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Abstract: Care during the COVID-19 pandemic hinges upon the existence of fast, safe, and highly
sensitive diagnostic tools. Considering significant practical advantages of lung ultrasound (LUS)
over other imaging techniques, but difficulties for doctors in pattern recognition, we aim to leverage
machine learning toward guiding diagnosis from LUS. We release the largest publicly available LUS
dataset for COVID-19 consisting of 202 videos from four classes (COVID-19, bacterial pneumonia,
non-COVID-19 viral pneumonia and healthy controls). On this dataset, we perform an in-depth
study of the value of deep learning methods for the differential diagnosis of lung pathologies.
We propose a frame-based model that correctly distinguishes COVID-19 LUS videos from healthy
and bacterial pneumonia data with a sensitivity of 0.90± 0.08 and a specificity of 0.96± 0.04. To
investigate the utility of the proposed method, we employ interpretability methods for the spatio-
temporal localization of pulmonary biomarkers, which are deemed useful for human-in-the-loop
scenarios in a blinded study with medical experts. Aiming for robustness, we perform uncertainty
estimation and demonstrate the model to recognize low-confidence situations which also improves
performance. Lastly, we validated our model on an independent test dataset and report promising
performance (sensitivity 0.806, specificity 0.962). The provided dataset facilitates the validation of
related methodology in the community and the proposed framework might aid the development of a
fast, accessible screening method for pulmonary diseases. Dataset and all code are publicly available
at: https://github.com/BorgwardtLab/covid19_ultrasound.

Keywords: computer vision; Convolutional neural network; COVID-19; deep learning; interpretabil-
ity; pneumonia; Lung imaging; machine learning; medical imaging; ultrasound; supervised learning

1. Introduction

To date, SARS-CoV-2 has infected more than 90 million and killed more than 1.9 million
patients around the globe (https://coronavirus.jhu.edu/map.html (accessed on 11 Jan-
uary 2020)). Its long and dispersive incubation time calls for fast, accurate, and reliable
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techniques for early disease diagnosis to successfully fight the spread [1]. The standard
genetic test (RT-PCR ) has a processing time of up to 2 days [2]. Several publications have
reported sensitivity as low as 70% [3,4] and a meta-analysis estimated the false negative rate
to be at least 20% over the course of the infection [5]. Medical imaging complements the
diagnostic process that can guide further PCR-testing, especially in triage situations [6]. CT
(Computed Tomography) scanning is the imaging gold standard for pulmonary diseases [7]
and is considered reliable for COVID-19 diagnosis in some countries [4,8,9], although a
significant amount of patients exhibit normal CT scans [10]. However, CT scanning is
expensive and highly irradiating, carries significant risk of cross infection to healthcare
workers and requires extensive, time-consuming sterilization [11]. It is furthermore re-
served for developed countries; there are only ∼30 k CT scanners globally [12]. A chest
X-ray (CXR) is the most common first line procedure in diagnostic imaging, despite reports
of low specificity and sensitivity for COVID-19 (for example, Reference [13] found 89%
normal CXR in 493 COVID-19 patients). Ultrasound (US), by contrast, is a cheap, safe,
non-invasive and repeatable technique that can be performed with portable devices at
patient bedside and is ubiquitously available around the globe [14]. Lung ultrasound (LUS)
developed into an established tool to diagnose pulmonary diseases [15–17], as it is superior
to CXR for detecting pulmonary conditions [18–21].

During the COVID-19 pandemic, the growing body of evidence for disease-specific
patterns in lung US, mostly B-lines and pleural line irregularities, has led to the advocacy
for an amplified role of LUS [22–25]. It was argued that LUS could be performed routinely
in COVID-19 suspects and become part of the diagnostic toolkit for COVID-19 differential
diagnosis [23,24,26,27]. Notably, in COVID-19 patients, LUS has a higher diagnostic sensi-
tivity than CXR [28]. Moreover, radiologists reported inter and intra-observer agreement
between US and CT findings [29,30]. Some studies found the diagnostic accuracy of LUS
for COVID-19 to be on par with CT [31,32], and even more sensitive in detecting pulmonary
imaging biomarkers [10]. Hence, in triage or resource limited settings, LUS can be a valu-
able technique [33,34] and serve as a globally available first-line examination method to
guide downstream testing [35]. Despite this encouraging evidence, US is not (yet) widely
adopted in clinical practice for cardiac or lung imaging and its wider deployment is ham-
pered for a multitude of reasons such as operator-dependent acquisition [36]. Notably,
a recent “perspective” paper in The Lancet has pointed out the adoption of deep learning
(DL) technologies for the guidance and interpretation of US images as a major challenge for
the digitation of medicine [26] Citing: “Theoretically, if these (POCUS) devices were widely
used, rapid, point-of-care imaging could become routine and reduce the need for formal
studies in a dedicated radiology suite. But that shift of adoption is predicated on the ability
of clinicians to become facile in obtaining high-quality ultrasound scans. To date, that has
not occurred for various reasons including cost of the devices, issues for reimbursement,
and difficulty with performing image capture, which has historically been a specialised task
for sonographers”. Moreover, the relevant LUS pattern can be hard to discern, requiring
time and trained personal [37], This calls into play medical image analysis systems based
on machine learning (ML) which aim to be utilized as clinical support tools for physicians
that aid data acquisition, patient diagnostics or monitoring. Here, we release a novel LUS
dataset with diverse pulmonary manifestations and perform a first study on the automatic
detection of lung pathologies for differential diagnosis.

1.1. Related Work

Literature on exploiting medical image analysis and deep learning (DL) to clas-
sify or segment CT or CXR data of COVID-19 patients recently exploded (for reviews,
see Ulhaq et al. [38], Shi et al. [39]). More than 300 publications on this topic appeared only
in 2020 [40]. For instance, Mei et al. [2] achieved equal sensitivity (but lower specificity)
compared to senior radiologists in detecting COVID-19 from CT and clinical information.
A meta-analysis on COVID-19 revealed a mismatch between clinical and ML communities
and found that US is significantly under-explored by ML researchers [40].
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With the rise of deep learning in computer vision, learning-based approaches to
medical ultrasound analysis became increasingly popular over the last years [41]. While
more than 50 papers were published on deep learning on US in 2017 [41], sparse work
has been done on lung US, with B-line detection/quantification being the most common
task [42–44]. Others focus on pleural line extraction [45], subpleural pulomnary lesions [46]
or lung cancer detection [47].

In our initial preprint dubbed POCOVID-Net [48], we were first to regard the problem
of automatic differential diagnosis of COVID-19 from LUS data. The released dataset has
been incorporated by several authors into their work [49–52]. Others developed a quality
assessment module for COVID-19 pattern detection [53] or a classifier for typical LUS
patterns of COVID-19 patients [54,55]. Especially related to our work is the preprint
by Arntfield et al. [56] which proposed a model to differentiate types of B-lines according
to the clinical diagnosis (COVID-19, non-COVID-19-ARDS, hydrostatic pulmonary edema).
However, none of the above works have released their utilized datasets to the public.

An exception to the neglect of US during the first months of COVID-19 a deep learning
approach for a severity assessment of COVID-19 from US data [57]. The work convincingly
predicts disease severity and segments COVID-19 specific patterns building up on their
previous work on localizing B-lines [42]. The paper claims to release a segmentation
dataset of COVID-19 cases, but to date, only a small fraction of class-labelled data and
no segmentation annotations are available. While their effort (and follow-ups [45,58,59])
on severity assessment are highly relevant for disease monitoring, they are not applicable
for diagnosis, where the main problem lies in distinguishing COVID-19 from other lung
pathologies (i.e., clinical diagnoses). We aim to close this gap with our approach to classify
COVID-19, healthy, and bacterial pneumonia from LUS data.

1.2. Our Contributions

Figure 1 depicts a graphical overview of our contributions.
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Figure 1. Flowchart of our contribution. (A): 3 samples from our public COVID-19 lung US dataset.
Top: Healthy lung with horizontal A-lines, Middle: pneumonia infected lung with alveolar consoli-
dations, Bottom: SARS-CoV-2 infected lung with subpleural consolidation and a focal B-line. (B,C):
We present and compare frame- and video-based CNNs on this new dataset and demonstrate the
feasibility of differential diagnosis from ultrasound. (D): Class activation maps highlight patterns
that drove the model’s decision and are reviewed and evaluated for diagnostic value by medical
experts. (E): Uncertainty techniques are employed and shown to equip the model with the ability to
recognize samples with high error probability.

First, we release the largest to-date publicly-available dataset of lung US record-
ings, consisting of 202 videos and 59 images. Since the initial release of our database
in a preprint [48], further research has used our dataset [52,60] or followed up on our
approach with studies of different neural network architectures [55] or even leveraging
robustness [49]. Our dataset is heterogeneous and includes clinical data from one hospital
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as well as data from public sources, which were curated manually and approved by two
medical experts.

Second, we take a first step towards a tool for differential diagnosis of pulmonary
diseases, here especially focused on bacterial and viral pneumonia, exemplified with
COVID-19 as viral pneumonia. Specifically, we demonstrate that competitive performance
can be achieved from raw US recordings, thereby challenging the current focus on irradi-
ating imaging techniques. Moreover, we employ explainability techniques such as class
activation maps or uncertainty estimates and present a roadmap towards an automatic
detection system that can highlight relevant spatio-temporal patterns. Our proposed sys-
tem presents a step towards a tool that aids medical care which, in the midterm, could
potentially help to reduce time and cost in the clinical workflow, as shown for CT [2].

2. A Lung Ultrasound Dataset for COVID-19 Detection
2.1. Dataset Description

We release the largest publicly-available LUS dataset (https://github.com/BorgwardtLab/
covid19_ultrasound), comprising samples of COVID-19 patients, patients with bacterial
pneumonia, (non-COVID-19) viral pneumonia and healthy controls. As shown in Table 1,
we collected and gathered 261 recordings (202 videos + 59 images) recorded with either
convex or linear probes from a total of 216 patients. Linear probes are higher frequency,
yielding a greater resolution that allows better to study abnormalities around the pleural
line [61]. However, the linear probe penetrates the tissue less than the convex probe which
can hamper the differentiation of B-lines [62] and does not allow the assessment of deeper
lung tissue. In Section 5.2 we discuss limitations of our dataset regarding the heterogeneity
of US probes in the data, as well as shortcomings with respect to the distinction of COVID-
19 from other viral pneumonias. Note that due to the low number of samples (3 convex
videos), we did not use the non-COVID-19 viral pneumonia data in the analysis, but instead
only distinguish the remaining three classes.

Table 1. Dataset size. Number of videos and images in our dataset, per class and probe.

Convex Linear

Vid. Img. Vid. Img. Sum

COVID-19 64 18 6 4 92

Bacterial Pneu. 49 20 2 2 73

Viral Pneu. 3 – 3 – 6

Healthy 66 15 9 – 90

Sum 182 53 20 6 261

Our dataset comprises clinical data donated from hospitals or academic ultrasound
course instructors, as well as LUS recordings published in other scientific literature, com-
munity platforms, open medical repositories and health-tech companies. An overview
about the sources and a full list of utilized publications is listed in the supplementary
material (Table A1). The COVID-19 diagnosis was normally obtained via RT-PCR, but for
details on individual recordings, we refer to the respective sources. We consider it a major
contribution to assemble this dataset from 41 distinct sources, which included web scraping,
labeling, pre-processing (cropping, artifact removal etc.), commenting and approving by
medical professionals and US operators. The dataset is accompanied by extensive metadata
table, listing the source URL, source ID, an anonymized patient ID and, when available, age,
gender, disease symptoms and pathological patterns. Further technical details comprise
image resolution, frame rate and the number of frames for each video after pre-processing.
Importantly, all samples of our database were reviewed and approved by two medical

https://github.com/BorgwardtLab/covid19_ultrasound
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experts (a paediatric physician with 10+ years of clinical LUS experience and an academic
US course instructor) and annotated with visible LUS patterns.

2.2. Data Collection
2.2.1. Northumbria Data

Patient data was made available by the Northumbria Healthcare NHS Foundation
Trust. The Trust serves a population of approximately 600,000 over a large geographical
area in the North East of the United Kingdom. During the COVID-19 pandemic, inpatient
respiratory services were centralised onto the acute care centre. Thoracic ultrasound was
conducted with a convex probe Venue™ ultrasound machine by GE Healthcare (2–5 MHz).
Patients were scanned according to the established BLUE protocol [62] which has high
diagnostic sensitivity, specificity and accuracy for pleural effusions, alveolar consolidation
and interstitial syndromes [63]. RT-PCR was done to confirm/reject COVID-19 diagno-
sis and standard care (including thoracic X-Ray and CT) was done to identify bacterial
pneumonia. Local Caldicott approval was sought and granted. Patient were consented
appropriately [64,65]. Recordings with appropriate pathology were stored, anonymized
and electronically shared. A total of 70 videos and images from 44 male and 26 female
patients were provided.

2.2.2. Neuruppin Data

As an independent control group, healthy volunteers were recruited at Brandenburg
Medical School Theodor Fontane in Neuruppin, Germany. Data was acquired at a time of
low prevalence. Similarly to the clinical data, LUS was conducted with a GE Healthcare US
device and executed according to the BLUE protocol [62]. 31 videos (28 convex, 3 linear)
from 6 patients (3M/3F) were provided.

2.3. Dataset Analysis

In images and videos from 41 different sources, we count 216 distinct patients. Unfor-
tunately, in many online sources or publications no patient metadata was given, but we
were able to collect age and gender for 42% of the data. Out of those, 57% were male,
and the average age is 41.3 years (median: 35, standard deviation: 24.7). Additionally,
descriptions of symptoms were available for 30% of our LUS recordings and are distributed
as shown in Figure 2a.

Last, the pathological patterns as annotated by the physicians are shown in Figure 2b.
The results are in accordance with prior knowledge and corroborate the non-specificity
of COVID-19 patterns compared to other viral pneumonia, a detriment shared across all
imaging techniques [66,67].
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Figure 2. Symptoms and pathological patterns are grouped by patient condition. (a) In the 30% of our dataset where
symptoms were available fever, cough, and respiratory problems were reported most often for patients with bacterial
or viral pneumonia. (b) Bacterial pneumonia is typically characterized by consolidated areas, while B-lines and pleural
irregularities are usually indicative for viral infection. (a) Reported symptoms, (b) Pathological patterns.
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3. Classification of Lung Ultrasound Data
3.1. Methods
3.1.1. Data Processing

Due to data availability, all experiments are conducted on the convex ultrasound
probes. For the same reason we exclude the three non-COVID-19 viral pneumonia videos
(Table 1) and focus on the distinction of healthy lungs, bacterial pneumonia and COVID-19
viral pneumonia. We manually processed all convex ultrasound recordings (179 videos
and 53 images) and split the videos into images at a frame rate of 3 Hz (with maximal
30 frames per video, leading to a database of 1204 COVID-19, 704 bacterial pneumonia,
and 1326 healthy images. The videos are diverse in length and kind (160± 144 frames)
with a frame rate of 25± 10 Hz. All images were cropped to a quadratic window excluding
measure bars, texts and artifacts on the borders before they were resized to 224× 224 pixels
(for examples see Figure 1A). Apart from the independent test data, all reported results
were obtained in a 5-fold cross validation stratified by the number of samples per class.
Data was split on a patient-level, hence it was ensured that the frames of a single video
are present within a single fold only, and that the number of videos per class is similar in
all folds. All models were trained to classify images as COVID-19, pneumonia, healthy, or
uninformative. The latter consists of ImageNet [68] pictures as well as neck US data [69];
added for the purpose of detecting out-of-distribution samples. This is particularly relevant
for public web-based inference services. In this paper, we present all results omitting the
uninformative class, as it is not relevant for the analysis of differential diagnosis performance
and would bias the results, that is, lead to a higher classification accuracy due to the recall
and precision of almost 100% for the uninformative class (please refer to Appendix C.1 for
results including uninformative data). Furthermore, we use data augmentation, specifically
flips and rotations (up to 10◦) and translations (up to 10%) to diversify the dataset and
prevent overfitting.

3.1.2. Frame-Based Models

Our backbone neural architecture is a VGG-16 [70] that is compared to NasNET Mobile,
a light-weight alternative [71] that uses less than 1/3 of the parameters of VGG-16 and was
optimized for applications on portable devices. Both models are pre-trained on ImageNet
and fine-tuned on the frames sampled from the videos. Specifically, we use two variants of
VGG-16 that we name VGG and VGG-CAM. VGG-CAM has a single dense layer following the con-
volutions, thus enabling the usage of plain class activation maps (CAMs [72]), whereas VGG
has an additional dense layer with ReLU activation and batch normalization. Considering
the recent work of [57] on lung US segmentation and severity prediction for COVID-19, we
investigated whether a segmentation-targeted network can also add value to the prediction
in differential diagnosis. We implemented two approaches building upon the pre-trained
model of [57], an ensemble of three separate U-Net-based models (U-Net, U-Net++, and
DeepLabv3+, with a total of ∼19.5 M parameters). First, VGG-Segment is identical to VGG,
however instead of training on the raw US data, we train on the segmented images from
the ensemble (see example in Appendix B.1). Although it might seem unconventional,
we hypothesized that the colouring entails additional information that might simplify
classification. Secondly, in Segment-Enc the bottleneck layer of each of the three models is
used as a feature encoding of the images, resulting in 560 filter maps that are fed through a
two layer MLP with hidden layer sizes 512 and 256 respectively. The encoding weights are
fixed during training. Both settings are compared to the other models that directly utilize
the raw images. For more details on the architectures and the training procedure, please
refer to Appendix B.
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3.1.3. Video-Based Model

In comparison to a naïve, frame-based video classifier (obtained either by averaging
scores or by related aggregation/selection schemes of all frames), we also investigate
Models Genesis, a generic model for 3D medical image analysis pretrained on lung CT
scans [73]. For Models Genesis, the videos are split into chunks of 5 frames each, sampled
at a frame rate of 5Hz (input size: 224 × 224 × 5). Stratified 5-fold cross validation is
performed using the same split as for frame-based classifiers. Individual images were
excluded, leaving aside 178 videos which were split into 770 video chunks.

3.2. Results
3.2.1. Frame-Based Experiments

Table 2 shows a detailed comparison of all trained models in terms of recall, precision,
specificity and F1-scores, computed in a one-vs.-all fashion for all three classes. Overall,
both VGG and VGG-CAM achieve promising performance with an accuracy of 88± 5% on
a 5-fold CV of 3234 frames. The results are sufficiently balanced across classes, with the
best F1-score achieved for COVID-19 in VGG (0.89) and for healthy data (0.87) in VGG-CAM.
Figure 3a visualizes the results of the best model, VGG, for each binary detection task as
a ROC curve, showing ROC-AUC scores of 0.94 and above for all classes, while depicting
the point where the accuracy is maximal for each class.

Table 2. Comparison of the tested classification models on 5-fold cross validation for each class. Accuracy abbreviates
accuracy, Bal. balanced accuracy, Coefficient and Par. the number of parameters (in millions). For each class and each
column the best model is highlighted in bold. The accuracy of 88% of VGG and VGG-CAM cannot be outperformed by
pre-trained lung US segmentation models from [57], and unfortunately it cannot be matched by NASNetMobile, a model
that is significantly smaller.

Class Recall (Sens.) Precision F1-Score Specificity

VGG
Accuracy: 87.8%
Balanced: 87.1%
#Param: 14.7 M

COVID-19 0.88± 0.07 0.90± 0.07 0.89± 0.06 0.94± 0.05
Pneumonia 0.90± 0.11 0.81± 0.08 0.85± 0.08 0.94± 0.04
Healthy 0.83± 0.11 0.90± 0.06 0.86± 0.08 0.94± 0.03

VGG-CAM
Accuracy: 87.4%
Balanced: 86.1%
#Param: 14.7 M

COVID-19 0.86± 0.11 0.86± 0.07 0.86± 0.08 0.91± 0.04
Pneumonia 0.87± 0.15 0.87± 0.06 0.86± 0.10 0.96± 0.03
Healthy 0.86± 0.11 0.88± 0.90 0.87± 0.90 0.93± 0.04

NASNetMobile
Accuracy: 62.5%
Balanced: 55.2%
#Param: 4.8 M

COVID-19 0.63± 0.22 0.67± 0.14 0.63± 0.15 0.79± 0.12
Pneumonia 0.22± 0.27 0.46± 0.42 0.28± 0.30 0.98± 0.03
Healthy 0.80± 0.11 0.58± 0.05 0.67± 0.06 0.60± 0.13

VGG-Segment
Accuracy: 85.1%
Balanced: 83.9%
#Param: 34.0 M

COVID-19 0.81± 0.20 0.86± 0.07 0.82± 0.13 0.91± 0.06
Pneumonia 0.86± 0.08 0.84± 0.07 0.85± 0.03 0.95± 0.04
Healthy 0.85± 0.12 0.86± 0.06 0.85± 0.08 0.90± 0.08

Segment-Enc
Accuracy: 85.7%
Balanced: 84.4%
#Param: 20.0 M

COVID-19 0.84± 0.11 0.89± 0.07 0.86± 0.07 0.92± 0.07
Pneumonia 0.89± 0.04 0.75± 0.10 0.81± 0.06 0.92± 0.03
Healthy 0.82± 0.18 0.90± 0.05 0.85± 0.12 0.94± 0.02
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Figure 3. Performance of the VGG model. Per-class ROC-AUC, sensitivity, and precision are shown on the diagonals of the
normalized confusion matrices, highlighting the model’s ability to distinguish COVID-19 from pneumonia and healthy
lung images. It further demonstrates similar scores and balanced confusions between each pair of classes. (a) ROC-curves,
(b) Precision-recall-curves, (c) Precision-confusion matrix, (d) Sensitivity-confusion matrix.

The false positive rate at the maximal-accuracy point is slightly larger for COVID-19
than for pneumonia and healthy patient. In a clinical setting, where false positives are less
problematic than false negatives, this property is desirable. Since the data is imbalanced, we
also plot the precision–recall curve in Figure 3b, which confirms that the imbalance is not
of concern. In addition, the confusion matrices in Figure 3c,d further detail the predictions
of VGG; we observe that the sensitivity of bacterial pneumonia is highest, but confusions
occur to similar extent for each pair of classes. This complies with findings from Section 2
indicating that patients infected with COVID-19 might not show any abnormalities in
LUS (e.g., for asymptomatic patients) or present similar patterns as bacterial pneumonia
such as consolidated areas and effusions. For further results including the ROC- and
precision–recall curves of all three models see Appendix C.

Ablation Study with Segmentation Models

Lung US recordings are noisy and operator-dependent, posing difficulties for the
classification of raw data. Hence, we compare VGG and VGG-CAM to approaches from related
work where all frames are segmented (i.e., classified on a pixel level into pathological
patterns) with the model from [57]; see Appendix B for an example input image. The
relevant rows in Table 2 exhibit mixed results, with Segment-Enc marginally outperforming
VGG-Segment, but both obtaining substantially lower scores than VGG. The results are thus
not encouraging to explore VGG-Segment further, since it comes at the cost of a much larger
model, with an ensemble of three models (U-Net, U-Net++, and DeepLabv3+) segmenting
the images prior to classification (restricting segmentation to a single model resulted in
inferior performance). Possible reasons for the inferior performance of this approach are
limited accuracy of the underlying segmentation model (Roy et al. [57] reported a Dice
coefficient of 0.75) and the algorithm’s pathology-to-color mapping that may dispel a notion
of similarity between types of patterns. Future work might explore other architecture along
the lines of Segment-Enc, that is, a dense model classifying the encoding produced by
a segmentation model.

Ablation Study on Other Architectures

Last, we tested several smaller networks such as MobileNet [74] as an additional
ablation study, with NASNetMobile [71] performing best, obtaining 62.5% accuracy, but still
suffering from low precision and recall on data of bacterial pneumonia. As most ultra-
sound devices are portable and real-time inference on the devices is technically feasible,
resource-efficient networks are highly relevant and could supersede web-based inference.
In an attempt torward real-time on-device inference, our fine-tuned NASNetMobile re-
quires less than a third of the parameters of VGG but does not yet yield satisfactory results
(63% accuracy).
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3.2.2. Video-Based Experiments

To investigate the need for a model with the ability to detect spatiotemporal patterns
in lung US, we explored Models Genesis, a pretrained 3D-CNN designed for 3D medical
image analysis [73]. Table 3 contrasts the frame-based performance of VGG model to
Model Genesis. The video classifier is outperformed by VGG, with a video accuracy of
90% compared to 78%. Note that by summarizing frames of one video, the accuracy
of VGG was improved, indicating that in some cases only a minority of the frames are
misclassified. In particular, the sensitivity and precision of COVID-19 increases. In contrast,
Model Genesis struggles with the classification of COVID-19 patients, obtaining an F1-
score of only 0.75. Notably, the varying frame rate across the videos was accounted for
during data preparation and cannot serve as a reason to explain the performance gap. One
caveat in Models Genesis that may hinder better generalization is that it was pretrained
on 3D volumes rather than 2D time series. But considering that only 770 video-chunks
were available for training Model Genesis, while 3234 images are used to train VGG-CAM,
even extended through data augmentation techniques, it is plausible that video-based
classification may improve with increasing data availability.

Table 3. Video classification results. The frame-based model VGG-CAM outperforms the 3D CNN Models Genesis in all
shown metrics, displaying high accuracy (94%), recall, precision for COVID-19 and pneumonia detection.

Class Recall Precision F1-Score Specificity

VGG
Accuracy: 90%
Balanced: 90%
#Param.: 14.7 M

COVID-19 0.90± 0.08 0.92± 0.07 0.91± 0.06 0.96± 0.04
Pneumonia 0.93± 0.10 0.88± 0.08 0.90± 0.08 0.95± 0.04
Healthy 0.88± 0.06 0.91± 0.08 0.89± 0.06 0.95± 0.05

Models Genesis
Accuracy: 78%
Balanced: 77%
#Param.: 7.6 M

COVID-19 0.74± 0.17 0.77± 0.15 0.75± 0.15 0.87± 0.11
Pneumonia 0.79± 0.14 0.80± 0.15 0.78± 0.11 0.91± 0.07
Healthy 0.78± 0.28 0.79± 0.12 0.77± 0.22 0.88± 0.08

3.2.3. Evaluation on Independent Test Data

To the best of our knowledge, the only other publicly-available lung ultrasound
database was released by the ICLUS initiative [57], comprising 60 lung US recordings
from Italian patients suspected for COVID-19 (39 convex + 21 linear probes). The data was
annotated by medical experts by observation, with severity scores from 0 to 3 (Roy et al. [57]
“Score 0 indicates the presence of a continuous pleural-line accompanied by horizontal
artifacts called A-lines [33], which characterize a healthy lung surface. In contrast, score
1 indicates the first) signs of abnormality, that is, the appearance of alterations in the
pleural-line in conjunction with vertical artifacts. Scores 2 and 3 are representative of
a more advanced pathological state, with the presence of small or large consolidations,
respectively. Finally score 3 is associated with the presence of a wider hyperechogenic
area below the pleural surface, which can be referred to as white lung”. We evaluated
the performance of the VGG model on all 39 convex probes, predicting each frame as the
average of the five VGG models trained in cross-validation. Since many frames in a raw
lung US video are not informative, Roy et al. [57] train an aggregation layer to combine
frame-based scores into a video prediction. Instead, we propose to use confidence estimates
as explained in Section 4.2 and discard frames with low confidence. Discarding the 5%
frames with lowest certainty, and assuming that a severity score of 0 corresponds to a
healthy lung and severity of 1, 2 or 3 are patients infected with COVID-19, the ensemble
achieves a frame-prediction accuracy of 72.9%, and a video classification accuracy of 82.1%.
The sensitivity for COVID-19 is 0.806 and the specificity 0.962.

We also compare the predicted probability of COVID-19 to the severity scores in
Figure 4. Although, in contrast to their model, our model was not trained to assess severity,
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there is a clear correlation between the severity and the probability of our model (Pearson’s
r = 0.36). At this point, we can safely conclude that test data performance is encouraging,
but requires further validation with labeled data including healthy patients and patients
infected with other pneumonias.

0 1 2 3
Severity of abnormalities

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
OV

ID
-1

9 
pr

ob
ab

ilit
y

Figure 4. Performance of our model on an independent test set. Predicted probability for COVID-19
of our model compared to the severity labels of ICLUS (colors correspond to COVID-19 severity).

4. Model Explainability
4.1. Class Activation Maps

Class activation mapping (CAM) is a popular technique for model explainability that
exploits global average pooling and allows to compute class-specific heatmaps that indicate
the discriminative regions of the image that caused the particular class activity of inter-
est [72]. For healthcare applications, CAMs, or their generalization Grad-CAMs [75], can
provide valuable decision support by unravelling whether a model’s prediction was based
on visible pathological patterns. Moreover, CAMs can guide doctors and point to informa-
tive patterns, especially relevant in time-sensitive (triage) or knowledge-sensitive (third-
world countries) situations. Here, the Grad-CAMs yielded with the VGG model were
compared to CAMs of VGG-CAM, and the latter were found of better quality by observation.
Since the accuracy of VGG-CAM is very similar to the one of VGG, we analyze only the outputs
of VGG-CAM in this section as the most performant interpretable model.

4.1.1. Results

Figure 5 shows representative CAMs in the three rightmost panels. They highlight the
most frequent US pattern for the three classes, COVID-19 (vertical B-lines), bacterial pneu-
monia (consolidations), and healthy (horizontal A-line). For a more quantitative estimate,
we computed the points of maximal activation of the CAMs for each class (abbreviated as C,
P, and H) and all samples of the dataset (see Figure 5 left). While, in general, the heatmaps
are fairly distributed across the probe, pneumonia related features were rather found in
the center and bottom part, especially compared to COVID-19 and healthy patterns. Please
refer to Appendix D for a density plot. The interactive HTML and a few exemplary CAM
videos are available as Supplementary Material: https://bit.ly/2HH4sUt To assess to what
extent the differences between the individual distributions are significant, we employed
maximum mean discrepancy (MMD), a metric between statistical distributions [76] that en-
ables the comparison of distributions via kernels, that is, generic similarity functions. Given
two coordinates x, y ∈ R2 and a smoothing parameter σ ∈ R, we use a Gaussian kernel
k(x, y) := exp(−‖x−y‖2/σ2) to assess the dissimilarity between x and y. Following [76], we
set σ to the median distance in the aggregated samples (i.e., all samples, without consider-
ing labels). We then calculate MMD values for the distance between the three classes, that
is, MMD(C, P) ≈ 0.0051, MMD(C, H) ≈ 0.0061, and MMD(P, H) ≈ 0.0065. Repeating this
calculation for 5000 bootstrap samples per class (see Figure A5 for the resulting histograms),
we find that the observe achieved significance levels of the intra-class MMD values of well
below an α = 0.05 significance level.

https://bit.ly/2HH4sUt
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Figure 5. Class activation maps. (Left): Interactive scatterplot of the origins of the CAMs across the entire dataset, colored
by class. While the data seems rather unstructured, pneumonia-CAMs have lower y-coordinates than COVID-19 and
healthy samples. (Rest): Exemplary CAMs for COVID-19 (highlighting a B-line), bacterial pneumonia (highlighting pleural
consolidations) and healthy lungs (highlighting A-lines).

4.1.2. Expert Validation of CAMs for Human-in-the-Loop Settings

A potential application of our framework is a human-in-the-loop (HITL) setting
with CAMs as a core component of the decision support tool that highlights pulmonary
biomarkers and guides the decision makers. Since the performance of qualitative methods
like CAMs can only be validated with the help of doctors, we conducted a blinded study
with two medical experts experienced in the diagnostic process with ultrasound recordings
(one physician with >10 years of clinical experience with LUS and one academic US
course instructor). The experts were shown a set of 50 videos comprising non-proprietary
video data which was correctly classified by the model. The class activation map for the
respective class was computed two times, first with one of the four models that were
trained on this video, and secondly only with the model that was not exposed to that video
during training (called train- and test-CAMs in the following). Both experts were asked to
compare both activation maps for all 50 videos, and to score them on a scale of −3 (“the
heatmap is only distracting”) to 3 (“the heatmap is very helpful for diagnosis”).

First, the CAMs were overall perceived useful and the test CAMs were assigned
a higher average score of 0.81 than the train CAMs (0.45). Secondly, disagreeing in only 8%
of the cases, both experts independently decided for the test-CAM with a probability of
56%. Hence, the test-CAMs are superior to the train-CAMs, however non-significant in
a Wilcoxon signed-rank test.

However, train- and test-CAM both scored best for videos of bacterial pneumonia,
lacking performance for videos of healthy and COVID-19 patients. Specifically, test-CAM
received an average score of 0.81, divided into −0.25 for COVID-19, 2.05 for pneumonia,
and 0 for healthy patients. Thirdly, the experts were asked to name the pathological
patterns visible in general, as well as the patterns that were highlighted by the heatmap.
Figure 6 shows the average ratio of pattern that were correctly highlighted by the CAM
model, where the patterns listed by the more senior expert are taken as the ground truth
for each video. Interestingly, the high performance of our model in classifying videos of
bacterial pneumonia is probably explained by the model’s ability to detect consolidated
areas, where 17 out of 18 are correctly classified. Moreover, A-lines are highlighted in∼60%
of the normal lung recordings. Problematically, in 13 videos mostly fat, muscles or skin is
highlighted, which has to be studied and improved in future work.
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Figure 6. Pathological pattern highlighting. Patterns highlighted by CAMs compared to patterns
visible in the video (colors correspond to success ratio in detection).

4.2. Confidence Estimates

The ability to quantify states of high uncertainty is of crucial importance for medical
image analysis and computer vision applications in healthcare. We assessed this via
independent measures of epistemic (model) uncertainty (by drawing Monte Carlo samples
from the approximate predictive posterior [77]) and aleatoric (data) uncertainty (by means
of test time data augmentation [78]). The sample standard deviation of 10 forward passes
is interpreted as inverse, empirical confidence score ∈ [0, 1]. In detail, for both aleatoric
and epistemic uncertainty, the confidence estimate ci of sample i is computed by scaling
the sample’s standard deviation to ∈ [0, 1] and interpreting it as an inverse precision:

ci = −
(

σi,j − σmin

σmax − σmin

)
+ 1 , (1)

where σi,j is the sample standard deviation of the ten class probabilities of the winning class
j, σmin is the minimal standard deviation (0, that is, all probabilities for the winning class are
identical) and σmax is the maximal standard deviation, that is, 0.5. Practically, for epistemic
uncertainty, dropout was set to 0.5 across the VGG model and for aleatoric uncertainty
the same transformations as during training are employed. The epistemic confidence
estimate was found to be highly correlated with the correctness of the predictions (ρ = 0.41,
p < 4× 10−73, mean confidence of 0.75 and 0.27 for correct and wrong predictions), while
the aleatoric confidence was found correlated to a lesser extent (ρ = 0.29, p < 6× 10−35,
mean confidence of 0.88 and 0.73, respectively). Across the entire dataset, both scores are
highly correlated (ρ = 0.52, p < 4× 10−124), suggesting to exploit them jointly to detect
and remove predictions of low confidence in a possible application. In the evaluation of
our model on independent test data from the ICLUS initiative (see above), we found that
the frame-wise classification accuracy improved monotonically from 72.2% to 77.4% with
increasing exclusion of frames with insufficient confidence.

5. Discussion
5.1. Prediction Performance Evaluation

We provide strong evidence that automatic detection of COVID-19 is a promising
future endeavour and competitive compared to CT and CXR based models, with a sensi-
tivity of 90% and a specificity of 96% for COVID-19, achieved on our dataset of 202 lung
US videos. In comparison, sensitivity up to 98% and specificity up to 92% was reported
for CT [2,79]. We verified our results with independent test data, compared to other ar-
chitectures and models of related work [57], studied model uncertainty and concluded
a significant ability of our model to recognize low-confidence situations. If implemented
and validated as a decision support tool, it might bring value to the diagnostic process of
symptomatic patients, but could also pose risks as we expand on in Appendix E.

Certainly, there are many approaches yet to be explored in order to improve on the
results presented here, including further work on video classification, improving prediction
robustness [49], incorporating a LUS probe quality assessment module [53] or a pulmonary
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symptom classifier [54] which could be coupled with our disease classifier. Furthermore,
differentiating COVID-19 from other viral pneumonias remains a key challenge for diag-
nostic imaging [67] and is beyond the scope of this work. Further work could explore the
possibility to use interpretable methods to determine differences of COVID-19 to other
viral pneumonia which could be exploited in (automatic) differential diagnosis. Here, we
investigated the value of interpretable methods in a quantitative manner with the imple-
mentation and validation of class activation mapping in a study involving medical experts.
While the analysis provides excellent evidence for the successful detection of pathological
patterns like consolidations, A-lines and effusion, it reveals problems in the model’s “focal
point” (e.g., missing B-lines and sometimes highlighting muscles instead of the lung) which
should be further addressed using ultrasound segmentation techniques [42].

5.2. Dataset Limitations

Our dataset certainly suffers from certain limitations, as gathering data in an orga-
nized manner during a pandemic is a logistic and time-sensitive challenge. We ensured
that the Northumbria and Neuruppin cohort used US devices from the same vendor, but
this was not possible for external data from online sources and publications. Processing
exemplary videos of publications carries the risk of population bias and may overestimate
the frequency of stereotypical symptoms and pathologies. In general, the data inevitably
remains heterogeneous and information is at least partially unknown, including patient
metadata (age, gender, symptoms etc.), technical details (recording frequency, imaging
depths) and disease progression (duration of symptoms at day of examination). While this
heterogeneity may induce biases, it can also aid in developing robust methods, as models
based on single-center data often fail to generalize [80]. Moreover, most types of patterns
in LUS are, just like for CT or CXR, not disease-specific [66,67] (see also Figure 2b) and we
by no means claim to develop a diagnostic tool in here. For the future, a more homoge-
neous dataset of LUS, associated with demographics and anamnesis of patients should be
collected in a controlled manner from different hospitals. Conclusively however, given
the non-availability of other public databases for LUS data in the context of COVID-19,
this does not decrease the benefit of our dataset; but we do advise to be careful in drawing
far-ranging conclusions from simulations on our dataset.

6. Conclusions

Lung ultrasound as an established diagnosis tool that is both safe and highly available
constitutes a method with potentially huge impact that has nevertheless been neglected
by the machine learning community. This work presents a novel LUS dataset for COVID-
19 alongside new methods and analyses that pave the way towards computer vision-
assisted differential diagnosis of COVID-19 from US. We provide an extensive analysis of
interpretable methods that are relevant not only in the context of COVID-19, but in general
for the diagnosis of viral and bacterial pneumonias.

Our published database is constantly updated and verified by medical experts and
researchers are invited to contribute to our initiative. We strongly believe in the value
of such open-source databases not only for follow-up work, but also for related fields.
Our data in particular can be utilized for pre-training (transfer learning) in other US
applications [41], as done in Model Genesis [73]. Even research on noise and artifact
removal from US [81], or US image simulation [82] might benefit from the availability of
US data. The available metadata also opens up opportunities for further analysis with
respect to pre-conditions, symptoms and patterns, as we touched upon in Figure 2a,b.

We envision the proposed tool as a step toward a decision support system to aid
diagnosis by providing a “second opinion” to increase reliability. The promising results of
our model are to be validated in a controlled clinical study that investigates the predictive
power of US for automatic detection of COVID-19, especially in comparison to CT and CXR.
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Appendix A. Dataset

Table A1 gives a short overview of the most important sources, consisting of clinical
data, self-recorded data of healthy volunteers, other scientific publications, educational
websites and health-tech companies. Note that if not specified otherwise, the numbers for
convex and linear data samples refer to videos. An extensive list of sources and metadata
can be found on GitHub (https://github.com/BorgwardtLab/covid19_ultrasound/blob/
master/data/dataset_metadata.csv). Notably, a significant portion of data (45 linear videos)
obtained during home visits from Piacenza, Italy during spring 2020 was excluded from
all presented analysis due to the lack of a confirmative RT-PCR, but is still released in our
public repository in a designated folder marked as “label unclear”.

https://github.com/BorgwardtLab/covid19_ultrasound
https://github.com/BorgwardtLab/covid19_ultrasound
https://github.com/BorgwardtLab/covid19_ultrasound
https://github.com/BorgwardtLab/covid19_ultrasound
https://github.com/BorgwardtLab/covid19_ultrasound/blob/master/data/dataset_metadata.csv
https://github.com/BorgwardtLab/covid19_ultrasound/blob/master/data/dataset_metadata.csv
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Table A1. Data sources. Overview of all data sources, including a comprehensive list of publications and educational
websites that provide data included in our analysis.

Data Source Data Selected Description

Northumbria
(NH NHS-FT)

Convex: 47 videos and 23 images
(31 healthy and 39 bacterial pneumonia infected patients)

The Northumbria Healthcase NHS Foundation Trust (NH NHS-FT)
contributed patient data (images and videos) to our dataset

Neuruppin
(MHB)

Convex: 28 videos
Linear: 3 videos

(all healthy)

Ultrasoud course instructors from Medizinische Hochschule Brandenburg
Theodor Fontane (MHB) recorded volunteers that did not show

any symptoms of COVID-19 infections and were not tested positively

Publications Convex: 15 images and 30 videos from all classes
Linear: 4 images, 4 videos Miscallaneous LUS videos and images were fetched from publications [19,83–98]

GrepMed Convex: 9 COVID-19, 9 pneumonia and 2 healthy
Linear: 3 COVID-19, 1 healthy (all videos)

GrepMed is a community-sourced, medical
image repository for referencing clinically relevant medical images

Butterfly Convex: 18 COVID-19 and 2 healthy videos Butterfly is a vendor of a portable US device needing only a single
probe usable on the whole body that connects to a smartphone

ThePocusAtlas Convex: 8 COVID-19, 2 pneumonia and 3 healthy videos
Linear: 2 COVID-19 videos ThePocusAtlas is a Collaborative Ultrasound Education Platform

LITFL Convex: 5 bacterial and 2 viral pneumonia (H1N1), 2 healthy
Linear: 1 H1N1 (all videos)

Australasian critical care physicians maintain an educational platform
and provide an ultrasound library with case studies

Web
Convex: 15 images, 15 videos

Linear: 2 images, 6 videos
from all classes

Remaining online sources were:
https://www.stemlynsblog.org/, https://clarius.com/,

https://everydayultrasound.com/, https://radiopaedia.org,
https://www.acutemedicine.org, https://www.bcpocus.ca,

https://www.youtube.com, www.sonographiebilder.de/

Bolzano AG 45 linear videos of probably COVID-19 infected patients

(Data not used for any analysis presented herein)
Videos were recorded in spring 2020 in Piacenza (Italy) from patients

suspected of COVID-19. Diagnosis was not confirmed via PCR
or thorax imaging. Bolzano AG donated this data to our dataset.

Data License

The example images in Figure 1 are available via creative commons license (CC BY-
NC 4.0) from: thepocusatlas.com (access date: 17 April 2020). All sources apart from
Butterfly either agreed to our redistribution of the data on GitHub or licensed their data
under CC license. The data from Butterfly can be easily added and pre-processed by
running a shell script we provide. In addition we acknowledge the following contributions
from US videos from https://radiopaedia.org Radiopaedia (access date: 17 April 2020):
https://radiopaedia.org/cases/pneumonia-ultrasound-1 ‘Pneumonia-ultrasound’ from
Dr. David Carroll and https://radiopaedia.org/cases/normal-anterior-lung-ultrasound-1
‘Normal anterior lung (ultrasound)’ from Dr. David Carroll.

Appendix B. Model Architectures and Hyperparameter

As a base, we use the convolutional part of the established VGG-16 [70], pre-trained
on Imagenet. The model we call VGG is followed by one hidden layer of 64 neurons with
ReLU activation, dropout of 0.5, batch normalization and the output layer with softmax
activation. The CAMs for this model were computed with Grad-CAM [75]. To compare
Grad-CAMs with regular CAMs [72], we also tested VGG-CAM, a CAM-compatible VGG
with a single dense layer following the global average pooling after the last convolutional
layer. For both models, during training only the weights of the last three layers were
fine-tuned, while the other ones were frozen to the values from pre-training. This results in
a total of ∼2.4 M trainable and ∼12.4 M non-trainable parameters. The model is trained
with a cross entropy loss function on the softmax outputs, and optimized with Adam with
an initial learning rate of 1e−4. All models were implemented in TensorFlow and trained
for 40 epochs with a batch size of 8 and early stopping was enabled.

Appendix B.1. Pretrained Segmentation Models

Figure A1 gives an example for the segmented ultrasound image with the model
from [57]. In our work the segmented image serves as input to the VGG-Segment model.

https://www.grepmed.com
https://www.thepocusatlas.com
https://www.stemlynsblog.org/
https://clarius.com/
https://everydayultrasound.com/
https://radiopaedia.org
https://www.acutemedicine.org
https://www.bcpocus.ca
https://www.youtube.com
www.sonographiebilder.de/
thepocusatlas.com
https://radiopaedia.org
https://radiopaedia.org/cases/pneumonia-ultrasound-1
https://radiopaedia.org/cases/pneumonia-ultrasound-1
https://radiopaedia.org/cases/normal-anterior-lung-ultrasound-1
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Figure A1. Example snapshot from lung segmentation of COVID-19 patient. Left side shows the raw
US recording and the right side shows the segmentation method from [57] highlighting the B-line.
The images shown on the right were used as input for the VGG-Segment model. Blue, orange and red
correspond to signs of healthy, moderate and heavily COVID-19 infected lungs.

Appendix C. Results

Re-formulating the classification as a binary task, the ROC-curve and precision-recall
curves can be computed for each class. Figures A2 and A3 depict the performance per
class, comparing all proposed models. Figure A3a,b show that all models show similar
performance with the exception of NASNet. The performance for COVID-19 is better for
VGG than for the segmentation based model (Figure A3a).
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Figure A2. Binary classification results. All models achieve good precision and recall in pneumonia detection, but lower
scores and higher variances are observed for data of healthy patients. (a) ROC-curve (Pneumonia), (b) Precision-recall
(Pneumonia), (c) ROC-curve (Healthy), (d) Precision-recall (Healthy).
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Figure A3. COVID-19 detection and absolute confusion matrix. (a) ROC-curve (COVID-19), (b) Precision-recall-curve
(COVID-19), (c) Absolute confusion matrix (VGG-CAM).



Appl. Sci. 2021, 11, 672 17 of 23

Furthermore, in addition to the normalized confusion matrices we provide the absolute
values here in Figure A3c (referring to VGG-CAM). Note that the number of COVID-19
images almost matches the number of healthy data, despite the novelty of the disease.
Problematically, healthy and COVID-19 patients are confused in 162 images, whereas
bacterial pneumonia is predicted rather reliably.

Appendix C.1. Uninformative Class

Although the main task is defined as differentiating COVID-19, bacterial pneumonia
and healthy, we trained the model actually with a fourth “uninformative” class in order
to identify out-of-distribution samples. This concerns both entirely different pictures (no
ultrasound), as well as ultrasound images not showing the lung. Thus, we added 200
images from Tiny ImageNet (one per class taken from the test set) together with 200 neck
ultrasound scans taken from the Kaggle ultrasound nerve segmentation challenge [69].
Note that the latter is data recorded with linear ultrasound probes, leading to very different
ultrasound images.

Table A2 lists the results including these uninformative samples, where better accuracy
is achieved due to the ease of distinguishing the uninformative samples from other data.
In all cases except for experiments with the NASNetMobile model, precision and recall are
higher than 0.98 with low standard deviation.

Table A2. Performance comparison including accuracy on the uninformative data. “Balanced” abbreviates balanced
accuracy and Par. the number of parameters. The raw results are listed, including the uninformative class. Clearly, this
fourth class is very distinctive and is learnt successfully, with almost all scores above 0.89.

Class Recall Precision F1-Score Specificity

VGG
Accuracy: 0.885
Balanced: 0.903
Par.: 14 747 971

COVID-19 0.88± 0.07 0.90± 0.07 0.89± 0.06 0.94± 0.05
Pneumonia 0.90± 0.11 0.81± 0.08 0.85± 0.08 0.94± 0.04
Healthy 0.83± 0.11 0.90± 0.06 0.86± 0.08 0.94± 0.03
Uninformative 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

VGG-CAM
Accuracy: 0.88
Balanced: 0.894
#Param.: 14 716 227

COVID-19 0.85± 0.11 0.86± 0.07 0.85± 0.08 0.92± 0.04
Pneumonia 0.86± 0.14 0.87± 0.06 0.86± 0.09 0.96± 0.03
Healthy 0.86± 0.11 0.88± 0.09 0.87± 0.09 0.94± 0.04
Uninformative 1.00± 0.00 0.98± 0.04 0.99± 0.02 1.00± 0.00

NASNetMobile
Accuracy: 0.588
Balanced: 0.42
#Param.: 4 814 487

COVID-19 0.63± 0.22 0.59± 0.12 0.59± 0.15 0.75± 0.11
Pneumonia 0.22± 0.27 0.46± 0.42 0.28± 0.30 0.98± 0.03
Healthy 0.80± 0.11 0.56± 0.06 0.65± 0.07 0.61± 0.12
Uninformative 0.03± 0.05 0.20± 0.40 0.04± 0.09 1.00± 0.00

VGG-Segment
Accuracy: 0.866
Balanced: 0.877
#Param.: 34 018 074

COVID-19 0.81± 0.20 0.86± 0.08 0.82± 0.13 0.93± 0.05
Pneumonia 0.86± 0.08 0.84± 0.08 0.84± 0.03 0.95± 0.03
Healthy 0.85± 0.12 0.86± 0.06 0.85± 0.08 0.91± 0.07
Uninformative 0.99± 0.01 1.00± 0.00 0.99± 0.00 1.00± 0.00

Segment-Enc
Accuracy: 0.873
Balanced: 0.886
Par.: 19 993 307

COVID-19 0.84± 0.11 0.89± 0.07 0.86± 0.07 0.94± 0.05
Pneumonia 0.89± 0.04 0.75± 0.10 0.81± 0.06 0.93± 0.03
Healthy 0.82± 0.18 0.90± 0.05 0.85± 0.12 0.95± 0.02
Uninformative 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Appendix D. Class Activation Maps

In addition to the scatter plot in Figure 5 we present the corresponding density plot in
Figure A4, showing the area of the ultrasound image where the class activation is maximal
for each class. It can be observed that the activation on healthy and COVID-19 videos is
located further in the upper part of the image, where usually only muscles and skin are
observed. Further work is thus necessary to analyze and improve the qualitative results of
the model.
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However, with respect to pathological patterns visible, the model does in many cases
focus on the patterns that are interesting to medical experts. Table A3 breaks down the
results presented in Figure 6 more in detail, and in particular separately for both medical
experts. Note that with respect to the pleural line, we only consider the opinion of expert 2
since expert 1 did not mention it. With the exception of consolidations, the difference in
responses is quite large, which is however unsurprising for such a qualitative task. Besides
the patterns that were already named in Figure 6, the heatmaps also correctly highlighted
air bronchograms (2 cases according to expert 1) and a pleural effusion in 1 out of 7 cases.

Table A3. Pathological patterns visible and highlighted by class activation maps of our model. Pneu
abbreviated pneumonia. The model focuses on consolidations, A-lines and the pleural line.

Consolidations A-Lines B-Lines Bronchogram Effusion Pleural Line

Specific for Bacterial Pne. Healthy COVID-19
(Viral Pne.) Bacterial Pne. Pne. Pne. If Irregular

Total visible 18 13 12 2 7 20 (expert 2)

CAM (expert 1) 17 6 0 2 1 0

CAM (expert 2) 17 10 6 0 0 9
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Figure A4. Density plot of centers of class maps. Pneumonia-CAMs are rather centralized compared
to other CAMs. Problematically, COVID-CAMs seem to exhibit a tendency for upper regions of the
probe that do not necessarily belong to the lung.
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Maximum Mean Discrepancy Analysis

Figure A5 shows the histograms corresponding to experiments reported in Section 4.1.1.
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Figure A5. Histograms depicting the empirical null distribution, obtained via bootstrapping 5000 samples, of the MMD
values (from left to right): MMD(C, P) ≈ 0.0051; MMD(C, H) ≈ 0.0061; and MMD(P, H) ≈ 0.0065. The corresponding true
MMD values, that is, the ones we obtain by looking at the labels, are indicated as a dashed line in each histogram. We
observe that these values are highly infrequent under the null distribution, indicating that the differences betwee the three
classes are significant. Notably, the statistical distance between patients suffering from bacterial pneumonia and healthy
patients (rightmost histogram) achieves a slightly lower empirical significance of ≈0.04. We speculate that this might be
related to other pre-existing conditions in healthy patients that are not pertinent to this study.

Appendix E. Statement of Broader Impact

The proposed methods could help to simplify and accelerate the diagnosis of COVID-
19, as well as other viral and bacterial pneumonia. This could decrease the number of
infections, improve disease management and patient care of both COVID-19 and future
pandemics. If computer vision methods sufficiently increase the sensitivity of diagnosis
with ultrasound, it could replace X-ray and CT as a first-line examination, as suggested
in [7,21]. This would lower the risks for medical staff (due to simplicity of sterilization),
decrease costs for health care, and avoid exposing patients to radiation. Most importantly,
in developing countries ultrasound may be the only available and reliable test method.

Appendix E.1. Model Failure

In case of failure, false negatives are most problematic since the disease spread is
accelerated if infected patients are not quarantined. In response, we first provide confi-
dence estimates that allow to disregard low certainty predictions, secondly we feature
explainable methods helping to discover decisions based on artifacts. Moreover, like any
ML approach on lung imaging data, the applicability of our framework is naturally limited
to symptomatic patients with infected lungs. From the practical perspective we want to
stress that we envision our tool as a decision support system that can help to save the scarce
time of physicians, who will always retain full control. The primary use will be first-line
examination for patient stratification, followed by appropriate medical treatment with the
proper diagnostic equipment (PCR, IGG-IGM detection or clinical assesment).

Appendix E.2. Impact on Society

Critics could point out the possibility of doctors being replaced by automatic systems.
However, given that the proposed methods are aimed at interpretable decision support
tools and not for standalone detection, such a scenario seems unlikely. Instead, such tools
could increase the capacities of congested hospitals, or integrate general practitioners (who
do not have access to PCR laboratories or other imaging devices) into the diagnostic process.



Appl. Sci. 2021, 11, 672 20 of 23

Appendix E.3. Biases and Validation

Since much of our data is taken from online sources, in some cases there is no patient
information available. It is therefore possible or even likely that the data is biased to some
extent. We verified our methods and data as good as possible, utilizing novel healthy-
patient data as well as the only other COVID-19 ultrasound dataset [57]. In any case it is
necessary to probe the methods in a clinical setting, and we already initiated a collaboration
working toward a clinical study comparing ultrasound and automatic detection techniques
to other imaging modalities. A challenge in this clinical study will be the fair representation
of different patient age groups and ethnicities. However, as US is non-invasive there are
hardly any known risk factors and it is thus inclusive for all patient subgroups, also those
that are excluded from CT and CXR such as diabetics (due to sugar in the contrast material).

In conclusion, we regard our work as a step towards automation of a testing method
with extremely positive impact if validated appropriately.
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