landsat 8-based ETrf was sharpened instead of LST in order
to make the method feasible for achieving ETa maps of flights captured in between Landsat
overpasses. The method in this study was referred to as MSDF-ET. The statistical and visual
evaluation of the method showed promising results. The correlation between MSDF-ET
ETa against EC data collected over three almond fields was reliable, with an R2 of 0.68
and RMSE of 1.19 mm/day. Further evaluations against UAV- and Landsat 8-derived
ETa showed slightly lower correlations, with the error partly resulting from upscaling the
pixels. The visual interpretation was indicative of the proper performance of the method.
In the MSDF-ET method, ETa over trees was shown in detail and shadows had negligible
effects on ETa values, while on the other hand ETa using a UAV derived from the METRIC
algorithm was significantly affected by the shadows. The lower sensitivity of the MSDF-ET
method to shadows resulted from the slight effects of shadow on the NDVI. By using
this method, the need for a thermal camera onboard a UAV was reduced. UAV images
do not usually capture well-watered vegetation or fully dried surfaces due to the limited
area for image capturing; however, the MSDF-ET method eliminated the hot/cold pixel
selection procedure of UAV images. Also, UAVs commonly suffer from a lack of shortwave
infrared cameras for Albedo calculation, which was also removed in the MSDF-ET method.
Needless to say, the resulting ETa maps from multispectral images possessed higher spatial
resolutions compared to the ETa maps from LST images (METRIC algorithm). In general,
the methods such the one presented in this study focusing on ETa mapping using only
multispectral images may significantly reduce operational and investment costs due to
removing the need for thermal cameras.
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